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1. Introduction 

I n  a beaut i fu l  p a p e r  [13], 1~I. Kre in  has  given a pene t r a t i ng  analys is  of a general  

p rob lem of momen t s  (see also [17]). This  p a p e r  is the  cu lmina t ion  of a series of 

notes  and  papers  b y  K r e i n  s t re tch ing  over  a lmos t  a decade  (see [13] for a bibl io-  

g raphy) .  His  resul ts  a p p e a r  in  the  form of a t h e o r y  a b o u t  a special  class of sym- 

met r i c  opera to r s  on a Hi ]ber t  space (see also [16]). The  p r o t o t y p e  of an  opera to r  in 

th is  class m a y  be found  in the  t h e o r y  of the  classical H a m b u r g e r  m o m e n t  problem.  

The genera l  p rob lem of momen t s  which can be t r e a t e d  b y  K re in ' s  me thods  is con- 

cerned wi th  condi t ions  on a p re -Hi ]be r t  space E of ana ly t i c  funct ions  of a single real  

va r iab le  for which there  exis ts  a measure  d/~ (t)~>0 so t h a t  if /, g E C, then  

(/,g)= f/(t),~(t)d,u(O. 

The measure  d/~ m a y  no t  be unique  and  th is  non-un ic i ty  leads  to  m a n y  in te res t ing  

results .  

I f  one t r ies  to  ca r ry  over  th is  t heo ry  to  ana ly t i c  funct ions  of two real  var iab les  (2), 

one meets  r a the r  serious diff icult ies a t  the  v e r y  beginning.  I n  order  to  t r y  to  ga in  

some ins ight  in to  these  mul t i -va r i ab le  p rob lems  we have,  in  a series of pape r s  [4, 5, 

Q) This research was partially supported by the United States Air  Force Office of Scientific 
Research of the Air Research and Development Command, under contracts No. AF18 (600)-1223 and 
AF18 (600)-568. Reproduction in whole or part is permitted for any purpose of the United States 
Government. 

(2) In a recent seminar at Washington University, Professor M. Cotlar has indicated the impor- 
tance of such a theory in order to unify certain aspects of the theory of singular integrals, multiplier 
transforms and more general types of integral transforms. 
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6, 7], and in the present one, investigated some important  classical problems. Even 

in these cases it is not completely clear how much is true, although we suspect a 

good deal more is true than we have been able to prove. Certain basic similarities 

appear  i n  the special cases tha t  make it  clear tha t  some form of a general theorem 

exists which cover all of these special cases, but  we have not as yet  been able to 

devise a general proof tha t  would cover all of the situations we have considered. 

Nevertheless, we have felt the special eases to be of sufficient interest to warrant  a 

presentation. 

In  the present paper we shall be concerned with the problem of extensions of 

positive definite functions. Suppose /(x) is a continuous complex valued function 

defined on the interval ( - 2 a, 2 a) with the property tha t  for any  set {xk}~ c ( - a, a) 

and {~k}~ any set of complex numbers, 

~ ~,~k/(X,--Xk)>~O. (1.1) 
i = 1  k = l  

In  [10] M. Krein proved tha t  such a function could be extended continuously to the 

whole real axis so as to retain the positive definite property (1.1) (see also [5] and 

[15]) and hence, by Bochner's theorem [3; 74], is a Fourier-Stieltjes transform of a 

non-negative measure .  In  general such an extension is not unique [9; 22-23]. As a 

special case of his considerations in [13] Krein obtained an analogous theorem if / is 

allowed to take values in the space of n•  n matrices. 

The same question can be asked when the domain of / is changed in a suitable 

manner and the range is retained in the complex number  field. For example the 

following could be asked: 

Let G be an Abelian, locally compact, topological group and Q a symmetric neigh- 

borhood o/ the identity. Let /(x) be a continuous complex valued /unction de/ined on 2 Q 

and satis/ying (1.1) /or {xk}cQ. Is  it possible to extend /(x) to all o/ G so as to retain 

the positive de/inite character? 

The answer to this question is in general in the negative since, as we shall show 

in w 7 by  a very simple example, it is already not true for the circle group. For 

the additive group of integers, with the discrete topology, the question may  be very 

easily answered in the affirmative. 

For  Euclidean space of any  dimension, considered as an additive group under 

the usual topology, the answer to the above question is open. The problem appears 

to be a delicate one. By placing additional restrictions on the function / and the 

neighborhood Q we have been able to answer the question in the affirmative. For 

simplicity, we shall s ta te  our results for only two dimensions. 
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THEOREM 1. Let Q be the open rectangle in the (xl, x~)-plane given by Ix~l<ak, 

k = l ,  2, and f (x )=f (x l ,  x2) a continuous function on 2Q which satisfies (1.1) in Q. 

I f  f (xl, O) and f (0, x~) each have unique ~si t ive definite extensions along the xl-axis 

and xl-axis respectively, then there exists a unique non-negative measure dF,  on the 

Borel field of the plane, such that 

oo 

.r 
- ~  - oo  

We can prove a similar theorem for a rectangle of lattice points in the plane 

having integer components. The proof is considerably simpler. 

THEOREM 1'. Let Q be the rectangle of lattice tmints (kl, k2) where 

kj=O, •  . . . . .  • j = l ,  2, 

and Q1 the points o/ Q with non-negative components. Further let / ( k )=/ (k l ,  k2)be 

defined on Q and satisfy (1.1) on Q1- / I  /(kl, 0 ) and f(O, k2) each has a unique positive 

definite extension to all of the integers, then there exists a unique measure dF such that 

2 ~  2 ~  

f(k,, k2)= f f e'(k't'§ dF(t l ,  t~). 
0 0 

The above two theorems are the exact analogues of a theorem proved in [7] on 

two-parameter  moment  problems, although the different proofs depend very strongly 

on the particular situations. In  w 6 we shall prove two more theorems along the lines 

of Theorem 1. For example, if Q is as in Theorem 1 and there exists an e > 0  such 

tha t  the restriction of f (xl, 0) to ( - 2 a 1 + e, 2 a 1 - e) has a unique extension, then we 

may  remove all restrictions on f(0, x2) and be able to prove tha t  f(xl, x~)has a 

positive definite extension to the whole plane. We have not been able to prove 

analogues of the theorems in w 6 for the case of the two-parameter  Hamburger  mo- 

ment  problem. 

The main difficulty encountered in proving these theorems is in the proving of 

the permutabil i ty  of the canonical spectral measures of certain unbounded self-adjoint 

operators. The main par t  of this paper is devoted to this question and our results 

are obtained by a very careful examination of the domains of these operators. 

The methods developed in this paper and in [6] can be used to considerably 

simplify certain portions of [4] and [5]. On the other hand, certain basic ideas of the 

lat ter  papers have been used in the present one. In  general, there is very little over- 

lap of results. 
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We should remark tha t  it is very easy to give necessary and sufficient condi- 

tions tha t  a continuous function ] defined on a neighborhood Q of the origin may  

be written as a Fourier-Stieltjes transform of a non-negative measure. Let  ~ be the 

linear space of finite trigonometric sums 

p (t, v) = ~ ~k et(Zkt+YkT), 
k - 1  

where - oo < xk, Yk < co and - ~ < t, x < cr 7// is a partially ordered space by  taking 

/9 >~ 0 if 20 (t, 3)/> 0 for all t, 3. Let  ~/0 be the linear subspaee of ~ consisting of those 

trigonometric sums for which {(xk, Yk)} c Q. 

