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1. The main purpose of this paper  is to prove the following theorem: 

THEOREM 1. I[ a lacunary power series 

ckz ~ (nk+l /nk>q> l) (1.1) 

satis/ies the conditions ck -->0, Z I c~ I = ~ (1.2) 

and i/ ~ is any point in the complex plane, then there exists a point ~ on the unit 

circle such that ~ ck ~n~ converges to ~. 

This theorem was stated by Paley in a note [1]. Since the note was in the 

nature of a research announcement no proof was given for the theorem. However,  

in a letter to Prof. Zygmund dated Oct. 7, 1932, Paley gave an outline of the proof, 

as he saw it, for his theorem. The argument  is made to depend on a lemma (Theo- 

rem 2 of the present paper). Paley believed tha t  the proof of the lemma would 

follow the reasoning given in Zygmund 's  article [4]. However, a t tempts  to recon- 

struct  the proof along these lines have not succeeded. Taking this lemma for granted, 

Paley next  sketches how his theorem may  be deduced from it. He presents an 

ingenious idea how this par t  of the argument  is to be carried out. Paley 's  idea here 

is, as it  turns out, completely successful, but  the details which need to be supplied 

are lengthy. 

The purpose of the present paper  is, therefore, twofold. First, a proof is given 

for theorem 2. The argument,  which is contained in sections 1 4 ,  is rather  complex, 

and seems to indicate tha t  the simpler idea envisaged by Paley could not succeed. 

I t  should be noted tha t  when q > 3, Theorem 2 can be given a very simple proof. 
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This  l ine of reasoning (which is s t i l l  different)  canno t  be made  to  work  in the  genera l  

case. Secondly,  in sect ions 5-7  we give in de ta i l  the  a r g u m e n t  which  reduces  Theo-  

rem 1 to  Theorem 2. 

W e  r e t u r n  to  Theorem 1. This  t heo rem impl ies  in  p a r t i c u l a r  t h a t  the  set  E of 

po in t s  of convergence of the  series on the  un i t  circle is of the  power  of the  cont in-  

uum,  a n d  in th is  connec t ion  i t  is in te res t ing  to  observe  t h a t  if ~ l c k  12= ~ (for ex- 

ample  if ck=lc -�89 t hen  E is of measure  0 (see e.g. [5x] p. 203). The  proof  of Theo-  

rem 1 a c t u a l l y  gives a l i t t e  more  t h a n  s t a t e d  since i t  shows t h a t  the  sums of 

ck z n~ cover  the  whole p lane  even if we res t r ic t  ourselves  to  an  a r b i t r a r i l y  smal l  

a re  of [ z [ = l .  

Consider ing the  real  p a r t  

(ak cos nk 0 + bk sin nk 0) (1.3) 
1 

of ~ c k z n~ we deduce  f rom Theorem 1 t h a t  if 

ak, bk-->O, ~ ( l a k l §  = ~  (1.4) 

t hen  the  series (1.3) converges  to  a n y  p resc r ibed  n u m b e r  in a set  which  is of the  power  

of the  con t inuum in eve ry  interval.(1) 

I n  w h a t  follows we denote  b y  Aq, A'q, Bq . . . .  etc.  pos i t ive  cons tan t s  depend ing  

on q only ,  no t  necessar i ly  the  same a t  each occurrence.  B y  A we denote  abso lu te  

cons tan ts .  

THwOR]~M 2. There exist constants Aq and A'q with the following properties: I /  a 

lacunary polynomial 
N 

T (0) = ~ (a~ cos n~ 0 + bk sin nk 0) (1.5) 
kf f i l  

satis/ies T (0) ~ M 

in an interval a ~ 0 <~ b, and i/ b - a >1 Aq/nl,  then 

5 (lakl + lbkl ) <~A'q M. (1.6) 

I t  will  of ten be conven ien t  to  wr i te  T in the  complex  form 

hr 

T (0) = k ~ N y k  e ink~ (1.7) 

where  

(1) That under the hypothesis (1.4) the series (1.2) converges to any prescribed sum in a set 
which is dense in (0, 2 ~) is an earlier result, (see [3]), and is a simple consequence of properties of 
smooth functions. 
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~0=0, ~ = � 8 9  (ak--ibk), ~ - k = ~ ,  n_~= --nk, nk+l/nk>q> l for k > 0 .  (1.8) 

Then (1.6) can be written l ~  [ ~< A~ M. (1.9) 

In what follows we systematically denote by T a polynomial (1.5)or (1.7)satis- 

fying (1.9). 

