Martin boundaries of sectorial domains

Michael C. Cranston(') and Thomas S. Salisbury(?)

Abstract. Let D be a domain in R? whose complement is contained in a pair of rays leaving
the origin. That is, D contains two sectors whose base angles sum to 27. We use balayage to
give an integral test that determines if the origin splits into exactly two minimal Martin boundary
points, one approached through each sector. This test is related to other integral tests due to
Benedicks and Chevallier, the former in the special case of a Denjoy domain. We then generalise
our test, replacing the pair of rays by an arbitrary number.

1. Introduction

Consider a domain DCR2=C which contains a pair of sectors whose base
angles sum to 2. That is, its complement is a pair of porous rays, radiating from
the origin 0. A result of Ancona ((3.3) of [Al]) states that the Euclidean boundary
point 0 gives rise to either one or two minimal points of the Martin boundary of
D. The simplest version of our argument provides an integral test (Theorem (1.3))
that distinguishes between these two alternatives.

In reality what we will prove is a generalisation of this test. We will consider
a domain DCC whose boundary is contained in the union of n rays leaving the
origin. We will call such domains n-sectorial. Ancona’s result now shows that the
origin corresponds to at most n minimal points of the Martin boundary of D. In
the case that the base angles of the sectors are all distinct, we will give a test
(Theorem (3.6)) that determines whether or not there are exactly n such points.
This provides a geometrically simple class of domains, whose Martin boundaries
are non-trivial, yet for which explicit calculations can be made. We leave open the
question of determining the number of minimal points when this number is less
than n.

A modification of the test allows us to determine whether Brownian motion can
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be conditioned to travel between the various Martin boundary points correspond-
ing to the origin (see Section 4). The remainder of this section will describe the
application of Theorem (8.6) in the simpler context of the first paragraph. In com-
bination with earlier integral tests, due to Benedicks and Chevallier, what emerges
is a complete identification of which sectors a conditioned Brownian motion will
visit.

In the basic integral test, the argument for sufficiency uses balayage. That for
necessity relies on adaptions of arguments due to Chevallier [Ch] and Benedicks [Be].

Set
W(¢,9)={z€C; ¢ <Arg(z) <9},
V(¢)={re’®; r >0},
B(z,r)={weC; |lw—z|<r},
B(r)=B(0,r).

We start by recording the following simple fact.

(1.1) Lemma. Let 0<a<2rn and set B=m/a. Suppose that h is positive and
harmonic in the sector C=W{0,a). Assume that h is bounded and continuous on
the closure of C less any neighbourhood of the origin. Then

hre/*)=ar P 4a ! /00 Riidain [h(t)+h(te)] dt
- o p2B +t23

for some a>0. Moreover, rBh(re'®/?)—a as r 0.

Proof. This follows by a conformal transformation from the case a=n (Her-
glotz’s theorem). For the asymptotic statement (as r|0) note that rZh(re'*/?) is
the sum of a and an integral whose integrand decreases to 0. O

Let D CC be open and connected. Write M(D) for the set of all positive func-
tions D—R™ which are harmonic in D and bounded on D less some neighbourhood
of the origin, and which converge to 0 at each regular point z€8D, 2#0. Fix z0€D
and let M;(D)={he M(D); h(z9)=1}. To each minimal element h of M; (D) there
corresponds a unique point z of the minimal Martin boundary of D, which we call
the pole of h. h will be a multiple of the Martin function K(z,-).

Now let 0<a <7, and take C=W(0, ). Suppose that the complement of D is
a subset of 9C. Let y1=0a/2, yo=(a+27)/2, By=n/a>1, and By=n/(2r—a)<1.
According to Proposition (3.1) and Theorem (3.6) there are at most two minimal
elements of M;(D), and there will be exactly two, if and only if

(1.2) 3h; € M(D) such that 1711101 rBih;(re) >0,
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for j=0 and j=1. Actually, Theorem (3.6) only applies when a<7, but the case
a=m is (after a conformal transformation) the one considered by Benedicks. By
Proposition (2.9), the probabilistic interpretation of (1.2) is that

(i) any hj-transform X, of Brownian motion will a.s. approach 0 as ¢ increases
to the lifetime ¢ of X, and that

(ii) for =0 (resp. j=1) X, will a.s. remain in C° (resp. C) during some terminal

interval ((—4,¢) of time.
In analytic terms, (ii) becomes that C' (resp. C) is minimal-thin at the minimal
Martin boundary point which is the pole of hg (resp. h1). See [Do] for definitions
of and information about h-transforms, Martin boundaries, and minimal-thinness.
A shorter introduction to h-transforms may be found in [Du].

We wish to obtain an integral test, relating “local” information about 8D to the
existence of harmonic functions h; as above. In the case of a Denjoy domain (that
is, in the case a=7), a conformal transformation reduces this test to one given by
Benedicks (Theorem 4 of [Be]). Indeed, our argument for necessity will use that of
Benedicks. Ancona [A2] obtained Green function estimates for a significantly more
general class of domains. Based on these estimates, Chevallier [Ch] considered the
case of general o and obtained an integral test, essentially for the existence of hy.
We will use balayage to give a test for the existence of k1. In Section 3 we will give
such a test in a more general setting, and will adapt arguments from [Ch] to relate
such existence questions to the enumeration of the minimal elements of My (D).
Stephen Gardiner has pointed out to us that the balayage portion of our argument
is closely related to one he had earlier used in [Gd] to give a more concrete version of
Benedicks’s test. For related results on Martin boundaries or Brownian motion, see
[A1], [A3], [AZ], [Bil], [Bi2], [Bu], [MP], [Sel] and [Se2]. Other papers on Denjoy
domains include [De], [Cal], [Ca2], [GnJ], [RR], and [Z].

