INVARIANTS ASSOCIATED WITH SINGULARITIES OF
ALGEBRAIC CURVES.

By

TEMPLE RICE HOLLCROFT

of AURORA, NEW YORK.

1. Introduction. Each singularity of an algebraic curve f, with the excep-
tion of distinct nodes, cusps, bitangents and stationary tangents, is associated
with two distinct sets of invariants.® One set, in which the number of invariants
is denoted by I,, consists of the invariants among the coefficients of the equa-
tion in point coordinates of the curve f; the other set, in which the number is
I, consists of the invariants among the coefficients in the line equation of f.
The existence of both sets of invariants is necessary and sufficient for f to pos-
sess the designated singularity. Both I, and I, are independent of the order
and class of f. The value of I; for any given singularity is the same as the
value of I, for the reciprocal of this singularity.

An algebraic singularity, therefore, uniquely determines the two numbers
I, and I; defined above. In this paper, the values of both I, and I; are found
for a general algebraic singularity considered as defined by its constituent multiple
points and their manner of combination. The chief problem is to find the value
of I, for a singularity so defined, that is, to determine the number of invariants
among the coefficients of the equation of f in point coordinates associated with
a general line singularity.

It has been proved by Lefschetz?® that each node of f accounts for one
invariant and his Postulate of Singularities states that a cusp of f always accounts

! The term »invariant» is used in this paper to mean an independent function of the
coefficients of the equation of f whose vanishing is necessary in order that f possess a certain
singularity.

* S. Lefschetz, On the existence of loci with given singularities, Transactions of the American
Mathematical Seciety, Vol. 14 (1913), pp. 23—4I.
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for two invariants. The reciprocals of these statements will be used in studying

the reciprocal singularity of a given singularity.

2. Definitions. Algebraic singularities may be divided into two general
types, simple and compound. Simple point (line) singularities are built up of
double points {lines) and contain no double lines (points). They are ordinarily
called multiple points (lines). Compound singularities are those that contain
both double points and double lines. Multiple points are formed by the coin-
cidence of nodes and contain only those nodes which are created by the neces-
sary crossings of the branches of the multiple point. Multiple lines are the
reciprocals of multiple points.

Compound singularities result when certain multiple points of a curve
become consecutive, that is, move into coincidence along given directions. The
simplest example of this is the tacnode which consists of two consecutive nodes
and two consecutive bitangents. Multiple points in becoming consecutive always
involve the consecution of multiple lines, and conversely.

Another method of forming either simple or compound singularities, super-
position, will be used in this paper. Two or more singular points are said to
be superpbsed when they coincide so that the nature of each component singular
point is not affected. The resulting singularity is the same ‘as if the component
singular points were lifted out of the plane successively and superposed without
altering the relative positions of the branches within each singular point.

3. Invariants associated with multiple points. The postulation of a
simple multiple point of order r is r(r+1)/2 and the number of invariants as-
sociated with it is r(r+1)/2—2. The multiple point contains r—1 loops each
of which may vanish causing a node in the singularity to be replaced by a cusp.'
For the most general multiple point of order r with £<7r—1 cusps

L=r(r+1)/2+k—2.

! By a vanishing loop is meant a loop that disappears because and only because the
tangents to its two branches become coincident. Some of the loops of the curve at a singularity
may be imaginary corresponding to a certain number of imaginary nodes or acnodes among the
nodes composing the singularity. Since the limiting form of an acnode as the two conjugate
imaginary tangents approach coincidence is a real cusp and since the tangents of a pair of im-
aginary npodes may coincide respectively to form a pair of imaginary cusps, the number of in-
variants associated with a singularity is unaltered by the reality of its component double elements
and therefore no distinction need be made as to the reality of these double elements.
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Any number j of multiple points of orders 7;, =1, 2,...,j, may be super-
posed to form a multiple point of order =r; which will have as many distinct
tangents as the sum of the distinet tangents of the component multiple points.
A multiple point thus formed contains as many cusps as the sum of the numbers
occurring in the component multiple points and no more, since only nodes are
added by superposition. A multiple point formed by superposition of order
»=3r; containing k= 3k; cusps is the same as if it had been formed by the
coincidence of r(r—1)/2—% nodes and % cusps for which the value of I, is
given above. .

