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1. Introduction

In a beautiful paper [13], M. Krein has given a penetrating analysis of a general
problem of moments (see also [17]). This paper is the culmination of a series of
notes and papers by Krein stretching over almost a decade (see [13] for a biblio-
graphy). His results appear in the form of a theory about a special class of sym-
metric operators on a Hilbert space (see also [16]). The prototype of an operator in
this class may be found in the theory of the classical Hamburger moment problem.

The general problem of moments which can be treated by Krein’s methods is con-
cerned with conditions on a pre-Hilbert space £ of analytic functions of a single real
variable for which there exists a measure du (£)>0 so that if f, g €L, then

f.9)= [tOge)du®).

The measure dy may not be unique and this non-unicity leads to many interesting
results.

If one tries to carry over this theory to analytic functions of two real variables (2),
one meets rather serious difficulties at the very beginning. In order to try to gain

some insight into these multi-variable problems we have, in a series of papers [4, 5,

(*) This research was partially supported by the United States Air Force Office of Scientific
Research of the Air Research and Development Command, under contracts No. AF18 (600)-1223 and
AF18(600)-568. Reproduction in whole or part is permitted for any purpose of the United States
Government.

(?) In a recent seminar at Washington University, Professor M. Cotlar has indicated the impor-
tance of such a theory in order to unify certain aspects of the theory of singular integrals, multiplier
transforms and more general types of integral transforms.
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6, 7], and in the present one, investigated some important classical problems. Even
in these cases it is not completely clear how much is true, although we suspect a
good deal more is true than we have been able to prove. Certain basic similarities
appear in.the special cases that make it clear that some form of a general theorem
exists which cover all of these special cases, but we have not as yet been able to
devise a general proof that would cover all of the situations we have considered.
Nevertheless, we have felt the special cases to be of suificient interest to warrant a
presentation.

In the present paper we shall be concerned with the problem of extensions of
positive definite functions. Suppose f(z) is a continuous complex valued function
defined on the interval (—2a, 2a) with the property that for any set {z}f <(—a, a)

and {&}7 any set of complex numbers,
n n
> 2 &&f(—z)=0. (1.1)
j=1 k=1

In [10] M. Krein proved that such a function could be extended continuously to the
whole real axis so as to retain the positive definite property (1.1) (see also [5] and
[15]) and hence, by Bochner’s theorem [3; 74], is a Fourier-Stieltjes transform of a
non-negative measure. In general such an extension is not unique [9; 22-23]. As a
special case of his considerations in [13] Krein obtained an analogous theorem if f is
allowed to take values in the space of nxn matrices.

The same question can be asked when the domain of f is changed in a suitable
manner and the range is retained in the complex number field. For example the
following could be asked:

Let G be an Abelian, locally compact, topological group and Q a symmetric neigh-
borhood of the identity. Let f(X) be a continuous complex valued function defined on 2Q
and satisfying (1.1) for {x,} =@Q. Is it possible to extend f(x) to all of G so as to retain
the positive -definite character?

The answer to this question is in general in the negative since, as we shall show
in § 7 by a very simple example, it is already not true for the circle group. For
the additive group of integers, with the discrete topology, the question may be very
easily answered in the affirmative.

For Euclidean space of any dimension, considered as an additive group under
the usual topology, the answer to the above question is open. The problem appears
to be a delicate one. By placing additional restrictions on the function f and the
neighborhood ¢ we have been able to answer the question in the affirmative. For '

simplicity, we shall state our results for only two dimensions.
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THEOREM 1. Let Q be the open rectangle in the (zy, x,)-plane given by |2|<ay,
k=1, 2, and f(X)=f(2,%,) a continuous function on 2Q which satisfies (1.1) in Q.
If f(x,,0) and f(0,2,) each have unique positive definite extensions along the x,-axis
and z,-axis respectively, then there exists a wunique non-negative measure dF, on the
Borel field of the plane, such that

flanm)= [ [ m9dr(,t,).
We can prove a similar theorem for a rectangle of lattice points in the plane
having integer components. The proof is considerably simpler.

TurorREM 1'. Let @ be the rectangle of lattice points (k,, k,) where
kl=0’ i13 ey inh j__"l, 27

and @, the points of @ with non-negative components. Further let f(K)=f(k,, k;) be
defined on Q and satisfy (1.1) on Q. If f(k,,0) and f(0, k,) each has a unique positive
definite extension to all of the integers, then there exists a unique measure dF such that

2n 2=n

[y ky)= [ [ ettt g g t,).
0 0

The above two theorems are the exact analogues of a theorem proved in [7] on
two-parameter moment problems, although the different proofs depend very strongly
on the particular situations. In §6 we shall prove two more theorems along the lines
of Theorem 1. For example, if @ is as in Theorem 1 and there exists an £>0 such
that the restriction of f(x,, 0) to (—2a,+e¢, 24, —¢) has a unique extension, then we
may remove all restrictions on f(0,x,) and be able to prove that f(z,, x,) has a
positive definite extension to the whole plane. We have not been able to prove
analogues of the theorems in §6 for the case of the two-parameter Hamburger mo-
ment problem.

The main difficulty encountered in proving these theorems is in the proving of
the permutability of the canonical spectral measures of certain unbounded self-adjoint
operators. The main part of this paper is devoted to this question and our results
are obtained by a very careful examination of the domains of these operators.

The methods developed in this paper and in [6] can be used to considerably
simplify certain portions of [4] and [5]. On the other hand, certain basic ideas of the
latter papers have been used in the present one. In general, there is very little over-
lap of results.
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We should remark that it is very easy to give necessary and sufficient condi-
tions that a continuous function f defined on a neighborhood @ of the origin may
be written as a Fourier-Stieltjes transform of a non-negative measure. Let M be the

linear space of finite trigonometric sums
n
p(t’ T)= Z Ek ei(zkt'ﬁ'lkf)’
k=1

where — oo <, yp< oo and ~ oo <t,T< oo, M is a partially ordered space by taking
p=>0 if p(t,7)>0 for all ¢, 7. Let M, be the linear subspace of M consisting of those
trigonometric sums for which {(z, %)} <@.