Let  L be the linear functional defined on 7/10 by the equation 

L ( p ) =  ~ ~k/(Xk, y~)- 
k - 1  

I f  L(p)/>O whenever p~>O, then it is known tha t  L may  be extended to all of 

so as to retain this property.  The function 

.F (x, y)  = L (e ~(~t + ~t)) 

gives a continuous positive definite extension of / to the whole plane. 

Conversely, it is clear tha t  the condition L (p)>~ 0 whenever p >/0 is a necessary 

condition for / to be a Fourier-Stieltjes transform of a non-negative measure. 

2. Preliminaries 

To prove our results we shall use the methods of operators in Hilbert  space. 

The fact that  functions satisfying (1.1) could be used to construct an inner product 

on a function space has been a very effective tool in many  branches of mathematics.  

For problems closely allied to those of this paper it has been used by  A. Devinatz 

[5, 6] and M. Krein [11, 13]. General theories concerning non-negative quadratic forms 

have been constructed by N. Aronszajn [2] and M. Krein [14]. In  this paper we 

shall follow the exposition in [2] as being most suitable for our purposes. 

Let  E be a set and K(x ,  y) a complex valued function defined on E •  with 

the property tha t  for any finite set {~k}l' of complex numbers and points {xk}~ ~_E, 

~. ~j~kK(xk, xj)>~0. (2.1) 
I , k - 1  
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The main idea in constructing a linear space using the form (2.1) as a norm is as 

follows. Set 

g(x)= h(x)= 
k = l  k = l  

and 
k = l  ./=1 

In this way we get a pre-Hilbert space which may be completed to a Hilbert space 

:~ of functions defined on E. An essential property of the space :~ is that  if g E :~ 

and Ky (x) = K (x, y) then 
g (y)= (g, Ky). 

These types of Hilbert spaces have been called by Aronszajn [2] reproducing kernel 

spaces and the kernels K(x,  y), reproducing kernels. Any reproducing kernel space 

has a unique reproducing kernel. 

Another important  property enjoyed by these types of Hilbert spaces is tha t  if 

a sequence of elements converges in the strong topology of :~, then they converge 

pointwise and even uniformly on those sets for which K (x, x) is bounded. For, we have 

I9(x)l=l(g, Kx)[<~{{g[I [[Kx{[=ilg[I K ~ , x ) .  

If E I__E and K l (x ,y )  is the restriction of K ( x , y )  to E lxE1,  then K s gives 

rise to a space 2~1 for which it acts as a reproducing kernel. The pertinent theorem 

is the following: 

THEOREM A [2; 351]. I ] K  is the reproducing kernel o/ the space :~ o] ]unctions 

de/ined on the set E with norm [[][[, then g restricted to the subset E l x E i ~ _ E x E  is 

the reproducing kernel o] the class :~1 ~ all restrictions o] :~ to the subset E i. For any 

such restriction, h e 51, the norm II/1 II1 is the minimum II/11 /or all ! e ~ whose restric- 

tion to E 1 is ]1" 
Finally, we shall have need for the following: 

THEOREM B [2; 361]. KI(Xl, Yl) and K2(x2, Y2) are reproducing kernels with cor- 

responding spaces :~1 and :~, then K I (Xl, Yl)K2 (x~, y~) is the reproducing kernel o/ the 

direct product o] 51 and ~ .  

NOTATION. In the remainder of the paper we shall be working in two dimen- 

sional Euehdean space. Real numbers will be denoted by lower case Latin letters. 

Two dimensional vectors will be denoted by lower case Latin letters in bold face 

type, their components b y  the same letters in ordinary type with subscripts; e.g., 

8 --593804. Acta mathematica. 102. I m p r i m 6  le 28 s e p t e m b r e  1959 
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X = (Xl ,  X2).  We shall write x .  y = xx y~ + x 2 y~, Ix [2 = x~ + xg and x < y if and only if 

x~<~y~, k=  1,2. The letters u and v will always stand for the special vectors u = ( 1 ,  0), 

v=(0,  1). 
I f  a kernel K ( x , y )  satisfies (2.1) we shall write K ( x , y ) ~ 0  or simply K > 0 .  

I f  K 2 - K~ ~ 0 we shall write K 1 < K~. 

3. Necessary l emmas  

Suppose tha t  Q is an open symmetric neighborhood of the origin in the plane 

(i.e. x ~ Q implies ( - x ) E  Q) and /(x) a continuous function defined on 2 Q such tha t  

/(x,y)>>0. Let  :~ be the Hilbert  space corresponding to the kernel / ( x - y )  as dis- 

cussed in w Let  ~ '  be the linear manifold in :~ such tha t  ~g(x)/~x~ exists and 

belongs to :~. Define the operator A1, with domain ~)~ by the formula 

Alg(X)= _ i 0 g ( x )  
0 x 1 

Continuing with definitions and notations, let :~' be the linear manifold consisting 

of elements of the form g (x)= ~ ~k ] ( x -  xk). I t  is clear from the manner in which :~ 
1 

is constructed (w that  :~' is dense in :~. Since Q is open, for a given g E :~', it is 

always possible to find a vector r, such tha t  rl, rg. :~ 0 and of sufficiently small norm 

so tha t  if [t]~<lr] then gt (x)= ~.~k[(X--Xk-- t)  is well defined and belongs to ~ ' .  
1 

Since gt is a continuous function of t in the strong topology of :~, the integral 

r rl #*i 

,f  , f f  gr=rxr~ gtdt  . . . . .  rlr2 g td t ld t  2 
0 0 0 

exists and belongs to ~. Further  9 i - - )  g as r - >  0, where the bold arrow indicates 

convergence in the strong topology of :~. Let  us designate the linear manifold of such 

elements gl by  ~0. I t  is clear tha t  ~ is dense in :~ since :~' is dense in :~. 

Lr:~MA 3.1. DI= A ~ exists, DI~_A l and D[= A r ~0c_O(D,) (domain o/ Dl) and 

the closure o/ the restriction o/ D x to O is D x. Further,  

DI gl = i f [gr, u+t,v -- gt,v] d t~. 
r I r 2  

0 

(3.1) 
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Proof. Let s=(Sx, 0)=s~u with Isl sufficiently small so that  gt+, is defined. 

