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1. Let A;, ..., A, be any 5 real numbers, not all of the same sign and none of
them 0. It was proved by Davenport and Heilbronn [7] that, for any £>0, the
inequality

[Ayaf+ - +Asaf|<e (1)

is soluble in integers z,, ..., z;, not all 0. The mention of ¢ here is in reality super-
fluous, for if the solubility of

[A 2+ +Ag2E| <1 2)

is proved for all 4,, ..., 4;, then the solubility of (1) for any ¢ >0 follows, on applying
(2) with A, replaced by & !4,

Our object in the present paper is to make this result more precise by giving
an estimate for a solution of (2) in terms of 4,, ..., 4;. It would not be easy to do
this with much precision by following the original line of argument, which depended
on considering the continued fraction development of one of the ratios 4,/4;.

The result we shall prove is as follows.

THEOREM. For §>0 there erists Cs with the following property. For any real
Ay ooy Ag, mot all of the same sign and all of absolute value 1 at least, there exist in-
tegers x,, ..., x5 which satisfy both (2) and

0<|A|af+ - +]|As| 2 < Cs| Ay ... A5]"*°. (3)

In another paper [1] we have applied this result to general indefinite quadratic
forms. We have proved that any real indefinite quadratic form in 21 or more vari-

ables assumes values arbitrarily near to 0, provided that when the form is expressed
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as a sum of squares of real linear forms with positive and negative signs, there are
either not more than 4 positive signs or not more than 4 negative signs.

An important part in the proof of the present theorem is played by a result of
Cassels [3] which gives an estimate for the magnitude of a solution of a homogeneous
quadratic equation with integral coefficients. We use Cassels’s result in the modified
form which we have published recently [2]; this modified form is essentially the same
as the special case of our present theorem when Ay ..., Ag are integers, but without
the parameter . It is remarkable that the result obtained here when 4,, ..., A5 are
real is almost as good as that known for the special case when 4, ..., A; are integers.

It may be of interest to remark that the use of Cassels’s result is not, in prin-
ciple, essential. The special case of the theorem in which 4, ..., A; are integers
could be proved analytically, and we could then use this in place of Cassels’s result
in the present work.

As a corollary to the theorem, we note that if 4, ..., A; are fixed, and ¢ is an
arbitrarily small positive number, there exist solutions of (1) with =z, ..., z; all
0 (e7%7% for any fixed &> 0.

2. Throughout the paper 4,, ..., A; are real, not all of the same sign, and all
of absolute value 1 at least. Let

A = max | 4] 4)

Let P be a positive number with the property that the inequality (2) has no
solution in integers z,, ..., z; satisfying

0<|A;|af+ - +] 25| 2% <500 P (5)

We shall ultimately deduce a contradiction when P is taken to be of the form
Cs|Ay ... A5|**®%, with a suitable (large) Cs, and this will prove the theorem. But
for the time being (until Lemma 6) we make only the weaker supposition that
PA~% is large (i.e. greater than a suitable absolute constant). This supposition is
plainly essential from the nature of (5).
We define exponential sums S, («), ..., S; () by
Sla)= 3 e(xdyaf), (6)
P<jatz <10P

where e (§) = ¢?™9,

Levma 1. There exists, for any positive inleger n, a real function K (x) of the
positive variable a, satisfying
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| K (2)| < C (n) min (1, &~ ""), (7)
with the following property. Let
¢(0)=mfe(ea)1<(a)da. (8)
b
Then 0<y(®)<1 for all real 0, 9)
¥(0)=0 for |8]>1, (10)
p@)=1 for [0|<}. (11)

For a proof, see Lemma 1 of a paper by Davenport [4].

CorROLLARY. We have
ERfSI (@) ... S () K () da=0. (12)
0

Proof. By (8) and (6), the left hand side is

> gy)(ll 2+ e+ Ay 22),

Iy

where the summations are over the infervals occurring in the sums (6). By (10) and
the hypothesis that (2) has no solutions satisfying (5), the sum is 0.

