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I .  The equations to be studied in this paper are of the form 

y"  + y F  (y2, x )=O,  (1.1) 

or, more generally, y" + p (x) y § y F (y2, x) = 0, (1.2) 

where p (x) is a positive and continuous function of x in a finite closed interval [a, b], 

and the function F (t, x) is subject to the following conditions: 

~' (t, x) is continuous in t and x /or 0 ~ t < ~ and a <~ x <~ b, respectively; (1.3 a) 

F (t, x) > 0 / o r  t > 0 and x E [a, b]; (1.3 b) 

There exists a positive number s such that, /or any x in [a, b], t - ~ F  (t, x ) i s  

a non-decreasing /unction o/ t /or t E [0, c~]. (1.3 e) 

The statement  tha t  a function y (x) is a solution of (1.1) or (1.2) in an interval 

[a, b/ will mean tha t  y (x) and y '  (x) are continuous in [a, b/ and that  y (x) satisfies 

there the equation in question. 

Because of condition (1.3 c), equation (1.2) is not included in the class (1.1) and 

must  be considered separately. Condition (1.3 b) and, ia  the case of equation (1.2), 

the fact tha t  p ( x ) > 0  shows tha t  a solution y (x) of (1.1) or (1.2) satisfies the ine- 

quality y y " < O  for y # 0 ,  i.e., the solution curves are concave with respect to the 

horizontal axis. I t  follows therefore from an elementary geometric argument  tha t  any 

solution y (x) for which y and y '  are finite at  some point of [a, b], can be continued 

to all points of the interval. 

Our aim is to investigate the properties of those solutions y (x) of (1.1) or (1.2) 

which satisfy the boundary conditions y ( a ) = y  (b)=0,  although most  of our results 
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can be extended, by  obvious modifications of the arguments  employed, to more gen- 

eral homogeneous boundary  conditions. I t  will be shown tha t  there exists a countable 

set of such solutions, and t h a t  these solut ions--which m a y  be characterized by  "the 

number  of their zeros in (a, b)--correspond to the s ta t ionary  values of a certain func- 

tional. The lat ter  will be te rmed "character is t ic  values" of the problem, and  their 

asymptot ic  behavior  will be studied. 

We shall also consider equations (1.1) for which F(t ,  x) is a periodic funct ion of 

x, and we shall show tha t  such an equat ion has a countable number  of distinct pe- 

riodic solutions. 

We remark tha t  no Lipschitz condition has been imposed on the function 2" (t, x) 

since, with one exception, we do not  need the uniqueness of the  solution y ( x ) o f  

(1.1)--or  (1.2)--corresponding to  given values of y (a) and  y'  (a). The exception is the 

trivial solution y (x) ------ 0, which has to be shown to be the only solution satisfying the 

initial conditions y (a)=y '  (a )=  0. As the following a rgument  shows, the uniqueness 

of this solution is a consequence of conditions (1.3). 

Wi thou t  losing generality,  we m a y  assume tha t  y ( x ) ~ 0  in a small intervall  

[a, a +  ~] (~ >0) (o therwise  we m a y  replace a by  a' ,  where a' is the largest value in 

[a, b] such tha t  y(x)~--O in [a ,a ' ] ) .  We now distinguish two cases, according as there 

does, or does not,  exist an  interval  a < x <  a (zr b) such tha t  y (x)=~0 in (a, a). I n  

the first case, we replace (1.1), or (1.2), by  the equivalent  integral equation 

y (x) = y (a) § y' (a) (x - a) - f (x - s) y (s) F 1 (y~, s) ds, 
a 

where 2"1 (t, x) s tands for either 2" (t, x) or p (x) + F (t, x). Since y (a) = y '  (a) = 0, this 

reduces to  
x 

y (x) + ~ ( x -  s) y (s) F 1 (y2 s) d s = 0. 
o ]  
a 

If  x is taken  to be a point  of (a, ~), this is seen to  lead to a contradict ion since y (s) 

does not  change its sign in (a, x) and 2'  1 (ye, s) is positive. 

I n  the second case, there will exist a sequence of points {xn} such tha t  b > x 1 

> x 2 > ..- > xn > "" > a, lim xn = a, and y (x.) = 0. I n  the  interval  [a, xn], (1.1) or (1.2) 

m a y  be replaced by  the  integral equat ion 

Xn 
/ b  

y (x) = ~ g (x, s) y (s) 2"1 (y2, s) d s, 
a 
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where the  Green 's  funct ion g (x, s) is defined by  (x~ - a) g (x, s) = (x - a) (x~ - 8) and  

(x,~- a) g (x, 8) = (s - a) (Xn - x) in the  intervals  [a, 8] and  [8, x~], respectively.  Ident i -  

fying x wi th  the  value a t  which y (x) a t ta ins  its m a x i m u m  M~ in [a, xn], we obta in  

x n  

Mn < Mn~ g (x, s) F 1 (y2, s) ds. 
a 

~'~ (t, x) is a posi t ive and  non-decreasing funct ion of t for t >  0. Since 4g  (x, 8 )<  x ~ - a  

and  M~<M1, we thus  arr ive a t  the  inequal i ty  

X l  

4 < (x~ - a ) j  F~ (M~, 8) ds.  
f a  

a /  
a 

Since x ~ -  a ->0  for n ->  ~ ,  this again  leads to  a contradict ion,  and  the  required unique-  

ness proof is complete.  

2. Defining the  funct ion G (t, x) b y  

t 

it, x) = | F (s, x) ds, 
f b  

(2.1) G 

0 
we consider the  funct ional  

b 

(y) __-- ~ [y,2 _ G (y~, x)] d x (2.2) H 
a 

within the  class of continuous functions y (x) which have  a piecewise continuous de- 

r iva t ive  in [a, b], and  satisfy y (a) = y (b) = 0. Al though (1.1) is the  Eu le r -Lag range  

equat ion  of the  funct ional  (2.2), i t  can be shown b y  simple examples  t h a t  (2.2) has 

nei ther  an  upper  nor  a lower bound  if y (x) ranges over  the  class of funct ions in 

question. To obta in  an  e x t r e m u m  it is necessary to subject  y (x) to fur ther  restric- 

tions. A restr ict ion suitable for our purposes is given b y  the  condit ion 

b b 

/ y'2 d x =  / y2 F (y2, x) dx  (2.3) 

w h i c h - - a s  one easily confirms b y  mul t ip ly ing  bo th  sides of (1.1) b y  y (x) and  inte-  

grat ing f rom a to b- - i s  au tomat ica l ly  satisfied b y  a solution of ( 1 . 1 ) f o r  which 

y ( a ) = y  (b )=0 .  I f  we add  to this the  condit ion y ( x ) ~ 0 ,  then  it  can be shown t h a t  

within this res t r ic ted class the  funct ional  (2.2) has  a posi t ive min imum,  and t h a t  th is  

m in imum is a t ta ined  if y(x) coincides wi th  a solution of (1 ) fo r  which y (a)=y(b)=0.  
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A proof of the existence of a solution of the extremal problem, and of the 

implied existence of a solution of (1.1), was carried out in a previous paper [6] which 

was concerned with oscillation properties of the solutions of (1.1) in an interval of 

infinite length (the boundary conditions considered in [6] were y (a)= y' (b)=0, but 

this causes only trivial changes in the argument). For convenient reference, we restate 

here the result in question. 

THEOREM 2.1. Let F denote the class o] ]unctions y (x) which are piecewise con- 

tinuously di//erentiable in [a, b], satis/y the conditions y (a) = y (b ) = O, y (x) ~ 0, and are 

subject to (2.3). I /  H (y) denotes the /unctional (2.2), the problem 

H (y) = min = ~, y (x) E P (2.4) 

is solved by a solution o/ (1.1) /or which y (a )=y(b )=O and y(x)>O in (a,b). The 

minimal value 2 is positive. 

We remark here that  (2.3) is a normalization condition. Indeed, if u ( x ) i s  a 

function which satisfies all the other admissibility conditions, it is always possible to 

find a positive constant a such that  y (x)= ztu (x) satisfies (2.3). This is equivalent 

b b 

f u'2 dx = f u2 F (ot2 u2, x) dx, (2.5) 
a a 

and the truth of the assertion follows from the observation that  the righthand side 

of (2.5) is a continuous function of ~ which, in accordance with (1.3 e), tend to 0 for 

~-->0 and to oo for ~-->oo. 

We further remark that  the condition y (x)~ 0 is essential. If  this condition is 

omitted, the extremal problem has the trivial solution y (x)~ 0. The latter is a sin- 

gular solution of the problem, in the sense that  it cannot be approximated by other 

admissible functions. Indeed, if y (x) is an admissible function we have 

y~ (x) = y' d x ~ <~ ( x -  a) y'~ d x, 
c~ a 

b 

where ~ = f y ' 2 d x > O .  Applying this to (2.3) and noting that  /~>0, we obtain 
a 

b 

1 <~ f ( x  - a) F [8 ( x -  a), x] dx .  (2.6) 
a 

to finding an ~ such that  
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If fl < 1, it follows from (1.3 e) that  

b 

1 < fief (x- a) 
a 

F[x-a,x]dx,  

and we may conclude from (1.3b) that there exists a positive constant flQ such that ,  

for every admissible function y (x), we have 

b 

f y'2dx>~flo > 
(L 

O. (2.7} 

The last inequality also shows that  the functional (2.2)has a positive lower- 

bound. By (2.1) and (1.3c) we have 

t t t 

0 0 0 

+ s) -~ t F (t, x).  