Consider the element 
F 

' 

9~ , r  = - -  g t + . d t .  
r l  r 2 0 

We get 

g,.; - gl 

81 

~'z ~'1 +8, T I r ]  

r l  ~.12 81 I f  f ' t d t - - f f  gtdt ] 
0 st 0 0 

Yt $1 

' I f  rl r2 sl [gt+r,u - gt] d t 
0 0 

rl , /  - -~ - - -  [gr, u+t,v-gt,u]dt~ as s 1 ~ 0 .  
r 1 r 2 

0 

If x and x + s  both belong to Q, then it  is clear g~,r(X)=gr(x-s). Hence, since con- 

vergence in the strong topology of :~ implies pointwise convergence we get 

r2 

.0g~(x) Alga(x) i f [gnu§ 
~ X 1 ~ r 1 r~ 

o 

This shows D7 is dense in :~ since ~0 is dense in :~. Hence DI= A~ exists. (1) 

Next let g E • (D1) and for fixed y set ]y+t (x) = / ( x -  y -  t), provided the latter 

is defined. Further  set 

/~,r = 1 /y+tdt, /~u 1 

o 0 

Then 

I" 2 

~'1 r2 
O 

F| 

_ - i i  f [g(Y + f lu  ~- t2V) - g (Y  + t2v)] dt .  
r l  Y2 

0 

= (A~ g, li,,). 

As r 2 --> 0, f~.r --) ]~,,,u and we get 

- i  
(A~ g./~.r,u) = - - -  [g (y + , lu)  - g (y)], 

rl 

(1) W e  h a v e  u s e d  h e r e  a t e c h n i q u e  s i m i l a r  t o  t h a t  u s e d  in  [8]. 
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and as r t --> 0, /~,,,u --) [y. Hence, 

.0g(y) 
A ~ g ( y ) = - ,  Ox--~' 

which ghows that  D 1 - - A  1. Since A t is clearly a closed operator (convergence in the 

norm of ~ implies uniform pointwise convergence!) it follows that  At=A~*=D~. 
Finally, it remains to prove the second statement of the lemma. Let B t be the 

restriction of A t to 0 and g E D~ = ~ ) ( A 1 ) .  If  /y+t and [i,r are as in the previous 

paragraph then we have 
r 

(Atg,/i,r) = 1 -  f (Alg,/y+t)dt 
rt r2 

0 

= 1 f _ iOg(y+t )d  t 
r t r~ 0 x 1 

0 

_ 1 lira g, ~[/y+t+h~ dr. 
r t r 2 h--~O 

0 

Since the partial derivative of g is continuous (all elements of F are continuous!) 

we may take the limit outside of the integral sign and then interchange the inner 

product and the integral sign. We get consequently, after a few manipulations, 

(Atg,/~,r)=~i.n~ g, r-~2 h ~ y + t + h u - / y + t ] d t  
@ 

h ra 

0 O 

.ks h--> 0, the second member of the inner product in the last equation goes strongly to 

At/~,r = ~ f ~y+~,u+t,v - [y+t,v] dr2. 
r t r2 

0 

Hence, (A1 !7, ly,r)  = (g, B t  f~,r), 

which implies BI___ A~' = D 1. On the other hand, by exactly the same method as used 

to prove A~ _ A t we get B~ -~ A t. This implies ~ = A~* = A t and hence B** = A* = D t. 

Since B~* is the closure of BI, we have completed the proof of the lemma. 
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Let  rn be a sequence of non-zero real numbers such tha t  r . - ->0 and 0 1  the 

manifold of functions of the form 

,f 
gr. rn gtu d t. 

o 

If  we follow through the proof of Lemma 3.1 step by  step we arrive a t  the following. 

LEMMA 3.2. The closure o/ the restriction o/ D 1 to ~1 is D 1 and moreover 

i 
D1 g;" = _r-- [g,',m - g ] .  (3.2) 

I f  in all of our previous discussion we interchange the subscript 1 with the sub- 

script 2, the corresponding lemmas will be valid for D~. This will lead to the fol- 

lowing l e m m a .  

LEMMA 3.3. D _ O ( D 1 D 2 )  NO(D2D1) and 

- 1  
D 1 D 2 g; = D~ D 1 g~ = r l~r- [gr,u+r,v - gr, u - gr,v + g]- 

LEMMA 3.4. aI<~Dl ~ b I  i/ and only i/ there exists a sequence o/ non-zero real 

numbers rn--> 0 such that for n = 1, 2 . . . . .  

r~ rn rn 

a f f / ( x - y + ( s - t ) u ) d t d s < i  f [ / ( x - y - t u ) - / ( x  
0 0 0 

- y + t u ) ] d t  

Yn Yn 

0 0 

(3.3) 

/or all x and y in Q/or  which the /unctions are defined. I /  a takes on the value - c ~  

or b the value § ~ the corresponding inequalities are considered redundant. 

Proo[. We shall first prove the necessity. Let  {xk}~ c Q and r a real number  so 

tha t  xk + r u E Q. Further,  let 
F 

/k,~(x)= f l ( x - x ~ - t u ) d t  
0 

and g =  ~ ~k/k.r. Then from Lemma 3.2 we get 
1 
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(D 1 g, g) = i 

T 

 ,aj 
J , k = l  

0 

=i j,k=l ~ ~J~k f [/(x~-xj-tu)-/(xk-xj+tu)]dt. 
0 

Further,  
J,k  ~1 �9 

0 0 

Hence, because of the inequalities satisfied by D t we have the conditions (3.3). 

To prove the sufficiency we simply note by the computations of the above para- 

graph that  the inequalities (3.3) imply 

a (g, g) ~< (D x g, g) ~< b (if, g) 

for any element in the manifold ~- )1"  By Lemma 3.2 we .get this inequality for every 

element in /)(D1) which completes the proof of suffiei~nc~r. J �9 

Let us now define an operator J on :~ by the formula 

J g ( x ) = ~ ( - x ) .  

This is a conjugation operator (see [5; 470]) and clearly permutes with D 1 and D~. 

Hence, these operators have self-adjoint extensions. 

LEMMA 3.5. Let H 1 be any sel/-adjoint extension of DI, d E  1 its canonical spectral 

measure and 

For any g E :~ we have 

provided x + x u E Q. 

or 

U ( x u ) =  f eUtdEl(t), 

U(xu) g(x) =g(x +xu), (3.4) 

Proo]. Let  g E ~ such that  

U ( x u ) =  / e~ZtdE1(t)g, 
- c  

where c is a finite real number. I t  is clear that  g E ~1 ~(H[ ' )  and the class of such 
0 

elements is dense in ~. By expanding e ~t in a Maclaurin series we get 

n - - 0  �9 
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where convergence is in the strong topology of :~. Since convergence in the strong 

topology of 9: implies pointwise convergence we have 

NOW, 

1 og'~(x) xn" 
U(xu)  g(x)= ~ n! 0x~ n=O 

where f x ( - ) =  f ( . - x ) .  This means g(x) is analytic in x 1. Consequently, if x + x u  E Q, 

we get (3.4). Since U ( x u ) i s  bounded (3.4) must be true for all of :~. 

LEMMA 3.6. If  f y ( x ) ' = f ( x - y )  and y + x u E Q ,  then U(xu)fy=fy-xu. 

Proof. By Lemma 3.5, for any x E Q, 

U ( - x u )  f~ (y) = / x  (Y - xu)  = (U* ( x u ) / x , / y )  

= fix,/y-~u) = (fx, u (xn)h.). 

Since this is true for every x E Q we have our lemma. 

