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Removability theorems for 
solutions of degenerate 

elliptic partial differential equations 
Pekka Koskela and Olli Martio 

1. I n t r o d u c t i o n  

Removable singularities for H51der continuous harmonic functions are com- 
pletely known, see [C1], [C2, p. 91] and [KW]. 

T h e o r e m  A. Let f~ be an open set in R n and let E be a relatively closed subset 

of fL Then E is removable for harmonic functions of f~\ E which are locally HSlder 
continuous in f~ with exponent 0<(~<1 if and only if  the (n-2+c~)-dimensional 
Hausdorff measure of E is zero. 

We recall that  a function u: ft--~R is said to be locally HSlder continuous in ft 
with exponent 0 < a < 1 if for each compact  subset K of ft there is M <  ce such that  

(1.1) _< Mlx-yl 

for all x and y in K.  

In this paper  we consider an analogous question for solutions of second order 
degenerate elliptic partial  differential equations. For linear equations we refer the 

reader to [HP]. We call a function u A-harmonic if u is a continuous weak solution 
of the equation 

(1.2) d ivA(x ,  V u ( x ) ) = O  

with IA(x, ~)1 ~-" I~] p - l ,  P >  1. For the exact requirements on the mapping A we refer 
the reader to Section 3. Here we point out that  the prototype of equation (1.2) is 
the p-harmonic equation 

(1.3) div(lVulP- 2Vu) = O. 
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Since quasiconformal mappings do not preserve any Hausdorff dimension s in 
the range 0 < s < n  and since for p=n equations (1.2) have a quasiconformal invari- 
ance property, see JR, p. 146], [HKM, Ch. 14], removability theorems for fit-harmonic 
functions seem to be problematic in terms of the Hausdorff measure. However, us- 
ing a concept somewhat more restrictive than the Hausdorff dimension and closely 
related to the Minkowski dimension we establish a result similar to Theorem A 
for fit-harmonic functions. For the use of the Minkowski content in the study of 
removable singularities for solutions of linear equations with restricted growth see 
[B] and [L]. It is remarkable that the removability depends only on a and p and not 
on the structure of a particular mapping fit. 

By an exhaustion (Ki) of E c R  '~ we mean an increasing sequence of compact 
sets Ki such that  [.J Ki=E. 

T h e o r e m  B.  Let ~ c R  n be open and let E be a relatively closed subset of ~. 
If for some exhaustion (Ki) orE 

(1.4.1) d(x, Ki) p(~-I) din(x) < oc, 
(1.4) ~{0<d(~,K~)<l} 

(1.4.2) liminf~__.0 m({0 < d(X,r b gi) < r}) = 0, 

b--p-c~(p-1), then E is removable for fit-harmonic functions of ~ \ E  which are 
locally HSlder continuous in ~ with exponent 0 < ~ < 1. 

For certain regular sets Ki, for example for self-similar sets, condition (1.4) for 
p=2  is equivalent to  Hn-2+a(Ki)~-O, and hence for these sets the sufficiency part 
of Theorem A follows from Theorem B. In particular, (1.4) holds if 

(1.5) f d(x, Ki)-b dm(x)< oo, b--p-c~(p-1), 
J( O~d(x,Ki).~l} 

which is true, for example, if the Minkowski dimension dimM(Ki) of Ki is strictly 
less than n-p+a(p-1) ,  see Section 2. Theorem B is a consequence of a stronger 
result, where the HSlder continuity is studied in the set ~ \ E  only. We say that a 
function u: ~--~R belongs to locLip~(~), 0<a_<l ,  if there exists M < c c  such that  
for each x C ~  and each y with Ix-yl <d(x, 0 ~ ) / 2  we have 

(1.6) iu(x)-u(y)l < MIx-y l  ~. 

For the properties of the class locLip~(~) see [GM]. We remark that  a function u, 
locally HSlder continuous with exponent c~ in ~, is always in locLip~(G) for any 
open set GCC~. Since the fit-harmonicity is a local property, Theorem B is a 
consequence of the following result, which for a = l  can also be deduced from [HK, 
Corollary 4.5]. 
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T h e o r e m  C. Suppose that E satisfies (1.4) for b = p - a ( p - 1 ) .  Then E is 
removable for A-harmonic functions of f~\ E in the class l o c L i p , ( f l \ E ) .  