In view of (2.2) and (2.3), we thus have 

b b b 

f ~_ ~ , -1  ~" 2 ~ ,  2 s)-lfy,2dx, H ( y ) =  [y~F(y2, x)-G(y2, x)]dx>~s(1 ) j y  l y , x )dx=e( l+  
a a a 

(2.8)j 
and the existence of the bound follows from (2.'/). 

3. Theorem 2.1 establishes the existence of a solution y(x) of the boundary  

value problem 
F 2 y"+y ( y , x ) = 0 ,  y(a)=y(b)=O. (3.1), 

In  the present section it will be shown that  this problem has, in addition, an infi- 

nite number of other solutions which can be obtained by solving the minimum pro- 

blem (2.4) under increasingly restrictive side conditions. The minimal values of the  

"energy integral" (2.2) associated with these problems will be called the characteris- 
tic values ~1, )'2 .... of the problem (3.1) where ~1=~ is the number defined in The- 

orem 2.1 (formula (2.4)), and 0 < X 1 < 2 2 <  .. . .  

To formulate the minimum problem defining the characteristic value 2n, we choose 

n + l  distinct points a, such that  a = a  0 < a  l < a  s<  --. < a n _ l < a n = b .  In  the interval 

[a~-l, a~] ( v = l  . . . . .  n), we consider functions y,(x) which are piecewise continuously 

differentiable, vanish for x = a~-I and x = a, (but not identically) and are normalized b y  
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(~v ar 

f y'2 d x = f y2 f (y~, x) d x. (3.2) 

a v - 1  a v - 1  

If, for x E [a,_l, a,], we write y (x) = y~ (x), the n th  characteristic value is then  

defined by  
b 

2n = m i n f  [y '~ - a (y~, x)] dx, (3.3) 
a 

where y (x) ranges over the class of all functions with the indicated properties. 

Theorem 2.1 shows tha t  it is sufficient to  consider this min imum problem for 

funct ions y(x) which in the intervals [a ,_ l ,a , ] ( r=l  . . . . .  n) coincide, respectively, with 

the  solutions y~(x) of (1.1) which vanish a t  x=a~_ l  and  x=a , ,  and whose existence 

is established by  Theorem 2.1. We shall prove tha t  the set of numbers  a 1, . . . , a , - 1  

for which the  r ight -hand side of (3.3) a t ta ins  its min imum is such tha t  the corre- 

sponding solutions y~ (x) of (1.1) combine to  a single solution y (x) of (1.1) in the in- 

terval  [a,b]. This solution y(x)  vanishes for x = a  and x=b ,  and  has precisely n - 1  

zeros in (a, b). 

We first show t h a t  our minimum problem has a solution. I f  we write ~ = 2  (a, b) 

to indicate the interval  to which the number  ~t defined in (2.4) refers, the existence 

of this solution will be a consequence of the following three properties of 2 (a, b). 

L e m m a  3.1. 

(a) I /  a<~a' <b'<~b, then 2(a,b)<,~(a',b'); 

(b) ,~ (a,b)--+c~ /or b-a-+O; 

(c) ,~ (a, b) is a continuous /unction o/ both a and b. 

To  establish (a), we denote by  u (x) the funct ion solving the problem (2.4) for the 

interval  [a', b'], and  define a funct ion v (x) as follows: 

v (x )=u(x )  for xe[a',b'],  v (x )~O for xE[a,a ' )  and xe(b' ,b] .  

Since v (x) is easily confirmed to be an  admissible funct ion for the problem (2.4)as-  

sociated with the interval  [a, b], it follows from Theorem 2.1 and the definition of v (x) t ha t  

2 (a, b) < H (v) = H (u) = ~  (a', b'). 

Turning next  to (b), we set b -a=(~ (8>O)  and we use the inequali ty (2.6). 

This yields 
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b b 

l < f ( x - a ) F [ f l ( x - a ) , x ] < O f F ( f l ~ , x ) d x ,  
a a 

b 

where fl ~-f y,2 d x, and y (x) is the solution of problem (2.4). I f  there existed a pos- 
I1 

itive constant  M such tha t  fl ~ M for all d such tha t  0 < d < do, we would have 

a+do 

l<df F(doM, xl x, 
a 

b 

which is absurd. Hence, fy'2dx--->oo for d-+0. In  view of (2.8) and (2.4), this implies 
a 

t ha t  ~ (a, b)-->~.  

To prove p roper ty  (c), it is sufficient to show tha t  )~ (a, b) is a continuous func- 

t ion of b, since the roles of a and b can be interchanged by  an elementary transfor- 

mation.  To simplify the writing we set a = 0, and we denote by  y (x) the solution 

of problem (2.4) for the interval [0, b]. I f  0 < b ' < b ,  we write t=bb '-1 and we define 

a function u (x) in [0, b'] b y  u ( x ) = y  (tx). As shown in section 2, there exists a pos- 

itive constant  ~ such tha t  
b" b" 

f ~'2 dx = ~ ~2 F (o~2 u2, x) dx. (3.4) 

0 0 

With  this choice of ~, the funct ion w (x)=au(x) is subject  to the normalizat ion (2.3) 

(for the interval [0, b']). Since, moreover,  w (0) = w (b') = 0, it follows from Theorem 

2.1 tha t  
b'  

]t (0, b') <~ H (w) = f [w '2 - G (w 2, x)] d x. (3.5) 

0 

In  view of the definition of u (x), (3.4) is equivalent  to 

b b 

t2fy '2dx= fy2F(a2ye, xt-1)dx. 
0 O 

Since the funct ion F is monotonic  in its first a rgument  and continuous in both  ar- 

guments  this shows tha t  ~ is a continuous funct ion of t :[or t>~ 1. The normalizat ion 

condition 
b b 

2 F 2 X 

0 0 
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shows t h a t  ~-+1 for t -+ l ,  and  we m a y  therefore conclude t h a t  I ~ - 1 1  can be made  

a rb i t ra r i ly  small  b y  tak ing  t close enough to 1, i .e. ,  b y  tak ing  b' close enoug to  5. 

Changing the  in tegra t ion var iable  in (3.5) f rom x to t x and  observing t h a t  

w (x) = ~ y (t x), we obta in  
b 

(0, b') ~ t -1 | [ ~ 2  t~ y,2 _ G (~2 y2, x t- l)]  dx, (3.6) 
a ]  

0 

where y = y  (x). Since the  funct ion G is continuous in bo th  its var iables  and,  as just  

shown, t-->l implies cr we conclude tha t ,  for an  arb i t rar i ly  small  given posi t ive 

n u m b e r  7, we can m a k e  the  r igh t -hand  side of (3.6) smaller  t h a n  

b 

fly,2 _ x)] 7 G (y~, d x +  
o 

b y  tak ing  b' close enough to b. Bu t  the  last  expression is equal  to  2 (0, b ) + 7 ,  and  

we obta in  ~t (0, b') ~< 2 (0, b) + 7" Since, according to p rope r ty  (a), ~L (0, b') ~> ~t (0, b), this  

shows t h a t  2 (0, b) is indeed a cont inuous funct ion of b. This completes  the  proof  of 

L e m m a  3.1. 

I t  is now easy to see t h a t  there  exists a set of dist inct  points  al, ... an-1 for 

which the  expression 

A =  ~ ).(a,_l,a,) (ao=a, an=b) 

a t ta ins  its m in imum.  Indeed,  according to p rope r ty  (c), A is a cont inuous funct ion 

of the  var iables  a 1 . . . . .  an- l ,  and  b y  p rope r ty  (b) the  values  of these variables  mus t  

be bounded  away  f rom each other  in a n y  sequence of sets (a 1 . . . .  , a~-1) for which A 

tends  to its min imum.  Since the  m i n i m u m  of A coincides wi th  the  m i n i m u m  of the  

r igh t -hand  side of (3.3) under  the  specified conditions, we have  thus  established the  

existence of a solution Yn (x) of the m i n i m u m  problem (3.3). As a l ready ment ioned,  

in each in terval  [a~_l,a~] this funct ion yn(X) coincides wi th  a solution of (1.1) for 

which y~ ( a v - 1 )  = y~ (a~) = 0 and  y~ (x) :~ 0 in (a~_1, a~). The funct ion y (x) will thus have  

precisely n - 1  zeros in (a, b), and  it follows tha t ,  for different values of n, p rob lem 

(3.3) will have  different  solutions. 

Since the side conditions under  which the  m i n i m u m  problem (3.3) is solved become 

more  restr ict ive as n increases, i t  is clear t h a t  2~ >~ ~n-1. I n  order to  show t h a t  equal- 

i ty  is excluded, we denote  b y  y (x) a solution of p rob lem (3.3), and  we define a func- 

t ion u(x) as follows: u ( x ) = y ( x )  in [a, an-1], where as, ... ,an_l(a<a~< ... <an- l<b)  

are the  zeros of y (x) in (a, b), and  u - - 0  in [a~-1, b]. I t  is easily confirmed t h a t  u (x) 
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is an  admissible funct ion for the  prob lem (3.3) corresponding to the  index n - l ,  and  

it  follows therefore t h a t  

b a n -  1 b 

a a a n  - 1 

- G (y~, x)]  d x.  

Since, b y  (2.2), (2.3), and  (2.8), the last  integral  is positive, this  proves  the str ict  

inequal i ty  2~-1 < 2n. 

We  now tu rn  to the  proof of the  assert ion t h a t  the  m i n i m u m  problem is solved 

b y  a funct ion y(x) which is a solution of equat ion  (1 .1 ) th roughou t  the  in terval  [a, b]. 

