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Removability theorems for
solutions of degenerate
elliptic partial differential equations

Pekka Koskela and Olli Martio

1. Introduction

Removable singularities for Hoélder continuous harmonic functions are com-
pletely known, see [C1], [Cq, p. 91] and [KW].

Theorem A. Let () be an open set in R™ and let E be a relatively closed subset
of Q. Then E is removable for harmonic functions of Q\ E which are locally Holder
continuous in @ with exponent 0<a<1 if and only if the (n—2+a)-dimensional
Hausdorff measure of E is zero.

We recall that a function u: 2—R is said to be locally Hélder continuous in
with exponent 0<a<1 if for each compact subset K of {2 there is M <oo such that

(1.1) |u(z)—u(y)| < Mlz—y|*

for all z and y in K.

In this paper we consider an analogous question for solutions of second order
degenerate elliptic partial differential equations. For linear equations we refer the
reader to [HP]. We call a function u .A-harmonic if u is a continuous weak solution
of the equation

(1.2) div A(z, Vu(z))=0

with |A(z, &)|=|¢|P~!, p>1. For the exact requirements on the mapping A we refer
the reader to Section 3. Here we point out that the prototype of equation (1.2) is
the p-harmonic equation

(1.3) div(|Vu[P~2Vu) =0.
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Since quasiconformal mappings do not preserve any Hausdorff dimension s in
the range 0<s<n and since for p=n equations (1.2) have a quasiconformal invari-
ance property, see [R, p. 146], [HKM, Ch. 14], removability theorems for .4-harmonic
functions seem to be problematic in terms of the Hausdorff measure. However, us-
ing a concept somewhat more restrictive than the Hausdorff dimension and closely
related to the Minkowski dimension we establish a result similar to Theorem A
for A-harmonic functions. For the use of the Minkowski content in the study of
removable singularities for solutions of linear equations with restricted growth see
[B} and [L]. It is remarkable that the removability depends only on « and p and not
on the structure of a particular mapping .A.

By an exhaustion (K;) of ECR™ we mean an increasing sequence of compact
sets K; such that | JK;=F.

Theorem B. Let QCR"™ be open and let E be a relatively closed subset of Q2.
If for some ezhaustion (K;) of E

(1.4.1) / d(z, K:)P@= dm(z) < oo,
{0<d(z,K;)<1}

(142) limint PH0<U@K) <r})

r—0 ’r‘b

(1.4)

=0,

b=p—a(p-1), then E is removable for A-harmonic functions of Q\E which are
locally Holder continuous in Q) with exponent 0<a<1.

For certain regular sets K, for example for self-similar sets, condition (1.4) for
p=2 is equivalent to H" 27%(K;)=0, and hence for these sets the sufficiency part
of Theorem A follows from Theorem B. In particular, (1.4) holds if

(15) / d(z, K;) " dm(z) <co, b=p—afp—1),
{0<d(z,K;)<1}

which is true, for example, if the Minkowski dimension dimp,(K;) of K; is strictly
less than n—p+a(p—1), see Section 2. Theorem B is a consequence of a stronger
result, where the Holder continuity is studied in the set Q\ E only. We say that a
function u: @— R belongs to locLip, (Q?), 0<a <1, if there exists M <oo such that
for each € and each y with |z—y|<d(z,d0)/2 we have

(1.6) |u(z) —u(y)| < Miz—y|*

For the properties of the class locLip,{?) see [GM]. We remark that a function v,
locally Holder continuous with exponent o in , is always in locLip,(G) for any
open set GCCS). Since the A-harmonicity is a local property, Theorem B is a
consequence of the following result, which for a=1 can also be deduced from [HK,
Corollary 4.5].
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Theorem C. Suppose that E satisfies (1.4) for b=p—a(p—1). Then E is
removable for A-harmonic functions of Q\ E in the class locLip, (Q\ E).

In fact, Theorem C holds for A-superharmonic functions. This is Theorem E in
Section 3. Note that there is no condition for the smoothness of an A-superharmonic
function u: O\ E—R on the set E in Theorem E. For removability results of ordinary
superharmonic functions we refer the reader to [KW]. Theorem C leads to interesting
non-smoothness results for .4-superharmonic functions for certain values of p, see
Theorems F and G in Section 4.

We show by an example in Section 4 that Theorem C is essentially sharp. The
relations between the Minkowski and the Hausdorfl dimension of the set E and
condition (1.4) are explained in Section 2.