Let 0<2e<a<m, e<1, and define G(re*®) to be the neighbourhood

Glre'®) = {z; || € (r(1—e), r(1+) } AW (9—c, 6-+¢)
of re® (we are suppressing the dependence on €). Let g{w)=g(D, z; w) solve

Ag=0 on DNG(z),
g=0 on 0DNG(z),
g=1 on DNIG(z},

and set (D, z)=g(D, 2; z). Write o(r)=n(D,r)+n(D,re**). Combining the results
of Section 3 with Chevallier’s integral test yields the following classification theorem.
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(1.3) Theorem. Let 0<a<nw, C=W(0,c), and let D be a domain with
DecOC. Then

(a) If fol o(t)t 1 dt=cc then there is only one element h of My(D), and any
h-transform a.s. visits the sector C together with its complement in every terminal
interval ((—6,¢) of time. That is, neither C nor its complement is minimal-thin at
the pole of h.

(b) If fol o(t)t~1dt<oo but fol o(t)tBo—Br—ldt=00 then there is only one ele-
ment h of M1(D), and any h-transform a.s. remains in the complement of the sector
C during some entire terminal interval ((—86,() of time. That is, C is minimal-thin
at the pole of h.

(c) If fol o(t)tBo—Bi—1ldt< oo then there are exactly two minimal elements he
and hy of My(D). Any transform by hy (resp. h1) a.s. remains in C¢ (resp. C)
during some entire terminal interval ((—96,() of time. That is, C (resp. C°) is
minimal-thin at the pole of hy (resp. hy).

Proof. The three cases are exhaustive, as By— B1<0. As remarked above, the
case a=m is Benedicks’s criterion, so we may assume that a<w. Part (¢) now
follows by Theorem (3.6).

In the remaining cases, M;(D) consists of a single function h. By (2-1) of
[Ch], condition (1.2) fails for j=1 (the smaller angle). By Proposition (2.9), C¢ is
not minimal-thin at the pole of h. Moreover, C is minimal-thin at this pole if and
only if (1.2) holds for j=0. By (2-5) of [Ch] this holds provided [, ()t dt<oo.
The converse follows by Proposition (2.8). O

Note that when a<7, symmetry considerations no longer rule out the possi-
bility that (a) holds yet that W (8, «—§) is minimal-thin at the pole of h, for §>0.
Chris Burdzy showed us an example in which this is the case, and we have since
found an integral test that characterizes this behaviour.

2. Preliminary estimates

We take the convention that numbered constants (c1, ¢z, ...) have specific values,
usually depending on one or more parameters, but that ¢ represents a constant
whose value may change from line to line.

(2.1) Lemma. Let e<7/2 and suppose that DCC=W(—2¢,2¢), with
dDNCCV(0). There is a constant ¢y (depending on € but not otherwise on D) such
that if h is harmonic in D and converges to 0 at each regular point €V (0)NAD,
2#0, then

h(r) <cin(D,r)[h(re®)+h(re )], VreDNV(0).
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Proof. This follows immediately from the maximum principle and a weak Har-
nack inequality such as Proposition (1-1) of [Ch]. See also (4.8) of [Be] or (2.3) and
(3.3) of [A2]. O

The simple form of the above result will suffice for most purposes. We will
occasionally need the following stronger form, proved as in (1-2) of [Ch]. Write
A(r,r")={se®; r<s<r'}.

(2.2) Lemma. Let e<7/2 and suppose that UCC=A(r/4,4r)NW(—2¢,2),
with BUNC CV(0). There is a constant ¢ (depending on € but not otherwise on r
or U) such that if h, u, and v are strictly positive and harmonic in U and converge
to 0 at each nonzero regular €V (0)NAU, then

h(re™%)
v{re—t€)

v(2)

for z€ A(r/2,2r)NW (—¢,¢€).

For D open and u a positive measurable function defined on 8D, define H
to be the solution to the Dirichlet problem on D, with boundary data u. That is,
HPu(z) is the integral of u with respect to harmonic measure .

Now let ¢>0, ¥>0, ¢+1<2m, and write ®=n/¢, U=n/yp, C=W(0,¢). In
the next result, we will be interested in domains D satisfying

Dc W(_'(/)’ ¢)a
(2.3) W(—v,¢)\DCV(0),
V(0)\B(1) C 4D.

For ¢>0 let u,(re'®*)=r"9, and let uy=0 on dD\V(¢). For z€R write
1
I(D,z)= / n(D, t)tEN0 1 gy
0

The following is our principal technical lemma. It establishes the estimates that
allow us to carry out the balayage, at least when I' is sufficiently small.

(2.4) Lemma. Let ¢ and ¢ be as above. Let 0<g<®. There are constants
¢2,¢3>0 (depending only on g, ¢, and ) such that if D satisfies (2.3), 0<s<V,
and T'(D, s—q)<cq then

(a) HPu,(re /%) < c3T(D,s—g)r™*, Vr>0,
(b) (HP —HYu,(re®/?) < c3T(D,s—q)r~ %, Vr>0.
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Remark. If s>q then as sAq=gAgq, the result applies both with s as given, and
with s replaced by ¢q. Therefore in this case, in fact

HPuy(re"/2) < ¢gT(D,0)[r*Ar~9], Vr>0.

