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1. The main purpose of this paper is to prove the following theorem:

TarorREM 1. If a lacunary power series
kz1 ckz" (nk+1/nk>q> ].) (11)

satisfies the conditions >0, > |ex|=o0 (1.2)

and if { is any point in the complex plane, then there exists a point & on the unit
circle such that 2 ¢, &™ converges to L.

This theorem was stated by Paley in a note [1]. Since the note was in the
nature of a research announcement no proof was given for the theorem. However,
in a letter to Prof. Zygmund dated Oct. 7, 1932, Paley gave an outline of the proof,
as he saw it, for his theorem. The argument is made to depend on a lemma (Theo-
rem 2 of the present paper). Paley believed that the proof of the lemma would
follow the reasoning given in Zygmund’s article [4]. However, attempts to recomn-
struct the proof along these lines have not succeeded. Taking this lemma for granted,
Paley next sketches how his theorem may be deduced from it. He presents an
ingenious idea how this part of the argument is to be carried out. Paley’s idea here
is, as it turns out, completely successful, but the details ‘which need to be supplied
are lengthy.

The purpose of the present paper is, therefore, twofold. First, a proof is given
for theorem 2. The argument, which is contained in sections 14, is rather complex,
and seems to indicate that the simpler idea envisaged by Paley could not succeed.

It should be noted that when ¢ >3, Theorem 2 can be given a very simple proof.
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This line of reasoning (which is still different) cannot be made to work in the general
case. Secondly, in sections 5-7 we give in detail the argument which reduces Theo-
rem 1 to Theorem 2.

We return to Theorem 1. This theorem implies in particular that the set E of
points of convergence of the series on the unit circle is of the power of the contin-
uum, and in this connection it is interesting to observe that if D |c¢[>=co (for ex-
ample if ¢,=%k%) then E is of measure 0 (see e.g. [5;] p. 203). The proof of Theo-
rem 1 actually gives a litte more than stated since it shows that the sums of
> cx2™ cover the whole plane even if we restrict ourselves to an arbitrarily small
arc of |z|=1.

Considering the real part

(@ cos ny 0+ by, sin n,, 0) (1.3)

[\t

of > ¢,2" we deduce from Theorem 1 that if
ay, b0, Z(lak|+lbk|)=°° (1.4)

then the series (1.3) converges to any prescribed number in a set which is of the power
of the continuum in every interval.(1)

In what follows we denote by A, Ag, By, ... etc. positive constants depending
on ¢ only, not necessarily the same at each occurrence. By A4 we denote absolute

constants.

TuEOREM 2. There exist constants A, and A, with the following properties: If a

lacunary polynomial
T@)= ké(ak €08 1, 0 + by, sin ny 6) (1.5)
satisfies TO<M
in an interval a<0<b, and if b—a> Ay/n,, then
2 (o] + B ) < Aq M. (1.6)
It will often be convenient to write 7' in the complex form

N
TO)= > pne™, )

where

() That under the hypothesis (1.4) the series (1.2) converges to any prescribed sum in & set
which is dense in (0, 2 7) is an earlier result, (see [3]), and is a simple consequence of properties of
smooth funections.
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’}/0—_'—'0, Ve= % ((lrk'—' 7 bk), Yk = )_/k, N = — Ny, nk+1/nk>q> 1 for k>0. (1.8)
Then (1.6) can be written Slyel<de M. 1.9)

In what follows we systematically denote by 7' a polynomial (1.5) or (1.7) satis-
fying (1.9).
2. The proof of Theorem 2 is based on several lemmas.

LEMMA 1. There exist constants B, and By such that if

b—a> B,/n, 2.1)
b
1 ,
then o ﬁT 026> B, (S |y )t 2.2)
N
We write 121 |y |2 =T2

It is enough to show that, under the hypothesis (2.1),
b
fT2d0> (b—a) %, (2.3)
a

and that for b—a>K/n,, where K is any positive constant (independent of ¢ this

time)
b

fT“ d0<Cy4x(®—a)T* (2.4)

since then, by Holder’s inequality,

b b b '
fT2d6<(f|T|d6) (fT“dO) ,

and (2.2) is a corollary of (2.3) and (2.4).
The proof of (2.3) is straightforward. We have

b b

b
f Td0 = f Cpre” 0 Sy e d0=20B-a)T2+ 3 3 ykf el g 9. (2.5)
e’

a

Denote the last sum by RE. Then
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Nkl 1

<42 3 nlPrinb,
| k,—2

|BI< 3 (7P + 2l

|n (7

N 1 — N 1
Z;Z Uy P+lv)<de 3 = T2+ k|yel?)
k=2 -1 k=2My

<Aq1“2{§, 1}+A I‘z{max ﬁ}
k=2 Ty,
In view of the hypothesis n;.1/n;>¢>1, the two expressions in curly brackets are
majorized by A./n,, and so, if B, is large enough, b—a> B,/n, implies that |R|
< (6 —a) I'®, which in conjunction with (2.5) gives (2.3).