If  we repeat the arguments of Lemma 3.5 for a self-adjoint extension of D e we 

get a group of unitary operators U (x v) with the same properties as described in the 

lemma for the second variable. Let us suppose for the moment that  for every x 1 and x 2 

U(XlU ) U ( x 2 v ) =  U(x2v ) U (XlU). (3.5) 

If we set U(x)=  U(xlu  ) U(x2v), then U(x) is a group of unitary operators and for 

/o (x) = / (x - 0) we get 
F (x) = ( v  (x) fo, f~ 

is a continuous positive definite extension /(x) to the whole plane. 

The main difficulty i n  the problem posed in w is the proof of the relation (3.5). 

The restrictions we put on /(x) in theorem 1 allow us to prove this relation. 

If  we restrict ourselves to the one-dimensional ease the lemmas analogous to 

those we have been proving in this section would allow us to show that  any contin- 

uous function defined on ( - 2 a ,  2a) such that  ](x-y)>~O for x, y E ( - a , a )  may be 

extended to a positive definite function on the whole axis. The differential operator, 

in the one-dimensional case, analogous to D 1 or D 2 we shall simply designate by D. 

LE~MA 3.71 I /  /(X) is continuous on the interval ( - 2 a ,  2a), / ( x - y ) > O ,  

x, y E ( - a ,  a), then /(x) has a unique positive definite extension if and only if D is 

sel/-ad]oint. 
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Proo/. Suppose first  t h a t  / (x)  has a unique extension. This means  there  exists 

only  one non-negat ive  bounded  measure  d F such t h a t  

! (x) = ~ e ~ d F (0- 

Let  H 1 and H i be two self-adjoint  extensions of D, dE z and dE  2 their  corresponding 

spectral  measures,  and  U z (x) and  U 2 (x) the  corresponding groups of un i t a ry  opera tors  

as set  up in the  proof  of Theorem 1. B y  the  unici ty  of the  extension of / (x) we mus t  have  

(E 1 (A)/o,/o) = (E~ (A)/o,/o) = F (A) 

for any  Borel set  A. Hence  for x and  y in ( - a , a )  we have  

(E 1 (A) U 1 (x) to, U1 (Y) 1o) = f e'(~-Y)t d (E 1 (t)/o,/o) 
A 

= f e '(x-~)t d (E~ (t)/o,/o) = (E~ (A) U 2 (x)/o, U~ (y)/o)- 
A 

Since the  set  {U 1 (x)/o = U2 (x) fo; x 6 ( - a, a)} generates  ~,  we mus t  have  E 1 (A) = E 2 (A) 

which in tu rn  implies H 1 = H 2 = D. 

Conversely,  let us suppose t h a t  D is self-adjoint  and  d F  is a measure  such t h a t  

o0 

/ (~) = f e 'xt d F  (0. 
- - o 0  

Le t  ~o be the  the  set  of e lements  in ~2 (dE) for which G E ~o implies 

o0 

f e txtG(t) d F ( t ) - - - 0  for x q ( - a , a ) .  
- - O o  

There  exists a un i t a ry  m a p  U between ~ and  :~, the  correspondence being given b y  (see 

[4: 61]) 

h(x)= f e~XtH(t)dF(t), x 6 ( - a , a )  

Ilhll ~= flH(t)l~dF(O, 
- - O o  

Le t  ~)~_~b be the  class of H E r b  such t h a t  tH(t) 6 ~ .  Define an opera tor  T on U~) 

b y  the  relat ion 
r 1 6 2  

T h (x) = f e ~a t H (t) d F (t). 
- - 0 o  
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I t  is easy to establish 

clearly T_c D. 

Suppose now tha t  

g ;  (x) - r 
O 

tha t  T is a closed symmetric operator (see [4; 65-66]) and 

i 

- o o  

Now, clearly the function 

1 ~k e-a~' -t~td =--/Y ~:ke-~t(e-"'- 1) H(t)  =~- e y rtl'~ 
0 

belongs to ~ and so also does tH(t). Hence, g~E~)(T). Since g;EO(D), and by 

Lemma 3.2 (for the one-dimensional case) D is the closure of its restriction to these 

elements, and T is closed, we get Dc_T. This establishes the fact tha t  T=D. 
If  A is any Bore1 set on the line and H E ~  set 

B(A)h(x)= ~ et~Ha(t)dF(t), 
- -  r 

where Ha(t)=H(t) for t E A ,  H a ( t ) = 0  otherwise. I t  is easy to establish tha t  B(A) 

is a spectral measure on the Borel field of the line, (B(A)fo, fo)=F(A ) and 

(Dg, h)= ~td(B(t)g,h) 
- - 0 0  

for any g E O ( D )  and h E ~ .  From this it follows tha t  dB=dE, where d E  is the 

canonical spectral measure of D. Hence d F (t) = d (B (t) f0,/0) -- d (E (t) ]0, to). This estab- 

lishes the unicity of d F. 

For explicit details of the proofs of the facts outlined in the previous paragraph 

see [4; 66-67] where they are given for a similar situation. 

4. Proof of Theorem 1 

The first point in the proof will be to notice tha t  the operators D 1 and D 2 are 

self-adjoint. For, the deficiency spaces of D1, say, are the class of elements in :~ which 

satisfy D~ g = i g, D~ h = - ih,  respectively. Le t  us look a t  the first of these equations, 

ag(x) 
g(x). 

a x z 
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The solution to this partial  differential equat ion is given by 

g ( x .  x~) = e -  ~' g (0, x2). 

Let  ~:i be the Hilbert  space with reproducing kernel t ( x l - Y l ,  0). Since Q is a rec- 

tangle, by  Theorem A of w :~1 consists of the restrictions of the elements of :~ to 

any  line parallel to  the xl-axis. (1) Hence, if there exists an x~ such tha t  g (0, x~)~= 0, 

then e -z '  E : ~  which by  the hypothesis  of Theorem 1 and Lemma 3.7 is impossible. 

Consequently,  the deficiency spaces of D~ contain only the zero element and hence 

D 1 is self-adjoint and is the closure of its restriction to the class ~ of L e m m a  3.1. 

The next  point  in the proof will be to consider the manifold ~ =  (D1-FiI)O 
and show tha t  the closure of the restriction of D 2 to ~ is D 2. Le t  C 2 be this re- 

striction and g E ~  (C~). We have then 

C $ ( ~ g, (DI + i I )  l l , r )  = (g, D, (D~ + i I )  IX , r ) ,  (4.1) 

where, as in the proof of L e m m a  3.1, 

r , /  /i,r = rl r--~ l x + t d t ,  
0 

x + r E Q .  

Ta 

Let  h(x)=g(x)-g(x+r~v)+i f C~g(x +tv)dt. 
0 

(4.2) 

Using the results of Lemmas  3.1 and 3.3 and Equa t ion  (4.1) we get  

rl 

h(x+rlu)-h(x)  1 / h(x+tu)dt .  
rl r 2 r 1 r 2 

0 

Since the limit on the r ight  exists as r I --> 0 we get  

~ h  (x) 
h (x), 

x I 

and  hence h (x) = e -~' h (x~ v).  

