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Generalized Hardy inequalities 
and pseudocontinuable functions 

Konstantin M. Dyakonov(1) 

A b s t r a c t .  Given positive integers n l  <n2 <..., we show that  the Hardy-type inequality 

fi I/(nk)l < const IIflll 
k - 

k=1 

holds true for all f E H  1, provided that  the nk'S satisfy an appropriate (and indispensable) regu- 
larity condition. On the other hand, we exhibit inifinite-dimensional subspaces of H 1 for whose 
elements the above inequality is always valid, no additional hypotheses being imposed. In conclu- 
sion, we extend a result of Douglas, Shapiro and Shields on the cyclicity of lacunary series for the 

backward shift operator. 

1. I n t r o d u c t i o n  

Let T denote the unit circle ( z E C : l z l = l  } and m the normalized arclength 

measure on W. Given a function f e L l ( W , m ) ,  set / ( n ) ~ f f T  f2  n dm (neZ)  and 

spec f gel (n  �9 Z : / ( n )  # 0}. 

The Hardy space H 1 is defined by 

H1 d_ef {f  �9 L l(w, m):  spec f C [0, oc)} 

and endowed with the Ll-norm ][. [[1. 
A remarkable result of McGehee, Pigno and Smith IMPS] states that, for some 

absolute constant C>0,  one has 
o o  

(1.1) ~ I/(nk)[ < CII/II1 
k - 

k=l 

(1) Supported in part by Grants R2D000 and R2D300 from the International Science Foun- 

dation and by a grant from Pro Mathematica (France). 
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whenever {nk}kC~=l is an increasing subsequence of N (as usual, N denotes the 
positive integers) and f is an H 1 function with 

(1.2) spec f c {nk}. 

The "generalized Hardy inequality" (1.1) (reducing to the classical Hardy inequality 
[H, Chapter 5] when nk=k) has at t racted a great deal of attention, because it 
provided an answer to the famous Littlewood conjecture (see e.g. [GM]) on the 
Ll-norm of an exponential sum. 

In this paper we are trying to find out what happens if one drops the assumption 
(1.2). Although (1.1) is, in general, non-valid for arbitrary H 1 functions, we show 
that  it does become true under a certain regularity condition on the growth of the 
nk's (in particular, this is the case if the ratios nk/k form a nondecreasing sequence). 
The arising regularity condition is then shown to be sharp: once slightly relaxed, it 
is no longer sufficient for (1.1) to hold, nor for any of its natural/P-analogs. 

The described result is stated and proved in Section 3 below. The method 
involved is different from that  in [MPS]; it relies on some multiplier theorems for 
H 1 that  are cited previously in Section 2. 

The rest of the paper is related to the so-called star-invariant subspaces and 
pseudocontinuable functions. Given an inner function 0 (see [H, Chapter 5] or [G, 
Chapter ii]), we define the corresponding star-invariant subspace of H 1 by 

(1.3) g~ ~f Hl(qO2H 1, 

where z stands for the independent variable and the bar denotes complex con- 
jugation. (The term "star-invariant" means "invariant under the backward shift 
operator"; it is known that  all such subspaces in H 1 are given by (1.3).) Further, a 
function fEH 1 is called pseudocontinuable if it belongs to [-Je K~, where 0 ranges 
over the inner functions. Equivalently, pseudocontinuable functions are precisely 
the non-cyclic vectors of the backward shift. 

In Section 4, we prove that  the generalized Hardy inequality (1.1) holds true 
for fEK~, provided that  0 is a Blaschke product whose zero sequence is sufficiently 
sparse. This time we impose no restrictions on the nk's (instead, we replace H 1 by 
a smaller set). 