In fact, Theorem C holds for A-superharmonic functions. This is Theorem E in 
Section 3. Note that  there is no condition for the smoothness of an A-superharmonic 
function u: ~ \ E - ~ R  on the set E in Theorem E. For removability results of ordinary 
superharmonic functions we refer the reader to [KW]. Theorem C leads to interesting 
non-smoothness results for M-superharmonic functions for certain values of p, see 
Theorems F and G in Section 4. 

We show by an example in Section 4 that  Theorem C is essentially sharp. The 
relations between the Minkowski and the Hausdorff dimension of the set E and 
condition (1.4) are explained in Section 2. 

The limiting case a = 0  in Theorem B, or in Theorem C, deserves a special 
attention. This case corresponds to locally bounded A-harmonic functions and it is 
well known that  for locally bounded functions u: ~ - ~ R ,  which are A-harmonic in 
f l \ E ,  E is removable if and only if E is of p-capacity zero ([HKM, Theorem 7.36]). 
The next theorem extends this result. 

T h e o r e m  D.  Suppose that u is A-harmonic in ~ \ E and that u belongs to 
B M O ( ~ \ E ) .  IrE satisfies (1.4) with a = 0 ,  then u extends to a function A-harmonic 
in ~. 

Take notice that for a = 0 ,  (1.4.2) follows from (1.4.1). The proof of Theorem D 
is given in Section 5. 

2. C o n d i t i o n  (1.4) 

In this short section we study condition (1.4). 

Let K be a closed set in R n. In the well known Whitney decomposition, see [St], 
R '~ \ K  is represented as a union of non-overlapping closed cubes Q with edge length 
l(Q) equal to 2 -k,  k e Z ,  and d(Q,g) /dia(Q) c[1,4]. We let Nk be the number of 
those cubes Q with l (Q)=2-k ;  we write Q/k, i=1 ,  ..., Nk, for the collection of these 
cubes. 

If A c R  ~ and r>0 ,  then we let A(r) denote the open set A+B(r) ,  i.e. 

A ( r ) = A + B ( r ) =  U B(x,r)  
xEA 

is the r-inflation of A. 

The next lemma relates (1.4.1) to the Whitney decomposition of R ~ \ K .  
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2.1.  L e m m a .  Let ~/<O and jEZ. Then 
(3O 

(2.2) /K d(x, K) 7 din(x) > c "y ~ Nk2 -k(~+n) 
( c 2 - J ) \ g  k = j  

where c = h v ~  and 
o o  

(2.3) /K d(x, K) "y din(x) <_ Z Nk2-k(~+n)' 
(2-J)\K k=j 

Proof. First note that  

d k (Qi,  K)  < 4 dia(Q/k) = 4vf~2 -k, 

and hence the interior of each Q~, k>j, i=1 ,  ..., Ark, lies in K(c2-J)\K. For each 

x E Q~ we have 
d(x, K) < dia(Q~)+d(Vki , K) < c2 -k, 

and thus we obtain 
o o  N k  

(c2-J) \K k = j  = 

> c 7 ~ Nk2 -k(~+n). 
k = j  

This is inequality (2.2). The proof of (2.3) is completely analogous and left to the 
reader. 

For A c R  n we let H~(A) denote the s-dimensional Hausdorff measure of A; 
dimH(A) denotes the Hausdorff dimension of A. For r > 0  we set 

M~(A, r) - m(A(r)) 
r n - - s  

and call this quantity the s-dimensional Minkowski precontent of A. Next, the 
Minkowski dimension of A is 

dimM (A) -- inf{ s: lim sup Ms (A, r) < oc }, 
r--~0 

and we set 
M~(A) -- l iminf m(A(r)\A) 

r---*O r n -  s 

Note that M s ( K i ) = 0  is the same as (1.4.2) for b=n-s.  
Clearly, dimH(A)<dimM(A); the converse holds for certain regular sets, 

cf [MV, Section 4]. 
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2.4. L e m m a .  

(2.5) 

If s<_n-1, then 

(2.6) 

Suppose that K is a compact subset of R n and that 

M s ( K  ) =0.  

lim inf Ms (K, r) = H s (K) ---- 0. 
r---~0 

In particular, for s<_n-1, (2.5) implies Hn-I(K)=O. 

