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1. Introduction

We begin by recalling several definitions, introduced in the authors’ paper [3],
concerning complex analytic families of complex manifolds.

By a complex analytic fibre space we mean a triple (¥, @, M) of connected
complex manifolds ¥, M and a holomorphic map w of ¥ onto M. A fibre w™1(t),
t€M, of the fibre space is singular if there exists a point p €@ '(t) such that the
rank of the jacobian matrix of the map @ at p is less than the dimension of M.

DeriNiTIiON 1. We say that W% M is a complex analytic family of compact,
complex manifolds if (¥, @, M) is a complex analytic fibre space without singular fibres

whose fibres are connected, compact manifolds and whose base space M is connected.

With reference to a complex manifold V,=m"1(0), 0 € M, we call any V,=w(t),
t€ M, a deformation of V, and we call W= M a complex analytic family of deforma-
tions of V,,.

DEFINITION 2. A complex analytic family W= M of compact, complex mani-
folds is (complex analytically) complete at the point ¢t € M if, for any complex ana-
Iytic family U = N such that ' (0)=w"'(t) for a point 0 € N, there exist a holo-
morphic map s—t(s), t(0)=¢, of a nelghborhood U of 0 on N and a holomorphic
map g of 77 (U) into Y which maps each fibre 77 (s), s€ U of W biregularly onto

(t(s)). The complex analytic family W= M is called (complex analytlcally) com-
plete if it is (complex analytically) complete at each point ¢ of M.
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Let W& M be a complex analytic family of compact, complex manifolds and let
V.=w'(t) be the fibre of ¥ over € M. Denote by ©, the sheaf over ¥V, of germs
of holomorphic vector fields, and denote by (T,), the (complex) tangent space of M
at the point £. Of fundamental importance in the study of the deformation of com-

plex structure is the complex linear map
0 (Ty)y—~> H' (V, ©)

which measures the magnitude of dependence of the complex structure of the fibre
V, on the parameter t (see [3], Sections 5 and 6). A definition of g, will be given
below (see formula (9)). For a tangent vector v € (1), the image g, (v) € H* (V,, ©,) is
called the infinitesimal deformation of V, along v.

Our purpose is to prove the following theorem:

TaEOREM. Let W= M be a complex analytic family of compact, complex mani-
folds and suppose that, for some point t € M, the map g, (Tn)e— H'(V,, @) 18 surjective.
Then W2 M is (complex analytically) complete at t.

The proof of this theorem is elementary, in particular it makes no use of the
theory of harmonic differential forms.

We remark that the question remains open whether W ™ M is differentiably com-
plete at t€ M (in the sense of [3], Definition 1.7) if the map g;: (Ty),— H'(V,, ©,)
is surjective; in particular, Problem 6, Section 22 of [3], remains unsolved. If we
assume the additional condition that H?*(V, ©,) =0 at this particular point #, then it
can be proved, by the method of harmonic differential forms, that VE M is differ-
entiably complete at ¢ (see Kodaira [2]).

In [3].the authors constructed several simple examples of complex analytic

families of compact, complex manifolds, namely:

(1) family of complex tori of arbitrary dimension #;

(2) family U, , of all non-singular hypersurfaces of order % on complex projective
n-space (n=>2, h=2);

(3) family of non-singular hypersurfaces on abélian varieties of arbitrary dimen-
sidn n>=2;

(4) family of compact Hopf surfaces.

It was shown in Section 18 of [3], on the basis of special properties of the

families, that the families (1) and (2) are complex analytically complete, except for

the tase n=2, h=4 of (2) in which the map g, is not surjective. The (complex ana-
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lytic) completeness of all four families (except the case n=2, h=4 of (2) in which
the family is not complete) now follows at once from the above theorem.

We remark that each of the above families (except ¥, ,) is differentiably com-
plete (see [3]).