Finally, in Section 5 we extend a result of Douglas, Shapiro and Shields [DSS] 
on the spectrum of a pseudocontinuable function. Their result is that  if fEH 2 is 
pseudocontinuable then spec f is never lacunary, unless finite (i.e., spec f cannot 
be of the form {nk}~=l, where infknk+l/nk>l). Now we prove that  if fEK~, 
where the inner function 0 is "sufficiently smooth", then smaller gaps in spec f 
are forbidden as well (e.g., for suitable 0's, spec f cannot be an infinite subset of 
{k 2 :kEN}).  To this end, the Hardy-type inequality (1.1) is exploited. 
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2. Prel iminaries  

Let oo {ak}k=l be a sequence of nonnegative numbers. Denote by b(H 1) the unit 
ball in H 1. 

T h e o r e m  A. Necessary and sufficient that 

S1 d=efsup ak k)[: f �9 b ( g  1) < oc 
~ k = l  

is the condition 

def ~__~ / ( j + I ) N - - 1  ~2 
(2.1)  2:sup .( E ak:<  

NEN = \ k = j N  " 

Moreover, there are absolute constants Cl >0 and c2>0 such that 

(2.2) clS1 <_ V/-~2 <_ c2S1. 

T h e o r e m  B. Necessary and sufficient that 

(2.3) sup ak k)[P:fEb(H 1 <c~ 
Xk=l  

for some (every) pE [2, oo) is the condition 

2N--1 

(2.4) sup E ak < c~. 
N E N  k=N 

Theorem A is an unpublished result of C. Fefferman, as stated in [AS]; a proof 
can be found in [SS]. Theorem B is due (in a stronger form) to Stein and Zyg- 
mund [SZ] for p = 2  and to Sledd and Stegenga [SS] for p>2.  The last mentioned 
paper also contains similar criteria for the case 1 < p < 2 .  

3. General ized Hardy  inequal i t ies  for H x 

Given an increasing sequence {nk}~-i c N  and a number p>0,  set 

A({nk}'P) d--e--fsup(~ ]](nk)'p } 
"k=l k : f Eb(H 1) �9 

It is not hard to see that  

(3.1) A({nk},pl) >_A({nk},p2), if pl <P2. 
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n oo T h e o r e m  1. (i) Let { k}k=lCN be an increasing sequence satisfying 

(3.2) 5 d--efinf k (nk+ l _ n k )  > O. 
k nk  

Then, for every pE [1, c<~), 

(3.3) A({nk},p) < const ( 1 + ~ ) ,  

where the constant is numerical. 
(ii) Given any decreasing sequence {5k}~_1 c R +  with limk--.~ 5k=0, there exist 

positive integers nl <n2 <... such that 

k (nk+l--nk)>hk, k E N ,  
nk 

(3.4) 

and 

( 3 . 5 )  

for all pE[1, c~). 

= 

Proof. (i) In view of (3.1), it suffices to show that  (3.2) implies (3.3) with p = l .  
To this end, we apply Theorem A with a n k - ~ l / k ,  a l=O ( l ~ n k )  and verify (2.1). 
More precisely, taking (2.2) into account, we have to check that, for any N E N ,  
(3.2) yields 

(3.6) E _< const 
j = l  jN<_nk<(j+l)N 

with an absolute constant on the right. 
... I deft "N Let N E N  be fixed. For j = 1 , 2 ,  consider the intervals j = [3 , ( j + I ) N ) .  

Set 

Jo %f {j N : Ijn{nk }=O}, 

J1 d__ef{j E N :  •(IjM{nk}) = 1}, 

J2 %f{j �9 N: #(Ij  n{nk}) _> 2}. 

We obviously have N =  J0 tJ Ji  U J2, the three sets being disjoint, and so the left-hand 
side of (3.6) equals 

E def (3.7) -= ~ ~- = 81"}-82 . 
jEN k I k I I : k C  j : k C  j 3 C J 2  k n k E  j 
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(Clearly, the contribution of J0 is zero.) We proceed by estimating 81 and 12. 
Given jEJ1 ,  let k( j )  be the (unique) number kEN for which n k E I j .  Because 

(3.8) Ij, nI j .=O for j '  7~ j" ,  

we see that k ( j ' ) r  whenever j ' , j " E J ~  and j ' y~ j" .  Therefore, 

( k ~ j ) ;  s  rc 2 
(3.9) s 1 =  ~ < k 2 - 6" 

jEJ1 k=l  

Now fix j c or2. Denote by kl = k l (j) and k2 = k2 (j) the minimal and the maximal 
elements of the set { k : n k E I j } ,  so that 

(3.1o) j N  < nkl < nk2 < ( j+I )N.  

