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Area integral estimates for solutions 
and normalized adjoint solutions to 

nondivergence form elliptic equations 

L. Escaur iaza  and C. E. Kenig(1) 

Abstract.  We show that the L p norms, O<p<~,  of the nontangential maximal function 
and area integral of solutions and normalized adjoint solutions to second order nondivergence 
form elliptic equations, are comparable when integrated on the boundary of a Lipschitz domain 
with respect to measures, which are respectively Ace with respect to the corresponding harmonic 
measure or normalized harmonic measure. 

O. I n t r o d u c t i o n  a n d  d e f i n i t i o n s  

In this work we shall prove inequalities compar ing  the area integral and nontan-  

gential maximal  functions for solutions and normalized adjoint solutions to second 

order  nondivergence form linear elliptic operators.  Such types  of inequalities have 

been t rea ted  recently by m a n y  authors,  [BG], [GW], [D], [DJK], IBM], [Mc], [MU], 
[Z]. The  most  general set t ing up to now is tha t  of weak solutions to second order di- 

vergence form operators  [DJK] and subharmonic  functions in Lipschitz domains [Z]. 
As in [DJK], the constants  in our est imates will depend only on ellipticity and the 

Lipschitz character  of the domain,  and the est imates will be obta ined via the clas- 

sical approach of good )~ inequalities. The  main  difficulty in our case is the lack of 

interior est imates for the gradients of solutions and normalized adjoint solutions, 

and to make up for it, the area integrals are defined with respect to certain weights 

for which a Cacciopoli type  inequality holds. 

Before we state the main  theorem we shall need some definitions and remarks.  

Recall tha t  a bounded  connected domain  D in R n is called a Lipschitz domain  if 

its bounda ry  cOD can be covered by finitely many  open right circular cylinders whose 
bases have positive distance from OD and corresponding to each cylinder I there is 

(i) Both authors are supported by NSF 



276 L. Escauriaza and C. E. Kenig 

a coordinate system (x, 8) with x E R  n - l ,  s E R  with s axis parallel to the axis of I ,  
and a function ~0: R n-1 --+R satisfying a Lipschitz condition (]~o(x)- ~o(z)] <mix-z]) 
such that  IMD={(x, s):8>~o(x)}MI, and IMcOD={(x, s):s=~o(x)}MI. 

Denote by Lu=Y~.i~,j=l aij(Z)Diju a uniformly elliptic operator with coeffi- 
cients satisfying aij(X)=aj~(X) for all X in R n, i , j = l ,  . . . ,n, and for some ~ > 0  

~ (A(X)G() for all X , ( c R  ~, 

where (.,-) denotes the scalar product  in R n, and A(X) is the coefficient matr ix  

Throughout  this work we will assume that  the coefficient matrix A(X) is 
smooth in R n, though our estimates will not depend on this qualitative property. 
We will also assume that  the Lipschitz domain D is contained in the unit ball and 
"centered" at the origin. 

We say that  a function u is L-harmonic in D if u is smooth and Lu=O in D. 
For each continuous function f on cOD, there is a unique L-harmonic function u in 
D, continuous in D with u=f on cOD. The L-harmonic measure at XED is the 
representing measure of the functional f---+u(X)=fo D f dco x. In particular co will 
denote the L-harmonic measure at the origin. For each f smooth in D there is a 
unique solution to the nonhomogeneous problem Lu=-f  in D, u = 0  on cOD, which 
can be represented as 

u(X) = fD g(X, r) f(Y) dY for all X in D, 

where g(., .) denotes the Green's function for L in D. Recall that  from the Pucci-  
Aleksandrov-Bakelman inequality [P] we have 

(0.1) (fD )(n-1)/n g(X, y)n/( ,~-l)  dY <_ C(k, n) diam(D) for all X in D, 

where diam(D) denotes the diameter of D. Also, when v is smooth in D, v can be 
represented as 

(0.2) v ( X ) :  rOD vdcoX-~ g(X,Y)Lv(Y)dY for all X in D. 

We will denote by Br(X) the ball centered at X with radius r and for QEOD, 
Ar(Q)=B~(Q)MOD, T~(Q)=B~(Q)MD, ~5 the distance function to the boundary 

of D, and for QECOD and a > 0  we set G(Q)={X~D:IX-QI<_(I+a)5(x)}. We 
will set B(X)=Bb(x)(X) for XED. The letter G will denote the Green's function 



Area integral estimates for solutions and normalized adjoint solutions 277 

for L in B20(0) and with pole at a fixed point XoEOB9(O), i.e.; G(Y)=G(Xo,Y),  
and G the measure associated to G, i.e.; G(F) denotes the integral of G over F.  The 
normalized Green's function for i in n is defined as O(X, Y)=g(X, Y)/G(Y).  For 
a function v defined on D, the nontangential maximal function and area function 
of aperture a are defined respectively as 

N,(v)(Q) = sup{Iv(X)l : X e F , (Q)} ,  

S"(v)(Q)Z = f r  ~i(X)2 IVv(X)l:G(X) dX 
o(o,) G(B(X)) 

for QEOD. 
A measure # on OD is Aor with respect to a measure a on OD if there are 

constants M and 0 such that  for all QEOD, r > 0 ,  and EcA,.(Q) the following 
holds 

o 

#(A~(Q)) -< M ( a ( ~ ( O ) ) ) "  

Our main theorem is the following: 

T h e o r e m  1. Let u be L-harmonic in D, a,/~>O, and # a measure on OD 
which is A~ with respect to a~. Then, for each O < p < o c  there is a constant C 
depending only on )~, n, p, the Ao~ constants of #, and the Lipschitz character of D 
such that the following holds 

Moreover, if u(O) =0,  

IIS (u)ll,(d,) --< 

IINo(u)llL.(d,) --< CIIS (u)IIL.(,.)" 