However ,  the  following r emark  is in order. If,  in one of the  intervals  (a~_l, a,), the  

ex t remal  funct ion y (x) is replaced b y  - y  (x), nei ther  the  admissibi l i ty  conditions nor  

the value of the  funct ional  (3.3) are changed. I n  order to  remove  this t r ivial  lack 

of uniqueness,  we shall assume t h a t  the  signs of y (x) are chosen in such a way  t h a t  

y (x) changes its sign a t  each point  a,  ( v =  1,2 . . . . .  n - 1 ) .  As poin ted  out  before, the  

funct ion y(x) mus t  in each in terval  [a ,_ l ,a , ]  coincide wi th  a solution of (I.1). Since 

y (a , )=  0 (v = 0 ,  1 . . . . .  n), i t  follows therefore t h a t  the ex t remal  funct ion y (x)-- i f  nor- 

malized in the way  just  ind ica ted- -wi l l  be a solution of (1.1) in [a, b] if, and  only if, 

l im y ' ( x ) =  l im y ' (x ) ,  v = l  . . . . .  n - l ,  (3.7) 
x.-.-~a~, - 0 x-.->a~, + 0  

or, in shorter  nota t ion,  y'_ (a~)=y+ (a~). We shall p rove  (3.7) b y  showing t h a t  y (x) 

could not  be a solution of the  problem (3.3) if (3.7) fails to hold a t  some point  a , .  

We accordingly assume t h a t  y'_ (a~)=t= y+ (a,) and  we set, for easier writing, 

a~_l = ~, a = c, a~+l =f t .  Wi thou t  losing genera l i ty  we m a y  fur ther  assume t h a t  y (x )>  0 

in (~, c) and  therefore y (x )<  0 in (c, fl). We now define a funct ion u (x) in the fol- 

lowing manner .  I f  ($ denotes  a small  posi t ive quant i ty ,  we set  u (x)=y (x)in [~, c - ($ ]  

and  [c + ($, fl], and  

u(x)=y(c-~)+(2(~)-l(x-c+(~)[y(c+(~)=-y(c-~)], c-(~<~x~c+~. (3.8) 

Evident ly ,  u (x) is continuous in [g, fl]. I n  (c-($ ,  c +  ~), the  linear funct ion (3 .8 )van -  

ishes a t  a point  x =  c' given b y  

2 ~ y (c - ($) + (c' -- c + ($) [y (c + ($) - y (c - (~)] = O. (3.9) 

I n  order to obta in  a funct ion subject  to  the  normal iza t ion (3.2), we mul t ip ly  u (x) b y  

posit ive factors  ~ and a in [a ,c ' ]  and  [c', fl], respectively,  so t h a t  
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cf c" 

f u'2 d x = f u2 F (~2 u2, x) d x, 

~ (3.10) 

f dx= f 
c" c" 

The funct ion v (x) defined b y  v (x) = Q u (x) and v (x) = a u (x) in [~, c'] and [c', fl] re- 

spectively,  will then  be normalized in accordance with  (3.2), and  it  is clear t h a t  the 

funct ion Yl (x) obta ined  f rom y (x) b y  subst i tu t ing v (x) for y (x) in [~, fl] is an  ad- 

missible funct ion for problem (3.3). 

B y  (1.3c), F ( t , x )  is an  increasing funct ion of t. Hence,  the funct ion G(t ,x)de-  
fined in [2.1) is convex in t and  we have  

G (t, x) >/G (s, x) + (t - s) F (s, x) (3.11) 

for a n y  non-negat ive  s and  t. Therefore,  

f [v '2 -- G (v 2, x)] dx <~ f [ v  '2 - G (y~, x) - (v e - y2) F (y2, x)] dx 
r 

I n  view of (3.2) and  (2.2) it thus follows t h a t  

H (yl) < H (y) + f [ v  '~ - v 2 F (y2, x)] d x, 

e '  fl 

i.e., H ( y l ) ~ . H ( g ) §  [u '2 -u2F(y2 ,  x ) ] d x §  2 F (y2, x)] d x. (3.12) 

Our a im is to  show t h a t  the sum of the last  two te rms  in (3.12) can be made  

negat ive  by  tak ing  (~ sufficiently small. Increasing the r igh t -hand  side of (3.12) b y  

omit t ing  the nega t ive  t e rm  in the  in tegrand in the in terva l  ( c -  8, c +  ~), we have  

c-~ 

H(yl)<~H(y)§ 2 f [u'~-u2F(u2, x ) ]dx+a  2 
c+,~ 

c c+8 

§ ~ u'2dx § ('j2 f u'2dx. (3.13) 

c-$ c 



A CLASS OF ~O:NLINEAI~  S E O O I ~ D - O R D E R  D I F F E l g E ~ T I A L  :EQUATIOSTS 151 

I n  the  in terva ls  [0r c - 6 ]  a n d  [c+(3, fl] we have  u ( x ) = y  (x). Observ ing  t h a t  y (x) is 

a solut ion of (1.1) in each in terval ,  we ob ta in  

o- 
f [u 's - u s Y (u s, x)] d x = y (c - (3) y '  (c - 6) 

a n d  

c+,~ 

x ) ] d x =  - y  (c+6) y' (c+6). 

Inse r t i ng  this  in (3.13), and  no t ing  t h a t  

c c c 

c - ~  c - ~  c-~d 

c c+~ 

c - r  c - d  

a n d ,  s imilar ly  

we  ob t a in  

c+5 c+(~ c+~ 

c c c - 5  

c + ~  

H(yl)<....H(y)+y(c-d)y'(c-6)-y(c+d)y'(c+(3)+ f u 's dx 

+ (02 - 1) y (c - (3) y '  (c - 6) - (a s - 1) y (c + 6) y '  (c + 6) 

c+5 

+{10 -11+1 s-11} f u'Sdx- (3.14) 

B y  (1.1), y ( c ) = 0  implies y " ( c ) = 0 .  Hence ,  y(c+6)=(3y+(c)+O((3*), y ' ( c + 6 ) =  

2]+ (c) + O (62), y (c - (3) = - 6y'_ (c) + 0 (63), y '  (c - 5) = y'- (c) + O (62). Since c'-->c for  6--~0 

and  the  func t ion  F is con t inuous  in b o t h  its a rgumen t s ,  (3.10) shows t h a t  0s-->1 a n d  

a S - ~ l  for  (3-->0, a n d  it  follows t h a t  (02 - 1) y (c - 6) y '  (c - (3) an d  (a s - 1) y (c + 6) y '  (c + (3) 

a r e  o(6).  B y  (3.8) we have  

e+~ 

f (3 , u 's d x = (2 (3) -1 [y (c + (3) - y ( c -  (3)] s = ~ [y+ (c) + y'_ (c)] s + O ((3a). 

e - ~  
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The  last  t e rm  in (3.14) is therefore also o ( ~ ) a n d  in view of y ( c - ( ~ ) y '  ( c - ~ ) -  

- y  (c + ~) y '  (c + e$) = - ~ [y'_2 (c) + y ~  (c)] + O ((~3), (3.14) reduces to 

t _ _ y p  H (yl)<,.H ( y ) - ~ [ y +  (c) _ (c)]2+o (J). (3.15) 

I f  y+ (c) =~ y'_ (c), i .e.  if condit ion (3.7) does not  hold, the  expression ~ [y+ (c) - y"  (c)] 2 + 

+ o ((~) can be made  negat ive  b y  choosing ~ small  enough, arid the  corresponding func- 

t ion Yl (x) will sat isfy the  inequal i ty  H (y l )<  H (y). Bu t  Yl (x) is an  admissible func- 

t ion for the  ex t remal  p rob lem (3.3) and,  in v iew of the  definit ion (2.2) of the func- 

t ional  H (y), this contradicts  the  assumpt ion  t h a t  y (x) is a solution of p rob lem (3.3). 

This contradict ion can be avoided only if y'_ (c)= y+ (c). Since c m a y  be identified 

with any  of the  numbers  a,  ( r =  1, 2 . . . . .  n - 1 ) ,  this establishes the  relat ions (3.7). 

The following s t a t emen t  summarizes  the  results of this section. 

T H E O R ~  3.2. Let Fn denote the class o/ /unctions y (x) with the /ollowing pro. 

perties." y (x) is continuous and piecewise di//erentiable in [a, b]; y (a~) = 0 (r = 0, 1 . . . . .  n, 

n~> 1), where the a~ are numbers such that a = ao c ai < ... c a n  i < an = b ; /or r =  1, . . . , n ,  

a v a v 

a v - 1  % - 1  

(3.16} 

where F (t, x) is subject to the conditions (1.3). 

I /  G (t, x) denotes the /unction de/ined by (2.1), the extremal problem 

b 

[ [ y ' 2 - G ( y 2 ,  x ) ] d x = m i n = 2 t n ,  y (x) E F~, 
L. 

(3.~7> 

has a solution Yn (x) whose derivative is continuous throughout [a, b], and the charac- 

teristic values 2n are strictly increasing with n. The /unction Yn (x) has precisely n -  1 

zeros in (a, b), and it is a solution o/ the di//erential system 

y "  + y F (y~, x) = 0, y (a) = y (b) = 0. (3.18) 

The question whether  the  prob lem (3.17) has (up to  the  factor  - 1 )  only  one  

solution Yn (x) with a continuous der ivat ive,  remains  open. Another  question which 

remains  unanswered is whether  the  sys tem (3.18) m a y  have  addi t ional  solutions wi th  

n - 1  zeros in (a, b) which are not,  a t  the  same t ime,  solutions of (3.17). For  th~  
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sake of convenient  formulat ion we shall, nevertheless, occasionally refer to the An as 

the characteristic values o I the system (3.18). 

