Generalized Hardy inequalities and pseudocontinuable functions

Konstantin M. Dyakonov(1)

Abstract. Given positive integers $n_1 < n_2 < ...$, we show that the Hardy-type inequality

$$\sum_{k=1}^{\infty} \frac{|\hat{f}(n_k)|}{k} \le \operatorname{const} \|f\|_1$$

holds true for all $f \in H^1$, provided that the n_k 's satisfy an appropriate (and indispensable) regularity condition. On the other hand, we exhibit infinite-dimensional subspaces of H^1 for whose elements the above inequality is always valid, no additional hypotheses being imposed. In conclusion, we extend a result of Douglas, Shapiro and Shields on the cyclicity of lacunary series for the backward shift operator.

1. Introduction

Let **T** denote the unit circle $\{z \in \mathbf{C}: |z|=1\}$ and m the normalized arclength measure on **T**. Given a function $f \in L^1(\mathbf{T}, m)$, set $\hat{f}(n) \stackrel{\text{def}}{=} \int_{\mathbf{T}} f\bar{z}^n dm \ (n \in \mathbf{Z})$ and

spec
$$f \stackrel{\text{def}}{=} \{ n \in \mathbf{Z} : \hat{f}(n) \neq 0 \}.$$

The Hardy space H^1 is defined by

$$H^1 \stackrel{\text{def}}{=} \{ f \in L^1(\mathbf{T}, m) : \text{spec } f \subset [0, \infty) \}$$

and endowed with the L^1 -norm $\|\cdot\|_1$.

A remarkable result of McGehee, Pigno and Smith [MPS] states that, for some absolute constant C>0, one has

(1.1)
$$\sum_{k=1}^{\infty} \frac{|\hat{f}(n_k)|}{k} \le C||f||_1$$

⁽¹) Supported in part by Grants R2D000 and R2D300 from the International Science Foundation and by a grant from Pro Mathematica (France).

whenever $\{n_k\}_{k=1}^{\infty}$ is an increasing subsequence of **N** (as usual, **N** denotes the positive integers) and f is an H^1 function with

$$(1.2) spec $f \subset \{n_k\}.$$$

The "generalized Hardy inequality" (1.1) (reducing to the classical Hardy inequality [H, Chapter 5] when $n_k=k$) has attracted a great deal of attention, because it provided an answer to the famous Littlewood conjecture (see e.g. [GM]) on the L^1 -norm of an exponential sum.

In this paper we are trying to find out what happens if one drops the assumption (1.2). Although (1.1) is, in general, non-valid for arbitrary H^1 functions, we show that it does become true under a certain regularity condition on the growth of the n_k 's (in particular, this is the case if the ratios n_k/k form a nondecreasing sequence). The arising regularity condition is then shown to be sharp: once slightly relaxed, it is no longer sufficient for (1.1) to hold, nor for any of its natural l^p -analogs.

The described result is stated and proved in Section 3 below. The method involved is different from that in [MPS]; it relies on some multiplier theorems for H^1 that are cited previously in Section 2.

The rest of the paper is related to the so-called star-invariant subspaces and pseudocontinuable functions. Given an inner function θ (see [H, Chapter 5] or [G, Chapter ii]), we define the corresponding star-invariant subspace of H^1 by

$$(1.3) K_{\theta}^{1} \stackrel{\text{def}}{=} H^{1} \cap \theta \bar{z} \overline{H}^{1},$$

where z stands for the independent variable and the bar denotes complex conjugation. (The term "star-invariant" means "invariant under the backward shift operator"; it is known that all such subspaces in H^1 are given by (1.3).) Further, a function $f \in H^1$ is called pseudocontinuable if it belongs to $\bigcup_{\theta} K_{\theta}^1$, where θ ranges over the inner functions. Equivalently, pseudocontinuable functions are precisely the non-cyclic vectors of the backward shift.

In Section 4, we prove that the generalized Hardy inequality (1.1) holds true for $f \in K_{\theta}^1$, provided that θ is a Blaschke product whose zero sequence is sufficiently sparse. This time we impose no restrictions on the n_k 's (instead, we replace H^1 by a smaller set).