Pu t t i ng  (4.2) in this last equation and rearranging we get  

(1) The restriction of ] (x - y) to any such line is given by / (x L - Yl, xz - x2) ~ ] (xl - Yl, 0). Any 
such line is to be taken as traversing the entire width of Q. 
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T s 7'~ 

1 O,*a r X *  * - C~ g (x~ v +  t v)  d t 
r s  

o o 

i 
= r~[g(x+rsv)-e-~'g(xsv+r2v)-g(x)+e-X~g(xsv)]. 

Letting rg->0 we get 

C~ g (x)  - e -  ~' C~ g (x  s v)  = - i 
0 [g (x) - e -~' g (x~ v)] 

0 x 2 
(4.3) 

From the facts tha t  e-m+v')>>0 and /(0,  x2-ys)>>O we get [2; 357-361] 

e-(~'+v')/(0, xs-y2)>>O. Consequently, if K(x, y ) = j ( x - y ) + e - ( ~ ' + Y ~  x2-y2), then 

K (x, y ) > 0 .  Let  : ~  be the Hilbert  space corresponding to the kernel e -(x'+~~ / (0, x s - Y2) 

and :~s the space corresponding to the kernel K (x, y). The elements of :~$ are of 

the form e-X'g(xsv), where g(x)E:~ and hence the elements of :~a are of the form 

h(x)+e-X'g(xsv), where g, h e : ~  [2; 361]. Since D 1 is self-adjoint :~ and ~ have 

only the zero element in common and hence :~s = ~ @ ~ [2; 352-353]; i.e., ~ and : ~  

are orthogonal complements of each other in :~s- 

Let  A~=-iO/Ox s be the differential operator acting in : ~  and A" s the dif- 

ferential operator acting in :~a. More precisely, the domain of A~ consists of those 

elements in : ~  whose partial  derivative with respect to x s exists and again belongs 

to : ~ ,  and analogously for A~'. Since /(0,  xs) has a unique extension, A~ is self- 

A '  adjoint.(1) Hence, since A2=D ~ is self-adjoint, the operator A~ @ e is self-adjoint, 

and since the domain of A "  2 consists of those elements in :~3 whose partial derivative 

with respect to x s exists and again belongs to :~3, we have 

A H  :@ ! . ' t  =-A2@As=-As. 

The operator A~' is closed, but  we do not know, as yet, tha t  it is symmetric.  

Symmetry,  together with the above relation would imply  tha t  A~' is self-adjoint. 

We shall now show tha t  the conditions put  on / in Theorem I imply tha t  A~' is 

self-adjoint. 

A " *  . . . .  = A~'** The operator ~ is closed and symmetric and since As is closed, As 

In  order to show tha t  A~" is self-adjoint we shall show tha t  the deficiency spaces 

coimected with the symmetric operator A~'* consist only of the zero element. Now, 

for any closed symmetric operator T, the deficiency spaces consist of those elements 

which satisfy the relations T*g=ig, T ' h = - i h ,  respectively. Hence, in our situa- 

t 
(1) As is the tensor product I | A2, where I is the identity operator in the one dimensional 

space generated by e -x~ and A s is the differential operator on ~a, the space generated by / (0, x~ - y). 
Hence A'e is self-adjeint if and only if As is self-adjoint. 
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tion let us consider, for example, those g E:~ 8 such tha t  A~'**g= A'2" g = i g .  Solving 

this partial  differential equation yields g (x) = e -x'  g (x 2 v). For any  fixed xl, i t  follows 

by  Theorem A tha t  g~, (x2)=g (Xl, x2) belongs to the space generated by  the kernel 

Kxl(x2, y2 )=K( (X l ,  x2) , (Xl, y 2 ) ) = ( l + e  -2xl) / (0,  x~-y~) .  Since / (0,  x2) has a unique 

positive definitive extension it follows tha t  the function ( l + e  -2x') /(0,  x2) has a 

unique positive definite extension. Hence, by Lemmas 3.1 and 3.7, the only element 

g in the space generated by  Kx, which satisfies - i d g / d  x~ = i g must  be the zero ele- 

ment.  Consequently, gx, (x2)=g (Xl, x2)=0.  By the same reasoning the only solution 
" " ;  h t s  in :~a to the equation A2 = -  i h is the zero element. This shows tha t  A2 is self- 

adjoint and hence 
A~' = A~ | A~. 

This, in turn, implies :~ and : ~  reduce A2'. 

Returning now to (4.3) we see tha t  the right side belongs to O (A~') and hence 
A s g E ~) (D2) and e- ~' g (x 2 v) E ~) ( 2 ) .  Hence, 

C~ g = D 2 g. 

This means C~ = D~, which is what we set out to prove, namely, tha t  the closure 

of the restriction of D2 to 7~ is D~. 

Let  U 1 be the Cayley transform of D 1. I f  gE~/~, i.e., 

g = (D 1 + i I )  h, h E O, then U 1 D 2 g = U 1 (D 1 + i I )  D 2 h = (D 1 - i I )  D 2 h = D 2 U 1 (n  1 + i I )  h. 

Hence, U 1 D 2 g = D~ U 1 g 

Since D 2 is the closure of its restriction to ~ ,  i t  follows tha t  

U 1 D~ _ D 2 U 1. 

This says D1 and D~ permute; i.e., their canonical spectral measures permute.  

Let  d E~ and d E  2 be the canonical spectral measures of D 1 and D2 respectively 

and d E =  d E  1 d E  s. By Lemma 3.5 it  follows tha t  if 

U ( x ) =  ~eX ' tdE( t} ,  
- - 0 0  

then 

F (x) = ( u  (x)/o, [o) = J e x t  d (E (t)/o, fo) 
- - o 0  

is an extension of /(x).  

Finally, the unicity of the extension of f (x) follows by a two-dimensional ana- 

logue of the argument  in Lemma 3.7. This completes the proof of Theorem 1. 
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5. Proof of Theorem r 

We shall start  with the proof of two lemmas. In the next  two lemmas the 

symbols j, k, n will be integers. 

LEMMA 5.1. I f  p ( ~ - - k ) ~ . O  for 0<~,  Ir then p(]r has a unique positive de]. 

inite extension to all o/ the integers i/ and only i/ det (p(]--k)}~.k~o=O. 

Proo]. Let  3: be the Hilbert  space corresponding to the kernel # (~-]c). Suppose 

~u(k) has a unique positive definite extension; then (/zk}~ -1 generates 3:, where 

~uk (") = ju (. - ]r For, otherwise consider the operator U #k = ~uk+~, 0 ~< b ~< n - 1. U is 

an isometric operator defined on a subspace of 3: and clearly this can be extended 

in many ways to be unitary on 3:. Let  V be any such unitary extension. Then 

and if d E  (t) is the canonical spectral measure of V* we have for V~ ~o = /a~, O < k <~ n, 

lc >~ O, 
1 

/~ (k) = (/~o, Vk /~o) = f e2"lkz d (E (t) #o, ~o), 
0 

and since # ( - b ) = f i  (/~), this formula gives a positive definite extension of # (k). 