We add here a few remarks which will be used later. I n  deriving inequali ty 

(3.15) no use was made of the assumption tha t  the number  e in (1.3e) is positive, 

and (3.15) will therefore remain valid if (1.3 e) is replaced by  the weaker condition 

tha t  F (t, x) be a non-decreasing funct ion of t. 

The second remark concerns the behavior  of 2n (a, b)- -where  a and b are the ends 

of the interval  to which the min imum problem (3.i7) refers- -as  a funct ion of a and b. 

Since An (a, b) = min ~ 2 (a~_l, a~) (a = a 0 < a 1 < ... < a~-i  < an = b), it follows from Lemma 
~=1 

3.1 and an elementary a rgument  t ha t  An (a, b), too, has the three properties s ta ted 

in Lemma 3.1. 

Finally,  if the a rgument  resulting in (3.15) is carried th rough  under  the assump- 

t ion tha t  y ( x ) ~ 0  in [c,/~], the inequali ty (3.15) will be replaced by  

8 
H (Yz) ~< H (y) - ~ y,2 (c) + o (8), (3.19) 

where y l ( ~ ) = y l ( c + 8 ) = O .  I n  view of Theorem 2.1, we thus have the estimate 

(~, c + 8) ~< ~ (a, c) - ~ y,2 (c) + o (8). (3.20) 

4. According to Theorem 3.2, the characteristic values 2n of the problem (3.16) 

are str ict ly increasing with n. The following result gives addit ional  information re- 

garding the growth of 2n for large n .  

THEOREM 4.1. I[ )~n is the n-th characteristic value o I the problem (3.17), then 

An 
lim n~ = oo. (4.1) 
n--> oo 

The exponent 2 cannot be replaced by a larger number. 

Using the same nota t ion as in Theorem 3.2, we have, for x E (a~-l, a~), 

a~ 

av -1  a ~ - I  

Applying this inequali ty to (3.16), we obtain  
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1 ~ (a~-- a~_l) f '(y2, x)d , 
a v _ 1 ~ 

w h e n c e  

b 

f ~ ( y 2 ' x )  d x ~  v=l ~ ( a v - - a v - 1 ) - l *  
a 

F o r  f ixed  a 0 = a a n d  a n = b, t h e  r i g h t - h a n d  side of th i s  i n e q u a l i t y  a t t a i n s  i ts  m i n i m u m  

for  a 1 -  a o = a s -  a 1 . . . . .  an - a~ 1 : n - 1  (b - a ) ,  a n d  we  h a v e  t he re fo re  

b 

f F (y2, x) d x>~ n ~ (b - a) -1. 
a 

(4.2) 

I f  ~ is a pos i t i ve  cons t an t ,  if fo l lows f r o m  (3.11) t h a t  

b b b 

f G(~2, x)dx>~ f G(y2, x ) d x +  f (a 2 2 F 2 x - y )  (y ,  ), 
a a a 

or, in  v i e w  of (3.16), 

b b b 

a a a 

W e  n o w  i d e n t i f y  y (x) w i t h  t h e  so lu t ion  of (3.17). I n  v i e w  of (3.17) a n d  (4.2), t h e  

l a s t  i n e q u a l i t y  will  t h e n  l ead  t o  
b 

~n >~ a S (b - a) -1 n 2 - fG x) d x, 

a n d  we conc lude  t h a t  l im  inf  n -~ 2n >~ a 2 (b - a )  - 1 .  

Since  t h e  c o n s t a n t  ~ m a y  be  t a k e n  a r b i t r a r i l y  large,  th is  p r o v e s  (4.1). 

I n  o rde r  t o  s h o w  t h a t ,  in  (4.1), n 2 c a n n o t  be  r e p l a c e d  b y  a h ighe r  p o w e r  of n,  

we c o m p u t e  t h e  c h a r a c t e r i s t i c  v a l u e s  2n a s soc ia t ed  w i t h  t h e  d i f f e ren t i a l  s y s t e m  

y "  + y 2 m + l = O ,  y(O)=y(b)=O, (4.3) 

whe re  m is a pos i t i ve  in teger .  Our  r e su l t  wil l  be  t h a t  

2n - m (m + 1) l/m [4 f12 b-1 n2]l+l/m, (4.4) 
m + 2  
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1 

where /~ = ~ (1 - t 2 m +~)- �89 d t. (4.5) 

0 

Since m m a y  be taken arbitrari ly large, this shows tha t  (4.1) is indeed the best 

possible result of its kind. 

I f  y (x) is a solution of equat ion (4.3) for which y (0)=  0, y '  (0 )=  ~ > 0, we have 

y,2 + (m + 1) 1 y2 m+2 = ~2. (4.6) 

E lementa ry  considerations show tha t  y (x) is periodic and tha t  its value oscillates 

between the limits • M, where M is the positive number  determined by  

M 2 m+2= (m + 1) a~. (4.7) 

I f  x = T is the lowest positive value for which y2 (x)= M 2, the zeros of y (x) in  ( 0 , ~ )  

are at  x= 2 T, x = 4 T, ..., and it is easily seen tha t  all these zeros move  to the left 

as :c a grows. As a consequence, there exists precisely one solution of the system (4.3) 

with n -  1 zeros in (0, b). By  Theorem 3.2, this solution is necessarily identical with 

the solution of the extremal problem (3.17) (with F(y2, x)~--y2m), and we have 

b 

An = | [ y , 2  _ (m + 1) -1 y2 ~+u] d x, 
q d  

0 

if y (x) is the solution in question. Since y (x) is subject  to the identities y ( T +  x) 

= y (T - x) and y (x + 2 T) = - y (T) - -as  one confirms by  subst i tut ing these functions in 

the differential equat ion and using a few trivial t ransformat ions- - th is  is equivalent  to 

T 

, , ln=2nf[y'~-(m+l)-ly2m+2]dx, T=b(2n)  -1. 
0 

Multiplying equat ion (4.3) b y  y (x) and  integrat ing f rom 0 to T,  we obtain 

T T 

f y ' 2 d x =  fyUm+2dx. (4.8) 

0 0 

T 

n m (m + 1 ) - 1 | y  '~ d x, T = b (2 n) -1. (4.9) Hence, 2n 2 
I ]  

0 

In tegra t ing  (4.6) from 0 to T, we have 
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T 

f y,2 
o 

and thus, in view of (4.8), 
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T 

dx+ (m + 1)-~ f # ~ d x  = ~T,  
0 

T 

Iy '~dx= (m+ 1) a s T ( m + 2 )  -1 . 
d 
0 

(4.10) 

To compute a, we observe tha t  y (x) is increasing in (0, T), and we may  therefore 

conclude from (4.6) tha t  
M 

T = t - [ ~  2 - ( m  -~ 1) -1  y~ m+~]-�89 d y. 

0 

In  view of (4.7) and (4.5), this leads to 

1 

T = (m + 1) � 8 9  ~m+~]- �89189 M-raft. 
q d  

0 

Using (4.7) again, we thus obtain 

a ~ = / m +  1) -1 [ (m+ 1) �89 fl T-l) 2(l+l/m). 

Combining this with (4.9) and (4.10), and observing that  T = b ( 2 n )  -1, we arrive 

a t  (4.4). 

5. The expression (4.4) for the characteristic values of the problem (4.3) may  

be used in order to determine the asymptot ic  behavior of the characteristic values 

~ associated with the system 

2 m + l  0 y"+p(x )  y = , y(a)=y(b)=O, (5.1) 

where p (x) is positive and continuous in [a, b] (for other properties of equation (5.1), 

cf. [1, 5]). Our method of proof will present certain analogies to the classical proce- 

dure by which the asymptot ic  behavior of the eigenvalues of the Sturm-Liouville 

problem y" + # p (x) y = 0, y (a) = y (b) = 0 is obtained from the known eigenvalues of 

the problem y" + # y = 0, y (a) = y (b) = 0 [3]. We shall establish the following result. 

THEORV.~ 5.1. I] ~n is the n-th characteristic value associated with the di//erential 

system (5.1), then, /or large n, 

2~ = A n T M  [1 + 0 (n-~)], (5.2) 
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and fl is given by (4.5). 

I n  the course of the proof it will be necessary to assume tha t  P (x) has two 

continuous derivatives. However,  in the final result no derivatives of p(x)appear 
and it  is therefore possible to extend the result  to an  a rb i t ra ry  continuous and  posi- 

tive p (x) by  :means of an approximat ion argument .  The necessary steps are e lementary 

bu t  tedious, and will be omitted.  

The proof will be based on a t ransformat ion of equat ion (5.1) which m a y  be 

regarded as a generalization of the classical Liouville t ransformat ion of second-order 

linear differential equat ion [3]. We introduce a new independent  variable t and  a new 

dependent  variable u =  u (t) by  means of the relations 

t = f [p (~)]l/<~+e)d ~, y (x) = [p (x)]-l/z(~+e)u (t). (5.4) 
a 

A formal computa t ion  shows tha t  the system (5.1) t ransforms into 

~i - g ( t )  u + u 2 ~ + 1  = 0 ,  u ( 0 )  = u ( T )  - 0 ,  ( 5 . 5 )  

where b 

g ( t ) = - ~ ( a - 1 )  "', a=(r(t)=[p(x)] -1/~('n+2), T=  I-[p(x)]l/("§ (5.6) 
a /  

and the dot  denotes differentiation with respect to t. 

