
Martin boundaries of sectorial domains 

Michael  C. Crans ton(1)  and  T h o m a s  S. Sal isbury(2)  

Abs t r ac t .  Let D be a domain in let 2 whose complement is contained in a pair of rays leaving 
the origin. That is, D contains two sectors whose base angles sum to 2~r. We use balayage to 
give an integral test that determines if the origin splits into exactly two minimal Martin boundary 
points, one approached through each sector. This test is related to other integral tests due to 
Benedicks and Chevallier, the former in the special case of a Denjoy domain. We then generalise 
our test, replacing the pair of rays by an arbitrary number. 

1. I n t r o d u c t i o n  

Cons ider  a d o m a i n  D C R 2 = C  which conta ins  a pa i r  of sectors  whose base  

angles sum to 2~r. T h a t  is, i ts  complement  is a pa i r  of  porous  rays,  r ad i a t i ng  f rom 

the  origin 0. A resul t  of Ancona  ((3.3) of [A1]) s t a t es  t h a t  the  Euc l idean  b o u n d a r y  

po in t  0 gives rise to  e i ther  one or two min ima l  po in t s  of the  M a r t i n  b o u n d a r y  of 

D.  The  s imples t  vers ion of our  a rgumen t  provides  an in tegra l  tes t  (Theo rem (1.3)) 

t ha t  d is t inguishes  be tween  these  two a l te rna t ives .  

In  rea l i ty  wha t  we will prove is a genera l i sa t ion  of this  tes t .  We will consider  

a domain  D c C  whose b o u n d a r y  is con ta ined  in the  union  of n rays  leaving the  

origin. We will call  such domains  n-sector ia l .  A n c o n a ' s  resul t  now shows t h a t  t he  

origin cor responds  to  at  most  n min ima l  po in ts  of the  M a r t i n  b o u n d a r y  of D.  In  

the  case t h a t  the  base  angles of the  sectors  are  all  d is t inc t ,  we will give a t es t  

(Theorem (3.6)) t h a t  de te rmines  whe the r  or  not  the re  are  exac t ly  n such points .  

This  provides  a geomet r i ca l ly  s imple class of domains ,  whose M a r t i n  bounda r i e s  

are non- t r iv ia l ,  yet  for which expl ici t  ca lcula t ions  can be made.  We leave open  the  

quest ion of  de t e rmin ing  the  number  of m in ima l  po in ts  when this  number  is less 

t h a n  n. 

A modi f ica t ion  of the  tes t  allows us to  de t e rmine  whe the r  Brownian  mot ion  can  
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be conditioned to travel between the various Martin boundary points correspond- 
ing to the origin (see Section 4). The remainder of this section will describe the 
application of Theorem (3.6) in the simpler context of the first paragraph. In com- 
bination with earlier integral tests, due to Benedicks and Chevallier, what emerges 
is a complete identification of which sectors a conditioned Brownian motion will 
visit. 

In the basic integral test, the argument for sufficiency uses balayage. That  for 
necessity relies on adaptions of arguments due to Chevallier [Ch] and Benedicks [Be]. 

Set 

W(r r = {z C C; r < Arg(z) < ~b}, 

v(r = {re% r _> 0}, 

B(z, r) = C; I -zf _< r}, 

B(r) =B(0 ,r) .  

We start by recording the following simple fact. 

(1.1) L e m m a .  Let 0<a<27r  and set B=rc/a. Suppose that h is positive and 
harmonic in the sector C = W ( 0 ,  a). Assume that h is bounded and continuous on 
the closure of C less any neighbourhood of the origin. Then 

fO ~ rBtB--1 h(re i~/2) =ar-B  +a -1 r2B +t2 B [h(t)+h(tei~)] dt 

for some a>0 .  Moreover, rBh(rei~/2)~a as riO. 

Pro@ This follows by a conformal transformation from the case c~=Tr (Her- 
glotz's theorem). For the asymptotic statement (as r l 0 )  note that rBh(re i~/2) is 
the sum of a and an integral whose integrand decreases to 0. [] 

Let D c C  be open and connected. Write 3d(D) for the set of all positive func- 
tions D--~R + which are harmonic in D and bounded on D less some neighbourhood 
of the origin, and which converge to 0 at each regular point zCOD, z#O. Fix z0 CD 
and let A41 (D) = { h E AA (D); h (z0) = 1}. To each minimal element h of J~ l  (D) there 
corresponds a unique point z of the minimal Martin boundary of D, which we call 
the pole of h. h will be a multiple of the Martin function K(z, .  ). 

Now let 0<a_<Tc, and take C=W(0 ,  a). Suppose that  the complement of D is 
a subset of OC. Let "~1=og/2, "/0=(og-~2T-)/2, Bl=rr /a>l ,  and B 0 = r r / ( 2 r r - a ) < l .  
According to Proposition (3.1) and Theorem (3.6) there are at most two minimal 
elements of A/II(D), and there will be exactly two, if and only if 

(1.2) 3hj �9 AIr(D) such that limrBJ hj(re i~5 ) > O, 
r$0 
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for j = 0  and j = l .  Actually, Theorem (3.6) only applies when a<zc, but the case 
a = I r  is (after a conformal transformation) the one considered by Benedicks. By 
Proposition (2.9), the probabilistic interpretation of (1.2) is that  

(i) any hi-transform Xt of Brownian motion will a.s. approach 0 as t increases 
to the lifetime 4 of X, and that  

(ii) for j = 0  (resp. j = l )  Zt will a.s. remain in C c (resp. C) during some terminal 

interval (4-6,  4) of time. 
In analytic terms, (ii) becomes that  C (resp. C c) is minimal-thin at the minimal 
Martin boundary point which is the pole of h0 (resp. hi). See [Do] for definitions 
of and information about h-transforms, Martin boundaries, and minimal-thinness. 
A shorter introduction to h-transforms may be found in [Du]. 

