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1. I n t r o d u c t i o n  

An interesting analogy between the divisor function d(n) and the function 
1 +it) l  2 was pointed out by F.V. Atkinson [1] fifty years ago. A celebrated result 

in this direction is Atkinson's formula [2] for the error term E(T) in the relation 

~0 
T {  1 

] (~ +it)]  2 dt = (log(T/2~r) + 2 7 - 1 ) T +  E(T), 

where 7 denotes Euler's constant. The most significant terms in this formula a re - -  
up to an oscillating sign--similar to those in Voronoi's formula for the error term 
A(x) in Dirichlet's divisor problem for the sum 

E d(n) = (log x + 2 7 - 1 ) x + A ( x ) .  
n_<x 

More precisely, E(T) is comparable with 27rA(T/27r) in this sense. In [7] we showed 
that E(T) should actually be compared with 27rA*(T/2~r), where 

A*(x) = - - A ( x ) + 2 A ( 2 x ) -  �89 A(4x), 

because the Voronoi formula for 2~rA*(T/27r) is analogous to Atkinson's formula 
for E(T) even as to the signs of the terms. 

The function A* (x) can be understood as the error in a certain divisor problem. 
Namely, it was observed by T. Meurman [10] that  

1 E ( -1)nd(n)  = (l~ 
n<_4x 
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The duality between d(n) and [ (g+i t ) [  2 is another example of the correspon- 
dence between arithmetic and analysis, like the connection between primes and 
zeta-zeros. We made a local analysis of this phenomenon in [7], showing in partic- 
ular that  the conjecture 

(1.1) A(x) << x 1/4§162 

would imply the estimates 

(1.2) ~(1 +it) << t 3/2~ 

and 

(1.3) E(T) << T 5/16+~. 

A result of global nature, namely an estimate for the mean square of the function 
E(t)-27rA*(t/27r), was established in [8] (or see [5], Theorem 15.6). 

Our object in this paper is to give an approximate relation between smoothed 
variants of the functions E(T) and A*(x). Thus we are going to compare these 
functions themselves rather than the similarity of their behaviour, which was our 
point in [7]. 

Retaining the notations in [7], let 

A;(x)  = 27rA* (x2/2~-), 

and for a parameter G with 

E0(x) =E(x2), 

(1.4) T -3 /1~  < G < T -1 /6 ,  

define the smoothed functions 

/? A~(x) = G -1 A;(x+u)e -(~/a)2 du, 
H 

H 
El(x) = G -1 Eo(x+u)e -(u/c)2 du, 

H 

where H--GL with L---logT. Note that if x ~ T  1/2, then in terms of the functions 
A*(t/2~r) or E(t) for t~T, the smoothing is done over an interval whose length is 
of the order GT1/2E[TI/5,T1/3]. Now, the connection between the functions A~ 
and E1 is as follows. 
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T h e o r e m .  Let T be a large positive number and put ~-=T 1/2. 
(1.4). Then 

(1.5) 

where 

63 

Let G satisfy 

f 
l 

El(T) = OL(U)/k~ (TTU)du+O(G-11/2T-5/4L13/2)-~O(GT1/2), 
U0 

aT1/41ull/2K1/3(bT1/41ul /2) for u < 0, 
(1.6) (~(u) = 

eT1/4~t 1/2 (J1/3(bT1/4u3/2)-~- J_l/3(bTX/4u3/2)) fol" u > 0 ,  

uo=T-1/6L, and uI=20b-2G-2T-1/2L2; here K~/3(x) and J• are Bessel 
functions in the standard notation, and a, b, and c are certain numerical constants. 

This is deduced by Fourier analysis from the Voronoi-Atkinson type approxi- 
mate formulae for A~ (x) and E1 (x) proved in [7]. 

To illustrate the scope of the relation (1.5), let us derive a conditional bound 
for E(T) under the assumption that  

(1.7) A(x) << x ~ 

for all x_>l. Then clearly A~(x)<<x 2~. It is known that  a must lie in the interval 
� 8 8  the lower bound is a classical result of Hardy, and the upper bound 
is due to H. Iwaniec and C. J. Mozzochi [6]. 

