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1. Let  ~1 . . . . .  ~t 5 be any 5 real numbers, not all of the same sign and none of 

them 0. I t  was proved by  Davenport  and Heflbronn [7] that,  for any e > 0 ,  the 

inequality 

is soluble in integers x I . . . . .  x 5, not all 0. The mention of e here is in reality super- 

fluous, for if the solubility of 

[~1 X12 + ' ' "  + ~5 ;~[ < 1 (2) 

is proved for all 21 . . . . .  25, then the solubility of (1) for any e > 0 follows, on applying 

(2) with 2j replaced by e -x 2j. 

Our object in the present paper is to make this result more precise by  giving 

an estimate for a solution of (2) in terms of ~t I . . . . .  2b. I t  would not be easy to do 

this with much precision by following the original line of argument, which depended 

on considering the continued fraction development of one of the ratios 2~/~. 

The result we shall prove is as follows. 

T H E 0 R E M. For ~ > 0 there exists C~ with the ]ollowing property. For any real 

21 . . . . .  25, not all o] the same sign and all o] absolute value 1 at least, there exist in- 

tegers x 1 . . . . .  x 5 which satis/y  both (2) and 

o< I ,1 c IA1 ...  511+ . (3) 

In  another paper [1] we have applied this result to general indefinite quadratic 

forms. We have proved tha t  any real indefinite quadratic form in 21 or more vari- 

ables assumes values arbitrarily near to 0, provided that  when the form is expressed 



260 B. J .  B IRCH AND H.  D A V E N P O R T  

as a sum of squares of real l inear forms with posit ive and  negat ive  signs, there are 

ei ther  not  more  than  4 posit ive signs or not  more  t han  4 negat ive  signs. 

An impor t an t  pa r t  in the  proof  of the present  theorem is p layed  b y  a result  of 

Cassels [3] which gives an es t imate  for the magni tude  of a solution of a homogeneous  

quadra t ic  equat ion with integral  coefficients. We use Cassels's result  in the  modif ied 

form which we have  published recently [2]; this modified form is essentially the  same 

as the special ease of our present  theorem when 21 . . . . .  2s are integers, bu t  wi thout  

the pa rame te r  ~. I t  is r emarkab le  t h a t  the  result  obta ined here when 21 . . . . .  25 are 

real is a lmost  as good as t h a t  known for the special ease when 21 . . . . .  2tl are integers. 

I t  m a y  be of interest  to r emark  t h a t  the use of Cassels's result  is not,  in prin- 

ciple, essential. The  special ease of the  theorem in which 21 . . . . .  2~ are integers 

could be proved  analyt ical ly,  and we could then  use this in place of Cassels's result  

in the present  work. 

As a corollary to the  theorem, we note  t h a t  if 21 . . . . .  25 are fixed, and  e is an  

arbi t rar i ly  small posi t ive number ,  there exist solutions of (1) with x I . . . . .  x 5 all 

0 (e -~-~) for a n y  fixed 5 > 0 .  

2. Throughout  the  paper  21 . . . . .  25 are real, not  all of the  same sign, and  all 

of absolute  value 1 a t  least. Le t  

A = m a x  12,1. (4) 

Le t  P be a posit ive number  wi th  the  p rope r ty  t h a t  the  inequal i ty  (2) has  no 

solution in integers x 1 . . . . .  x 5 satisfying 

o <  I~,1 xf + - . .  + 1261 ~ < 5oo P ~. (5) 

We shall u l t imate ly  deduce a contradict ion when P is t aken  to be of the  form 

C~121 ... 251 a+~)rz, with a sui table (large) C~, and  this will p rove  the theorem.  Bu t  

for the t ime  being (until L e m m a  6) we make  only the  weaker  supposi t ion t h a t  

P A -~ is large (i.e. greater  t han  a suitable absolute  constant) .  This supposi t ion is 

plainly essential f rom the na ture  of (5i. 

We define exponent ia l  sums S 1 (a) . . . . .  S 5 (a) b y  

~, (~) = ~ e (~ 2j x~), (6) 
P < I,a~li~j < lop 

where e (0) = e ~ ~  

L~.MMX 1. There exists, ~at any "positive integer n, a real /unction K (ac) o/ the 

l~sitive vari~le ~, sati~/ying 
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I K (~)1 < C (n) min (1, oC"-1), 

with the /ollowing property. Let 
o o  

w(O)=~ f e(Oa)K(a)da. 
0 

Then 0 <~ v 2 (0) ~ 1 /or all real O, 

w(o)=o /or Io1>~1, 

v(0)=l /orf01<~. 

For a proof, see Lemma 1 of a paper by Davenport [4]. 