Let L be the linear functional defined on M, by the equation

L(p)= kgl & (@, i)

If L(p)>0 whenever p>0, then it is known that L may be extended to all of M
so ag to retain this property. The function

F(z,y)=L(""*7)

gives a continuous positive definite extension of f to the whole plane.
Conversely, it is clear that the condition L (p)>0 whenever p>0 is a necessary

condition for f to be a Fourier-Stieltjes transform of a non-negative measure.

2. Preliminaries

To prove our results we shall use the methods of operators in Hilbert space.
The fact that functions satisfying (1.1) could be used to construct an inner product
on a function space has been a very effective tool in many branches of mathematics.
For problems closely allied to those of this paper it has been used by A. Devinatz
[5,6] and M. Krein [11, 13]. General theories concerning non-negative quadratic forms
have been constructed by N. Aronszajn [2] and M. Krein [14]. In this paper we
shall follow the exposition in [2] as being most suitable for our purposes.

Let E be a set and K(x,y) a complex valued function defined on ExE with
the property that for any finite set {£)}T of complex numbers and points {x,}i1 S E,

i & EkK(xk, x;) = 0. 2.1
fE=1
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The main idea in constructing a linear space using the form (2.1) as a norm is as
follows. Set

g(x)= 2 & K(X,X), h(X)= 2 e K (X, ¥1)
k=1 k=1

and g, )= 2 2 &7 K(y; %)
k=1 -1

In this way we get a pre-Hilbert space which may be completed to a Hilbert space
F of functions defined on E. An essential property of the space F is that if g€F
and Ky (x)=K(x,y) then

g(y)=(9, Ky)-

These types of Hilbert spaces have been called by Aronszajn [2] reproducing kernel
spaces and the kernels K(X,y), reproducing kernels. Any reproducing kernel space
has a unique reproducing kernel.

Another important property enjoyed by these types of Hilbert spaces is that if
a sequence of elements converges in the strong topology of F, then they converge

pointwise and even uniformly on those sets for which K (x, x) is bounded. For, we have
lg@®) | =g, Kx)|<llgll | Exl|=llgll V& (x, ).

If BE,<FE and K,(x,y) is the restriction of K(x,y) to E,xE,, then K, gives
rise to a space F, for which it acts as a reproducing kernel. The pertinent theorem

is the following:

THEOREM A [2; 351]. If K is the reproducing kernel of the space F of functions
defined on the set E with morm |[f||, then K restricted to the subset E,xE, S ExE is
the reproducing kernel of the class F, of all restrictions of F ifo the subset E,. For any
such restriction, f, €F,, the norm ||f,||, is the minimum ||f|| for all f€F whose restric-
tion to E, is f,.

Finally, we shall have need for the following:

TeEEOREM B [2; 361]. K, (X,,Y,) and K,(X,, ¥,) are reproducing kernels with cor-
responding spaces F, and F,, then K, (X,,y,) Ky (X, ¥,) 18 the reproducing kernel of the
direct product of F, and F,.

NoraTion. In the remainder of the paper we shall be working in two dimen-
sional Euclidean space. Real numbers will be denoted by lower case Latin letters.
Two dimensional vectors will be denoted by lower case Latin letters in bold face

type, their components by the same letters in ordinary type with subseripts; e.g.,
8 —593804. Acta mathematica. 102. Imprimé le 28 septembre 1959
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x=(z,, x,). We shall write X-y==z,9, +%,¥,, |X[*=2}+2] and x<y if and only if
e <y, k=1,2. The letters u and v will always stand for the special vectors u= (1, 0),
v=(0, 1).

If a kernel K (x,y) satisfies (2.1) we shall write K(x, y)>0 or simply K>0.
If K,— K,>0 we shall write K,<K,.

3. Necessary lemmas

Suppose that @ is an open symmetric neighborhood of the origin in the plane
(i.e. X€Q implies (—X)€Q) and f(x) a continuous function defined on 2@ such that
f(x,¥)>0. Let F be the Hilbert space corresponding to the kernel f(x—y) as dis-
cussed in §2. Let DY be the linear manifold in F such that 8g(x)/0z, exists and
belongs to J. Define the operator 4,, with domain D} by the formula

;99(x)

4,9(x)= - Y
1

Continuing with definitions and notations, let F’' be the linear manifold consisting
of elements of the form g(x)= > &, f(x—x,). It is clear from the manner in which JF
1

is constructed (§2), that F' is dense in F. Since @ is open, for a given g€F, it is

always possible to find a vector r, such that r, 7,40 and of sufficiently small norm
so that if [t|<|r| then gy (x)= 3 & f(X—%,—1t) is well defined and belongs to F.
1

Since gy is a continuous function of t in the strong topology of F, the integral

r ry 1
1 1
= dt=-—— t
gr T g Tlrzf fgtd 100
H o 0

exists and belongs to F. Further g > g as r— 0, where the bold arrow indicates
convergence in the strong topology of F. Let us designate the linear manifold of such

elements gr by D. It is clear that D is dense in F since F' is dense in F.

LrmMma 3.1. D= A} exists, D,S A, and Df=A,. DS D (D,) (domain of D,) and
the closure of the restriction of D, to D is D,. Further,

i 2
D1 gr = —— f [gr.u+txv - gt.v] dtz- (3.1)
17T
0
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Proof. Let s=(s;,0)=s,u with |8| sufficiently small so that gi;s is defined.

Consider the element
r

1
= —— dt.
Js,r oty Gt+s
[

T2 Tits, T, T,
T—gr 1
o] oo
% 725 0 3, 0 0

T 5

We get

1
= riTa8 j f[.‘h%—nu' gildt
0 o0

l 2
- f [gru+ey —grul dty as s, —> 0.
7

b
If x and x+8 both belong to @, then it is clear g,,r(x)=gr(x—3). Hence, since con-

vergence in the strong topology of F implies pointwise convergence we get
Ty
.Ogr (x )
i %0 4gi @) = L | s gl by
1 717y
0
This shows D7 is dense in F since D is dense in F. Hence D, = A} exists.(})
Next let g€D(D,) and for fixed y set fyi¢(X)=f(x—y—t), provided the latter
is defined. Further set

r E£Y

1 1
fi,r=rr2 fy+tdt, fr',u=‘r: f fy+tudi,.
° )
1’_. T
Then {9, A, f5.r) = (g, ey Uy +ru+ay —fysav) dtz)
172 g

-4

7173

f [g(y+ru+t,v)—g(y+t,v)]dt,
H

= (47 g, fy)-
As 7, >0, fyr— fyru and we get

(419, firw) ="~ lg (¥ +rm) g )]
1

(*) We have used here a technique similar to that used in [8].
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and as r;, >0, fyru—fy. Hence,

;990

ATg(y)= py
1

which shows that D, < 4,. Since A, is clearly a closed operator (convergence in the
norm of F implies uniform pointwise convergence!) it follows that 4,= A7*=Df.