The limiting case =0 in Theorem B, or in Theorem C, deserves a special
attention. This case corresponds to locally bounded .A-harmonic functions and it is
well known that for locally bounded functions u: Q— R, which are A-harmonic in
Q\E, F is removable if and only if E is of p-capacity zero ([HKM, Theorem 7.36]).
The next theorem extends this result.

Theorem D. Suppose that u is A-harmonic in Q\E and that u belongs to
BMO(Q\E). If E satisfies (1.4) with a=0, then u extends to a function A-harmonic
in Q.

Take notice that for a=0, (1.4.2) follows from (1.4.1). The proof of Theorem D
is given in Section 5.

2. Condition (1.4)

In this short section we study condition (1.4).

Let K be a closed set in R™. In the well known Whitney decomposition, see [St],
R"™\K is represented as a union of non-overlapping closed cubes @ with edge length
UQ) equal to 27%, k€Z, and d(Q, K)/ dia(Q) €[1,4]. We let Nj be the number of
those cubes @ with [(Q)=27%; we write Q¥, i=1, ..., Ny, for the collection of these
cubes.

If ACR™ and r>0, then we let A(r) denote the open set A+ B(r), i.e.

A(r)=A+B(r)= U B(z,r)
TEA

is the r-inflation of A.
The next lemma relates (1.4.1) to the Whitney decomposition of R*\ K.
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2.1. Lemma. Let y<0 and j€Z. Then

(2.2) / d(z, K)" dm(z) > ¢ Y  Np2~k0tn)
K(c2-9)\K k=j

where c=5+/n and

(2.3) / d(z, K)" dm(z) <) N2 FOH),
K(2-9)\K

k=j
Proof. First note that

d(QF, K) <4dia(QF) =4y/n27*,

and hence the interior of each Q¥, k>j, i=1,..., N, lies in K(c277)\ K. For each
z€QF we have

d(z, K) < dia(Q¥)+d(QF, K) < c27%,
and thus we obtain

Ny

3 /Q e, K)am(z)

This is inequality (2.2). The proof of (2.3) is completely analogous and left to the
reader.

For ACR"™ we let H5(A) denote the s-dimensional Hausdorff measure of A;
dim g (A) denotes the Hausdorff dimension of A. For >0 we set

m(A(r))

yr’lL‘-‘S

M:(A,r)=

and call this quantity the s-dimensional Minkowski precontent of A. Next, the
Minkowski dimension of A is '

dimps(A) =inf{ s:limsup M,(4,7) <00},

r—0

and we set AT
M,(A) =liminf m(A(r\A4)
r—0 rn—s
Note that M (K;)=0 is the same as (1.4.2) for b=n—s.
Clearly, dimpg(A)<dimps(A); the converse holds for certain regular sets,

cf [MV, Section 4].
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2.4. Lemma. Suppose that K is a compact subset of R™ and that

(2.5) M (K)=0.
If s<n—1, then
(2.6) limi(r)lst(K,r):HS(K)zO.

In particular, for s<n—1, (2.5) implies H"~}(K)=0.

Proof. We first show that for s<n—1, (2.5) implies m(K)=0. For this we may
assume that s=n—1. By the Brunn-Minkowski inequality [F, Corollary 3.2.42,
p- 27§]

m(K) < e(n)[m(K (r)\K)/r]*/ ("=
and hence (2.5) implies that m(K)=0.

Thus we obtain for s<n—1 and 0<r

m(K(r)) _ m(K(r)\K)

rn—s T-n—s

Then [MV, Lemma 3.1] implies liminf,_,o Hs(K,r)=0, where

Hy(K,r) :inf{krs K C ij B(xi,r)}.

=1
This clearly yields H*(K)=0. The lemma follows.

2.7. Remarks.

(a) For compact sets K, H*(K)=0 does not, in general, imply that M (K)=0.
However, if K is sufficiently regular, then H*(K)=0 implies the stronger condition
lim sup,._,y M;(K,r)=0, see [MV, Section 4].

(b) Let v<0 and suppose that

/ d(z, KY'dm(z) < co.
KQ\K

Then M, (K)=0, where s=n+. Hence (1.5) yields (1.4). Moreover, (1.4.1) implies
that M (K;)=0, where s=n—p(1—a). This is weaker than (1.4.2). Conversely, one
can construct Cantor sets for which (1.4.2) is satisfied but (1.4.1) fails.