C O R O L L A R Y .  W e  h a v e  

t~  

/ $1 (~) "'" $5 (a) K (~) d ~ = 0. 
0 

Proo/. By (8) and (6), the left hand side is 

Y ... V~(~,x~+. . .  +~5~), 
Xt x i 

where the summations are over the intervals occurring in the sums (6). 

the hypothesis that  (2) has no solutions satisfying (5), the sum is 0. 

3. We define I ( a )  by 
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(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

By (10) and 

10 P 

I ( a ) =  / e(:t~')d~" (13) 
~t  
P 

LE~tMA 2. For 

1 p-1 I- t 0 < ~ < T 6  I;tj (14) 

we have Sj (a) = [2~ [-t I ( q- a) + 0 (1), (15) 

where the +_ sign is the sign o/ 2j. 

Proo/. This is a special ease of van der Corput's lemma ([8], Chapter I, Lemma 13). 

If / ( x ) = a l 2 , 1 x  ~, then for Pla, l-~<x<loel2,l-~ we have 

/" (x) >o, 0<1'  (z)<~, 
by (14). Hence 

1 8 -  583802,  A c t a  ma themat l ca .  100. I m p r i m 6  le 31 d6eembre  1958. 
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S j  ( a )  = 

lOP[~ I - t 

f e(o~j~2)d~+O(1) ' 
Pi~Jl- �89 

and (15) follows on changing the variable of integration. 

L E M M A  3. F o r  ~ > 0  we h a v e (  I ) 

[I(+_ ~)l < rain (P, p-1~-1). 

Proo[. The estimate P is obvious from the definition (13). 

follows from the alternative representation 

100P I 

pI 

and the second mean value theorem. 

L E M M A  4. W e  have 

where 

Proo] . 

~16P ] A -  �89 

f S 1 (~) ... S 5 (~) K (~) d a = M + R, 
o 

(16) 

The second estimate 

(17) 

1 
M :>6 P31~1 "'" ]tSI-}~' I R I < P '  A~ I~l "'" ~6[-�89 (18) 

In the interval of integration, the condition (14) of Lemma 2 is satisfied 

for j = l  . . . . .  5, and so (15) holds for j = l  . . . . .  5. By (16), 

I)t,I - t  [ I (  _+ a) l<12, [ - t  rain (P, p-1 a-l), 

and the right hand side is > 1  for all ~ in the range of integration. Hence (15)gives 

t-FI1SJ ( 6 r  " ' "  ~5[-1 ]-11~I(+--a)[ < (~. [ ~  ... 25[ - t)  min (p4, P - '  a- ' ) ,  

where  the summation is over all selections of four suffixes from 1 . . . . .  5. Obviously 

. . .  . . .  

(1) The  n o t a t i o n  < indica tes  a n  inequa l i ty  wi th  an  unspec i f ied  c o n s t a n t  factor .  I n  general ,  

t h e se  c o n s t a n t s  are  abso lu te  unt i l  L e m m a  7, a f te r  wh ich  t h e y  m a y  depend  pn  ~. The re  is an  obvious  
excep t ion  w h e n  an  unspec i f ied  c o n s t a n t  occurs  in a hypo thes i s ,  as in L e m m a  9. 
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by (4). Hence 

4-~p- I A -  �89 

f 
0 

~[IdP- / A -  | 

S~(a) ... Ss(a)K(a)do~=[21 ... 25[ - t  f I(+_~) . . . I(+_a)K(ot)da 
0 

+ O {At121... 251-i ; min (P*, P-~ ~-4)da}, 
0 

and the last error term is 0 (3. t 121 ... 251 - t  p2) 

and can be absorbed in R by (18). Thus it suffices to consider 

4 - ~ p - I A -  ~ 

~]21 ... 251 - t  f I ( + o 0  ... I(+_oOK(oOd~, 
0 

where the signs are those of 21 . . . . .  25. 

The error introduced by extending the integral to ~ is 

<121 "'" 251-�89 t P-5~-Sd~ 
i g  

~ o P - 1 A  - t  

< 121 . . .  2sI-�89 4 A 2 

< P Z A i [ 2 a  ... 251 - j ,  

since P > A t. 

I t  remains to give a lower bound for 

M={R]21 ... 25[ -~ I(+_~) ... l(+oOK(a)do~. 
0 

By (13) and (8), we have 

l O P  l O P  

~=12,  ... 251-' f ... f ~(_+ ~ _+... _+ ~:)d~, ... de5 
P P 

1 0 0 P  s l o o P a  

p~ p2 

(19) 

We can suppose without loss of generality that  the sign attached to ~/i is + and 

that  attached to ~/2 is - .  The region defined by 
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P 2 < ~ s <  4 p 2  , P~ < ~4 < 4 P*, P2 < ~]6 < 4 p2, 

1 

14 .F ~ < r/z < 87 p2, 

is contained in the  region of integration. Hence, by  (9) and (11), 

87P �9 4P' 

2 

14pt  pt  

This completes the  proof.  

