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1. Introduction

We shall deal with the iteration of analytic functions of a complex variable and

analytic solutions of Schroeder’s functional equation

X(f(2)=aX(z). (1
More specifically, we shall be concerned with the iteration of functions of the form

f(z)= E a,2°, m>1, a,>0 (2)
oo .
where all coefficients a, are real; in certain cases the series (2) will not converge for
any z+0 but represent f(z) asymptotically in a specified neighbourhood of the posi-
tive real axis. We shall also have opportunity to consider the iteration of continuous
functions of a real variable without assuming analyticity.

A great deal is known about analytic solutions of Schroeder’s equation in the
neighbourhood of a fixpoint & where f(£)=£; most results refer to the case when
both f(z) and the Schroeder function X (z) are analytic at z=§&. The classical result
of Koenigs [5] states that if f(z) has a convergent power series

f@)=&+ Zl%(z—é)”, |z—&|<R,, B >0 3)

and a,%+0, |a,|+1, then Schroeder’s equation has a solution

L@ =3 belz—EF, b=1, |2—&|<R>0. (4)

a=1
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For any determination of af which satisfies the condition

aj=a,, afai=ai’" (5)
the functions
fo@)=2_1@iX(z)), X-1(X(z))=2 (6)

form a family of iterates of f(z), i.e.

fl (Z)=/(Z), ,a (fr (z))=fa+1 (Z) (7)

for every real (and even complex) g, 7. Clearly each f,(2) is analytic at z=¢,
fo2)=¢+ 3 af (2= &), |z—&|<RB,>0. (8)
p-1

Note that the coefficients af are uniquely determined from the condition

(0

ai” =af 9

and the commutation relation

fo(f (@)= {(fo (2))- (10)

Every determination of af gives a family of formal power series (8) and the theorem
of Koenigs asserts that each of these series converges for some z=+0.

In the case of |f (&)|=]|a,|=1 the behaviour of Schroeder’s equation depends
quite sensitively on the arithmetical character of the amplitude of a,. In the “irra-
tional”’ case, i.e. if a, is not a root of unity, the coefficients b, in (4) and af in
(8) can be calculated uniquely from (1) and (6) (or (9), (10)); but this is generally
not possible if @, is a root of unity. Also, in the irrational case the convergence of
the formal solution (4) seems to depend on the arithmetic nature of the amplitude of
a,. For instance if a, is such that

n___
Jim n |V =10
then there exist functions (3) with divergent Schroeder series (4) (Cremer [2]); on
the other hand, if
log |af —1|=0(log n) (n—>o0)

then the series (4) converges for every f(z) with f(&)=¢&, ' (£)=a, (Siegel [8]).

If a; is an nth root of unity, a Schroeder function of the form (4) exists if
and only if the nth iterate of f(z) is the identity function, f,(z)=2. For instance,
if f(z) has a power series
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oo

fR) =2+ 3 a,(z—&)P, 1<m< oo, a,+0, |z—&|<R,;>0, (11)

p=m

Schroeder’s equation has not even a formal (non-convergent) solution of the form (4).
This case is particularly interesting from the point of view of iteration because the

commutation relations (10) have a unique formal solution
=]
fo@)=2+ 2 a3 (2= &P, aR=ogay, (12)
p=m

and it can be expected that the f,(z), if they exist at all, form a family of iterates
of f(z). An obvious difficulty arises from the fact that the convergence of (11) does
not necessarily imply the convergence of (12). In the particular case of

<z 1 » =
f(2)=e—1=2%)—!z (£=0)

-1

I. N. Baker has proved(!) that f,(z) diverges for every z+0 and real ¢ except when
o is an integer(?). The main result of this paper is that if £=0 and all coefficients
in (11) are real then f(z) has exactly one family of analytical iterates f,(z) which
has an asymptotic expansion (12) when O is approached along the positive real axis.
The proof is based on an algorithm due to P. Lévy [6] which leads to an ana-
lytic solution of Abel’s equation .

Af@R)=4()—1; (13)

from A(z) one obtains a solution of Schroeder’s equation by taking X (z)=€'®. It
turns out that A(z) is asymptotically equal to —1/z, so that the corresponding
Schroeder functions behaves like 1/log (1/z) when z-—>0 from the right. The result
clarifies the significance of the expansion (12) and shows that from the point of view
of iteration it is not very natural to require that the Schroeder function be analytic
at the fixpoint itself.

Another instance when it is clear that the Schroeder function cannot be holo-
morphic at the fixpoint is when @,=0 in (3). Let m be a positive integer, m >1,
and suppose that

f(z)=z"‘zoa,z”, a,+0, |z]< R, >0. (14)
p=

(1) I. N. Baker, Zusammensetzungen ganzer Funktionen, Math. Z. 69, 121-163.
(2) There are cases in which f; (2) converges for every real or complex 6; the simplest example is

_ 2
lo(z)_l+o'z

. I owe this remark to I. N. Baker and N. G. de Bruijn.
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For the sake of clarity we have assumed that £=0. The expected form of the

fractional iterates is

o0 o0
fol@)=2"" 3 3 a3 2?""* (1)
p=0 ¢=0
where a® = agn"—lmm—l) (16)

Again, the coefficients {7 can be calculated formally from the commutation relation
(10) and condition (16); but the series (15) will usually not converge. We shall find,
as in the previous case, that there exists a family of analytical iterates which has
an asymptotic expansion (15) when z—0. The precise form of the statement will
be formulated later.

2. Schroeder Iterates

Suppose that f(z) is analytic in & domain D which has the property that z€D
implies f(z) ED. We define the natural iterates of f(z) relatively to D (1) by the in-
ductive relations

/0 (z)=z, /n+1 (Z)=f(fn (2)), n=0’ 11 2; (R (1)

Generally let ¢ be a continuous real variable; we say that the functions f,(z) form
a family of fractional iterates of f(z) relatively to the domain D if f,(z) is defined
for every ¢>0, 2€D, and the following conditions are satisfied:

(i} fs(z) is continuous in g, analytic in z, and f, (2) €D for >0, z€D.

(i) fo(x)=2 fi(z)=f(z) for zE€D.

(i) fo (fe (2)) = fous (2)
for every =0, 120, z€D,

The notation is clearly consistent with the definition of natural iterates and
fo (z) interpolates the sequence f,(z), n=0,1,2, ....

Given an arbitrary (real or complex) ‘“multiplier” a0 and z,€D, define the
function ¢ () by

@ (2°)=fo(2), 02>0.

Then e @) =hialz) =@ (@) =g (a-a”),

(*) The definition is relative to D. It can be shown by suitable examples that f (f (z)) as an ana-
lytic function is not determined unambiguously by f(z). The definition can be easily extended to
cases when D is & domain on a Riemann surface rather than on the complex plane. We shall later
be interested in the case when D is on the Riemann surface of log z.
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i.e. @ (¢) satisfies the functional relation
He ) =@ (xt) (2)
and its inverse X (z) =¢_, (z) (if it exists) satisfies Schroeder’s equation [7]

X(f(2) =X (2). 3)

Thus under very general conditions the fractional iteration of f(z) gives rise to a
solution of Schroeder’s functional equation.

Conversely, one can use Schroeder’s equation to obtain a family of fractional
iterates. For a given multiplier « let ¢ (¢) be a solution of (2) such that ¢ (f) is
analytic at ¢=0, ¢'(0)%0, and denote by Z(z)=¢_, (z) the inverse of ¢ (z); then
X (2) is analytic at z=_¢,

£=p(0) ()

and it satisfies the equation (3). Furthermore,
fe(B)=24 ("X (2)) =@ (a° p_, (2)) (5)
is analytic at & for every real or complex ¢ and it satisfies the functional relation
folfe @) =f: (fs (@) = fo1: (2), [ (2)=f(2) (6)

in a suitable neighbourhood of &, provided that «° is determined so that

1

a'=a, o’af=a’t"

for every o, 1.
This can always be achieved in infinitely many ways; if
a=ab® og=s+it, a,b, st real, —zm<b<am,

and if k, I are arbitrary but fixed integers, then

a® =qa~ b ei(t log a +b8)+2n(ksi+1¢) (7)

is a suitable determination. Therefore in general there are infinitely many distinct
families of iterates which can be derived from a given Schroeder function (i.e. solu-
tion of Schroeder’s equation) by the process (5). Note that by (2) and (4), £ is a
fixpoint of f(z);

1) =¢ (8)

For the iterates (5) to be meaningful it is not necessary to assume that ¢ (z)
is holomorphic at 0. Suppose that the multiplier « in (2) is real, positive and ax+1;
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suppose also that the solution ¢ (2) is holomorphic and schlicht on an angular domain,
S:2=pe% —O<y<h, O0<p<r(yp) 9

where 0<0<n, and r(y) is a continuous positive valued function of r. If z—>¢ (2)
maps S onto D (where D is possibly a domain on the Riemann surface of log z) and
O0<a<1 then the function defined by formula (5) is holomorphic on D for every
real o>0, and the f,(z) form a family of fractional iterates of f(z) relatively to D.

If x>1, the same is true for the inverse function f_, (). If, furthermore,

&= lim ¢ (2) (10)
exists when z—0 on S, then by (3) and (10),

lim f(z)=§ (11)

when z—& on D; hence £ is a fixpoint of f(z) relatively to the domain D (i.e. with
respect to approach from within D). We shall say that £ is a singular fixpoint of
f(z) if (11) is true for some domain D of which £ is an accessible boundary point;
the definition includes the case when & is an ordinary fixpoint (8).

Henceforth we shall call % (z) a Schroeder function of f(z) if and only if it is
the inverse of a solution of (2) which is either holomorphic at O itself (with ¢’ (0) = 0)
or is holomorphic and schlicht on a domain (9) and has the properties stated in
connection with (9) (including (11)).(!) In particular the Schroeder iterates (5) always
refer to a fixpoint of f(z) in the sense of (11).

We note that if X (z) is a Schroeder function belonging to the multiplier « and

¢, f are positive numbers then
@) =cX(2)f (12)

is also a Schroeder function with multiplier &’; but the iterates derived from 2* (2)
are identical with those derived from X (2).()) A more general transformation, which

leads to essentially new solutions of equation (3), is
PR)=2=)g(AR), git+1l)=g() (13)

where ' A(z)=log X (2)/log « (14)

() It is a matter of convention whether we prefer to call y (z) or @ (2) a Schroeder function of
f(z); for later convenience we have chosen ¥ (z), In the real variable case it will be necessary also
to admit non-analytic (real) Schroeder functions.

(3) In case of an ordinary fixpoint ¢ and f§ are allowed to be complex.
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(with a suitable interpretation of log) and g (t) is an arbitrary periodic (analytic) func-
tion with period 1. Combination of (12) and (13) gives the most general transforma-
tion of Schroeder functions; for Schroeder functions with the same multiplier « are
easily seen to be related according to (13).

It follows from the above that the existence of a single analytic solution of
Schroeder’s equation usually involves the existence of an infinity of such solutions.
This raises the question whether it is possible to determine a “best” analytical solu-
tion relatively to a given fixpoint. We shall find that in the case of an ordinary
fixpoint such an exceptional solution does in fact exist, provided that f(z) satisfies
certain reality conditions; the property which distinguishes the “good’ iterates is their
asymptotic behaviour near the fixpoint.

We conclude this section with an observation of Schroeder which can frequently
be used to transform f(z) in a more convenient form. Let ¢ (z) be schlicht on
D=g¢(8), and write f*(2)==¢g(f(g_(2))); then &"=g (&) is a fixpoint of f*(z) and
%* (z)=X(9_; (z)) is a Schroeder function of f*(z) relatively to &*. The corresponding
family of Schroeder iterates is f; (2) =g (f,(g_, ())). Therefore, every solution for f" (=)
supplies automatically a solution for f(2).

We can use this remark to transfer the fixpoint to the origin. If £ is finite,
we take g(2)=z—¢&, ie. f'(z)=f(2+&)—¢§ if the fixpoint is at infinity, we take

1
(z) = ~ f*2=1/f (i) In all future work it will be assumed that the fixpoir_lt is at 0.

3. Koenigs Iterates

In this and the following section we shall merely state results; proofs will be
supplied in sections 5 to 9.