3. We define I (a) by

10P

I ()= f e(x&?)d§. (13)

LeMmaA 2. For ’
0<a<$P‘1|l,|_* (14)
we have S (@) =|A" I (+a)+0(1), (15)

where the + sign is the sign of A,

Proof. This is a special case of van der Corput’s lemma ([8], Chapter I, Lemma 13).
If f(z)=a|l;|2% then for P|4;|"t<2<10P|4,|"F we have

f"(®)>0, O0<f (x)<},
by (14). Hence
18 — 583802, Acta mathematica. 100. Imprimé le 31 décembre 1958,



262 B. J. BIRCH AND H. DAVENPORT

10P|y| - ¥
8§ (a)= f ek EHdE+0(1),
Pjy|~#
and (15) follows on changing the variable of integration.
LeMMaA 3. For a>0 we have (1)
|I(+ «)|< min (P, P7'a™?). (16)

Proof. The estimate P is obvious from the definition (13). The second estimate

follows from the alternative representation

100P

1
I(a)=§ f nte(an)dy

5
and the second mean value theorem.
LeEMMa 4. We have
WP latt
R Sy (@) ... Sy(x) K(e)dae=M + R, 17
0
where M>%P3|}.1 o AsTY, | R|<PEAR|A, .. AR (18)
Proof. In the interval of integration, the condition (14) of Lemma 2 is satisfied
for j=1, ..., 5, and so (15) holds for j=1, ..., 5. By (16),
| 4] I (£ 2)|<| 4"t min (P, P'a™Y),

and the right hand side is >1 for all « in the range of integration. Hence (15) gives

5

3
IT 8@ ~4 ... T I(*a)|=<(Z]4... 4|7 min (P4, P*a),
=1

=1
where . the summation is over all selections of four suffixes from 1, ..., 5. Obviously

S1Ap o Ag| V<A |4 .. Ag|H,

(!) The notation < indicates an inequality with an unspecified constant factor. In general,
these constants are ahsolute until Lemma 7, after which they may depend pn 8. There is an obvious
exception when an unspecified constant occurs in a hypothesis, as in Lemma 9.
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by (4). Hence
HPla-t Lp-la-t
Sy (@) ... Sy(a) K(@)da=]|4, ... &)~} f I(ta)...I(ta)K(x)dx
0 0
+0{A*|,1,...,15|-*f min (P4, P“a"‘)da},
0
and the last error term is O (A} |4, ... 45|~ P?

and can be absorbed in R by (18). Thus it suffices to consider
&P 1A}

R4y ... 4]} J I(+a) ... (+a)K(®)da

(=3

where the signs are those of A, ..., 4.
The error introduced by extending the integral to oo is

00
< |4y ... 2| f Poada
Zl_op—lA—i

<Ay ... Ag|EPIPR A2

< PPA|A, ... 4l H
since P> Al

It remains to give a lower bound for

M=%4, ... z5|-if1(ia) I+ 0K (@) da (19)
0

By (13) and (8), we have

10pP 10P
M—|a, .. 151—*f...fw<isf bt ) dE, ... dE
P b 4

100 P 100 P2
=27°|2, ... 4| f f pltg t o Lyg)(ygy ... ns) " Hdy, ... dys.

P P

We can supposc without loss of generality that the sign attached to 7, is + and
that attached to %, is —. The region defined by
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Pl<gy<4 P, Pi<y,<4P? Pi<y<4P? 14FP<y,<8TP
1
]ﬂl_ﬂzinsimi’]5|<§

is contained in the region of integration. Hence, 'by (9) and (11),

4pr

87pr
3
1
M52 A 2000 P [ gitan| [wvan) > PIA A,
14p

p

This completes the proof.