Finally, in Section 5 we extend a result of Douglas, Shapiro and Shields [DSS] on the spectrum of a pseudocontinuable function. Their result is that if $f \in H^2$ is pseudocontinuable then spec f is never lacunary, unless finite (i.e., spec f cannot be of the form $\{n_k\}_{k=1}^{\infty}$, where $\inf_k n_{k+1}/n_k > 1$). Now we prove that if $f \in K_{\theta}^1$, where the inner function θ is "sufficiently smooth", then smaller gaps in spec f are forbidden as well (e.g., for suitable θ 's, spec f cannot be an infinite subset of $\{k^2:k\in\mathbb{N}\}$). To this end, the Hardy-type inequality (1.1) is exploited.

2. Preliminaries

Let $\{a_k\}_{k=1}^{\infty}$ be a sequence of nonnegative numbers. Denote by $b(H^1)$ the unit ball in H^1 .

Theorem A. Necessary and sufficient that

$$S_1 \stackrel{\mathrm{def}}{=} \sup \biggl\{ \sum_{k=1}^{\infty} a_k |\hat{f}(k)| : f \in b(H^1) \biggr\} < \infty$$

is the condition

(2.1)
$$S_2 \stackrel{\text{def}}{=} \sup_{N \in \mathbf{N}} \sum_{j=1}^{\infty} \left(\sum_{k=jN}^{(j+1)N-1} a_k \right)^2 < \infty.$$

Moreover, there are absolute constants $c_1>0$ and $c_2>0$ such that

$$(2.2) c_1 S_1 \le \sqrt{S_2} \le c_2 S_1.$$

Theorem B. Necessary and sufficient that

(2.3)
$$\sup \left\{ \sum_{k=1}^{\infty} a_k |\hat{f}(k)|^p : f \in b(H^1) \right\} < \infty$$

for some (every) $p \in [2, \infty)$ is the condition

$$\sup_{N \in \mathbf{N}} \sum_{k=N}^{2N-1} a_k < \infty.$$

Theorem A is an unpublished result of C. Fefferman, as stated in [AS]; a proof can be found in [SS]. Theorem B is due (in a stronger form) to Stein and Zygmund [SZ] for p=2 and to Sledd and Stegenga [SS] for p>2. The last mentioned paper also contains similar criteria for the case 1 .

3. Generalized Hardy inequalities for H^1

Given an increasing sequence $\{n_k\}_{k=1}^{\infty} \subset \mathbf{N}$ and a number p > 0, set

$$\Lambda(\{n_k\},p) \stackrel{\text{def}}{=} \sup \left\{ \sum_{k=1}^{\infty} \frac{|\hat{f}(n_k)|^p}{k} : f \in b(H^1) \right\}.$$

It is not hard to see that

(3.1)
$$\Lambda(\{n_k\}, p_1) \ge \Lambda(\{n_k\}, p_2), \quad \text{if } p_1 < p_2.$$

Theorem 1. (i) Let $\{n_k\}_{k=1}^{\infty} \subset \mathbf{N}$ be an increasing sequence satisfying

(3.2)
$$\delta \stackrel{\text{def}}{=} \inf_{k} \frac{k}{n_k} (n_{k+1} - n_k) > 0.$$

Then, for every $p \in [1, \infty)$,

(3.3)
$$\Lambda(\lbrace n_k \rbrace, p) \leq \operatorname{const}\left(1 + \frac{1}{\delta}\right),$$

where the constant is numerical.

(ii) Given any decreasing sequence $\{\delta_k\}_{k=1}^{\infty} \subset \mathbf{R}_+$ with $\lim_{k\to\infty} \delta_k = 0$, there exist positive integers $n_1 < n_2 < ...$ such that

(3.4)
$$\frac{k}{n_k}(n_{k+1}-n_k) \ge \delta_k, \quad k \in \mathbf{N},$$

and

$$\Lambda(\{n_k\}, p) = \infty$$

for all $p \in [1, \infty)$.

Proof. (i) In view of (3.1), it suffices to show that (3.2) implies (3.3) with p=1. To this end, we apply Theorem A with $a_{n_k}=1/k$, $a_l=0$ ($l\neq n_k$) and verify (2.1). More precisely, taking (2.2) into account, we have to check that, for any $N\in \mathbb{N}$, (3.2) yields

(3.6)
$$\sum_{j=1}^{\infty} \left(\sum_{j,N \le n_k \le (j+1)N} \frac{1}{k} \right)^2 \le \operatorname{const} \left(1 + \frac{1}{\delta} \right)^2$$

with an absolute constant on the right.