We wish to obtain an integral test, relating "local" information about OD to the 
existence of harmonic functions hj as above. In the case of a Denjoy domain (that 
is, in the case a=Tr), a conformal transformation reduces this test to one given by 
Benedicks (Theorem 4 of [Be]). Indeed, our argument for necessity will use that  of 
Benedicks. Ancona [A2] obtained Green function estimates for a significantly more 
general class of domains. Based on these estimates, Chevallier [Ch] considered the 
case of general a and obtained an integral test, essentially for the existence of h0. 
We will use balayage to give a test for the existence of hi. In Section 3 we will give 
such a test in a more general setting, and will adapt arguments from [Ch] to relate 
such existence questions to the enumeration of the minimal elements of Jk41(D). 
Stephen Gardiner has pointed out to us that  the balayage portion of our argument 
is closely related to one he had earlier used in [Gd] to give a more concrete version of 
Benedicks's test. For related results on Martin boundaries or Brownian motion, see 
[A1], [A3], [AZ], [Bil], [Bi2], [Bu], [MP], [Sel] and [Se2]. Other papers on Denjoy 
domains include [De], [Cal], [Ca2], [GnJ], [RR], and [Z]. 

Let 0<2s<a<Tr ,  s < l ,  and define G(re ie) to be the neighbourhood 

G(re ir = {z; ]z I E (r(1-c),r(l  +E)) } n W ( r  Cq-s) 

of re ie (we are suppressing the dependence on c). Let g(w)=g(D, z; w) solve 

A g = 0  on DNG(z), 
g = 0  on ODNG(z), 
g =  1 on DNOG(z), 

and set ~/(D, z)=g(D, z; z). Write 0(r)=~(D, r )+u(D,  rei~). Combining the results 
of Section 3 with Chevallier's integral test yields the following classification theorem. 
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(1.3) T h e o r e m .  Let 0<a_<Ir, C = W ( 0 ,  a) ,  and let D be a domain with 
Dc c OC. Then 

(a) I f  f~ Q(t)t -1 dt=oc then there is only one element h of A~il(D), and any 
h-transform a.s. visits the sector C together with its complement in every terminal 
interval (~-5 ,  ~) of time. That is, neither C nor its complement is minimal-thin at 
the pole of h. 

(b) I f  f~ ~(t)t -1 dt<oc but f l  Q(t)tBo_Bl_ 1 dt=oc then there is only one ele- 
ment h of AA I ( D ) , and any h-transform a.s. remains in the complement of the sector 
C during some entire terminal interval (~-6 ,  ~) of time. That is, C is minimal-thin 
at the pole of h. 

(c) I f  f3 ~(t)t Bo-BI-1 dt<oo then there are exactly two minimal elements ho 
and hi of A/II(D). Any transform by ho (resp. hi)  a.s. remains in C ~ (resp. C) 
during some entire terminal interval (~-6,  ~) of time. That is, C (resp. C ~) is 
minimal-thin at the pole of ho (resp. hi).  

Proof. The three cases are exhaustive, as B 0 - B 1  <0. As remarked above, the 
case c~=Tr is Benedicks's criterion, so we may assume that  c~<~. Part (c) now 
follows by Theorem (3.6). 

In the remaining cases, A~I(D) consists of a single function h. By (2-1) of 
[Ch], condition (1.2) fails for j = l  (the smaller angle). By Proposition (2.9), C c is 
not minimM-thin at the pole of h. Moreover, C is minimal-thin at this pole if and 
only if (1.2) holds for j - -0 .  By (2-5) of [Ch] this holds provided f l  o(t) t_ldt<cc" 
The converse follows by Proposition (2.8). [] 

Note that  when c~<Tr, symmetry considerations no longer rule out the possi- 
bility that (a) holds yet that  W(6, c~-6) is minimal-thin at the pole of h, for 6>0. 
Chris Burdzy showed us an example in which this is the case, and we have since 
found an integral test that  characterizes this behaviour. 

2. P r e l i m i n a r y  e s t i m a t e s  

We take the convention that  numbered constants (cl, c2, ...) have specific values, 
usually depending on one or more parameters, but that c represents a constant 
whose value may change from line to line. 

(2.1) L e m m a .  Let E<~r/2 and suppose that D c C = W ( - 2 ~ , 2 E ) ,  with 
O D n C c V ( O ) .  There is a constant cl (depending on e but not otherwise on D) such 
that if h is harmonic in D and converges to 0 at each regular point zEV(O)AOD, 
zr  then 

h(r) <_ Cl~(D,r)[h(rei~)+h(re-i~)], Vr �9 DNV(O).  
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Proof. This follows immediately from the maximum principle and a weak Har- 
hack inequality such as Proposition (1-1) of [ca]. See also (4.8) of [Be] or (2.3) and 
(3.3) of [A2]. [] 

The simple form of the above result will suffice for most purposes. We will 
occasionally need the following stronger form, proved as in (1-2) of [Ch]. Write 
A(r,r')={se~~ r<s<r '} .  

(2.2) L e m m a .  Let ~<7r/2 and suppose that U c C - - A ( r / 4 , 4 r ) A W ( - 2 e ,  2~), 
with OUNCcV(O).  There is a constant c (depending on ~ but not otherwise on r 
or U) such that if h, u, and v are strictly positive and harmonic in U and converge 
to 0 at each nonzero regular zCV(O)NOU, then 

rh(re~) h(re -~)  lzl _ L  lzl  
for zCA(r/2,  2r)NW(-r  ~). 

For D open and u a positive measurable function defined on OD, define HDu 
to be the solution to the Dirichlet problem on D, with boundary data u. That  is, 
HDu(z)  is the integral of u with respect to harmonic measure Pz. 

Now let r  ~p>0, r162 and write ~=7r/r  g2--Tr/r C = W ( 0 , r  In 
the next result, we will be interested in domains D satisfying 

(2.3) 

D C W(-~b, r 
W(-r r C V(0), 

V(0)\B(1) C OD. 

For q>0 let uq(rei*)=r -q, and let Uq-=O on OD\V(r  For x E R  write 

~o 1 F(D, x) = ~(D, t)t (xA~ dt. 

The following is our principal technical lemma. It establishes the estimates that  
allow us to carry out the balayage, at least when F is sufficiently small. 