We say tha t  a function ~ is a normalized adjoint solution for L in D if ~ is  
smooth and ~ G  is an adjoint solution for L in D, i.e.; D~i(aij~G)=O in D. In ([B], 
Theorem 4.4), it is shown that  normalized adjoint solutions satisfy the Harnack 
inequality, that  is, if ~ is a nonnegative normalized adjoint solution in B2~, there 
is a constant C depending on )~ and n such that  sup{~(X):XEB,.}<_Cinf{5(X): 
X E  B~}. It  was also shown in ([FGMS], Theorem 1.1.6) that  when ~ is a normalized 
adjoint solution in T2~(Q), QEOD, which vanishes continuously on A2~(Q), then 

for some constants aE(0 ,  1) and C depending on A, n, and the Lipschitz character 
of D, 

~ ( X ) < _ c ( I X r Q I ) ~ s u p { ~ : X  ET2r(Q)} for all X in T2r(Q). 



278 L. Escauriaza and C. E. Kenig 

The Harnack inequality implies that  normalized adjoint solutions can not at tain 
neither a maximum or a minimum in the interior of D. These and standard approx- 

imation arguments, together with the above control on the modulus of continuity 
at the boundary of D of normalized adjoint solutions which vanish on an open set 

of the boundary, imply that  given f a continuous function on the boundary of D, 
there exists a unique normalized adjoint solution ~ E C ( D )  such that  ~ = f  on OD. 
The normalized harmonic measure ~ z  at X E D is the representing measure of the 

functional 

f -~ ~ ( X )  = __/~D fd~;X" 

In particular, ~ will denote the normalized harmonic measure at the origin. In this 
case we also obtain the following similar result. 

T h e o r e m  2. Let ~ be a normalized adjoint solution for L in D, a , /3>0,  and 
# a measure on OD which is Am with respect to ~. Then, for each 0 < p < o c  there 
is a constant C depending only on )~, n, p, the Am constants of #, and the Lipschitz 
character of D such that the following holds 

<-- 

Moreover, if ~(0)----0, 

-< 

In the first section we will prove Theorem 1 and in the second we will indicate 

how to obtain Theorem 2 from arguments similar to those in the first theorem. 
We will say that  two objects A and B (numbers or functions) are equivalent and 

write A ~ B  if there exists a positive constant C depending at most on ellipticity, 

dimension, ~,/3, constants in the Ao~ condition, and the Lipschitz character of D 
such that  C - 1 A < B < C A .  Analogously, the notation A < B  will mean that  for some 

C as above A<_CB. 

1. P r o o f  of  T h e o r e m  1 

We will first need to recall some results about  L-harmonic measure. 

L e m m a  1. (Doubling property of L-harmonic measure). There exists to> 
0 depending on the Lipschitz character of D such that for all 0 < r < r 0  and X ~  
T4r(Q) the following holds, wx (A2r (Q) )~wx(Ar (Q) ) .  In particular, w(A2~(Q))~ 

w(Ar(Q))  for all r > 0 .  

The reader can find the proof of this result in ([FGMS], Theorem 1.2.3). As 
the authors of this work point out, a consequence of the above estimate is that  
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all the results and lemmas in [CFMS] for divergence form operators can then be 
shown, using the same arguments as in [CFMS]. (See also the arguments in [B1], 
where these results are proved with constants which depend also on the modulus of 
continuity of the coefficients, but which after the works of [FGMS] and [FS] can be 
carried out without this dependence), to hold for operators in nondivergence form 
with measurable coefficients. Hence, as in Theorem 1.4, Lemmas 2.1, 2.4, and 2.5 
in [DJK], (where they follow from [CFMS]) we have: 

(1.1) Let QEOD, r>0 ,  and X E D  with IX-Qi=r~5(X) .  Then, wx(A~(Q))~I. 
(1.2) There exists r0 depending on the Lipschitz character of D such that  if 

QEOD, 0<5r<r0 ,  s<r/2, FCAs(Q)  Borel set, and XED with IX-QI ~ 
r..~5(x), then the following holds: 

 x(f) 
w(As(Q)) wX(As(Q))" 

We will also need the following facts: 

(1.3) (Carleson estimate for normalized adjoint solutions.) Let ~ be a normalized 
adjoint solution on T2~(Q) which vanishes continuously on A2~(Q) for some 
Q E OD. Then, there is a constant ro depending on the Lipschitz character 
of D, such that  if r<r0 ,  sup{~(X):XET~(Q)}<_5(Y), where Y is any point 
lying on OB~(Q)MFI(Q). See [FGMS], Theorem 1.1.6. 

(1.4) (Doubling property of adjoint solutions.) Let vEL~oc(B3~ ) be a nonnegative 
superadjoint solution for L on B3r (Dij (aijv)~_0 o n  B3r in the distribution 
sense), then 

/B2 v(Y) dY ~ ] ;  v(Y) dY" 

See [FS], Lemma 2.0. 

L e m m a  2. Let g(X, Y) denote the Green's function for L in D. Then there is 
a constant ro depending on the Lipschitz character of D, such that for all QEOD, 
r<ro, Y EOB~(Q)nFI(Q), and X ~T4~(Q), the following holds 

~I,X y ,  G(B(Y)) wX 
~ ' ) 5 - ~  ~ (ArtQ)).  

Proof. To show the first inequality, consider a test function ~=1  on B~/2(Q) 
and supported in Br(Q). From Lemma 1 and (0.2) we have 

/D 1IT  (X,Y)G(Y)dY. w(/kr(Q)) D dWX= g(X,Y)L~(Y)dY ~-~ (Q) 
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Since t~(X, Y) is a nonnegative normalized adjoint solution which vanishes on OD, 
and G is an adjoint solution for L, the first half of the lemma follows from (1.3), 
the Harnack inequality for normalized adjoint solutions, and (1.4). 

To show the second inequality set u(X)=(1/r 2) fT.(Q)g(X, Y)dY.  This func- 

tion satisfies Lu=--(1/r2)XT~(Q) on D, u = 0  on OD, where XTr(Q) is the character- 
istic function of Tr(Q). Because D is a Lipschitz domain, there exist two truncated 
cones with a common axis 111(0) and 112(0) in R n, with vertex at 0 and whose open- 
ing and height only depend on the Lipschitz character of D, such that  V1 (0)\  {0} C 
172(0), and satisfying that for all QEOD there are two cones VI(Q) and V2(Q) which 
are congruent with 111(0) and V2(0) respectively, such that  V2(Q)nD={Q}.  