If the j multiple points are superposed in such a way that any tangent of
one coincides with any tangent of another, the resulting singularity is compound
and will be discussed in the next section.

4. Invariants associated with compound singularities. A compound
singularity on an algebraic curve f may be formed by the consecution of s
multiple points of f each of order 7;. Assume that r,=r,=ry=--=7,. The
component multiple point of highest order r, is called the principal point of the
singularity and the order of the principal point is the order of the resulting
singularity.

Enriques® has proved that the postulation of s consecutive points of orders
7; on f is the same as the total postulation of the s multiple points considered
as distinct on f, that is

]
—I— Z 1'1;(7'1‘ + I).
2 i=1

Assume that s points are consecutive on a curve. If one of the points P
is fixed, one condition determines the direction of approach to P of each of the
remaining s—1 points. The two parameters defining P and the s—1 parameters
determining the s—1 directions through P total s+ 1 parameters. Therefore the
number of independent parameters involved in the location of s consecutive points
on any plane curve is s+ 1.

The postulation of a singularity is the total number of conditions necessary
and sufficient to determine both the nature of the singularity and its position.
The Sry{(ri+ 1)/2 relations among the coefficients of f then involve the s+ 1

! F. Enriques, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche,
Vol. 2, pp. 404—408.
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parameters which determine the positions of the s consecutive points. From these
3ri(ri+1)/2 relations the s+1 parameters may be eliminated in Sr;(r;+1)/2—s—1
independent ways, each eliminant being an invariant associated with the singul-
arity. Then for s consecutive multiple points of orders s;, there results

P
I,= lZ1',~(ri+ 1)—s—1I.
2=

Since a compound singularity. of order » at P involves r branches of f
through P, these branches will form »—1 loops. When a loop vanishes, the
node adjacent to the loop becomes a cusp. The introduction of each cusp in-
creases by unity the value of I, associated with the singularity.

The most general singularity that can occur on an algebraic plane curve
consists of s principal r,-fold point P to which j series of multiple points have
become consecutive along distinct sets of branches of the principal point and,
moreover, such that any point P; of any series may have j; series of multiple
points consecutive along distinct sets of branches of P;. For any singularity of
this nature, the theorem of Enriques still holds.

In any such series of consecutive points, one condition is necessary and
sufficient to determine the position of each point consecutive to P whether along
the same or distinct sets of branches. The positions of the s consecutive points
are, therefore, in the most general case, determined by s+ 1 conditions.

The most general algebraic singularity of order », contains s, branches and
therefore r,—1 loops any of which may vanish and introduce a cusp which
replaces a constituent node.

Finally, the most general algebraic singularity of order », cousisting of s
consecutive r+fold points which have become consecutive in the general way
described and containing %<1, —1 cusps gives rise to the following number of
invariants

I =%E?‘i(7'i +1)+hk—s—1.

Compound singularities are formed by superposition when multiple points
are superposed so as to have a common tangent. Any number j of multiple
points of orders 7; can be superposed so that all have a common tangent. The
resulting singularity is of order =7y and consists of a principal point of order
37; and a consecutive j-fold point. The value of I, is obtained by regarding



Invariants associated with singularities of algebraic curves. 265

the singularity as formed by the consecution of two multiple points of orders
=7; and .

Any number of compound singularities may be superposed so that two or
more have a common tangent which is a multiple tangent for any or all of the
points concerned. As above, the value of I, for the resulting singularity is found
by considering that singularity as formed by consecution.

A compound singularity may be a singular point some of whose tangents
are multiple tangents. A tangent at a multiple point P may be a multiple
tangent of any order ¢ with simple contact at P or with any number of points
of contact up to and including ¢ located at P. In this case, the singularity
accounts for one more invariant than the sum of the invariants belonging to
the two singularities when distinet, because if either the point or line is given,
the other has but one degree of freedom. The simplest example of such a
singularity is the flecnode, for which I,=2.

5. The determination of I; for a given singularity., The number 7; of
invariants among the coefficients of the equation of f in line coordinates which
express the condition that f possess a given singularity is identical with the
number of invariants among the coefficients of the equation of f in point co-
ordinates which express the condition that f possess the reciprocal of this given
singularity. This follows from the principle of duality.