Let $N \in \mathbb{N}$ be fixed. For j=1,2,... consider the intervals $I_j \stackrel{\mathrm{def}}{=} [jN,(j+1)N)$. Set

$$\begin{split} J_0 &\stackrel{\text{def}}{=} \{j \in \mathbf{N} : I_j \cap \{n_k\} = \emptyset\}, \\ J_1 &\stackrel{\text{def}}{=} \{j \in \mathbf{N} : \#(I_j \cap \{n_k\}) = 1\}, \\ J_2 &\stackrel{\text{def}}{=} \{j \in \mathbf{N} : \#(I_j \cap \{n_k\}) \ge 2\}. \end{split}$$

We obviously have $\mathbf{N} = J_0 \cup J_1 \cup J_2$, the three sets being disjoint, and so the left-hand side of (3.6) equals

(3.7)
$$\sum_{j \in \mathbf{N}} \left(\sum_{k: n_k \in I_j} \frac{1}{k} \right)^2 = \sum_{j \in J_1} \left(\sum_{k: n_k \in I_j} \frac{1}{k} \right)^2 + \sum_{j \in J_2} \left(\sum_{k: n_k \in I_j} \frac{1}{k} \right)^2 \stackrel{\text{def}}{=} s_1 + s_2.$$

(Clearly, the contribution of J_0 is zero.) We proceed by estimating s_1 and s_2 . Given $j \in J_1$, let k(j) be the (unique) number $k \in \mathbb{N}$ for which $n_k \in I_j$. Because

$$(3.8) I_{j'} \cap I_{j''} = \emptyset \text{for } j' \neq j'',$$

we see that $k(j')\neq k(j'')$ whenever $j',j''\in J_1$ and $j'\neq j''$. Therefore,

(3.9)
$$s_1 = \sum_{j \in J_1} \left(\frac{1}{k(j)} \right)^2 \le \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Now fix $j \in J_2$. Denote by $k_1 = k_1(j)$ and $k_2 = k_2(j)$ the minimal and the maximal elements of the set $\{k: n_k \in I_j\}$, so that

$$(3.10) jN \le n_{k_1} < n_{k_2} < (j+1)N.$$

We have

(3.11)
$$\sum_{k:n_k \in I_j} \frac{1}{k} = \sum_{k=k_1}^{k_2} \frac{1}{k} = \sum_{k=k_1}^{k_2 - 1} \frac{1}{k} + \frac{1}{k_2}.$$

Rewriting (3.2) in the form

$$\frac{1}{k} \le \frac{n_{k+1} - n_k}{\delta n_k},$$

we get

(3.12)
$$\sum_{k=k_1}^{k_2-1} \frac{1}{k} \le \frac{1}{\delta} \sum_{k=k_1}^{k_2-1} \frac{n_{k+1} - n_k}{n_k} \le \frac{1}{\delta n_{k_1}} \sum_{k=k_1}^{k_2-1} (n_{k+1} - n_k)$$

$$= \frac{1}{\delta} \frac{n_{k_2} - n_{k_1}}{n_{k_1}} \le \frac{1}{\delta} \frac{(j+1)N - jN}{jN} = \frac{1}{\delta j},$$

where the last but one passage relies on (3.10). Substituting the resulting estimate from (3.12) into (3.11), we obtain

$$\sum_{k:n_k \in I_j} \frac{1}{k} \le \frac{1}{\delta j} + \frac{1}{k_2(j)},$$

whence

(3.13)
$$\left(\sum_{k:n_k \in I_j} \frac{1}{k}\right)^2 \le 2\left(\frac{1}{\delta^2 j^2} + \frac{1}{(k_2(j))^2}\right).$$

We now observe that, in view of (3.8), $k_2(j') \neq k_2(j'')$ whenever j' and j'' are two distinct elements of J_2 . Consequently, (3.13) yields

$$(3.14) s_2 = \sum_{j \in J_2} \left(\sum_{k: n_k \in I_j} \frac{1}{k} \right)^2 \le 2 \left(\frac{1}{\delta^2} \sum_{j \in J_2} \frac{1}{j^2} + \sum_{j \in J_2} \frac{1}{(k_2(j))^2} \right)$$

$$\le 2 \left(\frac{1}{\delta^2} + 1 \right) \sum_{j=1}^{\infty} \frac{1}{j^2} = \frac{\pi^2}{3} \left(\frac{1}{\delta^2} + 1 \right) \le \frac{\pi^2}{3} \left(\frac{1}{\delta} + 1 \right)^2.$$

Finally, substituting (3.9) and (3.14) into (3.7), we arrive at (3.6).