Finally, it remains to prove the second statement of the lemma. Let B, be the
restriction of 4, to D and g€Di=D(4,). If fy++ and f;. are as in the previous
paragraph then we have

r
1
(A fie) = f (Ayg, fyee) db
T 7y J
r

=J_f _ 20+
7'1”20 ox,

T
1 . 4
=— | lim (g, A [fy+t+ra— fy+t]) dt.

717 h—0
0

Since the partial derivative of g is continuous (all elements of F are continuous!)
we may take the limit outside of the integral sign and then interchange the inner

product and the integral sign. We get consequently, after a few manipulations,

r
(g fi)=lim (0. 2 [ Uyseim— freat)
r—0 T 7y J

h 1
. 1
=lim (9, 7 J’ f [fy+t+r.u_fy+t]dt)-
h—0 Ty r2h J 3

As h—0, the second member of the inner product in the last equation goes strongly to
Ty
. )
A fyr=— | Uy+rutav—fr+uvldty.
7y
0

Hence, (4,9, fyx)= (g, By f3.0),

which implies B, < A7 =D,. On the other hand, by exactly the same method as used
to prove ATS A, we get BY < A,. This implies Bf = A7*= 4, and hence Bf*= 4] =D,.

Since Bi* is the closure of B;, we have completed the proof of the lemma.
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Let 7, be a sequence of non-zero real numbers such that r,—0 and D, the

manifold of functions of the form

Tn

1
g;n=_“ J‘ Jtu dt.

Tn

If we follow through the proof of Lemma 3.1 step by step we arrive at the following.

LemMa 3.2, The closure of the restriction of D, to D, ts D; and moreover

t
Dygin = [gnu—9]- (3.2)
n

If in all of our previous discussion we interchange the subscript 1 with the sub-
seript 2, the corresponding lemmas will be valid for D,. This will lead to the fol-

lowing lemma. .

Lemma 3.3. DED (D, D,)nD (D, D,) and

D, Dygi = D, D, gz = oy [grat+ry — gr—grv + 91
P

1

Lemma 34. alI<D,<bl if and only if there exisls a sequence of mon-zero real

numbers r,—0 such that for n=1,2, ...,

aJ‘ ff(x—y+(s-t)u)dtds<if[f(x—y—tu)~f(x—y+tu)]dt
°e ° (3.3)
<bf fj(x—y+(s—t)u)dtds.
0 0

for all X and y in Q for which the functions are defined. If a takes on the value — oo

or b the value + oo the corresponding inequalities are considered redundant.

Proof. We shall first prove the necessity. Let {x,}f <@ and  a real number so
that x,+ru€Q. Further, let

fr () = f f(x—x,—tu)dt
0

n
and g= ; Exfur- Then from Lemma 3.2 we get
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r

(Dyg,9)=i 3 s,EkJ [f (X — X, — (r — ) u) — f (% — X, — tu)] d ¢

0

ijkzl&gkf [f (X —X)—tu) — f (%, — X; + tu)] d .
e 0

Further, (9,9) = Zn E,Ek [ ff(xk—x,+(s—t)u)dtds.
L1 .
0 o

Hence, because of the inequalities satisfied by D, we have the conditions (3.3).
To prove the sufficiency we simply note by the computations of the above para-

graph that the inequalities (3.3) imply
a(g, 9)<(D1g9,9)<b(g,9)

for any element in the manifold D,. By Lemma 3.2 we get this inequality for every
element in D (D,) which completes the proof of sufficiency.

Let us now define an operator J on F by the formula
Jg(x)=g(—3).

This is a conjugation operator (see [5; 470]) and clearly permutes with D, and D,.

Hence, these operators have self-adjoint extensions.

LeMma 3.5. Let H, be any self-adjoint extension of D,,dE, its canonical spectral
measure and
U(zu)= fe”‘dEl(t), — oo <x< oo,
For any g€ F we have

U(zu)g(x)=g(x+zu), (3.4)
provided X+zu€Q.

Proof. Let g€ F such that
[
Uzu)= fe"‘dEl(t)g,

-c
where ¢ is a finite real number. It is clear that g € | D (H}) and the class of such
o
elements is dense in F. By expanding ¢ in a Maclaurin series we get
o0

Uug= > i:zc"i"l‘]i'g,
on!

N
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where convergence is in the strong topology of F. Since convergence in the strong
topology of F implies pointwise convergence we have

= 1oy
UEng®= 3 = ‘(2;;’ 2,
Now,
| T4 - ow| = ta. 1< 2 ) VFO) < e V)

where fx(-)=f(+ —x). This means ¢(x) is analytic in z,. Consequently, if x+xu€@,
we get (3.4). Since U(zxu) is bounded (3.4) must be true for all of J.

Leuma 36. If fy(x)=f(x—y) and y+zu€Q, then U (xu)fy=fy_zu.
Proof. By Lemma 3.5, for any x€@Q,

U(—2u)fx(y)=fx(y —xu)=(U* (zu) fx, fy)
= (fx, fy-au) = (fx, U (z0) fy).

Since this is true for every x € ¢ we have our lemma.
If we repeat the arguments of Lemma 3.5 for a self-adjoint extension of D, we
get a group of unitary operators U (xv) with the same properties as described in the

lemma for the second variable. Let us suppose for the moment that for every x; and x,
Uz, n) Uz, v)=U (2, V) U (z,0). (3.5)

If we set Ux)=U(x,u)U(2,v), then U(x) is a group of unitary operators and for
fo(X)=F(x—0) we get
F(x)= (U (x) fo, fo)

is a continuous positive definite extension f(x) to the whole plane.

