CHARACTERISTIC VALUES ASSOCIATED WITH A CLASS OF
NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

BY

ZEEV NEHARI

Carnegie Institute of Technology, Pittsburgh, U.S.A.

1. The equations to be studied in this paper are of the form
y' +yF (@, 2)=0, ' (1.1)
or, more generally, y' +p@y+yF (42 z)=0, (1.2)

where p (x) is a positive and continuous function of x in a finite closed interval [e, 4],

and the function F (£, x) is subject to the following conditions:

F (I, x) is continuous in t and 2 for 0<i< oo and a<x<b, respectively; (1.3 a)
F(t,z)>0 for t>0 and x €[a, b); (1.3 b)

There exists a positive number & such thas, for any z in [a,b], t°F (¢, x) is

a non-decreasing function of t for t €[0, oo]. (1.3 ¢)

The statement that a function y (x) is a solution of (1.1) or (1.2) in an interval
[@, 5] will mean that y(x) and % (#) are continuous in [a, b] and that y (x) satisfies
there the equation in question.

Because of condition (1.3 ¢), equation (1.2) is not included in the class (1.1) and
must be considered separately. Condition (1.3b) and, in the case of equation (1.2),
the fact that p(x)>0 shows that a solution y (x) of (1.1) or (1.2) satisfies the ine-
quality yy'' <0 for y=+0, i.e., the solution curves are concave with respect to the
horizontal axis. It follows therefore from an elementary geometric argument that any
solution y (x) for which y and y’' are finite at some point of [¢,b], can be continued
to all points of the interval.

Our aim is to investigate the properties of those solutions y (z) of (1.1) or (1.2)

which satisfy the boundary conditions y(a)=1y (b)=0, although most of our results
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can be extended, by obvious modifications of the arguments employed, to more gen-
eral homogeneous boundary conditions. It will be shown that there exists a countable
set of such solutions, and that these solutions—which may be characterized by ‘the
number of their zeros in (@, b)—correspond to the stationary values of a certain func-
tional. The latter will be termed ‘‘characteristic values” of the problem, and their
asymptotic behavior will be studied.

We shall also consider equations (1.1) for which F (¢, z) is a periodic function of
z, and we shall show that such an equation has a countable number of distinct pe-
riodic solutions.

We remark that no Lipschitz condition has been imposed on the function F (¢, x)
since, with one exception, we do not need the uniqueness of the solution y (z) of
(L.1)—or (1.2)—corresponding to given values of y (¢) and ¢ (@). The exception is the
trivial solution y (x)=0, which has to be shown to be the only solution satisfying the
initial conditions y(a)=y  (a¢)=0. As the following argument shows, the uniqueness
of this solution is a consequence of conditions (1.3).

Without losing generality, we may assume that y(x)£0 in a small intervall
[a,a+ 8] (0 >0) (otherwise we may replace a by a’, where a’ is the largest value in
[a,b] such that y(x)=0 in [a,a’]). We now distinguish two cases, according as there
does, or does not, exist an interval g <z <o (x<b) such that y (2)+0 in (a,x). In

the first case, we replace (1.1), or (1.2), by the equivalent integral equation

y @)=y (@)+y (@ (x—a)~f<x—s>y(s)F1<y2,s>ds,

where F, (¢, x) stands for either F ({,z) or p(x)+ F (t,x). Since y(a)=y (a)=0, this

reduces to

y(az)+f(az:—«s')y(s)F1 (¥* s)ds=0.

If « is taken to be a point of (a, ), this is seen to lead to a contradiction since y (s)
does not change its sign in (a,x) and F, (3%, s) is positive.
In the second case, there will exist a sequence of points {z,} such that b>uz,

>Zy> >, > >a, lim x,=a, and y(x,)=0. In the interval [a,z,], (1.1) or (1.2)

n—>o00

may be replaced by the integral equation

Zn

Yy (z) =fg(%8)y(8)1”1 (y* s)ds,

a
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where the Green’s function g¢(z,s) is defined by (x,—a)g¢(z,8)=(x—a) (x,—s) and
(¢, —a)g(x,8)=(s—a) (xr,—x) in the intervals [a,s] and [s,=,], respectively. Identi-

fying « with the value at which y (z) attains its maximum M, in [a,z,], we obtain
M, <3, [ 9, 6) Py, 0) .

F, (t,x) is a positive and non-decreasing function of ¢ for £>0. Since 4¢ (z,8)<w,—a

and M,<M,, we thus arrive at the inequality

4< (wn—a)f F, (M3,s)ds.

Since z,—a—0 for n— oo, this again leads to a contradiction, and the required unique-

ness proof is complete.

2. Defining the function G (¢, z) by
t

G(t,x)=JF(s, x)ds, 2.1)

1]
we consider the functional

b
H(?/)Ef[y'z—@(yz, )] d (22)

within the class of continuous functions y (z) which have a piecewise continuous de-
rivative in [a,b], and satisfy y(a)=y (b)=0. Although (1.1) is the Euler-Lagrange
equation of the functional (2.2), it can be shown by simple examples that (2.2) has
neither an upper nor a lower bound if y(x) ranges over the class of functions in
question. To obtain an extremum it is necessary to subject 7 (x) to further restric-
tions. A restriction suitable for our purposes is given by the condition

b

b
fy'zdx= fyZF(yz, x)dx (2.3)

which—as one easily confirms by multiplying both sides of (1.1) by y () and inte-
grating from ¢ to b—is automatically satisfied by a solution of (1.1) for which
y(@)=y(b)=0. If we add to this the condition ¥ (x)= 0, then it can be shown that

within this restricted class the functional (2.2) has a positive minimum, and that this
minimum is attained if y (x) coincides with a solution of (1) for which y (a) =1y (b)=0.
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A proof of the existence of a solution of the extremal problem, and of the
implied existence of a solution of (1.1), was carried out in a previous paper [6] which
was concerned with oscillation properties of the solutions of (1.1) in an interval of
infinite length (the boundary conditions considered in [6] were y (¢)=y  (b)=0, but
this causes only trivial changes in the argument). For convenient reference, we restate

here the result in question.

TrrorEM 2.1. Let T" denote the class of functions y (x) which are piecewise con-
tinuously differentiable in [a,b], satisfy the conditions y(a)=y (b)=0, y(x)=£0, and are
subject to (2.3). If H (y) denotes the functional (2.2), the problem

H(y)=min=41, y@)eT (2.4)

18 solved by a solution of (1.1) for which y(@)=y ®)=0 and y(x)>0 in (a,b). The
minimal value A is positive.

We remark here that (2.3) is a normalization condition. Indeed, if u (x) is a
function which satisfies all the other admissibility conditions, it is always possible to
find a positive constant « such that y(2)=ou (x) satisfies (2.3). This is equivalent

to finding an « such that

b b
f widy = J'uz F(*u?, o) dx, (2.5)
and the truth of the assertion follows from the observation that the righthand side
of (2.5) is a continuous function of « which, in accordance with (1.3 ¢), tend to 0 for
a—+0 and to oo for a—oco.
" We further remark that the condition y (x)£0 is essential. If this condition is
omitted, the extremal problem has the trivial solution y (x)#=0. The latter is a sin-
gular solution of the problem, in the sense that it cannot be approximated by other

admissible functions. Indeed, if y (x) is an admissible function we have

y* (x)=(f y dx)2< (x—a) fy’zdx,

b
where ﬂ=fy’2dx>0. Applying this to (2.3) and noting that §>0, we obtain

b

1<f(x—a)F[ﬂ(x—a,),x]dx. (2-6)

a
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If g<1, it follows from (1.3 ¢) that

b

1<ﬁej(x—a)F[x—a,x]dx,

a

and we may conclude from (1.3b) that there exists a positive constant S, such that,

for every admissible function y (z), we have

b

fy’zdx>/5’0>0. 2.7

a

The last inequality also shows that the functional (2.2) has a positive lower
bound. By (2.1) and (1.3 ¢) we have

t

¢ ¢
G(t,x)= fF (8,x)ds= fse [T F (s, z)]ds<t°F (¢, x)fseds =(1+&) 't F (¢, x)-
b b

0
In view of (2.2) and (2.3), we thus have

b

b
H(y)= f[?/ZF (y* 2)— G, 2)]de >e (1+ <‘3)_1f?/2 F(yf,z)dz=¢c(l+e)" [y'zdw,
(2.8)
and the existence of the bound follows from (2.7).