(ii) Let $\{\delta_k\}_{k=1}^{\infty}$ be a decreasing sequence of positive numbers tending to 0. Assume, for the sake of convenience, that $\delta_1 \leq \frac{1}{4}$. Set $N_1 = 1$ and then define the positive integers N_2, N_3, \ldots inductively by

$$N_{j+1} \stackrel{\text{def}}{=} \left[\frac{N_1 + \dots + N_j}{2\delta_j} \right]. \quad (^2)$$

It is not hard to see that $N_{j+1} \ge 2N_j$ for all $j \in \mathbb{N}$ and

(3.15)
$$\frac{1}{2\delta_j} - 1 < \frac{N_{j+1}}{N_1 + \dots + N_j} \le \frac{1}{2\delta_j}.$$

Further, put

$$E \stackrel{\mathrm{def}}{=} \mathbf{N} \cap \bigcup_{j=1}^{\infty} [N_j, 2N_j - 1]$$

and let $\{n_k\}_{k=1}^{\infty}$ be the (natural) enumeration of E satisfying $n_1 < n_2 < \dots$. Note that, for a fixed j, the inclusion $n_k \in [N_j, 2N_j - 1]$ is equivalent to

$$k \in [N_1 + \ldots + N_{j-1} + 1, N_1 + \ldots + N_j].$$

In order to verify (3.5), we apply Theorem B with $a_{n_k}=1/k$, $a_l=0$ $(l\neq n_k)$. We have

$$\begin{split} \sum_{N_{j} \leq n_{k} < 2N_{j}} \frac{1}{k} &= \sum_{k=N_{1} + \ldots + N_{j-1} + 1}^{N_{1} + \ldots + N_{j}} \frac{1}{k} \geq \log \frac{N_{1} + \ldots + N_{j} + 1}{N_{1} + \ldots + N_{j-1} + 1} \\ &= \log \left(1 + \frac{N_{j}}{N_{1} + \ldots + N_{j-1} + 1} \right), \end{split}$$

where the latter quantity tends to ∞ , as is readily seen from (3.15). This means that, for the present choice of the a_k 's, condition (2.4) is violated, and so is (2.3)

⁽²⁾ Here [] denotes integral part.

with $p \ge 2$. In other words, (3.5) holds true for $p \ge 2$, and hence also for all p > 0 (see (3.1) for an explanation).

It remains to check (3.4). To this end, we distinguish two cases.

Case 1. For some j, one has $k=N_1+...+N_j$. In this case $n_k=2N_j-1$ and $n_{k+1}=N_{j+1}$, whence

$$\frac{k}{n_k}(n_{k+1}-n_k) = \frac{N_1+\ldots+N_j}{2N_j-1}(N_{j+1}-2N_j+1) \geq \frac{N_j}{2N_j} \cdot 1 = \frac{1}{2} \geq \delta_k.$$

Case 2. For some j, one has

$$k \in [N_1 + ... + N_j + 1, N_1 + ... + N_{j+1} - 1].$$

It then follows that $n_k \in [N_{j+1}, 2N_{j+1}-2]$ and $n_{k+1}=n_k+1$; hence

$$\frac{k}{n_k}(n_{k+1}-n_k) = \frac{k}{n_k} \ge \frac{N_1 + \dots + N_j}{2N_{j+1}} \ge \delta_j \ge \delta_k.$$

Here the last but one inequality relies on (3.15), while the last one holds because k>j and the sequence $\{\delta_k\}$ is decreasing.

Thus, in both cases the desired property is established. The proof is therefore complete. $\ \square$

Of course, part (i) of the theorem just means that (3.2) implies the "generalized Hardy inequality"

$$\sum_{k=1}^{\infty} \frac{|\hat{f}(n_k)|}{k} \leq \operatorname{const}\left(1 + \frac{1}{\delta}\right) \|f\|_1, \quad f \in H^1.$$

In particular, we have the following results supplementing the McGehee-Pigno-Smith inequality (1.1) and the Littlewood conjecture.

Corollary 1. There is a constant C>0 with the following property: Whenever $\{n_k\}_{k=1}^{\infty}$ is an increasing subsequence of \mathbb{N} such that $\{n_k/k\}_{k=1}^{\infty}$ is nondecreasing, one has

$$\sum_{k=1}^{\infty} \frac{|\hat{f}(n_k)|}{k} \le C ||f||_1$$

for any $f \in H^1$.