The main difficulty in the problem posed in §1 is the proof of the relation (3.5).
The restrictions we put on f(x) in theorem 1 allow us to prove this relation.

If we restrict ourselves to the one-dimensional case the lemmas analogous to
those we have been proving in this section would allow us to show that any contin-
uous function defined on (—2a, 2a) such that f(x—y)>0 for z,y€(—a, a) may be
extended to a positive definite function on the whole axis. The differential operator,

in the one-dimensional case, analogous to D, or D, we shall simply designate by D.

Lemma 3.7. If f(x) ts continuous on the imterval ( — 2a, 2a), f(x —y)>0,
2, Yy€(—a,a), then f(x) has a wunique positive definite extension if and only if D is
self-adjoint. '
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Proof. Suppose first that f(x) has a unique extension. This means there exists

only one non-negative bounded measure d F such that
o
fx)= [ e*dF().

Let H, and H; be two self-adjoint extensions of D, d B, and d B, their corresponding
spectral measures, and U, (x) and U,(x) the corresponding groups of unitary operators

as set up in the proof of Theorem 1. By the unicity of the extension of f () we must have

(E1 (A) .foa fo) = (Ez (A) fo, fo) = F(A)

for any Borel set A. Hence for # and y in (—a, a) we have
(By (8) Uy (@) fo, Uy (9) fo) = [ €4 A (B, (&) o, o)
A
= [ & A (By (1) for fo) = (Bo (A) Uy (2) fo, Ua (9) fo)-
A

Since the set {U, (x) fo=U, () fy; = € (—a, a)} generates F, we must have B, (A)=E,(A)
which in turn implies H,=H,=D.

Conversely, let us suppose that D is self-adjoint and dF is a measure such that

fa)y= [ e=dF ).

-0

Let £, be the the set of elements in ¥*(dF) for which G €%, implies

f et G)dF()=0 for x€(—a,a).

— oo

There exists a unitary map U between ¥§ and F, the correspondence being given by (see
[4:61])

h(z)= [ *H(t)dF (), z€(—a,a)

- 00

2= [|H®[dF@).

Let D<= be the class of H €} such that ¢t H (t) € 25. Define an operator 7' on UD
by the relation

Th(z) = fefﬂtﬂ(t)dF(t).
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It is easy to establish that 7 is a closed symmetric operator (see [4; 65-66]) and
clearly T< D.
Suppose now that

i@ [ Stde-a-pay= [ & LS pememonlaro.

Now, clearly the function

H(t)%f%fke-“*‘e-'"‘dwi{il 5ke-w(e-“’—1)}
[

ri
belongs to & and so also does tH (t). Hence. gr € D(T). Since g; €D (D), and by
Lemma 3.2 (for the one-dimensional case) D is the closure of its restriction to these

elements, and T is closed, we get D<T. This establishes the fact that T'=D.
If A is any Borel set on the line and H € &} set

B(A)h(z)= [ e Hy(H)dF (),
where H,(t)=H (t) for t€A, Hp(t)=0 otherwise. It is easy to establish that B(A)
is a spectral measure on the Borel field of the line, (B(A)f,, f,) = F(A) and

(Dg, k)= [ td(B(t)g,h)
-
for any g€D(D) and hR€F. From this it follows that d B=dE, where dE is the
canonical spectral measure of D. Hence d F (t)=d (B (t) fo, fo) = A (E (t) fy, f). This estab-
lishes the unicity of dF.
For explicit details of the proofs of the facts outlined in the previous paragraph
see [4; 66—67) where they are given for a similar situation.

4. Proof of Theorem 1

The first point in the proof will be to notice that the operators D; and D, are
self-adjoint. For, the deficiency spaces of D,, say, are the class of elements in F which
satisfy DYg=1g, Dfh= —ih, respectively. Let us look at the first of these equations,

og(x)
ox,

= —g(x).
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The solution to this partial differential equation is given by

g(zy, 2) =€ "1 g (0, ,).

Let F, be the Hilbert space with reproducing kernel f(z, —y,, 0). Since @ is a rec-
tangle, by Theorem A of §2, F, consists of the restrictions of the elements of F to
any line parallel to the x;-axis.(!) Hence, if there exists an z, such that ¢(0, z,)=%0,
then e ™ €JF, which by the hypothesis of Theorem 1 and Lemma 3.7 is impossible.
Consequently, the deficiency spaces of D, contain only the zero element and hence
D, is self-adjoint and is the closure of its restriction to the class D of Lemma 3.1.

The next point in the proof will be to consider the manifold M= (D, +:I)D
and show that the closure of the restriction of D, to M is D,. Let C, be this re-
striction and g €D (C:). We have then

(02*9, (Dy+iI) fze)= (g9, Dy(Dy+121) fir), (4.1)

where, as in the proof of Lemma 3.1,

1
fr=_—- fx+tdt, x+TEQ.

Let h(X)=g(x)—g(x+r2v)+if Csg(x+tv)dt. (4.2)

0

Using the results of Lemmas 3.1 and 3.3 and Equation (4.1) we get

hix+nw—h(x)_ 1 f h(x+ tu)dt.

r 7y 71T

Since the limit on the right exists as r, >0 we get

20 e,
ox,
and hence h(x)=e " h{z,V).

Putting (4.2) in this last equation and rearranging we get

() The restriction of f(X—Y) to any such line is given by f(x, —yy, 3 —23) = f (z; — ¥y, 0). Any
such line is to be taken as traversing the entire width of Q.
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Ty Ty

o
lfo;‘g(xﬂv)dt—e fo;g(xzvﬂv)dt
7‘2 ) T2

i z
== lg @+ V)—e g (@ VI V) —g (X) teT g (5 V)]
2 ‘

Letting r,—~0 we get
2lg (90— "g (@, V)]

CEg (0 —c " Cig (5 )= ~ .
2

4.3)

From the facts that e “*®>0 and f(0, z,—y,)>0 we get [2; 357-361]
eI £(0, 2, - y,)>0. Consequently, if K (X, y)=f(X—y)+e “"{(0, z,~y,), then
K (x,y)>0. Let Jf be the Hilbert space corresponding to the kernel e~ @* ¥ { (0, x, — y,)
and F, the space corresponding to the kernel K (x,y). The elements of J§ are of
the form e ™g(x,v), where g (x)€F and hence the elements of F; are of the form
h(X)+e g (x,V), where g, h€F [2; 361]. Since D, is self-adjoint F and FZ have
only the zero element in common and hence F,=F P F£ [2; 352-353]; i.e., F and F
are orthogonal complements of each other in F,.