2. Complex analytic completeness (proof of the theorem)

Let W= M be a complex analytic family which satisfies the hypothesis of our
theorem, namely that, for some point 0 € M, the map

2o : (Ta)o = H' (V, @)

is surjective, where Vo=w"1(0) is the fibre over the point 0 € M. Given an arbitrary
complex analytic family W >N such that n~'(0)=V, for a point 0 €N, we must
show that there exist a holomorphic map s—t(s), ¢(0)=0, of a neighborhood U of 0
on N into M and a holomorphic map g of W|U=x""(U) into ¥ which maps each
fibre 77 (s), s€U, of W biregularly onto @™ (t(s)).

First we fix our notations. We denote by t a point (4,,1,, ..., ;) on the space

€™ of m complex variables and by s a point (s, s,, ..., 8) on ¢'. We define
|| =max ¢,

|| =max |s,|-
r

Similarly we denote by z, a point (2, 7, ..., 2"), by ¢ a point (ZF, ..., ), and let
| 2| = max | 28],

& =max |51

If fra>f(&)=((8).... f*(3), ... [ (8))

is a holomorphic map of a domain {s||s|<e} into C*, we write the power series
expansion of f*(s) in the form

@)=+ + - +fi@+-,

where fi(s) is a homogeneous polynomial in (s, 8, ..., 8) of degree u. Moreover,
letting
fu (8)=(fu(8), .0, f2(8)s -os f12 (9)),

we write f8)=fotfi(8)+ o+ +ful(8)+ -
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and call this the power series expansion of the vector-valued holomorphic func-
tion f(s).

We may assume the following:

i) M is a polycylinder: M ={t||t|<1} and V,=w"(0).
ii) ¥ is covered by a finite number of coordinate neighborhoods U;. Each U; is
covered by a system of holomorphic coordinates (;, f) such that @({, t)=t and

ul={(Cb t)l |Ci|<1’ |t|<1}

(We indicate by ((;,t) a set of n+m complex numbers (I, ..., (T, &, ..., tm and the
point on U; with the coordinates ((}, ..., L7, &, ..es tm).)
iii) ({y, t) coincides with (,t) if and only if

C1=0u ({o 1),

where gy (lx, ) is a vector-valued holomorphic function of ({,t) defined on U, N W,.
iv) N is a polycylinder: N={s||s|<1} and Vo=xn"1(0).
v) W is covered by a finite number of coordinate neighborhoods W, such that

Vonw4=Voﬂu,.

Each W, is covered by a system of holomorphic coordinates (z;, s) such.that 7 (2, 8)=s
and

W,={(z, 9)| |zl<1, |s]<1}.

Moreover, on Vo N W, =V,0 U;, the system of coordinates (z;) coincides with ({y), i.e.,
(2, 0) and (£, 0) are the same point on VN W, =V, N U, if and only if 2} =, ..., 2 =¢].

vi) (2;, 8) coincides with (z, s) if and only if
= hik (zkr 8))

where Ay (2, 8) is a vector-valued holomorphic function of (2, s) defined on W, N W,.

Let e (2ic) = hue (21, 0).
By v) we have bux (Cx) = 9 (Cxs 0).
IJet U,=Voﬂw,=Voﬂu,

and let N.={s||s]<¢e},
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where 0<g<1. In view of ii) and v) we may write

u1=U{XM,

w{ =T, i X N.
We may suppose therefore that

U,XN,CUO(N:w{,
U=UxMcC'xM.

In order to prove our theorem it suffices to construct a holomorphic map s—t=2(s)
of N, into M such that £(0)=0 and holomorphic maps

gi . (2,, ‘9) e (4-{1 t) = (gl (zi5 S)a t(‘q))

of UxN, into C"xM such that g¢,(z, 0) =z, which satisfy the equations

gi (hik (zk’ 8)9 8)=gik (gk (zlc’ 8)’ t(s)) (1)

whenever z,& U, N U; and |s| is sufficiently small (or, more precisely, | 8] <& (z), €(2)
being a continuous function of 2, defined on U, N U, such that 0<e(z)<e). In fact,
let {U?} be a covering of ¥V, such that the closure of each U} is a compact subset
of U; and such that {UfxN,} covers W|N.=n"1(N,). Moreover, let §<e be a suffi-
ciently small positive number and let g} be the restriction of g; to UjxN,. Since
9:(2,0)=2% and (0)=0, we infer that g7 maps U’xN; into U;x M =U,. Thus g is
a holomorphic map of UfxN, into ¥. Moreover, (1) implies that g¥ and g coincide
on the intersection U;xN,N Uxx N, Consequently the collection {g¥} determines a
holomorphic map ¢g* of W|N;=n"'(N,) into ¥ which clearly maps each fibre 77" (s)
of W|N;, biregularly onto the fibre @ !(t(s)) of ‘Y. This proves our theorem.