2. The proof of Theorem 2 is based on several lemmas. 

p 
LEMMA 1. There exist constants Bq and Bq such that if 

b - a >1 Bq/n 1 (2.1) 

b 

if then b - a  IT(O)tdO>~B'q (~l?kl2)~" (2.2) 
a 

N 

We write Ir l =r 

I t  is enough to show that,  under the hypothesis (2.1), 

b 

f T2 dO~ (b-a)  F 2, 
a 

(2.3) 

and tha t  for b - a  >1 K/nl ,  where K is any positive constant (independent of q this 

time) 
b 

f T d 0 <~ Cq, K (b - a )  F 4 (2.4) 
a 

since then, by HSlder's inequality, 

b b b 

a a a 

and (2.2) is a corollary of (2.3) and (2.4). 

The proof of (2.3) is straightforward. We have 

b b b 

a a a 

(2.5) 

Denote the last sum by R. Then 
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[RI< ~ ~(l~,l~+l~kl ~) 2 ~ ~-~ i~ t ) ~  , . ~  1~_~,1~<4~ ~(Iv ,  +1~ ~ k = 2  . f=l  -- n] 

N ] k - 1  ,V 1 

< A ~ F ~ / 5  - l / + & v ~  max 
(k=2 nkl ~ " 

In  view of the hypothesis n~+l/nk>q>l, the two expressions in curly brackets are 

majorized by Aq/n~, and so, if Bq is large enough, b-a>~Bq/nx implies tha t  [R I 

~. (b -a )D 2, which in conjunction with (2.5) gives (2.3). 

We now pass to (2.4) and assume first tha t  q >1 4. 

We call two positive integers s and t distant if either s/t>~ 2 or t/s>~ 2; in the 

first case s - t >1 s/2. The hypothesis q/> 4 implies tha t  if j < ]c then n~ > 2 nj and the 

numbers nk and 2nj  are distant. 

N N -I 

We write T = ~ yk e~nk~ = E + E = T1 + T2- 
--N i --N 

Since I T l l  = IT21 it is enough to prove (2.4) with T 1 for T. Now 

I T112 = F2 + 2 ~R ~ Ts ?k e '(n*-nj)~ 

and (2.4) will be proved if we show that  the complex-valued polynomial 

S (0) = Y :Pj)'k e '("~-"j)~ 
l<~J<k~N 

b 

satisfies f I S 12 d 0 < CK (b - a) r ' .  
a 

Clearly, 
b b 

f ] ~ ] 2 d O ~ . ~ t ~ k ~ y , ~ ' k , ; e ~ [ ( n k - n ~ " ) - ( n t - n i ' ) l ~  , 

cl, a 

(2.6) 

where 1 ~< j < }, 1 ~< j' < U. We split the terms of the series into three separate groups; 

(i) /c=U, j=j ';  

(ii) k=k' ,  j=~j'; 

(iii) /c ~=/c', 

and evaluate the contribution of each group. 
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(i) the contr ibut ion of this group is 

N k - 1  

(b-a)~J r~l~ 51 ~,, I~ < ( b - a ) r  ~. 

(ii) I t  is enough to consider here the  terms with ] '  < ] < k. Their sum is majorized by  

N k - 1  ] 1-1  

kffi3 j=2 j'=l n~-- nj, = jr2 j z=l 

N k - 1  1 

k =3 ] = 2  t 

. < A r ' / X ! / + A r '  max 
b'-2 nil  

Since the expressions in curly brackets  are majorized by  A/nx, the contr ibut ion of 

the terms in (ii) does no t  exceed A I'~/nl. 

(iii) I n  est imating the terms we m a y  suppose tha t  k '< /c .  Their sum does no t  

exceed /: 
2 

5 I yk )'z 
V~'I I (he -- nj) -- (nk, -- nj,) ] " 

where I -%< ] </c, 1 < j '  < k',  and  k' < k. Clearly, 

nk - n~ -- (nk. -- nf)  1> nk - 2 nk-1 

and  since q>~4 the numbers  nk and 2nk-1  are distant,  nk--2nk_l>~nk/2, and  the last  

sum is no t  greater t han  

k--1 k - 1  k ' - I  

k=3 k ' = 2  ]=1 1'=1 n ~  

= A ~ - - X  (]~l~+ly~.l ~) E (Ir~l~+l~,,l~) �9 
=3 'i'~k k ' ~ 2  I ' l l  

Since the sum in curly brackets  does no t  exceed (k + k ' ) p 2 <  2 k P z, the whole sum is 

majorized by  

k=3  k k ' = 2  k=3  k 

< A F  4 M a x ' -  + A F  ~ --<~AP4/n r 
k=3  nk 

Collecting results we see t h a t  if q>~ 4, then  
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b 

F 4 

and so if we make the additional assumption tha t  b -  a >~ K i n  I we obtain (2.4) with 

Cq.~ = C~. 

