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Generalized Hardy inequalities
and pseudocontinuable functions

Konstantin M. Dyakonov(?)

Abstract. Given positive integers n1 <n2<..., we show that the Hardy-type inequality
o &
n
S O < comst 511
- k

holds true for all fe H!, provided that the ny’s satisfy an appropriate (and indispensable) regu-
larity condition. On the other hand, we exhibit inifinite-dimensional subspaces of H 1 for whose
elements the above inequality is always valid, no additional hypotheses being imposed. In conclu-
sion, we extend a result of Douglas, Shapiro and Shields on the cyclicity of lacunary series for the
backward shift operator.

1. Introduction

Let T denote the unit circle {z€C:|z|=1} and m the normalized arclength
measure on T. Given a function f€L!(T,m), set f(n fT fzZ"dm (n€Z) and

specdeEf{nE Z: f(n) #0}.
The Hardy space H! is defined by

H' ¥ {f € L} (T, m) :spec f C [0,00)}
and endowed with the L!-norm || - ||;.

A remarkable result of McGehee, Pigno and Smith [MPS] states that, for some
absolute constant C'>0, one has

~

(L) S0l o)
k=1
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whenever {ng}32; is an increasing subsequence of N (as usual, N denotes the
positive integers) and f is an H! function with

(1.2) spec f C {ni}.

The “generalized Hardy inequality” (1.1) (reducing to the classical Hardy inequality
[H, Chapter 5] when ng=k) has attracted a great deal of attention, because it
provided an answer to the famous Littlewood conjecture (see e.g. [GM]) on the
L'-norm of an exponential sum.

In this paper we are trying to find out what happens if one drops the assumption
(1.2). Although (1.1) is, in general, non-valid for arbitrary H' functions, we show
that it does become true under a certain regularity condition on the growth of the
ng’s (in particular, this is the case if the ratios ny /k form a nondecreasing sequence).
The arising regularity condition is then shown to be sharp: once slightly relaxed, it
is no longer sufficient for (1.1) to hold, nor for any of its natural [P-analogs.

The described result is stated and proved in Section 3 below. The method
involved is different from that in {MPS]; it relies on some multiplier theorems for
H' that are cited previously in Section 2.

The rest of the paper is related to the so-called star-invariant subspaces and
pseudocontinuable functions. Given an inner function 6 (see [H, Chapter 5] or [G,
Chapter ii]), we define the corresponding star-invariant subspace of H! by

(1.3) K} ¥ HnozE,

where z stands for the independent variable and the bar denotes complex con-
jugation. (The term “star-invariant” means “invariant under the backward shift
operator”; it is known that all such subspaces in H! are given by (1.3).) Further, a
function f€H! is called pseudocontinuable if it belongs to | J, K}, where 6 ranges
over the inner functions. Equivalently, pseudocontinuable functions are precisely
the non-cyclic vectors of the backward shift.

In Section 4, we prove that the generalized Hardy inequality (1.1) holds true
for f eKol, provided that 6 is a Blaschke product whose zero sequence is sufficiently
sparse. This time we impose no restrictions on the n;’s (instead, we replace H! by
a smaller set).

Finally, in Section 5 we extend a result of Douglas, Shapiro and Shields [DSS]
on the spectrum of a pseudocontinuable function. Their result is that if f€H? is
pseudocontinuable then spec f is never lacunary, unless finite (i.e., spec f cannot
be of the form {n;};2,, where infg ngi1/ng>1). Now we prove that if feK},
where the inner function 8 is “sufficiently smooth”, then smaller gaps in spec f
are forbidden as well (e.g., for suitable 8’s, spec f cannot be an infinite subset of
{k?:keN}). To this end, the Hardy-type inequality (1.1) is exploited.
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2. Preliminaries

Let {ax}32; be a sequence of nonnegative numbers. Denote by b(H?') the unit
ball in H?.

Theorem A. Necessary and sufficient that

S1 défsup{z:aﬂf(k)l :feb(Hl)} <00

k=1
1is the condition
dof (F+1)N-1 2
2.1 Sy = sup ( ak> < 0.
( ) NeN Z

k=iN
Moreover, there are absolute constants ¢y >0 and c2>0 such that

(2.2) 0151 S vV SQ S Cle.