We have 

(3.11) 
1 k ~ l  k~-7~11 1 

Z = ; =  ; + g  
k:nkEIj  = k=k l  

Rewriting (3.2) in the form 

we get 

1 < nk+l- -nk  

k - 6nk 

(3.12) 
k•l 

k2--1 k2-1 1 < 1 nk+l - -nk  < 1 

Z ; -  ~ n~ - ~nkx ~ (~+1-~)  
k=k l  k=k l  k=k l  

I nk2--nkl < 1 ( j + I ) N - j N  1 
z - -  

nkl - 5 j N  6 j '  

where the last but one passage relies on (3.10). Substituting the resulting estimate 
from (3.12) into (3.11), we obtain 

1 1 1 

whence 

(3.13) _< 
k I : k C j  

1) 
(k2(j))2 
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"' k "" j '  j "  We now observe that, in view of (3.8), k2(2 )5 2(2 ) whenever and are two 
distinct elements of J2. Consequently, (3.13) yields 

(3.14) jEJ2  k :nkEI j  " jEJ= 

( 5 _ ~ ) ~ - - ~ 1  r r 2 ( ~  ) r r2(1  )2 
<2  +1 j-~=--~- +1 <,--~- ~+1 . 

j = l  

Finally, substituting (3.9) and (3.14) into (3.7), we arrive at (3.6). 
(ii) Let {bk}k~=l be a decreasing sequence of positive numbers tending to 0. 

Assume, for the sake of convenience, that 51_<�88 Set N I = I  and then define the 
positive integers N2, N3,... inductively by 

N,  
= L ~;  J (") 

It is not hard to see that Nj+I>2Nj for all j E N  and 

1 Nj+I < 1 
(3.15) 2-~j - 1  < NI+...+Nj - 25j" 

Further, put 

E ~f NA U [Nj, 2Nj -1] 
j = l  

and let {nk}k~=l be the (natural) enumeration of E satisfying n l < n 2 <  .... Note 
that, for a fixed j,  the inclusion nk E [Nj, 2Nj - 1] is equivalent to 

k e [NI+. . .+Nj-1 + 1, N1 +...+Nj]. 

In order to verify (3.5), we apply Theorem B with ank =l/k, al=0 (l•nk). We have 

E 
Nj<nk<2Nj 

1 NI+...+N~ 1 >log NI+...+Nj+I 
~= E -k- NI+...+Nj_I+I 

k = N I + . . . + N j - I + I  

= l o g ( l + N  N ~  1)  

where the latter quantity tends to c~, as is readily seen from (3.15). This means 
that, for the present choice of the ak's, condition (2.4) is violated, and so is (2.3) 

(2) Here [ ] denotes integral  part .  
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with p>2.  In other words, (3.5) holds true for p>2,  and hence also for all p > 0  (see 
(3.1) for an explanation). 

It remains to check (3.4). To this end, we distinguish two cases. 

Case 1. For some j ,  one has k=NI+.. .+Nj.  In this case nk-=2Nj--1 and 
nk+l =Nj+I, whence 

1 
~k (nk+l_nk) = N12Nj_ + Nj (Nj+I-2Nj+ I) -> 2~j 1 =  ~ _> ~k. 

Case 2. For some j ,  one has 

k e [ g l + , . . + N j  + 1, 

It then follows that  nkE[Nj+l, 2Nj+1-2] and nk+l=nk+l; hence 

k(nk+ _nk)= __k > Yl+...+Yj 
nk nk -- 2Nj+I 

Here the last but one inequality relies on (3.15), while the last one holds because 
k>j  and the sequence {/~k} is decreasing. 