We now pass to (2.4) and assume first that ¢>4.

We call two positive integers s and ¢ distant if either s/t>2 or ¢/s>2; in the
first case s—t>s/2. The hypothesis ¢>4 implies that if j<k then n,>2n, and the

numbers n; and 2n; are distant.

We write T= Zy e'md = Z+ Z T,+T,.

Since |T,|=|T,| it is enough to prove (2.4) with 7, for 7. Now

T,f=T* 2% S 5 peonm?

I<i<kgN

and (2.4) will be proved if we show that the complex-valued polynomial

§O)= 3 Fryee s

1<i<k<N
b

satisfies f |SIPdO< Ok (b—a)T (2.6)

Clearly,

b b

f |SPPd6=2 7 vepr Vk‘fei[(nrnk’)‘(nj_n’q)w a9,

where 1<j<k, 1<j'<k’. We split the terms of the series into three separate groups;
(i) b=k, j=7
({) k=¥, j+j;
(iii) k=1,

and evaluate the contribution of each group.
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(i) the contribution of this group is
N k-1 .
(b— a)kg?J Vi lzjgl |y, P<(d—a)T™

(i) It is enough to consider here the terms with j’ <j< k. Their sum is majorized by

N k-1j- 2
a3 3 3 0oy 3 1SS ()
N k-1
<43 Inl 3 2@ +ilnl

" ¥i1 " 1
<ATH T =1+ 4T max .
j

i=2 %y
Since the expressions in curly brackets are majorized by A4/n,, the contribution of

the terms in (ii) does not exceed Al""‘/n1
(iii) In estimating the terms we may suppose that k' <k. Their sum does not

2

exceed,
PR Cll ey w1

where 1<j<k, 1<j <k, and ¥ <k. Clearly,

Ny — Ny — (nk- - n,:) 2 Ny — 2 Np—1

and since ¢>4 the numbers »n, and 2n;_1 are distant, n, —2n,_1 > n,/2, and the last

sum is not greater than
s SV UwlP e P AvwlP e )

43 3 5 3 X

k=3 k'=2 j=1 j'=1

).

N 1 — k-1 k-1
AS LS (UnPelnd| S (nF+p)
k=8 Mg K22 J=1 7=1

Since the sum in curly brackets does not exceed (k+k)T?<2kT?, the whole sum is

majorized by
b k=

AT® 2 2 Z (Tyel + 17 < AT 3—(k|y wl* + %)

AF4{M3X—} + AT Z ;iﬁ < AT*/n,.

k=3 M

Collecting results we see that if ¢=>4, then
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b

fT‘*desA[(b-a)Jrl]r‘*
ny

and so if we make the additional assumption that b—a> K/n, we obtain (2.4) with
Cox=Crx.

It is now easy to complete the proof of (2.4) in the general case ¢>1. We take
r so large that ¢">4 and split 7 into a sum of 7 polynomials, 7'=T® + T® + ... + T®,
in each of which the indices % of the n, form an arithmetic progression of difference r.

Since

b
f (TP dO< Cx (b—a) %,

for each s, 1<s<r, provided 6 —a>K/n, and since, by Jensen’s inequality,

b b

4
fT“ a6<r> | (1) do,

Seml
a

where r depends on g only, the proof of (2.4) is complete. This also completes the
proof of Lemma 1.