Let ES) =t (8)+ L (s)+ -+ (8) 4+ -+ (2)
be the power series expansion of £(s) and let
(s) =t (8) + 1, {s) + s +Eu(9). (3)
Moreover, let 91 (21, 8) =21+ Guyy (21, 8) + ++ + Gupu (20, 8) + -+ (4)
be the power series expansion of g;(z;, ) and let
gt (zi, sy =2+ Gyy (25, ) + -+ + Gipu (24, 8)- (5)

We remark that gy,(z,s) is a homogeneous polynomial in (s, 8, ---, 8;) whose coef-
ficients are vector-valued holomorphic functions of 2z defined on {2 |z|<1}. For
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any vector-valued holomorphic functions P(s), @(s) in (s, s,, ..., 9;), we indicate by
writing P(s)%Q(s) that the power series expansion of P(s)—@Q(s) in (s, s,, ..., &)

contains no terms of degree < u. Clearly (1) is equivalent to the system of congruences
g“(hlk (zk) 8)1 8)%90‘ (9% (Zk, S); t“ (8))9 (,u=0’ 1’ 27 ---)' (6)#

Note that the power series expansions of both sides of (6), are well-defined at each
point 2z, € U, NU,

We insert here a remark on the first cohomology group H(V,, ®,) of ¥, with
coefficients in the sheaf ©, of germs of holomorphic vector fields on ¥,. Denote
the covering {U;} by lU. Since each U, is a Stein manifold we have the canonical
isomorphism (see Cartan [1], Leray [4])

HY(V,, ©)= H (U1, O,). (7
Let {04} be a 1l-cocycle on U={U,} with coefficients in @,, i.e., a system of holo-
morphic vector fields 6, defined respectively on U, n U, such that
0=0,+04 on U,nU,n U (8)
We write 6, explicitly in the form

O (2) = (ellk (z1), -5 O (21), ..., O ()

with reference to the system of coordinates (z;)=(#, ..., 2}, ..., 2'). The explicit form
of the cocycle condition (8) is:

< 9b (7-1).
=1 825’

0f (21) = 05 (2)) + p 6f (29),

where z,=b;(z;). Using matrix notation we write this in the form
- Ou (2) =0y (2) + By (2)) - O (), (2=by(2))),

where By (z) denotes the nxn matrix

9 by (Z/))
By (z) = _
(%) ( 6z§’ —lfm
Letting Buer (1) ="—’%"") o where 2z, = by, (2),
e -

we obtain a l-cocycle {4 (2)} on W={U;} with coefficients in @, For any tangent
vector
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of M at 0, the infinitesimal deformation g,(v) € H'(V,, @,) is, by definition, the
cohomology class of the l-cocycle

{ §1 Vr Boer (zi)}- (9)

T

By hypothesis, o4 : (Tx)y— H' (V,, ©,) is surjective. In view of the canonical isomor-
phism (7), we infer therefore that any l-cocycle {64 (z)} is cohomologous to a linear
combination of {fu.(2)}, r=1,2,...,m. In other words, for any l-cocycle {0y ()},

we can find constants y,, ..., y,, ..., ¥» and holomorphic vector fields
61 (Z() = (eil (21)1 “eey 07 (zl)y enay 01“ (zi))-
defined respectively on U, such that
21 Vr Buer (1) + By (21) - O (2i) — 01 (21) = Oy (21), (10)

where 2= bu‘ (Zk).