Proof. We first show that for s<_n-1, (2.5) implies rn(K)=0.  For this we may 
assume that s=n-1 .  By the Brunn Minkowski inequality IF, Corollary 3.2.42, 
p. 278] 

re(K) ~_ c(n)[m(K(r)\K)/r] n/(n-1) 

and hence (2.5) implies that r e (K)=0 .  
Thus we obtain for s ~ n - 1  and O<r 

m(K(r)) _ m(K(r ) \K)  
r n - s  r n - s  

Then [MV, Lemma 3.1] implies liminf~__~o Hs(K, r)--0, where 

k 

i = 1  

This clearly yields H~(K)=0. The lemma follows. 

2.7. Remarks. 
(a) For compact sets K, g ' ( g ) = 0  does not, in general, imply that M,(K)=0. 

However, if K is sufficiently regular, then Hs(K)=O implies the stronger condition 
limsup~__~ 0 Ms(K,r)=O, see [MV, Section 4]. 

(b) Let 7 < 0  and suppose that 

K(1)\K d(x, K)'rdm(x) < c~. 

Then M s ( K ) - - 0  , where s=n+7. Hence (1.5) yields (1.4). Moreover, (1.4.1) implies 
that Ms(Ki )=O , where s = n - p ( 1 - a ) .  This is weaker than (1.4.2). Conversely, one 
can construct Cantor sets for which (1.4.2) is satisfied but (1.4.1) fails. 

(c) If dimM(K)=)~<_n-1, then 

d(x, K)~dm(x) 
(1)\K 

for 7 > A - n ;  this follows from [MV, Theorem 3.12] and Lemma 2.1. In particular, 
if K is a self-similar fractal set with d i m n ( K ) < n - p + p ( 1 - a ) ,  then condition (1.4) 
holds. For this result see [MV, Section 4]. 



344 Pekka Koskela  and  Olli Mar t io  

3. ~4-supersolutions and proofs for T h e o r e m s  B a n d  C 

We consider mappings fit: R n x Rn--~R n which satisfy the following assump- 

tions for some p > l  and 0<fi1_<~2: 
(a) the mapping x~--~A(x, ~) is measurable for all ~ E R  n and the mapping ~-~ 

A(x, ~) is continuous for a.e. x e R n ;  
for all ~ E R  n and a.e. xER n 
(b) A(x,~).~>_311~IP; 
(c) IA(x,~)l<_~21~lp-~; 
(d) (A(x, { 1 ) - A ( x ,  {2))' (~1 -{2)  >0 whenever {1 #{2; and 
(e) A(x, A{)= IAIP-2AA(x, {) for AER, A#0. 

The constant p is always associated with the mapping fit as in (b) and (c), and we 

write eA=fl2/~l. 
Let ~ be an open set in R ~. A function ueC(~)MWllo'Pr is called A-harmonic 

if u is a weak solution of (1.2), i.e. if for all C E C ~ ( f l )  

(3.1) /~ A(x, Vu(x) ) .Vr  din(x) = O. 

It is important to notice that continuity is superfluous in the definition of an ,4- 
1,p harmonic function. More precisely, if a function UEWlo c (fl) satisfies (3.1), then 

after a change in a set of measure zero u is A-harmonic in ~; see [S] or [HKM]. 
A lower semicontinuous function v: fi--~RU{cc} is A-superharmonic in ~ if for 

all domains D C C ~  and for all functions uEC(D ) ,  A-harmonic in D, the condition 
v>u in OD yields v>u in D and if v#c~  in every component of ~. If A ( x , { ) =  
{, i.e. if we consider the ordinary Laplace equation Au=0 ,  then A-harmonicity 
and A-superharmonicity reduces to ordinary harmonicity and superharmonicity, 
respectively. 

For our removability results a solution class between A-harmonic and A-super- 
1,p harmonic functions is of importance. A function v C Wlo c (~) is an A-supersolution 

of (1.2) if 

(3.2) ~ A(x, Vu(x) ) .Vr  dm(x) >_ 0 

for all non-negative C E C ~ ( ~ ) .  Then every A-supersolution is A-superharmonic, 
after a change in a set of measure zero if necessary. Conversely, every locally 
bounded A-superharmonic function is an A-supersolution. For these results see 
[HKM]. In the classical case smooth A-supersolutions are functions v EC2(~) with 
A v ~ 0  in ~. 