4. L E M ~ A  5. We  have 

IXJl - a 

f ls,(~,)l'd~.<lA, l-~e ~- log 
0 

P.  (20) 

Proo]. Put t ing  a = ] 2 1 ] - 1 0 ,  we see tha t  the integral on the left is 

1 

I,~,l ' f l~(O~)l'dO, 
0 

where the  summat ion  is over 

:Now 

P <  12~1 t z <  lOP .  

1 

f 
O 

(21) 

is the  number  of solutions of x ~ + y ~ = z 2 + w  2, where x, y, z, w all range over the 

interval  (21}. This number  does no t  exceed 

r 2 (n), (22) 
n < N  

where r (n )  is the  number  of representations of n as a sum of two integral 

:squares, and 

I t  is well known  t h a t  the sum 

:from this. 

Le t  

N = 200 p2 [2j 1-1. 

(22) is < N log N, and the estimate (20) follows 

5 

I-I = I-] l~t,l. (24) 
t - 1  
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LEMM.r 6. Provided P > I I t ,  we have 

~Lop-1 ~ -�89 

f ISI(=) ... S s ( o O [ d o ~ < I - I - i P  ~ (log P ) A  t. (25) 

~16p- 1 A -  �89 

Proof. We suppose, during this proof only, tha t  [211 < [2, [ <--- ~< [2~ [, so that  

A = [~t~ [ and 2 = ]21 ]- We spht up the interval of integration into the 4 intervals 

r '  12 1-, < r '  {26) 

where k = 2  . . . . .  5, In (26), the condition (14) of Lemma 2 is satisfied provided 

j ~ < k - 1 .  Thus, for ~ in Iu, (15) and 06) give 

I s,(~) 1<12,1 -* P-'  ~-1 + ~<l~,l-~ e _ , ,  (27) 

for j ~ < k - 1 .  For j>~k we use merely the trivial estimate l~,(=)l<Pl~,l-~. He.~,  
in Ik, 

[S x (~) ... 85 (~)[<1-[- t (p-, ~-x)k-1 ps-(~-x,. 

Thus, provided k >~ 3, 

f ]S x (~) ... S 5 (=)[d =<1-[ -~ (P- '  [2~ ]-*)- 

= [I -~ P~ (P-' 12~ I~)~-~<l-I -j P' p- '  A~. 

There remains the case k = 2, corresponding to the interval I z. Here (27) is still 

valid for j = 1, and implies 

Is, (~,)I< I ~., I-* I ?.~ 1'. (2s) 

For the remaining factors we use Lemma 5. For j = 2, 3, 4 we have 

I ~, 2~ I-~ ~>I7-~ >v-~ > l p - x  1211 -t. 

Hence I~ is contained in the interval 0<  ~<]2j l  -x of Lemma 5, and 

f ls,(~)l '  ~<la, I -~ log r d p~ P. 

I,  

For ] = 5  this argument fails, but as $5(~ ) is periodic with period [2,1-1, we can 

say that  
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f ls, (at)l 'dat<l) .~l-~P ~ 0og P) {1 + P - '  I).ll-' I~l}. (30) 
I ,  

The estimate (29) for ~ = 2, 3, 4 and the estimate (30) imply, by H61der's inequality, that  

f l s ,  (at) ... ss (at) l ~at<l).~ ... ~ I -~ P~ (log P) {1 + p-a I).11 -j  1 25 l} ~. 
I ,  

In view of (28), we obtain 

f 
f~ 

IS1 (at) ... S s (at) l dat<I-I - t  p2 (log P)1).21' {1 + p-1 i).1 i-t  I).s l} ~ 

<i- i -~ p2 (log P) A t +l-I - t  P ' -  (log P)I). ,I  * [).11 - j  1251 ~. 

~Tow I~1' I ~,1-* I ~, I' < I-I' I~1 * I~,1 -* I~1' < YI* A* < P* A* 

This gives the estimate (25), and the proof of I~.mma, 6 is complete. 

5. LEMMA 7. For 6 > 0  there exists C~>0 such that i[ P > C ~ y I  6+t then 

Proof. By the Corollary to l~mma 1 and by Lemma~ 4 and 6, we have 

M + R + R' + R" + R '"=O,  

where [R [ + JR' [.< l-I- i p2 (log P) A t 

= J ~'~1 (~) ... $5 (~) K (~) dat, and R"  
~p-l~-~ 

R tit = f S  1 (og) .. .  S 6 (at) g (of) dat .  
qr  

1,o 

By (7) and the trivial estimate I Sj(at)[<P[). , [  - t  we have 

IR"' I<P~ FI-' C (n) p -% 

Choosing n = [5 (~-'] + 1, we get 

[R"'[ < C1(~) I-I-'. 

(31) 
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Hence [ M + R " I < I - [ - t  P ~ (log P)A�89 + Cx (~) I ] - J < P  ~ log P + C  1 (r - t .  