3. Theorem 2.1 establishes the existence of a solution y(x) of the boundary

value problem
y'+yF (@, 2)=0, yla)=y®d)=0. @3.1)

In the present section it will be shown that this problem has, in addition, an infi-
nite number of other solutions which can be obtained by solving the minimum pro-
blem (2.4) under increasingly restrictive side conditions. The minimal values of the
“energy integral” (2.2) associated with these problems will be called the characteris-
tic values A,, 2,5, ... of the problem (3.1) where A,=2 is the number defined in The-
orem 2.1 (formula (2.4)), and 0<A, <d,<....

To formulate the minimum problem defining the characteristic value 4,, we choose
n+1 distinet points a, such that A=ay<a; << - <Au_1<a,=>b. In the interval
[a,—1,a]{(»=1,...,n), we consider functions ¥, (zx) which are piecewise continuously

differentiable, vanish for x=a,_1 and x=a, (but not identically) and are normalized by
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fy’zdx= fyzF(yz, x)d . (3.2)
-1 @y -1

If, for x€[a,_1,a,], we write y(x)=y, (x), the nth characteristic value is then
defined by

Zn = man\ [:'/2 -G (yz’ x)] dx: (33)

where y (x) ranges over the class of all functions with the indicated properties.

Theorem 2.1 shows that it is sufficient to consider this minimum problem for
functions y (¥) which in the intervals [a,_1,a,] (»=1, ...,n) coincide, respectively, with
the solutions g, (x) of (1.1) which vanish at x=a,.1 and #=a,, and whose existence
is established by Theorem 2.1. We shall prove that the set of numbers ay,...,an 1
for which the right-hand side of (3.3) attains its minimum is such that the corre-
sponding solutions ¥, (x) of (1.1) combine to a single solution y (x) of (1.1) in the in-
terval [a,b]. This solution y (r) vanishes for x=a and z=5, and has precisely n—1
zeros in (a, b).

We first show that our minimum problem has a solution. If we write A=2(a,b)
to indicate the interval to which the number A defined in (2.4) refers, the existence

of this solution will be a consequence of the following three properties of 1 (a,b).

Lemma 3.1.
(@) If a<a ' <b'<b, then A(a,b)<A(a’,b');

(b) A (a’ b)_>°° fOT b—a—0;

(¢) Al{a,b) is a continuous function of both a and b.

To establish (a), we denote by u (x) the function solving the problem (2.4) for the

interval [a’,5], and define a function v(z) as follows:
v (%) =u (x) for ze[a’,b’], v(x)=0 for x €[a,a’) and x € (D', b].

Since v (x) is easily confirmed to be an admissible function for the problem (2.4) as-

sociated with the interval [a, b], it follows from Theorem 2.1 and the definition of v (x) that
Ala, )< H(v)=H (u)=21(a’,b').

Turning next to (b), we set b—a=0(6>0) and we use the inequality (2.6).
This yields
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b b

1 <f(x~a)F[ﬂ(x~a),x]<6fF(ﬂ6,x)dx,

b
where f :fy'zdx, and y(x) is the solution of problem (2.4). If there existed a pos-

itive constant M such that <M for all § such that 0<d <4, we would have

a+6,
1<5f F (o, M,x)dx,

a
b

which is absurd. Hence, f y'*?dz— oo for 0. In view of (2.8) and (2.4), this implies
that 1 (a, b)— co. ‘ _

To prove property (c), it is sufficient to show that A(a,b) is a continuous funec-
tion of b, since the roles of @ and b can be interchanged by an elementary transfor-
mation. To simplify the writing we set a=0, and we denote by y(z) the solution
of problem (2.4) for the interval [0,b]. If 0<b <b, we write t=>bb""! and we define
a function u (z) in [0,b") by u ()=y ((x). As shown in section 2, there exists a pos-

itive constant « such that
b b

f wdx = f w Fa®ul, x)d . (3.4)
5

With this choice of «, the function w (x)=o u (x) is subject to the normalization (2.3)
(for the interval [0,b]). Since, moreover, w (0)=w (b')=0, it follows from Theorem
2.1 that

o
A(0,6Y< H (w) = f [w?— G (W x)]dx. (3.5)
1]

In view of the definition of u (x), (3.4) is equivalent to

b 3
tzfy'zdz = fyzF Py zt Yda.
0 0

Since the function F is monotonic in its first argument and continuous in both ar-
guments this shows that « is a continuous function of ¢ for ¢t>1. The normalization

condition
b

b
fy'zdx=fy217’(y2,x)dx
0

0
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shows that a—>1 for {—1, and we may therefore conclude that |« —1| can be made
arbitrarily small by taking ¢ close enough to 1, i.e., by taking b’ close enoug to b.
Changing the integration variable in (3.5) from « to tx and observing that

w(x)=oy (tx), we obtain

A(0,%) f[ac 2yt— G2y xt H]da, (3.6)

where y=y (). Since the function & is continuous in both its variables and, as just
shown, t—1 implies a—1 we conclude that, for an arbitrarily small given positive

number y, we can make the right-hand side of (3.6) smaller than
b
f[y’z—G(y2, @)]dz+y
J

by taking b’ close enough to b. But the last expression is equal to 4(0,b)+yp, and
we obtain 4(0,5')<A(0,b)+y. Since, according to property (a), 4(0,b’)>A(0,b), this
shows that A(0,b) is indeed a continuous function of &. This completes the proof of
Lemma 3.1.

It is now easy to see that there exists a set of distinet points ay, ... @,_1 for

which the expression

Zl(av lyav (a/0=a/,an=b)

attains its minimum. Indeed, according to property (c), A is a continuous function
of the variables a,,...,a,_1, and by property (b) the values of these variables must
be bounded away from each other in any sequence of sets (@, ...,a,_1) for which A
tends to its minimum. Since the minimum of A coincides with the minimum of the
right-hand side of (3.3) under the specified conditions, we have thus established the
existence of a solution y, (x) of the minimum problem (3.3). As already mentioned,
in each interval [a,_1,a,] this function y,(x) coincides with a solution of (1.1) for
which y, (@,-1)=¢x (@)=0 and ¥, (z)+0 in (a,_1,a,). The function y () will thus have
precisely n—1 zeros in (a,b), and it follows that, for different values of n, problem
(3.3) will have different solutions.

Since the side conditions under which the minimum problem (3.3) is solved become
more restrictive as m increases, it is clear that 1,>A,_1. In order to show that equal-
ity is excluded, we denote by y (x) a solution of problem (3.3), and we define a func-
tion u (z) as follows: % () =y (z) in [@, an_1], Where gy, ..., 8,1 (@<@y <+ <@p_1<D)

are the zeros of y(x) in (a,b), and u=0 in [a,_1,b]. It is easily confirmed that u (x)
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is an admissible function for the problem (3.3) corresponding to the index n—1, and
it follows therefore that

b @y -1 b
An-1< f[u'z — G (P %)) dw= f y? -G 2))de=4— | [y -G’ 2)]da.
@ a 1

Qy -

Since, by (2.2), (2.3), and (2.8), the last integral is positive, this proves the strict
inequality A,_1<4,.