We may assume that By, () and By (%) are uniformly bounded:

Iﬂikr(zl)|<K1r lBlk(zk)|<K1y (11)

where |By (z)| denotes the usual norm of the matrix By (z). For any 1-cocycle
0 ={0i(2)}, we define the norm |o|| of ¢ by

llell =nt}aéx st;p | O (21) |-

LeMMA 1. For any l-cocycle o={0x(z,)}, we can find v, and 0,(z) satisfying
(10) such that
|7l <Ks-lloll, [6:(z)] < Ky-[|o]l, (12)

where K, 13 a positive constant which is independent of o.

Proof. We define
¢(0) = inf max {}y,|, sup |6,(z)|},
2

where inf is taken with respect to all solutions {y,, 8;(z)} of the equations (10). It
suffices to prove the existence of a constant K, such that

t(o)< K,+| ol
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Suppose that such a constant K, does not exist. Then we can find a sequence
o, ¢®, ..., 0%, ... of 1-cocycles ¢ ={02(z)} such that

1
o™ =1, |l¢”|l< S

t(6”)=1 implies that there exist y&’, 6{”(z,) satisfying

21 Y Buer (20) + By (2) 02 (2) — 00 (2)) = 02 (20), (13)
lyﬁ’) l <2, |0$’) (21) | <2, (14)
where z;=by,(2,). Hence, replacing o, ¢®, ... by a suitable subsequence if necessary,

we may suppose that

'}’r = lim y;")y

=00

0: (z) = lm 6 (=)

y—>00

exist, where the convergence 6{” (z,)—0,(z;) is uniform on each compact subset of
U, and 0;(z;) is holomorphic on U,. Since

1612 (2) | < || 6| >0 (v—>o0), (15)

we obtain from (13) the equality

21 Vs Bikr (21) + By (210) O () — 6; (21) =0. (16)

Let {U{} be a covering of V, such that the closure of each U is a compact subset
of U,. For each point z, €U, there exists at least one U} which contains z, = by (2;).
Hence we infer from (13) and (15) that 6{”(z;) converges to 6, (z) uniformly on the
whole of U,.

Letting

Y=y —yn 0 (@) =0 () — 0, (2)
for a sufficiently larger integer », we have therefore
lyrl<d [6i(e)|<}

while we infer from (13) and (16) that
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m
’ ’ !
2 Vr Bikr (21) + Bu (2ic) Ok (2) — 05 (2)) = 0% (=)
r=1

This contradicts with ¢ (¢®)=1, q.e.d.
Now we construet ¢ (s) and g% (z;, s) satisfying (6), by induction on u. It follows
from the identity
b (2 0) = by (2) = g (21> 0)

that £°(s)=0 and g} (2;, s) =2 satisfy (6),. Suppose therefore that t*~! (s) and g{™* (z;, )
satisfying (6),_1 are already determined. We define a homogeneous polynomial
Lty (2, 8) of degree p in (s, 8y, ..., 8), whose coefficients are vector-valued holo-

morphic functions of z; defined on U.nU;, by the congruence
Liru (2, 8) = 9% T (b (21 8), 8) — g (g5 (s 8), ¥ (9)),
where z;=by (z).
LEvMMaA 2. We have the identity

Lixy (25 8) =Tijiu (215 8) + By (23) Ty (255 9), (17)
where z;=by; (2;). _
PfOOf. For Sllllp].lClty let P{k|”=I‘ik|” (Z,-, 8), Fiil,u':Fiflll (2',-, 8) and Fik][l:I‘fk“t (Z;, 8),

where z;=20;; (2;) =by (2¢), 2, =bu (2). Since

Gure (s 1) =15 (i (25 1), 1),

we have

Fiku‘%gé‘—l (hik (2> 8) 8) =i (930 (9% (20> 8), #77 (5)), 77 ().
Using 9 (9% (s 8), 7 (@)%99‘—1 (Posse (x> 8)> 8) — Ly
we get

i (g (%7 (2, 8), 72 (8)), 871 (3))$9ﬁ (@7 (hie (2, ), $), #71(5)) — By (%)) * Diepr
Since g;l—l (hik (Zk, 0), O) = bjk (zk) =2j.
Hence we obtain
I‘“c[,‘%gé“l (har (2> 8)> 8) — 45 (@7 " (e (21> 8), 8), 71 (8)) + By (27) * T

Now, using Ay (2, 8) =hyj (by (26, 8), 5), wWe get
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9’1‘_1 (b (2x, 8), 8) — gy (97_1 (s (21, 8), 8), 1 (s)) =9“_.1 (B (B (21 8), 8), 8)
— 91 (97 (R (21, 8), 8), 7} (@)% Lijp (bis (R (215 8))s 8)%‘ Ciyp (bse (21), 9)-

Consequently we obtain

| TN = Cigju+ By (2) - Ty q-0.d.