By using well-known properties of Bessel functions, it is easy to verify that  

(1.8) la(u)l du << G-3/2T-1/4L 3/2 
UO 

(see section 3 for details). Hence, by (1.5) and (1.7), we have 

(1.9) E1(7) << G-3/2T-1/4+~L3/2 + G-11/2T-5/4L 13/2 +GT 1/2. 

This implies an estimate for E(T) because (see [7], p. 95, or [5], p. 477) 

E1 ( ( T - Y )  1/2) +O(Y L ) < v~E(T)  ~ E1 ( ( T + Y) 1/2) +O(Y L ) 

with Y--GT~/2L2; in fact, the estimate (1.9) holds for E(T) as well with the slight 
modification that  the last term on the right is replaced by GTU2L3. Choosing now 

G = T(4a-3)/l~ 

we obtain the following conditional estimate for E(T). 
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C o r o l l a r y .  Suppose that (1.7) holds for all x> l. Then 

(1.10) E(T) << T(l +2~)/5 L 12/5. 

In particular, if (~ = �88 + r is admissible for any fixed ~ > O, then 

(1.11) E(T) << T 3/10+r . 

Remark 1. The constants a, b and c in (1.6) are a=25/23-1/27r -1, b=27/23-1, 
and c=25/23 -1. 

Remark 2. The conditional estimate (1.11) improves (1.3) and implies (1.2). 
The best known unconditional exponent in (1.11) is 7/22+r due to D. R. Heath- 
Brown and M. N. Huxley [4]. 

Remark 3. An equation of the type (1.5) also holds if the roles of E1 and A~ are 
interchanged. Then a hypothetical estimate for E(T) implies a conditional estimate 
for A*(x). 

Remark 4. The conclusion (1.10) can be drawn even if (1.7) is assumed just 
1 in three short intervals. In particular, for c~=~+s,  our G is about T -1/5, so the 

relevant values of u in (1.5) are <<T -1/l~ and therefore it suffices to assume (1.7) 
in three intervals of length T 2/5+~ near T/27~, T/zr, and 2T/~r. 

Remark 5. In view of the analogy between A(x) and E(T) ,  one expects that  
the lower bound for the numbers a satisfying (1.7) should be the same as the lower 
bound for/3 in the estimation 

(1.12) E(T) << T ~. 

Let us assume (1.7) and choose G = T  a- l /2 .  Then the error terms in (1.5) are 
<<T ~+~, and the same estimate holds for the integral over ]u I <u0 as well. Therefore 
the validity of (1.12) for /3=c~+s depends on the integral over uo<u<ul in (1.5). 
In this range, the function a(u)  is oscillatory, and the oscillations cancel each other 
satisfactorily if the function A~(T+u) is sufficiently stationary. But in the worst 
case the oscillations of the functions a(u) and A~ (T+u) may compensate each other 
to prevent cancellation. Thus the question whether (1.7) and (1.12) hold for the 
same numbers a and/3  depends ultimately on the local behaviour of the function 
A(x).  This problem will be briefly discussed in the end of the paper. 
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2. An analytical l emma 

Atkinson's formula for E(T) involves functions of the type cos(f  (T, n)), where 
f(T, n) can be written as a power series in y=v/-n, and cutting the series we end up 
with an approximation of the form cos(Ay3+By+C), where A>0.  On the other 
hand, similar functions with A=0  occur in the Voronoi formula for A* (T/2~r). Thus 
the term Ay 3 can be viewed as a perturbation. The following lemma expresses 
cos(Ay3+By+C) in terms of functions of the form cos(/3y+C).  

L e m m a .  Let A>0,  B, and C be real numbers. Then, for all real y, we have 

cos(Ay3+By+C) = /3(u) cos((B+u)y+C) du, 
- -  0 0  

(2.1) 

where 

(2.2) 

and 

3(u) = l~__A_1/21ull/2Kl/3 {2]u[a/2 ~ for u < 0 
\ 3,/TA J 07T 

1 - -A-1 /2u l /2  J1/3 (2.3) /3(u) = 3v~  \ 3 x / ~ ] + J _ 1 / 3  foru>O. 