(¢) If dimp(K)=A<n-—1, then

/ d(z, K)"dm(z) < oo
K()\K

for y>A—mn; this follows from [MV, Theorem 3.12] and Lemma 2.1. In particular,
if K is a self-similar fractal set with dimg(K)<n—p+p(1—a), then condition (1.4)
holds. For this result see [MV, Section 4].



344 Pekka Koskela and Olli Martio

3. A-supersolutions and proofs for Theorems B and C

We consider mappings A:R"™ xR™—R" which satisfy the following assump-
tions for some p>1 and 0< G, <fFs:

(a) the mapping z+— A(z, ) is measurable for all £€R"™ and the mapping &
A(z, &) is continuous for a.e. zeR"™;

for all {eR™ and a.e. zeR™

(b) Alz,&)-£2B1[¢[7;

(©) 1A &)|<BalelP;

(d) (A(@,&)—Alz,&2)) (61— &2)>0 whenever £ #&; and

(e) Az, A\)=|A\P7INA(z, £) for AER, A#0.
The constant p is always associated with the mapping A as in (b) and (c), and we
write e4=0/01.

Let Q2 be an open set in R™. A function ue C(Q)NWLP(Q) is called A-harmonic

loc

if u is a weak solution of (1.2), i.e. if for all ¥ €C§°(Q2)

(3.1) /Q Az, Vu(z))-Vi(z) dm(z) = 0.

It is important to notice that continuity is superfluous in the definition of an A-
harmonic function. More precisely, if a function u€ W.P(Q) satisfies (3.1), then
after a change in a set of measure zero u is A-harmonic in Q; see [S] or [HKM].

A lower semicontinuous function v: @—RU{oo} is A-superharmonic in Q if for
all domains DCC and for all functions u€C(D), A-harmonic in D, the condition
v>u in 8D yields v>u in D and if v#0o0 in every component of Q. If A(z, &)=
&, ie. if we consider the ordinary Laplace equation Au=0, then A-harmonicity
and A-superharmonicity reduces to ordinary harmonicity and superharmonicity,
respectively.

For our removability results a solution class between A-harmonic and .A-super-
harmonic functions is of importance. A function v€W,2P(Q) is an .A-supersolution
of (1.2) if

(3.2) /Q Az, Vu(z))-Vi(z) dm(z) > 0

for all non-negative ¢y €C§°(2). Then every A-supersolution is .A-superharmonic,
after a change in a set of measure zero if necessary. Conversely, every locally
bounded .A-superharmonic function is an A-supersolution. For these results see
[HKM]. In the classical case smooth .A-supersolutions are functions v€C?(2) with
Av<0in Q.

The following is a key lemma.
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3.3. Lemma. Let Q be an open set in R™ and let E be a relatively closed
subset of Q. Suppose that u is an A-supersolution in Q\ E, and that for some a<n

(34) /Q [Vul? dm < ¢; dia(Q)®

for each cube Q in a Whitney decomposition of Q\ E. If for some ezhaustion (K;)
of E

(3.5)

{ Jx.nx, 4@ Ki)*~" dm(z) < oo,
M (K;)=0, s=(a(p—1)+n)/p—1,

then u extends to an A-supersolution in Q.

Proof. Since a<n, s<n-—1, and it follows from Lemma 2.4 and (3.5) that
H""1(E)=0. To prove that u extends to an .A-supersolution in € it suffices to
show that u€ W,5P(Q) and that u satisfies (3.2). Since H"1(E)=0, u is ACL in Q

and in order to show that u€W,;P(€) it thus suffices to show that for each point
xo € FE there is r >0 such that

(3.6) / IVul? dm < oo,
B(zo,r)

To this end, fix zo€E, and let 7=(1/54/n) min{1,d(z¢,00)}. Now we use
the fact that K=FENB(xy,4r) is a compact subset of E and choose K; such that
KCK;. Let Wy be the collection of those cubes in the Whitney decomposition of
Q\ E which meet B=B(z,r). Then each Q€W lies in K;(1)\ K;. Since m(E)=0,
we obtain from (3.4)

/ VulPdm<c; Y dia(@)*<c Y d(Q,E)"
B(zo,T)

QeWo QeWy

c3 d(z, E)* " dm(x
< QZ/Q( )" dm(x)

eEWo

<es / d(z, K;)* " dm(z),
K;(1)\K;

which is finite by assumption (3.5); here cs=cs(c1,a,n)<oo. This shows that ue
Wio ().
Next we consider inequality (3.2); rather sharp estimates are needed for this.