(2.4) L e m m a .  Let r and r be as above. Let 0<q<O.  There are constants 
c2,c3>0 (depending only on q, r and r such that if D satisfies (2.3), 0<s<g2,  
and F(D, s -q)<c2 then 

(a) 

(b) 

HDuq(re -ir < c3F(D, s - q ) r  -s,  Vr > O, 

(H D-Hv)uq(re ~/~) <_ c3r(D, s-q)r-q, Vr > O. 
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Remark. If s>q then as sAq----qAq, the result applies both with s as given, and 
with s replaced by q. Therefore in this case, in fact 

HDuq(re -ir < c3r(D, 0)[r -s  Ar-q], Vr > 0. 

Proof. (a) We have not yet ruled out the possibility that  h=HDuq==-c~, so let 
uN-=uqAN. This makes each hg-~HDu N bounded, with hgTh. Let 

m +  = sup{rqhN(re i~ /2) ;  0 < r < N }  < 

m N = sup{rshN(re-~r 0 < r < N} < c~. 

Since s_<~, we have by (2.3) and Lemma (1.1) that  

fo r ~+st~-I rShN(re-ir = r hg(t) dt r2~ +t2~ 

-- r  f o 1 1 ~ ; t S - l  hN(t) dt <- ~ - l  fo l ts- l  hN(t) 

Now choose ~ < ( r 1 6 2  By Lemma (2.1) and Harnack's inequality, it follows that 
the above expression is 

/o 1 _< r t~-lv(D, t)[hg(te-i~)+hN(tei~)] at 

~e ~n 1 ts-17](O, t)[hN(te-ie/2)+hN(teir dt 

fo ~] <e t~-~rl(D,t)[t-~m~+t-qm dt 

foe fo = cm~r t- l~(D, t) dt+cm + t~-q-lrl(D, t) dt 

Thus 

(2.5) m N _ cr(D, s- -q)[my +m+] .  

Now assume that s<<_q. A change of variables, from t to x=t / r  shows that 

foC~ r~+qt r foC~ X ~-q-1 r2 ~ +t2~ Uq(t) dt = - - l + x 2  ~ dx 

X ~-q-1 dx+ x -o-q-1 dx 

= ((I) _ q ) - I  .+. ((i)_k_ q ) -  1 _< 2(( i  ) _ q ) - l .  
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Thus, proceeding as before, 

~0 1 r~+qt~--i ~00r r~+qt  ~-1 
rqhg(reir162 -1 r 2~+ t2  @ hN( t )d t+r  -1 r 2 r  @ Uq(t)dt 

_< r tq - lhN( t )  d t + 2 r  

<_cm} folt-lrl(D,t)dt+cm2v foltq-s-in(D,t)dt+c 

fo 1 fo' <_ cm+~ t-ln(D,t) at+cm~ t-~v(D,t) at+c 
_< c[1 +r(D,  s -q) (m? +m?)l,  

here using that  q -  s_> 0. Thus 

(2.6) m + < c [ l + r ( D ,  s - q ) ( m ~ r + m } )  ] . 

Now choose c2 such that for the common c of (2.5) and (2.6) we have cc2 <_ �89 Sup- 
pose that  r=r(D,s-q)<_c2. Then - a + mN<_-~crm N holds by (2.5), and substituting 
into (2.6) gives that + 1 + m+<_2c, so m N <_c+ ~m N. Thus that  m~_<c3, here choosing 
ca=3c 2. Letting N ~ o e  now gives part (a) of the lemma, at least when s<_q. 

Now suppose that s>q. Then (2.5) holds, so again mTv < a  + _ScrmN holds if 
cc2_< g.m As before, the result will follow once we show that  m+<2c._ But this 
follows from what we have already proved, as the hypotheses of the lemma still 
hold if we decrease s and replace it by q. Thus part (a) is proved in general. 

(b) The second part of the lemma follows immediately. In fact, we have that  

~o I r o+qt~5-1 
(H D -HC)uq(re  ir = dp-lr -q r2 @ § hN(t) dE. 

Our work above provides the upper bound cr -qF[m+§  -] (where m + (resp. m - )  
is l i m g - ~  m + (resp. raN)), which in turn gives part (b), after perhaps increasing 
the value of c3. [] 

Remark. In our applying this result, it would in fact be enough to assume that  
r 1 6 2  and to replace xA0 by -Ix] in the definition of r (D ,  x). Our weaker hypothe- 
ses cause no significant complications however, and help clarify the asymmetric roles 
of s and q. 

(2.7) L e m m a .  Let r r ~, q2, and F be as above, and let D satisfy (2.3). Take 
C--W(0,  r Let u--0 on Y(r and suppose that u(r) <7(0 ,  r)[r -~  + r  -q] on Y(O). 
Then 

HCu(re ir <_ 2 r 1 6 2  @- 9). 

2-Arkivff6rmatematik 
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Proof. 

~o I r2~t ~-1 
r~HCu(rei~/2) = ~-1 r2 ~ +t2~ u(t) dt 

< 4 -1 t~-irl(D, t )[ t-e+t -'~] dt 

_< 24~-lF(D, @-~I,). [] 

The following asserts that finiteness of certain integrals is a necessary condition 
for there to exist harmonic functions with given growth rates. 

(2.8) P r o p o s i t i o n .  Let r ~p, ~, q~, and P be as above. Suppose that D is a 
domain containing W ( - ~ ,  0)UW(0, r and that hEM(D)  satisfies 

lim rOh(r exp(iO/2)) > 0. 
r$0 

Then F(D, @-  (I)) < co. 

Proof. Suppose first that r so that  ko-(I)_<0. Then by Lemma (1.1), 

fo ~ tr  dt h(e-ir >_ ~-1 l + t  2~ h(t) 

>_ ~-1 t~-lh(t) dt. 

Because h is harmonic on G(t), it follows from the maximum principle and Harnack's 
inequality that this is 

>_ c t~-trl(D, t)h(te i4~/2) dt 

>c .~  1 rl(D,t)t �9 ~-1 dt, 

the latter by our hypothesis on h. Thus F must be finite. 
If 4~_>~, then by a similar argument, 

h(ei4~/2) >_ 4 -1 .~1 te-~ h(t) dt 

_>> e .~1 t~ - l~ (  D, t)h(teie/2) dt 

> c.~ 1 rl(D, t)t -1 dt. 