Let h--2ro denote the height of V2(0) and x(Q)  a unit vector in the direction 
of the interior axis of V~(Q). For fixed r<_h/2 and QcOD let ~(Q)--Q-r>c(Q). 
It is easy to see that  there is a number aC(0,  1) which depends only on D so 
that B~r(~(Q))cVI(Q). We introduce the following auxiliary functions, v ( X ) =  
e - ~ - e  -~(IX-r and h(X)=v(X) 1/2, where c~>0 is to be chosen. An easy 
calculation shows that  we can choose c~ depending on A, n and a so that  Lv(X)< 0 
o n  Rn\Bar(~(Q)), h>0  on D, nh<O in D, and L h < - ~ / r  2 on T~(Q), where 
depends on A,n and D. Hence, L[h-/3u](X)<O on D and h-/3u>O on OD. Thus, 
the maximum principle implies that  h-/3u>O on D. In particular u(X)<~l for all 
XEOB~(Q)nD. From (1.1), we get I<~wX(A2~(Q)) for all XeOBr(Q)ND. The 
last two estimates and the maximum principle applied to Cw x (A2~(Q)) -u (X)  on 
D\B~(Q) imply that  u(X)~wx(A2r(Q)) for all X~T~(Q), and from Lemma 1, 
u(X)<~wX(Ar(Q)) for all X~T4~(Q). On the other hand, (1.4) and the Harnack 
inequality for normalized adjoint solutions show that  for YcOB~(Q)nr~(Q) and 
X~T4~(Q), ~(X, Y)(G(B(Y)))/(5(Y)2)<u(X), which proves the lemma. 

L e m m a  3. Let u satisfy Lu=O in D, r be a test function supported in D, 
and vEL~oc(D ) be a nonnegative superadjoint solution for L in D. Then for any 
constant/3 the following holds 

IVu(X)]2r (X)v(X) dX f l (X) [I re(X) + ID20(X)J] v(X) dX. 

Proof. The above estimate follows from the identities L(u-~)2=2(AVu, Vu), 
n[(u-/3)2r162162162 Vr and integration by 

parts. 

L e m m a  4. Let u satisfy Lu=O in D and a and fl be positive numbers with 
a <~. Then, there are constants C and c depending on A, a, 8, n, the A~ constants 
of#, and the Lipschitz character olD such that for all ~>C and t > 0  the following 
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holds 

#({Q c OD : S~(u)(Q) > ~/t, i~(u)( Q) <_ t}) _< Ce-~c #( { Q E on:  S2~(u)(Q) > t}) .  

Once this lemma has been established, the first half of Theorem 1 follows 
from standard arguments, and the fact that  L p norms of area functions of different 
apertures with respect to a given doubling measure are equivalent. In order to prove 
this lemma, we adopt the strategies in [Z], and [BM]. 

We may assume without loss of generality that  t = l .  Define 

Eu={QcOD:N~(u)(Q)<_I} and R ~ ( H ) = U { F ~ ( Q ) : Q E H  } 

for ~ > 0  and HcOD. We now introduce a measure Au on D, which is defined by 

i u ( F ) = f  g(O,X)iVu(X)i2G(X)dX, for F c D  norel set. 
JR ~ (Eu)QF 

We recall that  a positive measure A on D is a Carleson measure with respect 
t o  a given measure cr on aD  if 

IiAIl=sup a ( A r ( Q ) ) : r > 0 ' Q e 0 D  <co. 

L e m m a  5. Under the above assumptions, the measure Au is a Carleson mea- 
sure with respect to w, whose Carleson norm IIA~]I is bounded by a constant which 
is independent of u, but depends on a,/~, D, A, and n. 

To see that  the above statement holds first let r be such that  0 < 5 r < r 0  and 
QoEOD be fixed, where r0 is as in Lemma 4. Let 5" be the regularized distance 
function such that  6(X),.~6*(X), IV6*(X)[<I, and ID26*(X)I<6(X) -1 for all X 
in D (see Theorem 6.2 of [St]). Now, for s>0 ,  let D~:{XED:6(X)>e}  and fl~-- 
{XED:6*(X)>e}. Let ~ E C ~ ( R  n) be such that  ~(X)---~(IX[) , sp t (~)CBl(0) ,  
and its integral over R n is equal to 1. For ~>0 and small we define a function r162 

a s  

r  (TS*(X))-n~ ~ dY, X e R  n, 

where W is the subset of D given by W=R(,~+~)/2(E~,MA(2+,~)r(Qo))MD\D2~M 
f~/2. For ~- sufficiently small, depending only on the Lipschitz character of D, a, 
and/~, the functions r turns out to be a smoothing of the characteristic function 
of the set R~(E~MA(2+(~)r(Qo))MD\DrM~, which contains R,~(Eu)MTr(Qo)Mf~. 
Indeed, r C C ~  (D) satisfies the properties that  

r = 1 for X E R,~(E~MA(2+,~)r(Qo))MD\D~Mf~, 

spt(r C R~( E~MA(2+,~)r( Qo ) )MD \ D3rM~/4 C D. 
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Moreover, IVr -1, ID2r163 -2 for all X in D. 
Since A~,(Tr(Qo)) =limr A~,(Tr(Qo)Mf~r it suffices to show that  A~(Tr(Qo)M 

f~)s independently of e>0.  From the above remarks, Lemma 3, and 
observing that l u l < l  on R ~ ( G ) ,  we conclude that for ~ small 

a~ (T~(Qo)Mf~) <~ /wo 6(X)-2g(0' X) dX, 

where W0 denotes the union of the supports of Vr and D20r To estimate 
the right hand side of the last inequality, let ~ > 0  be a fixed number such that  
x<min{  1 ,2c~/ (a+3) ,2( f l -a ) /3(2f l+3)} .  Let {/j} be a Whitney decomposition 
of D so that  {Ij} is a family of dyadic cubes in R n with disjoint interiors and 
nl/2/xl(Ij) <_d(Ij, OD)<_4nl/2/~l(Ij), where l(/j)  is the side length of the cube Ij. 
Let Xj be the center o f / j ,  ry=lnl/21(Ij), Bd=Brr , and B;=B~(Xj).  Let 
Qj e OD be such that  [Xi - Qj ] = 5(Xj), and A d = A~ (Qd)" 

Let J={jEN:bnWor162 }. Then for each jEJ, we have 6(Xj)~rj, and by 
Harnack's inequality for normalized adjoint solutions ~(0, X ) ~ ( 0 ,  Xj) for X EBj. 
On the other hand, from (1.4) we have G(B(X))~G(B(Xj)) for XEBj. These and 
Lemma 2 imply 

f 5(Z)-~g(0, X) dX < w(Aj). 