4. LeMma 5. We have

l4) 1
f 18, (@) |[*d <] 4,2 P* log P. (20)
0

Proof. Putting a=]1,]7' 6, we see that the integral on the left is

1
I [1ze 010,
3 x
where the summation is over
P<|4tz<10P. (21)

1
Now f|2e(0x2)|‘d0
e z

is the number of solutions of 2%+3y®=2%+wu? where z, y, z, w all range over the
interval (21). This number does not exceed

2 r*(n), (22)

n<N

where r(n) is the number of representations of » as a sum of two integral

squares, and
N =200 P?| |~

It is well known that the sum (22) is < N log N, and the estimate (20) follows
from this.
Let 2= min | 4] (23)

5
H=EILI- (24)
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LeMma 6. Provided P>TI¥, we have
HP 1A
[8; () ... Ss(x)|da<]I7t P? (Jog P) Al. (25)

I%P‘IA**

Proof. We suppose, during this proof only, that |4,|<[2s]<---<|As], so that
A=|A| and 2=|4;]. We split up the interval of integration into the 4 intervals

1 _ 1 -

Ikl EP II)'kl l‘<d<z:6'.P Illk—!l ’, (26)
where k=2, ...,5, In (26), the condition (14) of Lemma 2 is satisfied provided
j<k—1. Thus, for « in I, (15} and (16) give

|Sj () |<| 4" P e + 1|4yt P10} 27)

for j<k—1. For j>k we use merely the trivial estimate |S;(a)|<P|A;|"*. Hence,
in I,
|8, (@) ... 85 (@)|<[TF (P~ aY)¥~t po-6-D,

Thus, provided k=3,
f 1S; (@) ... S5(a)|da<[]F Po-2¢-D (P2, | H)-*+2
Ix

=[I ¥ P (P | X |Hr <[ PP P AL

There remains the case k=2, corresponding to the interval I,. Here (27) is still
valid for j=1, and implies

lsx (“),<|}-1'_*|22!*- (28)

For the remaining factors we use Lemma 5. For j=2, 3, 4 we have
1
|3:|_1>|1115|—}>H_}>Pﬂ1>EP_lMl|_’-
Hence I, is contained in the interval 0 <a<|4;|™ of Lemma 5, and

f |8, (@) [* dae| 4|2 P* log P. (29)
Is

For j=5 this argument fails, but as S;(«) is periodic with period |4;]™!, we can
say that
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fISG (@) [*da<|As|" P* (log P) {1+ P |4, | ¥|4[}. (30)
I,

The estimate (29) for j=2, 3, 4 and the estimate (30) imply, by Holder’s inequality, that

flsg(a) e S5 (@) | da<<|Ay ... 45|7F P? (log P) {1+ P~ |4, |7} A 3R
1,

In view of (28), we obtain
[18:@ . 8y @l aa<IT* P2 tog P laglt 1+ 7 12, |3
I,

<[] % P? (log P)AY+T1 ¥ P (log P) | A, |t |4, ] % |45
Now |Aa[¥ [ Ay | =¥ |46} <TT* [ 2,12 | 2,72 | 45| <T* A < PEAL.
This gives the estimate (25), and the proof of Lemma 6 is complete.
5. LEMMA 7. For >0 there exists Cs>0 such that if P>Cs[[°*} then

s
1
|8, (@) ... Ss (oc)ldac>?P3n_*. (31)
&P 1a-t
Proof. By the Corollary to Lemma 1 and by Lemmas 4 and 6, we have
y

M+R+R +R'+R"=0,

where |R|+|R' | <[]t P? (log P) A}
P
and R'= J 8, () ... Sz(x) K (x)da,
zlﬁp—lrl

R'" = JSI (@) ... Sg(@) K(a)da.
pd

By (7) and the trivial estimate | S;(a)|<P]|i;|"* we have
|R"|<P*TI7#C (n) P™.
Choosing n=[56""1+1, we get

|R""|< 0, (O)ITH
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Hence |M+R"|<[["* P (log P)At +C, (0) [T t<P®log P+C, (8)[T°L.

In view of (18), the desired result, namely

|Ru | >;P3H‘§’
will hold provided that both

P
[, i
logP>C’| [t and P>, (8),

for a suitable absolute constant C, and a suitable positive C, (). Both these condi-
tions are satisfied if P>C;[]**Y, with a suitable C;.