The problem is again local and thus it suffices to show that (3.2) holds whenever
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e C§°(B(zo,7)) is non-negative, zo€ E and r>0 is sufficiently small. Let r, K;,
and Wy be as in the previous consideration and write B=B(zo,7). We let W},
j=1,2,..., be the set of those cubes Q€ W, with 277971(5/n)"1<I(Q)<277, and
we denote their union by [J W;.
Fix a non-negative function ¥ €C§°(B). For j>1 consider the Lipschitz func-
tions
¢; =min{1, max{(277 —d(z, K;))/27771,0}}.

Since ¢;(x)=1 for € K;, the non-negative function 1(1—¢;) is in the Sobolev space
WyP(B\E), cf. [HKM, Ch. 1], and thus it can be used in (3.2) as a non-negative
C§°(B\ E)-function. Now

/B A, V() V(@) dm(z) = [ Alz, Va(e)-V(p1-¢;)) dm

and since u is an A-supersolution in B\ E, the integral I’ is non-negative. It remains
to show that I” —0 as [— oo for some sequence (j;) of positive integers.
To this end, write

I”:/ YA(z, Vu(z))-Vo; dm+/ ¢;A(z, Vu(z)) -V dm
B B
=1+1I.

We estimate the integrals I; and Iy separately. First, |1)|<co for some constant ca,
and hence by the Holder inequality and (3.4)

Li<e 3 /Q |A(z, Vu(2))|[V ;] dm

Qew;

(p—1)/p 1/p
<etn 3 / vupan) - ( / V5P dm

QeW;
<c3 Z dia(Q)*P~1/P97 dia(Q)™/P
QeW;
<32 Z dia(Q)la(p—D+nl/p,
Qew;

here c3=cs3(c1,c2,8,p) and we have also used the fact that |V¢;]<27. Since for
z€QEW;, d(z, E) is bounded from above and from below by a multiple of dia(Q)



Removability theorems for solutions of degenerate elliptic partial differential equations 347

and since 27771 /5<dia(Q)<+/n277 for each Q€W;, we obtain
|| < esv/n Z dia(Q)~1He(p-D+nl/p

QeW;

<egm (U Wj) 9—i(la(p—1)+n]/p—1-n) < CsMs(Ki, 5\/52—1'),

with s=(a(p—1)+n)/p—1 and cy=cq(c1,c2,B2,p,a,n). By Lemma 2.4 and (3.5)
there is a sequence (r;) with

llim Ty = lilm inf Mi(K;,m)=0.

Select for each [ a positive integer j; with 5,/n27% <r;<5,/n27%*1. Then we have
M, (K;,5/n279)<ceMs(K;, 1), and it follows that I, »0 as [—oo.
For the second integral I, we again use the Holder inequality to obtain

(-1)/p p
|I2|§c(/UWj |Vu|pdm) m(UWj)l g
(p—1)/p 1/p
< c(/B |Vul? dm) m(U Wj) ,

where c=c(p, 8, sup [¢|). Since ue WLP(Q) and since m(|J W;)—0 as j— o0, I,—0
as j—o00. Thus I —0, and the proof is complete.

Theorem E. Let E be a relatively closed subset of an open set QCR™. Sup-

pose that u€locLip,(Q\E), 0<a<l, is A-superharmonic in Q\E. If for some
ezhaustion (I;) of E

\p(a—1)
(3.7) Jie.nk, e KPte™? dm(z) < oo,
Ms(Ki) =0, s :n_p+a(p_1)7

then u extends to an A-superharmonic function of Q.

3.8. Remarks.

(1) It follows from the proof that E is removable for .A-supersolutions ue€
locLip, (?\ E) under condition (3.7). In fact, the extended function will be an
A-supersolution in Q.