We now use the following fact: there are constants c and C, which are inde- 
pendent of u, r, and e, such that 

(1.5) E Xaj ~- CXA~(Qo). 
j E J  

Assuming that  this holds, we obtain 

A~ (Tr(Qo)na~) ~< ~ ~(aj) ~< ~ (a~,(Q0)) ~< ~(a,(Q0)), 
j E J  

as required. We refer the reader to [Z] for the proof of (1.5). 
When 5r_> r0, we have from the doubling property of L-harmonic measure that  

l~<w(A~(Q0)). Thus, to show that A~(T~(Qo))<~w(Ar(Qo)) it suffices to check that  
A~(D) ~< 1. Prom the previous case and by covering D\Dro/lO with finitely many 
balls of radius ro/5 centered at points of OD we have A~(D\D~o/~o)<l. On the 
other hand, D~o/1 o is "large" and there are at most M cubes/3, which touch D~o/1 o. 
Moreover, if J={jEN:IjMDro/lo~r we have ro<~rj for jEJ, 

R~(E~)MD~o/lO C U Bj and U B~ C R~(E~) C {X E D:  [u(X)] < 1}. 
j E J  j E J  
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Now, for fixed j E J, let Cj E C ~  (D) with Cj = 1 on Bj,  supported in B~, and IVCjl + 
]D2r Thus, from Lemma 3 we get 

f.  g(o,x)lVu(X)l 2 dX f. g(O,X)dX 

The above estimate, (0.1) and the fact that  J has no more than M elements con- 
eludes the proof of Lemma 5. 

At this point we will need to recall the definition of the space of functions 
of bounded mean oscillation on OD. Let a denote a doubling measure on OD. 
A function fEL](dG) is said to lie in BMO(dc~) provided 

IIfl[, -- sup inf 1 f lf(Q)_al dG< oc. 
o e R  

The following lemmas will be useful for us. 

L e m m a  6. Let # and a be doubling measures on OD with pEAo~(da), and 
fEBMO(dc,)  with Ilfll* +llfllL'(d~,) < 1. Then, there are constants C and c, depend- 
ing on the A ~  constants of # and the doubting constant of a, such that for all 
t > 3  

u ({Q E OD: If(Q) > t}) _< Ce-tCp({Q e OD: If(Q)l > 1}). 

For fixed Q, PEOD and X E D ,  let IQ,p(X)=min{IX-QI ,  I X - P I }  , and 
A(Q,P,X)=AtQ,e(x) (XQ,p) ,  where XQ,p is one of the points P or Q such that  

IX- XQ,pI=IQ,p( X). 
L e m m a  7. Let cr be as above, and K ( X , Q )  be a continuous function on 

D x OD which satisfies the following conditions: There exists a positive constant 
C such that 

sup fo IK(X'Qlld <-C 
X E D  D 

(1.6) 

and 

(1.7) C (IQ-PI) 
I K ( X ' Q ) - K ( X ' P ) I  <- G(A(Q,P ,X) )  \ lQ,p(X) 

for all Q, PEOD and X E D  with IQ,p(X)>21Q-P ]. Assume that A is a Carleson 
measure with respect to G, then the function K A  defined by 

KA(Q) = / D  K(X ,  Q) dA(X), Q E OD 



284 L. Escauriaza and C. E. Kenig 

is in BMO(da) with IIKAII.+IIKAIILI(d~,) <MIIAII, for some constant M which de- 
pends only on C, D, and the doubling constant of a. 

The reader can find the proof of the above results in [Z], Propositions 1 and 2, 
where they are proved in the context of NTA domains, and where a is the harmonic 
measure on D for the Laplace operator. 

Let now a and /3 be as in Lemma 4 and fixed r162 n) with ~ = 1  on 

D\D~o/lo, ~=0 on D~o/5, r for ]X]<l+a, r  for IX]>_l+2a, 0 < r  ~<1 ,  
and define a function K on D • OD by 

" X " f l X - Q I )  5(X)~ 1 
K(X,Q) = ~ )Wk ~ "G(B(X)) O(O,X)' X e D, Q e OD. 

We claim that  the above function K satisfies the conditions in Lemma 7 with 
a=w, and hence by Lemma 6, g A u  lies in BMO(dw)Mnl(dw) with IIKAuII.+ 

IIKAIILI(d~)<~I. If XCOD is such that  I Z - . ~ l = 5 ( X ) ,  we have 

/ 'oK(X,  dw 5(X)2 1 D Q) ~ G(B(X)) ~(0, X) w({Q e OD: X �9 r2.(Q)}). 

From Lemma 2 and the fact that  the set {QEOD:XeF2,(Q)} is contained in 

A(2+2~)~(x) ()~), the right hand side of the above inequality is essentially bounded 
by 1. Hence, condition (1.6) holds. To check condition (1.7), let XED\D~o/S and 
Q, PeOD with IX-QI, [X-PI>2IP-Q[. Interchanging the roles of P and Q we 
may assume that  IX-QI<[X-PI. In this case, IQ,p(X):[X-Q[ and XQ,p:Q. 
Then we must consider three cases: 

I. IX-Ql>_(l+2a)5(X) and IX-P[>_(I+2a)5(X). In this case we have 
K(X,Q)=K(X,P)=O. 

II. IX-QI<(I+2a)5(X) and [X-PI>(I+2a)5(X ). Then 

5(X) 2 1 ~,['lX-Ql'~ 7/,~'lX-PI 
]K(X'Q)-K(X'P)I-< G(B(X)) ~(O,X) \ 5(X) J - ~ \  7(X) ) 

< 5(X) 2 1 I P - Q [  < 1 I Q - P [  

" G(B(X)) ~(0, X)  5(X) ~ w(AiX_Ql(O)) [X-QI' 
where in the last inequality we used that  IX-QI~5(X) and Lemma 2. 