From now onwards we shall be concerned solely with values of « in the interval
J: 1 p It<a< P (32)
40

6. For any integers a, ¢ with ¢>0 and (a, g)=1 we define

4

Sa.a= Z e (a:t’/q), (33)

T=1

and for any integer » we write

S, 0= Zle((alz+m)/4)- (34)

LevMma 8. We have, for (a, q)=1,
|8a.l<gt |80,qrl<g (35)

Proof. The first result is well known ([8], Chapter 2, Lemma 6), and the second

follows from it; for instance, if ¢ is odd then
ax’+vz=a (x+vb): —ab®+?
for 2ab=1 (mod ¢), so we have 184 a.s1 =18z el

The following approximation to S («) is well known in principle. (1)

LeEmMA 9. Suppose that A>1 and that o 18 a real number satisfying

=218 36
q+ﬂ (36)

(*) For the corresponding results for higher powers instead of squares, see [5] and [6].
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where (@, q)=1, 0<g<A, 40|B|<qgta™ (37)
104
Then > elax?)y=g¢! Sa.aJ' e(ﬂfz)d£+0 (¢* log 2¢). (38)
A<x<104

A

Proof. It will be convenient to suppose that neither 4 nor 10 4 is near an in-
teger; this supposition is permissible since the sum and the integral in (38) vary only
by an amount O(l) if « is varied by an amount O(1). Strictly speaking, such a
variation may disturb the condition 4 >1 or the condition (37), but these conditions
are not used with any precision in the proof.

We first dissect the sum according to residue classes modulo g¢:

q

> e(@xt)=> elazt/q) 2 e(fP). (39)
A<zr<104 2=1 A<z<10A .
r=z (mod gq)
The inner sum is > e(B(qy+2)%),

(A-2)/a<y<(104-2)/q

and by Poisson’s summation formula this is

10 4A-2)/q (10 4-2)/¢
e(Blgn+zP)dy+>’ f e(B(gn+z)+vn)dy,
(a-2)q 7R

where D' is over »+0 with the terms », —» taken together. Putting g7 +2z=§&, and

substituting in (39), we obtain
104

> e(ax2)=q'1Sa_qfe(ﬁ&z)d.£+E,

A<z<I0A
A
104
where E=¢15 844 - f e(BE+vE/q dE. (40)
g !

Suppose for simplicity that §>0. We have

. v 2 1,2
pitevela=s (s+505) i
and we note that —ILI—>20A

2¢8

by (37). This ensures that £+v/(2¢f) does not vanish even when v is negative, so
putting {£+v/(2¢B)} =B"1¢, the integral in (40) becomes
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(- 4ﬁq) '3 *f(sgnv e () de,

i SETVREE SRS |

Since {,>0 and {,>0, integration by parts gives

[
fc‘*e(odc=—2—;—i{cz‘*e(:z)—cl‘*e(él)}+0(4‘f*)+0(£2‘*)

{s
_2¢p? { 1
= oni B\ 20408

1
~ sagptAh +A”/9):e(vz/(4ﬂq2))+0(q“ﬂ’ |]7%).

e (100 A28 +10 Av/q)

Substituting for the integral in (40), we obtain

1

E=2niz,, Sa.a

1 2
_,;};20Aqﬂ€(1001‘1 ﬂ+10A’V/q)

1
—2—7”2’ VYT, (A2ﬂ+Av/q)+0(Zv’|Sa.a.-v|92ﬂ|v|'”)-

By (35) and (37), the last error term is

O(¢**¥p)=0 (¢}).

It remains to consider the two sums over v, and as they are essentially the same
it will suffice to treat the second.
We have
2 |Saa sl lv+24g[7 =gt 3" |v|™ =g} log 2¢.