The fundamental theorem of Koenigs [5], applied to the case when the fixpoint
is at 0, states that if

f(z)= Z_lanz", |z| <Ry, (1)
0<|a,|<1, - (2)
then Z(z)= lim a7 " f, (2) (3)

exists and is analytic in a snitable neighbourhood of 0. Furthermore, X' (0)=1, and

X (z) satisfies Schroeder’s equation
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2 @) =a, X @) 4)
with multiplier «,.

The effectiveness of the algorithm (3) is not restricted to analytic functions.
This was observed by H. Kneser [3] who showed that for the Koenigs function (3)
to exist it is sufficient to know that f(z) is defined in a neighbourhood of 0 and
that for some posive 6,

f@)=a,z+0(|z]'"*?), O0<|a|<1 (5)

when z2—0. Kneser’s extension of the Koenigs theorem is only significant in the case
that f(z) is not an analytic function; its most important application therefore is to
real functions of a real variable. Its usefulness for the purposes of iteration is limited
by the fact that condition (5) does not by itself ensure the existence of the inverse
of X (z). This is shown by the example of

_E e -
f(z)—2+3nz smlzl, 2%0, [f(0)=0,

which satisfies the Kneser condition f(z)=3}z+0(|z[|?). Clearly f(z) is continuous and

strictly monotone increasing for >0, also X (x)= lim 2"f, () is monotone non-de-
n—ao00

creasing. We show that X (x) is not strictly increasing.
For any positive integer m, f(2°™)=2"""!, hence f,(2"™)=2"""", X(27")=
= lim 2"f,(27")=2"". We prove that

Z(x)=lim 2"}, (x)=2"" for 27 "<x<2 "+}27%" (6)
noo0
Write z=2""+2"2"¢, 0<e<}. We have
sin’—;= sin (2" 7/(1+2 ™ &)= — sin (me/(1+2 &),

fla)=2+ Lot sin g= gl g 2nl, —312—2"' (142" &) sin (me/(1+27"¢))
T

2 3xn
V3
2n

<gmTipginty

<@ Ml grimol, T o-Im,
> m-1
flay=2"""14+2722g  0<g<e.

By induction f,(x)=2""""+272""%¢ 0<g,<}, which implies (6).
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The following is a real variable version of the Koenigs-Kneser theorem which

gives a sufficient condition for the existence of %_, (x).

TEEOREM la. Suppose that f(x) is continuous, strictly monotone increasing for
O<z<d and 0<f(x)<ux;(1) suppose further that | (z) exists for 0<zx<d and

fx)y=a+0(@%, O<a<l, 8>0 (x|0). (7N
Then X(x)=lima™"f, (x) (8)

exists, 18 continuous and strictly monolone increasing for 0<x<d and differentiable
with respect to x for 0<xz<d; furthermore,

fo@) =% (@2 () 9)

satisfies h@=f@), fo(f(®)=fose(2) (10)
for every real o, 7, and

fo(@)=az+0 (%) (x| 0). (11)

The theorem suggests a modification of the definition of Schroeder iterates for real
variable functions. Suppose that f(z) satisfies the conditions stated in Theorem 1 a.
We shall call X (z) a real Schroeder function of f(z) (or briefly a Schroeder function
of f(x) if it is clear from the context that we are not dealing with the aralytical
cage) if X (r) is positive valued, continuous, strictly monotone (increasing or decreasing)
for 0<x<d, and

X(f(®)=aX(x) (12)

for some positive constant a=1. Since 0<f(zx)<az, X (z) i8 monotone increasing if

0<a<1 and monotone decreasing if «>1. Furthermore,

lim ¥ (z)=0 if O<a<l1, lmX(zx)=o0 if a>1. (13)
z{0 z{0

The real Schroeder iterates corresponding to X (x) are obtained from

fo @) =X_, ("X (2)); (14)

(1) The assumption f () <a is necessary to make the fixpoint “attractive”. In the case of f(z) >z,
0<xz<d, we replace f(z) by its inverse in all future considerations. ‘The case when f () — # has in-
finitely many zeros in every neighbourhood of 0 will not be considered.
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they are clearly continuous with respect to ¢, strictly monotone decreasing with

¢ and
lim f, (#) =0 (15)

for every given x, 0<xz<d. It follows from this that conversely, given >0, a1,

the relation
%o (fo (d))=a° (16)

determines the Schroeder function ,(z) completely, provided that the iterates f, (x)
are known. Any other Schroeder function associated with the family f,(x) is ob-

tained by the transformation
L (@)=c Xy ()}, ¢>0, B+0; (17)

the particular representative (16) is normalized by the conditions X (d)=1, multi-
plier a.

Condition (7) of Theorem 1 a is sufficient, but, of course, not necessary for the
existence of the inverse of the Koenigs limit (8). The following theorem is therefore
of interest as it shows that the existence of a family of real Schroeder iterates with
the asymptotic property (11) necessarily implies the existence of the Koenigs iterates
(with a slightly modified definition of the Koenigs functions (8)) and the two families
are identical. In particular, the asymptotic property (11) characterizes the Koenigs
iterates uniquely.

THEOREM 2a. Let f(x) be continuous, strictly monotone increasing for 0<x<d
and 0<f{(x)<x. Suppose that f(x) has a family of real Schroeder iterates which satisfy
the asymptotic relation

lim-l-f,,(x)=a", O0<a<l1 (18)
z{0 T

for every positive a. Let X (z) be a real Schroeder function with multiplier a from which
the family f,(x) has been derived; then
X (x) =2 () im {f, (2)/f (&)} (19)
n-—o0
The last limit is, of course, identical with the Koenigs limit (8) whenever the latter
exists, but it is slightly more general than (8). The theorem can be interpreted as

stating that the Koenigs iterates behave more “regularly” in the neighbourhood of
0 than any other family of iterates. This is not an empty statement; for the real
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Schroeder equation (12) has infinitely many continuous strictly increasing solutions
for every positive multiplier a«, 0 <a<1. In fact we can define X (x) as an arbitrary
continuous strictly increasing positive valued function in the interval f(d)<z<d,
subject to the condition that X (f(d))=«a X (d); X (x) is then uniquely determined for
0<z<d by the functional equation (12). The particular Schroeder function

x(z)= '}111010 {fs (@)/1a (d)} (20)

if it exists for O<ax<d will be called a principal Schroeder function of f (x); its
multiplier is @ = lim i f(z) and it is normalized so that X (d)=1.
z!0

We shall call f(x) regular with respect to iteration (or briefly regular, if there
is no danger of misunderstanding) if (and in the case of 0 <a = lim ;: f ()< 1 only if)
z|0

f(x) has a family of real Schroeder iterates which satisfies the condition (18) of Theo-
rem 2a for every positive ¢. Clearly it then also satisfies the relation for negative
values of ¢. The fractional iterates which satisfy the asymptotic relation (18) are
themselves regular, and the theorem shows that they are uniquely determined by f ().

Regularity for the cases a =0 and a=1 will be formulated later.

From the point of view of analytic functions the Koenigs—Kneser theorem has
another significant extension which refers to the singular case of Schroeder iterates.
There are various possibilities for such an extension, and the one given below refers
to the case when f(z) has an asymptotic expansion at 0. Briefly, the theorem states
that if f(z) has an asymptotic expansion

fz)~ 2 a2, >0, O<ay<l, (240) (21)
p=0
with real coefficients @, then its Koenigs iterates have an expansion of similar
character,
fo @)~ 3 a 2%, (2 0) (22)
p=0
where af” = (a,)°.
Note that the coefficients ai¥ can be determined uniquely from the commutation
relation '

Hfa (@) =fa (f (2)),

i.e. from the formal relation
15 — 583802. Acta mathematica. 100. Imprimé le 31 décembre 1958.
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o ) 1+8p o0 ] 1+8q
Sa[Saran] - Sar S aee]
p=0 ¢=0 a=0 =0

and the condition af’=(a,)’; clearly each af is real.

THEOREM 3a. Suppose that f(2) 48 real for z=2z, 0<x<r, and holomorphic on
an angular (semt-closed) domain

A0, =1z z=x+iy, O<z<r, —faz<y<bz}, r>0, 6>0. (23)

Suppose further that for every fized positive integer k and for certain real coefficients a,,
k

f2)=3 a, 2"+ 0 (|z]'*7%), p>0, 0<ay<l (24)
p=0

when z—>0 in A (0, r) (so that f(z) ts asymptotically differentiable at O in the sense of
§ 7). Then there exist positive numbers 8,, r; so that the following is true;

(i) In()EA (B, 1) for 2€A(0y, 1)
and every non-negative integer n.

(ii) X (2)=lim ag" f, (z)

n—»o0

exists and ts holomorphic and schlicht on A (8,, r;).
(iid) fo(2) =X (a3 X (2))
exists for every ¢>0 and 2€4 (0,, r,), and forms a family of Schroeder iterates which
satisfies
fo(2)= ioa?’z”ﬂ"+0(|2|”ﬂ"), ay’ =a§ (25)
-
when z€A (6,, r,).

In particular f(z), 0<x<d for a suitable 0<d<r is regular with respect to
iteration so that the family f,(z) is uniquely characterized by the asymptotic pro-
perty (24).

The algorithm of Koenigs is not applicable directly to the case when f (0)=a,=0

in (1), ie. if

f)=3 a2 m>1, a,+0 |z|<R,>0; (26)

p=m

but. by making use ‘of remark at the end of § 2, it can be easily transformed into

a form which comes under the range of the Koenigs algorithm. First, by a trans-
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formation g (z)=2/b where b™*'=aga,, we achieve that a,=1 in (26). Next, by ap-

plying the transformation g{(z)=1/ loglz we transform f(z) into

f* (2)=1/log (1/f (e™**)). (27)
We have for (€A (1, r) (definition (23)) where r is a suitable positive number,

fe)=e ™% (140 (e )
log (1/f (7)) =m/ +0 (1);

the O-symbols refer to {—0 in A (1, r). Hence by (27), f* ({)=¢(/m+ O (|[*). This
almost comes under Theorem 3a, except that f*(Z) has no asymptotic expansion
of the form required by that theorem. This could be rectified with some effort,
but we prefer to give independent formulations (and proofs) of the analogues of
Theorems la, 2a and 3a. The algorithm (29) below has been obtained by acom-
bination of (8) and (27).

TEEOREM 1 b. Suppose that f(x) is continuous, strictly increasing for 0<z<d
and 0< f(z)<z; suppose further that [ (z) ewist for 0<x<d and that for suitable real
numbers u>1, a>0 and 6>0,

f@=paz"1+0 @ (x}0). (28)
Then % (z)=lim &~ log (1/, (x)) (29)

exists, is continuous and strictly decreasing for 0<xz<d and differentiable with respect
to x for 0<xz<d; furthermore,

fo (@) =2y (0° X (x)) (30)
satisfies the relation (10) and

w1
fo()=a®mT 2° (1+0(2") (x0) (31)
for ¢ >0.

The existence of the limit (29) already follows from
f@)=az’+0 @) (z|0) (32)

the stronger hypothesis (28) was made to ensure the existence of the inverse of X (x).

It can be shown by counterexamples that even

f@)=paz"'+0@*1)
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is not sufficient for the existence of x_, (z). Notice that X (z) is a real Schroeder
function of f(x) with multiplier u.

THEOREM 2b. Let f(x) be continuous, strictly monotone increasing for 0<x<d
and 0<f(x)<xz. Suppose that f(z) has a family of real Schroeder iterates f,(x) which
satisfy the asymptotic relation

n-1
lim x"“af,, ()=a#1, u>1, a>0 (33)
z}0
for every positive o. Let X (z) be a real Schroeder function with multiplier u from which
the family |,(x) has been derived; then

X (x)=1% (d) lim {log f, (x)/log f, (d)}. (34)

n—+o0o
Clearly (34) is identical with (29) whenever the latter exists. The limit

x(x)= ’llln:o {log fn (x)/log fn (d)}

is again called a principal Schroeder function of f(z).
We shall call f(x) regular with respect to iteration if f () has a family of Schroeder
iterates which satisfy the condition (33) of Theorem 2 b for every positive o; these

iterates are themselves regular and are uniquely determined by the asymptotic relation.