I t  is now easy to complete the proof of (2.4) in the general case q > 1. We take 

r so large tha t  q~> 4 and split T into a sum of r polynomials, T = T ~  T(e)+ ... + T (~ 

in each of which the indices k of the n~ form an arithmetic progression of difference r. 

Since 
b 

f (T(')) < CK (b - a) F 4, d 0 
a 

for each s, 1 ~< s ~< r, provided b - a  >1 K i n  1 and since, by  Jensen 's  inequality, 

b b 

a 

where r depends on q only, the proof of (2.4) is complete. This also completes the 

proof of Lemma 1. 

3. LEMMA 2. There exist constants Cq, C'q and C'q" with the [ollowing property: I[ 

b - a >~ Cq/n I, then (a, b) contains a point ~ such that 

f 
T (~)/> C~ F; (3.1) 

more generally there is a whole subinterval I o[ (a, b) o/length >1 C'q'/nN where 

T (0) >~ C~ F. (3.2) 
First  of all, 

b 

] f a T d O ] ~ a ~ l ] ~ k l n k l < ~ - 4 ( ~ l [ ~ k [ 2 ) � 8 9 1 8 9  (3.3) 

Next,  if u + =  max  (u, 0), then u + =  � 8 9  and, in view of (2.2) and (3.3) 

b b b 

(b-a) -Dqr/nl  1 � 9  ~Bq (b - a) F 
a a a 

if Cq is large enough. A comparison of the extreme terms here gives (3.1) with 
t �9 

Cq = �89 Bq. 
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Let  0 be any  point of the interval ( ~ - ~ ,  ~ + 8) where 8 will be defined shortly. 

Then 

[T(O)-T(~)[<<-282nk[~'k[428 [Tk[* �89 N �89 
1 

H i i  t I 

so tha t  if 8 ~ Co InN and Co is small enough, we obtain (3.2) with �89 Ca for Co. This 

completes the proof of Lemma 2. 

4. We shall now apply  Lemmas  1 and 2 to the proof of Theorem 2 and restate 

the lat ter  in the following equivalent form. 

THEOREM 2'. There exist constants Aq and A'q such that in every interval o/length 

Aa/n 1 there is a point ~ such that 
N N 

We begin with the observation tha t  for any  sequence ~1, 8~ . . . . .  ~k, 

18Jl ) < 18Jl < (518 1 ) (4.1) 

so tha t  if k is bounded the "first  norm",  5[(~j[, and the "second norm",  (518j[~)�89 

are comparable. 
H 

Next  we consider the constants Cq, Cq of Lemma 2 and suppose tha t  T = 

(ak cos nkO +bk sin nkO) is split into successive blocks of terms which we call " long" 

and "shor t"  and which alternate. We call the long blocks A~ and the short ones 
te t te e t t  

A i ; hence T = A1 § A1 § A~ + A~ + ... where, of course, the sum on the right is finite. 

I f  T is writ ten in the complex form then each block consists of two parts  symmetric  

with respect to the origin. We denote the "second norms" of the coefficients 7J of 

A~ and A . . . . .  by  Fk and Fk respectively; the "first  norms" will be denoted by  F~ and 

F~'. The norms contain only positive j ' s ,  so that ,  for example, [A~I~<2F~. 

We assume tha t  the lengths of the long blocks do not exceed a certain number  

L' and tha t  all the short blocks are of the same length L".  Hence passing from the 

last element of a long block to the first element of the next  long block we increase 

the corresponding nk by a t  least qL"+l, a number  which is large with L". We take 

for L"  the least integer satisfying 

co/c' " < qL..+l (4.2) 
and define L'  a little later. 