Let As= —id/dx, be the differential operator acting in F§ and 4 the dif-
ferential operator acting in F;. More precisely, the domain of A consists of those
elements in F§ whose partial derivative with respect to z, exists and again belongs
to F£, and analogously for A;. Since f(0, x,) has a unique extension, 4, is self-
adjoint.(*) Hence, since A4,= D, is self-adjoint, the operator Az@A; is self-adjoint,
and since the domain of A4; consists of those elements in F, whose partial derivative

with respect to x, exists and again belongs to F,;, we have
A *< A, @ As< A7

The operator A; is closed, but we do not know, as yet, that it is symmetric.
Symmetry, together with the above relation would imply that 4; is self-adjoint.
We shall now show that the conditions put on f in Theorem 1 imply that A4 is
self-adjoint.

The operator A; * is closed and symmetric and since A3 is closed, Ay = Ay **.
In order to show that Ay is self-adjoint we shall show that the deficiency spaces
connected with the symmetric operator 4; * consist only of the zero element. Now,
for any closed symmetric operator T, the deficiency spaces consist of those elements

which satisfy the relations 7™ g=1ig, T*h= —ih, respectively. Hence, in our situa-

*) Aj is the tensor product I ® A4,, where I is the identity operator in the one dimensional
space ger,lerated by ¢ ™ and 4, is the differential operator on :;,, the space generated by f (0, z, —y).
Hence, A, is self-adjoint if and only if 4, is self-adjoint.
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11 Kk

tion let us consider, for example, those g€JF, such that A4; **g=A4; g=ig. Solving
this partial differential equation yields g (x)=e “*g(x,v). For any fized x,, it follows
by Theorem A that ¢, (x,) =g (x;, z,) belongs to the space generated by the kernel
K., (%3, o) = K (21, 2,), (2, 90))=(1 +e72") f(0, z,—y,). Since f(0, ;) has a unique
positive definitive extension it follows that the function (1-+e 2™) f(0, x,) has a
unique positive definite extension. Hence, by Lemmas 3.1 and 3.7, the only element
g in the space generated by K, which satisfies —idg/dx,=1g must be the zero ele-
ment. Consequently, g. (z,)=g¢(z;, ,)=0. By the same reasoning the only solution
in JF, to the equation A4; h= —ih is the zero element. This shows that 4, is self-

adjoint and hence
Ay =4, @ 4.

This, in turn, implies F and Ff reduce 4;.
Returning now to (4.3) we see that the right side belongs to D (A4:’) and hence
g€D (D,) and e g (x,v) €D (A4;). Hence,
C:g=D,g.
This means C3 =D, which is what we set out to prove, namely, that the closure

of the restriction of D, to M is D,.
Let U, be the Cayley transform of D,. If g€M, ie.,

g=(D,+il)h, h€D, then U, D,g=U, (D;+¢I)Dyh=(D,—il)Dyh=D,U,(D,+il)h.
Hence, U,Dy9g=D,U,g
Since D, is the closure of its restriction to M, it follows that

U,D,=D,U,.

This says D; and D, permute; i.e., their canonical spectral measures permute.
Let dE, and dE, be the canonical spectral measures of D, and D, respectively
and dE=dE,dE, By Lemma 3.5 it follows that if

Ux)= [ etdE (b),

then
Fx)=(U®X)fo, fo)= [ e td(E () fo, fo)

is an extension of f(x).
Finally, the unicity of the extension of f(x) follows by a two-dimensional ana-

logue of the argument in Lemma 3.7. This completes the proof of Theorem 1.
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5. Proof of Theorem I’

We shall start with the proof of two lemmas. In the next two lemmas the

symbols 7, k, n will be integers.

Lemma 5.1, If u(G—k)>0 for 0<j, k<n, then u(k) has a unique positive def-
inite extension to all of the integers if and only if det {u (j—k)}; k-0=0.

Proof. Let F be the Hilbert space corresponding to the kernel u (j—k). Suppose
u (k) has a unique positive definite extension; then {u,}; ' generates F, where
e (*)=pn (- —k). For, otherwise consider the operator U ux= pr,1, 0<k<n-—1. U is
an isometric operator defined on a subspace of F and clearly this can be extended
in many ways to be unitary on F. Let V be any such unitary extension. Then
V* pg= e, 0<k<n, and if dE (t) is the canonical spectral measure of V* we have for
k>0,

1
1 (k)= (ugs V¥ o) = [ €™ A (B (t) prg, o),
0

and since p(—k)=ga(k), this formula gives a positive definite extension of u (k).
Hence every different unitary extension of U will give a different extension which
is impossible. Consequently, {ux}s ' generates F which gives the necessity part of
our lemma.

Suppose now that det {u (j—k)}} x=o=0; then {u,}5 ' generates F and the trans-
lation operator U py=pr.1, 0<k<n—1, is unitary. Suppose » (k) is a positive def-
inite extension of u (k) to all of the integers, F, the space generated by the kernel
v(j—k), —oo<j, k<oco, and V the translation operator Vu,=vy.;. Let T be the
space generated by {».}{; then there exists a (1 —1) isometric map between M and
F and hence {»,}%-5 generates M and ¥V M=7M. Since V is unitary, M reduces V.

Let W be the isometric map from F to M defined by W ue=w. If dE(t) is

the canonical spectral measure of ¥V we have

1
(Vg v) = (U s, )= [ ™ d (W E (&) W g, -
0

Hence dF=dW 'EW is the canonical resolution of the identity of U. Now, for
—n<k<n,

1
1 (B) = (ttgy U* o) = (v VEwg)= f e 275 4 (B (8) vy, ¥9)

1

= [ 2% 4 (F (t) ptg, pro)-
1]
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Hence the measure which gives rise to.any extension is the same, namely d (F (t) uy, u,)
which shows we can have only one extension. This completes the proof of Lemma 1.
In our next lemma the symbols j, k, n will be the lattice points (4,, 7,), (&, k,),

(my, my) respectively.