The following is a key lemma. 
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3.3. L e m m a .  Let ~ be an open set in R n and let E be a relatively closed 
subset of ~. Suppose that u is an ~A-supersolution in ~ \  E, and that for some a<n 

(3.4) /Q ]Vu]P dm <_ cl dia(Q) a 

for each cube Q in a Whitney decomposition of ~ \ E .  If  for some exhaustion (Ki) 
orE 

] fKi(1)\   d(x, Ki) din(x) < 
(3.5) 

t Ms(Ki  ) --0, s - -  ( a (p -1 )+n) /p -1 ,  

then u extends to an A-supersolution in ~. 

Proof. Since a<_n, s<_n-1, and it follows from Lemma 2.4 and (3.5) that  
H n - I ( E ) - - 0 .  To prove that  u extends to an A-supersolution in gt it suffices to 
show that uEWllo'P(~) and that  u satisfies (3.2). Since Hn-I(E)=O, u is ACL in 

1,p and in order to show that  uEWlo c (~t) it thus suffices to show that  for each point 
x0 C E there is r > 0 such that  

(3.6) /B(xo,r) ]VulP dm< ~ .  

To this end, fix xoeE,  and let r=(1/hv/-~)min{1, d(xo,O~)}. Now we use 
the fact that  K=ENB(xo ,4r )  is a compact subset of E and choose Ki such that  
K C Ki. Let W0 be the collection of those cubes in the Whitney decomposition of 
~ \ E  which meet B=B(xo,  r). Then each QEWo lies in K i (1 ) \K i .  Since r e (E )=0 ,  
we obtain from (3.4) 

JB IVul p dm < E dia(Q)~ -< E d(Q,E) ~ Cl C2 
(xo,r) QCWo Q~Wo 

~--C3 E f d(x'S)a-ndm(x) 
Q~Wo J Q 

<_ c3 [ d(x, Ki) ~-" din(x), 
JK 

which is finite by assumption (3.5); here c3=c3(cl,a,n)<c~. This shows that  u e  
1,p W or (a). 

Next we consider inequality (3.2); rather sharp estimates are needed for this. 
The problem is again local and thus it suffices to show that  (3.2) holds whenever 
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CEC~(B(xo,r)) is non-negative, xoEE and r > 0  is sufficiently small. Let r, Ki, 
and W0 be as in the previous consideration and write B=B(xo,r). We let Wj, 
j = l ,  2, ..., be the set of those cubes QEWo with 2-J-l(bv/-n)-l<_l(Q)<2 -j, and 
we denote their union by [.J Wj. 

Fix a non-negative function r E C ~  (B). For j > 1 consider the Lipschitz func- 
tions 

Cj ---- min{1, max{(2 - j  -d(x, Ki))/2 -j-1 , 0}}. 

Since C j (x )= l  for xEK~, the non-negative function r 1 6 2  is in the Sobolev space 
WI'p(B\E), cf. [HKM, Ch. 1], and thus it can be used in (3.2) as a non-negative 
C ~  (B \ E)-function. Now 

JB A(x'Vu(x))'Vr IS A(x, Vu(x)).V(~b(1-r \E 
+./~ A(x, Vu(x)) .V(r162 dm 

-_ It+I ", 

and since u is an A-supersolution in B\E, the integral F is non-negative. It remains 
to show that  I ' - ~ 0  as l--*~ for some sequence (jz) of positive integers. 

To this end, write 

i"= f. cA(x, vu(x)) v j m+ f.  jA(x, vu(x)).vr 
= I1+I2. 