(2) The proof of Lemma 3.3 and the proof below show that the condition (3.7)
can be replaced by a weaker set of conditions: H" 1(E)=0 and E has an exhaustion
K; such that (1.4.1) holds and

lim jnf TUr/2 <d(2, Ki) <r})

=0
r—0 Tb

for b=p—a(p—1). Theorems B and C also remain valid under these assumptions.
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Proof of Theorem E. Let u€locLip,(€2\ E) be A-superharmonic in Q\ E. Since
u is continuous in Q\ E and hence locally bounded in Q\ E, u is an .A-supersolution
in Q\E [HKM, Corollary 7.19]. Let @ be a cube in a Whitney decomposition of
Q\E. Then %QCCQ\E and we pick a point ye%Q such that

u(y) = min u.
2Q

The Caccioppoli type estimate [HKM, Lemma 3.53] for positive .A-supersolu-
tions v in the interior of %Q reads

(3.9) / lel”v_l_E]nV’decz/ VP17 | VP dm,
3Q 30

2 2

where £>0, c;=(pe/e)? and neC§°(3Q). Choosing e=(p—1)/2, n=1 on Q and
|Vn|<4/1(Q) and letting v=u—u(y)+6, 6>0, we obtain from (3.9)

(3.10) /Q |Vul|P dm < crg%x(u—u(y)—l—é)p dia(@)" 77,

where c=c(p, n, e 4); note that

vTITE> n;ax(u—u(y)+6)_1_5.

3Q

Since u€locLip,(Q\ E), it follows from [GM, Theorem 2.13] that

(3.11) rg%X(u—U(y)) < M dia(Q)%,

where My =M;(M,a) and M is the constant in (1.6). Now 6§—0 in (3.10) together
with (3.11) yields

/ |VulP dm < cdia(Q)*P+™P,
Q

where c=c(p,n,eq, M, ). Since no non-empty compact set satisfies (3.7) for
a<(p—n)/(p—1), we may assume that a>(p—n)/(p—1), and in particular that
0<ap+n—p<n. Hence, letting a=ap+n—p, we obtain from Lemma 3.3 that u

extends to an .A-supersolution of Q; note that
-1

as required. Finally, every A-supersolution can be made A-superharmonic after a
redefinition on a set of measure zero [HKM, Corollary 7.17]. The proof is complete.
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Proof of Theorem C. Since both w and —u are A-superharmonic in Q\ E, it
follows from Theorem E that they extend to .A-superharmonic functions u* and
(—u)*, respectively, of Q. Since m(E)=0, [HKM, Theorem 3.66] yields for each
zel

1 1
‘(o) = lim —— “dm= lim — e dm.
u (m) Tl_I)I(l) m(B(Z',T)) /B(z,r) wam Tl_{r(l) m(B(x,r)) /B(””") Lo

The same applies to (—u)* and hence u*=—(—u)* which means that u* is both
A-superharmonic and .A-subharmonic in . Consequently «* is A4-harmonic and
the theorem follows.

Proof of Theorem B. This is a direct consequence of Theorem C; note that
if u is locally Holder continuous in ) with exponent 0<a <1, then for each open
Dcc, u belongs to locLip,(D\E).

4. Examples and non-smoothness results

Our non-smoothness results imply, for example, that if u:Q—R is A-super-
harmonic in Q and .A-harmonic in Q\ E and if E is thin, then v cannot be smooth
unless v is A-harmonic in Q. The first theorem is a consequence of Theorem C.

Theorem F. Suppose that u is locally Hélder continuous with exponent o,
O<a<l, in Q and let ECQ satisfy (1.5) for some y<-1. If u is A-harmonic in
QO\E, then either u is A-harmonic in Q or a<(p+7)/(p—1).

Proof. Since u belongs to locLip,(D\E) for each open DCC(Q, Theorem C
yields that u is A-harmonic in  provided that a>(p+v)/(p—1).

If p>n, then even the set E={zo} is of interest.

Theorem G. Suppose that u is locally Hélder continuous with exponent o,
0<a<l in Q and let A satisfy (a)—(e) for p>n. If u is A-harmonic in Q\{zo},
then either u is A-harmonic in Q or a<(p—n)/(p—1).

Proof. Suppose that u is not A-harmonic in 2. Fix v, —1>y>-n. Now
E={x,} satisfies (1.5) and hence it follows from Theorem F that a<(p+7)/(p—1).
Letting y— —n we obtain a<(p—n)/(p—1) as desired.

The function u(z)=—|z|®~™/(-1 p>n is A-harmonic (p-harmonic),

Alz, ) =I¢lP%,
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in R™\ {0}, but  is not .A-harmonic in R™ (u is A-superharmonic). Since u is Hélder
continuous with exponent a=(p—n)/(p—1) in R", Theorem G is sharp. Note
that the upper bound (p—n)/(p—1) in Theorem G is independent of a particular
mapping A, i.e. it does not depend on e4. A careful study of isolated singularities
of a p-harmonic function in the plane is made in [M].