3. LemMma 2. There exist constants C,, Of and C,; with the following property: If
b—a>Cy/n,, then (a,b) contains a point & such that

T (§)>CT; (3.1)
more generally there is a whole subinterval 1 of (a, b) of length > C{ /ny where

T®O)=C,T. (3.2)
First of all,

; N N 3 /N 3
ldeﬂl<4Z|yk|n;1<4(2|ykl2) (zn;Z) < A,T/n,. (3.3)
1 1 1

Next, if ™= max («,0), then w* =} (|u|—wu), and, in view of (2.2) and (3.3)
b

b b
fT*d6=%f|T|d6—%de0>B;(b—a)P—DqF/n1>%B; (b—a)T

a

if C, is large enough. A comparison of the extreme terms here gives (3.1) with
Oy=1} By
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Let 0 be any point of the interval (§ —d, £+3J) where § will be defined shortly.
Then

N N 3}/ N 3
[T(G)—T({-‘)[<26§1:'nklyk|<26(§1:lykl2) (kglni) <8A4,Tny

so that if 6<Cy/ny and Of is small enough, we obtain (3.2) with } O for Cj. This
completes the proof of Lemma 2.

4. We shall now apply Lemmas 1 and 2 to the proof of Theorem 2 and restate
the latter in the following equivalent form.

THEOREM 2'. There exist constants A, and Ay such that in every interval of length
A,/n, there is a point & such that

N N
T (§)= 2 yee™ > 403 yil.
We begin with the observation that for any sequence 6,,d,, ..., ok,

ClaP<Z|6| <k (S|4 (4.1)

so that if % is bounded the “first norm”, > |J,|, and the “second norm”, (3|4, [*)},
are comparable.

Next we consider the constants Cp, C7 of Lemma 2 and suppose that 7'=>
(@, cos ny 0 + by, sin n;, 0) is split into successive blocks of terms which we call “long”
and ‘“‘short” and which alternate. We call the long blocks A; and the short ones
Aj’; hence T =A1+ A" + A+ A + -+ where, of course, the sum on the right is finite.
If T is written in the complex form then each block consists of two parts symmetric
with respect to the origin. We denote the “‘second norms” of the coefficients y, of
Ay and A} by I'; and I') respectively; the “first norms” will be denoted by I'; and
T. The norms contain only positive j's, so that, for example, |Ax|<2T%.

We assume that the lengths of the long blocks do not exceed a certain number
L' and that all the short blocks are of the same length L”. Hence passing from the
last element of a long block to the first element of the next long block we increase

1

the corresponding =, by at least ¢”*', a number which is large with L. We take

for L” the least integer satisfying
Co/Cd <g* " (4.2)
and define L' a little later.

For the A4, of Theorem 2' we take the number C, of Lemma 2. Let I,=(a, b)
be any interval of length > C,/n,. Let n, and n; be respectively the ranks of the
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last term in A; and the first term in A;. By Lemma 2, there is a subinterval I, of
I,, of length CJ/nm,, in which A;>C,Ti. By the same lemma, if |I,|> C,/n,, there
is a subinterval I, of I, in which A,>C,I'; provided

C;’/ns > Oa/nt.

Since ¢t —s=L"+1, the condition is certainly satisfied if L" is defined by (4.2). The
n; play for A; the same role as n, played for Aj. Hence we can repeat the argument
and we obtain a sequence of intervals I, >I,>1,... such that A;>C,T'; in I,. At

common points & of the intervals I;, which also belong to (a, b), we have (cf. (4.1))
A+ As+ A+ 2O D1+ T+ 5+ )= Co L ¥ T+ T+ T+ ). (4.3)

In this argument we have so far disregarded the short blocks A} and now we
will show that if we select their location properly we can control their contribution.

We have already defined L”. We now let L' be any integer divisible by 2 L”
satisfying

6 L"/L¥<}. (4.4)

We divide T'(0) =2, (ay cos ny 0 +sin 7, 6) into successive blocks of length } L’ (com-
pleting T' by zeros if necessary) and call these blocks A;, A,, A, .... The short blocks
A;" will be properly selected subblocks of A,; so that the length of a long block
A; will certainly be less than L.

To define A;” we split Ay, into successive subblocks of length L'’ and take for
A;’ the subblock for which the first norm of the coefficients is the least. The num-
ber of subblocks being L'/2 L", we have

77 2 -L”
Iy < =Ty, (4.5)

where T, stands for the first norm of Aj. This implies that

4 LII

IVIUIEED S VS-S W Al “.6)
1

for all 6.
From the inequality (4.5) we see that the first norm for the coefficients of
Ayy— A} is at least (1—2L"/L')Ty; from which we deduce that the first norm for

N
the coefficients of > A; is at least (1—2L"/L’)> |y;|. That is,
1

=’ =/ =7 L“
F1+F2+P3+~-->( -—)Zlykl
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This shows that at the point & where (4.3) holds we also have

I N
IT]=]3 A+ A))| > C, [L"*(l _ﬂ)_u ]