Irl<e*

The sum over |v|>g¢? can be written as

q

Sesfo) 3 o seb(d-a/a) (4D

2-1 jv]>a*

apart from a factor of absolute value 1. The inner sum here, by Abel’s lemma, has
absolute value

<q*|l(4-2)/q7,
where [|6]| denotes the difference between 6 and the nearest integer, taken positively.
As we supposed that 4 was not near to an integer, we have
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| (4 -2)/qll>¢".
Hence the double sum in (41) is O (1), and we have
|E|<qt log 2¢.
This completes the proof of (38).

CoROLLARY. Suppose that

ha=2+8, (42)

q;
where (@, g)=1, O0<gq;<P|A|~t, 40|8|<g' P 1|4t (43)
Then | 85(a)|<gj ¥ (log P) min (P |A,|~, P7|4¥|8]7h). (44)

Proof. The hypotheses of Lemma 9 are satisfied when A=P|4)|"}, a=a, ¢g=¢,
and o is replaced by A;a. The sum on the left of (38) then becomes S;(x). Hence (1)

10P|3;)— ¥
8, () =g 8, 4 f e(B, &9 d£ +0(q} log 2¢)).
Ply| -t

Using (35) and estimating the integral as in the proof of Lemma 3, we obtain
|8y ()| < gt min (P|4|-3, P74, [#]5[7") +qf log 24,

Since gt <@ tP|4|t and of <gt P 4[|

by (43), the result follows.

7. For any o« in the interval (32), and for each j=1, ..., 5, there exist integers
ay, q; such that

(@, ¢)=1, 0<gq;<40P|2)} (45)

and ha=2+8, (46)
95

where |B;l<gi (40 P|A,|-1)7. (47)

Thus (42) and (43) are satisfied, and consequently (44) is valid.

() It is of interest to note that if ¢y~ 1 and a;=0, so that Sa',. 4=1 this approximation reduces
to that of Lemms 2.
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It is important to note that none of a,, ..., a; is 0, for a;=0 would imply

1 __
M“'=|ﬂf|<Z6P Yl
contrary to (32).
Let F denote the subset of the interval J, defined in (32), consisting of those «

for which
|S,(a)|>P1‘”H‘*|l,l‘* =1, ..., 8). (48)

Lemma 10. We have
[ | 8y (@) ... Sg(a)|da< PSR-t (49)
I-3¥
Proof- In J—3F, one of the inequalities (48) is false, say that for j=5. Thus
185 (@) | < P T~ #| 4|2 (50)
By Lemma 5 and the periodicity of 8;(«x), with period |A,|™!, we have

pé
f|S,(ac)|‘da< | 4|71 P2+ log P.
0
It follows from the cases j=1,2, 3,4 of this, and Hélder’s inequality, that
P
f 18, (@) ... 8y(@)|dec < |3y . A~ P2 log P=T]-t |44t P*** log P.

0

From this and (50), it follows that

f | Sy () ... Ss(x)|da < P>~%(log P) ] -4,
J-3
whence (49).

8. It follows from Lemmas 7 and 10 that

f|Sl(a)...Ss(a)|da>%P3H"*, (51)
e

provided that the constant C; of Lemma 7 is taken sufficiently large. The remainder
of the paper will be concerned with deducing from (51) a contradiction to the basic
hypothesis made at the beginning of § 2.
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It will be convenient to consider the parts of F in which |8, ()], ..., |Ss(x)},
¢1 ---» g5 are all of particular orders of magnitude. Let T, ..., T, U,, ..., Ug be posi-
tive numbers, and let G=G (T, ..., U;) denote the set of those « in F for which

1 .
G TIP<IH8@I|<T,P  (=1,...,5), (52)

1 .
5U1<|A,|*qj<Ul (]=1,...,5). (53)

By (48) and the trivial upper bound for |S;(x)|, we can suppose that

P2[-t<T,<20{4]| ¢ (54)
By (49) T, < Uy# (log P) min (1, P~*[3,| |87,
whence U, < (log P): T;*® (55)
and [ 2]t | 8] < P2 (log P)T;* Ujt. (56)

We have also U,;>|4|*g,>1 by (53).