Proof. Under the stated condition on $\{n_k\}$, we have

$$\frac{n_{k+1}}{n_k} \geq \frac{k+1}{k} = 1 + \frac{1}{k},$$

and so (3.2) is fulfilled with $\delta \ge 1$. \square

Corollary 2. Given positive integers $n_1 < n_2 < ... < n_N$ with $\{n_k/k\}_{k=1}^N$ nondecreasing, every function $f \in H^1$ for which

$$\min\{\left|\hat{f}(n_1)\right|, \dots, \left|\hat{f}(n_N)\right|\} \ge 1$$

satisfies $||f||_1 \ge c \log N$, where c > 0 is an absolute constant.

Proof. Apply Corollary 1. \square

4. Generalized Hardy inequalities for star-invariant subspaces

Let $\{z_j\}_{j=1}^{\infty}$ be a sequence of pairwise distinct points of the disk $\mathbf{D} \stackrel{\text{def}}{=} \{|z| < 1\}$ satisfying $\sum_j (1-|z_j|) < \infty$. Consider the corresponding Blaschke product

$$B(z) \stackrel{\text{def}}{=} \prod_{j=1}^{\infty} \frac{\bar{z}_j}{|z_j|} \frac{z_j - z}{1 - \bar{z}_j z}$$

(if $z_j = 0$, set $\bar{z}_j / |z_j| = -1$) and the star-invariant subspace K_B^1 (see the Introduction), formed from B via the formula

$$K_B^1 \stackrel{\mathrm{def}}{=} H^1 \cap B\bar{z}\overline{H}^1.$$

We remark that K_B^1 is known to coincide with the closed linear hull of the rational fractions

$$r_j(z) \stackrel{\text{def}}{=} (1 - \bar{z}_j z)^{-1}, \quad j \in \mathbf{N},$$

whereas the whole of H^1 is similarly generated by a larger family $\{(1-\bar{\zeta}z)^{-1}:\zeta\in\mathbf{D}\}.$

In this section we prove that, under a certain sparseness condition on $\{z_j\}$, the generalized Hardy inequality (1.1) holds true for each $f \in K_B^1$ whenever $n_1 < n_2 < ...$ (no kind of regularity assumption of the form (3.2) is now needed).

First we cite the following result due to the author (cf. Theorem 12(b) in [D3]).

Theorem C. Suppose that $\{z_j\}\subset \mathbf{D}$ is a sequence satisfying

(4.1)
$$|z_j - z_k| \ge c(1 - |z_j|)^s, \quad j \ne k,$$

for some fixed c>0 and $s \in (0, \frac{1}{2})$. Let B, K_B^1 and r_j be defined as above. Given a linear operator T, defined originally on the (non-closed) linear hull of $\{r_j\}$ and taking values in a Banach space Y, the existence of a bounded linear extension $T: K_B^1 \to Y$ is equivalent to the condition

$$||Tr_j||_Y = O\left(\log \frac{1}{1 - |z_j|}\right), \quad as \ j \to \infty.$$

Now we state the main result of this section.

Theorem 2. Let $\{n_k\}_{k=1}^{\infty}$ be an increasing subsequence of \mathbb{N} , and let $\{z_j\}\subset \mathbb{D}$ satisfy (4.1) with some c>0 and $0< s<\frac{1}{2}$. We have then

$$\sum_{k=1}^{\infty} \frac{|\hat{f}(n_k)|}{k} \le C ||f||_1, \quad f \in K_B^1,$$

where C=C(c,s) is a positive constant independent of f.

Proof. We apply Theorem C to the case where $Y = l^1$ and T is the map given by

$$(4.3) Tf \stackrel{\text{def}}{=} \{\hat{f}(n_k)/k\}_{k=1}^{\infty},$$

f being a finite linear combination of the r_j 's. For every such f, its coefficients $\hat{f}(\cdot)$ must decrease exponentially, so that Tf is indeed in l^1 . Further, since $\hat{r}_j(n) = \bar{z}_j^n$ and $n_k \geq k$, we have

$$\|Tr_j\|_{l^1} \approx \sum_{k=1}^{\infty} \frac{|z_j|^{n_k}}{k} \le \sum_{k=1}^{\infty} \frac{|z_j|^k}{k} = \log \frac{1}{1 - |z_j|}.$$

Thus (4.2) is established. It now follows from Theorem C that T has a bounded linear extension going from K_B^1 to l^1 . Of course, this extension is again given by (4.3), so the proof is complete. \square

In connection with coefficients of pseudocontinuable functions, we would like to mention the papers [D1] and [D2] containing some more results on that topic.