Nodes and cusps do not account for invariants among the coefficients of
the line equation of a curve just as bitangents and stationary tangents account
for no invariants among the coefficients of its point equation.

The following theorem will be useful in determining the value of I, for a
singularity whose point constituents are known:

Theorem I. If among the coefficients of the equation in point coordinates of
an algebraic curve f there exist I,) tnvariants in addition to those accounted for by
the nodes and cusps of f, then among the coefficients of the equation of f in line
coordinates there must exist I invartants in addition fo those associated with the
bitangents and stationary tangents of f, such that I, =1 .

Consider and algebraic curve f of order =, class m, with J nodes, x cusps,
= bitangents and ¢ inflections. Let there be I,” invariants among the coefficients
of the point equation of f which vanish in addition to the d + 2x invariants due
to the double points and I, invariants among the coefficients of the line equation

34—30534. Acta mathematica. 56. Imprimé le 7 novembre 1930.
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of f which vanish in addition to the 7 + 2: invariants due to the double tangents.
To prove I/=1I.

Since the curve f has a definite number of degrees of freedom, the equa-
tions of f in point and line coordinates must contain the same number of in-
dependent coefficients. This fact is expressed by the equality

én(n +3)—0~—2x—1I, = ém(m +3)—c—2.—1.
From Pliicker's equations, there results for any algebraic curve
én(fn +3)—d—2x= ém(m +3)—7—21.

Subtracting this relation from the one above, we obtain
Ip’ = I(, -

This theorem readily determines the value of I; for a multiple point of
order r containing £<r—1 cusps. We have seen that such a singularity con-
tains 7(r—1)/2—% nodes and % cusps and that for it L,=r»(r+ 1)/2 +k—2.
The nodes and cusps contained in this s-fold point account for »(r—1)/2 + %
invariants. Subtracting this number from I,, we obtain r —2 as the number of
invariants belonging to the singularity in addition to those accounted for by
the nodes and cusps contained in it. Assuming that this singularity belongs to
a curve that has no further point singularities or line singularities of order
greater than two, apply the above theorem and there results:

For any multiple point of order » containing k=<1»—1 cusps, that is, with
or without consecutive tangents,

L=y —2.

This theorem may also be used to determine the value of I for a singularity
formed by superposition. Superpose j singularities, simple or compound, each
occurring at a single point so that no tangent of one coincides with a tangent
of another. A certain number of nodes are added by the superposition. Consider
that all the j singularities are possessed by the same curve and determine what
part of the increase in I, due to superposition is over and above the increase
due to added nodes.
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Let I, ; and I; respectively represent the numbers of invariants associated
with the j distinet singularities of orders 7;. Some or all of these singularities
may be compound. The value of I; for a compound singularity will be obtained
in the next section. Its value does not affect the determination of the addstional
invariants due to superposition.

When singular points are superposed, the nodes added are created by the
intersections of the branches of the component singular points, each branch of
each singular point intersecting every branch of every other singular point. The
.number of additional nodes, therefore, depends only on the orders of the com-
ponent singular points. The number d of additional nodes is therefore the same
for j multiple points of orders 7; as for j compound singular points of the same
orders 7;. Then in determining d for any set of superposed singular points, we
need consider only the principal points of the singularities involved. The j
principal points of orders »; form a single principal point of order Zr; which
contains all of the d nodes added by superposition. The number d is, therefore,

J J J
¢l=—1—27‘,-< )'['—I)—izri(l‘[*—l).
2 i=1 2=

i=1 =1

The various series of multiple points consecutive to the component principal
points are, after superposition, consecutive to the resulting principal point along
mutually exclusive branches. These consecutive multiple points occur in the same
way as before superposition, since, by the definition of the process of superposi-
tion, the nature of each component singular point is not affected by it. There-
fore the number of invariants associated with the consecutive multiple points is
unchanged by superposition. The difference in the number of invariants as-
sociated with the principal point of the singularity formed by superposition and
the sum of the numbers associated with each of the component principal points
considered as distinct is, then, the total number of invariants added by super-
position. This number is

éEl'¢(2n~+ I)—Z-—%ETi(ri‘l' +2j=d+2(j—1).

This reusult shows that in addition to the d invariants belonging to the addi-
tional nodes, 2(j—1) invariants are added by the superposition of j singular
points of orders =2,
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Therefore a singularity formed by the superposition of j singular points of
orders ;=2 has

L=3L:+d+z2(j—1)
Li==3h:+ 2(j—1).