Thus, in both cases the desired property is established. The proof is therefore 
complete. [] 

Of course, part (i) of the theorem just means that  (3.2) implies the "generalized 
Hardy inequality" 

~ ' ] ( n k ) ' < c ~  - fEHI"  
k = l  

In particular, we have the following results supplementing the McGehee-Pigno- 
Smith inequality (1.1) and the Littlewood conjecture. 

C o r o l l a r y  1. There is a constant C > 0  with the following property: Whenever 
n {nk}k-_l is an increasing subsequence of N such that { k/k}k=l is nondecreasing, 

one has 

oo~ [](nk)______~[ < CIIflI1 
k - 

k = l  

for any f E H  1. 

Proof. Under the stated condition on {nk}, we have 

nk+l > k+___ll _ 1-~ 1 
nk - k k' 

and so (3.2) is fulfilled with 5>_1. [] 
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C o r o l l a r y  2. Given positive integers nl<n2 <. . .<nN with {nk/k}~_ 1 nonde- 
creasing, every function f EH 1 for which 

min{lf (n l ) l ,  . . . ,  ]f(nN)l} >_ 1 

satisfies Ilflll >_clog N,  where c>0  is an absolute constant. 

Pro@ Apply Corollary 1. [] 

4. General ized Hardy inequalit ies  for star-invariant s u b s p a c e s  

Let {zj }~-1 be a sequence of pairwise distinct points of the disk D def{Izl < 1} 
satisfying ~ j ( 1 - - I z j  I)<co. Consider the corresponding Blaschke product 

C ~  

zj - z 
B(z)%fl-I I~l 1 - 2 j z  

j = l  

(if zj =0, set ~j/Izj I---l) and the star-invariant subspace K 1 (see the Introduction), 
formed from B via the formula 

K 1 d e f H 1 C / B 2 H  1 ' 

We remark that K~ is known to coincide with the closed linear hull of the rational 
fractions 

r j ( z ) ~ f ( 1 - S j z )  -1, j e N ,  

whereas the whole of H 1 is similarly generated by a larger family { (1 -~z)  -1 :~ED}. 
In this section we prove that, under a certain sparseness condition on {zj}, the 

generalized Hardy inequality (1.1) holds true for each f E K ~  whenever nl <ne <... 
(no kind of regularity assumption of the form (3.2) is now needed). 

First we cite the following result due to the author (cf. Theorem 12(5) in [D3]). 

T h e o r e m  C. Suppose that { z j } C D  is a sequence satisfying 

(4.1) Iz j-zkl>_c(1-lz j l )  s, j C k ,  

for some fixed c>0 and se (0, �89 Let B, K 1 and rj be d r  as above. Given 
a linear operator T, defined originally on the (non-closed) linear hull of {rj} and 
taking values in a Banach space Y,  the existence of a bounded linear extension 
T: K I  ~ y  is equivalent to the condition 

(4.2) I lTrjl ly=O lOgl_ lz j l  , asj--+oc. 

Now we state the main result of this section. 
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T h e o r e m  2. Let {nk}~_-i be an increasing subsequence of N,  and let { z j } C D  
satisfy (4.1) with some c>O and O<s<�89 We have then 

-2, I/(nk)l <c l l f l l l  , X E K  1, 
k - 

k----1 

where C = C ( c ,  s) is a positive constant independent of f .  

Proof. We apply Theorem C to the case where Y = l  1 and T is the map given 
by 

(4.3) T f  de=f {](nk)/k}~=l ' 

f being a finite linear combination of the rj 's.  For every such f ,  its coefficients f( . )  
must decrease exponentially, so that  T f  is indeed in 11. Further, since ~j(n)=2~ 
and nk >k,  we have 

IITrjll~l = ~  Iz~lnk < Izjlk =log 1 
k - k 1 - 1 z j l  k=l k=l 

Thus (4.2) is established. It now follows from Theorem C that  T has a bounded 
linear extension going from K 1 to l 1. Of course, this extension is again given by 
(4.3), so the proof is complete. [] 

In connection with coefficients of pseudocontinuable functions, we would like 
to mention the papers [D1] and [D2] containing some more results on that  topic. 