Our purpose is to determine
B (s) =t () + 2 (s), gt (mi, 8) =g (21, 8) +Guu (2, 9)
which satisfy (6),. Letting

tll (3) = (tllll (8), eee s trlp (8)’ [ tm]u (8))’
we have
ik (gllé_l (Zk, 8) + Jrin (zk» 8)’ t”_l (8) + t# (3))

—;:_.‘hk (g% (z1s ), 71 (8)) + Buc (2) * Giepu (2, 8) + 21 tru (8) Bixir (21)s

where z;=by, (z), while

m (hil (Zk! 8)7 8) T:‘ Qiju (zh 8)-

Therefore, (6), is equivalent to the equalities
thr[u (8) Bukir (21) + B (2x) - Gueju (25 8) — Guiu (21, 8) = Ltk (2, 8)- (18)
re

Now the formula (17) shows that {T' (2, s)} is a homogeneous polynomial in s of
degree u whose coefficients form a l-cocycle on U ={U;} with coefficients in ©,.
Consequently, by the above remark (see (10)), we can find homogeneous polynomials
tu(8) with constant coefficients and homogeneous polynomials gy, (2, 8) whose coef-
ficients are vector-valued holomorphic functions on U; which satisfy (18). This com-
pletes our inductive construction of t*(s) and g¢f (z, $).

Now we prove that, if we choose proper solutions ¢, (s), g, (2, 8) of the equa-
tion (18) in each step of the above construction, the power series

t(s)=t, (3)+tz (8)+ - +¢, &+, g2 s)=z,+g,,1 (2;, 8)+ - + Juu (2, 8) + -+

converge absolutely and uniformly for |s|<e provided that ¢>0 is sufficiently small.
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Consider a power series
FO) =2 frr...msi sl ... ot
whose coefficients fu, n,...n, are vectors and a power series
a(8)=> ann,. msrish .. sH
with non-negative coefficients an,s,...n. We indicate by writing f(s)<a (s) that

| Frota... i) < @y i

b 1
t - —ct #
Le A (8) 610 % /‘26 (8, + 8+ - +8)
We remark that
b y—1
A (s)’<(;) A(8), »=23,4, .... (19)
Let Y=kt e s 25+t Yy ooy 2R+ Yn).

We may assume that the power series expansion of gy (2.+y, t) in n+m variables

Y5 oo s Yns tl, ceey tm satisfies
G (Ze+ Y, 8) — by () <Ay (3, 1), 2€UNU, (20)
b0 2 1
where Aoy, )= 2 h(yrt oyt lt oo H )
0 u=1

Moreover, we may assume that
hic (24, 8) — by (2) <Ay (8), %€UNTU,, (21)

where A, (s) is the function A (s) in which the constants b, ¢ are replaced by b&,, c,.

For our purpose it suffices to derive the estimates
“()<A(s), g¥ (2, 8)—2z<<A(s) (22),

by induction on u provided that the constants b, ¢ are chosen properly. For u=1
the estimates (22), are obvious if b is sufficiently large. Assume therefore that esti-
mates (22),_; are established for some u. We have

Ciku (200 8)%9’1‘_1 (hir (21 8), 8) — gue (g5 (21 8), 471 (8)),
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where z =by, (z). Letting Ul ={z] |z|<1-6},

we first estimate I'y), (2, 8) for 2, €U} NU,, where § is a sufficiently small positive

number such that {U} forms a covering of V,. Set
Gy (2 8) =g (2, 8)—2

for simplicity and expand G, (2 +y, s) into power series in y,, ..., ¥,, 8, ..., & Since
by our hypothesis,
G (z, 8)<A(3), for |z|<]1,

we gef
Gi(aty, o) =G <4 () S 5E0T, for [l <-4,
where D is extended over all non-negative integers vy, v,, ..., ¥, With v, +v,+ - +9,>1.