III. IX-Q[ < (1 +2~)5(X)  and I X - P I  < (1+2c06(X). In this case the argument 
above goes through in the same way. 

We now observe that for 7~>1, we have 

(1.8) { Q E c 0 D : S , ( u ) ( Q )  >%Nf~(u)(Q) <_ 1} 

C {Q �9 cOD: g,~(u)(Q) > 7/2, NZ(u)(Q) <_ 1}, 
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where 

[Vv(x)l G(X) (X)dX. 
o(Q) C(B(X)) 

To see this, observe that since G(BI(0))~I  ([B2]), we have from the doubling prop- 
erty of G, that for x � 9  spt(1-qo), G(B(X))..~I. Also, F~(Q)M sp t (1 -~ )  
can be covered by a finite number of balls {Bj : j - - l ,  ..., M}, with radius of size 
roughly equal to 1 and whose double concentric balls B~ are contained in F~(Q). 
Here M depends on a,/3, and D. These and Lemma 3 show that (1.8) holds. 

Now, we observe that for QEE~, S~(u)(Q)2<KA~(Q), and KA~(Q)< 
S2~(u)(Q) 2 for all Q�9 Thus, from Lemma 6 and for tteAoo(dw) 

#({Q �9 OD: S~(u)(Q) > % NZ(u)(Q) <_ 1}) <_ #({Q �9 E~: S~(u)(Q) >'y/2}) 

< #({Q �9 OD: KA~(Q) > 72/4}) _< Ce-'r2~#({Q �9 OD: S2~(u)(Q) > 1}). 

This concludes the proof of Lemma 4. 

L e m m a  8. Let u satisfy Lu=O in D, u(0)=0, IIUIIL2(d~) <_I, and a and/3 be 
positive numbers with a < /3 , with/3 sufficiently large so that 0�9  for all Q c O D. 
Then, there are constants C and c, depending on A, c~,/3, n, the Aoo constants of #, 
and the Lipschitz character o lD such for all v > C  and t>0  the following holds 

#({Q c OD: N~(u)(Q) > ~t, Sz(u)(Q) < t, M,()~c~) < �89 

<_ Ce-~Clz( { Q �9 OD : N~(u)(Q) > t}), 

where Gt ={QcOD:Sz(u)(Q) >t}. 

The proof of this lemma will follow from the techniques used in [DJK] and 
[MU] after we have shown the following Poincar~ type inequality. 

L e m m a  9. Let u satisfy Lu=O on B2~(Xo)CD. Then, 

(1.9) 
r2 

sup [u(X)-u(Xo)[ 2 <~ [Vu(X)[2G(X) dX. 
B.(Xo) G(B2,(Xo)) 2.(xo) 

Proof. From (0.2) we have 

(1.10) fOB2 (Xo)(U(Q)-u(Xo))2 fB2 (xo)g2r(Xo,X)2(AVu, Vu) dX, 
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where w X~ and g2r(Xo, ") denote respectively the L-harmonic measure and Green's 
function for L in B2r(Xo). Let k be an integer to be fixed later. The right hand 
side of (1.10) can be bounded by 

fB~/2 ~ (g2r(Xo, X) (Xo, X)) 2(AVu, Vu} dX 
(Xo) 

+ /  g2~(X0, X)2(AVu, Vu) dX 
JB 2~(Xo)\B2~/2k (Xo) 

+ sup lu(X)-u(Xo)12=i+ii+iii, 
B2~/~k (Xo) 

where we used the analogue of identity (1.10) over B2~/2~(Xo ) to handle the last 
term. We have from the regularity for solutions to Lu=0,  that for some 0E(0, 1) 
depending only on ;~, and n ([GT], Chapter 9), 

III_<O k( osc u) 2_<20 k sup [u(X)-u(Xo)l 2. 
"B~(Xo) " B~(xo) 

On the other hand, Harnack's inequality for solutions to Lu=O implies that for 
X E Br (X0) the measures w2 x~ and co x are mutually absolutely continuous, and the 
Radon-Nikodym derivative of cox with respect to co2 x~ is essentially bounded by 1. 
Since 

u(X)-?.t(Xo) = fOB2~(Xo)(u(Q)-u(Xo)) dw~ for all X C Br(Xo), 

we obtain from Schwarz's inequality 

sup l u ( x ) - u ( X o ) l  2 <~ f (u(O)_u(Xo)) 2 dco~o. 
Br(Xo) JOB2r(Xo) 

Therefore, choosing k large enough we have 

1 iii < ~ s (u(Q)-u(z~ d~~ 

To control I and II, we observe that  g2r(Xo, ")-g2r/2k(Xo, ") is a normalized 
adjoint solution for L on B2~/2k(Xo ). Thus, its maximum on B2~/2k(Xo ) is at- 
tained on OB2~/2k(Xo), where t~2~(Xo, ")-~2~/2k(Xo, ")=~2r(Xo, "). On the other 
hand, Harnack's inequality for normalized adjoint solutions and (1.4) show that for 
XcOB2~/2k (Xo) we have 

fB r2 1 g2~ (X0, X) dX 
~(Xo ,X)  < a(B2~(Xo)) ~(Xo) G(B2~(Xo))' 
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where in the last inequality we used (0.1). Analogously, ~2~(X0, ") attains its max- 
imum over B2r(Xo)\B2~/2k(Xo) somewhere on OB2~/2k(Xo). Thus, dividing and 
multiplying the integrands in I and II by G(X),  we bound I and II by the right 
hand side of (1.9). Hence from (1.11) and the fact that  

sup [u (X)-u(X0) ]  2 <~ ~ (u(Q)-u(Zo)) 2 dw X~ 
B~(Xo) OB2~(Xo) 

we obtain (1.9). 
Let a and fl be as in Lemma 8, QoCOD, 0 < h r < r 0 ,  and E c A r ( Q 0 )  be a closed 

set. It is well known that one can construct a "sawtooth" region f~=ft(E,  Q0, r) 
over E.  The properties of gt are that  it is a Lipschitz domain satisfying 

(i) For suitable a ' ,  a" ,  Cl, c2, with a<a'<a"<fl 

U{F,~,(Q)NB~(Q):QEE} cf~cU{F,~,,(Q)NB~2~(Q):QEE}. 