In  view of (18), the desired result, namely 

IR,,I > l e ~ Y i - ~ ,  

will hold provided that  both 

P 
log P > C2 I-I t and pa > C, (8), 

267 

for a suitable absolute constant C~ and a suitable positive C 2 ((5). Both these condi- 

tions are satisfied if P > Ce l-I a+t, with a suitable Ce. 

From now onwards we shall be concerned solely with values of ~ in the interval 

Y: ~ 0 P - I ~ - t < ~ < P  ~. (32) 

6. For any integers a, q with q > 0  and (a, q)= 1 we define 

q 

&. ~ = 2: e (a ~ / q ) ,  (33) 
Z--1 

and for any integer �9 we write 
q 

Sa.q.,= ~ e( (aza +ux) /q ) .  (34) 
X=I 

L v. M M A 8. We have, /or (a, q) = 1, 

JSa.q[<q 1, [ S a . q . , J < q J .  (35)  

Proof. The first result is well known ([8], Chapter 2, I~mma 6), and the second 

follows from it; for instance, if q is odd then 

ax~ T ~,x-- a (x + vb) 2 - a b 2  y z 

for 2 a b - - 1  (mod q), so we have JS~.q.,[=[S~.q[. 

The following approximation to S (~) is well known in principle. (1) 

L EMMA 9. Suppose that A > 1 and that ~ is a real number satis]ying 

a 

= - + fl, (36)  
q 

(1) For the corresponding results for higher powers instead of squares, see [5] and [6]. 
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where ( a , q ) = l ,  0 < q < A ,  4 0 ] f l ] < q - l A  -1. (37) 

IOA 

Then a <z<10A~" f e(fl~)d~+O(q �89 log2q) .  (38) 
A 

Proo[. I t  will be convenient to suppose that  neither A nor 10 A is near an in- 

teger; this supposition is permissible since the sum and the integral in (38)vary  only 

by an amount 0 (1) if a is varied by an amount 0 (1). Strictly speaking, such a 

variation may disturb the condition A > 1 or the condition (37), but these conditions 

are not used with any precision in the proof. 

We first dissect the sum according to residue classes modulo q: 

q 

e(~x~) = ~. e(az2/q) ~. e(flza). 
A<x<IOA z - 1  A<x<IOA 

x~----z (rood q) 

(39) 

The inner sum is e (fl (q Y + z)~), 
(A-z ) /q<y<(IOA -Z)lq 

and by Poisson's summation formula this is 

(10 A - z ) l q  (10.4 - z ) lq  

(A--z)lq ( A -  z)/q 

e (fl (qq + z) ~ + v 7) d~,  

where ~ '  is over v4=O with the terms v, - v  taken together. 

substituting in (39), we obtain 
10A 

e(ocx2)=q-tSa, q f e(~:2)d~+E' 
A<x<IOA 

A 

i0A 

where E = q-1 ' S f 
A 

Putting q~/+z ~ ~, and 

(40) 

Suppose for simplicity that  fl > 0. We have 

y2 

and we note that  [ v [ > 20 A 
2qfl 

by (37). This ensures that  .$+v/(2qfl)  does not vanish even when v is negative, so 

putting { ~ - v / ( 2 q f l ) } - f l - 1  $, the integral in (40) becomes 
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~a 

where ~ l = f l ( A + ~ q f l ) 2 ,  ~ = f l ( 1 0 A +  v~qq~)2. 

Since ~1 :>0 and ~ > 0, integration by parts gives 

e (~)d~ = ~_1 {$~�89 e (~2) - Sf�89 e (~1)} + 0 (~-f t ) +  0 (~i ')  

2 q fl} { ] 
- 2 g i  (sgn~) r + 2 0 A q f l  e(lOOA2fl+lOAv/q) 

1 e(A2fl+A@q)}e@/(4flq2))+O(qaflt[~i_a)" 
u+2Aqfl  

Substituting for the integral in (40), we obtain 

E= ' S:.q._, r + 2 0 A q ~  - -  e ( 100  A 2 ~ + 10 A v/q) 

l ~,Sa.q._" 1 
2 i v+2Aqf l  e(A: p+ A ,/q)+O(E'IS,.~.-,iq~ ~I,I-:). 

P 

By (35) and (37), the last error term is 

0 (q2++ fl) = 0 (q+). 

I t  remains to consider the two sums over v, and as they are essentially the same 

it will suffice to treat the second. 

We have 

V' Is, . , .- . l  1~,+2Aq~I-'<q + Y' }~,l-"<q + log 2q. 
I , I ~ Q  t tvl~<q' 

The sum over I~'l >q~ can be written as 

q 1 E e (az2/q) E' ~_~ ,.j>~, v + 2 A q ~ e (~ (.4 - z) /q) ,  (41) 

apart from a factor of absolute value 1. The inner sum here, by Abel's lemma, has 

absolute value 

< q - +  II (A - ~)/q I1-1, 

where II011 denotes the difference between 0 and the nearest integer, taken positively. 