Letting y=hy (2x, 8) — by (2), 2 =by (z) and using (21), we obtain from this

Gy (hu (2, 8), 8)— Gy (2, 8) < A (8) { ( E 6774, (s)’)"— 1}, for z,€ U n U,.

-0

Since A4, ()" (by/c,) ™ 4, (8) for »=>2, we have

A, (8) ( b, )"" 4, (3)
—) == { =2,
5 “\ed 5
We may assume that —Ilo—<1 (23)
Y o 27

since (20) and (21) remain valid if we replace ¢, by a larger constant. Hence we have

éo (s)
61

4, (8)
27»—1 (5 ’

< for v>2.

Using this we obtain
" K
6 b 9, 9= G, )= 4 0) {(142922) " )<Fo st ) 4,0,
or

97" (hu (2, 8), 8) — P (21, 8) — g4 (21 8)+z,<% A(s) A (s), for z€UINT, (24)

where 2z, =by (z) and where K, is a constant depending only on n. Assuming that

b>by, c>cy (25)
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we have 4, (s)<%° - A4, (8),
by a_.Do
and therefore A(s) 4, (s)<3 A (s) <; A (s).

Consequently we infer from (24) and (21) that

glfl_l (hlk (zk’ 8)’ ‘9) - 9‘1‘_1 (Z,, 3)‘< (%b—o + %)) A (8), fO!' 2 € Ulg, n Uk. (26)

For any power series
f@)=fotfi(®+ - +fuls)+-
we denote by [f(s)], the term f,(s) of degree u. Then we get from (26)

Kyb,

[g57" (hux (265 8), 8)]u< (—aoT + %’) A (s) for z, €U, nUL (27)

Next we estimate gu (g5 ' (2, 8), t*7'(s)). We expand gy (2.+y,1) into power

series in ¥y, ..., Yo, &y, ..., &, and let

Ly (2, y, 1) =[gu (z+y, )],

be the linear term of the power series. Then we have, by (20),

b *®
glk(zk'*'y’ t)_btk(zk)“Lik(zk: Y, t)<c_o 22 c‘&(?/]'*‘ +yn+t1+ +tm)l"
0 u~

Letting y=g% ' (2, 8) —2, t=1t*"'(s) and using our inductive hypothesis (22),.;, we
obtain from this the estimate

0@ (3 o), # (NL<2 S o (m+n)* 4 (s)"

Co u—2
Assume that (m—_t:)—b% < % . (28)
Then we have

éz co(m+n)y 4 (s)"<”§2c‘6 (m+n) (%)ﬂ_l A (8)<2—(—m~j?nw -4 (s),
and therefore | (9w (%71 (2, ), t*71 (8))],,<<M+—7:)29—99&’ -A(s).
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Combining this with (27) we obtain

Cikp (21, 8)<<c*- A (3), for 2, €U N UL, (29)
2
where c*=K°b0+ﬁ)+2(m+n) bboco.
dc b c

Now we recall that the 'y, (2, s) satisfy the cocycle condition (17). In parti-
cular we have
Fiklu (21, 8) = By () quu (2, 8).

Combining this with (11) and (29) we get
Tiu (20, 8)<c* K, A (s), for z €U, nUS. (30)

For an arbitrary point z, €U, N U, there exists one U which contains z. Therefore
we infer from (17), (29) and (30) that

Cikju (21, 8)€2¢* K, A (),

and consequently, by Lemma 1, we can choose solutions t,,(s) and gy, (2, s) of the
equations (18) such that

t(8)<2c* K, Ky A(8), guu (2, 8)<2c* K, K, 4 (s).

On the other hand, it is clear that, by a proper choice of the constants b and ¢

satisfying our requirements (25), (28), we obtain

2¢* K, K,<1.
Consequently we obtain

L (8) <A (), guulz, 5)<A(9).
This proves (22),, q.ed.
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