Lemma 52. Let pu(j—Kk)>0 for 0<j,k<n and u(kyu), u(k,v) have unique
positive definite extensions. If F is the space gemerated by the kernel u(j—k), then F
is generated by {ux; 0<Ek<(n,—1, n,—1)}.

Proof. Suppose g€F is perpendicular to the space generated by {ux; 0<k<
<(ny—1,ny,—1)}; then g(k)=0 for 0<k<(n,—1, n,—1). By Lemma 1, g(k, u)=0
for 0<k,<n,, since u(k, u) has a unique extension. Further, if 1 <j,<n,—1, g(k,, 7,)
as a function of k%, belongs to the space generated by the kernel u (j, —%,;, 0) and
hence again by Lemma 1, g(k,, j,)=0 for 0<k, <n,—1 implies g (n,, j,)=0. If we
now argue on the second variable in the same way we get g(k)=0. This completes
the proof of Lemma 2.

We are now in a position to prove Theorem 1. The notation in the following
is the same as for Lemma 2. By Lemma 2 the set {ux; 0<k<(n,—1, n,—1)} gen-
erates F and hence the operators U, #k= ks, Uppx=pxiv, K+n, are unitary and
clearly permute. If dE, and dE, are the canonical spectral measures of Ui and Uj
respectively and dE (t)=dE, (t,) E, (t,), then

1

(k)= [ %5t d(E (8) o, o),
0

and the right hand integral gives our extension.
The proof of the fact that the measure which appears in the above representa-

tion is unique proceeds along the same lines as the second half of the proof of
Lemma 5.1. This completes the proof of Theorem 1’.

6. Further theorems

LeEmMa 6.1. Let f(x) be defined and continuous on the interval (—2a, 2a) and
f@—9)>0 for 2, y€E(—a, a). Suppose there exists an ¢>0 such that the restriction of
f to (—2a+2¢ 2a—2¢) has a unique positive definite extension to the whole axis.
If F 1is the space corresponding to f(x—y), for z, y€(—a, a), then F is generated by
the set of elements {f,(z)=f(x—y); —a+e<y<a—¢}.
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Proof. Let F, be the Hilbert space generated by the kernel f, (x—y)=f(x—y)
for z, y€{(—a+e&, a+e¢). By the hypothesis of the lemma and by Lemma 3.7 the dif-
ferential operator D, on F, as set up in § 3 is self-adjoint. Hence, we have

-]

f@)= [ e d(E @) feos feds ©E(—2a,2a),

— o0

where f.o(x)=f.(x—0), (, ). is the inner product in F, and dE is the spectral
measure of D,.

If D is the differential operator set up in the space F, we also have

0

fy= [ e d(F ), fo),

—0oQ

where dF is the spectral measure of D). Since f, has a unique extension we must
have d (& (t) feo, feo)e =2 (F (t) fo, fo)-
By a general Theorem [4; 61], the space F is the set of all functions

-]

g@x)= [ e GOAF B fp f), z€(—a,0a)

— %0

with G €L (d (F (1) fo, fo)), and
lgllF= [ |G ®FdEF ¢t fo)-

By the same general theorem, % (d (F (£) f, fo))=82 (d (& (t) fo0, feo)e) is generated
by elements of the form

n
Z Sk eiykt>
k=1

where £, is a complex number and y,€(—a+¢, @ ~¢). Hence, the lemma is proved.

THEEOREM 2. Let Q be the open inferval in the plane —a<x<a and suppose
[ (x) defined on 2Q s continuous and f(x—y)>0 for X, yEQ. Suppose there exists an
e>0 such that the function f(z,, 0) restricted to (—2a,+2¢, 2a,—2¢) has a unigue

extension io the whole axis; then [ may be extended to be positive definite over the
whole plane.

Proof. Let @, be the two dimensional interval defined by the inequalities

|2, | <a,—e, |2, <a,. Let F=F be the class of elements which vanish on Q.. If
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g€JF, then for fixed z,, ¢ (z,, z,), considered as a function of z,, belongs, by Theo-
rem A, to the space generated by f(z,—y,, 0) and is orthogonal to the space gen-
erated by the elements f, (x,)=f(xr,—#,, 0) for |y|<a,—e. By Lemma 6.1, this
orthogonal space JF, consists only of the zero element. Hence g (z,, 2,)=0. This means
F is generated by the set of elements fy, for which |y,|<a,—¢, |y,|<a,.

Let us set up the space D; of elements of the form

T

i
5= | . (61)

0
where g, (X)=2 &f(X—X,—tV), |x,-u|l<a,—¢ and x,+7rvVvEQ. We shall show that
1

if D, is the restriction of D, to D; then the closure of D; is D,.
As in the Lemmas 3.1 and 3.2 we set up the space D, of elements of form (6.1),

where |x;-u|<a,, |X;*V|<a, The lemmas mentioned proved for us that D, is the

closure of its restriction to D,. Let h; €D,; i.e. there exists an b, (x)=2 & f (X~ Yy —tV)
1
such that

r

h;:lfhgdt,
r

]

where |y, -u|<ay, |yx-V|<ay yet+rv€Q. Let m= max |y,-v| and F, the subspace
of JF generated by the set {fy; |y-v|<m}. The space F, is the orthogonal comple-
ment of the set of functions in J which vanish on the rectangle [x-u|<a,, |x-v|<m.
By an argument similar to the argument which we have already made previously,
Fn is generated by the set of elements {fy; |y-u|<a,—¢, |y—v|<m}. Hence, there
exist elements hy ; (X)=3 &P f (x —x¥° — £ v) with |x{”-u|<a, —&, | x¥ - v|<m such that
hno—h, a8 n—>co,

Let U (xv) be the group of unitary operators as constructed in Lemma 3.5 with
any self-adjoint extension of D, as its infinitesimal generator. As shown in that lemma,
this is a group of translation operators on F, wherever the translations are defined.
Hence, if |t|<|r|, since U* (tV)hyo="rhn: and U™ (V) hy=h;, we have h, (> h; uni-
formly in ¢. This means that if we set

¢

hi.r=lJ‘ kn,tdt;
r

0

then k;,—hk7. Now, by Lemma 3.2
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/ i i
D2 h;,r = ;[hn.r_ hn.o] = ;[U‘ (1‘ V) _I] hn.O
i i
Dy b ==k, — ko) = [U* (rv) ~ I k.