7 I ?I'}/kl

which, in view of (4.4) and the fact that the expression in square brackets exceeds
L'~*(1-6L"/L"%), gives Theorem 2’ with

A=y LAC,

5. In this section we will prove a few lemmas on which we will base the proof
of Theorem 1.

Let I be any straight line not passing through the origin. We say that a point
[ is to the right of 1 if it is contained in the closed halfplane limited by ! which
does not contain the origin. If ! passes through the origin all points in the complex

plane will be considered as situated to the right of I

LemmA 4. Let A, and Ay be the constants of Theorem 2', P (x) any lacunary
power polynominal

N
P@)= Jc. ™ (mpg/me>q>1)
k=1
and | any straight line whose distance w from the origin satisfies
N
<A |l
1
Then any interval of length Aq/n, contains a point & such that P (£) lies to the right of 1.

Using rotation we may suppose that ! intersects the positive real axis perpen-
dicularly, and it is now enough to observe that if P(x) =T (z) +:iT (x), T ()

N N N
=ZN7’k€m"z, then ;|Ck|=_ZN|Vk|

Lemma 5. If the coefficients of the lacunary series D c;e™* tend to zero and if the
partial sums of the series (completed by zeros) are S, (x), then Sy, () — Sy, (z') tends to zero

as p—oco uniformly in x, o', provided that |z —z'|<1/n,.
1 b »

For | Snp (@) = 8y (@) <— 3 loulme<q™ 2 |eilg®
Nop k=1 k=1

and it is easy to see that the right-hand side tends to 0 as p—>oo.
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aig
A_;

):)/'w/' d

Fig. 1.

Lemma 6. Let w, d, r, A be as in Fig. 1. If

d d
AT /4 S S Tr1/4Y
th <aft—— 2t
n ’ 4(1+1/4%)

Since < (d—w)*+ w?/A4% it follows that d®*—1*>2d w — w®— w?/4%>0.
Hence

_a
(1+1/4%

a-r>2 0= LD s o (1= ja+ 1/a92) > b3 -

and the lemma follows.

6. We now pass to the actual proof of Theorem 1. The constant 4, and 4; of
Theorem 2’ will for brevity be denoted by 4 and A’.

We fix a complex number { and we want to construct a point & at which the
given lacunary power series ¢, e™® converges to {. We first divide our series into
successive blocks of terms P, (x), PY (x), P,(x), P3 (%), ... P;(x), P} (z),.... The de-
composition has some similarity to the decomposition, of a trigonometric polynomial
into blocks Aj, A’ considered in the proof of Theorem 2’ and the blocks P} (ana-
logues of the short blocks A;’) will be of constant length. The Py will be defined
inductively, as will a sequence of positive numbers dy tending to 0, and a nested
sequence {Iy} of intervals. Suppose we can do this in such a way that the following
properties hold:
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a) There exists a number y=7y,, 0<y <1, such that if
N N-1
1) FN(Z)=;P] () + 21 P (x)

2) dy= ;Ieﬁlmlev(x)—C|=|FN(6N)—Cl, (én€1y)

then
3) dya<ydyt On

b) Fy(x)— Fy(2')—>0 for x, 2’ €Iy
¢) If Cy=>]cy| where the summation is taken over all coefficients of P} and
Pyi1, then Cy—0.
We will show then that if £ is the common point of all the Iy, then
8, (§)—~>( as j—>oo (6.1)

that is the series > ¢,e™* converges to {.

To see this suppose that S,,i is ‘between’ Fy and Fy,1. Then

[8n, (£) = C|<| Fu (&) =& |+ 85, (8) — Fu ()]
<|Fy(&n) — Fy (O] + [ Fy(Ex) = | + | 8n, () — Fy (£)]
and Fy(éw)—Fy(£)>0 by b)
Fy(én)—¢—>0 by a)
8n (E) = Fy(£)—>0 Dby c)
which gives us (6.1).