Theorem B. Necessary and sufficient that
e ~
(2.3) sup{Zak|f(k)|p:f€b(H1)}<oo
k=1
for some (every) p€[2,00) is the condition

2N -1
(2.4) sup Z ay < 00.
NeN =

Theorem A is an unpublished result of C. Fefferman, as stated in [AS]; a proof
can be found in [SS]. Theorem B is due (in a stronger form) to Stein and Zyg-
mund [SZ] for p=2 and to Sledd and Stegenga [SS] for p>2. The last mentioned
paper also contains similar criteria for the case 1<p<2.

3. Generalized Hardy inequalities for H*!

Given an increasing sequence {n;}3>; CN and a number p>0, set

A({n},p) &'su {Z £ () feb(Hl)}.

It is not hard to see that ‘
(3.1) A({ni},p1) > A({nw},p2), if p1 <pa.
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Theorem 1. (i) Let {nk}3>; CN be an increasing sequence satisfying
k
(3.2) § L inf — (njy1—ng) > 0.
k ng
Then, for every p€[l,c0),

(3.3) A({nw}, p) < comst (1%) ,

where the constant is numerical.
(ii) Given any decreasing sequence {8x}3° ; CR, with limg_, o 65 =0, there exist
positive integers ny<nz<... such that

k

(3.4) ——(nk+1—nk) >6p, keN,
ng

and

(3.5) A({nk},p) =0

for all pe(l, c0).

Proof. (i) In view of (3.1), it suffices to show that (3.2) implies (3.3) with p=1.
To this end, we apply Theorem A with a,, =1/k, a;=0 (I#ny) and verify (2.1).
More precisely, taking (2.2) into account, we have to check that, for any NeN,
(3.2) yields

oo 1 2 1 2
(3.6) Z( Z E) < const (1-6—5)
J=1 YN<np<(G+1)N
with an absolute constant on the right.
Let NeN be fixed. For j=1,2,... consider the intervals de=ef[jN, (F+1)N).
Set

Jo q—gf{j EN:Ijﬂ{nk}Zw},

S &G eN#IN{ng}) =1},
LG eN#In{m}) =2}

We obviously have N=J,UJ;UJ3, the three sets being disjoint, and so the left-hand
side of (3.6) equals

o0 S(Z H=-2(Z H2( X 1) asn

JEN Meng€l; j€1 “king€l; j€J2 “kinp€I;
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(Clearly, the contribution of Jp is zero.) We proceed by estimating s; and s2.
Given j€J1, let k(j) be the (unique) number k€N for which ny€l;. Because

(3.8) L0l =0 for j #j",
we see that k(j')#k(5") whenever j', j” €J; and j'#j". Therefore,
1Y &1 w2
39) 5= (o) X =5
ALY

Now fix j€J2. Denote by k1 =k;{j) and ko =Fko(j) the minimal and the maximal
elements of the set {k:nge€l;}, so that

(3.10) JN <ng, <ng, < (j+1)N.
We have
ka=1 4
(3.11) > E Z Z > kz
kngel, k= k1 k=k,

Rewriting (3.2) in the form

1 n -n
L Mky1 =Mk

k— bny
we get
- 1 nk+1—nk 1 Rl
Z 253 Z S S > (nr1—mx)
(3.12) k=k1 k=k: 1 k=k;
=1nk2~nk1 <l(]+1)N_.7N:l_
5 ng, 06 iN 55’

where the last but one passage relies on (3.10). Substituting the resulting estimate
from (3.12) into (3.11), we obtain

whence

(3.13) (:Zj%fﬂ(#*m)'
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We now observe that, in view of (3.8), k2(j')#k2(j") whenever j' and j” are two
distinct elements of Jo. Consequently, (3.13) yields

=2( 2 1) =G 57 S wor)

Jj€J2 “king€l; jeJ2 jeJs

() S 5-T(30) <5 ()

(3.14)

Finally, substituting (3.9) and (3.14) into (3.7), we arrive at (3.6).