We estimate the integrals I1 and I2 separately. First, Ir for some constant c2, 
and hence by the Hhlder inequality and (3.4) 

IIll _~c2 E /Q IA(x'Vu(x))llvcj [dm 
Qew~ 

~c2~2 ~ ( fQ ]VU]P drn)(P-1)/P (/Q ]VCj]P dm) lip 

<_c3 E dia(Q)a(P-1)/P2J dia(Q)n/P 
QeWj 

~-- c32J E dia(Q)[a(p-1)+n]/P; 
QCW~ 

here c3=c3(cl,C2,~,p) and we have also used the fact t h a t  ]~r  j. Since for 
xeQEWj, d(x, E) is bounded from above and from below by a multiple of dia(Q) 
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and since 2 - j -  1/5 _~ dia(Q) < vfn2-J for each Q E Wj, we obtain 

Jill ~C3v/-~ E dia(Q)-l+[a(p-1)+n]/P 
QeWj 

S C4TFt(Uwj)2--J([a(p--1)+n]/p--I--n) ~e5is(Ki,Sv/-n2-J), 

with s - - (a (p -1 )+n) /p -1  and Ca--C4(Cl,C2,/32,p,a,n). By Lemma 2.4 and (3.5) 
there is a sequence (rl) with 

lim rt -- lim inf Ms ( Ki, rz ) = O. 
l--*oo l--*oo 

Select for each l a positive integer jl with 5v~2  -ix <rl<_5v~2 -jz+l.  Then we have 
Ms(Ki, 5vfn2 -jz )<_c6Ms(Ki, rl), and it follows that  h--~0 as l-~oc. 

For the second integral 12 we again use the HSlder inequality to obtain 

,,.,<_C(/u. IVu,Pdm)(P-i)IPm(UW.)'I" 
\(p-1)/p 

~-~c(S I'iJ]PdT#~ ) m(U NIIp wj) , 

lp where c=c(p, fl, sup [•l). Since uEWlo' ~ (12) and since m(U Wj)--*O as j--+r 
as j--*oc. Thus I " -*0 ,  and the proof is complete. 

T h e o r e m  E. Let E be a relatively closed subset of an open set ~ c R  n. Sup- 
pose that uElocLip~( f l \E) ,  0 < a < 1 ,  is .A-superha~nonic in ~ \ E .  If  for some 
exhaustion (Ki) of E 

fKi(1)\Ki d(x, Ki) p("-I) din(x) < oc, 
(3.7) 

I, Ms(Ki)  = 0 , s = n - p §  

then u extends to an A-superharmonic function of fL 

3.8. Remarks. 
(1) It follows from the proof that  E is removable for ~4-supersolutions uE 

locLip~(f l \E)  under condition (3.7). In fact, the extended function will be an 
M-supersolution in ~. 

(2) The proof of Lemma 3.3 and the proof below show that  the condition (3.7) 
can be replaced by a weaker set of conditions: H ~-1 ( E ) = 0  and E has an exhaustion 
Ki such that  (1.4.1) holds and 

liminf m({r/2 < d(x, Ki) < r}) = 0 
r~0 r b 

for b=p-a (p -1 ) .  Theorems B and C also remain valid under these assumptions. 
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Proof of Theorem E. Let uElocLip~(12\E) be M-superharmonic in ~ \ E .  Since 
u is continuous in ~ t \E  and hence locally bounded in ~t\E,  u is an ,4-supersolution 
in 12\E [HKM, Corollary 7.19]. Let Q be a cube in a Whitney decomposition of 
~t\E.  Then 3 Q c c Q \ E  and we pick a point ye3Q such that  

u(y) ---- m i n  u .  
~Q 

The Caccioppoli type estimate [HKM, Lemma 3.53] for positive A-supersolu- 
tions v in the interior of 3Q reads 

2 

(3.9) ~ Q  IVv[Pv-I-~I~[P dm < c2 ~Q vP--I--e[V?~[ p din, 

where r c2=(pe.a/r p and ~ 6 C ~ ( 3 Q ) .  Choosing r  ~/=1 on Q and 
]V~[<_4/I(Q) and letting v=u-u(y)+5, 5>0, we obtain from (3.9) 

(3.10) JQ IVUl p dm <_ cmax(u-u(y)+5) p dia(Q) n-p, 
~Q 

where c=c(p, n, cA); note that  

v -1-~ > max(u-u(y)+5) -1-~. 
- ~ Q  

Since ue locLip~(f l \E) ,  it follows from [GM, Theorem 2.13] that  

(3.11) maQx(u-u(y) ) <_ M1 dia(Q) ~, 

where MI=MI(M, a) and M is the constant in (1.6). Now 5--*0 in (3.10) together 
with (3.11) yields 

Q ]Vu[ p dm ~ c dia(Q) ~B+'~-p, 

where c=c(p,n, eA, M,a). Since no non-empty compact set satisfies (3.7) for 
a<(p-n) / (p-1) ,  we may assume that  a>(p-n) / (p-1) ,  and in particular that 
O<ap+n-p<n. Hence, letting a=ap+n-p,  we obtain from Lemma 3.3 that  u 
extends to an A-supersolution of fl; note that  

a(p-1)+n 1 n -p+a(p-1 )  
P 

as required. Finally, every .A-supersolution can be made ~4-superharmonic after a 
redefinition on a set of measure zero [HKM, Corollary 7.17]. The proof is complete. 