As we supposed that  A was not near to an integer, we have 
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II(A-z)/qll>c'. 

Hence  the  double s u m  in (41) is 0 (1 ) ,  and  we have  

I E l < q +  log 2q. 

This completes  the  proof of (38). 

COROLLARY.  SUppOSe tJtO~ 

;tj~ = ~ +  flj, (42) 
qJ 

where (a,,q,)=l, 0<q,<Pl~ , l : t ,  4ol/~,l<qf'p-~l~,[+. (43) 

Then [s,(~) I<q;t (log P) min (P  [ ; t j [ - t ,  p-X i~,l+ ifl, l-~). (44) 

Proo/. The  hypotheses  of L e m m a  9 are satisfied when A = P [ 2J I- t, a = aj, q = qj 

and  u is replaced b y  2ja.  The  sum on the  left of (38) then  becomes $j(g) .  Hence(1) 

tOPIXjl - i 

S , (a )=qj -XS~. , ,  j e(fl,~2)d~+O(q~ log 2q,). 

PlaJl - t 

Using (35) and  es t imat ing  the  integral  as in the proof of L e m m a  3, we obta in  

Is,(~)l < qi-+ rain (Pla, l-+, P-'[~,[+ [/~,i-~)+qj+ log 2q,. 

Since q)<q;+plX, l-t and q)<q;+p-'l~,ltl/~,I -', 

b y  (43), the  result  follows. 

7. For  a n y  u in the in terval  (32), and  for each ~ = 1  . . . . .  5, there exist  integers  

aj, qj such t h a t  

(aj, q , )=  1, 0 < q j < 4 0 P [ ~ , [ -  J (45) 

and  2~ a = ~ + flj, (46) 
qJ 

where I~,l< q,-' (4o PlY, I- ~)-'. (47) 

Thus  (42) and  (43) are satisfied, and  consequent ly  (44) is valid. 

(l) I t  is of interest to note that if qjffi 1 and aj=0,  so that ~apqj = 1, this approximation reduces 
to that of Lemma 2. 
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I t  is important to note tha t  none of a 1 . . . . .  a 6 is 0, for a j=  0 would imply 

I ~ 1  = I~,1 < ~ v-114,[ +, 
contrary to (32). 

Let  :~ denote the subset of the interval :/, defined in (32), consisting of those 

for which 
16/,(o,) I > e l -~ ' I - I -  + I;t,I- + ( i=~  . . . . .  5). (48) 

LEMMA 10. We have 

f 16/x(~) pS +~n �9 " 6 / 5 ( ~ ) l d a <  - x l - t" (49) 

Proof- In ~ / -  :~, one of the inequalities (48) is false, say that  for j =  5. Thus 

Is~ (~)1< Pl-~ H-+ 1451 -+. (50) 

By Lemma 5 and the periodicity of 6/~(~), with period 14,1-*, we h~ve 

f 16/,(,,)I'd,, < 14,1-1 log 
pz+,~ P. 

0 

I t  follows from the cases ]= 1, 2, 8, 4 of this, and H61der's inequality, that  

p~ 

f l s~(,,) ... 6/,(,,)1 ,~ < I~, ... 4,1 log = H -  I gs] i log d t p~+6 1 P t p~+~ P. 

0 

From this and (50), it follows that  

f 16/, (o,) ... 6/5(~)1a~ < ~ - ~  (log P) 1-I -+, 

whence (49). 

8. I t  follows from Lemmas 7 and 10 that  

provided that  the constant Ca of Lemma 7 is taken sufficiently large. The remainder 

of the paper will be concerned with deducing from (51) a contradiction to the basic 

hypothesis made at  the beginning of w 2. 
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I t  will be convenient to consider the parts  of ~ in which 181 (a) l . . . . .  IS5 (a)I, 

qx . . . . .  q5 are all of particular orders of magnitude. Let  T 1 . . . . .  T s ,  U1 . . . . .  U~ be posi- 

t ive numbers, and let ~ = ~ (T 1 . . . . .  Us) denote the set of those a in ~: for which 

1 
(i = 1 . . . . .  5), (52) 

1 
~U,<12 , l t q j<Uj  ( j = l  . . . . .  5). (53) 

By (48) and the trivial upper bound for ISj(a)[, we can suppose tha t  

P - ~ - t < T j < 2 0 1 2 j l  -~. 

By  (44), T j <  Us - j  (log P) rain (1, P-~12,11~,1 

whence Uj < (log p)z T[2 

and ]2Jl- '  IflJl < p - 2  (log P)T/-1 U/-�89 

We have also Uj>~l]tjliqj>~l by (53). 