Thus F is finite in this case as well. [] 

Finally, we record the relationship between minimal-thinness and the existence 
of harmonic functions having prescribed rates of growth. 
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(2.9) P r o p o s i t i o n .  Let D be a domain containing C--W(0,  a).  Set ~/--a/2 
and B=lr/a.  The following two conditions are equivalent 

(a) There is a point ~ of the minimal Martin boundary of D that is a minimal 
fine limit point of W(O, a)NB(6) for every 5>0, and at which C ~ is minimal-thin. 

(b) 3hcAd(D) s.t. limr$0 rBh(rexp(i~))>O. 
Moreover, in this case, ~ is unique. 

Proof. Assume (a) and let h be the harmonic function with pole at (. Then an 
h-transform converges to the vertex of C and stays entirely within C with positive 
probability. The same is therefore true for a Brownian motion on C, transformed 
by the restriction of h to C. Lemma (i.1) now implies that  h(rei~)~cr -B. 

Conversely, suppose (b) holds. Then by Lamina (1.1), an h-transform Xt of 
Brownian motion has positive probability of reaching the vertex of C before leaving 
C. If h is not minimal, we may still find a minimal function for which this property 
holds. Let ( be its pole. Then (a) holds for this ~. 

Moreover, the law of X, restricted to the tail a-field, must be the same as that  
of a transform in C by some element of A41(C). Since this set is a singleton, we 
conclude that ~ is unique. [] 

3. Sec tor ia l  d o m a i n s  

We now turn to the class of domains for which our principal theorem will be 
stated. Let 0=(~0<OLl<...<t~n--27r where n>2 ,  and let D be an open subset of C 
for which DcCV(al)U...UV(an). We say that  D is n-sectorial. This hypothesis 
and notation will be in effect for the remainder of the paper. It will be convenient 
to write O~n+l=Otlq-27r and O~_l----O/n_l--27r. Set /~j=O~j--O~j_l, Bj=Tr//~j, and 

(3.1) P r o p o s i t i o n .  Let D c C  be an n-sectorial domain. 
(a) J~dl(D) has at most n minimal elements. The pole of each such element is 

n a minimal fine limit point of the set B(r)NUj=I Y(Tj), for every r > 0 .  

(b) If A/II(D) has exactly n minimal elements, then their poles are exactly 
the points ~j=limrtorexp(i~/j). In this case, ~j is a minimal fine limit point of 

for every 

Proof. The first assertion in (a) is (3.3) of [A2]. To show the remainder of 
the proposition, we adapt an argument of Chevallier. Lemma (2.2) allows us to 
estimate h(re i~ for 10-~yl <e, where j = l ,  ..., n. Combining these estimates with 
Harnack's inequality yields a constant c Such that if h, Vl,..., Vn are strictly positive 
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and harmonic in DNA(r/4, 4r) then 

n 

h(z )  < c _ ~ j  } vj(z),  VzeDNA(r/2,2r). 
j = l  

Now the argument of (1-3) of [Ch] applies, and shows that  if rk$0 and if 5 is 

sufficiently small, then 

(3.2) U B(rkei~j'hrk) 
k = l  j = l  

is not minimal-thin at the pole of any minimal element of 2r In particular, the 
second statement of (a) is now immediate. 

For the first s tatement of (b), we adapt  the argument of (1-4) of [Ch]. Notice 
that  with n now possibly bigger than 2, it would be false to conclude that  r exp(iTj) 
converges to a minimal point of the Martin boundary as r.L0. Let the n minimal 

elements of A/[I(D) be hi,  ...,hn with hj=K(~j,. ). Choose rk$0, and write zk=  
rk exp(iTn). Suppose that  the Mart in function K(zk,.) converges to some h #  
hi, ..., hn-1. The set in (3.2) is not minimal-thin at any ~j for j#n, so we may 
choose a subsequence of rk  (which we assume to be the original sequence), together 
with indices J(1),  ..., J ( n - 1 ) ,  so tha t  rk exp(iTj(j))--+~j as k--*oc, j = l ,  . . . , n - 1 .  
Because the set in (3.2) is not minimal-thin at ~ ,  it follows that  h is a multiple of 
hn. Thus no non-minimal point can be a limit point of r e x p ( i % )  as r$0. Being 
the intersection of a decreasing sequence of compact connected sets, the set of such 
limit points is also connected, so consists of the singleton ~ .  This shows the first 

assertion of (b). 
The second follows by Harnack's  inequality, as it is now clear that  

O B (rke i'r' , 6rk) 
k=l  

is not minimal-thin at ~j. [] 

Now choose e <  (1A/31A...A/3~)/4 and set rlj(r)=r/(D, rei~J). The integral criterion 

we will consider is that  

/o 1 (3.3) Pj = ~j(t)t-rBJ+l-BJl-ldt < OO, 

for j = 1, ..., n. Note that  by Harnack's  inequality, the validity of this condition does 
not depend on the choice of the small parameter  g. 
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(3.4) C o r o l l a r y .  Let D c C  be an n-sectorial domain, and suppose that 

(3.5) 3hj E All such that limrB~hj(re i~)  > 0, 
r~O 

for j = l , . . . , n .  Then A/il(D) has n minimal elements with poles ~l,...,~n. Each 
W ( a j - 1 ,  aj)  c is minimal-thin at ~j, and (3.3) holds for each j .  

Proof. This follows immediately from Proposition (2.8), (2.9), and (3.1). [] 

We are ready for the main result of this section. 

(3.6) T h e o r e m .  Let D c C  be an n-seetorial domain. Assume that the t3 i are 
all distinct. For AAI(D) to have exactly n minimal elements, it is necessary and 
sufficient that (3.3) holds for j = l ,  ..., n. Moreover (3.5) holds in this case, so that 
W ( a j - 1 ,  aj)  ~ is minimal-thin at ~j. 