Proof. (a) We have not yet ruled out the possibility that A=HPu,=0c0, so let
u) =ugAN. This makes each hy=HPu} bounded, with hy 1h. Let

m}; =sup{rihy(re’*/?); 0<r <N} < 0o
my =sup{r*hn(re ¥/?); 0<r < N} < 0.

Since s< ¥, we have by (2.3) and Lemma (1.1) that

¢/2 \I/+st\I/—1
P by (re=/2) = g~ / e UL

(r/)*+ oo N
d / 1+ r/tzwt Yhn(t)dt < 1/0 t*"thy(t) dt.

Now choose e<{¢+1%)/2. By Lemma (2.1) and Harnack’s inequality, it follows that
the above expression is

1
Sq/;_lcl/ t*7In(D, t)[hn (te ™)+ by (te')] dt
0
1
<c / t*Ln(D, t)[hn (te™ /%) + hyy (te'/?)] dt
0
1
<c / (D, )t my +t~Im};] dt
0

1 1
=cm;,/ t—ln(D,t)dt+cm;/ t*=9In(D,t)dt
0 0

<cI'(D,s—q)[my+mf].
Thus
(2.5) my < (D, s—gq)[my+m}).

Now assume that s<q. A change of variables, from ¢ to z=t/r shows that
oo ,r.<1>+qt<1>fl o0 ‘,L.Q—q—l
———ug{t)dt = —dzx
/0 r2® 422 a(?) /0 1+z22

1 fere]
S/ 2% dac—}—/ %l gy
0 1

=(®—q) ' +(2+9) I <2(2-9) 7"
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Thus, proceeding as before,

¢/2 @+qt<l> 1 oo *I>+qt<I> 1
rihy (rei®/?) = ¢~ /r2‘1>+t2<1> t)dt+¢~ / oL

<¢~ /tq Yhy(t)dt+2¢7 (2—q)7!
Scm}/ t~n(D,t) dt-l—cm;,/ t97* " In(D,t) dt+c
0 0

<em} /01 t~'n(D,t) dt+cmy /01 t~n(D,t)dt+c
<c[1+1(D, s—q)(my+m¥)),

here using that ¢—s>0. Thus

(2.6) m} <c[14+T(D, s—q)(my+m%)].

Now choose ¢y such that for the common ¢ of (2.5) and (2.6) we have cco<3. Sup-
pose that I'=T'(D, s— q)<cQ Then my <3cI'm}; holds by (2.5), and substituting
into (2.6) gives that m§; <c+2im}. Thus mj{,<2c, so that my <cs, here choosing
c3=3c%. Letting N— oo now gives part (a) of the lemma, at least when s<gq.

Now suppose that s>g¢. Then (2.5) holds, so again ml"vggcfmﬁ holds if
CCQS%. As before, the result will follow once we show that mj(,§2c. But this
follows from what we have already proved, as the hypotheses of the lemma still
hold if we decrease s and replace it by ¢. Thus part (a) is proved in general.

(b) The second part of the lemma follows immediately. In fact, we have that

(HP —H®) ( i¢>/2) ¢ re 1@:h (t)dt
Ug(re€ A 7‘2‘I>+t2‘1’ N .

Our work above provides the upper bound ¢r~T'/m* +m™~] (where m™* (resp. m™)
is imy 00 MY (resp. my)), which in turn gives part (b), after perhaps increasing
the value of c3g. O

Remark. In our applying this result, it would in fact be enough to assume that
¢=1, and to replace £AO by —|z| in the definition of I'(D, z). Our weaker hypothe-
ses cause no significant complications however, and help clarify the asymmetric roles
of s and gq.

(2.7) Lemma. Let ¢,9,®, T, and T be as above, and let D satisfy (2.3). Take
C=W(0,8). Let u=0 on V(¢), and suppose that u(r)<n(D,r)[r~*+r=¥] on V(0).
Then

HCu(re'/?) <24~ 1r~°T(D, $- ).

2 —Arkiv for matematik
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Proof.
2‘I>t¢' 1
r®HC u(rei*/?y = ¢~ / WL ———u(t)dt

<¢t / t2 (D, )t 2+t ") dt
0
<2¢7'T(D,®-¥). O
"The following asserts that finiteness of certain integrals is a necessary condition

for there to exist harmonic functions with given growth rates.

(2.8) Proposition. Let ¢,1,®,¥, and I" be as above. Suppose that D is a
domain containing W(—1,0)UW (0, ¢), and that he M(D) satisfies

liﬁ)l r2h(r exp(i¢/2)) > 0.
Then T'(D, ¥ —®)<o0.
Proof. Suppose first that ¢<1 so that ¥—®<0. Then by Lemma (1.1),

/2 1 !
i _
hle )29 /0 1+4¢2¥

1
>t /0 tY= h(t) dt

Because h is harmonic on G(t), it follows from the maximum principle and Harnack’s
inequality that this is

—_h(t)dt

1
Zc/ tY"In(D, t)h(te'?/?) dt
0

1
Zc/ n(D, t)t*~* 1 dt,
0

the latter by our hypothesis on A. Thus I' must be finite.
If >, then by a similar argument,

1
B(e#12) > 1 / £2-1h(t) dt
0

1
Zc/ t* (D, t)h(te'®/?) dt
0

1
Zc/ n(D,t)t™! dt.
]

Thus I' is finite in this case as well. O

Finally, we record the relationship between minimal-thinness and the existence
of harmonic functions having prescribed rates of growth.
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(2.9) Proposition. Let D be a domain containing C=W(0,a). Set y=a/2
and B=7/a. The following two conditions are equivalent

(a) There is a point £ of the minimal Martin boundary of D that is a minimal
fine limit point of W(0,®)NB(6) for every §>0, and at which C° is minimal-thin.