(ii) Of~NOD:E. 
(iii) There exists XoCft with d(Xo,Of~)~r. In particular, there is a ball 

Bsc~(X0) C ~  for some c>0  depending on D. 
(iv) The Lipschitz constant of f~ depends only on D. 
Next, we observe that  in the proof of the "main lemma" in [DJK], the only 

necessary tools are the doubling property, and properties (1.1) and (1.2) of the har- 
monic measure associated to a divergence form elliptic operator with measurable 
coefficients. Since in our case these properties also hold, the main lemma in [DJK] 
also holds for L-harmonic measures. In particular, if f~ denotes the sawtooth re- 
gion associated above to a closed set ECA~(Qo) for some QoEOD, 0 < h r < r 0 ,  and 

denotes the L-harmonic measure for f~ at Xo, we will have as in the proof of this 
lemma in [DJK], that  if {/j} is a suitable Whitney decomposition of A2~(Q0)\E,  
that  is, a disjoint family of dyadic surface caps Ij obtained from the dyadic fam- 
ily associated to A2r(Q0), whose union is A2~(Q0)\E and whose distances to E 
are comparable to their respective diameters l(Ij), and we define a measure ~ on 

A~,(q0) as 

(1.12) ~(F)=~,(ENE)+ E ~z(Fnli) �9 w(IjnOn) v(QjNOf~), for FCA2~(Qo) norel  set, 
3 

where Qj is a cube in a n centered at a point on "the lateral side" of (O~t\E, whose 
diameter and whose distance from OD are comparable to the diameter of Ij (Qj 
is essentially located right above b and at distance l( / j )  f r o m / j ) ,  that  for some 
0E(0, 1] depending only on A, n, and D the following holds 

(1.13) w(F) < ~ b(F) ~e w(A) ~ \ b ( A ) ]  for all FCA~(Qo) Borel set. 
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Before we start with the proof of Lemma 8 we will also need to recall that  from 
the estimates on the kernel function associated to L on the Lipschitz domain 
given in [FGMS] in Theorem 1.2.5, and the arguments in Theorem 4.3 in [CFMS] 
it follows that if u is L-harmonic in f~, the nontangential maximal function of u in 

at each point Q E 0f~ is controlled from above by the Hardy-Lit t lewood maximal 
function with respect to ~, of the boundary values of u on 0f~. In particular, 

(1.14) sup{[u(X)[ : X E ~ and IX-Q[ <_ ( l + a ) ~ ( X ) }  ~< M~,(ulo~)(Q ) 

for all QEOf~, where 6(X) denotes the distance from X to 0fL 
After all these remarks we will proceed with the proof of Lemma 8: We may 

assume that  t = l .  Let #EA~(dw), a and /3 be as in Lemma 8, and set F~=  
{QEOD:Sz(u)(Q)<I, M~(XG,)< 1 _ _ ~}, and W=R(~+~)/2(Fu). We introduce the fol- 
lowing function 

N(u)(Q)=sup{lu(Z)I:Xer,(Q)nW}, QEOD. 

We will show that  N(u)EBMO(dw) with ]]g(u)]],~<l. Since by hypothesis 
]luliL2(d~) <1, we get from (1.14) and the fact that  the Hardy-Lit t lewood maximal 
function with respect to w is bounded in L 2 (dw) that  ]IN(u)[] Ll(d~)~< 1. Since N(u)< 
N~(u) on OD, and Na(u)<N(u) on F~, Lemma 8 will follow from Lemma 6. 

To show the above claim, let QoEOD and 0 < 2 0 r < r 0  be fixed. We introduce 
the following functions 

N~(u)(Q) = sup{lu(X)l : z e F : (Q)} ,  

N~.(u)(Q) = sup{lu(X)] : x E F~,.(Q)}, 

and 

where F:(Q) = {r . (Q)nw,  6(x) > ~r}, 

where r~,.(Q)= {r . (Q)nw,  6(x)< ~r}, 

N(u)(Q) = sup{ [u (X)-u(X0) [  : X E Fr,~ (Q) } 

and where w has been chosen so that if f~ is the sawtooth region associated to 

E=F.nA~(Q0), and OEE, then L,~(O)ca\Bc~(Xo). 
Observe that  if QEAr(Q0),  and x E r ~ ( Q ) ,  with s=5(X)<~ro, and PEF~ 

XEF~(Q0)  with ~ ( ) ( ) ~ ( X ) ,  is such that XEF(a+Z)/2(P), then there is a point - 

and such that )(EF(a+Z)/2(P).  It is well known that there exists a sequence 

X=X1, X2, ..., XN=X such that  

B,~(Xy)cP(~+~)/2(P), i~(Xy)~S, 
and [Xj-Xj+I]<_ 1 ~ s  for all j ,  where N and ~7 depend only on the Lipschitz char- 
acter of D, a and/3. These, (1.4) and Lemma 9 imply 

8 2 
]u( X j ) -  u( Xj+l )[ 2 5 G( B•s( Xj ) ) J Bf,7~(Xj) [Vit( X)[2 G( X) dX 5 S~(u)( P) 2 <~ 1. 
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Thus, lu(X)I<[u(X)I+C, where C is a constant which depends on D,a, and 
/3. On the other hand, when 5(X)>~ro we can find a sequence of points X= 
XI,X2, ..., XN=O, such that Bn(Xj)cF(~+~)/2(P), and ] X j - X j + l [ ~ _  ~/],1 where N 
and ~? are as above. Again, Lemma 9, (1.4), and the fact that G(BI(0))~I  imply 
lu(X)lNlu(O)[+C=C. Therefore, we just showed that lu(X)l<Nr(u)(Qo)+C for 
an xerX(Q), and QEAr(Q0). A similar argument shows that 

lu(X)l <N~(u)(q)+c for all x e r ; ( Q ) ,  

and QeA,(Q0) .  Hence, 

Ig~(u)(Q)-Nr(u)(Qo)l <1  for all QeA~(Qo).  