Hence, D; h7,»—> D, h;; and since D, is the closure of its restriction to D, it follows
that D, is the closure of Dj.

The differential operator D, is self-adjoint since f(z, —y,, 0) has a unique ex-
tension. Let U (zum) be the group of unitary operators as set up in Lemma 3.5.
Choose any z such that |z|<e and g7 €Ds; ie.

T

1
g?=—rfg:dt,

0

where ¢ (X)=3 & f(X—x—tV), |%-u|<a,—¢ and x,+7vEQ. Further let A (x)=
=3 &f(x—x,—2u—tv). Then clearly

U* (xu)Dég7=£[h,—ho]=D2U* (zu)g;.

Since the closure of Dj; is D, and U (xu) is bounded we have
U* (zu)D,g=D,U* (xu)g

for every g€D (D,). Since this is true for every z such that |z|<e, it follows that
the whole group U (zu), — o0 <z < oo, permutes with D,. Hence D, and D, per-
mute in the sense that D, permutes with the canonical spectral measure of D,. This
means that there exists a sequence of subspaces {M,} each of which reduces D,,
and therefore D;, and moreover reduces D, to a bounded self-adjoint operator.

As in § 3 define the conjugation operator J by

Jgx)=g(—x).

It is clear that J permutes with both D, and D,. Hence M, reduces J and the
restrictions of D; and D, to M, are real with respect to J.

Let D;n and Dy, be the restriction to MM, of D, and D, respectively. Since
D,, is real with respect to J it has equal deficiency indices and therefore self-adjoint
extensions. The deficiency spaces £} and &; of D,, are given by &, =[g|g €M, and
D;g=ig] and E,=[g|g€M, and Djg= —ig] respectively. Hence £ and &, con-
tain only elements of the form g (z,, 0)e™™ and g (x,, 0) €™ respectively. On the other

9 —593804. Acta mathematica. 102. Imprimé le 28 septembre 1959
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hand, any elements of this form which belong to M, belong to £f and &; re-
spectively. Since D, is bounded, the last statement immediately implies that £ and
€. both reduce Dy, and hence both of these manifolds reduce each element of the
group U (zu).

Let K, (x,y) be the reproducing kernel corresponding of £;. If P, is the pro-
jection (1) onto €3, then K, (X, y)= P, f(x —y). Further, since every element of the group
U (xu) is reduced by £;, every element of this group permutes with P,. Using the
fact that K, (y, x)=K,(x,y) we get

K, (x, y)= g et K, (ryu, yyu)= e~ Gt P, U (ryu—y,u) fo (0)
=e WU (ryu—y,0) Py fy (0)=e ¥ U (z, u—y, u) K, (0, 0).

If we let Ky (2, —y)— U (z,u—y,u) K, (0, 0). then we get
K‘n (x’ Y) = Kln (xl _?/1) e’(fﬂ"llx).

That is to say, K,(x,y) is the product of two kernecls and hence according to theo-
rem B of §2, £; is the tensor product of the spaces F1, and F.., where F;, corre-
sponds to the kernel K;, and F», to the kernel e ®*¥?, Hence, if ¢ (z;, 0)e " €E;,
then ¢ (x,, 0) € F1» and hence g (—x;, 0) € F1,. This implies that § (—x;, 0)e € E; and

lle™ g (21, Ol =lle™*|len Il g (21, O ltn =l €~ [len [|7 ( — %1, Oll1n
=lle *g (-, 0]}

Hence Jg(—u, 0)e *=g(x, 0)e"€E, and g¢(z;, 0)e ™ and ¢ (z;, 0)e™ have the
same norm.

Let Vg, be the operator defined from &; onto £, by the equation.
Vene ™ g(x;, 0)=e"g (24, 0)

and let V;, be the Cayley transform of Dp,. V. is an isometric operator which
clearly permutes with Dj, on €. On the other hand, D (V3.) is given by the set
of all elements of the form A= (Dy,+iI)g, where g€D (D), and hence Vg,h=
=(Dga—iI)g. Since D;, is bounded and self-adjoint and permutes with D,, it per-
mutes with Vi, on the orthogonal complement of £;. Consequently, if we set
Uzn="Vsn @ Vin, we have that D,, permutes with Us,. If Ha, is the self-adjoint

extension of D, whose Cayley transform is Us,,, then D, and H,, permute.

(1) Py is the projection from F onto E}.
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00
If we construct such a self-adjoint operator H,, for every n and let Hy= > @ Ha.,
1

then H, is self-adjoint and D, and H, permute in the sense that their canonical

spectral measures permute. Let d E, be the canonical spectral measure of H, and set

e

U@v)= [ e dE, ().

Clearly, as x varies over the plane, the operators U (x) = U (z, u) U (2, v) form a group
of unitary operators. If d¥=d£E, E,, then

F(x)=(U(X)fo fo)= | €*td (B (t)fs, fo)

is a positive definite extension of f(x). This concludes the proof of Theorem 2.

THEOREM 3. Let Q be an open symmelric neighbourhood in the plane (ie., X€Q
tmplies (—X)€Q) and f(x) a continuous function defined on 2 Q. Necessary and suf-
ficient conditions that there exists a bounded measure d F >0 whose support is in the
half-plane t-u>0 and such that

ﬂm=?a%pm

- 00

are.
(a) f(x—y)>0 for x, yEQ.

(b) There exists a sequence of real numbers r,—>0 such that for n=1,2, ...,
if [f(x—y—tu)—f(x—y+tu]dt>0
b

for all x and y tn Q for which the functions are defined.

Proof. That these conditions are necessary may be checked immediately by a
simple computation.

To prove the sufficiency we set up the space F corresponding to f(x—y). Con-
dition (b) together with Lemma 3.4 tells us that the operator D, is non-negative.
Let H, be any positive self-adjoint extension of D,, d E, its canonical spectral meas-
ure and

9* — 593804
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U(zu)= | e*dE, ().