(b} 3he M(D) s.t. lim, o rBh(rexp(iv))>0.
Moreover, in this case, & is unique.

Proof. Assume (a) and let h be the harmonic function with pole at £&. Then an
h-transform converges to the vertex of C and stays entirely within C' with positive
probability. The same is therefore true for a Brownian motion on C, transformed
by the restriction of h to C. Lemma (1.1) now implies that h(re®)~cr—B.

Conversely, suppose (b) holds. Then by Lemma (1.1), an h-transform X; of
Brownian motion has positive probability of reaching the vertex of C before leaving
C. If h is not minimal, we may still find a minimal function for which this property
holds. Let & be its pole. Then (a) holds for this £.

Moreover, the law of X, restricted to the tail o-field, must be the same as that
of a transform in C by some element of M;(C). Since this set is a singleton, we
conclude that £ is unique. O

3. Sectorial domains

We now turn to the class of domains for which our principal theorem will be
stated. Let O0=ap<a; <...<a, =27 where n>2, and let D be an open subset of C
for which D°CV(a;1)U...UV(a,). We say that D is n-sectorial. This hypothesis
and notation will be in effect for the remainder of the paper. It will be convenient
to write apty1=a1+27 and a_1=a,—1—27. Set Bj:ozj—aj_l, szﬂ/ﬂj, and
vi=0;—(8;/2).

(3.1) Proposition. Let DCC be an n-sectorial domain.

(a) My(D) has at most n minimal elements. The pole of each such element is
a minimal fine limit point of the set B(?”)HU?:1 V(v;), for every r>0.

(b) If M(D) has exactly n minimal elements, then their poles are eractly
the points {;=lim, o rexp(iv;). In this case, &; is a minimal fine limit point of
V(v;)NB(6), for every §>0.

Proof. The first assertion in (a) is (3.3) of [A2]. To show the remainder of
the proposition, we adapt an argument of Chevallier. Lemma (2.2) allows us to
estimate h(re®) for |§—v;|<e, where j=1,...,n. Combining these estimates with
Harnack’s inequality yields a constant ¢ such that if h, vy, ..., v, are strictly positive
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and harmonic in DNA(r/4,4r) then

h(z) < cf: M—)—vj(z), Vz€ DNA(r/2,2r).

et i (TetVs)

J=1

Now the argument of (1-3) of [Ch| applies, and shows that if r; |0 and if § is
sufficiently small, then

(3.2) U U B(ree™, 6r)
k=1j=1

is not minimal-thin at the pole of any minimal element of M. In particular, the
second statement of (a) is now immediate.

For the first statement of (b), we adapt the argument of (1-4) of [Ch]. Notice
that with n now possibly bigger than 2, it would be false to conclude that r exp(ivy;)
converges to a minimal point of the Martin boundary as 7|0. Let the n minimal
elements of M;(D) be hy, ..., h, with h;=K(§;,-). Choose 7|0, and write 2=
T, exp(iy,). Suppose that the Martin function K(z,-) converges to some h#
hi,...;hn—1. The set in (3.2) is not minimal-thin at any §; for j#n, so we may
choose a subsequence of r; (which we assume to be the original sequence), together
with indices J(1),...,J(n—1), so that ryexp(iv;y)—&; as k—oo, j=1,..,n—L
Because the set in (3.2) is not minimal-thin at &,, it follows that A is a multiple of
hyn. Thus no non-minimal point can be a limit point of rexp(ivy,) as r|0. Being
the intersection of a decreasing sequence of compact connected sets, the set of such
limit points is also connected, so consists of the singleton £,. This shows the first
assertion of (b).

The second follows by Harnack’s inequality, as it is now clear that

B (rk e 67‘k)

(@)

k=1

is not minimal-thin at §;. O

Now choose e<(1AB1A...AB,)/4 and set n;(r)=n(D,re'*). The integral criterion
we will consider is that

1
(3.3) Fj:/ nj(t)t_|BJ‘+1—Bj\_1dt<OO,
0

for j=1,...,n. Note that by Harnack’s inequality, the validity of this condition does
not depend on the choice of the small parameter ¢.
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(3.4) Corollary. Let DCC be an n-sectorial domain, and suppose that

(3.5) 3hj €M  such that liﬂ)l rBih;(re?i) >0,

for j=1,..,n. Then My(D) has n minimal elements with poles &1, ...,&,. Fach
W(aj—1,0;)¢ is minimal-thin at &;, and (3.3) holds for each j.

Proof. This follows immediately from Proposition (2.8), (2.9), and (3.1). O
We are ready for the main result of this section.