(i) Let {6x}%2, be a decreasing sequence of positive numbers tending to 0.
Assume, for the sake of convenience, that 615211-. Set N1=1 and then define the
positive integers Ny, N3, ... inductively by

Ni+. +N
Ny & |20 3
26;

It is not hard to see that N, 1 >2Nj; for all j€N and

1 N 1
3.15 el <
( ) 25j < Ni+...+N; = 26;
Further, put
def .
EZ N[N, 2N;-1]
j=1
and let {n;}32; be the (natural) enumeration of E satisfying n; <np<.... Note

that, for a fixed j, the inclusion ny€[N;,2N;—1] is equivalent to
ke [N1++NJ_1+1,N1++NJ]

In order to verify (3.5), we apply Theorem B with a,, =1/k, a;=0 (I#nx). We have

DRI D S LR 2
Njgn,c<2N,-k k=N1+...+N,-_1+1k Nit...+Nj-1+1
=log| 1+ J ),

g( N1+...+]Vj_1+1

where the latter quantity tends to oo, as is readily seen from (3.15). This means
that, for the present choice of the a’s, condition (2.4) is violated, and so is (2.3)

(?) Here [ | denotes integral part.
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with p>2. In other words, (3.5) holds true for p>2, and hence also for all p>0 (see
{3.1) for an explanation).
It remains to check (3.4). To this end, we distinguish two cases.

Case 1. For some j, one has k=N;+...4+N;. In this case n;=2N;~1 and
ngy+1=N;11, whence

Ni+...+N;
— (n1—np) = — oL

N,
- av. 1 (Nini— 2N+1)_2N 1=

Case 2. For some j, one has
ke [N1+...+Nj+1, N1+...+Nj+1 —1].
It then follows that nx € [N;41,2N;41—2] and ngy1=nk+1; hence

k Ni+... ;
u —(Mpp1—ng)=—2 Nt 4Ny

>68; > k.
N Nk 2Nj+1 =% =%

Here the last but one inequality relies on (3.15), while the last one holds because
k>j and the sequence {6;} is decreasing.

Thus, in both cases the desired property is established. The proof is therefore
complete. 0O

Of course, part (i) of the theorem just means that (3.2) implies the “generalized
Hardy inequality”

Z If(;:k)l Sconst(l-{-%)llflll, feH.

k=1

In particular, we have the following results supplementing the McGehee—Pigno—
Smith inequality (1.1) and the Littlewood conjecture.

Corollary 1. There is ¢ constant C >0 with the following property: Whenever
{nw}32., s an increasing subsequence of N such that {ng/k}3, is nondecreasing,
one has

~

if

for any feH!.
Proof. Under the stated condition on {n}, we have
nk+1 k+1 1
S kTR

and so (3.2) is fulfilled with 6>1. O
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Corollary 2. Given positive integers n1 <ng<..<ny with {ng/k}_, nonde-
creasing, every function f€H' for which

mln{|f(n1)| FRIEE) |f(nN)|} =1
satisfies || f|l1=clog N, where ¢>0 is an absolute constant.

Proof. Apply Corollary 1. [

4. Generalized Hardy inequalities for star-invariant subspaces

Let {2;}32; be a sequence of pairwise distinct points of the disk Ddef{I |<1}

satisfying > J( —|z;j])<oo. Consider the corresponding Blaschke product
)= I

(if z;=0, set Z;/|z;]=—1) and the star-invariant subspace K} B (see the Introduction),
formed from B via the formula

_‘ w

KL npzH.

We remark that K} is known to coincide with the closed linear hull of the rational
fractions
;(2) C-1—3f(1—2j:/:)_1, JEN,

whereas the whole of H' is similarly generated by a larger family {(1—Cz)~':¢€D}.
In this section we prove that, under a certain sparseness condition on {z;}, the
generalized Hardy inequality (1.1) holds true for each f€ K} whenever nj<ns<...
(no kind of regularity assumption of the form (3.2) is now needed).
First we cite the following result due to the author (cf. Theorem 12(b) in [D3]).