The extrcmal  problem (3.17) (for F (y2, x) = p (x) y2m) transforms into 

T 

| (it ~ - gu 2 - (m + 1) -1 u 2m+~) dt, 2n rain 

0 

where u (t~) = 0, 0 = t o < t 1 < ... < tn_l < t~ = T, and u (t) satisfies the conditions 

t v t~ 

f [it~-gu~]dt= f u~'n+2dt. (5.7) 

tv - 1 tv - 1 

Because of (5.7), the definition of 2~ m a y  also be wri t ten in the form 

T 

2~ = m (m + 1) -1 min | u ~m§ dr. (5.S) 
q d  

0 

11 - 6 1 1 7 3 0 5 1 .  A c t a  mathemat ica .  105. I m p r i m 4  le  2 8  j u i n  1 9 6 1  

b 

if ]111  where A m (m + 1) 1/m (2fi)2(x+l/m) [p (x)] 1/(m+~) dx (5.3) 
m + 2  

a 
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If u(t) is the n th  characterist ic funct ion of this problem, we define a set of 

positive numbers  ~1 . . . . .  ~ by  the conditions 

t,, t,, 

f ~ 2 d , = o ~ n  f qj,2m+2dt, 

tv - 1 tv - 1 

= 1 . . . . .  n. (5.9) 

The funct ion v(t) defined by  v (t) = ~ u (t) in [tv-1, iv] will then have the normalizat ion 

t v tv  

fi~2dt= fv2m+2dt, 
tv - 1 tv - 1 

and it also satisfies all the other  admissibility conditions for the n th  extremal  

problem associated with the system 

ii + v 2m§ = 0 ,  v (0 )  = v ( T )  = 0 .  ( 5 . 1 0 )  

I f  we denote the n th  characteristic value of this problem by  /zn, we thus have 

T t~ 

~ a n < m ( m + l )  -1 v2m+~dt=m(m+ l) -1 ~ o~ 2rn+e uem+~dt . 
lv=l 

0 tv - 1 

Using the  inequal i ty  

m (m + 1)-1 ~2m+2 ~< m (m + 1) -1 § ~z~ (~m _ 1), (5.11) 

we obtain  

T t~ 

~ n ~ m ( m W 1 ) - l  f u2m+2dt§ ~l~" ~ 2 ( ~ m - - 1 )  f u2m+2dt, 
0 t~ _ 1 

whence, in view of (5.8), 
t~ 

tv - 1 

By (5.7) and (5.9), we have 
tv tv 

(~m--1) fu~m+2dt= fgu~dt 
tv-1 tv-1 

(5.12) 

and the last inequal i ty  simplifies to 
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t~ 

tv - i 

(5.13) 

We next  show that  there exists a positive constant c, independent of n, such 

that  ~ ~<c. By (5.12) and the H51der inequality, 

t~ t~, t~ 
I / ( m+l )  

.=m /#=+=at+c,[ f#m+=at] , 
tv -1 tu -1 tv -1 

where 

T 

l gl'= +''m dt (5.14) 
0 

t~ 
[" ] -ml(m+l) 

Hence, ~ m  <~ 1 + C 1 | U 2m+~ dt . (5.15) 
,] 

tv _ 1 

Except for the factor m ( m + l )  -1, the integral appearing in (5.15)is the first char- 

acteristic value of the problem (5.8) under the side condition (5.7) (for a specific v) 

and u( t~_ l )=u( t~ ) -O.  By Lemma 3.1, this characteristic value decreases if the inter- 

val to which :it refers is increased. Since [t~-l, t~]c[0, T], we may therefore conclude 

that  the integral in (5.15) is larger than (m+l)m-121 .  This shows that,  indeed, 

~ < c ,  where the constant c does not depend on n. 

Applying this to (5.13), we obtain 

T T 
~" 11/(m +1) 

I I 

where c 1 is the constant (5.14). Since u(t) is the solution of the extremal problem 

(5.8), this is equivalent to 

fin ~< An (1 + c~ 2;  m/(m+l)), (5.16) 

where the constant c~ is again independent of n. 

Since, by Theorem 4.1, 2n --> oo for n --> oo, (5.16) shows tha t / tn  < c 3 2n, provided 

n is large enough. Using this to estimate 2n in the square bracket on the right-hand 

side of {5.16) and remembering that  /~n is gixen by the right-hand side of (4.4), we 

arrive at the inequality 
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/zn ~< 2n (1 + c 4 n-s),  (5.17) 

where c 4 is a suitable constant .  

I n  order to obtain  an  upper  bound for An, we use essentially the same a rgumen t  

bu t  interchange the roles of the systems {5.1) and (5.10). I f  v(t) is the n th  char- 

acteristic funct ion of (5.10) and to, t I . . . .  tn (0 = t o < t I < ...tn_l < tn = T) its zeros in [0, T],  

we define positive constants  fll . . . . .  fin by  the conditions 

t v t v 

iJ z - v ~ d t o 2 m  f [  - y  i =p~ f v2m+sdt 
tv  1 tv  - 1  

(5.18) 

(This is always possible since t ransformat ion (5.4) brings the lef t -hand side of (5.18) 
b 

into the form fv,2 (x)dx, where v(x) is a suitable function.) The function w(t) de- 

fined by  w(t)=fl~v(t) in [t~-l, t~] has the normalizat ion (5.7), and it follows from (5.8) 

t h a t  
T t~ 

~n<'m(m-{-1)-1~ w2m+2dt=m(m-[l)  lv=l ~ f12m+2 /v2m+zdt. 
0 tv _ 1 

Using (5.11), we obtain 

T t~ 

2n<~m(m+l) -1 v2m+Zdt+ e,~t'~ - 
o t~_~ 

or, since v (t) is the funct ion minimizing (5.8), 

t v 

R2 (R2m l ) f v 2 m + 2 d t .  
Y=I 

I n  view Of (5.18) and the normalizat ion conditions 

this  is equivalent  to 

t v t~ 

! i~2dt = f vSm§ 
t v  - tv  ~- 1 

t~ 

~ = 1  
t~ -i 
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The existence of a constant c such that  fllY ~< c (for all n) follows in the same 

way as the corresponding fact for constants ~ .  Applying HS]der's inequality, we thus 

obtain 
T 

~n ~ /-tn "~- ce 1 v2m + 2 d t , 

o 

where e 1 is the constant (5.14). According to (5.7) (for g(t)~O), 

T 

= r e ( m +  1) - 1 |  v 2m+2dt, 
, 2  
0 

and the last inequality may therefore be written in the form 

;tn ~</~n [1 + % # -  m/(m+l)], 

where the constant % does not depend on n. Since /~n is given by the right-hanc[ 

side of (4.4), this is equivalent to 

2~ ~< ttn [1 + % n-2]. 

In view of (5.17) and the value of ten, this proves Theorem 5.1. 

6. In the present section we show that,  in the case of the general differential 

equation y " + y F ( y e ,  x)=O, the asymptotic behavior of the characteristic values is  

essentially determined by the behavior of the function _F(t, x) for large values of t.. 

We shall establish the following result. 

T ~ ~ o R E ~ 6.1. Let F (t, x) and F 1 (t, x) be ]unctions sub~ect to the conditions (1.3) 

and let 

lira F(t,  x) :1 (6.1), 
t ~ r  JF 1 (t, x) 

uni]ormly in x. I] 2n and ~ denote, respectively, the n-th characteristic values associate~ 

with the systems 
u" +u.F(u 2, x)=O, u(a)=u(b)=O, (6.2)! 

and v" + v F l  (v 2, x)=O, v(a)=v(b)=O, (6.3) 

respectively, then lim ~, = 1. (6.4) 
n --~oo ~ n  

We choose an arbitrary small positive number ~ and we consider, in addition 

to (6.2) and (6,3), the system 
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w" + ( l  + ~ ) W F l ( W  2, x )=O,  w ( a ) = w ( b ) = O ,  (6.5) 

with the characteristic values ~t~'. If a = a  o, a 1 . . . . .  a n - l ,  a n = b  are the zeros of the nth 

function of (6.2), and if the constants a, are determined by  the characteristic 

conditions 
ay a~ 

f u:2dx=-(l+5) f u2F1 2 2 (a~ u , x) dx, 

a ~ -  1 ay - 1 

(6.6) 

then, by  Theorem 3.2, 

a~ 

a v  - 1 

- -  (1 ~- ~)  G l(0f2v/2,  x ) ]  dx 

a~ (s 

i f 2 ' 2  2 2  ~ , f [ G ( ~ 2 u 2 ,  x ) ( 1 . ~ ) ~ 1 2 2  = [ ~ u  - O ( ~ , u ,  x ) ] d x +  - ( ~ u ,  ~ ) ]dx ,  
v=l  ~=1 

av - I av - 1 

where Gl(t  , x) is defined by (2.1) (with F replaced by F1). In view of (3.11) and 

the  conditions 
a~ a~ 

f u'2dx = f u2$'(u2, x) dx, 
a~, -1 av -I 

w e  have 

a~ a v 

L ~  u - G (o~ u ~, 
v=l  v=l 

a v - 1  al, -1 

and thus 

- G (u s, x) - (a~ - 1 ) u 2 _~ (u 2, x)] d x 

b 

= f [U 2 F (U 2, X) - -  G(u 2, x ) ] d x = ~ ,  

a v 

- (a~ u ,  x)] d x. 
Y=I 

av - I 

(6.7) 