For the Aq of Theorem 2' we take  the number  Cq of Lemma 2. Let  I 0=(a ,  b) 

be any interval of length >1 Cq/n 1. Let  ns and nt be respectively the ranks of the 
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last  te rm in A1 and the first term in A~. By Lemma 2, there is a subinterval 11 of 
�9 p 

I0," o f  l e n g t h  Cq~/ns, ill w h i c h  A 1 ~ Cq I~1 , B y  t h e  same lemma, if [11 I>~ Ca/nt, t h e r e  

is a subinterval  I~ of 11 in which A2~> C~ F~ provided 

it 0~/n, > CJn~. 

Since t - s = L " + l ,  the condition is certainly satisfied if L "  is defined by  (4.2). The 

nt  play for A~ the same role as n 1 played for A~. Hence we can repeat  the argument  

and we obtain a sequence of intervals 1 1 ~ I  2 ~ I a . . .  such tha t  Aj~> C~I~) in 5 .  At 

common points ~ of the intervals Ij, which also belong to (a, b), we have (cf. (4.1)) 

A' A' ... , . . . .  _ ,  r_, .. A~+ 2+ a+  >~Cq(FI+F~+Fa+'")>~C'qL'-�89 "). (4.3) 

In  this argument  we have so far disregarded the short blocks A~' and now we 

will show tha t  if we select their location properly we can control their contribution. 

We have already defined L".  We now let L '  be any  integer divisible by 2 L"  

satisfying 
6 L"/L'�89 <~ �89 (4.4) 

We divide T(O)= ~ (aa cos nkO +s in  naO) into successive blocks of length �89 L' (com- 

pleting T by  zeros if necessary) and call these blocks A1, As, A a . . . . .  The short blocks 

A~ �9 will be properly selected subblocks of A~j so tha t  the length Of a long block 

A~ will certainly be less than  L'. 
To define A~' we split A~j into successive subblocks of length L "  and take for 

A~' the subblock for which the first norm of the coefficients is the least. The num- 

ber of subblocks being L'/2L", we have 

- ,  2L" Fj -<< ~-P~j,  (4.5) 

where Pk s tands  for the first norm of Ak. This implies tha t  

4 L "  4 L "  
~lAi' (0)[< 2 ~ i~; ' < ~ -  ~ F~ < ~ - ~  17~[, (4.6) 

1 

for all 0. 

F r o m  the inequality (4.5) we see tha t  the first norm for the coefficients of 

A2j-A~" is a t  least ( 1 -  2 L"/L')F~j from which we deduce tha t  the first  norm for 
5/ 

the coefficients of ~ A~ is a t  least ( 1 - 2 L " / L ' ) t ~  [Tkl. Tha t  is, 

, i  ( I r ~ + r ~ . + F 3 = . . . > /  1 L '  ] 1 
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This shows that at the point } where (4.3) holds we also have 

ITI=12(A~+A~')I~>Cr L'-�89 1 -  L '  ] - T J  ]7k} 

which, in view of (4.4) and the fact tha t  the expression in square brackets exceeds 

L '-�89 ( 1 - 6 L " / L ' - - � 8 9  gives Theorem 2' with 

t t _  t 
A q = � 8 9  �89 

5. In  this section we will prove a few lemmas on which we will base the proof 

of Theorem 1. 

Let  l be any straight line not passing through the origin. We say tha t  a point 

is to the right of 1 if i t  is contained in the closed halfplane limited by  1 which 

does not contain the origin. I f  l passes through the origin all points in the complex 

plane will be considered as situated to the right of l. 

LEMMA 4. Let Aq and A'q be the constants o/ Theorem 2', P (x) any lacunary 

power polynominal 
N 

P(x)=Zlc~e~n~z (nk+l/n~>q> l) 

and I any straight line whose distance (o /rom the origin satis/ies 

N  -<A lckl 

Then any interval o[ length A' . /n  1 contains a point ~ such that P (~) lies to the right o[I. 

Using rotation we may  suppose tha t  1 intersects the positive real axis perpen- 

dicularly, and it is now enough to observe tha t  if P ( x ) =  T ( x ) +  i T  (x), T (x) 
N N N 

LEMMA 5. I f  the eoe/fieients o[ the lacunary series Z c~ etn~ z tend to zero and if the 

partial sums o/ the series (completed by zeros) are S~ (x), then Snp (x) - S~p (x') tends to zero 

as p---> c~ uni/ormly in x, x', provided that I x - x" I <~ 1/n~. 