(3.6) Theorem. Let DCC be an n-sectorial domain. Assume that the 3; are
all distinct. For M1(D) to have ezactly n minimal elements, it is necessary and
sufficient that (3.3) holds for j=1,...,n. Moreover (3.5) holds in this case, so that
W(aj—1,0;5)¢ is minimal-thin at ;.

Remarks. (1) Even if the §; are not all distinct, the argument will show that
(3.3) and (3.5) are equivalent, in the sense that if one holds for every j, then so does
the other. Thus (3.3) is in general sufficient for the existence of n minimal elements
of Ml(D)

(2) Using similar arguments, it is possible to weaken the hypothesis that the
B; be distinct. This condition will only be used in the proof of Lemma (3.3), and
there it could be dispensed with provided either n=2 or V(0)CD®. In the case
where n=3 or n=4, this makes it possible to prove the theorem provided there are
not two adjacent sectors whose base angles 3 are equal and are at least as big as
the remaining 3’s.

(3) We'd like to thank Chris Burdzy for pointing out a shortcoming in the
original proof.

(3.7) Lemma. Let DCC be an n-sectorial domain, for which My(D) has
exactly n minimal elements. Assume that the 8; are all distinct, and suppose that
B1 is the biggest of the 3;. Then W(oag, 1) is minimal-thin at each &;, j#1.

Proof. If oy >, this is just the statement following (2-3) of [Ch]. Since this is
always the case if n=2, we may assume that n>3 and a; <«. It will suffice to show
minimal-thinness at &2, as the same argument will apply to &,, and the general case
will then follow.

Choose 6>0 so that 82+ 6<c«y. This is possible since 3; > 3;. Let us define D'=
DNW (ap, az+08). Because re?™ —&; #E€, as 70, it follows that V(v;) is minimal-
thin at &. The same is true for V(az+6). Thus the complement of D’ is minimal-
thin at &. In particular, the limit &} of r exp(i72) exists in the Martin topology of
D', and by localization, it will suffice to show that W (ao, a1) is minimal-thin at &5,
relative to D'.
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Let D" be the image of D' under the conformal transformation g(z)=z"/1.
The map g is one-to-one on D’, by our choice of §. The sector g(W (ag, 1)) now has
base angle equal to 7. By Chevallier’s remark, it is minimal-thin at g(£3) relative
to D”. We obtain the desired conclusion by conformal invariance. O

Proof of theorem (necessity). Fix n and let ; be as in Proposition (3.1). For
ease of exposition, we will abandon the assumption that D is connected. In other
words, D will be open but it need not be a domain. This necessitates several trivial
changes, for example to our definition of My(D). Write h; for the minimal element
of M;(D) with pole at &;. Our proof will proceed by induction on n—m, where m
is the number of connected components of D. The inductive hypothesis is that if D
is n-sectorial with more than m or more components, and if M;(D) has n minimal
elements, then

(3.8) liFOl rBih;(re") >0

holds for each j. This is trivial if m=n. We assume, without loss of generality, that
(1 is the largest of the §;, and that W(ao, 1) is not itself a component of D.

Let D'=D\[V{(ap)UV(a1)]. By Lemma (3.7) M1(D’) has the same number
of minimal elements as M; (D), yet it has at least one more connected component.
By induction, (3.8) holds for j=2,...,n. Moreover, by Proposition (2.8), we have
that (3.3) holds for each j.

Finally, we must show that (3.8) holds for j=1. By (3.3) we have that

/0 £y (&) +mo(D]dt < 0o.

If a; >, then (3.8) follows immediately as in the proof of part 2 of Proposition (2-
5) of [Ch)]. If not, then restrict h; to D'=DNW (-6, 1 +6) for some small §, and
apply a conformal mapping as in Lemma (3.7) to reduce to this case. Alternatively,
once the sufficiency half of the theorem has been established, it could be used to
reach the same conclusion. O

In order to show the sufficiency of (3.3), we will need to construct the harmonic
functions appearing in (3.5). Without loss of generality, the n functions of (3.5) may
be taken to be equal (if not, consider their sum), and it is this function that we will
construct. We will break the argument up into three parts: showing monotonicity
of the balayage; estimating its successive terms, at least when D has a special form;
and approximating a general domain D by domains of this form.

Let Y (j)=DNW(a;—2¢,a;+2¢), Z(j)=W(a;_1,0;), and

Y =Y(1)U..UY(n),
Z=Z(1)U...UZ(n).
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Let f_1=f_2=0 and
fo(re?®)=r=5i sin(B;(0—a;_1)), ifa;—1<0<q;.

Given fo, define

f { f2k7 on D\Y',
TV HY far, ony,
fak+1, on D\ Z,

fak+2 ={
f0+HZf2k+1, on Z.

Where needed, we take the f’s to be zero on Y\ D and 8Z\D.

(3.9) Lemma. Let D be an n-sectorial domain. Then the functions fi in-
crease with k. Let h be their limit. Then either h=00 or he M(D).

Proof. In order to eliminate problems with infinities of the f’s, we should first
truncate fo at some large value N, prove the result in this case, and then recover
the general case by letting N —o00. We leave this to the reader, and instead simply
proceed as if each f were bounded, and hence (by induction) continuous.

Let C=W(0,2¢), and suppose that fo<f1<...< far. Since fors1=HY for on
Y, also foxr1=HY fory1 on Y. Hence fopy1=HC fory1 on C. Being finite,

far(rexp(im)) =0 B1) = o(r_"/25).