Next we present an example which shows that Theorem C is essentially sharp.

4.1. Ezample. For each p>1 and 0<a <1 there is a compact set K of the unit
ball B of R with dimg (K)=0 and with

(4.2) /1{(1)\1{ d(z, K)"dm(z) < oo

for some y<0 and an A-harmonic function (p-harmonic), A(z,&)=|¢[P~2¢, which
does not extend to an A-harmonic function of B.

In fact, our construction shows that for 1<p<n one may take any number
¥, v>—(1—a)(p—1)/(n—1). Fix 1<p<n and 0<a<1. Then the function v(z)=
|z|(P=m)/(P=1) is A-harmonic in B\{0}. Set

(4.3) R;=B(279\B(2777), j=1,2,...
Select for each j a set K; consisting of N; points in R; with

(n—1)

(4.4) d(z, K;)<|z|*, a= m,

for each z€R; and

_ n(n—1) .
(p-1)(1~a) 7

this follows, for example, from a packing argument via the Besicovitch covering
theorem. Define

(4.5) N;<c(n)2¥, b

(4.6) K={0}u G K;

j=1

and let u be the restriction of v to B\K. Then K is a compact, countable subset
of B and, in particular, dimg(K)=0. Moreover, u is A-harmonic in B\ K with

(4.7) |Vu(z)| < ¢q || =™/ (p=1)
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where ¢c1=(p—n)/(p—1), and since

(n—1)
(p-1)(1-a)’

see (4.3), (4.5) and (4.6), the mean value theorem shows that u€locLip,(B\K).

Since u does not extend to an A-harmonic function of B, it suffices to verify
that (4.2) holds for some v<0. Clearly, it is enough to show that there is A>0 such
that

dlz, K)<|z]*, a=

m(K(r)) < car;

then (4.2) holds for any v>~\. Fix 0<r<1. We may assume that 7=2""™ for some
positive integer m. Now

K(r)cB@ U () K27,

j<ma
where a=(1—a)(p—1)/(n—1). Thus (4.5) gives
m(K (1)) < cg27 ™" = cor?,

here cy=cy(n) and A=n(l—a)(p—1)/(n—1). The claim follows.
The construction for p>n is similar and left to the reader (for p=n begin with
v(z)=log(1/|z|)); see also the comments following Theorem G.

5. Removability in the BMO class

A function ueL{ () is of bounded mean oscillation in § if

l[ull« = sup —1—/ |lu—ugl dm < oo;
“Tocam(@ Jo' !

here @ is any cube and ug is the average of u over @, i.e.

1
uQ-—m—(Q—)/Qudm.

If |lullx<oco, then we say that u€ BMO(f2). It is a well known consequence of the
John-Nirenberg lemma that

szz(m%s/Q'“‘“Q‘dm)l/pﬁﬁ”““*
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holds for any ©ue BMO(Q) for all p>1.

Proof of Theorem D. Let u€ BMO(Q\E) be A-harmonic in Q\E. If Q is a
cube in a Whitney decomposition of Q\ E, then the standard Caccioppoli estimate
yields

(5.1) | vt anse [ ju-ugPivyfam
2Q 2Q

for any ¥ €C§°(2Q), where ¢ depends only on p, e4, and n (see [S, pp. 255-261],
[BI, p. 290], [GLM], [HKM]). Choosing ¢ such that =1 on Q and |V¢|<2/(Q)
we obtain from (5.1)

/|Vu|pdm§cll(Q)_p/ ]u—umlpdmSC’lm(Q)("_p)/"Hu“*.
Q 2Q

By Lemma 3.3, u extends to an 4-supersolution of {2 and the same reasoning applied
to —u yields that —u extends to an .A-supersolution in Q. This means that u extends
to an A-harmonic function of Q, as required.

Theorem E is sharp at least for the borderline case p=n. Then only E=0
satisfies (1.4) for a=0. On the other hand, the function u(z)=log(1/|z]) is A-
harmonic (n-harmonic), A(z, £)=[¢|*~2¢, in R™\{0} and ue BMO(R") ([RR, p. 5]),
but u is not .A-harmonic in R™.

Added in proof. T. Kilpeldinen (Holder continuity of solutions to quasilinear
elliptic equations involving measures) has constructed examples showing that the
exponent b in (1.5) is sharp.
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