We now turn to the proof of the assertion that the minimum problem is solved
by a function y () which is a solution of equation (1.1) throughout the interval [a, b].
However, the following remark is in order. If, in one of the intervals (a,_1,a,), the
extremal function y(x) is replaced by —y (x), neither the admissibility conditions nor
the value of the functional (3.3) are changed. In order to remove this trivial lack
of uniqueness, we shall assume that the signs of y(x) are chosen in such a way that
y (x) changes its sign at each point a,(v=1,2,...,2—1). As pointed out before, the
function y (x) must in each interval [a,.;,a,] coincide with a solution of (1.1). Since
Y(a)=0(»=0,1, ... ,n), it follows therefore that the extremal function y (x)—if nor-
malized in the way just indicated—will be a solution of (1.1) in [a,b] if, and only if,

lim ¢ (%)= lim ¥ (z), »=1,...,n—1, (3.7)
2>a,-0 2->a,+0
or, in shorter notation, ¥’ (a,)=y. (a,). We shall prove (3.7) by showing that y (x)
could not be a solution of the problem (3.3) if (3.7) fails to hold at some point a,.
We accordingly assume that y_ (@) =¥’ (@,) and we set, for easier writing,
a, 1=a, a=¢, a,,1=0. Without losing generality we may further assume that y () >0
in (e, c) and therefore y (x)<0 in (¢, ). We now define a function u (x) in the fol-
lowing manner. If ¢ denotes a small positive quantity, we set » (x)=y (%) in [a, ¢ — 6]
and [c+4, ], and

w@)=y(c—0)+28) x—c+d[y(lc+d)—y(c—0)], c—d<z<c+d. (3.8)

Evidently, u (x) is continuous in [«, 8]. In (¢—4,c¢+68), the linear function (3.8) van-

ishes at a point z=c¢' given by

20y (c—08)+(c'—c+d)[y(c+8)—y(c—8)]=0. (3.9)

In order to obtain a function subject to the normalization (3.2), we multiply = (x) by

positive factors ¢ and ¢ in [a,¢] and [¢', f], respectively, so that
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c c’
fu’z dx = fuzF (0w, x)dw,

, ] (3.10)
fu'z dx= fuzF (6*u?, ) d =
c’ ¢’

The function v (x) defined by v (x)=pwu (x) and v (x) =cu (2) in [a, ¢’} and [¢’, §] re-
spectively, will then be normalized in accordance with (3.2), and it is clear that the
function #, (x¥) obtained from y(z) by substituting v (z) for y(z) in [«, f] is an ad-
missible function for problem (3.3).

By (1.3¢), F(t, ) is an increasing function of f. Hence, the function G (f, z) de-
fined in (2.1) is convex in { and we have

G, z)=G (s,z)+(—8) F (s, ) (3.11)

for any non-negative s and ¢. Therefore,
f[v'z (o*, @) d < f[v*— (¥% @) — (0~ ) F (4%, 2)] d=
8

- f WP 0) - Gt a)de+ [0 F @, 0) d.

o

In view of (3.2) and (2.2) it thus follows that

Hy)<H @)+ f -t F o, o) d,

¢’ 8
ie., H@y)<H@y+ ng [u?—u®F (3%, x)]dx—{-o'zf[u'z—?fﬁ’(yz, z)]d x. (3.12)

Our aim is to show that the sum of the last two terms in (3.12) can be made
negative by taking & sufficiently small. Increasing the right-hand side of (3.12) by

omitting the negative term in the integrand in the interval (c—4, ¢+ 4), we have

[ B
H(?/l)<H(y)+Q2f [u?—u?F (4%, 2)]da + o® f[u'2~u2F(u2, z)]d=
a c+d
c c+éd
+0° fu’zdx + 0'2f u?dz. (3.13)

c-0 c
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In the intervals [o,c—4] and [c+4, ] we have u (x) =y (x). Observing that y(x) is

a solution of (1.1) in each interval, we obtain

f [w?—u®F (u®,2)]|de=y(c—8)y c—0)

and f[u ~u P (u% z)]dr= —y(c+d)y (c+0).

Inserting this in (3.13), and noting that

[ c c
o° fu'zdx= fu’zdyﬁ-(gz-— 1) [u'zdx
c—4 -0 c—06
c ¢+
<fu’2dx+]92~lIfu'2dx
c—4 c—8
c+6 c+o c+4
and, similarly o* f w?dr< 2dx
¢ e e—4
we obtain
c+éd
H{y)<H @) +y(c—0)y (c—0)—y(c+d)y (c+d)+ fu’2dx
c—0

H(@=Dyle=0y (c=80)—(6"~1)y(c+0)y (c+9)
c+d

+{lo*—~1|+]|c*—1]} fu’zdx. (3.14)
c-§

By (1.1), y(¢)=0 implies 4" (c)=0. Hence, y(c+08)=05y% (c)+0(6*), ¥ (c+8)=
Y (©)+0 (8%, y(c—8)=—6y_ () +0 (), ¥ (c—8)=y_ (c) + O (6?). Since ¢'—>¢ for 6—0
and the function F is continuous in both its arguments, (3.10) shows that p>—>1 and
61 for 6—0, and it follows that (o> — 1)y (c—d) ¢ (¢ — &) and (6®— 1)y (¢ +8) ¥ (c+ )
are o(d). By (3.8) we have

c+o

w?dx=20)"[y(c+8)—y(c—0] = g s (¢) +y~ @©)F+ 0 (8°).
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The last term in (3.14) is therefore also o (6) and in view of y (c—¥8) ¥’ (¢—0)—
—y(c+0)y (c+8)=—0[y2(c) +y7 (c)]+ 0 (6%, (3.14) reduces to

H () <H (5) ~ 3 - )~y (OF +0 0). (3.15)

If y% (¢)=*y” (c), i.e. if condition (3.7) does not hold, the expression é [y (¢)—y_ (¢))*+
+0(d) can be made negative by choosing 6 small enough, and the corresponding fune-
tion ¥, (z) will satisfy the inequality H (y,)<H (y). But y, (x) is an admissible func-
tion for the extremal problem (3.3) and, in view of the definition (2.2) of the func-
tional H (y), this contradicts the assumption that y (x) is a solution of problem (3.3).
This contradiction can be avoided only if y_ (c)=v} (¢). Since ¢ may be identified
with any of the numbers a,(v=1,2,...,7—1), this establishes the relations (3.7).

The following statement summarizes the results of this section.

TeEoREM 3.2. Let T', denote the class of functions y (x) with the following pro-
perties: y (x) is continuous and piecewise differentiable in [a, b]; ¥ (a,)=0(»=0,1,...,n,

n>= 1), where the a, are numbers such that a =ay<a; < -+ <ap_1<a,=b; forv=1,...,n,
a,, (lv

f y'’dr= fyzF (% ) d x, (3.16)
-1 41

where F (1, x) is subject to the conditions (1.3).
If G (¢, x) denotes the function defined by (2.1), the extremal problem

b

(2 -0 mae=min=1,, y@er,, (3-17)

a

has a solution vy, (x) whose derivative is continwous throughout [a, b], and the charac-
teristic values A, are strictly increasing with n. The function y, (x) has precisely n—1

zeros in (@, b), and it is a solution of the differential system
Yy +yF(y"2)=0, y(a)=y(®)=0. (3.18)

The question whether the problem (3.17) has (up to the factor —1) only one
solution y, (z) with a continuous derivative, remains open. Another question which
remains unanswered is whether the system (3.18) may have additional solutions with

n—1 zeros in (a,b) which are not, at the same time, solutions of (3.17). For the



A CLASS OF NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 153

sake of convenient formulation we shall, nevertheless, occasionally refer to the A, as
the characteristic values of the system (3.18).

We add here a few remarks which will be used later. In deriving inequality
(3.15) no use was made of the assumption that the number ¢ in (1.3 ¢) is positive,
and (3.15) will therefore remain valid if (1.3¢) is replaced by the weaker condition
that F (t,x) be a non-decreasing function of &.