Removability theorems for solutions of degenerate elliptic partial differential equations 349 

Proof of Theorem C. Since both u and - u  are A-superharmonic in f t \ E ,  it 
follows from Theorem E that  they extend to A-superharmonic functions u* and 
( -u )* ,  respectively, of ft. Since re(E)--0 ,  [HKM, Theorem 3.66] yields for each 

x c E  

lim 1 f u* din= lim 1 f u dm. u*(x) 
r-~o m(B(x,  r)) J.(x,r) ~-~o m(B(x,  r)) J.(x,~) 

The same applies to ( - u )*  and hence u * = - ( - u ) *  which means that  u* is both 
A-superharmonic and A-subharmonic in ft. Consequently u* is A-harmonic and 

the theorem follows. 

Proof of Theorem B. This is a direct consequence of Theorem C; note that  
if u is locally Hhlder continuous in ft with exponent 0 < a < l ,  then for each open 

D c c f t ,  u belongs to locLip~(D\E) .  

4. Examples  and n o n - s m o o t h n e s s  results  

Our non-smoothness results imply, for example, that  if u: ft--*R is A-super- 
harmonic in ft and A-harmonic in ~ \ E  and if E is thin, then u cannot be smooth 
unless u is A-harmonic in ft. The first theorem is a consequence of Theorem C. 

T h e or e m F. Suppose that u is locally Hhlder continuous with exponent ~, 
0<c~<1, in ft and let E C f t  satisfy (1.5) for some ~/<-1.  If u is A-harmonic in 
f t \ E ,  then either u is A-harmonic in ~ or a<(p+~/ ) / (p -1) .  

Proof. Since u belongs to locLip~(D\E)  for each open D c c f t ,  Theorem C 
yields that  u is A-harmonic in ft provided that  c~ >_ (p+~/) /(p-1) .  

If p>n,  then even the set E={x0}  is of interest. 

T h e o r e m  G. Suppose that u is locally Hhlder continuous with exponent (~, 
0 < a < l  in ft and let .4 satisfy (a)-(e) for p>n.  If  u is A-harmonic in f t \{x0},  
then either u is A-harmonic in ft or a < ( p -  n ) / (p -1 )  . 

Proof. Suppose that  u is not A-harmonic in ft. Fix % - l > ~ > - n .  Now 
E={x0}  satisfies (1.5) and hence it follows from Theorem F that  c~< (p+~/)/(p-1).  
Letting ~ - -* -n  we obtain a ~ ( p - n ) / ( p - 1 )  as desired. 

The function u ( x ) = - I x l  (p-n)/(p-1), p>n, is A-harmonic (p-harmonic), 

A(x,  ~) = L~IP-2~, 



350 Pekka Koskela and Olli Martio 

in R n \ {0}, but u is not A-harmonic in R n (u is A-superharmonic). Since u is HSlder 
continuous with exponent a=(p-n)/(p-1) in R ", Theorem G is sharp. Note 
that  the upper bound (p-n)/(p-1) in Theorem G is independent of a particular 
mapping A, i.e. it does not depend on cA. A careful study of isolated singularities 
of a p-harmonic function in the plane is made in [M]. 

Next we present an example which shows that  Theorem C is essentially sharp. 

4.1. Example. For each p>  1 and 0 < a <  1 there is a compact set K of the unit 
ball B of R n with d i m H ( K ) = 0  and with 

(4.2) I d(x, K)'~dm(x) < c o  

JK (1)\K 

for some v<O and an A-harmonic function (p-harmonic), A(x, { )=  I{Ip-2{, which 
does not extend to an A-harmonic function of B. 