THEOREM 3b. Suppose that f(z) is analytic at 0 and

0

&)= 2 a,z"*™, m>1, ay>1, |z|<R, >0, (35)

p=0

where m s a positive integer and all coefficients a, are real. Denote by @ (R), R>0,
the domain
Q(R)={z; z=g€¥ 0<p<R, —oco<yp<oo}

on the Riemann surface of log z. Then there i3 a positive number R so that

Z(x)= — lim m™" log f, (2) (36)

fl— o0

exists for all 2z€Q (R) and is holomorphic and schlicht on Q(r); log f, (2) ts specified by
the condition that it i3 real valued if am z=0. Furthermore,

fa(2)=%_, (m° X (2))

exists for every 0>0, 2€Q (R) and forms a family of Schroeder iterates such that
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lo)= 3 3 a2+ 0(zf), a=1 (37)
(p+1m°+g<k

for every fized k>1.

In particular, f(x) is regular with respect to iteration so that the family f(z) is
uniquely determined by the asymptotic property (37).

Note that f(z) itself is analytic at 0 and so are, of course, its natural iterates;
but f,(z) for non-integral ¢ has a logarithmic singularity at 0 and the expansion (37)
is not necessarily convergent.

4. Lévy Iterates

We consider now the case that a,-=1 in (3.1)(}) and all coefficients @, are real.
This case was treated by P. Lévy [6] in connection with the problem of regular growth
of real functions. Lévy has shown that if f(z) is strictly monotone increasing and
continuous for 0<z<d, f(0)=0, }{x)<z, for 0<z<d; furthermore, if f' (x) exists
and is of bounded variation in the interval 0<z<d and lin; f' (z)=1, then for every

zy

given z, y in the interval 0<z<d, O0<y<d,

Jy@)=lim 2"t (@), Y=t @) (1)

3
n—>0 Yn_1 " Yy

exists. Also lim Zra "% _ 1, (2)
n—s00 Yn_1 7~ Yn

so that A.(y)= —A4,(x). For a fixed y, A(x)=4,(x) is a (not necessarily strictly)
monotone increasing function of » and it satisfies Abel’s equation
Af@)=2(z)— L 3)

It follows that if A(x) is continuous and strictly monotone increasing, X (z)=¢*® is
a real Schroeder function belonging to the multiplier e™.
It is more convenient to operate directly with the Abel function A (z); if 1 (x)

is strictly monotone and continuous, so that its inverse A_, (x) exists, then

fe(@®)=2_, (4 () —0) (4)

is a family of Schroeder iterates of f(x). Following Lévy, we shall call every con-

tinuous strictly monotone solution of Abel’s equation a logarithm of iteration of f ().

(1) (3.1) refers to formula (1) of § 3.
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We note that if A(x) is a logarithm of iteration of f(x) and 2 is any real number
then A*(r)=A(x)+ o is also a logarithm of iteration, but the family of iterates de-
rived from A*(xr) is identical with those derived from A (z); the two are therefore
equivalent. A logarithm of iteration will be called principal if it is obtained by the
Lévy algorithm (1); the iterates themselves will also be called principal. More pre-
cisely, A(z) is called a principal logarithm of iteration of f{xr) if (i) 4(x) is a loga-
rithm of iteration, and (ii) there exists a positive monotone decreasing sequence y,
such that

2 @)= lim W@~/ @), (5)

n—-0 ‘)’n

This normalizes A (x) so that A(d)=0. Clearly (3) and (5) give

i @ = fa1 @) _ |

n—>00 Vn
for every 0<x<d, from which (1) and (2) follow with
Ay (@)=A(z)— A (y).

Two principal logarithms of iteration differ only in the choice of d and are easily
seen to be equivalent. From (1) it is clear that the principal iterates if they exist
are uniquely determined by f (x).

THEOREM 1c. Suppose that [(x) is continuous, strictly monotone increasing for
O<z<d and O0<f(x)<z;, suppose further that [ (x) exists for 0<xz<d and that for
some finite real a>0, 8, 8, 0<d<p,

f@)=1—a(B+1)2+0@**%) (z|0). (6)
then if y=y, is any fized point in the interval 0<y<d,

A (x) = Lim o' (Bn)"* ' (f, () — fa (y)) (M

exists and i3 continuous and strictly increasing for 0<xz<d, differentiable for 0<xz<d;

furthermore,
fo (@) =4_; (4 (x)—0) (4)

satisfies the relations (3.10) and

fo(@)=z—ace? + 0P (x| 0). (8)
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Clearly A (x) is a principal logarithm of iteration with
yo=a 8 (Bn) "I YP
in (5). The existence of the limit (7) already follows from
f@)=2-a2’'+0@*") (z0), (9)

but not the existence of A_, (x). It does not seem to be possible to deduce the stronger

error term O (z**'*%) in (8) from the assumption (6).

THEOREM 2c¢. Let f(x) be continuous, sirictly monotone increasing for 0<xz<d
and 0<f(x)<z Suppose that f(x) has a family of real Schroeder iterates f,(x) which
satisfy the asymptotic relation

im 278 (x—f, (x))=0a, a>0, >0 (10)
z}0
for every positive g. Let A(x) be a logarithm of steration from which the family f,(x)
has been derived according to (4); then A(x) is a principal logarithm of iteration of f (x).

The theorem shows that the iterates are uniquely characterized by the asymp-
totic property (10). Again we shall call f(x) regular with respect to iteration if f(x)
has a family of Schroeder iterates which satisfies the condition (10) of Theorem 2 e¢.

THEOREM 3c. Suppose that f(z) i3 real for z=z, 0<x<r, and that for certain

positive numbers f and ag,
. z—f(x)
Bﬁl) AT % (11)
Suppose further that f(z) is asymptotically differentiable at 0 in the sense of § 17, i.e.
for every 0>0 there is an r=r(6)>0 so that f(z) is holomorphic in the (semi-closed)
domain
BB, r)={z z=x+1iy, O<ax<r, —02'P<y<fa'*F} (12)

and for every fized positive integer k,
k
f@R)=2— 3 o, 2! AEPIM L O (|21 HEHREI™) g >0, zEB (0, 7) (13)
p=0 .

where m 18 a positive integer and the coefficients a, are real.
Then f(z) is regular with respect to iteration and the principal iterates f,(z) are
asymptotically differentiable at 0.
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The meaning of the statement of the theorem is that the restriction of f(z) to
the positive real axis is regular and the principal iterates, which exist according to
Theorem 2c¢, (') are analytic functions which satisfy the conditions of asymptotic dif-
ferentiability. More precisely, it will be shown that

g 1 (14)
and for every 6 >0 there is an r=r (0, ¢)>0 so that

k
fo(2)=2— ZO A X (ET )X (15)
e

(@’

o =0 a,

when 2€B(0, r). The case (1.11), mentioned in the introduction, when f(z) is ana-
lytic at 0 and

o0

fR)=2— 3 a,z""1*?, >0,

=0

is a particular case of the theorem corresponding to f=m.

5. Regular Iteration

Throughout this and the following section we assume that f(x) is continuous,
strictly monotone increasing for 0<x<d, f(0)=0, f(z)<z for O0<z<d. It follows

from these conditions that for every given z, 0 < z<d, the sequence zy=x, 2, =f (¥,,),

in=1, 2, ... is strictly monotone decreasing and
lim x, = lim f, (z)=0. (1)
n—oo n1—-00

We note that 0<z<y<d implies 0<z,<y,<d for every n>0.
We begin with the proofs of Theorem la, 1b and lec.

(a) The assumption of Theorem 1a is
f@=a+0(), 0<a<l, §>0 (x}0) @)

which clearly implies
f@)=az+0@"") (x}0). (3)

Hence there exists a positive number ¢ so that

(1) Strict monotonity of f (z) follows from lim f’ (x) =1 which is a consequence of Theorem 6, § 7.
z)0
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|f (@)—azx|<ca'*® for 0<z<d. (4)
We show that
a " f(r)=2+0"%), n=1,2, ..., (x{O). (5)

Let b=14 (1+a) and choose dj, 0<d,<d so that
Ba>(@+ca®)!'*® for O<x<d, (6)
By induction we prove that for 0<z<d,,
fa@<a®z+a*le(1+0+ -+ 00 a=1,2, ... (7)
For n=1 the inequality follows from (4) and for »>1 from

frr1 (@) =fn (f(@))<a™ (@z+ ca*?)
+a" e (1+ 8+ - + 6" Y (a4 cat*)!?

<a"'z+atc(1+8+ .. +b") 0
by (6) and (7). Similarly we can prove that
fo@y>az—a e (1+b°+ - + 5" ) 0<2<d,.

From (3) and (5) we get

z z, z,)—aux,
g e B
which proves the existence of
X ()= lim a™" f, (2). (8)

To prove the existence and positivity of X’ (z), we first have formally

n-1

' (%)= lim a™" fy ()= lim o™ [] ' (z,),
n—»o0 n—o0 p=0

n-1
log X' (x)= lim (Z log f' (z,)— n log a)
n—>o0 \p=0

n-1
= lim (Z 0 (2}) + log a)

n—>00 \p=0

by (2); but the last expresgion converges uniformly for 0 <z <d by (5).
Finally, (5) and (8) give

X (@)=2+0 ("), 1, (@)=z+0 "), @}0). (9)
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Relation (3.11) now follows from (3.9) and (9). Relation (3.10) is trivial.

(b) The assumption of Theorem 1b is
f@)=pad ' +0@") (21 0), (10)
a>0, u>1, §>0,
which implies fl@)=azx"+0@*%) (z0). (11)
Hence there exists a positive number ¢ so that
|log f(x)— log a—u log z|<ca® for O<x<d. (12)
By induction we prove that for every positive integer n,

n__
,:t—ll log a—u"log z|<c

|10gf,,(x)— ﬂ—lx

for O0<x<d.

For »=1 the inequality follows from (12). Assuming its validity for n, we get

n_1 n_1
|og fo (f (@) ~E—" log a — " log f ()| < e - (f (@) (14)
2 p—1
and from (12),
|u™ log f(x)—pu" log a— u™*' log x| <cu™2’. (15)

By adding (14) and (15) we get
n+l

u—1

n__ n+l_
1log a—u"*! log :v|<c(‘u_ll(l(x))d+p”x")<c” lx"

log fus1 (2) =2
| g fn+1 p ,u—l

1
which proves (13) for every n. From (13) we get for 0 <z <dy,< Min {d, (;}

2,= 0 (™) (16)
and from (12)
l.“'_n_1 log (l/fnﬂ (x))—pu~" log (l/f,, (x))|
=|p™ " log (1/f (x,)) —p~" log (1/x,)|<p "' |log a| +ca5 =0 (u™"),

which proves that
X (x)= Lim p"" log (1/f, () (17)

exists and is finite for 0 <x<d,. Since for a suitable m 0<f, (z)<d, when 0< z<d,
the limit (17) exists for every 0<x<d.
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To prove the existence and negativity of X’ () we note that by (10) and (11),

=,u+0(x6)

fo(z)_
1 — 1 1
RBr@ ¢ ”Eo %t =)

hence

pf (2p)
f(xy)

n-1
=n log u— log z+ 200(:1:%).
e

But from (17) first formally,

log (— %' (z))= lim { n log p+log T——
n—>00

and this is equal to
n-1

fn (z)
fn ()

—log z+ lim 3 O ()

n—00 p=0

(18)

by (18). The uniform convergence of > ) is obvious from (16) for 0< x<d,, hence

p=0

— X' (x) exists and is positive.
Finally (13) and (17) give

2 (2) = Tim 5~ log (1/f, (2)) = {log =

1
X)) =a 1l (14 0(e7)) (y—>oo)

from which (3.31) follows easily by (3.30).

(¢} The assumption of Theorem 1 ¢ is

f (@)=1—(B+1az’+0@F*
a>0, §>6>0,
which implies f@)=z—az'*f+ 0 @)

We first show that

log a+0 (x )}

) (@1 0),

(x| 0).

lim nﬂarﬁ=1, x,,=/,,(a:);

in fact (21) follows already from
f@)y=x—az®*!+o0 (P

To prove the relation, write

(x| 0).