The second remark concerns the behavior of 4, (a,b)—where a and b are the ends
of the interval to which the minimum problem (3.17) refers—as a function of ¢ and b.

Since 1, (a,b)=min > A(a, 1,a,)(@=0,<a,< - <a,. i <a,=>~), it follows from Lemma
r=1

3.1 and an elementary argument that 2, (a,d), too, has the three properties stated
in Lemma 3.1.

Finally, if the argument resulting in (3.15) is carried through under the assump-
tion that y(x)=0 in [c, 8], the inequality (3.15) will be replaced by

s,
Hy)<H(y) -3y (e)+0(d), (3.19)
where y, (¢) =y, (¢+6)=0. In view of Theorem 2.1, we thus have the estimate
0 4
Ao, c+8)< A (a, c)—éy (€)+o0(8). (3.20)

4. According to Theorem 3.2, the characteristic values A, of the problem (3.16)
are strictly increasing with n. The following result gives additional information re-
garding the growth of 1, for large =. .

TurorEM 4.1. If A, is the n-th characteristic value of the problem (3.17), then
lim 22 = oo, (4.1)

The exponent 2 cannot be replaced by a larger number.
Using the same notation as in Theorem 3.2, we have, for z€(a,_1,a,),

z Gy
2
Y (x)= (fy'dw) <(a,— a,_1) Jy'zdx.
-1 Gy-1

&y

Applying this inequality to (3.16), we obtain
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. G
1< (a, — a,-1) f F (% x)dx,
a4y -1

b
whence fF @ r)yde= > (a,—a,_1) "
v=1
For fixed a,=a and a,=0b, the right-hand side of this inequality attains its minimum
for ¢, —ay=a,—a;=-=a,—a, 1=n"'(b—a), and we have therefore
b
JF (2 xydx>n®(b—a)™. (4.2)

a

If « is a positive constant, if follows from (3.11) that

b b b

(G (o2, ) d x> fG' (v* x)dz+ f(of ) F (4, x),

a a

or, in view of (3.16),

a

b b b
f[y’z -G @ x))da> ocsz (y* x)dx— JG (o, 2)dx.

We now identify y(z) with the solution of (3.17). In view of (3.17) and (4.2), the

last inequality will then lead to
b

M=o (b—a)ln®— fG (o, x)dz,

a

and we conclude that lim inf n7 24,2 (b—a)™l.

Since the constant « may be taken arbitrarily large, this proves (4.1).
In order to show that, in (4.1), »* cannot be replaced by a higher power of =,

we compute the characteristic values A, associated with the differential system
¥+ " =0, y(0)=y(®)=0, 4.3)
where m is a positive integer. Our result will be that

_m(mED" o eniim 4.4
=" gy e, (4.4)
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1

where p= [(1—t2m+2)“*dt. (4.5)
&

Since m may be taken arbitrarily large, this shows that (4.1) is indeed the best

possible result of its kind.
If y(x) is a solution of equation (4.3) for which ¢ (0)=0, ¢ (0)=«>0, we have

y12+ (m+ 1)71 yZ m+2 _ “2' (46)

Elementary considerations show that y(z) is periodic and that its value oscillates

between the limits =M, where M is the positive number determined by
M2 = (1) o2, 4.7)

If x=1T is the lowest positive value for which #? (x)=M?> the zeros of y (x) in (0,c0)
are at x=2T,x=41T, ..., and it is easily seen that all these zeros move to the left
as o« grows. As a consequence, there exists precisely one solution of the system (4.3)
with n—1 zeros in (0,b). By Theorem 3.2, this solution is necessarily identical with

the solution of the extremal problem (3.17) (with F (32, x)=y*"), and we have

b
A= f[?/2 —(m+1)"y* " d
0

if y(x) is the solution in question. Since y (z) is subject to the identities y (7'+ z)
=y(T'—=) and y (x+2T)= —y (T)—as one confirms by substituting these functions in

the differential equation and using a few trivial transformations—this is equivalent to
T
ln=2'nf[y'2—- (m+1)"1y2" ¥ dx, T=b(2n)"
§ ,

Multiplying equation (4.3) by y () and integrating from 0 to T, we obtain

T T

fy'zdx = fyz”'“dx. (4.8)
0 b
T
Hence, In=2nm (m+ 1)_1fy'2dx, T=b(2n)" (4.9)

0

Integrating (4.6) from O to 7', we have
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T T

fyl2dx+ (m+ 1)—1fy2m+2dx=“2T,
0

0

and thus, in view of {4.8),

,{y'2dx=(m+1)oz2T(m+2)‘l. (4.10)

0

To compute «, we observe that y(2) is increasing in (0,7), and we may therefore
conclude from (4.6) that

M
T =f[a2— (m+1)"1y2m 2 dy.
d
In view of (4.7) and (4.5), this leads to
1
T = (m+1)%M""f[1—t2"'+2]—%dt=(m+1)%M"",3.
6

Using (4.7) again, we thus obtain
o =(m+1)" [(m+ 1)} gT7HPEA™,

Combining this with (4.9) and (4.10), and observing that T =5b(2n)"!, we arrive
at (4.4).

5. The expression (4.4) for the characteristic values of the problem (4.3) may
be used in order to determine the asymptotic behavior of the characteristic values

A, associated with the system
Yy +p @)y " =0, y(@)=y(b)=0, (5.1)

where p (z) is positive and continuous in [a, b] (for other properties of equation (5.1),
cf. [1,5]). Our method of proof will present certain analogies to the classical proce-
dure by which the asymptotic behavior of the eigenvalues of the Sturm-Liouville
problem "'+ up(x)y=0,y(a)=y(})=0 is obtained from the known eigenvalues of
the problem y’'+uy=0, y@a)=y(b)=0 [3]. We shall establish the following result.

THEOREM 5.1. If A, is the n-th characleristic value associated with the differential

system (5.1), then, for large m,
Ay =AnEH™I1 400, 5.2)
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_m(m+ 1"
T m+2

where

b - -1-1/m
(2 gyrarim [ f [p (x)]lf“"”’dx] : (5.3)

and f is given by (4.5).

In the course of the proof it will be necessary to assume that p(x) has two
continuous derivatives. However, in the final result no derivatives of p(z) appear
and it is therefore possible to extend the result to an arbitrary continuous and posi-

tive p(z) by means of an approximation argument. The necessary steps are elementary
but tedious, and will be omitted.

The proof will be based on a transformation of equation (5.1) which may be
regarded as a generalization of the classical Liouville transformation of second-order
linear differential equation [3]. We introduce a new independent variable ¢ and a new

dependent variable % =wu(f) by means of the relations

t= f [ (&1V"™PdE, y(@)=[p@)] " Pu ). (6.4)

A formal computation shows that the system (5.1) transforms into
i—g@ut+u*™* =0, u(0)=u(T)=0, (5.5)
where

b
gt)=—0o(c7)", o=a(t)=[p(@)] ">, T= f[p (@)1 (d @), (5.6)

and the dot denotes differentiation with respect to ¢.
The extremal problem (3.17) (for F (3, z)=p (x)y*™) transforms into
T

An=min f (@ —gu®—(m+1)"tu?" ) d¢,
b

where w (t,)=0, 0=, <t <-- <t, ;<t,=T, and u(f) satisfies the conditions

by

t,
f (42 —gutjdt= f w2 4. (5.7)

tyo1 ty-1

Because of (5.7), the definition of 2, may also be written in the form

T
An=m (m+1)"! min f e d, (5.8)
b

11 - 61173051, Acta mathematica. 105. Imprimé le 28 juin 1961
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If w(t) is the nth characteristic function of this problem, we define a set of

positive numbers «,, ..., &, by the conditions

ty

fuzdt=oc§" fuz"‘*zdt, v=1,...,n (5.9)

bh-1 -1

4

The function v(t) defined by »(¢)=o, % (t) in [t,_1, £,] will then have the normalization

b Ly

f@zdt= fvzm+2dt,

ty-1 ty_1

and it also satisfies all the other admissibility conditions for the nth extremal

problem associated with the system

B+oP1=0, p(0)=0v(T)=0. (5.10)