Lemma 11. There exist T, ...,T;, U,, ..., Us such that the measure of the set @,
say m(G), satisfies
m(G) > P2 (log P)"°[I-4(T, ... Ty~ (57)

Proof. Since the numbers 7; and U, are bounded above and below by fixed
powers of P, it is clear from the nature of (52) and (53) that the number of choices
for T,,...,Ts, U,, ..., Uy that need to be made to cover all « in F is < (log P)".

Hence, by (51), there is some choice such that

f|Sl (@) ... Ss(x)| da > PPTT-# (log P) ™.
H

For any o« in (G, we have

|8y (a) ... Sgla)|<P°Ty ... T[] %
by (562). Hence (57).

9. From now onwards we shall be concerned only with a particular set 7', ..., T',
U,, ..., Us for which (57) holds. We shall suppose, as we may without loss of gener-

ality, that
T,2T, (=2,..,5). (58)
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LEMMA 12. For each j (1<j<5), the number N, of distinct integer pairs a,, q,

which arise from all o in G satisfies
N;> (log Py U ][-¥(T, ... Ty ' T, U}. (59)

Proof. The fact that o gives rise to a;, ¢; implies, by (46) and (56), that

l,oc—;ijl< |2.;|P_2(10g P)Tj_l UI_*'
]

This limits « to an interval of length
< P 2(log P)T;/' U L.
By (57), the number of such intervals must be
> P 2(log P) [ #(T, ... Ts) ' P*(log P) ' T, U},
and (59) follows.

LemMma 13. For §=2,3,4,5, the inlegers a,, q,, a;, ¢; corresponding to any o in

G satisfy
0<|a,|q<| 4|4t PU, U, (60)

lay gy b/l —ayq | <|417¥ | 4] (U, U (T, T)™! P* (log P). (61)

Proof. As remarked in § 7, we have a;+0 (j=1,...,5). Also |B,| is small com-
pared with ¢;! by (47). Hence, by (46),

|4 aqy < |as| <|4] g
Thus, in particular,

la, | <| 2| equgy<|A ¥ | 4|7 U, U, P,

by (53) and the fact that a< P°. This proves (60).
Next, by (46),

a4 11/11 —a;q;=0,q, (a;+q;8) (e, +q, ﬂx)_l —ayq,=q,(a, ¢ P5— ;¢ 81) (@, + ¢ 131)_1-
This has absolute value

< |11|"1a_1(|a1|q,|ﬂ,|+|a,|q1|/31|)
AR VA ET XA AR VAL AT
= ¢4 (| By| + 14 27 By )-



274 B. J. BIRCH AND H. DAVENPORT

Using (56) and (53), we obtain the estimate
M} 4|7 U, U, (7 U7} + 5 Uré) P2 (log P)<| 4[| 4,7 UL U} T7 T57 P2 (log P,
the last step by (55). The lemma is proved.

Lemma 14. Suppose 8 is real, and suppose there exist N distinct integer pairs
z, y salisfying

|0z—y|<, (62)

0<|z|<X, (63)
where { >0 and X >0. Then either

N<24(X (64)

or all integer pairs x, y satisfying (62) and (63) have the same ratio y/x.

Proof. We can suppose that X >1, since otherwise N=0 by (63), and (64) is
trivially satisfied. We can suppose also that {<3}; for if (>} we have

N<(@2X+1)(2¢+1)<12X¢.
There exist integers p, q such that
(P,g9)=1, 0<¢g<2X, |g6—-p|<E2X)™".
If x and y satisfy (62) and (63), then
lzp—ya|<|z(p—q0)|+]|g@b-9)| <X (2X) " +ql=3+¢l.

If g0<3} we obtain 2p—yg=0, which gives the second alternative of the enunciation.
If g >4, the number of possible residue classes for z (mod ¢) is less than 2(} +¢{) +
+1<6q{, and consequently the number of possibilities for z is less than

6gC(2Xqg ' +1)< 122X +12¢X.
Since x determines y with at most one possibility by (62), we obtain (64).