(54) 

(55) 

(56) 

L EMMA 11. There exist T 1 . . . . .  T s ,  U 1 . . . . .  U 5 such that the measure o/ the set ~, 

say m(~) ,  satisfies 

m (~) > p - 2  {log p)- lo  1-i-t (T 1 ... T5)-1. (57) 

Proo/. Since the numbers Tj and Uj are bounded above and below by  fixed 

powers of P, it is clear from the nature of (52) and (53) tha t  the number  of choices 

for T 1 . . . . .  Ts, U 1 . . . . .  U 5 tha t  need to be made to cover all ~ in :~ is ~ ( l o g P ) 1 ~  

Hence, by (51), there is some choice such tha t  

f ls~ (~) ... 85 (~)l d~ > p3 1-i_j (log p)-lo. 
r 

For  any ~ in ~, we have 

18~(~) ... S s (a ) I<PST1  ... T51-[-~ 

by (52). Hence (57). 

9. From now onwards we shall be concerned only with a particular set T 1 . . . . .  Ts, 

U 1 . . . . .  U 5 for which (57) holds. We shall suppose, as we may  without loss of gener- 

ality, tha t  
T~ >/T, ( i=  2 . . . . .  5). (58) 
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For each j (1 ~<j~< 5), the number N~ of distinct integer pairs a], q~ 

Thus, in particular, 

la~l q, < I;t~l ~q~q,< I~1 j I~t,I -~ U1Uj P~, 

by (53) and the fact that  ~<  p6. This proves (60). 

Next, by (46), 

al qt JtJ~tl - aj ql = al qt (a~ + qj ~)  (a 1 + ql ~1) -1 - aj ql = qt (al qJ ~ - aj qt fit) (at + qt ~1) -1- 

This has absolute value 

< I)-t[ - l~-a  ([al I q,[~,l + la, I q, [~1 [) 

= q,q, (1~tl + l~,2~t fill) �9 

L E M M A  12. 

wh/ch at/Be from all ~ in ~ 8~isfies 

z~rj :~ (log p)-11]-[-i (T 1 ... T5)-1Tt U/t. (59) 

Proof. The fact that  x gives rise to aj, qj implies, by (46) and (56), that  

I aJl 
2 , ~ - ~  < I2JIp-2 (log P) T;1U;L  

This limits a to an interval of length 

< P-~ (log P) T71Uj-J 

By (57), the number of such intervals must be 

~. p-2 (log P)-lO l--[-t (T, ... Ts) -1 pz (log p)-I  TjU), 

and (59) follows. 

LlCMMA 13. For j = 2 ,  3, 4, 5, the integers al, ql, aj, qj corresponding to any a in 
q ,atis/y 

o <  [a, lq, < I ;~, I* I~,[-* ~ U ,  u,, (60) 

I al qt ;L,/A1 -- a, ql [ < I;tx I- * I A, l* ( u ,  v , )*  (T 1 Tt) -x p - 2  (log e)2 .  (61) 

Proo]. As remarked in w 7, we have aj:4:O (j= 1 . . . . .  5). Also ]flJl is small com- 

pared with qi 1 by (47). Hence, by (46), 

la, I ~q, < la,[ < la, I ~q,. 
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Using (56) and (53), we obtain the estimate 

~,l*lx~ I e l  u,  (T; ~ Ui -t + T{t  UgJ) P-~ (log P)<[ 2,[~JX, [-t U~l u,~ T{ 1 T;  * P - '  (log P) ' ,  

the last step by (55). The lemma is proved. 

LEMMA 14. Suppose 0 is real, and suppose there exist N distinct integer pairs 

x, y satis/ying 
[ O x - y ] < r  (62) 

o < l z l < x ,  (63) 

where ~ > 0 and X > O. Then either 

N < 24 ~ X (64) 

or all integer pairs x, y satis/yinj (62) and (63) have the same ratio y /x .  

Proof. We can suppose that  X >  1, since otherwise N=O by (63), and (64) is 

trivially satisfied. We can suppose also that  ~< �89 for if ~/> �89 we have 

N <~(2X + l ) (2~ + l )<.12X~.  

There exist integers p, q such that  

(p,q)=l, O<q<2X,  Iqo-pl<<.(2x) -1. 

If x and y satisfy (62) and (63), then 

Ixp-yql<<.Jx(p-qO)  I + j q ( x O - y )  j < X ( 2 X ) - ~  +q~=�89 +q; .  

If q ~ ~ �89 we obtain x p - y q = 0, which gives the second alternative of the enunciation. 

If q~ > �89 the number of possible residue classes for x (mod q) is less than 2 (�89 + q~) + 

+ 1 < 6q ~, and consequently the number of possibilities for x is less than 

6 q ~ ( 2 X q  -x + 1)< 1 2 ~ X +  125X. 

Since x determines y with at most one possibility by (62), we obtain (64). 