Remarks. (1) Even if the t3j are not all distinct, the argument will show that  
(3.3) and (3.5) are equivalent, in the sense that  if one holds for every j ,  then so does 
the other. Thus (3.3) is in general sufficient for the existence of n minimal elements 
of AAI(D). 

(2) Using similar arguments, it is possible to weaken the hypothesis that  the 
/3j be distinct. This condition will only be used in the proof of Lemma (3.3), and 
there it could be dispensed with provided either n=2 or V(0)CD ~. In the case 
where n=3 or n=4, this makes it possible to prove the theorem provided there are 
not two adjacent sectors whose base angles ~3 are equal and are at least as big as 
the remaining/3's. 

(3) We'd like to thank Chris Burdzy for pointing out a shortcoming in the 
original proof. 

(3.7) L e m m a .  Let D c C  be an n-sectorial domain, for which AJ1(D) has 
exactly n minimal elements. Assume that the ~j are all distinct, and suppose that 
~1 is the biggest of the ~j. Then W(a0, al)  is minimal-thin at each ~j, j ~ l .  

Proof. If a l > ~ ,  this is just the statement following (2-3) of [Ch]. Since this is 
always the case if n=2 ,  we may assume that  n > 3  and a l  <~r. It will suffice to show 
minimal-thinness a t  ~:, as the same argument will apply to ~n, and the general case 
will then follow. 

Choose 5 > 0 so that  ~2 + 5 < a l. This is possible since t31 >/~2. Let us define Dr=  
D•W(ao,  a2+5). Because re i~1-~1#~2 as riO, it follows that  V(~I) is minimal- 
thin at ~2. The same is true for V(a2+5).  Thus the complement of D'  is minimal- 
thin at ~2. In particular, the limit ~ of r exp(i72) exists in the Martin topology of 
D',  and by localization, it will suffice to show that W(a0, a l )  is minimal-thin at ~ ,  
relative to D'. 
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Let D" be the image of D'  under the conformal transformation g(z )=z  ~/~1. 
The map g is one-to-one on D', by our choice of 5. The sector g(W(ao,  a l ) )  now has 
base angle equal to ~r. By Chevallier's remark, it is minimal-thin at g (~ )  relative 
to D".  We obtain the desired conclusion by conformal invariance. [] 

Proof of theorem (necessity). Fix n and let ~j be as in Proposition (3.1). For 
ease of exposition, we will abandon the assumption that  D is connected. In other 
words, D will be open but it need not be a domain. This necessitates several trivial 
changes, for example to our definition of Yt41 (D). Write hj for the minimal element 
of A41(D) with pole at ~j. Our proof will proceed by induction on n - m ,  where m 
is the number of connected components of D. The inductive hypothesis is that if D 
is n-sectorial with more than m or more components, and if A~I(D) has n minimal 

elements, then 

(3.8) lim r Bj hj (re i'y~ ) > 0 
riO 

holds for each j .  This is trivial if m---n. We assume, without loss of generality, that 
/91 is the largest of the #~j, and that  W((~0, (~1) is not itself a component of D. 

Let D'=D\[Y(~o)UY((~l)] .  By Lemma (3.7) AAI(D') has the same number 
of minimal elements as M I ( D ) ,  yet it has at least one more connected component. 
By induction, (3.8) holds for j = 2 ,  ...,n. Moreover, by Proposition (2.8), we have 
that (3.3) holds for each j .  

Finally, we must show that  (3.8) holds for j =  1. By (3.3) we have that 

01 [~/1 (t)+~/o (t)]dt < oc. t -1 

If ~1 >Tr, then (3.8) follows immediately as in the proof of part 2 of Proposition (2- 
5) of [Ch]. If not, then restrict hi to D'=DFIW(-5 , (~I+6)  for some small 6, and 
apply a conformal mapping as in Lemma (3.7) to reduce to this case. Alternatively, 
once the sufficiency half of the theorem has been established, it could be used to 
reach the same conclusion. [] 

In order to show the sufficiency of (3.3), we will need to construct the harmonic 
functions appearing in (3.5). Without  loss of generality, the n functions of (3.5) may 
be taken to be equal (if not, consider their sum), and it is this function that we will 
construct. We will break the argument up into three parts: showing monotonicity 
of the balayage; estimating its successive terms, at least when D has a special form; 
and approximating a general domain D by domains of this form. 

Let Y(j)----DFIW(~j - 2~, (~j -{-2~), Z(j ) : -W((~j_I ,  olj), and 

Y = Y ( 1 ) U . . . U Y ( n ) ,  

z:z(1)u...uz(n). 



Martin boundaries of sectorial domains 39 

Let f - i - - f - 2 - - 0  and 

fo(re i~ =r -Bj sin(Bj(O-aj_l)), if aj-1 <_ 0 <_ aj.  

Given f2k, define 

{ f 2 k ,  on D\Y,  
f 2 k + l  = Hgf2k, on Y, 

f2k+l,  on D\Z,  
f2k+2---- fo§ ' on Z. 

Where  needed, we take  the f ' s  to be zero on OY\D and OZ\D. 

(3 .9)  L e m m a .  Let D be an n-sectorial domain. Then the functions fk in- 
crease with k. Let h be their limit. Then either h-oc  or hEAJ(D). 

Proof. In  order to e l iminate  problems with  infinities of the  f ' s ,  we should first 
t runca te  f0 at  some large value N ,  prove the  result  in this case, and then  recover 
the  general  case by let t ing N--*cc .  We leave this to the  reader,  and ins tead s imply 
proceed as if each f were bounded,  and hence (by induct ion)  continuous.  

Let  C - - W ( 0 , 2 ~ ) ,  and  suppose  t ha t  fo<fl<...<f2k. Since f2k+l----HYf2k on 
Y, also f 2 k + l = H Y f 2 k + l  on Y. Hence f2k+l----HCf2k+l on C. Being finite, 

f2k (r exp(i71)) - - - -  O(r -B1 ) :- o(r-Tf/2~). 