Theorem C. Suppose that {z;} CD is a sequence satisfying
(4.1) 2j—zk| Z c(1=121)°,  j#k,

for some fized ¢>0 and s€(0,%). Let B, KL and r; be defined as above. Given
a linear operator T, defined originally on the (non-closed) linear hull of {r;} and
taking values in a Banach space Y, the ezistence of a bounded linear extension
T: KL —Y is equivalent to the condition

1
(4.2) ITr;lly = O(log P |> as j — oo.
%

Now we state the main result of this section.
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Theorem 2. Let {ny}32, be an increasing subsequence of N, and let {z;}CD
satisfy (4.1) with some ¢>0 and 0<s<3. We have then

S0 <eyp, fex,
k=1

where C=C/(c, s} is a positive constant independent of f.

Proof. We apply Theorem C to the case where Y =I! and T is the map given
by
def

(4.3) Tf<= {f(n) /k}724,

f being a finite linear combination of the r;’s. For every such f, its coeflicients ji0)
must decrease exponentially, so that T'f is indeed in {'. Further, since #; (n)=27
and ng >k, we have

nnm=2w'<zm‘4gﬂw.

k=1

Thus (4.2) is established. It now follows from Theorem C that T has a bounded
linear extension going from K} to I'. Of course, this extension is again given by
(4.3), so the proof is complete. [

In connection with coefficients of pseudocontinuable functions, we would like
to mention the papers [D1] and [D2] containing some more results on that topic.

5. On the spectra of pseudocontinuable functions

Let Hp (1 <p<oo) stand for the classical Hardy space of the circle, defined

e.g. by H r&f gy YMLP(T,m). As usual, elements of HP are also treated as analytic
functions on D. Recall that a function € H* is called inner if |§|=1 a.e. on T. With
each inner function 6 we associate the star-invariant subspace K} Ef ooz EP.

In this section we use the generalized Hardy inequality (1.1} to ascertain how
the smoothness of an inner function # affects the spectrum spec f of a function
f€K}. Our results supplement those of Douglas, Shapiro and Shields [DSS].

We begin with some technical preparations. Given a function k€ L* (T, m) and
a number n€Z, (=NU{0}), we form the partial sum

n

)= YT h(k)CR, CeT,

k=-—n
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and introduce the quantity
def
r(n,h) = [|h—Snhl|1.

Further, for an inner function 6 and any fixed point zeD, we set

det 1-6(2)6(¢)
k. —_—2
(€)=ho (0% 20
It is well known that k. is the reproducing kernel (for evaluation at 2) in the Hilbert
space K. In other words, k; is in K3 and, for every f€ K32, one has

(5.1) f(z)= /T FORAD) dm(().

This last relation actually holds for f€ K} as well.
We require the following facts.

Lemma 1. Let 6 be an inner function and n€Z_. For m-almost all (€T, we
have

(52) Jim_ [k (m)] =[6(0) = (Sa8)(C)]

Proof. For z€D, a straightforward computation yields

k.(n)=z"—0(z Za(k

Letting z=r(, 0<r<1, and making r tend to 1 , one arrives at (5.2) whenever (€T
is a point at which lim,_,,- |6(r{)|=1. O

Lemma 2. If0 is inner and f€K}, then
(53) s io I (n,0).
Proof. Rewriting (5.1) in the fo:r;
F2)=3" fn)hm),
we get =
@IS 1F )], zeD.
Taking radial limits as z—( andn;;]ing Lemma 1, we obtain
7Ol i 180~ (S.6)(0)

for almost all (€T. Integrating, we arrive at (5.3). 0

Now we state
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Theorem 3. There is a constant v>0 making the following statement true:
Whenever {n;}3>, CN is an increasing sequence and § is an inner function with

(5.4) r(ng, 8) < % keN,

the inclusions f€K} and spec f C{ny} imply f=0.

Proof. For any function f€K} with spec f C{ns}, Lemma 2 gives
e ~
11l <D~ 1f () [ (ns, 6).
k=1

Combining this result with (5.4), we get

(55) 17 <93 L0 <oy,
k=1

where C >0 is the constant appearing in the McGehee—Pigno-Smith inequality (1.1).
Finally, letting v€(0,1/C), we see that (5.5) can only hold if f=0. O

We remark that condition (5.4) above expresses a certain smoothness property
of 8. Before proceeding with the next theorem, in which smoothness is involved
more explicitly, we introduce some notation.