If we denote the mth characteristic value of this problem by u, we thus have

1

T 4
pn <m(m+1)71 fvz’"+2dt=m(m+ 1! { > "t f u2m+2dt}.
s v=1 6o
Using the inequality ‘
mm+1)" o™ 2<mm+ 1) ok (" - 1), ‘ (5.11)
tﬂ
n
we obtain pn <Sm(m+1)71 fu2m+2dt+ > ak(em—1) fuz””zdt,
p=1
ty-1

whence, in view of (5.8),

By (5.7) and (5.9), we have

til LP
(2™ —1) fu2m+2dt= fgu%lt (5.12)

b1 ty-1

and the last inequality simplifies to
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Pn <Ayt 2 o2 fguzdt. (5.13)
- by—1
We next show that there exists a positive constant ¢, independent of », such
that of<ec. By (5.12) and the Holder inequality,

ty L, by

1/m+1)
oz J.uz”‘*2dt< fum*zdt—l—cl[ fu%"*zdt] ,

tv‘l ty—1 ty-1
T
mj(m+1)
where ¢ = [J‘ lgl("’“"’mdt] . (5.14)
]
t‘l"
. —m/(m+1)

Hence, E"<1 4 [ (uz'"”dt] . (5.15)

J

th-1

Except for the factor m(m--1)"", the integral appearing in (5.15) is the first char-
acteristic value of the problem (5.8) under the side condition (5.7) (for a specific v}
and u(f,_1)=u(t)=0. By Lemma 3.1, this characteristic value decreases if the inter-
val to which it refers is increased. Since [t,_, t,]<[0, T], we may therefore conclude
that the integral in (5.15) is larger than (m+1)m 'A,. This shows that, indeed,
o?< ¢, where the constant ¢ does not depend on .

Applying this to (5.13), we obtain

T T

1/0m+1)
,u,,<ln+cf[g[u2dt<2n+ocl [fu2m+2dt] ,
b b

where ¢, is the constant (5.14). Since u(t) is the solution of the extremal problem
(6.8), this is equivalent to
ta <A (1405 A7 ™D, (5.16)

where the constant ¢, is again independent of n.

Since, by Theorem 4.1, 4, — oo for n— oo, (5.16) shows that u, <c, A,, provided
n is large enough. Using this to estimate 1, in the square bracket on the right-hand
side of (5.16) and remembering that u, is gixen by the right-hand side of (4.4), we
arrive at the inequality
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Un < I (L+cyn7%), (5.17)

where ¢, is a suitable constant.

In order to obtain an upper bound for 1,, we use essentially the same argument
but interchange the roles of the systems (5.1) and (5.10). If »(¢) is the nth char-
acteristic function of (5.10) and ¢, ¢, ... t, (0 =1, <t; < -ty <t,=T) its zeros in [0, T'],

we define positive constants 8, ..., f, by the conditions
t1l tl’
f[i)z—gvz]dt=ﬁf”’ *" 2. (5.18)
t_1 ty-1

(This is always possible since transformation (5.4) brings the left-hand side of (5.18)
b

into the form f 7'? (x)dx, where 7(z) is a suitable function.) The function w(t) de-
a

fined by w(f)=pg,v () in [f,_1, §,] has the normalization (5.7), and it follows from (5.8)

that

&

An<m (m+ l)“lfwz””zdt:m(m—l— 1)t > pamee fv2m+2 dt.
r=1

0 b1

Using (5.11), we obtain
¢

v

T
Zn<m(m+l)“1fv2m+2dt+ > BB —1) fﬁmzdt,
=1
0

b

or, since v (t) is the function minimizing (5.8),

t‘l’
In<pn + 2 Br(B"—1) fv”"*zdt.
=1

&1

In view of (6.18) and the normalization conditions

this is equivalent to
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The existence of a constant ¢ such that fi<c¢ (for all n) follows in the same
way as the corresponding fact for constants «,. Applying Holder’s inequality, we thus

obtain
T

1/m+1)y
I < o+ 0y [f v”’”zdt] ,

0

where ¢, is the constant (5.14). Aeccording to (5.7) (for ¢(t)=0),
T

U =m (M + 1)"1fvzm+2dt,
0

and the last inequality may therefore be written in the form
Ao St [L 4 g = ™10,

where the constant c¢; does not depend on 7. Since u, is given by the right-hand

side of (4.4), this is equivalent to

I Spn [L+cgn™2).
In view of (5.17) and the value of u,, this proves Theorem 5.1.

6. In the present section we show that, in the case of the general differential
equation y” +yF(y® x)=0, the asymptotic behavior of the characteristic values is.
essentially determined by the behavior of the function F (¢, x) for large values of ¢.
We shall establish the following result.

TuEorREM 6.1. Let F(t, x) and F, (i, x) be functions subject to the conditions (1.3),.
and let
F(t, )
-\ 6.1)
t-lf:.} Fiy(t, ) 1 (6.1)
uniformly in x. If A, and A, denote, respectively, the n-th characteristic values associated:

with the systems

w’ +uF (W 2)=0, wu(a)=u(d)=0, (6.2)
and v +oF (0%, 2)=0, wv(a)=v(b)=0, (6.3)
respectively, then lim i—’f= 1. (6.4)

We choose an arbitrary small positive number 8 and we consider, in addition
to (6.2) and (6.3), the system
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w’ +1+8)whF, (w, 2)=0, w@)=wbd)=0, (6.5)
with the characteristic values A,. If a=ay, a,, ..., @, _1, @, =b are the zeros of the nth
characteristic function of (6.2), and if the constants a«, are determined by the
conditions

a/’V aﬂ
fﬂ'zdx=(1+6) fuz F, (o2u?, 2)dx, (6.6)
@, _1 ay -1

then, by Theorem 3.2,

@y

Z [ u?—(1+6) G, (au?, x)]dx
y=1

a1

a
=Z f 2% — oc,,uz,x]dx—i-z f[G (o w2, x) (1+6)G1(a§u2,x)]dx7

where G, (¢, ) is defined by (2.1) (with F replaced by F,). In view of (3.11) and

the conditions

ap a‘V
fu'edx = fuZF(u2, x)dz,
ay -1 ay -1

‘we have

% fazfu'2—— (o2 w?, x)]dz< Z f[oc2 PGP, x)—~ (- 1)urF (4}, o)]dax

b
= f [’sz(u2, x)—G(fu’z? x)]dx:lyv

and thus

4y

A <ho+ > f[G(a,u x)— (1+90) G, (a2 u?, )] d . (6.7)
v=1 o
@y -1

To estimate the sum on the right-hand side of (6.7) we observe that, by (2.1),
2

2
o, W

G (2 u?, 2)— (1 +6) G, (Fu?, x)= f [F(t, z)—(1+8) F,({, x)]dt.

0
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By (6.1), the integrand becomes negative for ¢> M?, where M depends on &. Hence,

M2

G2 u?, z)—~ (1+6) Gy (2 u?, z)< fF(t, x)dx=G(M* z)
0
and we conclude from (6.7) that

b
I <A+ f G (M?, x)dx. (6.8)

To compare A, and A,, we denote by a=ay, a1, ..., an_1, @, =b the zeros of the

nth characteristic function of (6.5), and determine constants g, ..., 8, by the conditions
@ a,
f w?dzx = f w F, (B w?, z)dw. (6.9)
@y-1 Gy-1
2, a,
Since, by (6.5), f w?dx=(1+0) fwz F,(w? 2)dz, (6.10)
Gy—1 a_1

we have §,>1 and therefore, by (1.3 ¢), F,(f2u? x)>pr° F, (w? z), where ¢ is a fixed

positive number. Hence, by (6.9) and (6.10),

@y

(1+6) fwzF1 W, 2)dx>= B2 | wrF, (v, x)dw,
@y -1

ie., fi°<1+4, or Bi<e, (6.11)

where the constant ¢ does not depend on =.
The function w, (z) defined by w, (x)=p, w(z) in [a,-1, @,] has the normalization

’ .
@y &y

fw{zdx= (w?Fl (w?, z)d z,
J

a3 @y 1

and it follows therefore from Theorem 3.2 that the nth characteristic value A, as-

sociated with the system (6.3) can be estimated by
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Zn\f[wl G (wh, 2)]dow= 2 f[ﬁ'z w'— Gy (7w, v)]d

a,,_

.
@y

- é f[ﬁ'z w?— (14 6) Gy (B3u?, x)]dx+6él G, (fru?, x)dx.