P 

1 ~ [cklnk <~q_p ~. ick[qk I - < 

and it is easy to see tha t  the r ight-hand side tends to 0 as p -+oo .  
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60 

Fig.  1. 

then 

LEMMA 6. Let  o ,  d, r, A be as in  Fig .  1. I ]  

d d 
< c o <  2 (1 + 1 / A  s) (1 + 1 / A  s) 

r < d ( 1  4 (1 • l /A 2 ) ) .  

Since r e ~< (d - co) 2 + w 2 / A  2, it follows that  d e - r e >~ 2 d eo - eo 2 - o ~ / A  2 > O. 

Hence 

d - r > ~  ( 2deo-o)22d(l+l/A 2)/>eo 1-�89 s ) />�89188 (I+I/A s ) 

and the lemma follows. 

6. We now pass to the actual proof of Theorem 1. The constant Aq and A~ of 

Theorem 2' will for brevity be denoted by A and A ' .  

We fix a complex number ~ and we want to construct a point  ~ a t  which the 

given lacunary power series ~ % e  ~n~x converges to $. We first divide our series into 

successive blocks of terms /)1 (x), P~" (x), P2 (x), P~ (x) . . . .  Pj (x), P* (x) . . . . .  The de- 

composition has some similarity to the decomposition, of a trigonometric polynomial 

into blocks A~, A~" considered in the proof of Theorem 2' and the blocks P~ (ana- 

logues of the short blocks A~') will be of constant length. The PN will be defined 

inductively, as will a sequence of positive numbers ~N tending to 0, and a nested 

sequence {IN} of intervals. Suppose we can do this in such a way that  the following 

properties hold: 
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then 

a) There exists a number  ~ = y q ,  0 < 7 < 1 ,  such tha t  if 
N N-I 

1) F N ( x ) = Z P j ( x ) +  ~ P~(x)  
1 1 

2) aN = min IFN(z)-r162 (~NelN) 
xel.N. 

3) dg+l<TdN+~N 

b) FN(x)-FN(x')---->O for X,X'6IN 

C) If  CN= ~ I Ck] where the summation is taken over all coefficients of P *  and 

PN+I, then CN-->O. 

We will show then tha t  if ~ is the common point of all the IN, then 

tha t  is the series ~ cke ~n~ converges to $. 

To see this suppose tha t  S~j is 'between'  FN and FN+I. Then 

< I~N(~N) -- FN(~)I + I YN (~,~) -- cl + IS. , (~)--  F . ( ~ ) I  

and FN (~N) -- FN (~)--~0 by b) 

FN (~N) -- r by a) 

s~j (~) - F~ (r by e) 
which gives us (6.1). 

(6.1) 

We now proceed with the induction. For  /~ we choose an initial block of any  

length and set I 0 = (0, 2~) .  Suppose tha t  P1, PI*, P2, P*2, . . . ,  PN and intervals 

Io~I1~ ""DIN-1 have already been defined (N>~I) and let nkN be the highest fre- 

quency of PN. Let  ~N be the point  in IN-1 a t  which [FN ( x ) -  ~[ at tains a minimum. 

We take for IN any  interval of length 1/nkg which contains ~ and is contained in 

IN-1. Let  P *  consist of the L terms following PN, where 

qL+l t> A'  (6.2) 

and let eN = max  [PN (x) -- PN (x') [, ~N = L max  [cj[ 
X,Z 'EI  N J>k  N 

6 1 
(~N = ~ ~N + eN, ~ = 1 , / ~ 2 ,  (6.3) 

4 (1 + l / ~g l  ) 

the constants A and A' being those of Theorem 2'. 



236 MARY wEISS 

Remarks. 1. The purpose of placing P *  between PN and PlV+l is to make sure 

tha t  nk~+z+l , the lowest frequency of PN+I, is large enough to apply Theorem 2' to 

PN+I and the interval I~. If L satisfies (6.2) this is certainly possible. 

2. In view of Lemma 5 and the hypothesis cr we have ~N, ~-->O and so 

also (3N--> O. 

We proceed to define PN+*, and consider two cases. 

Case 1. 

Let  PN+, be chosen so that  

A max ]cj[< 2 dN j>kx (1 + 1~AS)" (6.4) 

dN dN -<Ahle~l< (6.5) 2 (1 + 1/A s) (1 + I/AS) ' 

where the summation is extended over all the coefficients of iON+ 1 . 