Let now 0 be the exponent in (1.13). From the above inequality we get 

inf f IN(u)-al ~ dw 
aeR JA~(Qo) 

< inf f Imax{N~(u),Nr(u)(Qo)}-al ~ dw+w(A~(Q)) 
aeR JA~(Qo) 

_< inf f IN~(u)-al ~ dw+w(Ar(Q0)) 
aen JA~(Qo) 

< s N~(u)-Lu(Xo)I I ~ d~ + ~  (z~(Qo)) 

_< ~ 

Next, we claim that 

(1.15) w ({Q E A~(Qo): N(u)(Q) > s}) ~< s-2~ 

Assuming this claim we get that the above integral is bounded by w(A~(Qo)). 
Therefore, 

inf 1 /A IN(u)-al ~ for all 0 < 2 0 r  <r0. 
aCl~ ~d( i r  (Q0)) r(Qo) 

It then follows from the John-Nirenberg inequality [ST] that N(u)EBMO(dw) with 
I[N(u)l[, 51, which proves our first claim. 

To show (1.15), let ~ be the measure defined in A2~(Qo) in (1.12). Then, 
setting 

H~ --- {Q �9 Ar(Qo): N(u)(Q) > s}, 
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we have 

(1.16) ~(H,) < s -2 iE N(u)2 du+E co(H, nb) �9 co(IjNOD) r,(QjNO~). 
2 

We now observe that  if H, OIj is nonempty, and QeH, OIj, we have d(Q, E)~l(Ij), 
and if BeE is such that  [Q-P[~l(Ij), there is a point Xerr,~(Q)Or(~+z)/2(P ) 
with (5(X) ~ l(Ij)such that  [u(X) - u(X0)] > s. If/3 is then a sufficiently large multiple 
of a, it follows that  on a surface cap around Q with diameter ~l(Ij), Avl(b)(Q), we 

have N(u)(Q)>s, where ~ depends on a,/3 and D. Thus, ~o(H, mb) '~(I jnOD ). 
On the other hand, since [u(X)-u(Xo)[>s, and SZ(u)(P)<I, it follows from Lem- 
ma 9 that ]u(.)-u(Xo)[>s-C on QjncO~, for some C depending on a,/3, A, and 
D. Hence, we get from (1.16) that  for s>2C 

~(H*)s2< /E N(u)2 du+ ~j /Qjnoa[u(Q)-u(Xo)]2 du. 

Since the cubes Qj have finite overlappings we have from (1.14) and (0.2) 

(1.17) 

s ..:2 vu> dY, 

where ga( . ,  .) denotes the Green's function for L in 11. On the other hand, 

I >_ LD\G S~(u)(P)2 dwXo >_ s 6(y)2 ~y~(~)) W(Y)[:G(V)~(Y) dY, 

where ~o(Y)=coxo({PeOD\GI:YeFz(Q)}). Setting ~"={Xe~2:(5(X)<_rr}, we 

have that  for Y E ~  r there exists YEEcOD\G1, such that  [ Y - Y ] ~ 6 ( Y )  and 
Yer~(?). The latter implies that  for some r~ depending on a, and/3, 7kNOD\G~ C 
{PeOD\G1 :YeF~(Q)},  where A=A,7~(y)(Y ). Therefore, 

wx~ cl) wxo(~), ~(Y) >- wx~ =- wXo(~) 

and from (1.2) 

~xo(ANOD\G1) w(TkNOD\G1) (1.18) ~x0(5) ~(5) 
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By Lemma 2, COx~ 2. Recall that  because Y e E ,  
~, and since # is A ~  with respect to co we get from (1.18) 

1 <coXo (~nOD\G1)/coXo (~) .  Hence, 

1 >~ s  2 dY >_ s  2 dY. 

Next, from (0.2) and (0.1) we obtain 

ga(Xo,Y)lVu(Y)12dY<~ sup [u(.)-u(Xo)l 2, 
\gF f~\~/~ 

and an argument similar to the one we used to control the BMO norm on the upper 
part of N(u) using Lemma 9, shows that  the right hand side of the last inequality 
is essentially bounded by 1. In all, we get from (1.17) 

P(Hs)~<s -2 f o r s > l ,  

and the above inequality together with (1.13) finishes the proof of our claim (1.15). 

Remark. The assumption that IlUllL2(d~,)<<l can actually be dropped. This 
follows from the fact that  after proving Lemma 9, and if we had followed step by 
step the arguments in Lemma 2 of [DJK], we would have obtained for t > 0  and 7 > 1  

# ({Q e OD : N~(u)(Q) > ~/t, S~(u)(Q) < t, Mu(Xo,) _< �89 

<_ CT-~ #({Q e OD: N~(u)(Q) > t}) ,  

and under the assumption [I SZ (u)] I L, (d,) --< 1 for some p > 0, these would imply that  

for t>0 ,  #({QEOD:N~(u)(Q)>t})<_Ct -~ for some 0' depending on a,/3, D, and 
the A ~  condition. Since the Ao~ condition is symmetric, [Mu], we would have 
co({QeOD:N~(u)(Q)>t})<<Ct -~ for a new 0". Thus, co({QeOD:N(u)(Q)>t})< 
Ct -~ and N(u)ELq(dw) for some q>0 with IIN(u)IILq(d~><I. Then the latter 

conclusion can replace in Lemma 6 the condition IIN(u)LILI(d~)_< 1, and still yield 
the same result. 

2. P r o o f  o f  T h e o r e m  2 

This theorem follows in the same way from the analogues of Lemmas 4 and 8, 
and the fact that  a comparison principle for normalized adjoint solutions vanishing 
at a boundary portion of a Lipschitz domain holds with constants depending only on 
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ellipticity and the Lipschitz character of the domain (see [FGMS], Theorem 1.3.7). 
An immediate consequence of this is that Lemma 1 holds with w replaced by ~, 
as well as properties (1.1) and (1.2). On the other hand, we will show that  the 
analogues of Lemmas 2, 3 and 9 also hold for normalized adjoint solutions, and 
therefore we would only have to follow the steps in our previous arguments to 
obtain Theorem 2. In particular, we have 

L e m m a  10. Let ~ be a normalized adjoint solution for L in D, r be a test 
function supported in D, and v E L~oc( D ) be a nonnegative superadjoint solution for 
L in D. Then for any constant/3 the following holds: 

f lv (x)l O(x)a(X)dX f I (x)--ZI ID O(X)IG(X)dX. 
Moreover, if B2r (Xo) C D, 

r2 /B sup < pv (x)l a(x) dX. 
~ a(B r(Xo)) 

Proof. The first estimate follows from the identity Dij(aij(~-~)2G) -- 
2(AVe,  V~)G, and integration by parts. To prove the second estimate we need 
an identity similar to (0.2). But a simple integration by parts argument shows that  
when D is smooth and Dij(aij~G)=f on D we have 

~(X)G(X)= ]OD~(Q)g(Q)~(Q,X)da(Q)-  fD g (Y ,X) f (Y )dY  

for all X in D, where Ou/Ou(Q) = (AVu, g), da denotes surface measure, and N the 
interior unit normal at Q. Since in this case d~X(Q)--G(Q)(O/Ou)~(Q,X)da(Q) 
(see [B1], Proposition 4.1), we obtain after dividing by G 

(2.1) w(X)=~OD w(Q) dwX(Q) - /Dg(Y 'X) f (Y )dY  f o r a l l X i n D .  