I t  is harmonic  on C, so by L e m m a  (1.1), also f2k=HCf2k on C. By  induct ion,  

f2k+l=HYf2k>HYf2k_2----f2k_l on Y. In par t icular ,  f2k+l>f2k_l=f2k on V(0).  
By  definition f2k+l----f2k on V(2e).  Thus  f2k+l>>_f2k on OC, and so on C as well. 
The  same is t rue  on W ( - 2 e ,  0) and hence on all of Y(0) .  Arguing similarly, this is 

also t rue  on each Y(j). But  f2k+l----f2k on D\Y ,  so in fact f2k+l>>_f2k on all of D. 
Almost  the  same a rgumen t  works when we consider f2k+2- As above,  on C 

bo th  f2k+2----HCf2k+2 and f2k+l=HCf2k+l. Moreover,  

f2k+2 = fo+HZ f2k+l >_ fo+HZ f2k-1 = f2k 

on Z,  so f2k+2~f2k=f2k-kl o n  V(2~). Since f2k+2----f2k+l on V(0),  in tu rn  f2k+2> 
f2k+l on C. Arguing similarly, the  same is t rue  on Y. But  f2k+2>f2k=f2k+l on 

D\Y ,  so in fact f2k+2>f2k+l on all of D. 
This  shows tha t  the  f ' s  are increasing. Let  h be  their  limit, and assume it is 

not identically infinite. Because it is a monotone  limit of functions harmonic  on Y, 
it also is harmonic  on Y. Similarly it is ha rmonic  on Z,  and  hence on D as well. 
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To see that  it belongs to Ad(D), apply Lemma (2.1) to f2k+l. This gives an 

inequality 
f2k+l(t) < e~(Y(O), t)[f~k+l(tei~)+f2k+l(te-i~)]. 

Letting k--~ ec produces the same inequality, but for h. It now follows that h vanishes 

at regular points z r  of OD. [] 

We will show that  h~e~  under an additional condition on D, imposed to make 

Lemma (2.4) apply 

(3.10) L e m m a .  There is a constant c4>0 such that if A<l  and if D is an 
n-sectorial domain and satisfies 

(3.11) V ( a j ) \ B ( 1 ) c O D  and F j < c 4 ) , ;  j = l , . . . , n  

then 
(f2k+2--f2k)(rei~J)<)~kr--BJ; k = l , 2 , . . . ,  j = l , . . . , n .  

Proof. Let the constants c2 and c3 of Lemma (2.4) be chosen to work for 
r 1 6 2  and for q any of the Bj. By Harnack, there is a constant c5 such that 
if f is harmonic on Z(j)  and r is such that  f ( r e ~ ) < l ,  then f (re  i(~j-2~)) and 
f(rei(~j ~+2~)) are both <eh. Also suppose that  (3.11) holds for some c4 to be 

chosen later. 
Assume that  the fk, are all finite, for k~<2k, and that 

(f2k--f2k-2)(rc i'~j) <_ akr-'J Vj. 

Then 

f2k+l = f2k-~ + H  Y(~ (f2k - f2k-2),  

on Y(0), so in particular f2k+l is finite. Moreover, we can break this up as 

I2k+1 - f2k-1  = H Y(~ ( ( f ~  - f 2 ~ - 2 ) 1 v ( - 2 ~ ) )  + H Y(~ ( ( f ~  - f 2 k - 2 ) 1 . ( ~ ) ) .  

Let C = W ( 0 ,  2r Applying Lemma (2.4) with qh=r gives that  

( f2k+l--f2k)(re ie)  ~-- c3chAkr(D, B1 -Bo)r -B1 

+cach~kr(D, Bo-B~)r -m +H e ( ( f 2k -  f2k-2)lv(2~)) (rei~). 

But f2k--f2k-1 equals 0 on V(0) and f2k--f2k-2 on V(2e), so in fact the latter term 

is just (f2k--f2k-1)(reiS). In short, 

~/reie~ ~ ~ /~k+lr-B1 (f2k+l --12k)l, ) < ZC3C4c5 
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A similar inequality holds at re -~, so by Lemma (2.1), 

( f 2 k + l  -- f2k)(r) ~-~ 2ClCaC4ChAk+lrl( D, r)[ r-B* + r - B ~  �9 

Applying Lemma (2.7) now gives that  f2k+2 is finite, and that 

(f2k+2 - f2k)(re i'rl ) = H Z(1) (f2k+l -- f2k)(re ~ ) 

<_ 4 c l  cac4ch~ k + l r ( D , B1 - Bo )r - B1 �9 
oq 

Taking c4 sufficiently small makes this ~/~k+lr-B1, and doing the same for j ~ l  

completes the proof. [] 

Proof of theorem (sufficiency). Assume first that  (3.11) holds. Summing over 
k in Lemma (3.10) gives that h ~ e c ,  so that  h E M ( D )  by Lemma (3.9). Because 
h>_fo, it follows that  (3.5) holds for each j ,  with hj=h. 

To remove the restriction (3.11), note that  if F j < o c ,  j=l, . . . ,n,  then (3.11) 
holds for the open set 

D ' =  D \  [(V(oL1)U...UV(oL~)) \ B ( r ) ] ,  

for some r <  1. Adding back a small portion of the removed set, if necessary, gives a 
domain with the same property. Let hEM(D') be the function constructed above. 
Let g----HD'~, where ~=1 on DNOD' and ~=0 elsewhere on OD'. By the boundary 
Harnack principle for D',  it follows that  there is a c such that  cg>h on D'\B(r).  
Since g is superharmonic on D it follows that  so is h+cg (setting h = 0  on D\D').  
If h~ is its Riesz decomposition then ~ charges only B(r) c, so that  GDp is 
bounded. Thus h~ i'r~) as r$0, for j = l ,  ...,n, showing (3.5). [] 

4. C o n d i t i o n a l  B r o w n i a n  m o t i o n  

Let P~ be the measure on Brownian paths started at x and killed on exiting 
D cC.  Given a positive harmonic function h on D a new measure P~ is con- 
structed as follows: let .Tt=a(Xs; s<_t), where X is the Brownian path and define 
rD=inf{t>O; Xt~D}. Define the measure Pt~ by specifying that  for AEbt't, 