Further, let H, be any self-adjoint extension of D, and U, its Cayley transform.
Suppose k- €D,; i.e.,

h~=1 [h,dt,
ru

0

where b, (X)=3&f(X—X,—1V), X, €Q, X +rVEQ. If we let A’ =(H,+e¢)h", it is
clear that for all sufficiently small z, say |z|<s, where x,+rv—su€gq,

U@Euw U, =U,U(zu)b'. (6.2)

Suppose glg'D, (H,) such that

H,g=[tdE, (g,
0
where a is a finite positive number. We have then

(U (xn) U, k', g)= [ d (B () U ', g)
0

=[ e d (U, B, )k, 9)= (U, U (zu)h’, g). (6.3)
0
Now,

a
Fi(2)= [P d(B, () Uk, g), z=z+iy,
0
exists for — oo <y< oo and is analytic. On the other hand,
Fy(a)=[ 2 d (U B, ()7, g)
0

exists for ¥ >0 and is analytic in the half plane y>0. Further from (6.3)

lim F, (z)=F, (z)= lim F, (2).
¥10 vi{o0

Since F,(z) is continuous, F,(2) is an analytic extension of F,(z) and hence
F,(z)=F,(z) for y=0.
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By the uniqueness theorem for Laplace-Stieltjes transforms we must have
(El (t) US h” g) = (UZ El (t) hly g)’

since both functions are normalized in the same way. Since the class of g for which

this is true is dense in F we have
E,¢)U,k=U,E,t)}. 6.4)

Let V, be the Cayley transform of D,. Since U,h'=V,}/, it follows from (6.4)
that if we consider U, as a generic symbol for the Cayley transform of any self-
adjoint extension of D,, the element U, E, (f) ' remains constant as U, varies. This
implies E, (t)h’' €D (V,). For, since U, E, ()%’ remains constant, g=(I —U,) E, (t) '
remains constant as U, varies and is in the domain of every self-adjoint extension
of D,. Hence g€D (D) (see [7; 494] and [1; 279]). Hence there exists an h€D (V,)
such that

g=U—-U)E, )b =(I—Vy)h=(I-Uy)h.

We get therefore
E, )Y —h=U,[E, )} —h].
Since I—U, has as inverse we must have h=UFE, ()%’ which proves the fact that
E, ()" €D (V,). Using this fact and (6.4) we get
E )V, SV, E (1),
since in (6.4) 2’ runs over a dense set in D (V,). Hence

E, () D, D, E, (t). (6.5)

Let E,=E,(n)—E,(0—) and let M, be the range of E,. From (6.5) it follows
that M, reduces D, and therefore D;. Further M, reduces H, to a bounded self-
adjoint. If we now follow through the argument of the latter part of the proof of
Theorem 2 we will have completed the proof of Theorem 3.

7. The circle group case

We shall here give an example which shows that the general extension problem
formulated in § 1 is not true for the circle group. Let f(x) be an analytic positive
definite function defined on the real axis which is not periodic. Let f, (z) be the

restriction of f(x) to the interval —a<z<a, where 0<a<m. Let F (e¥)=/, (z); then
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F(e¥) is a positive definite function defined on a symmetric neighborhood of the
identity of the circle group in the semse that F(e¥e¢ '¥)>0 for —la<w, y<ia.
Now, if F (¢”) had a positive definite extension to the whole circle group, then f, (x)
would have a periodic positive definite extension to the real axis. But this is im-

possible since f, (x) is analytic and its only positive definite extension is f ().

References

[1]. N. AcurEser & I. M. GLASMANN, Theory of linear operators in Hilbert space. USSR, 1950
’ (Russian). German translation, Akademie-Verlag, Berlin, 1954.
[2]. N. Aronszasn. The theory of reproducing kernels. Trans. Amer. Math. Soc., 68 (1950),
337-404.
[3]. S. BocHNER, Fouriersche Integrale. Leipzig, 1932.
[4]. A. DeviNaTz, Integral representations of positive definite functions. T'rans. Amer. Math.
Soc., 74 (1953), 56—77. Errata, 536.

[5]. — -, Integral representations of positive definite functions. II. Trans. Amer. Math.
Soc., 77 (1954), 455-480. FErrata, 79 (1955) 556.

[6]. — —, The representation of functions as Laplace-Stieltjes integrals. Duke Math. J., 22
(1955), 185-192.

{7]1. — -, Two parameter moment problems. Duke Math. J., 24 (1957), 481-498.

[8]. N. Dunrorp, and I. E. SEcAL, Semi-groups of operators and the Weierstrass theorem,
Bull. Amer. Math. Soc., 52 (1946), 911-914.

[9]. C. G. EssEeEN, Fourier analysis of distribution functions. Acta Math., 77 (1945), 1-125.

[10]. H. L. HaAMBURGER, Contributions to the theory of closed Hermitian transformations of
deficiency index (m, m). Ann. of Math., 45 (1944), 55-99.

[111. M. G. KrEIN, Sur le problem du prolongement des fonctions Hermitionnes positives et
continues. C. R. (Doklady) Acad. Sci. URSS, N. S., 26 (1940), 17-22.

[12]. — -, On a generalized problem of moments. C. R. (Doklady) Acad. Sci. URSS, N.S.,
26 (1944), 219-222,

[13]. —- -, On Hermitian operators with directed functionals. Adcad. Nauk Ukrain. RSR,
Zbirnik Prac’. Inst. Math. 1948, no. 10 (1948), 83-106. (Ukrainian-Russian sum-
mary).

[14]. — -, The fundamental propositions of the theory of representations of Hermitian op-
erators with deficiency (m, m). Ukrain. Mat. Zurnal 1, no. 2 (1949), 3-68 (Russian).

[15]. —- -, Hermitian positive kernels on homogeneous Spaces I. Ukrain. Mat. Zurnal 1,

no. 4 (1949), 64-98 (Russian).
[16]. M. LivsHITZ, On an application of the theory of Hermitian operators to the generalized
problem of moments. C. R. (Doklady) Acad. Sci. URSS N.S., 44 (1944), 3-7.
[17]. D. Rargov, Sur les functions positivement defines. C. R. (Doklady) Acad. Sci. URSS,
N.S. 26 (1940), 860-865.