5. On the spectra of pseudocontinuable functions

Let H^p $(1 \le p \le \infty)$ stand for the classical Hardy space of the circle, defined e.g. by $H^p \stackrel{\text{def}}{=} H^1 \cap L^p(\mathbf{T}, m)$. As usual, elements of H^p are also treated as analytic functions on \mathbf{D} . Recall that a function $\theta \in H^\infty$ is called inner if $|\theta| = 1$ a.e. on \mathbf{T} . With each inner function θ we associate the star-invariant subspace $K_\theta^{p \text{ def}} H^p \cap \theta \bar{z} \overline{H}^p$.

In this section we use the generalized Hardy inequality (1.1) to ascertain how the smoothness of an inner function θ affects the spectrum spec f of a function $f \in K_{\theta}^1$. Our results supplement those of Douglas, Shapiro and Shields [DSS].

We begin with some technical preparations. Given a function $h \in L^1(\mathbf{T}, m)$ and a number $n \in \mathbf{Z}_+$ (= $\mathbf{N} \cup \{0\}$), we form the partial sum

$$(S_n h)(\zeta) \stackrel{\text{def}}{=} \sum_{k=-n}^n \hat{h}(k)\zeta^k, \quad \zeta \in \mathbf{T},$$

and introduce the quantity

$$r(n,h) \stackrel{\mathrm{def}}{=} ||h - S_n h||_1.$$

Further, for an inner function θ and any fixed point $z \in \mathbf{D}$, we set

$$k_z(\zeta) = k_{\theta,z}(\zeta) \stackrel{\text{def}}{=} \frac{1 - \overline{\theta(z)}\theta(\zeta)}{1 - \overline{z}\zeta}.$$

It is well known that k_z is the reproducing kernel (for evaluation at z) in the Hilbert space K_{θ}^2 . In other words, k_z is in K_{θ}^2 and, for every $f \in K_{\theta}^2$, one has

(5.1)
$$f(z) = \int_{\mathbb{T}} f(\zeta) \overline{k_z(\zeta)} \, dm(\zeta).$$

This last relation actually holds for $f \in K^1_\theta$ as well.

We require the following facts.

Lemma 1. Let θ be an inner function and $n \in \mathbb{Z}_+$. For m-almost all $\zeta \in \mathbb{T}$, we have

(5.2)
$$\lim_{r \to 1^{-}} |\hat{k}_{r\zeta}(n)| = |\theta(\zeta) - (S_n\theta)(\zeta)|.$$

Proof. For $z \in \mathbf{D}$, a straightforward computation yields

$$\hat{k}_z(n) = \bar{z}^n - \overline{\theta(z)} \sum_{k=0}^n \hat{\theta}(k) \bar{z}^{n-k}.$$

Letting $z=r\zeta$, 0 < r < 1, and making r tend to 1^- , one arrives at (5.2) whenever $\zeta \in \mathbf{T}$ is a point at which $\lim_{r \to 1^-} |\theta(r\zeta)| = 1$. \square

Lemma 2. If θ is inner and $f \in K^1_{\theta}$, then

(5.3)
$$||f||_1 \le \sum_{n=0}^{\infty} |\hat{f}(n)| r(n,\theta).$$

Proof. Rewriting (5.1) in the form

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n) \overline{\hat{k}_z(n)},$$

we get

$$|f(z)| \le \sum_{n=0}^{\infty} |\hat{f}(n)| |\hat{k}_z(n)|, \quad z \in \mathbf{D}.$$

Taking radial limits as $z \rightarrow \zeta$ and using Lemma 1, we obtain

$$|f(\zeta)| \le \sum_{n=0}^{\infty} |\hat{f}(n)| |\theta(\zeta) - (S_n \theta)(\zeta)|$$

for almost all $\zeta \in \mathbf{T}$. Integrating, we arrive at (5.3).

Now we state

Theorem 3. There is a constant $\gamma > 0$ making the following statement true: Whenever $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$ is an increasing sequence and θ is an inner function with

(5.4)
$$r(n_k, \theta) \le \frac{\gamma}{k}, \quad k \in \mathbf{N},$$

the inclusions $f \in K_{\theta}^1$ and spec $f \subset \{n_k\}$ imply $f \equiv 0$.