(19)

(20)

@n

(22)
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xn+1=f(xn)=xn_an x€z+1 (23)

and rP=p,+ 40, n=12 .... (24)

By (1), (22) and (23), >, Tns1/Tp—>1  (R—>o0); (25)
Xy — Ty 41 Eni1 Tn — Tn+1

ons1—>fa by (23), (24), (25), and

%(01+"'+9n)_>ﬂd when n—>co.

This with (24) gives (21).
From the formula we get, by (22),

lim o' (n B+ (2, — 2n11) =1, (26)

n—>o0

which shows that we must have y,=a "#(fn)"'"V in (4.5), provided that f(z) pos-
sesses a principal logarithm of iteration at all.

If the stronger assumption (20) is used instead of (22), formula (21) can be
further improved. First we have, instead of (25), the sharper result

ap=a+0 (), Tn,1/2,=1+0 (23),
hence an=gn+1ﬁ"1(1+0(x‘,’;))=a+0(x‘,’;),
pr:1=fa+0 (2)=pa+0, (%)

by (21), where the suffix x with the O-symbol indicates that the constants in the
symbol may depend on x. Hence

z;f=p,+ - +o,=Pan+0, (n* ") (27)

We show that if z is in the fixed interval 0 <c<z<d then O, can be replaced in
(27) by O.. In other words

wf=fan+0(n ) (28)

uniformly for c<z<d, where 0<c<d.
Choose a positive integer m so that ¢>f,(d). We have for any fixed pair of
numbers z, y for which c<x<y<d,

yal <’ <yabm.
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But by (27), yaf=Ban+ 0, (n"%),
Yalm =B a(m+n)+ 0, ((m+n)'~"?)
=fan+0, (nl_"‘?)
since m is fixed and 0<d< . Hence
2P =Ban+ 0, (n' ).

By choosing y=d the result follows.

We can now prove the existence of

A (z)=lim a'® (B n)'* ' (f, (x) — fo () (29)
and the existence and positivity of A’ (x). We have, by (19) and (28),

lim {(1+%) log n+ log fy (x)}

n—o0

= lim !(1 + l) log » + ng log f (x,,)}
.B p=0

n—>o0

n— n-1
lim {(1 +%) logn—({B+1)a Zl B+ T O(xg”)}
7-+00 p~0

p=0

lim {(1 +1) log n.— (1 +.1) S genes+ "ilO(p-l-d'ﬂ): ;
no ﬂ ﬂ p=1D p-1

uniformly for ¢<xz<d. Therefore

n—o0

log A’ (x) = lim {%} log a + (1 +é) log (Bn)+ log fx (x): (30)

exists and is finite, so that A’ (x) is positive for every z>0. The existence of A (z)
now follows from the uniform convergence of (30) in every interval c<z<d, and
from the fact that the limit (29) exists at least for the value z=1y; in fact the con-
vergence of (29) is uniform for ¢ <z <d, ([4], p. 342). We note also that

A (f (x) = lim o' (ﬂ n)1+llB (f (.’E,,) _yn)

fi—oe

= lim o'# (ﬂ ")H”p (Tns1— )

n—-o0

+ lim @' (B n)'* V8 (x, — y,)

n—o0

=—14+2(2)
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by (26) and (29), which is the function equation (4.3). Generally
A (@))=A(x)—n, n=12, ... (31) -

Finally, to prove (4.8) we take y=d in (29), so that A(x) increases from 0 to d.
From (29) and (31) we get

lim &' (B n)"* 1 (A_y (A(x) —n) — Ay (— 7)) =4 (x)

n—>o0
or if we set A(x)=—p, 0>0,

lim a2 (B 2)"* VP (A (—@—n)—A_ (—n))= —p. (32)

n—ro0

This is true for every p>0, and the convergence is uniform for say 0<p<1. Write

¢+ o for ¢ in (31), and subtract (32) from the new relation:

lim @ (B}t {4 (~o—p—m)—A, (—p—n)}=—a.

n—>o0

Again the convergence is uniform for 0<g<1, and we can replace p+n by a con-
tinuous variable ¢,

lim g (B} V8 {R_ (—o—t)— A, (—)}= —o, (33)
{00
true for every real ¢.
Next we note that for f(d)<z<d,

n=(8a)"" z;% + O (z:5*%)
by (28), hence by (31),

Ay =A(@)—n=~(Ba) 2z’ + 0 (zz7*°).

Since the points z,, f(d)<z=2z,<d cover the whole interval (0, d) we conclude that

A@)=— (Ba) P+ 0 (=Y. (34)
Write Alx)=—~(p a)‘1 x"’(l + @ (2)), (35)
Aor(—y)=(Ba) "y B ry(y), (36)

where by (34),
p(=0@E")=0(1) (z|0) (87)

and by (35), (36),

z(1+p@) P+yp{fa)t a7 (1+g (@) == (38)
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Furthermore, from (33) and (36),
Plot+)—p®)=0¢"""), (t—>co). (39)
Now (4.4) and (35), (36), (37) give
fo (@) =4, (A (x)—0)

ag-2’
1+¢(x)

+yp{Ba) 2?1+ @) +a}
=zx—agz'tP+ 0P
+y{Ba) P 1+ @) +a}—p{(Ba) 7 (1+g ()}

by (38), which is equal to x—aoz'*?+ 0 (2'*#) by (39). This proves (4.8).
We conclude this section with the proofs of Theorems 2a, 2b and 2ec.

=z(1+¢ () "P{1- + 0 (z%)

(a) The assumption of Theorem 2a is
3 l o G
im - x_, (@ X (&) =a
glo0é

for every fixed positive g; or writing £é=x_, (a® X (d)), a° =X (z)/X (d),

L@@ 1@
Jim Zer@) 1@

which is the statement to be proved.

(b) The assumption of Theorem 2b can be written in the form

w1
u—1

?f’é [~ log &+ log X_; (u° X ()] = log a,

honce i 108 X (@) _
£l0 log &

for every fixed positive ¢. The substitution &=2X_, (u X (d)), u’=X (z)/X (d) gives the
desired relation.

(e) The assumption of Theorem 2¢ is

lim §P7 A, (A(§)—0)—£l=—0a (40)
£l0

where the free additive constant of A(x) can be chosen so that

A(d)=0. (41)
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By setting £=4_,(—=n), 0= —A(z) in (40) we get
lim (A, (=2)) P A (A (@) —n)— 2, (—n)]=ai(z),
or equivalently
lim (f, (@) #7 [fn () — fn (d)] =@ 4 (z) (42)
n—oQ
because of (41). Since condition (22) is satisfied, (21) is valid, and in particular

lim (nf a)'? f, (d) =1,

n-»ot

which, with (42), gives the desired relation

A (z)= lim o' (B n)'* P [f, (x) — f. ()]. (43)

n—o0

6. Regular Iteration (cont.)

The assumptions of Theorems la, 1b and 1c are sufficient but by no means
necessary for the regularity of a function. It is therefore desirable to have some
further criteria and useful methods of construction of regular families. We shall only

consider here functions which come under Theorems c (case f+ (0)= lim f (z)/z= 1) >
z)0

with one trivial exception.

THEOREM 4c¢. The principal iterates f,(x) of a regular f(x) with f,. (0)=1 are
themselves regular. If A(x) is a principal logarithm of iteration of f(x) then }Tl(x) 18
a principal logarithm of iteration of fs(x). Furthermore, if v is a positive number then
the functions % fvx), (@)W are regular and A (vx), A (") are their principal logarithms

of iteration respectively.

Proof. The existence of f,(z) follows from Theorem 2 ¢, its regularity from the
definition of regularity. We have to.verify that A* (z)= El (x) is a logarithm of itera-
g

tion of f, (x). But A* (z) is continuous, strictly monotone increasing, and A*; (y)=24_,(c )
80 that
A% (A (@) — 1) = A, (A () — 0 7) = for (2) = (fa)e ().

To prove the second half of the theorem, put first 1* (v)=A (vz); then A*(z) is

. - . . 1
continuous, strictly monotone increasing for 0<»<d/» and i*; (y)= " A_; (y) so that
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ALt (x)—a)=% Ay (A (vx)—a)=%f¢, (v z).

Also lim x““’{lfa (vx)—x} =1lim # (va) P {f, ) —va}= —ar’o
z}0 14 z}0

by (4.8).
Finally to deal with (f(2"))'”, put A* (z)=4(2’); then A*; (y)=(A_, (¥))"” hence

A @ -0)={A A @) -} ={f, a"}"

Also lim =17 {(f, (")) — x}
z|0
=lim ' {z (1 —caz?+ 0 (z?))” —z}
z|0
1
=—-agc
v

which is an asymptotic relation of the form (4.8).

THUEOREM 5c. If f(x) is regular, . (0)=1, and A(x) is a principal logarithm
of iteration of f(x), then

tlim a Bty (—t)—A (—o—t)}=0. (1)

Conversely, given a continuous and strictly monotone increasing A (x) such that

lim A (x)= — oo, A{d)=0,
z|0

and condition (1) is satisfied for every real o for some a >0, >0, then f(x)=21_, (A (x)—1)
18 regular and A (x) is a principal logarithm of iteration of f(z).

Proof. Suppose first that f(x) is regular and A(x) is a principal logarithm of
iteration, normalized so that A(d)=0. Regularity implies (5.22) hence (5.21) which
can be written in the form

lim (nBa)?A_, (A(z)—n)=1.

n—ro0
Clearly we can replace here n by a continuous variable ¢; taking x=d we get

lim (¢fa)?A_(—t)=1. 2)

{—o0

On the other hand, the condition of regularity (4.8) gives, by setting x=2_, (—1),
16 — 583802. Acta mathematica. 100. Imprimé le 31 décembre 1958.
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tlim (=01, (-t)—A,(—-t—0)}=0a (3)

which, combined with (2), gives (1).
Conversely, suppose that 4 (z) satisfies (1); we show that then it also satisfies (2).
Put 0=1 in (1) and choose ¢, so large that

A (=)= (—1=t)—a P (Bt)y 1P| < ea VP (Bt)1"1P
for every t>1t,. Write
Ag(—k—t)—A (—k—1—t)=(1+8)a P g "B (k+1)" 1"V,
[0l <e, k=1,2,..;

k
then A (—t=AL(—k—-1-0+ 2 (1+4,) a~VP ﬂ—l—llﬁ (p+1)1,
p=0
and since A_; (—k—1—¢)—0 when k— oo,
A (=)=(1+8)a g T (p+t) 1M, |b]<e.
p~0

This is true for every >0 and t>¢,(c), therefore (2) is true. The combination of
(1) and (2) gives (3) which is in effect equivalent to the condition of regularity.

As an application of Theorem 5 ¢ consider a A(r) which has the form
A(x)= —vx_"'+p§1% (log z)2™"*?+0(1), (2{0) (4)
where m is a positive integer, ¢>0 and ¢,(u) is a polynomial in u. Clearly
Ay (—ty=cl/metim 4 §1,,,, (log )t~ ®*VIm L O (t71U™), (t—o0) (5)
p-

with certain polynomials ,(u) which can be expressed recursively by the ¢, (u)
from (4). Condition (1) can easily be verified to hold with B=m, a=1/me, hence
f@)=A_,(A(x)—1) is regular, and

lim z %™
z)0

(x—fo (x)) =0 /me. (6)

Theorem 5 ¢ has a trivial analogue in the case of f, (0)=a, O<a<]1.
THEOREM 5a. If f(x) is regular, f. (0)=a, O<a<]l, and % (z) is @ prim—iM
Schroeder function of f(x) then

1imﬂc(/m)=
zl0 X ()

)
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for every positive number u.(t) Conversely, suppose that X (x) i3 continuous, strictly monao-
tone increasing, lim X (x)=0, X(d)=1, and condition (7) is satisfied for every pu>O0;

z|0
then for every a, 0<a<], f(x)=%_, (@ X (x)) i8 regular and X (x) 18 a principal Schroeder
function of f(z).

Proof. f(x) is by definition regular if and only if for every given real o,

1
lim = (] - a,
zlﬁ x X1 (@2 (z)=a

zjo X(z)

This is equivalent to relation (7) with u=a’.