P~ (an{rD > t})= EX ( ~ ;  gN{rD > t})  �9 

Then X under P~ is called conditional (or h-transformed) Brownian motion. More 
information may be found in [Do]. When h is taken to be a minimal harmonic 
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function with pole at ~, h(. )=K(~ ,  �9 ), then under P~, the process Xt converges a.s. 
in the Martin topology to ~ as tT~-D. In this case we shall write P~ in place of P~. 
This process (measure) always exists for xED and ~ a point on the minimal Martin 
boundary. The transition density p~(t, x, y) of X under P~ is given by 

p (t, x, y) = p(t,  x, y) 
g ( ~ , x )  

Let ~/be a minimal point of the Martin boundary of D. We say that  P~ exists 
if there is a probability measure P~ under which Xt has the transition density pn 
and Xt - -~  in the Martin topology, as t l0 .  As one might expect, P~ exists, and 
is a limit of P~ as x - ~ ,  provided ~ and ~7 are distinct minimal points and the 
boundary Harnack principle for parabolic functions holds at ~. Further discussion 
may be found in [Sa]. In that paper, an example is given of a D C C which has 
distinct minimal boundary points ~1 and ~2 for which P~2 does not exist. What  
goes wrong is that the process, if it existed, would go from ~1 to ~2 instantaneously. 
Another example of nonexistence, this time for a Denjoy domain, was given in [Bu]. 
Burdzy's example also features two minimal points which are so close together that  
any conditional Brownian motion started at one and conditioned to converge to the 
other must make the trip instantaneously. 

Consider the Green function for X under P~, namely 

G~(x ' y) = G(x, y)K(~, y) 
g(~,x)  

where G(x, y) is the Green function for D. Also recall that  ~ is said to be attainable 
if P~(TD <C~)=I  for some (and hence all) xeD.  Then we have the following result 
of Walsh from [Sa]. 

(4.1) T h e o r e m .  Let zED be fixed and let ~ and ~ be distinct attainable min- 
imal Martin boundary points. Set 

K(~,w) 
f(w)- C(z,w) 

Then the following are equivalent: 
(a) the process P~ exists 
(b) liminftT~D f ( X t ) < c ~ ,  P~" a.s., for some w e D ,  
(c) limtTrD f (X t )  exists and is finite P~ a.s. for all wED. 

Walsh's Theorem will be applied to an n-sectorial domain D satisfying (3.3) for 
each j .  Let ~1, ..., ~ be the poles of the n minimal elements of A41 (D). In particular, 
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we are concerned with existence of the p{k process when ~k ~{j .  Note that all the 
{j are  attainable, since attainability in D is equivalent to that in DNB(0,  1), and 
in the latter all minimal points are attainable (see [CrM]). 

The verification of the condition 

liminf fk (Xt )<oo,  p~w a . s .  
tTrD 

where fk(" )=K(~k , '  ) /G(z, .  ) may be  accomplished by checking that 

liminf fk(re i~ ) < oo . 
r l0  

To see this, we first prove the following: 

(4.3) L e m m a .  Suppose that A/II(D) has n minimal elements, whose poles are 
~l,...,~n. Suppose that r,~--+O and that 5>0 is such that B(r,~ei~J,Sr,~)cD for 
j = l ,  2, ...,n. Then ~J~=l B( rmei'rj, 5rm) is not minimal thin at ~j. 

n Proof. By the proof of Proposition (3.1) [.Jm~=l Uj=I  B(rm ei~, 5rm) is not min- 
imal thin at ~k. By part (b) of that proposition ujn__l,j#k B(rme i~j , 5rm) is minimal 
thin at ~k. The result now follows. D 

Now we claim: 

(4.4) p~k exists ~J 

if and only if 

(4.5) lim inf fk (re i~r ) < oo. 
r$0 

Assume (4.4), and let rm$O. Then, by Lemma (4.3), under P ~  the path X will 
hit infinitely many balls B J : B ( r m e  i'l~ , (Srm). By Theorem (4.1) (c) and Harnack's 
inequality on each B~  which is hit by X, it follows that (4.5) holds. Conversely, 
if (4.5) holds, let rm$O satisfy liminfm__+~ fk(rmei~J)<oo. Again by the fact that 
[.Jm~=l B j is not minimal thin at ~j, the process X hits infinitely many of BJm, pw ~j 
a.s. Thus by Harnack's inequality applied in the balls hit by X, condition (b) of 
Theorem (4.1) is satisfied and so (4.4) holds. 

This result will be used to prove our criterion for existence. The criterion is an 
integral test which determines when the boundary near the origin is thick enough 
to prevent the conditional process from instantaneously flashing from ~k to ~j. 
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(4.6) T h e o r e m .  Let D c C  be n-sectorial. Assume that (3.3) holds for  each 

j .  Then all the conditional Brownian motions p~k exist for k ~ j ,  l <_k , j<n,  if and 
only if  

0~01 (4.7) ~j( t ) t - (Bj+BJ+l+l)dt  < C~ for j = 1, . . . ,n .  

(Recall B1 =Bn+I  .) 

Proof. It is now clear that we need only show the equivalence of (4.5) and (4.7). 
Since (3.3) holds for each j, Theorem (3.6) and Theorem 1.XII.14 of [Do] imply that 

G(re ~j, ~) ~ c(~)Gj(re~*~, ~) as r l O, 

where Gj is the Green function for W(a j -1 ,  hi). But Gj(rei~J, w ) ~ c ( w ) r B J ,  hence 
C(rei~, ~)~e(~)r'~ too. 

By Lemma (1.1) we have the bound 

K(~k,  re i7~) ~_ cr -B~ , Vr < 1, Vj  Vk .  

Moreover, by Proposition (2.9) 

K(~,rei~)>cr  -'~, W<I,  Vj. 