It is harmonic on C, so by Lemma (1.1), also for,=HC for, on C. By induction,
forv1=HY fox>HY for_2=fak—1 on Y. In particular, foxs1> fok—1=f2x on V(0).
By definition forr1=for on V(2¢e). Thus for+1> far on 0C, and so on C as well.
The same is true on W(—2¢,0) and hence on all of Y (0). Arguing similarly, this is
also true on each Y (§). But fop+1=far on D\Y, so in fact fap41> far on all of D.

Almost the same argument works when we consider fsgpi2. As above, on C
both fory2=HC fory2 and forr1=H fap4+1. Moreover,

forra= fot+ HZ farr1> fo+ HZ for—1= fox

on Z, SO f2k+22f2k:f2k+l on V(2€) Since f2k+2:f2k+1 on V(O), in turn f2k+22
for+1 on C. Arguing similarly, the same is true on Y. But fag42> for=for+1 on
D\Y, so in fact fag4+2> far+1 on all of D. ’
This shows that the f’s are increasing. Let h be their limit, and assume it is
not identically infinite. Because it is a monotone limit of functions harmonic on Y,
it also is harmonic on Y. Similarly it is harmonic on Z, and hence on D as well.
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To see that it belongs to M(D), apply Lemma (2.1) to fz41. This gives an
inequality
Fors1(t) Sen(Y (0),8) [ farr1(te™®) + fara (te™)].

Letting k— oo produces the same inequality, but for h. It now follows that A vanishes
at regular points 2#£0 of D. 0O

We will show that h#Zoo under an additional condition on D, imposed to make
Lemma (2.4) apply

(3.10) Lemma. There is a constant c4>0 such that if A<1 and if D is an
n-sectorial domain and satisfies

(3.11) V(e;)\B(1)COD and T;<cir; j=1,..,n

then
(f2k+2_—f2k)(rez’7j) S)\kT‘Bj; k=1,2,.., .]: L..,n.

Proof. Let the constants ¢z and c3 of Lemma (2.4) be chosen to work for
¢=1=2¢, and for q any of the B;. By Harnack, there is a constant cs such that
if f is harmonic on Z(j) and r is such that f(re?i)<1, then f(rei(®~2¢)) and
f(rei(®i-1+2¢)) are both <cs. Also suppose that (3.11) holds for some c4 to be
chosen later.

Assume that the fis are all finite, for k¥’ <2k, and that

(fah— fon—2)(re") < Xep=Bi v,

Then
Fokr1 = fae1+HY O for,—~ far—2),

on Y (0), so in particular fag41 is finite. Moreover, we can break this up as
Forr = fane1=H" O ((for — for—2)1v(—2¢)) +HY O ((far— far—2)1v(2e))-
Let C=W(0,2¢). Applying Lemma (2.4) with ¢=1=2¢ gives that

(fek+1— far)(re®®) < cscs A*T(D, By —Bo)r P
+e3es \PT(D, Bo—B1)r B+ H((for — far—2)1v(2e) ) (1€°).

But for — fok—1 equals 0 on V(0) and far — fax—2 on V(2¢), so in fact the latter term
is just (fok — fox—1)(re*®). In short,

(fars1— for ) (re'®) < 2cacacs AFT1r— B,
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A similar inequality holds at re~*, so by Lemma (2.1),
(fek+1— far)(r) < 2c103caes A (D, r)[r™ B4~ Bo],
Applying Lemma (2.7) now gives that fogyo is finite, and that

(Fasz=for) (re™) = HZO(fop 1 — for)(re™™)

4
S —Clc3C4C5Ak+1F(D, Bl —Bo)T_Bl .
o

Taking ¢4 sufficiently small makes this <\k+1p—B1

completes the proof. O

, and doing the same for j#1

Proof of theorem (sufficiency). Assume first that (3.11) holds. Summing over
k in Lemma (3.10) gives that h#oo, so that he M(D) by Lemma (3.9). Because
h> fo, it follows that (3.5) holds for each j, with h;=h.

To remove the restriction (3.11), note that if I'j<oo, j=1,...,n, then (3.11)
holds for the open set

D' =D\ [(V(e1)U...UV(an)) \B(r)],

for some r<1. Adding back a small portion of the removed set, if necessary, gives a
domain with the same property. Let he M(D’) be the function constructed above.
Let g=HP'§, where §=1 on DNAD' and §=0 elsewhere on 8D’. By the boundary
Harnack principle for D', it follows that there is a c such that cg>h on D'\ B(r).
Since g is superharmonic on D it follows that so is h+cg (setting h=0 on D\D").
If R%4+GPv is its Riesz decomposition then v charges only B(r)¢, so that GPv is
bounded. Thus h°(re!*:)~h(re*¥i) as r |0, for j=1,...,n, showing (3.5). O

4. Conditional Brownian motion

Let P® be the measure on Brownian paths started at z and killed on exiting
DcC. Given a positive harmonic function A on D a new measure P; is con-
structed as follows: let F;=0(X;;s<t), where X is the Brownian path and define
tp=inf{¢t>0; X;&D}. Define the measure Py by specifying that for AcF,

PP (AN{rp >t})=FE° (h’fét)), An{mp > t}) .