We now proceed with the induction. For P, we choose an initial block of any
length and set I, = (0,2 x). Suppose that P,, Pf ,‘ P,, P;, ..., Py and intervals
Iy>I,> - o1y ; have already been defined (N>1) and let n,, be the highest fre-
quency of Py. Let &y be the point in Iy_; at which | Fiy (x)—(| attains a minimum.
We take for Iy any interval of length 1/m;, which contains &, and is contained in

Iy_y. Let PY consist of the L terms following P, where

¢z 4 (6.2)

and let ey= max | Py (x)— Py (2')|, ny=L max|c|
z,2'ely i>ky

1

6
6N*Z77N+8N, 7—1_4(1+1/A2) (6.3)

the constants 4 and A’ being those of Theorem 2’.
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Remarks. 1. The purpose of placing Py between Py and Py, is to make sure
that n,,7.1, the lowest frequency of Py,:, is large enough to apply Theorem 2’ to
Py,1 and the interval Iy. If L satisfies (6.2) this is certainly possible.

2. In view of Lemma 5 and the hypothesis ¢;—~0 we have gy, ny—0 and so
also dy—0.

We proceed to define Py.;, and consider two cases.

Case 1.

A max |¢| < d (6.4)

i>ky 2(1+1/A2)
Let Py,; be chosen so that

dy

st 7 <A1 (6.5)

where the summation is extended over all the coefficients of Py,;.

Consider the following geometric situation. If '={ — Fy(&y), then the distance
from O to ' is dy. If we draw the line I perpendicular to O7’ at a distance
w=A473 |c;| from O, then, by Lemma 4, there is a point & in the interval I, such
that Py, (&) lies to the right of I. (Consider the figure in which now d=dy.) How-
ever, Py,1(§)<>|¢;|<w/A. Hence the point Py.;(¢&') which satisfies the above con-
ditions can be no further from {’ than r. Since by Lemma 6,

r<<vydy
(cf. (6.3)), it follows that
A1 <|Fusa (§) = C|<| Fy(Ex) + Prsa (§) — ]|+

+IFN(§N)_FN(§’)|+IP7V(§N)|<J/dzv+€N+77N=VdN+6N-
Case 2.

.
Amsxlol sy

In this case we let Py, consist of a single term. Clearly
Ayi1<| Fy(Ex) + Py (Ex) + Pusr (Ew) = |
<|Fy(En)—C|+| Py (&) +]| Pyt (En)|

4 6
<dN+277N<2A(1+1/A2) max le|+277N<Z7]N+27]N<Z7]N<6N
i>kn

and point a) follows again. :
Since the length of Iy is 1/m,, where m,, is the highest frequency of Fy,

b) follows immediately from Lemma 5.
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Now, since Py is of a fixed length L, the sum of the absolute values of the
coefficients of Py tends to 0. But Py.; either consists of a single term or satisfies,

by (6.5) ;

‘N
<< :
2lol= zaiay <4w—>0

This proves point ¢) and completes the proof of Theorem 1.

7. We conclude by a few remarks.

a) Suppose that the n, are positive and satisfly ny,1/n,>¢>1 but are not nec-
essarily integers. Theorems 1 and 2 remain valid in this case and the proofs require
no change.

b) The following relationship between the Hardy-Littlewood series on the left and
the lacunary series on the right has been established by Paley [2]:

v . (Blog My2a ‘
= exp (ifnlogn+inf)=et™ 2mgty*t 3 S elow
TVn log? n y=1 ¥

(Blog Ny2n

+ ; 1 (0") +o(1),
where a= exp2nf87!, 6'=—fexp (—1—-08""), 0<i<l, and > (0) is an ab-
solutely convergent series of continuous functions. It is clear from the proof of
Theorem 1 that a lacunary series plus an absolutely convergent series of continuous

functions also converges to every point in the complex plane, and hence we have

THEOREM 3. If 0<A<]1, then the series

—F—— €X 18 n lo n+in0)
T Vn log* n P (i log

converges to every point in the complexr plane.

c) THEOREM 4. Theorems 1,2,2', hold under the hypothesis that {n,} is a union of a
finite number of lacunary sequences.

The proof of the above theorems hold in this more general case also except
that in a few places minor modifications must be made. Typical of these is the

proof of the fact that
b

fT4de<0(b-a)z|c%;. (1.1)

a
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In this case we write T'=7T,+T,+ --- + T, where the 7', are now lacunary polynomials,

and hence,
b

fT§d6<O(b—a)Z]ck|2,

a

where the sum is taken over all coefficients of 7';. Using Minkowski’s inequality we
obtain (7.1).

We note that it follows from the generalization of Theorem 2 that if a series
whose frequencies are a finite union of lacunary sequences converges everywhere in

an interval then the series is absolutely convergent.

d) It should be remarked that to prove that the series of Theorem 1 has even
a single point of convergence seems to be no simpler than it is to prove Theorem 1

itself.
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