LEMMA 15. Suppose that 

p~-0~ > C~ I-I, (65) 

for a suitable Co. Then, [or each i = 2 . . . . .  5 and /or any o~ in ~, we have 

a lqj Aj 
ajqt Bs , (66) 

where A j, Bj are relatively prime integers which are independent o/~,  and Bj > 0, A s * 0. 



in 0 satisfy 

where 

Proo~. 

o<l l<x, 

r < la, l' I-' (u1 UJ) ! (T1 T,) -1P-2 (log 

X < I ;t,[-* I;tll t P~VlU,. 
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By Lemma 13, the integers x = a x q  j and y = a j q  1 corresponding to any 

(67) 

(68) 

(69) 

(70) 

The values of x and y determine those of al, q~, aj, qj with < P* possibilities, for any 

fixed e > 0  (note that  a j*0 ,  as remarked earlier). Hence the number N of distinct 

integer pairs x, y that  arise from all ~ in ~ satisfies 

N > P-"  N1, (71 ) 

where 2/1 has the significance of Lemma 12. 

By Lemma 14 there are two possibilities: either all y / x  have the same value, 

independent of ~, which gives the desired conclusion for the particular j under 

consideration, or (64) holds. In the latter case we have 

p-~ Nx < p-2+6 (log p)2 (U 1 Uj)! (T 1 Tj) -I, 

by (69), (70), (71). Using (59), we obtain 

(log p)-,1 I-i-* (Tl ... Ts) -1 T1 U~ .~ p-g+~+e (log P)* (U 1 Uj) ! (T 1 Tt) -1, 

that  is, p2-~ T~ Tj < ~ T x ... T 5 U 1 U~. 

By (55), this gives T! T~ < p-2+u i-It.T x ... Ts" 

Cancelling Tj from both sides and using (58), we obtain 

4 8 p - 2 + u ~  Tx T~ < T~. 

Since T j > P - ~  -~ by (54), this implies 

p - ~  I"[-! < p-a+u 1-[t , 

which contradicts (65) if C6 is suitably chosen. Hence the result. 

L~MMA 16. Suppose (65) ho/ds. Then the integers al, q~ . . . . .  as, qs, corresponding 

to any o~ in ~, are o/ the /orm 

t " t 

a j = a a  t, qr ( j=  1 . . . . .  5), (72) 
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where q > 0, a > 0, and 

where H is independent o[ a and 

0 < H < pt7. (74) 

Proof. Since (at, qt) = (aj, q~) = (Aj, Bj) = l ,  the equat ion (66), which can be wri t ten  as 

at a 1 B t  

qJ qt At '  

a t B~ qt Aj 
implies t h a t  a~ - (at, At ) (ql, Bj)' qJ = (at, At) (qt, Bj) " 

Define a and  q b y  
[ at [ qt 

a (al, A2AaA4As) '  q =  (ql, B~BaB4Bs)" 

Then  a and  q are integers, and  aria, q,/q are integers, say a~ and  q~. Also a~ and  

q~ are divisors of A~.AsA4A 5 and B~BsB,  B 5 respectively.  

Fur ther ,  for j = 2 . . . . .  5, we have  

a t q Bj (al, A~AaA4A 5) 
a - ( B j ,  qt) (at, At) ' 

and  the expression on the right is an integer, say a~, which divides BjA2AaA4A 5. 

Similarly qj/q =q~ is an integer which divides AjB2BaB4B 5. 

Taking  H = [ A~ As A ,  As [ B2 Ba B4 Bs, 

so t h a t  H is independent  of g, it remains  only to  prove  (74). By  (66) and (60), we have  

IA, I < IAtl t I~,1-~ P~ u~u,, 

and similarly B, -< I )-t l- t I ,;t, I t P~ U t U,. 

Using (55) and  (54), we obtain  

IA,[ B, < p2~ U~ Up < ps~ T~'  T f '  < P  '90 H 2. 

Hence ,  by  i65), H < p~6~ i-[8 < p t T .  

This proves  the  lemma.  

10. LEMMA 17. For any non-zero integers fl . . . . .  [5, not all o[ the same sign, 

there exist integers Yt . . . . .  Y5 such that 

/ , ~ +  ... + h y ~ = 0  (75) 
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0< I b i S + . . .  + ] h l  u~< Iht~ ... hi.  (7~) 

Proo]. This is contained in our modified form of Cassels's result referred to in w 1. 