7. Asymptotic Differentiability

Henceforth we shall assume that f(z) is function of a complex variable z. Let

@ (z) be real valued, continuous and strictly monotone increasing for >0, ¢ (0)=0,
and denote _

D(p)={z; z=x+1iy, >0, —gp(x)<y<¢ @)}, (1)

D(p, r)={z; z=z+1iy, O<z<r, —p@@)<y<e¢()}. (2)
We say, f(z) has a regular asymptotic expansion in D (p) if
(i) f(z) is defined in D (g, r) for some r>0, and

(ii) there is a positive number f such that for certain real coefficients a,,

f@)~ 3 a 2P, ay>0 (3)
p~=0
when z—0 in D (g, ). The meaning of the representation (3) is that for every fixed
positive integer £,

k
fR)= 2 a,2'*P"+ 0 (|2 (4)
p=~0
when z€D(p,7), 2 is specified by the condition that 2° is real and positive when

am z=0.
Let f(z) be defined at least on the interval

z=z, 0<zx<d, d>0,

(*) In other words y (x)/z i¢ a slowly growing function and y (x) a regularly growing function
in the sense of Karamata.



232 G. SZEKERES

and suppose that lim ! flx)=a, 3)
z|0%
exists and O<qy<oo. We say that f(z) is asymptotically differentiable at O if the
following is true:
Case ay+1. There exist positive numbers B, r, 0, so that f(z) is holomorphic

on the angular domain
A, r)={z; z=x+1iy, O0<z<r, —O0z<y<Oz} (6)

and has a regular asymptotic expansion (3) in A4 (6).
Case ay=1. (i) There is a positive number 8 and a finite real number a,, =+ 0,

-80 that
lim 271 (z—  (2)) = o (7
z)|0
(ii) There is a positive integer m and for every >0 an r=r(0)>0 so that f(x) is
holomorphic on

BB, r)={z; z=x+iy, O<z<r, —O2'P<y<ha*F} (8)

and has a regular asymptotic expansion of the form

f(z)~z(1— anpz‘””""") (9)
in B(6). ’

The expansion (9) is just another form of .(3) and is obtained from the latter
by writing B/d instead of B and a,= —am., where m is the smallest positive in-
teger for which a,+0. Note that the validity of the expansion (9) in a fixed domain
A (0,) implies its validity in every B (f) so that the present assumption on the do-
main of the expansion is weaker than the one in the previous case. However, there
is no point in making the stronger assumption, as it would not improve on any of
the results to be obtained. Also note that f(z) has, in the case a,+1, a regular

asymptotic expansion in every D (p) for which liﬁl) sup %x) <, and in the case a,=1,
x

@ (*)

— a7 < co.
x1+ﬂ

-a regular asymptotic expansion in every D (@) for which liII(l) sup
z

The definition of asymptotic differentiability does not exclude the case when the
series (3) is convergent, and for instance if f(z) is analytical at 0, real valued for
Teal z, and f'(0) >0, then it is also asymptotically differentiable at 0.

Our purpose is to show that both the derivative and the inverse of an asymp-
totically differentiable function are asymptotically differentiable.
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TueorEM 6. If f(z) is asymptotically differentiable at O then so is [ (z) and
the asympiotic expansion of ' (z) is oblained by termwise differentiation of (3).
Proof. We shall only give details for the case a,=1; the case ay+1 can be dealt

with similarly and is in fact slightly easier. We shall prove that from the validity
of (9) in B(0) it follows that

fz)~1— Zo(1+ﬂ+,31_f:) o, PP (10)
pr
when z—0 in B(}0).
Given k=0 write
k+2m
g (2) =f(z)_z+ ZO “pzl+ﬂ+ﬂplm. (11)
p-

From (9) it follows that there exists a positive number K which depends on 0, 1, k,
but not on z, such that

lg(2)| <K |z|1+3ﬂ+ﬂk/m (12)
when z€B (6, ).
Now let z=z-+iy€B(}0, }r), and denote by I' the path I', +T'; — T,

N:f=t—i0'", 0<t<2gz,
[y:{=2z+1t, —0(22)P<t< 6 (22)'*P,
Dg:l=t+i1 08, 0<t<2z.
We have, gince g ({) is holomorphic when ¢ € B (8, r) and ¢ ({)—~>0 when {—0 in B (6, r),

7 (2 yo L 9 4

27u (& z)2

(13)

Now clearly there exist positive numbers ¢, ¢, and ¢; which depend only on 8, 0,
r, so that :

[CI<alzl, [E—z|>c2f'*? (14)
when { is on I', and
length of I'<c,y]z|. (15)

Hence by (12), (13), (14) and (15),

I Z) | < _Kcl+sﬁ+ﬁklm —2 | |ﬂ+ﬂk/m =¢, I |ﬂ+ﬂk/m (16)

for a suitable positive number c, which does not depend on z. But (11) and (16)

give
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k

,; (z).= 1— z (1 +ﬂ+ﬂ£) ay zﬂ+ﬂp/m +0 (|z|ﬂ+ﬂklm)
»=0

which proves (10).

In the case of a,+1 and z=z+iy€A4 (30, ) we take
V k
g@) =)= 3 a,2!*”
p=0

and the path of integration I'=T, + [+ T,
T,:t=t—ift, 0<t<2z
P,:l=2z+4t, —202<t<20x
Ty:l=t+i0t, 0<t<2z

Otherwise the proof goes like in the previous case.

Remark. The proof evidently remains valid if f(z) has a more general asymp-
totic expansion :
f@)~2 {ao+ an, (log 2) z”"} , @G>0 (17)

o

where y is any real number and the a,(f), p=1, 2, ... are polynomials in .
THEOREM 7a. Suppose that f(z) is asymptotically differentiable at 0 and it has
a regular asymplotic expansion

f)~ 2 a,2'*?", 0<a,<l, (18)
»=-0
which 18 valid in the domain A (0), as defined under (6). Let

6 /]
tp(x)=mx—y:vz, y;(x)=1_*_—0x+yx’ (19)

__20(+]a)
where y= a +0)ao(l—ao), (20)

and define D(p,r), D(p,r) as in (2). Then there is a positive number r, with the
following properties.

(i) f(z) 48 holomorphic and schlicht on D (g, ;) and D (y, r,).

(ii) f(2) maps D (g, r) into D(p, } (1+ay)ry).

(iii) f_,(2) exists on D(y, r,) and it maps D(yp, r,) into D(zp,irl)-

(iv) }_1(2) has a regular asymptotic expansion in D (yp, r,).

Statements (i) and (iv) are still valid if ay>1 in (18).

The theorem obviously implies that f_, (z) is asymptotically differentiable at 0.
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THEOREM 7c. Suppose that f(z) i8 asymptotically differentiable at O and it has

an expansion

flz)~z (1 - E a,zf’*“""')

p=0
which is valid in every domain B (6), 0 >0, as defined under (8). Let

1+ﬂ_y x1+ﬂ+ﬂ/m’ Vo (x) = 0 x1+p+ y x1+ﬂ+,9/m

@ (x)=02
where =£(|all+m(1+ﬂ)aﬁ);

then to every 0 >0 there 18 a positive number r, =7, (6) so that
{i) f(2) te holomorphic and schlicht on D (gs, r,) and D (ys, 1)
(i) f(z) maps D (@5, 1y) into D (ge, r,—} 2gri*?).

21

(22)

(23)

(iii) f_,(2) exists on D (s, r,) and it maps D (v, r,) into D (w,, r,+20y71*7).

(iv) f_y(2) has a regular asymptotic expansion in D (y,, 1y).
Statements (i) and (iv) are still true if ay<0 in (21).

To prove Theorem 7 a, choose r, in a later to be specified manner, but in any

case so that
I ) =ayzl <Raplz], | @)—ao|<ay

(24)

when z€A4 (0, r,); this is possible by (18) and Theorem 6. From the first condition

in (24) it follows that
baolz|<|f(2)|<Bao|z];

from the second condition, that f(z) is schlicht on 4 (0, r,).(}) Now let

z=x+il—f_—0x—i'yx’, O<z<r

be a boundary point of D (¢, ;). From (18) we obtain

1+26 6 26
f(z)=a°x'+a‘(_l—+_0)—’xz+ [1+8“°x+(1+e 7%) ]+0(13);

hence if we write /(z)=xl+iyp we see that

[1+0 (1+0)’“l ”“°]”2+0(“")

h= 1+0 a2
1 26
+ E.%(”“" T+6 % 1+0)”¥
_9 . _
10 ™ o

(25)

(') See reference [1], p. 297, Satz 3.
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by (20), and also y, >0, provided that r, is sufficiently small. Similarly we find
that if

. 0 .
z=x+i——z+iya’, O0<z<n

1+6

is a boundary point of D (y, ;) and f(z)=x,+ iy, then

6 2
y2>1—+0 Tyt y 22,

Finally it is seen from (18) that if z=r,+ 1y, |y|<%9r1+yr¥, and if f(2) =25+ ty;,
then }a,r,<z3<3(1+4+ay)r, provided that r, is sufficiently small. Therefore f (z) maps
the boundary of D (g, ;) upon a curve which is inside D (g, } (1+4a,)r,) and the
boundary of D(y, ;) upon a curve which is outside D (y, } ayr,). The statements
(ii) and (iii) now follow from (i).

It remains to be shown that f_, (z) has a regular asymptotic expansion in D (y, r,).

. . . . 1
We can uniquely determine coefficients b,, where b0=;, so that
0 .

00
1+8p
z~ 2 byw
p=0

is formally satisfied if w=f(z) is substituted from (18). But then we get for every k>0

k
> by w' PP =2+ 0 (|2|"*F*) =2+ O (|w['*) (26)
p=0

by (25), hence z=f_, (w)~z_ob,,w“ﬁ", by=1/a, (27)

is valid in D (yp, ).

The proofs in the case of a,>1 are similar, except that y is now negative and
the roles of ¢ and ¢ are interchanged.

We note that

°0

f,—x(w)"’ > (1+13P)bpwﬂp’ bo=1/“o (28)

p=0
by (27) and Theorem (6).

The proof of Theorem 7 ¢ runs on very similar lines. We first secure the validity
of (24) and (25) with a,=1, hence schlichtness of f(z) on B(f, r, (§)). Mapping of
the boundary point '

1+8 1+8+8/m

z=zt+ifx " —iyx

gives
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m+1

f(z) =2 z oy Ll tBtBpim +éﬂ 1 +ﬂ) oo g2 L1+38
p=0
+ixl+ﬁ[0—y;v8”"_a00(l+ﬂ)xﬁ+%(1+ﬂ)yxﬂ+ﬁ/m
_(Zl(l+ﬂ+ﬁ/m)6xﬂ+ﬂlm]+O(x1+2ﬂ+ﬂ/m),
or if f(z)=2,+1iy;,

yy=0a*f —yap?Prom —%(aoy +oy 0) i — 3 B (1+ )0 agalt ¥ + O (g A

<@aitP— papthrAm — [7—/1 aoy—;‘% |a1|0—ﬂ(l+ﬂ)0a§] a}t e
=9x11+ﬁ+'yx}+ﬂ+ﬂlm

by (23). Similarly if z=z+i02""?+ip2'*#*P™ and f(z)=x,+iy, then y,>0x*? +

+yaitPPim Finally if z=r +iy, |y|<Or1*P+pri*F*P™ and if f(z) =25+ iy, then

r—2ayritf<zg<r,— 3oy rith. (29)

The conclusions now are similar to those in the previous case.

The asymptotic expansion of f_; (w) has the form

fa <w>~w(1+ S, z”“"“), by =2t (30)
p=-0
and fa@)~ls S (ﬂ +8 24 1) b, 2+Foim, (31)
p=0 m

8. Analytical Iterates

In this section we shall consider Theorems 3¢ and 3 b of § 3; the more difficult
Theorem 3 ¢ is deferred to the last section.