Hence every different unitary extension of U will give a different extension which 

is impossible. Consequently, (#k}~ -1 generates 3: which gives the necessity part  of 

our lemma. 

Suppose now that  det (p ( ] -k )}~ .~0=0 ;  then (/~k}~ -1 generates 3: and the trans- 

lation operator U/~k=/~k+l, O<<.b<~n-1, is unitary. Suppose v(k) is a positive def- 

inite extension of # (k) to all of the integers, 3:1 the space generated by the kernel 

v 0 " - k ) ,  - c ~  < j ,  k<  oo, and V the translation operator Vr~=rk+l .  Let  ~ be the 

space generated by (vk}~; then there exists a ( 1 - 1 )  isometric map between 7~ and 

3: and hence n-1 {Vk}k-O generates )~/ and V ~ = ~ .  Since V is unitary, ~ reduces V. 

Let  W be the isometric map from 3: to ~ defined by W/~=~k.  If d E ( t )  is 

the canonical spectral measure of V we have 

1 

( V vj, v~) = (U /aj, /~k) = r e  2"u d (W - 1 E  (t) W /~j, /~k). 
0 

Hence d F = d W - ~ E W  is the canonical resolution of the identity of U. Now, for 

-- n <~ ]c ~< n, 
1 

(k )  = u = = f e-2:gtkt d (E (t) 'Po, ~o) 
0 

1 

= f e  -2"tkt d (F (t)/~o, Po). 
0 
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Hence  the measure  which gives rise t o  any extension is the same, namely  d (F (t)tto, Po) 

whieh shows we can have  only one extension. This completes  the proof of L e m m a  1. 

I n  our nex t  l emma the  symbols  j, k, n will be the  lat t iee points  (]1, J2), (kl, ks), 

(nl, n2) respect ively.  

LEMMA 5.2. Let # ( j - k ) ~ - 0  for 0 ~ < j , k ~ < n  and /U(klU ), # ( k s v  ) have unique 

positive de/inite extensions. I[ :~ is the space generated by the kernel /z ( j - k ) ,  then 

is generated by {it/k; 0 • k <~ (n a - l ,  n~ - 1)}. 

Proo/. Suppose g G:~ is perpendicular  to the  space genera ted by  {/~k; 0~<k~< 

~ < ( n x - l , n ~ - - l ) } ;  then  g ( k ) = 0  for 0 ~ < k ~ < ( n l - l ,  n s - 1  ). B y  L e m m a  1, g ( k l u ) = 0  

for 0 ~< k 1 ~< nl, since # (k 1 u) has a unique extension. Fur ther ,  if 1 ~< ?'s ~< ns - 1, g (kl, is) 

as a funct ion of k 1 belongs to the space genera ted  by  the kernel  /z ( ]1 -  k~, 0) and 

hence again b y  L e m m a  1, g (kl, ]9.) = 0 for 0 ~ k 1 ~< n I - 1 implies g (nl, ]2) = 0. I f  we 

now argue on the  second var iable  in the  same way  we get  g (k ) - -0 .  This completes  

the  proof  of L e m m a  2. 

We are now in a posit ion to prove  Theorem 1'. The  nota t ion  in the following 

is the  same as for L e m m a  2. B y  L e m m a  2 the  set {/Uk; 0 ~ < k ~ ( n l - 1 ,  n 2 - 1 )  } gen- 

erates ~ and  hence the opera tors  U l / t k = p k + u  , U s p k = # k + v  , k=~n, are un i ta ry  and  

clearly permute .  I f  dE  1 and  d E  s are the  canonical spectral  measures  of U~* and U* 

respect ively  and  dE  (t) = d E  1 (tl) E 2 (t2) , then  

1 
(k) = f e2~k't d (E (t)/~o, ~o), 

o 

and  the r ight  hand  integral  gives our extension. 

The  proof of the  fact  t h a t  the  measure  which appears  in the  above  representa-  

t ion is unique proceeds along the same lines as the  second half  of the  proof  of 

L e m m a  5.1. This completes  the  proof  of Theorem 1'. 

6. Further theorems 

LV.MMA 6.1. Let ] (x) be de/ined and continuous on the interval ( - 2 a ,  2a )  and 

/ ( x - y ) ~ O  /or x, y E ( - a ,  a). Suppose there exists an e > 0  such that the restriction o/ 

] to ( - 2 a + 2 e, 2 a -  2 e) has a unique positive definite extension to the whole axis. 

I /  ~ is the space corresponding to / ( x - y ) ,  /or x, y e ( - a ,  a), then :~ is generated by 

the set o/ elements {/y (x) = / (x - y); - a + e < y < a - e}. 
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Proof. Let ~e be the Hilbert space generated by the kernel fe ( x - y ) = / ( x - y )  

for x, ylE ( -  a + e, a + e). :By the hypothesis of the lemma and by Lemma 3.7 the dif- 

ferential operator De on :~e as set up in w 3 is self-adjoint. Hence, we have 

f (x )=  ~et~ td(E( t )  feo,/eo)~, x E ( - 2 a ,  2a), 

where fe0(x)=/~(x-0) ,  ( , )e is the inner product in :~e and d E  is the spectral 

measure of De. 

If D is the differential operator set up in the space :~, we also have 

f (z) = ~ e ~ d (F  (t) fo,/o), 

where d F is the spectral measure of D. Since /e has a unique extension we must 

have d (E (t) Go,/eo)~ = d (~' (t) to,/o). 
By a general Theorem [4; 61], the space :~ is the set of all functions 

g (x) = ~ e ~xt G (t) d (F (t) fo,/o),  
- c o  

x E ( - a ,  a) 

with G E ~s (d (F (t)/o, fo)), and 

II g II 3 = ~ [G (t)I s d (F (t) f~ fo). 
- o o  

By the same general theorem, ~s (d (F (t) fo,/o)) = ~ (d (E (t) ho, ho)e) is generated 

by elements of the form 

~ e  e ~ykt, 
k = l  

where Sk is a complex number and Yk E ( -  a +  e, a - e ) .  Hence, the lemma is proved. 

THEOREM 2. Let Q be the open interval in the plane - a < x < a  and suppose 

f(x) defined on 2Q is continuous and / ( x - y ) > ~ 0  for x, yEQ. Suppose there exists an 

e > 0 such that the function ] (xl, O) restricted to ( - 2 a 1 + 2 e, 2 a I - 2 e) has a unique 

extension to the whole axis; then~ ] may be extended to be positive definite over the 

whole plane. 

Proof. Let Qe be the two dimensional interval defined by the inequalities 

I x l  ] < a l  - e, ] xs] < a s. Let  :~o ~- :~ be the class of elements which vanish on Qe. If 
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ge :~  0, then for f ixed x~, g(x z, x2), considered as a function of x 1, belongs, by Theo- 

rem A, to the space generated by [ (x 1 - Y l ,  0) and is or thogonal  to the space gen- 

era ted by  the elements [~, (xz) = [ (xz - yl, 0) for ]yt I< a t - e. By  Lemma 6.1, this 

orthogonal space :~0 consists only of the zero element.  Hence g (xl, x2)=0 .  This means 

:~ is generated by  the set of elements [y, for which ]Yl [< a l -  e, l Y~ I < a2" 

Le t  us set up the space D~ of elements of the form 

1 " 
g ; = r j  gtdt, (6.1) 

0 

where g t ( x ) = ~ k [ ( x - x ~ - t v ) ,  I x ~ . u [ < a  1 - e  and x k + r v E Q .  We shall show tha t  
1 

if D '  2 is the restriction of D= to ]0~ then the closure of D' 2 is D 2. 