Consider the following geometric situation. If $ '=  ~ -  FN (~N), then the distance 

from 0 to ~' is dN. If we draw the line 1 perpendicular to 0~' at  a distance 

co = A ~]cj ]  from O, then, by  Lemma 4, there is a point ~' in the interval IN such 

that  PN+I (~') lies to the right of I. (Consider the figure in which now d=dN.) How- 

ever, PN+l (~') < 2 [vii < ~o/A. Hence the point PN+I (~') which satisfies the above con- 

ditions can be no further from ~' than r. Since by  Lemma 6, 

(cf. (6.3)), i t  follows that  

Case 2. 

r<TdN 

dN+l <~ [FN+I (~') -- E I ~< [F~ ($~) + PN+I (~') - E I + 

+ [ FN (~)  -FN($')[ + [P~ (~)  [ < y dN+ e~+ ~ =  y dN+ 6N. 

dN 
A maxj>k~ ]cj ] >/2 (1 + l/AS)" 

In this case we let PN+I consist of a single term. Clearly 

d~+, < [F~ (~:N) + P*- (~:~-) + PN+~ (~:N) -- ~'1 

< I F~ ( ~ ) -  $1 +IP% ($)] + [ PN+I (~N) I 

4 6 
~<dN+2~N~< 2A (1 + 1/A ~) max Icj] + 2 ~]N~<~-~N+ 2 ~N~< ~ N  < (~N 

j >  k~v 

and point a) follows again. 

Since the length of IN is 1/nkN, 
b) follows immediately from Lemma 5. 

where nk~ is the highest frequency of FN, 
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Now, since PN is of a fixed length L, the sum of the absolute values of the 

coefficients of PN tends to 0. Bu t  PN+I either consists of a single term or satisfies, 

by (6.5) 
d~ 

~]c j ]<A( I  + I/A~ ) <AdN-->O. 

This proves point c) and completes the proof of Theorem 1. 

7. We conclude by a few remarks.  

a) Suppose tha t  the ne are positive and satisfy nk+l/nk>q>l but  are not  nec- 

essarily integers. Theorems 1 and 2 remain valid in this case and the proofs require 

no change. 

b) The following relationship between the Hardy-Lit t lewood series on the left and 

the lacunary series on the right has been established by  Paley  [2]: 

N (fllog N)/2xE 1 
1 exp (ifln log n+ inO)=e ~ (2zf l -1)  a+�89 ~ - e ~O'a~ 

V;~ log ~ n ~-~ ~ 

(fl log N)/2~ 

+ ~ /, (0') + o  (1), 
1 

where a =  exp27ef1-1, O ' = - t 3 e x p ( - 1 - O f l - a ) ,  0<2<~1 ,  and ~ ] , ( 0 ' )  is an ab- 

solutely convergent series of continuous functions. I t  is clear from the proof of 

Theorem 1 tha t  a lacunary series plus an absolutely convergent series of continuous 

functions also converges to every point in the complex plane, and hence we have 

THEOREM 3. I /  0 < ) ~ 1 ,  then the series 

- exp (ifln log n+inO)  
1 

1 t/n log ~ n 

converges to every point in the complex plane. 

c) THEOREM 4. Theorems 1,2,2', hold under the hypothesis that {nk} is a union o/a 

finite number o[ lacunary sequences. 

The proof of the above theorems hold in this more general case  also except 

tha t  in a few places minor modifications must  be made. Typical of these is the 

proof of the fact tha t  
b 

f T 'dO< C(b-a)  ~ Ic~l. (7.1) 
a 
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I n  this case we write T = T 1 § T 2 Jr ... -k T8 where the T~ are now l acuna ry  polynomials ,  

and  hence, 
b 

f T~ (b - a) Z ] ck [ 2, d 0 C 
a 

where the sum is t aken  over all  coefficients of T~. Using Minkowski 's  i nequa l i t y  we 

ob ta in  (7.1). 

We note  t h a t  i t  follows from the general izat ion of Theorem 2 t h a t  if a series 

whose frequencies are a f inite un ion  of l acuna ry  sequences converges everywhere in  

an  in te rva l  then  the series is absolu te ly  convergent .  

d) I t  should be remarked  t h a t  to prove t h a t  the series of Theorem 1 has even  

a single po in t  of convergence seems to be no simpler  t h a n  i t  is to prove Theorem 1 

itself. 
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