Suppose that the conditions of Theorem 7 a are satisfied with 0<a,<1; by pro-
perty (ii) of this theorem, the natural iterates f,(z) relatively to D (g, r,) exist for
every positive integer n. We first show that for a suitable 7,, O0<r,<r,

X (z)=lim a5™ f, () (1
r—>00
exists for every z€D (g, r;), and % (x) is holomorphic on D (¢, r,), The proof follows

the pattern of Theorem la in § 5. First we obtain from (7.18) a positive number ¢

so that
|f (z) —agz| <ecz'*? (2)
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for z€D(p, r,). From this we get by induction, for a suitable r, and for every
2€D (g, rq)

loz)—agz]|<ad e 1+ +--- + 0 VB)[21*8, n=1,2, ... (3)

where b=} (1+a,). Hence

2=y (2) = 0 (a§) @
) L0

=0 (ag"|z['**)=0 (af")
which proves the existence and uniform convergence of (1) in D (g, ;). In particular,

% (2) is holomorphic in D (g, ry).
From (1), (3) and (4) we get

2 (2)=2z+0(|z|"*?), z€D(p, r,y). (5)

By an argument similar to the one used in the proof of Theorem 6 it follows from
(5) and (7.19) that
2 (2)=1+0(z[) for z€A4(6,, 3r,) (6)

where 0,= ; hence X (z) is schlicht on A4 (6,, r;) for a suitable @, r,. By (5)

0
2(1+6)
we can therefore choose 6;, r, and 0, ry (which are of course not necessarily the same
as the previous ones) so that:

(i) X(z) exists and is schlicht on A4 (6,, ;).

(ii) z€A4(0,, r,) implies X (z) €A (0,, 7,).

(iii) X_, (z) exists and is schlicht on A4 (§,, r,).
It follows that fo(2)=%_; (a3 X (2)) (7)
exists and is holomorphic on 4 (,, r,) for every real positive ¢. In particular, z, =f, (2)
exists for 2€4 (0,, r;) and

Xn=1 (22) = a5 X (2). (8)
We show that Zn~ D CuXtP, =1 (n—>o0) 9)
=0
for certain real coefficients ¢,, where the interpretation of (9) is

k
2= 3 e ta =0 (1) = 0 @)
q=
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for every fixed positive integer & and z€A4 (6;, r;). The coefficients ¢, can be de-
termined formally from

-]

1+8p

Zne1~ D apznt?,
=0

o0

0 00 1+8p
i.e. from > (B Xa) TP~ D a, ( > ¢ ZV”)
=0 ¢=0

a=0

and the formal relation is turned into a true relation by observing that both z,/Xn
and X,/z, are bounded on 4 (0,, r,), because of (5).
A trivial inversion of (9) gives

L (Zz) =Xa~2Zy+ Z qu}l+ﬂq (n—o0)
a=1

for certain real coefficients d, which can be determined uniquely from the c, and
gince this is valid uniformly for 2€ 4 (8,, r,) we conclude that

Z(2)~z+ E dg2'P° (10)

a-1

when z—>0 in 4 (f;). Incidentally, the coefficients d, can also be determined directly
from the functional relation

X(f () =ao X (2).

Corresponding to (10) we also have an expansion of the form

Yy ~wt T dgw'th (11)
g=1

for w=2(z), 2€4 (0, r,); this gives easily, by (7) and (10),

)
fo (2)~ Zoa(g) 2P, = (a,), (12)
p=

and Theorem 3 a is proved.

To prove Theorem 3b we follow the pattern of Theorem 1b in § 5. The as-
sumption of Theorem 3 b is

f(z)= Z%Z””', m>1, ay=1, |zl<R1>0- (13)
p=0
We can clearly choose a positive R,< Min {R,, 1} so that |f(z)|<|z| whenever
0<|z|<R, and
|log f(z) —m log z|<c|z|, 0<]|z|<R, (14)
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for a suitable positive number ¢. This inequality is satisfied on the Riemann surface

of log z, irrespective of the amplitude of 2z, and we have for instance
|log fas1(2) = m log fu (2)| < ¢|fa(2)| (15)

for any z on the Riemann surface of logz such that 0<|z|<R,, provided that
log f, (z) is specified as in Theorem 3 b.
From (14) it follows by induction, as in § 5, that

log £, (z)— m" logz|<cmm_—11|z|- (16)
This gives 2,=0(m™™") (17)
and [m™" log f, (2) —m "1 log fus1 (2)| =0 (m™")

by (15) which proves the existence and uniform convergence of

X(z)= — lim m™" log f, (2) (18)

for 0<|z|<R, —oo<amz< oo,

Hence X (z) is holomorphic for
0<|z|<R, —oo<amz< oco.
From (16) and (18) we get
Z(z)=—log 2+ O (|z]) (19)

This implies—provided that R, is sufficiently small—that X () is schlicht () on the
annulus
Q(Ry)={z; z=pe"¥, 0<p<R, —oo<y<oo} (20)

and that it maps @Q(R,) upon a domain 7 such that S(r,)< D< S(r,) where S(r)
is the strip

S(T)={w; w=u+1v, r<u< oo, —oolp< oo}
1 1
and 7, >0, log E_cl Ry<r <ry< logfo'*'clRo

for a positive ¢, which is independent of R,. Consequently there exist positive numbers
R, r with the following properties:

(*) Details of proof in a similar but slightly more difficult case will be given in § 9, Lemma 7.



REGTULAR ITERATION OF REAL AND COMPLEX FUNCTIONS 241

(1) x(z) is schlicht on @ (R).
(ii) z€Q (R) implies X (2) €S (r).
(i) %_, (2) exists and is schlicht on S(r).

It follows that fe(2)=X_; (m° X (2)) (21)

exists and is holoniorphic on Q(R) for every real positive ¢. In particular, 2, =f, (2)

exists for z€Q (R) and
Xn=X (22) =m" % (2). (22)

Now the proof proceeds as in the previous case. First we show that

o0
Zn~ D Cee 9V, =1 (n—>o0) (23)
q=0

for certain real coefficients c,, uniformly for 2z €Q (R). The coefficients c, are obtained

formally from

ot
—_ m+p
Zni1= D, dy2n
=0

i.e. by equating coefficients in

o0 o0 oQ m+p
—(@rhym% —-@+D%n M
2 e "~Z%(ane ) ’
q=0 »=0 q=0

and the formal relation is turned into a true asymptotic relation by observing that
both z,e*» and z;'e *n are bounded on @ (R), because of (19). '
Inverting (23) we get

X (22)=Xa~ —log z,+ 2 dyzn  (n—>o0)
¢=1

for certain real coefficients d, which can be determined uniquely from (23). Since
this is valid uniformly for z€¢Q (R), we conclude that

X (z)~ — log z+§1 d, (24)
when z—>o on @ (R). From (24) we get an expansion
1, (w)y~e ¥+ q%l dt e @DY (25)
for w=2(z), z€Q (R); this gives with (21) and (24)

o0 &0

fa@)~ 5 3 a@a®hm’re g =1, (26)

p=0 ¢-0
as required.
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9. Analytical Iterates (cont.)

We come now to the proof of Theorem 3 c¢; the main steps will be formulated
as separate Lemmas. The present assumption is that f(z) is asymptotically differ-
entiable at 0 and the regular asymptotic expansion of f(z) has the form

f(z)~z(l— Eloz,zﬁ“ﬂ""")_, >0, f>0. (1)

As a preparatory step we show that without loss in generality it can be assumed
that og=1, f=1.
If B+1, consider the function f*(z)=(f(2"#))’. Clearly

® 8
# (z)~z(1— ) a,z””’"‘)
p=0
and this is an asymptotic expansion of the form

f* (2)"'2(1— 2 % Zl”'"’) (2)
p=0
which is valid in
B={z; z=(x+iyf, 0<z<r, —02"F<y<fs'*F}
if (1) is valid in

B, r)={z; 2=z+iy, O<z<r, —02""P<y<ha'*}. (3)

Clearly, B includes a domain D (g, r,) (definition (7.2)) with

. x
ilﬁl) % =p6;
hence f*(z) is asymptotically differentiable at 0. By Theorem 4c¢, §6, f(z)=(f* («))**
is regular if f*(z) is so, and also f,(z)=(f* (2%))'# is asymptotically differentiable at 0
if 7 (2) is so. Therefore, if Theorem 3¢ is true for f*(z), then it is also true for f(2).
If a5+1 in (2), we replace f*(z) by f** (z)=0f f* (z/al). Again, f** (z) is asymp-
totically differentiable at 0 since

@~ (1= 3 o /o)
p=0
which is an asymptotic expansion of the form

@)~z (1— > a,,z”"’"') , ap=1;

p=0
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1
the expansion is valid in D (¢/ag, agr,). Also by Theorem 4¢, f* (z)=a—: f** (a5 2) is
regular if f**(z) is so and f} (z)=;13 f5* (o8 z) is asymptotically differentiable at O if
f3* (2) is so.

Henceforth we shall assume that
f@)~z Zoapzz”"", ap=1, (4)
flon

and the expansion is valid in
B, r(0)={z 2=z+ty, 0<z<r (0), —02*<y<6z?. (5)

It is assumed that r, (f) is chosen so small that the conditions (i), (ii), (iii) and (iv)
of Theorem 7c are fulfilled in D (gy, r,), D (yy, ,), where

@o () =02 —p 2™ U™, yy(2)=02%+y 2", (6)

y=0{a,|+2m).
By Theorem 6, §5,

o0

f~1— 3 (2+§L) a,z'*?", a,=1. (7

p=0

We note that the regular asymptotic expansion of f, (z), if it exists at all, is
uniquely determined by the expansion of f(z). Suppose that

fo (z)~z—§0a(,‘,”z2“’"", aP =g, (8)
and a‘,}’=a,, p=0,1,2, .... If f;(2) is a fractional iterate of f(z), we must have
Ha () =1 (f (2)), 9
ie. z— E a2 m — E ay (z— E aﬁ;”zz*“’"')mw.’l
a=0 p=0 a=0

0 0 00 2+¢/m
~z— D a2t — S af) (z— > a,,zz“”"') .
p=0 q=0 p=0

The coefficient of 2°**'™ gives that (2 + 1%) ay = (2 + ”%) 0 a,+ terms composed of a,,

a with p<gq. Thus the relation allows us to calculate each a in a perfectly de-
finite manner.
By property (ii) of Theorem 7e¢, every z€D (@, r,) determines a sequence z, de-

fined inductively by
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20=2, Zns1=[(22), »=0,1,2, ....
Each member of the sequence is in D (g, 7,).

LeMMa 1. Given 0>0 there i3 a positive r,=r,(0)<r (0) such that for every
fized &, 0<E<r, and every z€D (g, 1y), |2—&|<OE,

nzy=1+0s(n ™). (10)

The index & with the O-symbol indicates, as in §5, that the constant appearing
in the symbol is allowed to depend on &. This convention (both with o and O sym-
bols) will be used throughout the section. A consequence of the Lemma is that
nz,—>1 uniformly for z€D (@, 7,), |z—&|<OE

Proof. For 0<&<r, write

a(f)=sup {n&; »n=12, ..}

We first show that lim ¢ (§)=1. (11)
§l0

By formula (5.27) (With g=1, a=1, a=%)

nky=1+0;(m"™) (12)

so that o (&) is finite and o (£)>1. Also if we set o (5, k)= sup {n#n,; n>h}, then
lim o(n, k)=1. Let h=h (&) be defined
h—o0

MSE<Nn-1, N=1="1y;

then 7n;n <€ <fpinoy and né,<nppria < n_—l a(n, h=1), a(&)<o(n, h—1).