As in the Lemmas  3.1 and 3.2 we set up the space ~0a of elements of form (6.1), 

where I x k . u l <  a 1, I x k . v l <  ha. The lemmas ment ioned proved for us t ha t  D~ is the 
n 

closure of its restr ict ion to ~02. Le t  h~ E~9; i.e. there  exists an ht (x )=  ~ 8k[ ( x - y k - t v )  
1 

such t ha t  
r 

0 

where lye.  u [ < al, [ Yk" v [ < a~, Yk + r v e Q. Le t  m = max  [ Yk" v [ and :~m the subspace 

of :~ generated by  the set {/y; [y-v ia<m}.  The space ~m is the orthogonal  comple- 

men t  of the set of functions in :~ which vanish on the rectangle Ix- u ] < a 1, Ix- v[ ~< m. 

B y  an argument  similar to the argument  which we have a l ready made previously, 

:~m is generated by the set of elements {/y; ]y-  u [< a 1 -  e, ] y - v [ <  m}. Hence,  there  

exist elements hn.t (x) = ~ ~n, ] (x - x~ ") - t v) with [ x~ n)" u [ < a I - e, [ x~ ~)" v[ ~< ~n such tha t  

hn.o"')h o as n-->c~. 

Le t  U (x v) be the group of uni ta ry  operators as constructed in Lemma 3.5 with 

any  self-adjoint extension of D 2 as its infinitesimal generator.  As shown in tha t  lemma, 

this is a group of t ranslat ion operators on :~, wherever  the translat ions are defined. 

Hence,  if ] t [ < l r ] ,  since U* (t v) h,.o= h,.t and U*(tv)ho=ht,  we have h,.t--->ht uni- 

formly in t. This means tha t  if we set 

$ 

h;~,T= r h~.~dt, 
O 

then h~.T---~h;. Now, by  Lemma 3.2 
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D !  , ~ 2h~ , =  - [h , .~-  h,.0] = -~[U* (rv) -I]h~ o 
r r ' 

h-~ = _-[h~ - h o] = : [ U *  (r v) - 1] h o . 
r r 

Hence, D~h;.~--~D2h;; and since D~ is the closure of its restriction to ~)2 it follows 

t h a t  D 2 is the closure of D' 2- 

The differential operator  D~ is self-adjoint since / ( x  1 - Y l ,  0) has a unique ex- 

tension. Le t  U (xu)  be the group of un i ta ry  operators as set up in L e m m a  3.5. 

Choose any  x such tha t  ] x ] < e  and g;E~)~; i.e. 

0 

where g t ( x ) = ~ k / ( X - - X k - - t v ) ,  ] X k ' U ] < a l - - e  and x ~ + r v E Q .  Fur the r  let h t (x )=  

= ~ ~k / (x - xk - x u - t v). Then clearly 

i 
U* (x u) D~ g;  = r [h~ - h0] = D 2 U* (x u) g;.  

Since the closure of D '  2 is D 2 and  U ( x u )  is bounded we have 

U* (x u) D 2 g = D 2 U* (x u) g 

for every gE]0(D2).  Since this is true for every x such tha t  I x l < e ,  it follows tha t  

the whole group U ( x u ) ,  - r  < x <  c~, permutes  with D 2. Hence D 1 and D 2 per- 

mute  in the sense tha t  D 2 permutes with the canonical spectral measure of D~. This 

means tha t  there exists a sequence of subspaces ( ~ , }  each of which reduces D2, 

and therefore D~, and moreover reduces D 1 to a bounded self-adjoint operator. 

As in w 3 define the conjugation operator  J by  

Jg(x)=~ ( - x ) .  

I t  is clear t ha t  J permutes  with both D 1 and D~. Hence ~ ,  reduces J and the 

restrictions of D 1 and D 2 to ~ are real with respect to  J .  

Le t  Din and D2n be the restriction to ~ .  of D I and D~ respectively. Since 

D2n is real with respect to J it has equal deficiency indices and therefore self-adjoint 

extensions. The deficiency spaces ~+~ and E ;  of D~n are given by  E n -  [ g l g C ~  and 

D *  + ~g=ig] and E~=[glge~, and D~g=-ig] respectively. Hence En and ~ con- 

ta in  only elements of the form g (xl, 0)e -x' and g (xl, 0)e  x' respectively. On the other  

9 - 593804.  Acla mathematica. 102. I m p r i m ~  le 28 s e p t e m b r o  1959 
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hand, any dements  of this form which belong to 7 ~  belong to E + and E,; re- 

spectively. Since D~. is bounded, the last  s ta tement  immediately implies tha t  s and 

E~ both reduce D~. and hence both of these manifolds reduce each element of the 

group U (x u). 

Let  K~ (x, y) be the reproducing kernel corresponding of E~ +. I f  P= is the pro- 

jection (i) onto s then K .  (x, y) = Pn / (x - y). Further,  since every element of the group 

U (x u) is reduced by ~.+, every element of this group permutes with P. .  Using the 

fact  tha t  K .  (y, x ) = ~ ' n  (x, y) we get 

K~ (x, y) = e -(~'+~ K= (g I U, Yl U) = e -(z'+y') Pn U (X 1 ILl -- Yl u)/o (0) 

= e -(~'+ ~') U ( x  I u - Yl u )  P ,  f0 (0)  = e -(~'+"') U (X 1 11 - -  Yl u)  K ,  (0 ,  0 ) .  

I f  we let K1. (x I - Yl) = U (x I u - YI u) K .  (0, 0 )  then we get 

K .  (x, y) = K1. (x 1 -Yl )  e-(~'+ ~')- 

That  is to say, Kn (x, y) is the product of two kernels and hence according to theo- 

rem B of w 2, ~+~ is the tensor product of the spaces ~ln and ~2n, where Jan corre- 

sponds  to the kernel Kin and ~2. to the kernel e -(x'+~'). Hence, if g(xl, O)e-X'EE;, 

then g (xl, 0) E ~1~ and hence ~ ( - xl, 0) E ~ln. This implies tha t  ~ ( - xl, 0) e -~' E E + and 

He-X,g (x 1, 0[[ = [[ e-X'l[2n []g (x 1, O)Ilia = ][ e-X'[[2n [[,~ ( -- Xl, O[[ln 

=ll  0)11. 

Hence J y ( - x  1, 0)e . . . .  g(x 1, 0)e : 'EE~ and g(Xl, 0)e -~' and g(x 1, 0)e ~' have the 

same norm. 

Let  V2. be the operator defined from ~+ onto E~ by the equation. 