Then X under P7? is called conditional (or h-transformed) Brownian motion. More
information may be found in [Do]. When A is taken to be a minimal harmonic
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function with pole at &, h(- )=K{(¢, -), then under P?, the process X; converges a.s.
in the Martin topology to £ as ¢17p. In this case we shall write P in place of Py.
This process (measure) always exists for z€ D and £ a point on the minimal Martin
boundary. The transition density p¢(t,z,y) of X under Pg is given by

p(t,z,y)K({,y)
K(¢z)

Let n be a minimal point of the Martin boundary of D. We say that P§ exists
if there is a probability measure Png under which X; has the transition density p”
and X;—¢ in the Martin topology, as t/0. As one might expect, P,§ exists, and
is a limit of Py as z—¢, provided £ and 7 are distinct minimal points and the
boundary Harnack principle for parabolic functions holds at €. Further discussion
may be found in [Sa]. In that paper, an example is given of a DCC which has
distinct minimal boundary points £ and &; for which Pg; does not exist. What
goes wrong is that the process, if it existed, would go from &; to & instantaneously.
Another example of nonexistence, this time for a Denjoy domain, was given in [Bu].
Burdzy’s example also features two minimal points which are so close together that
any conditional Brownian motion started at one and conditioned to converge to the
other must make the trip instantaneously.

Consider the Green function for X under P¢, namely

p*(tz,y)=

K
Gﬁ(.’I}, ) — G(l‘,y) (gay)
K(¢, z)
where G(z,y) is the Green function for D. Also recall that £ is said to be attainable

if P§(7p<oo)=1 for some (and hence all) z€D. Then we have the following result
of Walsh from [Sa].

(4.1) Theorem. Let z€D be fizred and let & and n be distinct attainable min-
imal Martin boundary points. Set

Then the following are equivalent:
(a) the process P,§ exists
(b) liminfyy,, f(Xt)<oo, Py a.s., for some weD,
(c) limrrp, f(Xt) exists and is finite P} a.s. for all weD.

Walsh’s Theorem will be applied to an n-sectorial domain D satisfying (3.3) for
each j. Let &1, ..., &, be the poles of the n minimal elements of M;(D). In particular,
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we are concerned with existence of the ng’“ process when &, #&;. Note that all the
¢; are attainable, since attainability in D is equivalent to that in DNB(0,1), and
in the latter all minimal points are attainable (see [CrM]).

The verification of the condition

li{rTlTian fe(Xi) <oo, P as.

where fi(-)=K (&, )/G(z, -} may be accomplished by checking that
limlionf fe(re)<oo.

To see this, we first prove the following:

(4.3) Lemma. Suppose that M1(D) has n minimal elements, whose poles are
&1,y €n. Suppose that v, —0 and that 6>0 is such that B(r,e"i,8r,)CD for
i=1,2,..,n. Then o _; B(rme"i,brm,) is not minimal thin at &;.

Proof. By the proof of Proposition (3.1) Us_, U;.lzl B(rme®s, éry,) is not min-
imal thin at &. By part (b) of that proposition U}, ;.. B (rme*,8ry) is minimal
thin at £. The result now follows. [J

Now we claim:
(4.4) Péj’“ exists
if and only if

(4.5) limlionf fr(re?) < oo.

Assume (4.4), and let 7, | 0. Then, by Lemma (4.3), under P;; the path X will
hit infinitely many balls B}, = B(r,e!",r,,). By Theorem (4.1) (c) and Harnack’s
inequality on each BJ, which is hit by X, it follows that (4.5) holds. Conversely,
if (4.5) holds, let 7, |0 satisfy liminf,, o0 f&(Tme??)<oo. Again by the fact that
\US°_, B{, is not minimal thin at ¢;, the process X hits infinitely many of B, Py
a.s. Thus by Harnack’s inequality applied in the balls hit by X, condition (b) of
Theorem (4.1) is satisfied and so (4.4) holds.

This result will be used to prove our criterion for existence. The criterion is an
integral test which determines when the boundary near the origin is thick enough
to prevent the conditional process from instantaneously flashing from & to ;.
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(4.6) Theorem. Let DCC be n-sectorial. Assume that (3.3) holds for each
j. Then all the conditional Brownian motions Pfj’“ exist for k#j, 1<k,j<n, if and
only if

1
(4.7) /nj(t)t_(Bj+Bj+1+1)dt<oo forj=1,..,n.
0

(Recall By=Bj41.)

Proof. 1t is now clear that we need only show the equivalence of (4.5) and (4.7).
Since (3.3) holds for each j, Theorem (3.6) and Theorem 1.XI1.14 of [Do] imply that

G(re™ ,w) ~c(w)G(re? ,w) asrl0,

where G; is the Green function for W (a;_1, ;). But G;(re?, w)~c(w)r?i, hence
G(re?i , w)~c(w)r?s too.
By Lemma (1.1) we have the bound

K (&, re)<er P, Vr<1,Vj Vk.
Moreover, by Proposition (2.9)
K(&,re")>er™Bi, vr<1,vj.

Now, in one direction, suppose that for some 7,
1
/ n; ()t~ Bt Bt g — o0 .
0

Then, by Lemma (1.1),

pBi+14Bi+1-1

K(&,re"i+) > ¢ / K(¢;,te™) dt
0

r2Bi+1 4 $2Bj+1

1 pBjt14Bj41-1 - .
2C/o 2B, 2B (DK (&, 1) dt, - (using Harnack)

B 1 tBis1-1 B

o e\s—B;
2 erm /0 B B MO d
again by Lemma (1.1). Thus

. K(&,retrin .. K(&,retin
lim inf M > climinf ﬁj—’—————)
rio - G(reMi+i, w) 710 rBi+1

1
i(t
:C/ ———B-nj—{(~3?4+1dt
0 tPi+1 J

=0,
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Thus ng’;l does not exist.
Conversely, assume that

1
n;(t) .
A t—Bmdt<OO fOI'j—l,...,’n.