@y-1

Since, in view of (3.11) and (6.10),
S| 1Bwr-(1+6)6, (B, @) de
-1

@y 1

’
@,

<é f[ﬂz —(1+68) G (w?, x)-(1+8) (8 — 1) w* F (w?, x)]dx

21

b
= ( [w2—(1+0)G, (W, x)]dx=1,,

(l
f dzx. (6.12)

u[\/]:

it follows that Ar < An +

By (3.11) (for t=0, s=pgow?),
G, (B’ x) < fiwt Fy(fiv?, x),

and thus, in view of (6.9) and (6.11),

g\

. ,
a, a, v

fGl(ﬂ§w2, r)dx<pr fw’zdx<c w?dax.

a,

-

@y_1 a1 v—

The inequality (6.12) may therefore be replaced by

b

l;<2;’+6cfw’2dw.

a

Since, by (2.8) (if this inequality is applied to the corresponding quantities associated

with the system (6.5)) and (6.10),



A CLASS OF NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 165

b

b
fw'zdx<(l+e) a‘l‘f [w?—(1+68) G, W z)]de=(1+e)e 11",

we finally obtain In<An (1+68B),

where B is a constant depending on n. Combining this with (6.8) and observing that
the constant M in (6.8) is likewise independent of »n, we find that

’

lim sup%’—‘<l+6B,

n—>00 n

or, since ¢ can be chosen arbitrarily small and B does not depend on §,

z

lim sup -*< L.
n—>o0 n

If the roles of F (¢, ) and F,(t, x) are reversed, the same procedure yields

lim sup Z—’f <1,
n-»00 Zn
and the proof of Theorem 6.1 is complete.
Theorem 6.1 shows, for instance, that the asymptotic behavior of the characteristic

values of the system

m

¥'+ 2 pe@y* =0, y(@)=y(®d)=0, (6.13)

k=1

where the function p,(x) are continuous in [a, b], p, >0 for k=1, ..., m, and p,, () >0
(cf. [4]) is identical with that of the characteristic values of

Y+ pn @y =0, yla)=y(d)=0,
and it may therefore be obtained from Theorem 5.1.

7. We now turn to the consideration of the more general equation (1.2). With

a slight change of notation, we write (1.2) in the form
y'+Ap@)y+yF @, ©)=0, (7.1)

where A is a positive number. In addition to leading to more concise formulation
of both proofs and results, this notation is suggestive of the analogy between the

Sturm-Liouville problem
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Y’ +up@y=0, yl@)=y@®)=0, (7.2)

and the problem of finding solutions of (7.1) which satisfy the boundary conditions
y(@) =y (5) 0. |

It is easy to see that there are values of A for which the latter type of solu-
tion with a prescribed number of zeros in (@, b) does not exist. Indeed, suppose that
A>u,, where u, is the nth eigenvalue of the problem (7.2), and that y,(x) is a
solution of (7.1) which vanishes at x=a, =05, and at n—1 distinet points of the
interval (a, b). If we write p, (x)=p (x)+ A~ F(y3, x), the function y,(x) will then be
the nth eigenfunction of the Sturm-Liouville problem g’ + Ap, () y=0, y (@) =y (b)=0,
and A its nth eigenvalue. Since p; (x)=p(x) (but not p,(z)= p(x)), it follows from
classical results [2] that A <pu,, contrary to our assumption.

The condition A <p, is thus necessary for the existence of such a solution of

(7.1). As the following theorem shows, it is also sufficient.

TurorEM 7.1. Let F(t, ) be subject to the conditions (1.3), and let u, denote
the nih eigenvalue of the Sturm-Liouville problem (7.2), where p(x) is positive and con-

tinuous in [a, b]. In order that there exist in [a, b] a solution of the problem
Y’ +Ap@y+yF(y* v)=0, y@)=y@®)=0, y@EC, (7.3)

with n—1 zeros in (&, b), i is necessary and sufficient that A <u,.

This solution may also be characterized by the minimum property
An=H(y)<H (u), (7.4)

where H (u) denoles the functional

»
H(u)= f [u? F (u?, x)— G (u?, z)]d, (7.5)

G (t, x) is defined by (2.1), and u(x) ranges over the class of functions with the follow-
tng properties: wu(x) s piecewise continuously differentiable in [a, b]; u(a)=0, where
B=0y<@y <+ <@p_1<a,=b and the values of a,, ..., an_1 are otherwise arbitrary; u (x)
satisfies the inequalities

a a

» t4

ai'
fu'zdx<A fp(x)uzdx+ fuzF(uz, xydz, v=1, ..., n. (7.6)

By 1 a1 Qy 1
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We remark that, if the other conditions hold, conditions (7.6) can always be
satisfied by multiplying u (x) by suitable positive constants «, in the intervals [a,_;, a.].
If U(x) is defined by U(x)~=o, «(z) in {a,_1, @], U(z) will satisfy (7.6), provided

al’
f widxr <A f Yuldx + [‘uzF(ozfu{ x)dx, »=1, ..., n. (7.7)

a1
Since, in view of (1.3 ¢), the right-hand side of (7.7) can be made arbitrarily large
by choosing «, large enough, the assertion follows. We further remark that, for the
purpose of solving the extremal problem of Theorem 7.1, the constants «, should be
given the smallest values compatible with the conditions (7.7). If 8 is a positive
constant and H (u) is the functional (7.5), it follows from (3.11) that '

H(Bu)= f[ﬂzuzF(ﬁzug, x)— G (fu’ )] dx

f[ﬁzuzF (B2, 2)— G (WP, x)— (2 — 1)u*F (%, x)]dx,

b

ie., H(Buw)<H @)+ ﬁzf u? [F (B u?, (x) — F(u? z)]da. (7.8)

a

This inequality is evidently also valid for any subinterval of [, b]. If 8 <1, it follows
from (1.3 ¢) and (7.8) that H(fu)<H (u). We now suppose that the constant o, may
be replaced by the smaller constant 8u, without violating condition (7.7) (for »=k).
It H,(u) denotes the integral (7.5) taken over [aj_1, a;), we have H, (B oy u) < Hy (azu),
and this shows that H (u,) < H (u), where u;=fu in [a; 1, a;] and w, =u elsewhere.
For the purpose of minimizing the functional (7.5) it is thus indeed sufficient to take
the smallest values of «, compatible with (7.7).

Inequality (7.7) may be true for a,=0 in some of the intervals [¢,_1, a,], but

not in all of them. In the latter case we would have, by classical results [2],

a, a,

£ v 1
Mn < TDAX Ju’zdx [ fpugdx] <A,
’ Gy -1 %:1

contrary to our assumption.
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We now turn to the proof of Theorem 7.1, considering first the case n=1, i.e.,
A <py, where u, is the lowest eigenvalue of (7.2). Since the equation y" + u; p(x)y =0
has a solation which vanishes for x=a and z=2> but not for z € (a, b), it follows from

the Sturm comparison theorem [3] that the equation
¢’ +ApE)o=0 (7.9)

has a solution ¢(z) which is positive in [, b]. It is therefore possible to apply the

transformation

y@)=o(x)v(t), t= f[d (&1 *dé (7.10)

to the differential system (7.3). Carrying out the computation, we obtain
b+o* [0 +Apo]+d*vF(a®? 2)=0, (v=d%v/dt),
or, in view of (7.9), v+o*vF(6*v, 2)=0.