Proof. The Fourier transform of the function e lay3 is 
1 o0 

Z(~) = ~ _./_~ e ~(A~3-u~) @ 

l f 0 ~  = - cos(Ay 3 -uy)  dy. 
7r 

This is an Airy integral which can be written in terms of Bessel functions by the 
following formulae (see [3], p. 22, eq. (39) and (40), where the minus sign on the 
right of (40) should be deleted as a misprint): for x>0 ,  

9s ~ cos(t 3 dt (x/3)I/2K1/3(2x3/2), +3tx)  

0 ~ cos(t 3 - 3 t x )  dt (Tr/3)x 1/2 ( J1/3(2x3/2)+ J_l/3(2x3/2) ). 

Thus/~(u) is given by (2.2)-(2.3), and by the Fourier inversion we have 

cos(Ay 3 +By+C) = Re{ e i( Ay3 + By+C) } 

f ?  ~( ) (( ) c) = u cos B+u y+ du. 
O 0  

3-Arkiv f'dr matematik 
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3. P r o o f  of  t h e  t h e o r e m  

The proof of the theorem is based on an analysis of the following formulae 
(see [7], Lemma 2): for IX--T[< 1 _ ~7-, we have 
(3.1) 
A~(x) ---- (27rx2) 1/4 E (-1)nd(n)n-3/4 exp(-2~rnG2)c~ 

n<M 

(3.2) El(x) ---- (27rx2) 1/4 E (-1)nd(n)n-3/4e(x2' n)r(x, n) cos(f (x  2, n))+O(T~), 
n(M 

where M--  G -2 L 2 , e(x 2 , n) = 1 + O(nT-1), 

r(x, n) -- e x p { - 4 G  2 (x arsinh((Trn/2)l/2x -1))2 }, 

and 

(3.3) f (x 2 , n) = 2x2arsinh( (~n/2)l/2x -1) § (~r2n 2 + 2~rnxa) 1/2 - ~r/ 4 

= -7 r /4+2  2x/~-~n x+ ~-Tr3/2n3/2x-1 +O(n5/2T-3/2). 

We are going to apply (3.2) for x---7 and (3.1) for x--~-+u with uE[-uo,ul]. 
Then u<<G-27-lL 2, and the factor (27rx2) 1/4 on the right of (3.1) can be replaced 
by (27r)1/471/2 with an error <<G-5/2T-3/4L 7/2 <_L 7/2. Also, (3.2) remains valid if 
we replace e(x 2, n) by 1 and r(x, n) by exp(-27rnG2). When (3.3) is substituted into 
(3.2), the error term can be omitted with an error <<G-11/2T-5/4L 13/2. Therefore 

(3.4) EI(~-) = (271-) 1/4T1/2 E (-1)nd(n)n-3/4 exp(-27rnG2) 
n~_M 

X COS(2 2x/-~Tq-~-Tv3/2T-ln3/2-Tr/n)-~-o(rs)q-O(6-11/2T-5/nL13/2). 

By the lemma, we may write 
(3.5) 

cos (2  2~n~n ~-+ ~-7~3/2~'-1n3/2-7~/4)=/_~ a(u)cos(2 2v/2~ ( T + u ) - ~ / 4 ) d u ,  

where a(u) is as in (1.6). Here the range of integration is split up into three 
parts: (-cx~,-u0], I-u0, ul], and [ul, ce), and the expression on the right of (3.4) 
is decomposed accordingly. The middle range gives 
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by (3.1) and the preceding discussion. The contribution of the infinite ranges is 
estimated as the error terms 

~ 0 
(3.7) << T1/4 E d(n)n-3/4 I~(u)l du 

n < M  

and 

(3.8) f ~  du <<T1/4 E d(n)n-3/4 a(u)cos(2~(T+u)-~r . 
n < M  CUl 

The main term in (3.6) equals the main term in (1.5). Thus, to complete the 
proof of the theorem, we have to estimate the error term in (3.6) and the sums (3.7) 
and (3.8). For this, we need a few properties of the function a(u). 