To estimate the sum on the right-hand side of (6.7) we observe that,  by (2.1), 

rZ z 

O ( ~ u  2 , ~ ) - ( l + d ) o l  ~ ~ f ( ~ u  , x ) =  [F(t, x ) - ( l + d ) F l ( t  , x) ]d t .  
0 
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By (6.1), the integrand becomes negative for t > M  ~, where M depends on (~. Hence, 

M ~ 

G ( ~  u 2, x) - (1 + 6) G~ (~ u ~, x) <~ f F (t, x) d x = G (M ~, x) 
0 

and we conclude from (6.7) that  

b 

~ ~ +  G(M2, x)dx.  
o, 

(6.8) 

p �9 �9 I �9 
To compare ~ and 2~', we denote by a = a o ,  ax . . . . .  a n - l ,  an = b the zeros of the 

nth characteristic function of (6.5), and determine constants fil . . . . .  fin by the conditions 

a v a v 

av-1 a~,-1 

(6.9) 

av a v 

Since, by (6.~), f w'~ex= (1+ ~) f w' F~ (~', x)e x, (6.10) 
au 1 a~_ 1 

we have / ~ > 1  and therefore, by  (1.3 c), 2 2 ~ 2 F1 (/~v w , x) >~ •, F 1 (w , x), where e is a fixed 

positive number. Hence, by (6.9) and (6.10), 

av a v 

( I + / ~ )  f w 2 F l ( W ~ ,  x ) d x > ~ f l ~  f W 2 F l ( W ~ ,  x ) d x ,  

ay - 1 av - I 

l .e.~ 2e 2 /~ ~<1+~, or /~<c ,  (6.11) 

where the constant c does not depend on n. 

The function w 1 (x) defined by w 1 ( x )= f l~  w ( x )  in [a:-l, a:] has the normalization 

try a v 

r w l  d x = w~ F 1 (w~, x)  d x,  
,J 

av - 1 g'v - 1 

and it follows therefore from Theorem 3.2 that  the n th  characteristic value X~ as- 

sociated with the system (6.3) can be estimated by 
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b av 

~n ~ f [ w12-  ~1 ( w12, X)] d x =  ~ f t 2 2  3 2  
v=l �9 

a av- I 
a v a v 

f [~:2 W2--(1 § 8) 3 3 ~ f ~ i  (~ 2w2' X) = Ot(fl~w, x)Jdx+8 
v=l �9 v=l 

a~,_ I av-- I 

d x .  

Since, in view of (3.11) and (6.10), 

a v 

v=l , 
a#_ 1 

ap 

"f < ~ [3~w '~- (1 
v=l 

a~_ 1 

f 
it follows that 

dx 

+~)Gl(w ~, x)-(l+8)(fl~-l)w2F(w 2, x)Jdx 

[w '2 - (1 + 8) G ,  (W 2, X)] d x  = )/,', 

V=I 

~v 

f G 1 (fl~w 2, x) dx .  

a~_ 1 

By (3.11) (for t=O, s=fl~w~), 

(6.121 

2 2 G,(3 , .w  , x) <f l ,  2~1(3~w2 2, x), 

and thus, in view of (6.9) and (6.11), 

a v 

Gl(/~v w , X) 
, 

av - 1 

d x .~. ~ 

a v ay 

. f  w'2 d x <~ c , f  w'2 d x" 

av_ 1 a~-i 

The inequality (6.12) may therefore be replaced by 

b 

n ~ ,~ + 8 c w'2 d x. 
a 

Since, by (2.8) (if this inequality is applied to the corresponding quantities associated 

with the system (6.5)) and (6.10), 
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b b 

f w'2dx~(l~-~)~-l/[w'2-(l~-(~)Gl(W2, x)]dx:(l~-~)t~-12", 
o. fs 

we finally obtain 2~ ~<2~' (1 + ~ B ) ,  

where B is a constant depending on n. Combining this with (6.8) and observing tha t  

the constant M in (6.8) is likewise independent of n, we find tha t  

2" 
lim sup "'~ ~< 1 + ~ B, 

n--~oo 2 n 

or, since 5 can be chosen arbitrarily small and B does not depend on 6, 

lira sup 2~ ~-.o~ ~ ~< 1. 

If  the roles of F (t, x) and F 1 (t, x) are reversed, the same procedure yields 

2n 
lim~_.oosup 2~ ~ 1, 

and the proof of Theorem 6.1 is complete. 

Theorem 6.1 shows, for instance, tha t  the asymptot ic  behavior of the characteristic 

values of the system 

y" + ~ pk(x) y2k+l=O, y(a)=y(b)=O, (6.13) 
k - 1  

where the function 10k (x) are continuous in In, b], pk>~ 0 for k =  1 . . . . .  m, and Pm (x)> 0 

(cf. [4]) is identical with tha t  of the characteristic values of 

y" +pm(X) y2rn+X=O, y(a)=y(b)=O, 

and it  may  therefore be obtained from Theorem 5.1. 

7. We now turn to the consideration of the more general equation (1.2). With 

a slight change of notation, we write (1.2) in the form 

y" + Ap(x)y+y.F(y 2, x)=O, (7.1) 

where A is a positive number. In  addition to leading to more concise formulation 

of both proofs and results, this notation is suggestive of the analogy between the 

Sturm-Liouville problem 
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y"  §  y (a )=y(b)=O,  (7.2) 

and  the p rob lem of finding solutions of (7.1) which sat isfy the bounda ry  conditions 

y (a) = y (b) = 0. 

I t  is easy to  see t ha t  there  are values of A for which the  la t te r  t ype  of solu- 

t ion with a prescribed n u m b e r  of zeros in (a, b) does no t  exist. Indeed,  suppose t h a t  

A~>#n, where /~n is the  n th  eigenvalue of the prob lem (7.2), and  t h a t  yo(X)is  a 

solution of (7.1) which vanishes a t  x = a ,  x=b ,  and a t  n - 1  dis t inct  points  of the  

in terval  (a, b). I f  we write Pl (x) = p (x) § A - 1 F  (y~, x), the  funct ion Y0 (x) will then  be 

the  n th  eigenfunction of the Sturm-Liouvi l le  p rob lem y "  § A p l  (x) y = 0, y (a) = y (b) = 0, 

and A its  n th  eigenvalue. Since px (x) 7> p (x) (but  not  Pl (x) - -  p (x)), i t  follows f rom 

classical results [2] t h a t  A < / ~ ,  con t ra ry  to our assumpt ion .  

The  condit ion A < # ~  is thus  neces sa ry  for the  existence of such  a solution of 

(7.1). As the following theorem shows, it  is also sufficient. 

T H E O R E ~ I  7.1. Let F(t ,  x) be subject' to the conditions (1.3), and let #n denote 

the nth eigenvalue o/ the Sturm.Liouville problem (7.2), where p (x) is positive and con- 

tinuous in [a, b]. In  order that there exist in [a, b] a solution o/ the problem 

y " § 2 4 7  y (a )=y(b)=O,  y(x) EC', (7.3) 

with n - 1  zeros in (a, b), it is necessary and su/ficient that A < /~n. 

This solution may also be characterized by the minimum property 

2.  = H (y) < H (u), (7.4) 

where H (u) denotes the /unctional 

b 

H(u)= f [u x)-O(u x)]dx, 
a 

(7.5) 

G(t, x) is de/ined by (2.1), and u(x) ranges over the class o/ /unotians with the /ollow- 

ing properties: u (x) is piecewise continuously di//erentiable in [a, b]; u (a~)= O, where 

a = ao < al < ... < an_l < an = b and the values o/ a 1 . . . . .  an-1 are otherwise arbitrary; u (x) 

satis/ies the inequalities 

a~ a v ~ 

f ut2dx~A f p(x) u2dx§ /u2F(u2, x)dx, 
a~, -1 %-1 at,-1 

~, = 1 . . . . . .  n. (7.6) 
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We remark that,  if the other conditions hold, conditions (7 .6)can  always be 

satisfied by multiplying u (x) by suitable positive constants ~ in the intervals [a~-l, a~]. 

If U(x) is defined by U(x)=cc~u(x) in [a~-l, a~], U(x) will satisfy (7.6), provided 

a v a~, a v 

a~, _ 1 a~, 1 a~, _ 1 

x, v= 1 . . . . .  n. (7.7) 

Since, in view of (1.3 c), the right-hand side of (7.7) can be made arbitrarily large 

by choosing ~ large enough, the assertion follows. We further remark that,  for the 

purpose of solving the extremal problem of Theorem 7.1, the constants ~ should be 

given the smallest values compatible with the conditions (7.7). If fi is a positive 

constant and H(u)  is the functional (7.5), it  follows from (3.11) tha t  

b 

H(flu) = f [fl~u~ F(~Su ~, ~) - a(fi~u ~, ~)] dx 
a 

b 

< f [ ~  u ~ f (fls u s ' x) - G (u ~, x) - (fl~ - 1) u ~ F (u ~, x)] d x, 

b 

i.e., H (fl u) < H (u) +/~s f u s [F (f12 u ~, x) - F (u 2, x)] d x. (7.8) 
a 

This inequality is evidently also valid for any subinterval of [a, b]. H fi < 1, it follows 

from (1.3 c) and (7.8) that  H(flu)<H(u).  We now suppose that  the constant ztk may 

be replaced by the smaller constant fl~g without violat ing condition (7.7) (for ~ = k). 