5. On  t h e  s p e c t r a  o f  p s e u d o c o n t i n u a b l e  f u n c t i o n s  

Let H p (l_<p<oc) stand for the classical Hardy space of the circle, defined 

e.g. by Hpd-e--fH1NLP(T, m). As usual, elements of H p are also treated as analytic 

functions on D. Recall that  a function OEH ~ is called inner if I0] =1 a.e. on T. With 

each inner function 0 we associate the star-invariant subspace K~d-e-fHPAO2IJ p. 
In this section we use the generalized Hardy inequality (1.1) to ascertain how 

the smoothness of an inner function 0 affects the spectrum spec f of a function 
f EK~. Our results supplement those of Douglas, Shapiro and Shields [DSS]. 

We begin with some technical preparations. Given a function hE L 1 (T, m) and 
a number nEZ+ (--NU{0}), we form the partial sum 

(Snh)(~)de f f i  ~(]g)~k, ~ E T ,  

k~-n 
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and introduce the quantity 

r(n, h) ~f  Iih-S,~hiI1. 

Further, for an inner function 0 and any fixed point zED, we set 

kz(r = k0,~ (r ~f  1-0(z)0(r 
1-5~ 

It is well known that k~ is the reproducing kernel (for evaluation at z) in the Hilbert 
space K~. In other words, kz is in K~ and, for every f E Kg, one has 

(5.1) f (z) = .IT f (~)k~(r dm(~). 

This last relation actually holds for f E K  1 as well. 
We require the following facts. 

L e m m a  1. Let 0 be an inner function and nEZ+. For m-almost all ~ET, we 
have 

(5.2) lim l/crr l = IO(()- (SnO) (()1" 
r---+l- 

Proof. For zED, a straightforward computation yields 
n 

kz(n) = 2 '~ -O(z) ~ O(k)2 '~-k. 
k=0 

Letting z=r~, 0 < r < l ,  and making r tend to 1-, one arrives at (5.2) whenever ~ET 
is a point at which lim~_~l- 10(r~)l=l. [] 

L e m m a  2. If 0 is inner and f E K~, then 

(5.3) Ilflll -< ~ I](n)lr(n, 0). 
n~O 

Proof. Rewriting (5.1) in the form 
o o  

f ( z ) : ~ / ( n ) l c z ( n ) ,  
n ~ O  

we get 

I f ( z ) ] ~ [ ] ( n ) l i k z ( n ) I ,  z E D .  
n ~ O  

Taking radial limits as z- -~  and using Lemma 1, we obtain 
o o  

If(~)l ~ Z l:(n)[ I0(~)-- (SnO)(r 
n=O 

for almost all ~ET. Integrating, we arrive at (5.3). [] 

Now we state 
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T h e o r e m  3. There is a constant "y>0 making the following statement true: 
Whenever {nk}~-i c N  is an increasing sequence and 0 is an inner function with 

(5.4) r(nk, O) < 2 k E N, 
- k '  

the inclusions f EK~ and spec f c {nk} imply f--O. 

Proof. For any function fEK~ with spec f c { n k } ,  Lemma 2 gives 

C ~  

Iiflll -< ~ I](nk)ir(nk, 0). 
k=l 

Combining this result with (5.4), we get 

Or 

(5.5) Ilflll ~ / ~  If(nk)I <'TCiifi]l, 
k - k=l 

where C > 0  is the constant appearing in the McGehee-Pigno-Smith inequality (1.1). 
Finally, letting "/E(0, 1/C), we see that (5.5) can only hold if f-=0. [] 

We remark that condition (5.4) above expresses a certain smoothness property 
of 0. Before proceeding with the next theorem, in which smoothness is involved 
more explicitly, we introduce some notation. 

Given 0<c~<l  and l < p < o c ,  let Lip(c~,p) denote the (Lipschitz-type) space of 
those functions hELP(T, m) for which 

(/Tih(eir~)-h(~)iP dm(~))l/P--o(ivia), T E R .  