Now, in one direction, suppose that for some j,  

fo = co. ~j(t)t-(Bj+B~+l+l) dt 

Then, by Lemma (1.1), 

gtJ:.~3, reiTJ+~ ) - > C ~O c~ r2Bj+lrB3+~tBj+l--l+t2Bj+ 1K(~j ,  te ~ ) dt 

~0 
1 rB~+~tBJ+~-I 

> e ~ j ( t ) K ( ~ j , t e  i~ )  dt, (using Harnack) 
--  r2Bj+~ -]-t2B~+m 

jO 1 tBJ+~--I 
~_ cr Bj+I r 2 B j + l  ~_t2Bj+l r]j (t)t -B~ dt, 

again by Lemma (1.1). Thus 

lim inf K ( ~ j , re i~ ~ + ~ ) > c lim inf K(~j, re i~ j + ~ ) 
riO G(rei~3+ 1, w) - r~0 rBj+ 1 

~0 
1 7]j(t) J~ 

~- C t B ~ +  1 ar 

~(X).  
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Thus P ~ I  does not exist. 
Conversely, assume that  

f0 
1 ~j( t)  d~ 

tB  -~-B-~+I+ 1 _~ < O0 for j = 1, . . . ,n.  

Given N > 0 ,  let UN be the harmonic function on 

t 1 1 D = W(aj-2  + ~/3j-1, aj+2 - ~j3j+I)ND 

which agrees with K(~k,. )AN on OD'. Then by Lemma (2.1), 

l f~ ~ r ' , t '~-~ [up(tr dt up(re i~) = ~ ~ r2B~ +t2B ~ 

11 cl rSJt e~-I [rs(t)(uN(tei~)+up(tei~+~)) 
<-- ~j r2B~ -.bt2Bj 

+ ~_1 (t)(up(t~ ~-~  )+~p(t~ ~ ))] dt 

[/o /o 1 ?~j(t) dt+c dt ~ r B~ c tB j+I+Bj+I  tBj+Bj_~+I 

~-C6 ~05t-Bjup(tei~/j)?~j(t)-~?~j-l(t)t dt 1 

where we have used the bounds 

uN(te i~z) < ct -Bz. 

Here c may depend on D, but c6 =cl/mini  ~j depends only on the a's.  Thus 

11 r-BJuN(re i~j) <r t-B~UN(tei~J) rS(t)+rS-l(t) dt. 
- t 

Write m p  =sup~>o r -s j  uN(re i~j ). Since up <_ N and 

fo ~ ( t ) + r b - l ( t )  tl+B J dt < oc 

it follows that  mN<oC, and hence 

( fol rlj(t)+rlj-l(t) dt) . mN<_C 1+raN t 

45 
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~o 1 ~j(t)+~j-l(t) dt < 1 
c6 t - -2 

mN < 2C. 

Letting NTcc  and noting UN(" )TK(~k," ), we have 

2c >mN T sup r-B~ K(~k, re i7~ ) . 
r>0  

Since G(rei~, w)~c(w)r Bj it follows that  P ~  exists. [] 

Finally, we must remove the additional condition (4.8). To do this we use the 
following lemma. 

L e m m a  4.9. Let D be n-sectorial. Let D' c D be a domain satisfying 

D \D '  C V(e~j) \B(5). 

Then there is a constant c such that 

G'(x, y) <_ G(x, y) < cG'(x, y), Vx, y �9 DnB(5/8) 

(where G, G' are the Green functions for D and D'). 

In fact, as at the end of Section 3, it is straightforward to construct such a 
domain D ~, and have (4.8) hold also. Condition (3.3) is immediate, so the argument 
just given shows (4.5) for D'. The estimate of Lemma (4.9) now guarantees that 
(4.5) holds for D as well, so that P ~  exists, showing the theorem. 

Proof of (4.9). The first inequality is clear. Let Go be the Green function of 
ON'B(5~2). Let #~(dz) be harmonic measure for this domain, and let #~(dz) be 
harmonic measure for DOB(5/4). Then 

G(x, y) = Go (x, y) + f G(z, y)#~ (dz) 
JOB(f~2) 

=Go(x,y)+ f 
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Similarly, 

Gt(x,y)=Go(x,Y)+ fOB(5/2) fOB(5/4)G~(z,w)#~(dz)#Y4(dw)" 

Therefore it will suffice to show that  

a(z, w) < ca'(z, w) 

for zcDAOB(5/2), weDNOB(5/4). By Lemma (2.2) it will be enough to show 
this for z=(5/2)e i~r , w=(5/4)e i~k, l<_j, k<_n. Since this involves only finitely many 
points, the inequality becomes a trivial consequence of the connectedness of D and 
D I. [] 

Remarks  and Examples  

(1) Theorem (4.6) in the case of Denjoy domains (C~l=~r) asserts that the pO_+ 
process exists if and ollly if 

~_ 1 ?~(t) 

-1 ~ - d t  < ee. 

This is in contrast to the requirement 

f ~(t) 1 ~ -d t<ec  

for the existence of two minimal points 0+ and 0 -  corresponding to the origin. 
The two tests can be generalized to Denjoy domains in R n+l. Benedieks showed 

in [Be] that the condition for the origin to split into a pair of minimal points is that  

([_ ~(t) dt < cx~. 
1,1) n [tl n 

The corresponding condition for the existence of pO+ turns out to be that  

f _  ~(t) 
[tl2,~+-----ydt < oc. 

1,1) n 

(2) We now (briefly) modify an example of [Ch] showing what the integral test 
means if the holes in OD are highly regular. 
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Take D = C \ ( e i ' ~ R + U ( R \ U m ( ( 1 - a m ) 2  - ~ ,  2-m)) .  Then we claim that  

fo I  o(t) < oo. t~r/c~+~/--~_c~)+ 1 ~ < OC ~=~ 
m 

This follows from these observations 
let h2-mh (a) ~0(t)_<c~0((1--~ ,~j j, t e ( ( 1 - - a , ~ ) 2 - m , 2 - m ) ,  

(b) te((1- am)2 -m, (1--�88 
(c) 7/0((1- ! a  ~ 2 - m ~ - a  where -- means tha t  there is a two-sided inequality 2 m /  / - -  m ,  

between the two quantities. 
These follow from boundary Harnack, Harnack and conformal mapping, respec- 
tively. 

Thus, 

d•O 1 ~ o ( t )  []~ ~ a m  .d~m 2 - m  

t~/~+~/(2~-~)+1 -~ = E ((1--am)2--m)~/~+~/(2~--~) +1 

This proves the claim. 
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