Thus the Green's function of the operator Dij(a~j~G)=GL~+2D~Dj(a~jG) is 
~(Y, X), and the above formula gives a representation of functions in terms of d~ z 
and ~(Y, X) similar to (0.2). At this point, the proof of the second inequality 
proceeds as in Lemma 9, because normalized adjoint solutions satisfy Harnack's in- 
equality (this implies OSCs~/2(Xo)W<_9OSCB~(Xo)W for some 9E(0, 1) depending on 
ellipticity), and it is known that  ~2r(X, Y)~[72r(Y,X) for X, YEB~(Xo) indepen- 
dently of r. (See [B2], Theorem 2.3, where this is proved for r--1. In our case it 
follows by proper scaling.) 

One also needs a more general version of the result we just mentioned above: 



Area integral estimates for solutions and normalized adjoint solutions 293 

L e m m a  11. Let ~ be a Lipschitz domain contained in BI(O) with diameter 
diam(~)<hr ,  r>0 ,  and assume that XoE~ with B2~(Xo)Cl2. Then, ~ n ( X , Y ) ~  
[7a( Y, X) for X, Y E B~( Xo ), and where ~n(X, Y) is the normalized Green's function 
for fL 

See [B2], Theorems 2 and 3. 

L e m m a  12. Let g(X, Y) denote the Green's function for L in D. Then, there 
is a constant ro depending on the Lipschitz character olD, such that for all QCOD, 
r<ro, YEOB~(Q)MFI(Q), and X~T4r(Q), the following holds 

- , y  X~ G(B(Y)) 
j 

Proof. Let us fix QoCOD. The inequality 

~(Y, X)G(B(Y))/5(r)  2 ~> ~ x  (At (Qo)) 

follows from (2.1), the analogous Carleson estimate for solutions to Lu--O vanishing 
on a boundary portion of OD [B1], with a similar argument to the one used in the 
proof of the analogous inequality in Lemma 2, integration by parts, Lemma 3, and 
the doubling property of normalized harmonic measure. 

For the opposite inequality, assume that on a neighborhood of Q0, D coin- 
aides with {(x, y ) :y>~(x )}  for some Lipschitz function ~, and set ~--DUB~(Qo), 
Q--Qo-re~, where en is a unit vector in the direction of the y-axis. Let ~ de- 
note the normalized harmonic measure associated to f~, and ~ ( . ,  .) the normalized 
Green's function on ~. From the maximum principle 

~ x  (A2~(Qo)) _> ~ x  (OB~(Qo)ND c) for X E D. 

On the other hand, there is a constant 7C C 0,1) depending on the Lipschitz character 
of D such that A~r(Q)cOBr(Qo)MD c and 

5 X (A~r(Q)) = / z ~ ( 5 )  G(Q)Oga(Q' Y) da(Q), 

and for X~T4r(Qo), QEA~(~) ) ,  (O/Ov)[~a(Q,X)~(1/r)[~a(Qo+ren,X) (see [B1], 
Lemma 4.3, Lemma 2.5; [BEF], Lemma 3). Hence 

L ~ x  (A2~(Qo)) ~> rOa(Qo+ren, x )  G(Q) da(Q). 
~(~) 
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On the other hand, if ~ ( . , . )  denotes the Green's function for L in B~(Qo), it 
follows from ([B1], Lemma 4.3, Lemma 2.5; [BEF], Lemma 3), and the Harnack 
inequality for normalized adjoint solutions that  for Q E OBr (Q0), ( O / 0 , ) ~  (Q, Q0) ~ 
r/G(B~(Qo)). Hence, from (2.1) we have 

fa G(Q)d~(Q)~G(B~(Q~ fa O_,Q, ~(0) r ~(Q) ~-~yg (Qo)G(Q)da(Q) 

_ G(B~Qo)) JA,~(5.)d~Qo, 

where ~Qo denotes the normalized harmonic measure for L on Br(Qo). Thus, 

(A2~(Q0)) ~> [~a(Qo+re,~, X)G(B~Qo)) ~Qo (A~(Q)) ,  ~ x  

and from the doubling property of normalized harmonic measure we get, 
~Q~ Finally, we only have to observe that  ~a(Y,X)>~(Y,X) for 
X, YED, and that  for YcoB~(Q)nF~(Q)~(Y, x)~(Q+re~, x). 

In the case of the analogue of Lemma 4, the measure which in this case is shown 
to be Carleson with respect to ~ is 

A ~ ( F ) = f  [7(X,O)]~7~(X)]2G(X)dX, for FCD Borel set, 
J R  

and where E~ = {Q c OD:Nfl(~)(Q)<_ 1}. The corresponding function K is given by 

K(X,Q)=~(X)r 5(x) 2 1 
5(X) ]G(B(X))[7(X,O)' X �9  Q�9 

In this case, the first estimate turns out to be a little bit more complicated, 
and follows from the identity 

r (aij ~2 G) = Dij (aij 0~2 G) + ~2 GLr 2Dj (Dj Caij ~2 G). 

The only new term which is not similar in the argument given in Lemma 2 is 

(AVe(X, Vr dX, 0), 

but here we just used the fact that I~l < 1 on the support of Vr and apply Lemma 3 
to the integrals over the corresponding dyadic cubes in the following sum 

~ 1 ~j]~Tg(X,O)IG(X)dX. 

The rest of the argument from here, and in the analogue of Lemma 8, proceeds 
in the same way as before. The estimates that were obtained over sets which we 
called "large", are handled using Lemma 11. 
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