By the definitions of Bessel functions as power series, the functions 

xl/2Ku3(x 3/2) a n d  x l / 2 J + 1 / 3 ( x 3 / 2  ) 

are bounded for 0 < x ~ l .  In fact, they are bounded for x > l  as well, by the asymp- 
totic formulae (see [3], p. 24 and 85): 

K (x) ~ ( /2x)l/2e - x  

and 
J,(x) = (2/Trx) 1/2 cos(x-Tr~,/2-~r/4)+O(x -3/2) 

for fixed ~ and x >_ 1. Therefore 

(3.9) a(u) << T 1/6 for all u ~ O, 

(3.10) 

and 

(3.11) 

a(u) <(T 1/6 exp(-bT1/4[u[3/2) for u < O, 

a(u) = TX/Su-1/4 (d exp(ibT1/4u3/2) +dexp(-ibT1/4u3/2)) 

+O(T-1/Su -7/4) for u > T -U6, 

where d is a certain complex constant. 
The estimate (1.8) now follows immediately form (3.9)-(3.11), and therefore 

the error term in (3.6) is <<G-3/2T -1/4+~, which can be absorbed into the error 
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terms in (1.5). F~rther, the terms in (3.7) are negligibly small by (3.10). Consider 
finally the sum (3.8). The contribution of the error term in (3.11) to this sum is 

<< M1/4T1/Sul3/4L << GT 1/2. 

The main terms in (3.11) give rise to integrals 

// T1/a u-1/4exp(i(+bT1/%a/2+2 2v'~-~u))du. 
1 

(3.12) 

Since 
3bT1/4u 1/2 > 2 ~  for u_> ul,  

this integral has no saddle point in the interval of integration (the parameter Ul 
was specified with this condition in mind), and by the "first derivative test" (see [5], 
Lemma 2.1) we obtain the bound 

<< T1/Sull/4(T1/4ull/2) -1 << G3/2T1/4L -3/2 . 

for (3.12). Therefore the sum (3.8) is <<GT U2, and the proof of the theorem is 

complete. 

4. C o n c l u d i n g  r e m a r k s  

The error term O(GT 1/2) in (1.5) can be improved if the main term is replaced 
by a weighted integral. However, this sharpening does not effect the estimation 
of E(T) because a similar error term O(GTU2L3) appears anyway when E(T) is 

approximated by the function El .  
In the proof of the corollary, we estimated the integral in the theorem simply 

by absolute values. For a more careful estimation, let us write this integral as 

F (4.1) A~(~- a(u) du+ (A~(T+u)--A~(T))a(U) du. 
, /  - -  U 0 - -  U 0 

It is easy to see, by (3.9)-(3.11), that  

/~ ,1 ~ ( u )  << du 1. 
U O  

Thus the first term in (4.1) is of the same order as A~(T). If the difference of A~ 
in the second term could be estimated more precisely than the function A~ itself, 
then the corollary could be sharpened. 
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Large values of 1r189 can be studied in terms of the change of E(t) by 
appealing to the inequality 

Ir 12 << ( E ( T + X ) - E ( T - X ) ) L  -1 +XL,  

valid for X > L  2 (this follows from Lemma 7.1 in [5]). Let G be as in the definition 
of El ,  and let X be of the order GT1/2L. By averaging the above inequality as in 
the definition of El ,  we obtain 

(4.2) Ir +iT) << (EI (TTGL)-EI ( r -GL) )L  -1 -t-GT1/2L 2. 

Here the difference E1 can be written (approximately) in terms of the difference of 
A~ by (1.5). Let us suppose that 

(4.3) A (x+y) -A (x ) ( ( y l l 2x  ~ for y_>l; 

this very strong conjecture can be motivated by mean value considerations. Then 

A~(T+u+GL)-A~(T+u-GL) << G1/2T 1/4+~ for - u 0  _< u _< ul. 

Together with (4.2), (1.5), and (1.8), this gives 

[ (~+i t ) ]2<<~ 1 (G-l§ 

Choosing G=T -1/4, we find that  the conjecture (4.3) implies the estimate 

the same conclusion was made in [7] in a different way. 
Another indication of the role played by the divisor problem in the theory 

of the zeta function is given by the approximate functional equation for ~2(1+it)  
whose error term in the "symmetric" case can be related to A(t/27r). This fact was 
discovered by Y. Motohashi [11] (we gave subsequently a different proof in [9]). 
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