LV.~M~ 18. Suppose (65) holds. Then the integers a, q which correspond to any 

a in ~,  in the manner o~ Lemma 16, satie/y 

aa q6 < p-2+56 (U 1 ... U~)Z max T ;  x U ;  i.  (77) 
l~k~5  

Proo]. B y  (46) and (72) we have 

~ ~ + . . . + ~  + ( ~ + . . . + ~ x ~ )  (41 x~ + . . .  + 45 x~) = q \ql q6 

for any  a in ~ and any  xl, ..., x 5. Pu t t ing  x~ = qj y~ for ] = 1 . . . . .  5, we obtain  

a , , - , , 2 ,2 2 + , ,  , 2 . 2 ~  
�9 " • a5 q6 ys) yl + "'" a (41 x~ + "  + 45 x~) -~ q (al ql ~ + " "  + (ill qx Pb q~ y~J- 

The signs of alq; . . . . .  a~q'5 are the same as the signs of ax/qx . . . . .  as/qs, and these 

are the same as the signs of 41 . . . . .  4 s. Hence alq~ . . . . .  a'sqs are non-zero integers, no t  

all of the same sign. I t  follows from Lemma 17 tha t  there exist integers Yl . . . . .  Y5 

such t h a t  
al q ; ~  + ' "  + a ; q ; ~ = O  

and 0 < I a; q'~ l ~ + " "  + l a'5 q'6i ~ < l a; . . .  a'~l qi ... q'5. (78) 

For  the corresponding integers x~ . . . . .  xa, we have 

and o<l,hl~+...+14,i~<<2~-laq-'(laiqii~+...+ia;q'~iy~). 

B y  the basic hypothesis  made at  the beginning of w 2, the conditions (2) and  

(5) cannot  both be satisfied. Hence either 

] f l l  ] q l  ~ ~ + + I ,9. ~ ( 7 9 )  "'" fls]q6 y s > a  

or l ai qi[ Yx ~ + " "  + [a~ q~l ~ > 250 a a -~ q P*. (80) 

We examine the second al ternative first. By  (78) it implies t ha t  

lal ... a'51q~ ... q~ ~" o~a-X q P 2, 

18 I"--583802. AeAa mathemat/va. 100. Imprim6 le 31 dSeembro 1958. 
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whence a-5 q-5 [a I ... a6 ] ql ... qa >" a a -1 q p2. 

Since l a, I < I~,l ~ q,, th~  gives 

IX1 .-- ~a I qx ~ . . .  q~ ~" ~-4 a 4 q. p~, 

(U1 ... U~) ~" > ot-4 a~ q~ P ~, whence 

by  (53). 

(81) 

We now examine the first alternative, namely (79). By (56), 

q (log P) T; 1 U; '  Ix~l ' ~  qk, 

, ~l;tklq~9*<a-1]ak] ,~ ~-1 -1 , , a n d  q k =  aq la~]q~. 
qk 

Hence (79) and (78) imply 

< p -2  (log P) ot -1 aq  -1 (max T~, 1 Ui,~)la~ ... a'slq'x ... q~. 
k 

Simplifying this as before, we obtain 

(U 1 ... Us) ~ max T ;  1 UT, �89 ~ a -a a 4 qe p2 (log p ) - l .  (82) 
k 

Since T~ 1 U ; t  > (log p ) - i  

by (55), and since a < P  n, both the alternatives (81) and (82) imply (77), and this 

proves the lemma. 

11. Completion o/ the proo/ o/ the theorem. Assuming (65) to hold, Lemma 18 

gives the estimate (77) for the integers a, q corresponding to any a in ~. The ex- 

pression on the right of (77) must, of course, be >-1, otherwise the set ~ would be 

empty.  Since the number of solutions of a4qS< Z in positive integers a, q is ~ Z t 

for Z ~-1,  it follows tha t  the number N of distinct pairs a, q which can arise from 

all a in ~ satisfies 
N4 ~ p-2+5~ (U 1 ... U5)2 max T~ 1 U~ t. (83) 

k 

t I t p 

By (73) and (74), the number  of distinct possibilities for al . . . . .  as, ql . . . . .  q5 is 

/~  for any fixed e >0 .  Hence the number Nj of distinct possibilities for as, qj for 

any j from 1 to 5 satisfies 

2r < P~ 2r (84) 

A lower bound for N~ was obtained in (59). Combining this with (83) and (84), we 

deduce tha t  
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(log P ) - "  yI -x (T x . . .  T~) -4 T~ U~ ,<  p-Z+6a (U~ ... Us) 2 max T~ -~ U;  t 
k 

for j = l  . . . . .  5. 

Let k be a suffix for which the maximum of T~, 1 U;  t is attained. Take ~ to be 

any suffix other than k. The last incquality implies that 

V~ TkV ~ ( T  1 . . .  Ts)  -4 ( V ,  . . .  Us)  -2  "~ P -2+76I -  I. 

It is convenient to put V, = T, U~ (log p ) - i  

for i =  1 . . . . .  5, so that Vt < 1 (85) 

by (55). W e  n o w  h a v e  V~ V k ( V  1 . . .  Vs)  -4 < P-2+S~l-I. 

Since ?'4=k, it follows from (85) that 

1 < p - 2 + 8 ~  H .  

This contradict~ (65) if C~ is chosen sufficiently large, and this contradiction com- 

pletes the proof of the theorem. 
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