Given N >0, let uny be the harmonic function on
D'=W(aj-2+3Bj-1, 0542~ §8541)ND

which agrees with K(¢x,-)AN on 8D'. Then by Lemma (2.1},

1 _Bi4Bj—1
Y5 1 roitei oy o1
un(re ’)=E]T o 2Bi 12B; [un(te™ ) +un(te’® )] dt

e ! rBitBi! iy iy
Sﬂ—j/() 25,5, (i (D(un (te7) +un (te77+))
+nj-1(t) (un (te 1) +un(te?))] dt
1 6
B; 1;(t) ni-1(t)
<poi [c/o tB,-+1+B]-+1dt+c | 1Bt Br T dt
5
(8 +n;
+c6/ t—BjuN(tel'Yj)n]( )+;7.7 l(t) dt]
0

where we have used the bounds
un (te?) < ct™ B,
Here ¢ may depend on D, but c¢=c;/ min; 3; depends only on the o’s. Thus

1
o o )+t
r=Biuy(re) < c+ce / - Bruy (tein) O (Y) )+Z7J 1®) gy,
0

Write my=sup,sqr Biun(re?i). Since uy <N and

dt < oo

/1 5 () +n-1(t)
0

t1+Bj

it follows that my <00, and hence

1 .
mNSc(1+mN/ ng—_lﬁdt) .
0

45
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If, in addition,
1 . .
(4.8) C / Wﬂ__l(tl dt< l
0 t 2
this results in

mNSQC.

Letting N1oc and noting un(- )1 K (&, - ), we have

2¢>my Tsup r“BjK(gk, rei“’j) .
r>0

Since G(re*i, w)~c(w)r? it follows that Pé’“ exists. 0

Finally, we must remove the additional condition (4.8). To do this we use the
following lemma.

Lemma 4.9. Let D be n-sectorial. Let D'CD be a domain satisfying
D\D'c [U V(aj)] \B(6).
j=1
Then there is a constant ¢ such that

G'(z,y) < G(z,y) <cG'(z,y), Vz,ye DNB(6/8)

(where G, G’ are the Green functions for D and D').

In fact, as at the end of Section 3, it is straightforward to construct such a
domain D’ and have (4.8) hold also. Condition (3.3) is immediate, so the argument
just given shows (4.5) for D’. The estimate of Lemma (4.9) now guarantees that
(4.5) holds for D as well, so that ng’“ exists, showing the theorem.

_ Proof of (4.9). The first inequality is clear. Let Go be the Green function of
DNB(6/2). Let p3(dz) be harmonic measure for this domain, and let pf(dz) be
harmonic measure for DNB(6/4). Then

G(z,y) = Go(z,y)+ /a oy CVIEE)

= Golz,y)+ / / Gz, w)p (dz)k (dw)
aB(s/2) JoB(6/4)
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Similarly,

G'(z,y) = Gl y)+ / / G (2, w)u (dz)ut (dw).
8B(5/2) JOB(6/4)

Therefore it will suffice to show that
G(z,w) < cG'(z,w)

for ze DNOB(6/2), we DNAB(6/4). By Lemma (2.2) it will be enough to show
this for z=(6/2)e™, w=(6/4)e**, 1<j, k<n. Since this involves only finitely many
points, the inequality becomes a trivial consequence of the connectedness of D and
D. 0O

Remarks and Examples

(1) Theorem (4.6) in the case of Denjoy domains (a; =) asserts that the Po+
process exists if and only if
1
t
/ 77_(~) dt < 0.

i

This is in contrast to the requirement

/1 ﬁdt<oo

-1 [

for the existence of two minimal points 0+ and 0— corresponding to the origin.
The two tests can be generalized to Denjoy domains in R**1. Benedicks showed
in [Be] that the condition for the origin to split into a pair of minimal points is that

/[ -77—(th< 00.

—1, [t
The corresponding condition for the existence of Pg; turns out to be that

n(t)
—D 2t < 00.
/[—1,1)n [¢[2nt2

(2) We now (briefly) modify an example of [Ch] showing what the integral test
means if the holes in @D are highly regular.
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Take D=C\ (e *RTU(R\U,,((1—am)27™,27™)). Then we claim that

1

t

/0 '———tn/a+:?((22—a)+1 di<oo & E a2 gmir/atm/(2r=a)) £ o
m

This follows from these observations

(a) mo(t)<eno((1—g0am)2™™), te((l-am)2™™,27™),

(B) mo(8)=(1/mo((1- tam)2™™), te((1-Sam)2™™, (1-Lam)2™™),

(¢) mo((1—%am)2™ ™)Xy, where 2 means that there is a two-sided inequality
between the two quantities.
These follow from boundary Harnack, Harnack and conformal mapping, respec-
tively.

Thus,

1 no(t) dtmz O O 27
0 tr/atm/(2r—a)+1 T T — ((1_am)Q—m)ﬂ'/a+1r/(21r—a)+1

o Z a72n2m(7r/a+7r/(27r—a)) )
m

This proves the claim.
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