If Hk (u) denotes the integral (7.5) taken over [ak-1, ak], we have Hk (fl~zku)< Hk (ztku), 

and this shows that  H(ul)<H(u),  where ul=flu in [ak_l, a~] and u l=u  elsewhere. 

For the purpose of minimizing the functional (7.5} it is thus indeed sufficient to take 

the smallest values of ~ compatible with (7.7). 

Inequality (7.7) may be true for ~ = 0  in some of the intervals [a~-l, a~], but 

not  in all of them. In the latter case we would have, by classical results [2], 

au a v 

#n ~ max u '2 d x p u2 d x ~< A, 

a~ _ 1 av - 1 

contrary to our assumption. 
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We now turn to the proof of Theorem 7.1, considering first the case n =  1, i.e., 

A < ~ul, where ~u x is the lowest eigenvalue of (7.2). Since the equation y" + [~lP (x) y = 0 

has a solution which vanishes for x = a  and x = b  but not for xE (a, b), it follows from 

the Sturm comparison theorem [3] that  the equation 

a"  + A p (x) a = 0 (7.9) 

has a solution a (x) which is positive in [a, b]. I t  is therefore possible to apply the 

transformation 
x 

y(x)=a(x)v( t ) ,  t= f (7.1o) 
a 

to the differential system (7.3). Carrying out the computation, we obtain 

i) + a 3 [el '  + A p (l] + (~4 v F ((~ v ~, x) = O, (v  = d ~ v / d  t2), 

or, in view of (7.9), v + ( x 4 v F ( ~ v ,  x)~O. 

The function F 1 (v ~, t) = a4F (a s v 2, x) satisfies the conditions (1.3) (with obvious changes 

in the notation), and we may  therefore apply Theorem 2.1 to the problem 

b 

~J + V / ~ I ( V  2, t ) = 0 ,  v(O)=v(T)=O, T= f [a (x ) ] -2dx ,  (7.11) 
a 

into which problem (7.3) transforms. This shows that  (7.3) indeed has a solution which 

does not vanish in (a, b). I t  may  also be noted that  this argument  remains valid if 

A is a negative number  since, in this case, (7.9) certainly has a solution which is 

positive in [a, b]. 

By  Theorem 2.1, the corresponding solution v(t) of (7.11)is characterized by  the  

minimum property 
T 

I[?) 2 --  G1 (V 2, t ) ]  dt= rain. (7.12} 

under the admissibility conditions v (0 )=  v ( T ) =  0 and 

T T 

f'~2dt.~ fv2.Fl(v2, t)dt, 
o o 

(7.13~ 

where, in accordance with (2.1), 
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?)2 V~ 

Gl(v2, t)= f Fl(S,t)ds=a4 f 
0 0 

Fi(~2s, x)ds 

=(~ f F(s, x) ds=a2G((~v 2, x)=a2G(y 2, x). 
L 
0 
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B y  (7.10) 

T b 

/ '  2 F J  2 f v F x(v 2, t) dt j y  (y, x) 
0 a 

dx 

T b b 

0 a a 

b 

f [y,2 _ A p y~] d x, 
a 

the last step following from (7.9). These identities show tha t  (7.13) is equivalent  to 

(7.6) for y = u, a~-i = a, a, = b, and the sign of equality), and tha t  the functional (7.12) 

coincides with the expression H(u) defined in (7.5). This completes the proof of 

Theorem 7.1 in the case n =  1. 

If  n >  1 we carry out  the minimizat ion of the functional  (7.5) in two stages. 

We first choose a fixed set a 0 . . . .  , an  such tha t  a = a  0 < a  l <  -.. < a n _ l < a ~ = b  and 

minimize H (u) under  the admissibili ty conditions related to this set {a,}. The second 

step will then consist in letting the set {a~} va ry  in order to obtain the smallest 

possible minimum. I f  # (a~-l, a~) denotes the lowest eigenvalue of the Sturm-Liouvil le 

problem 

y" +#p(x)y--O, y(a~_~)=y(a~)=O, (7.14) 

the character  of the funct ion minimizing H (u) will, in each interval  [a~-l, a~], be dif- 

ferent according as A<p.(a~_l ,  a,,) or A>~#(a~_l, a~). I f  A < # ( a ~ _ l ,  a~) then, as just  

shown, the extremal funct ion will be in [a~-l, a~] a non-trivial  solution of (7.1) for 

which y (a,-1) = y (a~) = 0, and y (x) =~ 0 in (a~_l, a~). The value of rain H~ (a), where 

the subscript v indicates tha t  the functional  (7.5) refers to the interval  [a~-l, a~], is 

in this case positive. If  A~># (a,_l, a~) it is not  difficult to  see tha t  rain H,  ( u ) = 0 .  

Indeed,  let w(x) denote the first eigenfunetion of (7.14), normalized by  the condition 

w' (a~) = 1. Since 

av a~ a~, 

fw'2dx:~(a~_l,a~) fpw2dx<A fpw2dx, 
a v - 1  av - 1  av - 1  
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w(x) satisfies (7.7), and the same is evidently true of the function fiw(x), where fl is 

an arbitrary non-zero constant. Hence, 

rain H~ (u) ~< H~ (~ w) = 

a v ay 

av_  1 a u - 1  

If f12< 1, it follows from (1.3c) that  

av 

minH~(u)<~fl ~ f w~F(w ~, x) dx 
av - 1 

But fl~ may be taken arbitrarily small, and we thus have min H, (u)~<0. On the 

other hand, H~(u)>~O since, by (3.11) (for t=0 ) ,  the integrand in (7.5) is non-negative. 

Hence, min H,  (u)= 0. In view of H~ (0)= 0, the function y ( x ) ~  0 will thus minimize 

H,(u) in an interval [a~-l, a~] for which #(a~_l, a~)~<A. 

I t  was shown above that  for #(av-1, a~)>A, the problem of minimizing H~ (u) 

is equivalent to a minimum problem of the type described in Theorem 2.1. The func- 

tion ~(a~-l, a~)=min H~(u) has therefore the properties enumerated in Lemma (3.1). 

In  particular, 2(a,_~, a~) is a positive continuous function of a~-i and a~, which de- 

creases as the interval [a~-l, a~] expands. As just shown, ~ (a~-l, av)= 0 if ~u (a~-l, a~)~<A. 

In order to prove that  ;~(a~-l, a,) is a continuous function of a~-i and a~ without 

any restrictions on the length of the interval, it is thus sufficient to show that  

lim ~t (av-1, a~)= 0 if ju (a,-1, a~)-  A approaches zero through positive values. We derive 

here a slightly more accurate description of the limiting behavior of ~ (a~-i, a~), which 

will be needed later. 

I] ~(a~-l, a~)=A and ~ is a small positive number, then 

l (a,-1, a~ - (~) = o ((5), 

~ (av-1-~ (~, a~) = o(~). 
(7.15) 

Since an elementary transformation interchanges the roles of a,-1 and a,, it is 

sufficient to prove the first relation (7.15). By classical results [2], ~u(a~_l, av) is a 

continuous function of a~ and a~-l. A standard computation shows that  

~v 

if  ]1 # (a,-1, a~--(~)=~a (a,_l, a,) + (~ pw2dx +o(~2), 

av-1 
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where w(x) is the first eigenfunction of (7.14), normalized by the condition w'(a~)= 1. 
Hence, 

H(a~_l, a~-(~)=A +6A +o(~)=A + A'~, 

where A is a positive constant, and A ' =  A + o(~) .  We now denote by  r (x) the first 

eigenfunction of (7.14) for the interval [av-1, a~ -6 ] ,  normalized by r '  ( a , - / ~ ) =  1, and 

determine a positive constant fl by the equation 

a v - ~  a v - ~  

a v  - 1 a v  - 1 

Setting R (x) = fl r (x), we have 

r2 ~ (fl2r ~, x) dx. (7.16) 

a v - ~ a v ~ a ~  - ~ a v - 6 

a v  - 1 a v  - 1 a v  - 1 a v  - 1 

dx. 

In  view of (7.6), R (x) is therefore an admissible function for the problem Hv (u)= min 

(where H~ now refers to the interval [a,-1, a , - 8 ] ) .  Hence, 

a v - -  

0 < ~ ( a , _ l , a ~ - 0 ) ~ < H ~ ( f l w ) =  f [fieF(fl2r'Z, x)-G(fl~r ~, x)]dx<~fl 2 
a v - 1  

a v - 

where, by  (7.16), O<~(av-1, a~-6)<~fl2A'6 f pr2dx. 
av- 1 

a v - 

f F(fl~r ~,x) dx, 
a v  - 1 

(7.17) 

If  ~-->0, r(x) tends to w(x) uniformly in x. Since A ' = A  + o ( ~ ) ,  (7.16) shows there- 

fore tha t  f l - + 0  for ~-->0. In  view of (7.17), this proves first relation (7.15). 