Given 0<a<1 and 1<p<oo, let Lip(a, p) denote the (Lipschitz-type) space of
those functions he LP(T, m) for which

( | iremo-necr dm(c))l/p=0<|r|a), reR.

Further, for h€ L?(T,m) and n€Z ., denote by Ep(n, h) the LP-distance between h
and the subspace of trigonometric polynomials of degree <n:

Ep(n, h) ¥inf{||h—Q||, : spec Q C [-n,n]}

(here || - ||, is the natural norm in LP(T,m)).
The classical Jackson—Bernstein theorems (cf. [N, Chapter 5]) tell as that

(5.6) helip(a,p) <= Ep(n,h)=0(n"%).

Another auxiliary result, to be used later on, is
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Lemma 3. Let 1<p<oo and h€ LP(T,m). There ezists a constant B=B(p)>
0 such that
r(n, h) < BE,(n, h).

Proof. Holder’s inequality gives
r(n, h) <||h—Sph|p.

Recalling that the partial sum operators, Sy, are uniformly bounded in LP(T,m)
(see e.g. |G, Chapter iii]), one easily finds that

|h=Snhllp < BEp(n, h),

where B=DB(p) is a suitable constant. O
Now comes

Theorem 4. Let 0<a<l and 1<p<oo. Suppose 8 is an inner function of
class Lip(a, p). There exists a constant M =M (a,p,8)>0 with the following prop-
erty: Whenever {n;}¢2; CN is an increasing sequence such that

(5.7) ng >Mk, keN,

the inclusions fEK} and spec f C{ny} imply f=0.
Proof. Applying Lemma 3 and the equivalence relation (5.6), we get
A
r(n/ﬁ 0) < BEp(nkv 0) < Rl
T

where A>0 and B>0 are suitable constants. Combining this with (5.7) gives

A
(58) T(nk,e)gm’, keN.

Now, for M large enough, (5.8) clearly implies (5.4), where v is the same as in
Theorem 3. Thus, the required result follows from the preceding one. O

In connection with the hypothesis of Theorem 4, we remark that there are
certain explicit conditions ensuring the inclusion #€Lip(w,p). For example, the
following result, due to I. E. Verbitskii, might be helpful to ascertain whether

(59) B{zk} ELlp(a,p),

where By, 1 stands for the Blaschke product with zeros {2z }.
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Theorem D. (See [V]) (a) If 1—|2x|=0(k~1/0=P)) with 1<p<co and 0<
a<l/p, then (5.9) holds true.
(b) For p>1 and a=1/p, (5.9) holds if and only if

Sup T—— Z —l|z]) <
J | J|

Some related criteria for membership of an inner function in various smoothness
spaces are contained in [A] and [D2].
We conclude with the following amusing fact.

Theorem 5. If @ is an inner function such that

1
m(n+1)

(5.10) r(n,8) < , neZ,,

then @=const.

Proof. Suppose not; then we can find a nonzero function f€Kj} (e.g. put f=
1-6(0)8). Using Lemma 2 and the hypothesis (5.10), we get

||f||1<2|f ir(n,6) < %Z

By virtue of the classical Hardy inequality (cf. [G, Exercise 8 in Chapter ii]), the
latter quantity is <||f|l1- This contradiction proves the theorem. O

It might be interesting to compare Theorem 5 with the following result due to
Newman and Shapiro [NS]: If § is an inner function with limsup,,_, . n|f(n)| <1/,
then @ is a finite Blaschke product.

Since r(n,#)>|6(n+1)|, the conclusion of the Newman—Shapiro theorem holds
a fortiori if

(5.11) sup {(n+1)r(n,8) < —
n€Z4

Now in Theorem 5 we replace (5.11) by the weaker assumption (5.10) and arrive at
a stronger conclusion.

I am grateful to the referee for calling my attention to the Newman—Shapiro
result.
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