h+n
But lim % (§) = oo, therefore lim ¢ (£)< lim o (5, h—1)=1. This proves (11).
&lo £40 h—o0
Now determine a positive integer n, so that
1/3m
-1-1/3m
L+ (n 4 mg) 1207 < (1+;LT;0) for n3>ny; (13)

and choose 7,<1 so that the following conditions be fulfilled for 2z€.D (g, r,),
0<é<r, and n>0:

lf’(z)—1+2zl<lz|1+1/2m "
f(&)>4¢ 5
|£2_2§3“f2(§)|< £3+1/2m 16)
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6 (1 +nﬁ)118m<§’—ll+ll2m (17)
0.
17 E712% < (m+ mg) ™1 137, (18)

where n, is the integer determined from (13). The first three conditions are possible
by (4) and (7), the last two conditions by (11).
Let 0<&<r, z€D(py, 75), |2—&|<0&% and write

lzn_fn|=6n£?l (19)

so that 0,<§. We have for n=>0

Znir—&ne1=f(2a) —f(n) = f f(az
&
where the integration it taken along a straight path. By (14),

n
jf"‘f)d€—<2n—sn)+(z§,—5i> <|zn=Eal (Ent|2n =& 127,
&n

|Z,,+1-—§,,+1—(2,.—§,.) 1 —2‘Sn)|<lzn"'§n| {(En“*'|zn—£n|)l+”2m+lzn_§n|},

ZL+1 - £n+1 - (zn i fn) (1 -2 En) 5?1

£ £ ne1

4|z, —

52 fnl{(£n+Izn_§ﬂ|)1+l/2m+|zn_£”|}

by (15), hence by (16) and (19)

Znt+1— 6En Zp—&n 4|2, — &y m m
Hﬁf o 5?;5 | & £ I{S‘HIZ +(‘Sn+|zn_§n|)l+m +|zn_£nl}!
0nr1 <O, {L+4 & + 4 (140, &) £,1127 40, 64} - (20)

We shall prove that

n 1/3m
GnSB(n—-i- 1) for n=0. (21

The statement is true for n=0 since 6,<8; suppose therefore that it is true for some
n>=0. We have, by (17) and (21), since &,<r,<1,

n 1/3m
0,.5,.<0(——+1) E < EPmL,
o

en 5%< 5}‘+1/2m’

17 — 583802, Acta mathematica. 100. Imprimé le 31 décembre 1958.
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hence by (20) and (18),
0ne1< 0, (1+17 E572™) < 0, {1 + (n + ng) 17137}, (22)

Finally, by (13), (21) and (22)

1 1/3m n 1/3m 1 1/3m n+1 1/3m
< <f|—+1 1 = +1 .
Ons1<0s (1+n+ no) o(no-*- ) ( +n + no) ( g )

Thus (21) and therefore also (22) is true for every n>0; but (22) clearly implies that
0, is bounded, 6,< K for every =, hence

|2, — &, | <K & (23)
for every n>0 and every z€ D (p,, r,) with |z—-£|<0§2.
Hence |nz,—n&,|<K (n&,) &, =0; (i) which by (12) proves (10).
Remark. It can be assumed that 7, (6) (and all future functions r, (), v=3, 4, ...)
are monotonically non-increasing functions of 0.
LeEMMA 2. Given 0>0 there exists a positive number ry=r, (0) with the following
properties:
(D) r3(0)<r,(30).
(ii) If 0<é<ry(0) and T (0, &) denotes the union of the sets
Sn(os §)={Z, z=Cm C=x+‘i?/, §_£2<x<£+52’
_¢20(x)<y<(p20(x)}’ n=07 17 2’ sen
then T, &> B0, &),
(ii) Given & such that 0<§<ry(0),
nz,=1+0(n""") (24)
uniformly for z€8, (0, £).

Here r,(30) is the function obtained in Lemma 1, @y (x) is defined by (6) and
B0, £) by (3).
Proof. 1f r; satisfies condition (i) and is sufficiently small, we can achieve that
(with the notations (6))
(P39 (I) > 1/)20 (x) > (pzo (:1:) > on (x) for 0 <xr< T3 + Tg. (25)

Also we can achieve, by Theorem 7e¢, § 7 and in particular by the inequalities (7.29),
that the following be true: To every z€B (8, £), where 0< £ <r;, there is a non-
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negative integer n so that {=f_, (2) is in the region
{6 C=z+iy, E-E<a<EHE, —yp(x) Sy<yy (@)}

Then by (25), f-»(2) i8 in Sy(8, &), 2=¢, is in 8, (0, &), so that property (ii) is true,
and the only thing that remains to be proved is the uniformity of (24). But clearly

we can select a finite number of points &P, p=0,1, ..., &,

E-E=f0< g
so that the sets

U,={z; 2€D (pss, r,(30)), |z2—£&P|<30 (&™)

cover S, (0, £); and in each U, (24) is uniformly valid by Lemma 1. Therefore it is
also uniform in 8, (0, &).

LEMMA 3. Let the numbers A,, p=0, 1, ..., m be calculated recursively from

RE(t) g (™R (1) —h (t) —ith’ )+ (1+4,)t"=0 (mod t™*) (26)

where gt)= % a,t?'",  ag=1, 27)
p=0
m-1

h(t)= Z Apt", Ao=l. ' (28)
p=0

For 2€D (gg, 13 (8)) define An=1 (%) by

m-1

Z= 2 Apn P+ A,n P log ntn i Ay (29)
p=0

then lim 4, =2* (2) (30)

n—-o0

exists for every z €D (@y. r4(0)) and the convergence is uniform for z€8, (0, &), where &
18 any fized positive number, 0<E<ry(0).

Remark.
1. The coefficients a, in (27) are those from (4); r4(6) is the function obtained
in Lemma 2.

2. The numbers 4, are uniquely determined by the recursive relation. In fact,
the coefficient of t*, 1<p<m—1 is equal to (1 —%) A, + terms composed of 4, with

g<p, and the coefficient of " is equal to A4, - terms composed of 4, with g<m.
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In the particular case of m=1 the recursion gives 4,= —(1+a,), hence
. . 1 log n
A® (2)=lim n®{z, ——+ (1 +a,) —5— |- (31)
A—>00 n n

3. It follows from (30) that A*(z) is bounded on S, (0, &).

4. Let d>0 and such that f(2) is holomorphic for z=x, 0<z<d and f(z)<=z
for 0<z<d. If ry(0)<n<d, there is a smallest positive integer k so that n, =& <7y (0);
furthermore, there is a positive number p =g (0, #) so that ¢=z2,=f,(z) exists and is
holomorphic and schlicht on the disk |z—7|<p (6, 7), and t€S,(6, 7). But then if

we define

m-1
Aa@)=ntz,— > A,n'" "™ —A,log n, (32)
p=0
we get for n>k, by (29),
m-1
@) =ntax— 3 A, n' """ —A4,logn
p=0

(kP ta o2k (n— k) bng KR b
m-1

- pZoA' (n—k)}*" —k— Ap log (n—k)+ O (n1'"™)
=2n_& ) +E+ 0, (n~1™).
Thus A* (z)= lim 1, (2) exists, the convergence is uniform for |z—7|<p (g, #), and
M 1* (2) =A% (z) + k. (33)
In particular, A*(n) exists for 0<7 <d.

Proof of Lemma 3. Let £, 0< £<ry(0) be fixed and z €8, (6, &); then by Lemma 2
and (29),
A (2)=0; (n) (n—>o0). (34)
We have, by (4),

m
Zoa1=f @) =2a— 2 @, 25" +0(|z,[**'"™)
q=0

hence, by (29), (34) and Lemma 2,

m-1

SA,m+1)Tm L 4 (n+1)2log (n+ 1)+ (n+1)"2 Ay
=0

m-1

=3 A, p 1M 4 logn+n 2%, (85)

m m-1 ’ 2+q/m
-3 a, [ ZOA,n‘l"’”" +A,ntlog n+n? 2.,.] + O (n=371m),
=

p=0
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The A-free terms in the first member of this relation become, if for brevity we write

t=n"Y"™ (36)

m-1
> At (1—(1+2) t"')+t“"'+A,,,t2"' log n—2A4,8" log n+ A £™. (37)

=0 m

If the A-terms are deleted from the second member of (35), the expression can be
written in the form

m-1 m m-1 2+¢g/m
S A+ 4B  logn— 3 a, [ 4, t”*"‘] — 24,6 log n+ O (n~2"12")
p=0 q=0 Ip=0

=t"h(t)+ A, 2" log n— 2" K2 (t) g (™ h (8)) — 2 A ™ log n+ O (n~3"17Fm)

with the notations (27), (28). But the last expression is, by the recursive relation
(26), equal to

t"h () + A t°" log n— 2" b (¢) —itz”'“h’ ) + (L+ Ap) P™ — 2 4, ™ log 0+ Og (n~37127)

which is identical with (37). Thus the A-free terms in (35) cancel and we obtain,
by observing (34),

A +1) A1 =0 2 A= 207 Ay — 0 A5 + 2, O (0721 + 22 O (0B + O (n731EM),
ie. Ani1=2n (1 =072 2+ Op (n™ 1712 4 2, O, (02" 12™)] + O (=17 12™), (38)
This implies
|Ans1| <|An| 1+ €y n72 | An] + qn ™ 712m) 4 g~ 1712 (39)
where ¢,, ¢,, ¢; are suitable positive numbers; they depend on & but not on z.
Now suppose that there is a positive 7, so that |1,|>n"'""2" for n>n,; then

by (39),

|Ans1]|<|Aa| QA +¢,n2]Aa]) for n2m,

where 7, > n,, hence by (34)

-1+1/2m
msa| (4 1724997 < | 2| 2420 (1 4 g =2 | 2, (1 + 5)

- 1
<|An| 1“’2"'(1——5) for n>n,.
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Hence eventually |A,|n '*'*™<1 for some n>mn, which contradicts our assumption.
We conclude that |i,]<n'"'®" for infinitely many n. But if this inequality holds
for sufficiently large n then by (39),

[Aner|<n B {1+ (¢ + ey + ) 07T EMY < (m 4 1)1,
hence |4,[|<n'"'®™ for n>n,, and
[Aas1|<|An] {1+ (c;+ c) 17127} ggm 11T,
This clearly implies An=0¢(1). (40)
Going back to the relation (38) we find
Ani1= A+ O (n™7127) (41)
which proves the existence of (30) and the uniformity of convergence for z€ 8, (0, &).
Let us write now A)y=2*(z)—2*(d) (42)

where d is as in Remark 4; A(z) is defined in a suitable neighbourhood of the posi-
tive interval 0 <y <d and A(d)=0. Also by Remark 4 and formula (32),

1(2) = lim n? (2, — d,) (43)
and in particular 2 (@) = lim u2 (f, (2) — f» (d) (44)

for 0<2<d. By comparing this with (4.3) we see that A (x) is a principal logarithm

of iteration of f(x), provided that it is a logarithm of iteration, i.e. that it satisfies
Af@R)=4(2)—-1 (45)

and the inverse A_; () exists for 0<x <A (d). The relation (45) is trivial from (33)
and (42); the existence of A_, (x) is assured if we can show that A’ (x) exists, is con-
tinuous and A’ (z)+0 for O0<z<d.

LeMma 4. Let T (0) denote the union of every Sy (0, &), 0< & <ry(0) and every disk
K@O 8={z |z—¢[<e6, &), r(O)<é<d

where (0, &) is the number defined in Lemma 3, Remark 4: let 1 (z) be defined by
(30), (32) and (42). Then A (z) is holomorphic on T (0) and A’ (2)*0 for z€T (§). In
particular, A(x) i8 a principal logarithm of iteration of f(x).
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Proof. By (29), (30) and Remark 4,

m-1
AME)=lmi{nfz)— 3 n'P™4,— A, log n} (46)
7—>00 p=0

and the convergence is uniform on 7'(f). But f,(z) is holomorphic on 7 (f), there-
fore A*(z) hence also 1(z) is holomorphic on 7 (f). Thus the Lemma is proved if
we can show that A’ (z)+0 for z€T (). Since

M @)=f @@ (&) (47)

by (45) and f (z)+0 on T (6) by construction, it is sufficient to prove the statement
when z€8,(0, &), 0<&<r;(0).

From (43) A (z)= lim 2% f, (2), (48)
n-1

hence log ' (z)=lim {2 log n+ > log f’ (z,,)} . (49)
n—>00 p=0

But by (7) and (24),
log f' (2p) = _2Zp+0(|zpl”1/m)

2 -1-1/m
= _5+Oz(p 1= )

1
108 f’ (Zp)= -2 Iog n+y+02 (n—um)
0

p=

for some finite y, which implies finiteness of log A’ (z) in (49) hence A’ (z)=0.
From Lemma 4 it follows that

fo(2)=2-1(A(2z)—0) (50)

exists and is holomorphic for z=x, 0 <x<d; to complete the proof of Theorem 3¢,
we have to show that f;(z) is asymptotically differentiable at 0. The proof requires
a substantial refinement of Lemma 3.