The function F,(v% t)=¢*F (¢%¢? x) satisfies the conditions (1.3) (with obvious changes

in the notation), and we may therefore apply Theorem 2.1 to the problem
b
v+oF, (0% 6)=0, v(0)=v(T)=0, T= f[a(x)]‘zdx, (7.11)

into which problem (7.3) transforms. This shows that (7.3) indeed has a solution which
does not vanish in (@, b). It may also be noted that this argument remains valid if
A is a negative number since, in this case, (7.9) certainly has a solution which is
positive in [a, b].

By Theorem 2.1, the corresponding solution v (f) of (7.11) is characterized by the
minimum property

f [¢*— Gy (¢%, t)]dt=min. (7.12)

o
0

under the admissibility conditions »(0)=v(T)=0 and

T

T
fz}zdt= fszl(v2, t)dt, (7.13)
0

1]

where, in accordance with (2.1),



A CLASS OF NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 169

vz

vz
G, (¥4, t) = f F, (s, t)ds=o-4j F(d®s, 2)ds
o o

a2

= ¢* f F (s, 2)ds=0*G(c*?, o) =0 G (3, ).

=

T b
By (7.10) fszl (W% t)ydt= JyzF(yz, x)dx
0 a
T b b b
%) ’ O', 2 2 O'” 2 2 2
and Rdt= | |y Y de= | |y +7y do= | [y"—Apy’ldu,
0 a a a

the last step following from (7.9). These identities show that (7.13) is equivalent to
(7.6) for y=wu, a,_1=a, a,=b, and the sign of equality), and that the functional (7.12)
coincides with the expression H (u) defined in (7.5). This completes the proof of
Theorem 7.1 in the case n=1.

If »n>1 we carry out the minimization of the functional (7.5) in two stages.
We first choose a fixed set g, ..., @, such that a=gy<a, < - <a,-1<a,=b and
minimize H (u) under the admissibility conditions related to this set {a,}. The second
step will then consist in letting the set {@,} vary in order to obtain the smallest
possible minimum. If x(a,-1, a,) denotes the lowest eigenvalue of the Sturm-Liouville

problem
Yy Hup@y=0, ylama)=y(@)=0, (7.14)

the character of the function minimizing H () will, in each interval [a,_1, a,], be dif-
ferent according as A<p(a,_1, a,) or AZpu(a-1, a,). I A<ul(a,-1, a,) then, as just
shown, the extremal function will be in [a,.1, @,] a non-trivial solution of (7.1) for
which y(@,—1)=y(2,)=0, and y(x)+0 in (a,_1, @,). The value of min H,(a), where
the subscript » indicates that the functional (7.3) refers to the interval [a,_;, a,], is
in this case positive. If A> pu(a,-1, @) it is not difficult to see that min H, (u)=0.
Indeed, let w(x) denote the first eigenfunction of (7.14), normalized by the condition
w' (a,)=1. Since

@y

f wide=pl(a, 1, a,)
a

@y-1

ay @y
fpwzdx<A Jpwzdx,
-1 a

v v —1
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w(x) satisfies (7.7), and the same is evidently true of the function fw(x), where § is

an arbitrary non-zero constant. Hence,

@,

f[ Bt F (B2 w?, 2)— G(fPuw?, w)lda <’ fw2F(/32w2, x)dx.
-1

@y -1

min H, (u) < H,(Bw)=

(4

If g2<1, it follows from (1.3¢c) that

@y

min H, (u) < f W F(w?, x)dz

@y -1

But $* may be taken arbitrarily small, and we thus have min H,(x)<0. On the
other hand, H,(u)>0 since, by (3.11) (for ¢ =0), the integrand in (7.5) is non-negative.
Hence, min H, (x)=0. In view of H,(0)=0, the function y(x) =0 will thus minimize
H,(u) in an interval [a,_1, a,] for which p(a,_1, o) <A.

It was shown above that for u(a.-i, @,)> A, the problem of minimizing H, (u)
is equivalent to a minimum problem of the type described in Theorem 2.1. The func-
tion A(g,-1, a,)=min H,(u) has therefore the properties enumerated in Lemma (3.1).
In particular, A(a@,-1, @,) is & positive continuous function of @,_; and a,, which de-
creases as the interval [a,_,, a,] expands. As just shown, 4(a,_1, @,)=0 if u(a,_1, a,) <A.
In order to prove that A(a,_1, @,) is a continuous function of a,.; and a, without
any restrictions on the length of the interval, it is thus sufficient to show that
lim A(a,_1, @,)=0 if u{a,_1, a,)— A approaches zero through positive values. We derive
here a slightly more accurate description of the limiting behavior of A(a,-1, @,), which
will be needed later.

If p(a,-1, a,)=A and & is a small positive number, then

A@,_-1, a,— 8)=o0(9),

(7.15)
Ala,_1+ 8, a,)=0(0).

Since an elementary transformation interchanges the roles of ¢, ; and a,, it is
sufficient to prove the first relation (7.15). By classical results [2], u(a,-1, @,) is a

continuous function of ¢, and a, ;. A standard computation shows that

a,

—1 .
a1, a,—0)=p(a,-1, a,,,)+6[ fpwzdx] + 0 (6%),

@y—1
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where w () is the first eigenfunction of (7.14), normalized by the condition ' (a,)= 1.
Hence,
w(@,-1, a0,—8)=A+84+0(8=A+4"6,

where A is a positive constant, and A’ =4+ 0(d%). We now denote by r(x) the first
eigenfunction of (7.14) for the interval [a, i, @, — 8], normalized by 7' (a,—8)=1, and

determine a positive constant § by the equation

a,-06 a,-8
A'b f pridz= J 2 F (B%r%, z)dz. (7.16)
@y -1

- @ _1
Settihg R(x)=fr(x), we have

a, -3 a,—a a,-96 @, -9

f R?dx=(A+d64") f pR*dx=A f pR*dx+ f R*F(R?, x)d=.
@y 1

-1 @y -1 v @y -1

In view of (7.6), R(x) is therefore an admissible function for the problem H,(u)=min

(where H, now refers to the interval [a,_1, @, — 6]). Hence,

@,-9d a, -6
0<A(@1, 0, —8) <H,(fw)= f [B2F (B2r%, x)— G(B*r%, x)]da<p® f F (B2, x)du,
a1 @y 1

a,—38

where, by (7.16), 0<id(@1,a,—08)<B2A4'd pridx. (7.17)
1

Xy

If 60, rix) tends to w(x) uniformly in z. Since A’'=A4 +o0(d8?), (7.16) shows there-
fore that §->0 for §—0. In view of (7.17), this proves first relation (7.15).

We now consider the problem of minimizing the value of ¢=d(aq, ay, ..., ay)

= 21). (@,-1, @,), where the set {a,} is subject to the conditions a =g,<a,<--- <a,=b

and is otherwise unrestricted. As shown above, ¢ (q,, ..., @,) is a continuous function
of the arguments a,, ..., @, 1, and the existence of a minimizing set {a,} is thus as-
sured. We also note that the minimizing set {a,} consists of n+1 distinet points
since, by Lemma 3.1, ¢ would tend to infinity if two adjacent points a, were to

approach each other.
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The intervals [a,_;, @,] which correspond to the set—or, one of the sets—{a,}
minimizing the expression ¢ (ay, ..., a@,) may be divided into two classes, according as
p@,_1, a)>A or u(a, 1, a,)<A. In the first case, the extremal function y(z) is in
[@,-1, a,] a nontrivial solution of (7.1) for which y(a,_1)=y(a,)=0 and y(x)=0 in
(@,-1, @,); in the second case, we have y(x) =0 throughout [a@,_;, @,]. We shall show,
however, that the existence of an interval of the second type is incompatible with
the extremal character of the set {a,}.