We now consider the problem of minimizing the value of ~b = 4  (a0, al, " " '  an)  

= ~ 2 (a~-l, a~), where the set {a,} is subject to the conditions a = a 0 < a I < ... < a~ = b 
~ = 1  

and is otherwise unrestricted. As shown above, r (% . . . . .  a.) is a continuous function 

of the arguments a 1 . . . . .  a~_l, and the existence of a minimizing set {a~} is thus as- 

sured. We also note that  the minimizing set {a~} consists of n + l  distinct points 

since, by  Lemma 3.1, r would tend to infinity if two adjacent points a, were to 

approach each other. 
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The intervals [a~-l, a,] which correspond to the se t - -or ,  one of the sets--{a,} 

minimizing the expression r (a 0 . . . . .  an) may  be divided into two classes, according as 

~u(a~_l, a , ) > A  or ~u(a~_l, a,)~<A. In  the first case, the extremal function y(x) is in 

[a~-l, a,] a nontrivial solution of (7.1) for which y(a~_l)=y(a,)=O and y(x)~O in 

(a~-l, a~); in the second case, we have y(x)~--0 throughout [a~-l, a~]. We shall show, 

however, that  the existence of an interval of the second type is incompatible with 

the extremal character of the set {a~). 

We first remark tha t  there must  be a t  least one interval of the first type; 

otherwise the inequality / ~ <  max ~u(a~_l, a~) [2] would contradict the assumption 

/~  > A .  Hence, if there are any intervals of the second type, a t  least one of these, 

say [ak-1, ak], must  be adjacent to an interval of the first type.  Without loss of 

generality the lat ter  may  be assumed the interval [ak, ak+l]. If  it were true tha t  

# (a~-l, ak)< A, we could choose a small positive number  ~ such tha t /~  (ak-1, a ~ - ~ ) <  A 

and ~t (ak - 5, ak+l) > )k. But  this would imply that  ~t (a~_l, ak - 5) = 0 and ~t (ak - 5, ak+~) 

<~(ak,  a~+~), i.e., the substitution of a k - 8  for ak would decrease the value of 

~ (a~-l, a~). 

In  order to show that  the assumption #(ak-1, a k ) = A  is likewise incompatible 

with the extremal character of the set {a~), we estimate the variation of ~t(a~_l, ak)+ 

-t-~(ak, ak+i) if a k is replaced by a~-(~. An estimate for ~ ( a ~ - ~ ,  ak+l) is obtained 

from the inequality (3.19) which, as pointed out, remains valid if the positive con- 

stant  e in (1.3 c) is replaced by  0. In  particular, (3.19) is applicable to the equation 

y" + yF 1 (y~, x) = 0, where /~1 (t, X) = A p (x) + F (t, x), i.e., to equation (7.1). In  view of 

the minimum property of ~ ( a~ -5 ,  a~+l), we thus may  apply (3.20) (with appropriate 

changes in the notation). Combining this with the estimafe (7.15) for ~(ak-i, ak--(~), 
we obtain 

(a~_~, a~ - (~) § ~ (a~ - (~, ak+i) ~ ~ ( a k - l ,  a~) § ~ (a~, ak+l )  --  ~ y,2 (a~) § o (~), 

where y(x) is a non-trivial solution of (7.1) for which y (ak)=0 .  As pointed out at  

the end of section 1, we necessarily have y '  (a~)#0, and the last inequality shows 

therefore that  2 (a~-l, ak - (~) + 2 (ak - 5, ak+l) will be smaller than 2 (ak-1, ak) + 2 (ak, ak+l) 

if the positive number  5 is taken sufficiently small. But  this again conflicts with the 

extremal character of the set (a,), and we may  therefore conclude that,  in the ex- 

tremal case, all of the intervals [a,-1, a,] are such tha t  /~ (a~-l, a , ) > A .  Accordingly, 

the extremal function will in each interval [a,-1, a,] coincide with a non-trivial solu- 

tion y(x) of (7.1) for which y(a~_l)=y(a~)=O and y(x)#O in (a,-1, a~). 
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We now consider two adjacent  intervals [ak-l, ak] and [ak, ak+l), and apply  to  

ak the small variat ion described in section 3. If  a~ is the varied value of ak and (~ 

is the small positive number  controlling the variation, we have, in view of (3.15) 

and the remark made at  the end of section 3 ,  
, , 1 _ y ,  

).(ak-1, ak)§ a k + l ) ~ ( a k _ l ,  ak)§ ak+l)--~O[y+(ak) -(ak)]2 + o ((~), 

t r 
provided y+ (ak) and y_ (ak) are of the same sign. Since the extremal p roper ty  of 

y(x) is not  affected by  subst i tut ing - y ( x )  for y(x) in [ak-1, aa], the lat ter  m a y  be 

assumed to be the case. I f  it were true tha t  y+ (ak) ~= y i  (ak), the value of - ~ [y+ (ak) - 

- y ' - ( a k ) ] 2 +  o (($) could be made negative by  taking 5 sufficiently small, and the last 
t 

inequali ty would contradict  the extremal  character of the set (a~}. Hence, y+ (ak) 

= y'-(ak) for I t=  1 . . . . .  n -  1, i.e., both  y (x) and y '  (x) are continuous in [a, b]. Since 

the extremal funct ion y(x) was shown to be a non-trivial  solution of (7.1) in each 

interval  [a~-1, a~], this shows tha t  y(x) is a solution of (7.1) in the entire interval 

[a, b]. I n  view of the fact  t ha t  y ( a ) = y ( b ) = 0  and tha t  y(x) has precisely n - 1  zeros 

in (a, b) - -a t  x=a~, ~ =  1 . . . . .  n - 1 - -  this completes the proof of Theorem 7.1. 

8. I n  this section we consider equations 

y "  + y F (y2, x) = 0, ' (8.1) 

which remain unchanged if x is replaced by  x+eo,  where w is a positive constant .  

The funct ion F(t,  x) will thus be assumed to satisfy, in addit ion to conditions (1.3) 

(for a =  0, b=o~), the periodicity condition 

2'  (t, x + co) = F (t, x) (8.2) 

for all x and all non-negative values of t. We shall establish the following result. 

T H E O R E M  8.1. I /  F(t ,  x) satis/ies conditions (1.3) and (8.2), then the equation 

(8.1) has an in/inity o] distinct solutions with the period co. _For each positive integer n 

there exists at least one such solution with exactly 2n  zeros in the interval (0, co]. 

To prove Theorem 8.1, we choose a number  a and  note that ,  according to 

Theorem 3.2, there exists a solution y = y ( x ,  a) of (8.1) in [a, a+~0]  which vanishes 

for x = a  and x = a + ( o ,  and has 2 n - 1  zeros in (a ,a§  This solution minimizes 

the functional  
a+o) 

H(y,  a)= ~ [y'2-G(y~, x)]dx (8.3) 

under  the side conditions indicated in the s ta tement  of Theorem 3.2. D e n o t i n g  the 

min imum value of this functional  by  22~ (a), we now consider the problem of minim- 

12 - 61173051.  A c t a  m a t h e m a t l c a .  105. I m p r i m 6  le 28 j u i n  1961 
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izing 22n(a) with respect to a. Since, in view of (8.2), 22n(a+co)=~2n(a) ,  it is 

sufficient to let a va ry  in the interval  [0, w]. 

According to the remark made  at  the end of section 3, 2e,  (a), is a continuous 

funct ion of a, and there will therefore exist at  least one value a o in [0, o~] a t  which 

ken(a) at tains its minimim. If  ~ denotes the first zero of y (x ,  % ) i n  the interval  

(a0, a0+co), we define a funct ion y l (x )  in [~, g §  by  

Yl (x) = y (x, ao) , x E [~, a o § co], (8.4) 

y l ( x ) = y ( x - e o ,  ao), x E [ a o + e O , ~ + c o ] .  

I t  m a y  be noted that ,  since y(x) has 2 n +  1 zeros in [a0, ao+  w], the funct ion Yl (x) 

changes its sign at  the point  x = a 0 + oo. I t  is easily confirmed tha t  H (Yl, ~) = H (y, ao), 

where H is the functional (8.3), and tha t  yl (x)  satisfies the admissibility conditions 

for the min imum problem (3.17). We thus conclude from Theorem 3.2 tha t  

Since, by  assumption,  ~ (ao)~<22n (a), it follows tha t  ~e, (~ )=H(YD a), i.e., yl(x)  is 

a solution of the extremal problem of Theorem 3.2 (with the appropria te  changes 

of notation).  Since Yl (x) changes its sign at  each of its zeros, Yl (x) will therefore 

h a v e  a continuous derivative in [a, ~§ In  particular,  we have y~(ao§247  ) 

= y~(a o + eo - 0), i.e., by  vir tue of (8.4), y' (a o + co) = y'  (ao). I n  view of the fact  tha t  y (ao) 

= y ( a 0 §  and tha t  y ( x §  is likewise a solution of (8.1), the original solution 

y (x) m a y  thus be continued into the interval  [a o § co, a o + 2 w] by  sett ing y (x § co) = y (x). 

The proof of Theorem 8.1 now follows by  repeating the same a rgument  for successive 

intervals [ao §  ao + (m + 1)co], m =  • 1, -t-2 . . . . .  

We remark t h a t  a similar method of proof m a y  be used in the case of the 

characteristic value 22n+1 (n = 1, 2 . . . .  ). The only difference is t ha t  y (x) has now an 

even number  of zeros in [a0, ao§  ] and tha t  y'(ao) and y ' ( a o + W  ) will therefore be 

of opposite sign. Accordingly,  the funct ion Yl (x) will have a continuous derivat ive in 

[:r : r  if the second definition (8.4) is changed to Y l ( X ) = - y ( x - w ) .  This leads 

to  the following result. 

T H E O R E M  8.2. Under the assumptions o/ Theorem 8.1, equation (8 .1 )has  an 

in[inity of distinct solutions y (x) /or which 

y ( x + e o )  = - y ( x ) .  

For each positive integer n there exists at least one such solution with exactly 2 n  § 1 

zeros in the interval (0, eo]. 
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