V2~ e -x '  g (x l ,  0)  = e ~' g (x  1, 0)  

and let V" sn be the Cayley transform of Dzn. Vzn is an isometric operator which 

clearly permutes with Din on ~+. On the other hand, /)(V~n) is given by the set 

of all elements of the form h=(D2,,+iI)g, where gE~)(D2~), and hence V~,,h= 

= ( D 2 . - i I ) g .  Since D~,~ is bounded and self-adjoint and permutes with D2n it per- 
t 

mutes with V2" on the orthogonal complement of ~.+. Consequently, if we set 

Us,, = V2,,G V2., we have tha t  D1. permutes with U2". I f  Hsn is the self-adjoint 

extension of D2~ whose Cayley transform is Us., then Din and H2~ permute. 

(I) Pn is the projection from ~ onto ~+. 
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If we construct such a self-adjoint operator H~n for every n and let H z = ~ Q H ~ ,  
1 

then H 2 is self-adjoint and DI and H 2 permute in the sense that  their canonical 

spectral measures permute. Let  d E  2 be the canonical spectral measure of H 2 and set 

oO 

U(xu f etZtdE2(t). 

Clearly, as x varies over the plane, the operators U (x) = U (xl u) U (x.~ v) form a group 

of unitary operators. If d E  = d E~ E~, then 

F (x) = (U (x)/o, fo) = ~ e 'x 'td (E ( t ) / . , /o)  

is a positive definite extension of I (x). This concludes the proof of Theorem 2. 

THEOREM 3. Let Q be an open symmetric nc~ghbourhood in the plane (i.e., xEQ 

implies ( - x ) f i Q )  and /(x) a continuous /unction defined on 2 Q. Necessary and su/. 

ficient conditions that there exists a bounded measure d F>~ 0 whose support is in the 

hal/-planc t .  u >10 and such that 

are: 

/ ( x ) =  7 eX ' tdF( t )  

(a) / ( x - y ) ~ - O  for x, yEQ. 

(b) There exists a sequence o/ real numbers rn---~O such that /or n---1, 2 . . . . .  

rn 

if [f(x--y-tu)-f(x-y+tu]dt>O 
0 

for all x and y in Q for which the /unctions are defined. 

Proo/. That  these conditions are necessary may be checked immediately by a 

simple computation. 

To prove the sufficiency we set up the space :~ corresponding t o / ( x - y ) .  Con- 

dition (b) together with Lemma 3.4 tells us tha t  the operator D 1 is non-negative. 

Let  H I be any positive self-adjoint extension of /)i, d E  l its canonical spectral meas- 

ure and 

9* - 593804 
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U (xu)= ~ e'~dE~ (t). 
- - 0 0  

Fur ther ,  let H s be  any  self-aAjoint extension of D s and  U s its Cayley t ransform.  

Suppose h" EDs; i.e., 

0 

where ht(x)=Y.~k[(x--x~-tv) ,  x~EQ, x k + r v E Q .  

clear t h a t  for all sufficiently small  x, say I x I < s, where xk + r v - s u E Q, 

U (x u) U s h' = Us U'(x u) h'. 

Suppose  g E O (H1) such t h a t  

a 

H~g= f t d E  1 (t) g, 
0 

where a is a finite posi t ive number .  We have  then  

:Now, 

a 

(U (x u) U~ h',  g) = f e ~t d (E I (t) Us h' ,  g) 
0 

= ~ e ~t d (U s E 1 (t) h', g) = (U2 U (x u) h ' ,  g). 
0 

I f  we let h ' = ( H  s + i I )  h ' ,  it is 

a 

F l(z)=fe'(x+'~)td(E l(t) U2h',g), z = x + i y ,  
0 

exists  for - o o  < y <  oo and  is analyt ic .  On the  other  hand,  

o o  

F 2 (z)= f e~Z+f~td (UaE 1 (t) h', g) 
0 

exists  for y t> 0 and  is ana ly t ic  in the  half  plane y > 0. Fu r the r  f rom (6.3) 

l im F 1 (z) = F 1 (x) = lim F s (z). 
�9 ?0  u ~0  

Since F l ( x  ) is continuous,  Fl(z ) is an analyt ic  extension of F2(z ) and  

F, (z) -  F2 (z) for y/> 0. 

(6.2) 

(6.3) 

hence 
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By the uniqueness theorem for Laplace.Stieltjes transforms we must have 

(E~ (t) U,  h', g) = (Us g~ (t) h', g), 

since both functions are normalized in the same way. Since the class of g for which 

this is true is dense in F we have 

E1 (t) u~ h' = U~ E,  (t) h'. ( 6 . 4 )  

Let V s be the Cayley transform of D s. Since U 2 h'= V s h', it follows from (6.4) 

that  if we consider U s as a generic symbol for the Cayley transform of any self- 

adjoint extension of D 2, the element U 2 E 1 (t)h' remains constant as U 2 varies. This 

implies E l{t)h'  e l )  ( V2). For, since UsE 1 (t) h' remains constant, g= ( I -  Us) E 1 (t) h" 

remains constant as U~ varies and is in the domain of every self-adjoint extension 

of D 2. Hence g E ~ ( D s )  (see [7; 494] and [1; 279]). Hence there exists an hETD(V2) 

such that  

g = ( I  - U~) E 1 (t) h' = ( I  - V2) h = ( I  - Us )  h.  

We get therefore 

E~ (t) h' - h = Us [E~ (t) h' - h]. 

Since I - U  2 has as inverse we must have h = E  1 (t)h' which proves the fact tha t  

EI(t)h'ETD(V2).  Using this fact and (6.4) we get 

E1 (t) rs~_ rs  El (0, 

since in (6.4) h' runs over a dense set in O (Vs). Hence 

E 1 (t) D s c:: D2 E1  (t). (6.5) 

Let E ,  = E  1 ( n ) - E  I ( 0 - )  and let ~ n  be the range of E,.  From (6.5)it follows 

that  7n~ reduces D2 and therefore D~. Further ~ .  reduces H 1 to a bounded self- 

adjoint. If  we now follow through the argument of the latter part  of the proof of 

Theorem 2 we will have completed the proof of Theorem 3. 

7. The circle group case 

We shall here give an example which shows that  the general extension problem 

formulated in w 1 is not true for the circle group. Let /(x) be an analytic positive 

definite function defined on the real axis which is not periodic. Let /1 (x) be the 

restriction of ] (x) to the interval - a < x < a, where 0 < a < g. Let F (e ~) =/1 (x); then 
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F (e ~) is a pos i t ive  def ini te  funct ion  def ined on a symmet r i c  ne ighborhood  of the  

i d e n t i t y  of the  circle group in the  sense t h a t  F(e~Xe-iV)~,O for - ~ a < x , y < ~ a .  

Now, if F (e ~x) had  a posi t ive  def in i te  ex tens ion  to  the  whole circle group,  t hen  [1 {x) 

would have  a per iodic  pos i t ive  def in i te  ex tens ion  to  the  real  axis .  B u t  th is  is im- 

possible  since [1 (x) is ana ly t i c  and  i ts  only  posi t ive  def ini te  ex tens ion  is [ (x). 
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