In fact, our construction shows that  for l < p < n  one may take any number 
7, ~>-(1-a)(p-1)/(n-1) .  Fix l < p < n  and O < a < l .  Then the function v (x )=  
]xl(P-n)/(P-1) is A-harmonic in B\{0} .  Set 

(4.3) Rj=B(2-J)\B(2-J-1), j =  1 ,2 , . . . .  

Select for each j a set Kj consisting of Nj points in Rj with 

( n - l )  
(4.4) d(x, Kj)<lxl a, a-- 

( p - 1 ) ( 1 - a ) '  

for each x E Rj and 

(4.5) Nj<c(n)2 bj, b= n ( n - 1 )  
( p -  1 ) ( 1 - a )  n; 

this follows, for example, from a packing argument via the Besicovitch covering 
theorem. Define 

(4.6) K = {0}U 0 Kj 
j = l  

and let u be the restriction of v to BXK. Then K is a compact, countable subset 
of B and, in particular, d imH(K)=0 .  Moreover, u is A-harmonic in BXK with 

(4.7) IVu(x)l ~ cllxl(1-n)/(P-1) 
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where cl =(p-n)/(p-1) ,  and since 

( n - l )  
d(x, K) <_ Ix1 a, a -  

( p -  1)(1-c~) ' 

see (4.3), (4.5) and (4.6), the mean value theorem shows that  uElocLip,~(B\K). 
Since u does not extend to an A-harmonic function of B, it suffices to verify 

that  (4.2) holds for some "~<0. Clearly, it is enough to show that  there is A>0 such 
that  

m(K(r) ) < c2r~; 

then (4.2) holds for any 7>- )~ .  Fix 0 < r < l .  We may assume that  r=2 -m for some 
positive integer m. Now 

K(r) C B(2-ma+l)[.J U Kj(2-m)' 
j~_ma 

where a=(1-a)(p-1) / (n-1) .  Thus (4.5)gives 

m ( K ( r ) )  < ~ 2  - ~ " ~  = c2r ~, 

here c2--c2(n) and A = n ( 1 - a ) ( p - 1 ) / ( n - I ) .  The claim follows. 
The construction for pKn is similar and left to the reader (for p=n begin with 

v(x)=log(1/Ixl)); see also the comments following Theorem G. 

5. R e m o v a b i l i t y  in t h e  B M O  class 

A function uEL~oc(~ ) is of bounded mean oscillation in ~t if 

lfo Ilu]], = sup ~ [U-UQldm<c~; 
Qcn m~r 

here Q is any cube and uq is the average of u over Q, i.e. 

1 / Q  
UQ - m ( Q )  u a m .  

If Ilull,<~, then we say that  u c B M O ( ~ ) .  It is a well known consequence of the 
John-Nirenberg lemma that  

sup ]U-uQidm) _< c~ll~lt, 
Qc~ 
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holds for any uCBMO(~)  for all p > l .  

Proof of Theorem D. Let u E B M O ( ~ \ E )  be A-harmonic in ~ \ E .  If Q is a 
cube in a Whitney decomposition of ~ \ E ,  then the standard Caccioppoli estimate 
yields 

(5.1) .~2Q IVulPIr dm _<c ZQ lu-uQIPlVr dm 

for any C EC ~ (2Q) ,  where c depends only on p, CA, and n (see [S, pp. 255-261], 
[BI, p. 290], [GLM], [HKM]). Choosing r such that  r  on Q and IVr  
we obtain from (5.1) 

fQI W l  p dm < Cll(Q) -p ~ Q  lu-u2Q] p dm < C~m(Q)(n-P)/nllull,. 

By Lemma 3.3, u extends to an A-supersolution of ~ and the same reasoning applied 
to - u  yields that  - u  extends to an A-supersolution in ~. This means that u extends 
to an A-harmonic function of ~, as required. 

Theorem E is sharp at least for the borderline case p--n.  Then only E- -0  
satisfies (1.4) for c~--0. On the other hand, the function u(x)=log(1/[xl)  is A- 
harmonic (n-harmonic), A(x, ~) = I~ln-2~, in R n \ {0} and u e BMO(R n) (IRa, p. 5]), 
but u is not A-harmonic in R n. 

Added in proof. T. Kilpel~iinen (Hhlder continuity of solutions to quasilinear 
elliptic equations involving measures) has constructed examples showing that  the 
exponent b in (1.5) is sharp. 
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