LemMa 5. For every z€D (g, r4(0)), 2, has an asymplotic representation

o0 -] 4
2~ S S Bygn M (I—Og ") (51)
p=0 g=0 n
where By,=1, By,=4, for p=1,...,m—1,
By =1" (2), By =Ay; (52)

the representation is valid uniformly for z€8, (0, &) where £ is u fixed positive number,
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0<£&<ry(B). The notations are those of Lemma 3, and the meaning of the representa-
tion (51) is that
= 3 Byn o (PE2) 4 0, b 53)
pram<k n

for every fixed k>=m.

The coefficients B,, depend on A*(z); specifically, B,, is a polynomial in A*(z)
of degree <p/m.

Proof. Let the coefficients A,, be calculated recursively from the generating

relations
Agp=1, Ayny=0,
S D Ap P A+t (g™ log (L+EM))T— Y D Ay tPul
p=0 g=0 p~0 ¢=0
) ® o 24+8/m
+ > a t"** ( > 3 A,qt’u") =0. (54)
=0 p=0 ¢=0
It is seen easily that the coefficients of t? w9 p=0,1, ..., m—1, ¢>0 and of ui™

are identically zero, the coefficient of ™ is Ay +terms composed of Ay, p<m;
finally, the coefficient of w?t"*™ when ¢+ }; *1 is (l—q—%) Ay, +terms composed

of Ayq with p’<p—m or p'<p, ¢'<q, or p’<p, ¢’ =¢q. Therefore, every A4,, can
be determined uniquely from the recursion; it is also seen, by comparing (54) with
(26), that the coefficient 4,5, p=0, 1, ..., m—1 and A, are identical with 4, ..., An—1
and A4, respectively.

Now having fixed a positive integer k>m, let us write

q
Za= S ApgniEm (I"—gﬁ) +n A, (55)
pram<k n
Lemma 3 implies that lim A, = 4% (2) (56)
n—o0

and by Remark 3 after Lemma 3,

An=2n (2)= O (1) (87)
if z€8,(0, &).
We get from (4)

k
2+ (k+1
zn+1=f (Zn) =2n— Z @y zﬁ+1/m+.0(|zm| e )Im)
=0

hence by (556) and (57),
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S Apnt1)t ""'(M)qﬂnﬂ)-”z,m

pram<k n+1

q
= 2 Apniem (l—oi n) +n7% A

p+em<k

k qa 2+8/m
- > a, [ S AyniTEm (————loi n) + n‘zl,,] + Qg (n~2-®+Dimy - (58)

8=0 p+oemgk
The A-free terms in the first member of this relation can be written in the form

S A P (L4 gm)TIT0RM (g 4 gm Jog (1 + $™))

ptam<k

with t=n"t"m 4=

(69)

and these cancel, by (54), the A-free terms in the second member of (58), apart from .
terms of order O (n™*~**V/™ log* n). Hence we are left with

(n+ 1)-2 An-{-l-— 2).7!:— z (1 z (2 +:/m) -2r Ar"‘

3=0 r=1

ql2-r+s/m
S qu,n»-l—plm (log n) ] +0, (n—z—(k+l)lm logk ),

p+em<k n

1 2 k k

ie.  Apns1= (1 +;;) An :1— > a, D
s -

-0 r=1

(2 + 8/m) —r—s;m lr-l

e-r+s/m
[ S Ay Um (bi ” ] } + Oy (= *+DIm Jogk ), (60)

p+am<gk

On multiplying out, the term n~'4, drops out, and the expression takes the form

Zn+1=1,.{1+ z ng) oo 1ooim (M)a}

1<p+amgk-m n

k
+3Hh 3 opnrem (1°g ") + 0 (n=%*DI™ Jog* m) (61)

r=2 p+am<k-rm

for certain coefficient CYy; which can be calculated uniquely from (60). From (61)
we get, if k>m,
}-n+l—}~n=06 (n—l—l/m IOgm n),

hence by (56), B @) =An= 3 (hrs1—A)= O (1™ log™ ),

T=n

An=2% (2) + Og (n~ 1™ log™ ).
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Suppose now that for some §, 0<j<k—m, and for certain coefficients D,, which are
polynomials in A% (z) of degree <1 +7%, we have proved that

q
A=A (2)+ 1 > Dynom (l———oi n) + O, (n™ 9+ Jog™* n); (62)

<p+em<y

if this is put back into (61), we get

log n\¢
A __2 — E —l—y/m( ) +0 -1-(f+2)/m 10 m+/+1n
n+l ™ An 1<p+q§r:n<j+1 pq ™ n e (n g )
hence
2 _ log n\? _ m
=2 (@)= 2k —hea)= 3 Dygn " (—i ) + 0 (n” 9+ Jog™ 1 ).
- <pt+gm
By induction, (62) is true for j=k—m,
q
Av= 2 Dyn?" log m + Oy (n~EHVIM Jogk p) (63)
ptem<k-m n

with Dgy=2%(2) and D,, of degree <1+ p/m in A*(z). Finally, if (63) is substituted
into (55), we obtain (51), (52) with

B,,=4,, for p<m,

Byy=Ap+Dyp_m,q for p=m.
This concludes the proof of the Lemma.

LeMMaA 6. A(2) has an asymplotic expansion
AR)~ = 3 3 Fpo2® 1*PM log?z, Foy=1 (64)
p=0 ¢=0 .

when z—0 in B (0, r;(0)), 6>0.

Proof. By an obvious inversion we get from (53)

- Z A’W z}l+q+p/m log" Zn + 0& (lzn ll+k/M) (65)

pram<k

S | -

where the O symbol refers to n—co and formula is valid for z€8,(0, £). From (52)
we see that Agy=1, and 4,, is a polynomial in A*(z) of degree <p/m; in particular,
J,,,o=1* (2) + Amo where A% does not depend on A*(z). Hence

n=A*@2)+ 3 Foq(A*(2)) 25717 log® 2, = O (|2 |7**H™) (66)

p+am<k
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where Fo (A*(2))=1 and F,,(A*(2)) is a polynomial in A*(z) of degree <p/m. It
turns out that F,, does not actually depend on A*(z); for if we write =2z, so that
2n=1,-1, and apply the formula with n—1 instead of n, we get

n—1=2%(@)+ mgmq Fo (A* ) 827377™ log® tn_1+ O, (|ta—r|*¥™) (67)

=21*(t) +p+q%<k Fpq (A* (£)) 287%™ log? 2, + O, (|2a | 2H¥™);

we have replaced here O, by O, which is clearly permissible. But A*(£)=1"(2) -1,
hence by comparison with (66), F,,(A*(z) —1)=F,,(A*(z)). This is only possible if
F,, is of degree 0 in A*(z). Hence

n~vA*(2)+ D D Fp28 1P log? 2, (68)

p=0 g=0

uniformly for z€8, (0, &£). By choosing &=r,(f) and noticing that i*(z,)=1%(2)—n,
the Lemma now follows from the remark that every t€B (6, r;(0)) has the form ¢=z,,
2€8,(0, r3(0)) by condition (ii) in Lemma 2.

An immediate consequence of Lemma 6 is, by Theorem 5c¢, § 6 and the remark
(6.4), that f(z) is regular with respect to iteration; this will, of course, also follow from
the asymptotic differentiability of f, (z).

LemMmA 7. Given 0>0 there is a positive number ry=r, (0)<r3(20) such that
Ve~ 3 3 {(l—q—l’) log? z—¢ log*™ Z} Fpqz* 7 (69)
=0 ¢=0 m, )

when z—0 on B(0, r,(8)), and A(2) 18 schlicht on B(8, r,(0)).
Proof. The condition that (69) be valid on B (6, r,(8)) can be fulfilled by the

remark after the proof of Theorem 6, § 7. Subject to this condition, choose r,(f) so

small that also
7y (6)< (4 (4+6))72" (70)

|4 (z) =272 <|2| 21" for z€B(, r,(0)). (71)

Take any two points z,=& +1n,, 2,=E+in, on B(, r,(0)); clearly

[ | <O, |n:|<08, &>%|2| &>zl (72)
We have Alzg) —A(z) = f}-'(C)dC=zl—zl+ f(l'(f)—C_g)df (73)
1 %

1

where the integration is taken over any path connecting z, and z, inside B (0, r(6)).
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Suppose first that 2&,<&,<r,, and take the integral in (73) over the path
I+ T, where I', is a straight line from 2, to & and I'; a straight line from &; to
z,. By (71), (72),

fa' ©)=¢™ dc|<0§% PN <Oz [P <6z [T,
) Y

J.(Ar (C)"’C—z)df'<§f¢”—2+“2m dx<3£fl +1/2m<4|zl ,1+1/2m’
I &

>1ig)
szl &a |21| 2& 4 ’
hence by (70) and (73),
ll(zz)_}'(zl)l>H21|_1{1_4(4+0)Izllllzm}
>z {1-44+0)r®"}>0.

Suppose next that & ,<£,<2¢,, and choose the path of integration in (73) so that
the length of path shall not exceed 2|z,—2z|. By (71),

‘f(z'(5)—5-2)d§(<2|z,_z1|El—zu/zm, ‘1_1

___|z2—21,
|21 2,

Sy -2
P /Izz z1|§1

hence by (70) and (73)
Il (22)"1 (Zl)|>|22—21|§i‘2 (1 _25}I2nx) >0

provided that 2z %z, Thus 2, €B(0, r,), z,€B(0, r,), 2z +2, imply A(z)=+A4(z,) and
A (2) is schlicht on B (8, r,(0)).

We can now complete the proof of Theorem 3 ¢. By Lemmas 6 and 7, the curve
z=2+4i02% >0 is mapped by w= —A(z) upon a curve in the w-plane which has
the line w=wu—4i6, u>0 for an asymptote. Therefore, if d(6) denotes the domain
in the w-plane upon which B (8, r,(0)) is mapped by —A(z) and 7y (0) is sufficiently
small, the domain D (20) contains in its interior all points w= — A (z) — o, 2€B (8, r;(9)),
|c]<36. Hence f,(z)=A-1 (A (2) — o) is uniquely defined and is holomorpkic on B(f, r; (0)).
Now it can be shown similarly to Theorem 7¢, § 7, that A_; (—w) has an asymptotic
expansion of the form

Aa(=w)~ S 3 Gu 0™ loglw, Goy=1 (14)

p=0 ¢=0

when w—0 on D(f) (or even on the strip w=u+1iv, u>R(0), —0<v<0, where
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R (0) is a suitable (large) positive number). In fact the coefficients of the expansion
(74) can uniquely be determined so that if w= —21(z) is substituted from (64), it
should satisfy formally the relation (74). We only have to note that

o oo

log (— 2 (2))~ — log z+ log (Z D Fpo2®t?™ log® 2)

p=0 ¢~0

-] -]
~—logz+ 2 Y Fpg 27" logtz, Fgp=0.
p=0 ¢g=0
The formal expansion is converted in a true asymptotic expansion by choosing 75 (6)
so small that
—1—<|w[<—§— when z€ B (6, 5 (0))
2|z 2}z e
If we substitute w= —(A(z)—0) from (64) into (74), where |¢|<10, we obtain an
expansion of the form

@)= A @ =)~z 5 S aQatom logi z (15)
0

p=-0 ¢=-

where a5, is a polynomial of degree <p/m in ¢. By assigning 0 a large positive value

we see that the expansion (75) is valid for every (real or complex) value of ¢. But

a$y is a polynomial in g, and clearly

a3=0 for O<p<m
(76)
afl=0 for ¢g>0

when ¢ is a positive integer, therefore these relations are valid for every ¢. Hence

fa () ~2— § ag’ 2**o", (77)
p=0
as required. Incidentally, the relations (76) can also be verified directly from the
commutation relation (9).

The validity of (77) has so far only been confirmed on B (6, r5(6)) if |o|<16;
but if k is any positive integer, then fy,(z) has an expansion of the form (77) in
B30, r4(0)), say, where now 7, (f) may also depend on k. Therefore, f,(z) is asymp-
totically differentiable at 0, at least for every real o.
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