LeMMa 15. Suppose that
P2_06>06H, (65)

for a suitable Cs. Then, for each j=2,...,5 and for any « in §, we have

a9 _4

==, (66
a9, B )

where A;, By are relatively prime integers which are independent of o, and B;>0, A,+0.
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Proof. By Lemma 13, the integers r=a,q; and y=a,q, corresponding to any «

in G satisfy
|z 4,/4 —y|<¢, (67)
0<|z|< X, (68)
where < | | AU U (T, T)) P2 (log P), (69)
X< |4¥|4, | PU,U, (70)

The values of x and y determine those of a,, ¢, a;, g; with < P* possibilities, for any
fixed £¢>0 (note that a;%=0, as remarked earlier). Hence the number N of distinct
integer pairs z, y that arise from all « in § satisfies

N>P*N, (71)

where N, has the significance of Lemma 12.

By Lemma 14 there are two possibilities: either all y/x have the same value,
independent of «, which gives the desired conclusion for the particular § under
consideration, or (64) holds. In the latter case we have

PN, <P **%(log P2 (U, U)Y (T, Ty,
by (69), (70), (71). Using (59), we obtain
(log Py ™[I ¥ (T, ... Te)* T, U} < P~2**+* (log P)* (U, U} (T, T))™,

that is, PEYTIT, <[} T, ... TsU, U}
By (55), this gives TiT}<P*%[RT, .. T,
Cancelling 7T'; from both sides and using (58), we obtain

TiT; < P72 TY,
Since T;> P ®[]"t by (54), this implies

P®["t < P2+,
which contradicts (65) if C; is suitably chosen. Hence the result.

Lemma 16. Suppose (65) holds. Then the tntegers a, gy, ..., A, ¢5, corresponding
to any o in G, are of the form

a=aaj, ¢=qq (j=1,...,5), (72)
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where ¢>0, a>0, and a;|H, q;|Hs (73)

where H is independent of o and
0<H<P". (74)

Proof. Since (a,,¢,)=(a, ;) =(4,, B;) =1, the equation (66), which can be written as

‘il_alBl
q9; ‘AA;"

a, B; q:4;

implies that =——7 =1
Hpties Tha Y= (@ 4) (an BY Y7 (@, 4) (a1, B)

Define a and ¢ by

a=___|9L_ q= s\
(ay, Ay A3 Ay Ag) (91, By By By By)

Then ¢ and ¢ are integers, and a,/a, q,/q are integers, say a; and g;. Also a; and
q1 are divisors of 4,A4,4,A; and B, B, B, By respectively.
Further, for §=2, ..., 5, we have

a; B, (ay, 4,454, 4)

put SN ,
a T (B,q) (a1, 4))

and the expression on the right is an integer, say a;, which divides B;A4,4,A4,4;.
Similarly ¢,/g=g¢; is an integer which divides A,B,B, B, B;.

Taking H=|A4,A44A,A4;| B, By B, B;,
so that H is independent of «, it remains only to prove (74). By (66) and (60), we have
|4, <12} 4] P°U, T,
and similarly By < || |4t PPULU,
Using (55) and (54), we obtain
|4,| B;< PPU U} < PP 17 T/ < P°T 2.
Hence, by (65), H< P <P".

This proves the lemma.

10. Lemma 17. For any mnon-zero integers f,, ..., fs mnot all_ of the same sign,
there exist integers y, ..., ys Such that

figi+ - +fye=0 (75)
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and 0<|f1|?/§+"‘+|f5|?/§<|/1f2---fsl- (76)

Proof. This is contained in our modified form of Cassels’s result referred to in § 1.