Proof. For any function $f \in K^1_\theta$ with spec $f \subset \{n_k\}$, Lemma 2 gives

$$||f||_1 \le \sum_{k=1}^{\infty} |\hat{f}(n_k)| r(n_k, \theta).$$

Combining this result with (5.4), we get

(5.5)
$$||f||_1 \le \gamma \sum_{k=1}^{\infty} \frac{|\hat{f}(n_k)|}{k} \le \gamma C ||f||_1,$$

where C>0 is the constant appearing in the McGehee–Pigno–Smith inequality (1.1). Finally, letting $\gamma \in (0, 1/C)$, we see that (5.5) can only hold if $f \equiv 0$.

We remark that condition (5.4) above expresses a certain smoothness property of θ . Before proceeding with the next theorem, in which smoothness is involved more explicitly, we introduce some notation.

Given $0 < \alpha < 1$ and $1 \le p < \infty$, let $\text{Lip}(\alpha, p)$ denote the (Lipschitz-type) space of those functions $h \in L^p(\mathbf{T}, m)$ for which

$$\left(\int_{\mathbf{T}} |h(e^{i\tau}\zeta) - h(\zeta)|^p \, dm(\zeta)\right)^{1/p} = O(|\tau|^{\alpha}), \quad \tau \in \mathbf{R}.$$

Further, for $h \in L^p(\mathbf{T}, m)$ and $n \in \mathbf{Z}_+$, denote by $E_p(n, h)$ the L^p -distance between h and the subspace of trigonometric polynomials of degree $\leq n$:

$$E_p(n,h) \stackrel{\text{def}}{=} \inf\{\|h - Q\|_p : \operatorname{spec} Q \subset [-n,n]\}$$

(here $\|\cdot\|_p$ is the natural norm in $L^p(\mathbf{T},m)$).

The classical Jackson-Bernstein theorems (cf. [N, Chapter 5]) tell as that

$$(5.6) h \in \operatorname{Lip}(\alpha, p) \iff E_p(n, h) = O(n^{-\alpha}).$$

Another auxiliary result, to be used later on, is

Lemma 3. Let $1 and <math>h \in L^p(\mathbf{T}, m)$. There exists a constant B = B(p) > 0 such that

$$r(n,h) \leq BE_p(n,h).$$

Proof. Hölder's inequality gives

$$r(n,h) \leq ||h - S_n h||_p.$$

Recalling that the partial sum operators, S_n , are uniformly bounded in $L^p(\mathbf{T}, m)$ (see e.g. [G, Chapter iii]), one easily finds that

$$||h-S_nh||_p \leq BE_p(n,h),$$

where B=B(p) is a suitable constant. \square

Now comes

Theorem 4. Let $0 < \alpha < 1$ and $1 . Suppose <math>\theta$ is an inner function of class $\text{Lip}(\alpha, p)$. There exists a constant $M = M(\alpha, p, \theta) > 0$ with the following property: Whenever $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$ is an increasing sequence such that

$$(5.7) n_k^{\alpha} \ge Mk, \quad k \in \mathbf{N},$$

the inclusions $f \in K_{\theta}^1$ and spec $f \subset \{n_k\}$ imply $f \equiv 0$.

Proof. Applying Lemma 3 and the equivalence relation (5.6), we get

$$r(n_k, \theta) \le BE_p(n_k, \theta) \le \frac{A}{n_k^{\alpha}},$$

where A>0 and B>0 are suitable constants. Combining this with (5.7) gives

(5.8)
$$r(n_k, \theta) \le \frac{A}{Mk}, \quad k \in \mathbf{N}.$$

Now, for M large enough, (5.8) clearly implies (5.4), where γ is the same as in Theorem 3. Thus, the required result follows from the preceding one. \square

In connection with the hypothesis of Theorem 4, we remark that there are certain explicit conditions ensuring the inclusion $\theta \in \text{Lip}(\alpha, p)$. For example, the following result, due to I. E. Verbitskii, might be helpful to ascertain whether

$$(5.9) B_{\{z_k\}} \in \operatorname{Lip}(\alpha, p),$$

where $B_{\{z_k\}}$ stands for the Blaschke product with zeros $\{z_k\}$.

Theorem D. (See [V]) (a) If $1-|z_k|=O(k^{-1/(1-\alpha p)})$, with $1 \le p < \infty$ and $0 < \alpha < 1/p$, then (5.9) holds true.