Further, for hELP(T, m) and nEZ+,  denote by Ep(n, h) the LP-distance between h 
and the subspace of trigonometric polynomials of degree <n:  

Ep(n, h) ~finf{iih-QIIp: spec Q c [ -n ,  n]} 

(here I1" lip is the natural norm in LB(T, m)). 
The classical Jackson-Bernstein theorems (cf. [N, Chapter 5]) tell as that  

(5.6) h E L i p ( a , p )  -.' ',- Ep(n,h)=O(n-~). 

Another auxiliary result, to be used later on, is 
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L e m m a  3. Let l < p < c c  and hELP(T, m). There exists a constant B=B(p) > 
0 such that 

r(n, h) <_ UEp(n, h). 

Proof. Hhlder's inequality gives 

r(n, h) ~_ IIh-Snhllp. 

Recalling that  the partial sum operators, S~, are uniformly bounded in LP(T, m) 
(see e.g. [G, Chapter iii]), one easily finds that  

IIh- Snhllp < B Ep(n, h), 

where B=B(p) is a suitable constant. [] 

Now comes 

T h e o r e m  4. Let 0 < a < l  and l<p<ce. Suppose 0 is an inner function of 
class Lip(a,p).  There exists a constant M=M(a ,p ,  0)>0 with the following prop- 
erty: Whenever {nk}~__lCN is an increasing sequence such that 

(5.7) n ~ > M k ,  k E N ,  

the inclusions f EK~ and spec f C {nk} imply f - O .  

Proof. Applying Lemma 3 and the equivalence relation (5.6), we get 

A r(nk, 0) _< BEp(nk, 0) _< 
n k 

where A>0  and B > 0  are suitable constants. Combining this with (5.7) gives 

A 
(5.8) r(nk,O) <_ ~-~, k e N. 

Now, for M large enough, (5.8) clearly implies (5.4), where ~/ is the same as in 
Theorem 3. Thus, the required result follows from the preceding one. [] 

In connection with the hypothesis of Theorem 4, we remark that there are 
certain explicit conditions ensuring the inclusion 0ELip(c~,p). For example, the 
following result, due to I. E. Verbitskii, might be helpful to ascertain whether 

(5.9) B{zk} E Lip(a,p), 

where B{zk} stands for the Blaschke product with zeros {zk}. 
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T h e o r e m  D. (See IV] ) ( a ) I f l - l zk l=O(k -1 / (~ -~P) ) ,  with l < p < o c  and 0< 
a<l /p ,  then (5.9) holds true. 

(b) Forp>l  and a=l /p ,  (5.9) holds if and only if 

1 
sup E (  1 --Izk I) < oc. 
J ~ k>j 

Some related criteria for membership of an inner function in various smoothness 
spaces are contained in [A] and [D2]. 

We conclude with the following amusing fact. 

T h e o r e m  5. If  0 is an inner function such that 

1 
(5.10) r(n, 0) < )~Tffn+l~ , n C Z+, 

then 0-cons t .  

Proof. Suppose not; then we can find a nonzero flmction fEK~  (e.g. put f =  
1-0(0)0). Using Lemma 2 and the hypothesis (5.10), we get 

1 i I](n)l Ilfll~ < ~ I](n)lr(n, O) < - 

- ~- n + l  
n = 0  n = 0  

By virtue of the classical Hardy inequality (cf. [G, Exercise 8 in Chapter ii]), the 
latter quantity is _< IIf[ll. This contradiction proves the theorem. [] 

It might be interesting to compare Theorem 5 with the following result due to 
Newman and Shapiro [NS]: If 0 is an inner function with lira sup~__~ nlO(n) l< 1/7r, 
then 0 is a finite Blaschke product. 

Since r(n, 0)> 10(n+l)I, the conclusion of the Newman Shapiro theorem holds 
afortiori  if 

1 
(5.11) sup (n+ l)r(n, 0) < - .  

nE Z +  71" 

Now in Theorem 5 we replace (5.11) by the weaker assumption (5.10) and arrive at 
a stronger conclusion. 

I am grateful to the referee for calling my attention to the Newman-Shapiro 
result. 
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