LeMma 18. Suppose (65) holds. Then the integers a, q which correspond to any
o in @G, in the manner of Lemma 16, satisfy

atg® < P2 (U, ... Ug)® max T3 Uit. (7
1<k<h

Proof. By (46) and (72) we have

aalx%+---+zsx§>=§(g—zx%+--- +Z—Zw§) + (B ok + - + By 23)

for any « in G and any 2, ..., 75. Putting a,=g;y; for j=1, ..., 5, we obtain

a ! ’ r ’ [ r
a(dy2f+ - +15x§>=;<aquy%+ ot aggsys) + (Bral Y+ - + B s vh)-

The signs of a;¢i, ..., asqs are the same as the signs of a,/gq,. ..., a5/q;s, and these
are the same as the signs of A, ..., A;. Hence aiqi, ...,asqs are non-zero integers, not
all of the same sign. It follows from Lemma 17 that there exist integers y,, ..., ¥
such that

GGt +asqsyi=0

- and O0<|orgi|oi+ - +lasgsl i <|ar ... a5] a1 ... g5 (78)
For the corresponding integers z,, ..., #;, we have

|42t + -+ A2 <o (Bl @ i+ - +]Bsl a* 1)
and 0<|A|ad+ - +|As| k<20 aq (e qi| 4h+ - +] a5 g5| ¥7)-

By the basic hypothesis made at the beginning of §2, the conditions (2) and
(5) cannot both be satisfied. Hence either

1Bl g i+ -+ Bsl g5 yE >« (79)
or latgi| 93+ +|as gs| ¥8 > 260 x at g P2 (80)

We examine the second alternative first. By (78) it implies that

|a1 ... a5l gl ... s> xa™'q P2,

18 1 — 583802. Acta mathematica. 100. Imprimé le 31 décembre 1958.
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whence a g ®ay ... a5|qy ... s> a g PE
Since |a;] <|4;|a gy, this gives
|4 ... 5] @F ... g > atatq® PP,
whence (Uy... U >atat ¢ P2, (81)

by (53).
We now examine the first alternative, namely (79). By (56),

|Be| @i’ < P~% (log P) T’ Uit | | gi’

r p— a Vi —_ - ’ ’
and [Ae| g2 < 1% ge=o"taqg | ax| g
K
Hence (79) and (78) imply
a < P2 (log P)a‘laq_l(ml?x T:'Uit)|a; ... aé|q{ .- Q5

Simplifying this as before, we obtain
(U, ... Ug? max Tl Uit > a%atq® P2(log P)".. (82)

Since Ti' Uit > (log P)!

by (55), and since a< P° both the alternatives (81) and (82) imply (77), and this

proves the lemma.

11. Completion of the proof of the theorem. Assuming (65) to hold, Lemma 18
gives the estimate (77) for the integers a, ¢ corresponding to any « in . The ex-
pression on the right of (77) must, of course, be > 1, otherwise the set § would be
empty. Since the number of solutions of a*¢®<Z in positive integers a, ¢ is < Z%
for Z > 1, it follows that the number N of distinct pairs @, ¢ which can arise from

all « in G satisfies
N < P20 (U, ... Ug)® max T;' Uit (83)
k

By (73) and (74), the number of distinet possibilities for ay, ..., ag, g1, ..., g is
< P for any fixed £>0. Hence the number N; of distinct possibilities for a; ¢; for

any j from 1 to 5 satisfies
N} < P’ N*. (84)

A lower bound for N; was obtained in (59). Combining this with (83) and (84), we
deduce that
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(log P)y ™I UT, ... Ty *Ti Ui < P72 (U, ... Uy)? max T URY

for =1, ..., 5.
Let k be a suffix for which the maximum of 7' Uit is attained. Take j to be
any suffix other than k. The last inequality implies that

T UT, UL (T, ... T (U, ... U2 < PH0].
It is convenient to put V,=T,U} (log P)!
for 1=1, ..., 5, so that V<1 (85)
by (55). We now have ViVi(Vy... II75)“'< P2e8eT.

Since j=+k, it follows from (85) that

1< P—2+86 I_I.

This contradicts (65) if Cj is chosen sufficiently large, and this contradiction com-

pletes the proof of the theorem.
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