(b) For p>1 and $\alpha=1/p$, (5.9) holds if and only if

$$\sup_{j} \frac{1}{1 - |z_{j}|} \sum_{k > j} (1 - |z_{k}|) < \infty.$$

Some related criteria for membership of an inner function in various smoothness spaces are contained in [A] and [D2].

We conclude with the following amusing fact.

Theorem 5. If θ is an inner function such that

(5.10)
$$r(n,\theta) < \frac{1}{\pi(n+1)}, \quad n \in \mathbf{Z}_+,$$

then $\theta \equiv \text{const.}$

Proof. Suppose not; then we can find a nonzero function $f \in K^1_{\theta}$ (e.g. put $f = 1 - \overline{\theta(0)}\theta$). Using Lemma 2 and the hypothesis (5.10), we get

$$||f||_1 \le \sum_{n=0}^{\infty} |\hat{f}(n)| r(n,\theta) < \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{|\hat{f}(n)|}{n+1}.$$

By virtue of the classical Hardy inequality (cf. [G, Exercise 8 in Chapter ii]), the latter quantity is $\leq ||f||_1$. This contradiction proves the theorem. \Box

It might be interesting to compare Theorem 5 with the following result due to Newman and Shapiro [NS]: If θ is an inner function with $\limsup_{n\to\infty} n|\hat{\theta}(n)| < 1/\pi$, then θ is a finite Blaschke product.

Since $r(n,\theta) \ge |\hat{\theta}(n+1)|$, the conclusion of the Newman–Shapiro theorem holds a fortiori if

(5.11)
$$\sup_{n \in \mathbf{Z}_{+}} (n+1)r(n,\theta) < \frac{1}{\pi}.$$

Now in Theorem 5 we replace (5.11) by the weaker assumption (5.10) and arrive at a stronger conclusion.

I am grateful to the referee for calling my attention to the Newman–Shapiro result.

References

- [A] AHERN, P. R., The mean modulus and the derivative of an inner function, *Indiana Univ. Math. J.* 28 (1979), 311–348.
- [AS] ANDERSON, J. M. and SHIELDS, A. L., Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255–265.
- [DSS] DOUGLAS, R. G., SHAPIRO, H. S. and SHIELDS, A. L., Cyclic vectors and invariant subspaces of the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), 37-76.
- [D1] DYAKONOV, K. M., Kernels of Toeplitz operators, smooth functions, and Bernstein-type inequalities, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 201 (1992), 5–21 (Russian). English transl.: J. Math. Sci. 78 (1996), 131–141.
- [D2] DYAKONOV, K. M., Smooth functions in the range of a Hankel operator, *Indiana Univ. Math. J.* 43 (1994), 805–838.
- [D3] DYAKONOV, K. M., Moment problems for bounded functions, Comm. Anal. Geom. 2 (1994), 533–562.
- [F] FOURNIER, J. J. F., On a theorem of Paley and the Littlewood conjecture, Ark. Mat. 17 (1979), 199–216.
- [G] GARNETT, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.
- [GM] GRAHAM, C. C. and McGehee, O. C., Essays in Commutative Harmonic Analysis, Springer-Verlag, Berlin-Heidelberg, 1979.
- [H] HOFFMAN, K., Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- [MPS] MCGEHEE, O. C., PIGNO, L. and SMITH, B., Hardy's inequality and the L^1 norm of exponential sums, *Ann. of Math.* **113** (1981), 613–618.
- [NS] NEWMAN, D. J. and SHAPIRO, H. S., The Taylor coefficients of inner functions, Michigan Math. J. 9 (1962), 249–255.
- [N] NIKOLSKII, S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin, 1975.
- [SS] SLEDD, W. T. and STEGENGA, D. A., An H^1 multiplier theorem, Ark. Mat. 19 (1981), 265–270.
- [SZ] STEIN, E. M. and ZYGMUND, A., Boundedness of translation invariant operators on Hölder spaces and L^p -spaces, Ann. of Math. 85 (1967), 337–349.
- [V] VERBITSKII, I. E., On Taylor coefficients and L^p-moduli of continuity of Blaschke products, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 107 (1982), 27–35 (Russian). English transl.: J. Soviet Math. 36 (1987), 314–319.

Received April 10, 1995

Konstantin M. Dyakonov 24-1-412, Pr. Khudozhnikov St. Petersburg, 194295 Russia