We first remark that there must be at least one interval of the first type;
otherwise the inequality u,< max u(a,-1, @) [2] would confradict the assumption
pn>A. Hence, if there are any intervals of the second type, at least one of these,
say [ar_1, @], must be adjacent to an interval of the first type. Without loss of
generality the latter may be assumed the interval [ay, axi1]. If it were true that
tiar—1, ax) <A, we could choose a small positive number ¢ such that u (@r_1, a—38) <A
and u(a;—90, ak+1)>A. But this would imply that A(@x-1, @ —6)=0and A (a;,— 6, ax,1)

< A(@, @x.1), i.e., the substitution of a,—48 for a, would decrease the value of

éll(av_l, a,).

In order to show that the assumption w(ax_1, ax)=A is likewise incompatible
with the extremal character of the set {a,}, we estimate the variation of A (ay_1, @)+
+A(ay, ax1) if a; is replaced by a;—3d. An estimate for A(a,—9, @x,1) is obtained
from the inequality (3.19) which, as pointed out, remains valid if the positive con-
stant & in (1.3¢) is replaced by 0. In particular, (3.19) is applicable to the equation
y' +yF, (P, «)=0, where F, (¢, x)=Ap(x)+F (¢, x), ie., to equation (7.1). In view of
the minimum property of A(a;,—3d, ax.1), we thus may apply (3.20) (with appropriate
changes in the notation). Combining this with the estimate (7.15) for A(ay.1, a;—9),

we obtain

d ,
Aar—1, @ — 0) + A — 0, Ais1) <A (i1, @) + A, Brsr) — 5y (@) +0(9),
2

where y(x) is a non-trivial solution of (7.1) for which y(a,)=0. As pointed out at
the end of section 1, we necessarily have % (a;)+0, and the last inequality shows
therefore that A (ax-1, ay—06) + A (2, — 0, ax.1) Will be smaller than A (ax-1, @) + A (ay, ax.1)
if the positive number ¢ is taken sufficiently small. But this again conflicts with the
extremal character of the set {a,}, and we may therefore conclude that, in the ex-
tremal case, all of the intervals [a,_;, a,] are such that u(a,_1, a,) > A. Accordingly,
the extremal function will in each interval [a,.1, @,] coincide with a non-trivial solu-

tion y(x) of (7.1) for which y(a,-1)=y(a,)=0 and y(x)+0 in (a,_1, a,).
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We now consider two adjacent intervals [ax_1, ;] and [ay, ax.1), and apply to
a, the small variation described in section 3. If aj is the varied value of a, and &
is the small positive number controlling the variation, we have, in view of (3.15)

and the remark made at the end of section 3,

7 7 ]- 7 ’
Aag_1, azx) +A(ak, are1) <A(@r-1, @) + A (@, Qpi1) — 5 O [y (@) — y~ (@)]* +0(6),

provided y. (a,) and ¢  (a,) are of the same sign. Since the extremal property of
y(x) is not affected by substituting —y(x) for y(z) in [ax-1, @], the latter may be
assumed to be the case. If it were true that ¥’ (a;)=y_ (@), the value of — 48[y’ (ax) —
—y_ (@) +0(8) could be made negative by taking & sufficiently small, and the last
inequality would contradict the extremal character of the set {a,}. Hence, y. (a;)
=y’ (a) for k=1, ..., n—1, i.e., both y(x) and ¥’ (z) are continuous in [a, b]. Since
the extremal function y(x) was shown to be a non-trivial solution of (7.1) in each
interval [a,_1, @,], this shows that % (x) is a solution of (7.1) in the entire interval
[@, b]. In view of the fact that y(a)=y(b)=0 and that y(x) has precisely n— 1 zeros

in (a, b)—at z=a,, v=1, ..., n— 1— this completes the proof of Theorem 7.1.
8. In this section we counsider equations
Yy F @y, 0)=0, (8.1)
which remain unchanged if x is replaced by x+w, where w is a positive constant.

The function F(t, ) will thus be assumed to satisfy, in addition to conditions (1.3)

(for a=0, b=ew), the periodicity condition ;
F(t, x+w)=F(t x) (8.2)
for all  and all non-negative values of £, We shall establish the following result.

TuaeoreM 8.1. If F(t, x) satisfies conditions (1.3) and (8.2), then the equation
(8.1) has an infinity of distinct solutions with the period w. For each positive integer n
there exists at least one such solution with exactlly 2n zeros in the interval (0, w].

To prove Theorem 8.1, we choose a number a¢ and note that, according to
Theorem 3.2, there exists a solution y=y(x, a) of (8.1) in [a, a + ] which vanishes
for x=a and z=a+w, and has 2n—1 zeros in (@, ¢+ w). This solution minimizes

the functional
atw

Hy, a)= f [y*— G »)]d= (8.3)
under the side conditions indicated in the statement of Theorem 3.2. ‘Denoting the

minimum value of this functional by As,(2), we now consider the problem of minim-
12 — 61173051. Acta mathematica. 105. Imprimé le 28 juin 1961
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izing Az, (a) with respect to a. Since, in view of (8.2), Aen(@+w)=4z,(a), it is
sufficient to let @ vary in the interval [0, w].

According to the remark made at the end of section 3, Az.(a), is a continuous
function of a, and there will therefore exist at least one value @, in [0, w] at which
Asy (@) attains its minimim. If o denotes the first zero of y(x, a,) in the interval
(@9, g+ w), we define a function y, (z) in [, ¢+ @] by

z)=y(x, ay), x€[a, a4+ w],
1 (@) =y (z, a) £ 0 1 (8.4)

Y (@) =yle—w, ay), z€[ay+w, a+w]
It may be noted that, since y(x) has 2n+1 zeros in [a,, a4+ ], the function y, (x)
changes its sign at the point z=a,+ @. It is easily confirmed that H (y,, a) = H (y, a,),
where H is the functional (8.3), and that y,(x) satisfies the admissibility conditions
for the minimum problem (3.17). We thus conclude from Theorem 3.2 that

Ao () < H (yy, o) = H (3, a9) = Azn (@g)-

Since, by assumption, Az, (@) <Azn (@), it follows that Az, (a)=H (y;, ), i.e., ¥, (2) is
a solution of the extremal problem of Theorem 3.2 (with the appropriate changes
of notation). Since y,(r) changes its sign at each of its zeros, y, (x) will therefore
have a continuous derivative in [, «+e@]. In particular, we have yi(g,+w+0)
=y1(ay+ @ —0), i.e., by virtue of (8.4), ¥’ (ay+ w)=y"(a,). In view of the fact that y (a,)
=y(a,+w)=0 and that y(x+w) is likewise a solution of (8.1), the original solution
¥ () may thus be continued into the interval [a,+ @, a4+ 2 w] by setting y (x + w) =y ().
The proof of Theorem 8.1 now follows by repeating the same argument for successive
intervals [ay+mw, g+ (m+1)w], m= %1, £2,....

We remark that a similar method of proof may be used in the case of the
charscteristic value Ag,,1(r=1, 2, ...). The only difference is that y(x) has now an
even number of zeros in [a,, @+ ®] and that ¥ (a,) and 3’ (ay+w) will therefore be
of opposite sign. Aeccordingly, the function g, (z) will have a continuous derivative in
[e, ¢+ ] if the second definition (8.4) is changed to y; ()= —y(x—w). This leads

to the following result.

TrEOREM 8.2. Under the assumptions of Theorem 8.1, equation (8.1) has an
infinity of distinct solutions y(x) for which
y@tow)=—y@).

For each positive infeger n there exists al least one such solution with exactly 2n+1

zeros in the inferval (0, w].
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