The expression for I, results directly from Theorem I.

6. The determination of I; for a compound singularity. As stated in
section four, the most general algebraic singularity at a single point can be
formed by the consecution of multiple points. This singularity is defined by
the number, orders and manner of combination of its component multiple points.
For such a singularity, I, has been found in section four. The problem now is
to determine the value of I; for a singularity so defined.

Let the singularity comsist of a principal point P of order r to which j
series each containing s; multiple points are consecutive along j; mutually ex-
clusive sets of branches through P. Any series may subdivide as described in
section four. Let the point of each series adjacent to the primeipal point I’ be
denoted by P; of order 7, 7=1,2,...,7.

If a series of consecutive points should subdivide at any point, this will
have no effect on the order of the multiple tangent formed by that series. For
example, if two or more series of multiple points are consecutive to P, along
mutually exclusive sets of branches of P;, this does not alter the fact that all
the 7, branches of P, must have contact with each other at P because P, is
consecutive to P along r, branches of P. Then, whether any series of conse-
cutive points subdivides or not, the resulting singularity contains j multiple
tangents of orders 7. o

Assume that between each two adjacent sets of the j sets of r; branches
there are a; distinct simple branches of the principal point such that a;=o.
The entering and retiring branches of f through P may belong to sets of simple
branches so there may be j+ 1 sets of branches of f through P each containing
a; branches with distinct simple tangents. The order of the resulting singularity
is, therefore,

3 i+
>, 7+ Zai=r.
i=1

i=1
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The same singularity can also be formed by the superposition of j+ 1
multiple points of orders a; and j compound singular points of orders 7; alter-
nately. Let the value of I, for each of these j component compound singular
points be denoted by I,;. Then by the method of the preceding section, by
which the value of I for a singularity formed by superposition was obtained,
there results for the complete singularity at P

J
L:Z(Iz,;—7';)+r+ 2(j—1).

i=1

In the above, the computation of I; for the most general singularity at a
single point has been reduced to the computation of the values of I,; each of
which is associated with a compound singularity at a single point with one and
only one distinct tangent.

The following theorem will complete the process:

Theorem II. If a compound singular point has but one distinct tangent and

contains neither cusps nor inflections, then for it

Il:-[zh

It has been proved by C. A. Scott' that if a singularity at a point has
but one distinct tangent, the number of its latent nodes is equal to the number
of its latent bitangents. By latent nodes [bitangents] is meant all the nodes
[bitangents] contained in the singularity in addition to the r(r— 1)/z nodes
[2(g—1)/2 Dbitangents] necessary to form the principal point [line] of order r [g]
of the singularity. ‘

Consider a compound singularity of order r; consisting of s consecutive
multiple points of orders 7; such that r,=ry=7r;=---=7,. The singularity has
but one taﬁgent which has contact with r, branches at the singular point. This
tangent is therefore of order ;. The number of latent nodes d’ and latent

bitangeunts ¢’ is

! C. A. Scott, The nature and effect of singularities of plane algebraic curves, American
Journal of Mathematics, Vol. 15 (1893), p. 235.
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and the total number of nodes d and bitangents ¢ contained in the singularity
is, therefore,

d=t= éZr,-(r,-— 1).

i=1

This singularity is assumed to contain no cusps. It will therefore contain
no inflections, since only bitangents are involved in the consecution of multiple
points with distinet branches. This singularity is also assumed to be built up
by a single series of consecutive multiple points, but the series may subdivide
at any point or points without altering the final result.

Let I, and I, be the numbers of invariants associated with this singularity.
Let » be the order, m the class and 7 and ¢ the total number of bitangents and
inflections respectively of an algebraic curve possessing this singularity and no
other except double lines. By Pliicker's equations, since d=¢,

m=n(n—1)—2¢
t=3n(n—2)—6¢

2e=2t+(n*—2n—28(n*—2¢—9).
For the reason given in Theorem 1
;n(n +3)—IL,= ;-m(m +3)—L-—-(z—1t)—2:.

Substitute in this equality, the values of m, = and ¢ in terms of » and ¢, simplify
and there results :

1 Ip p— Il
thereby proving the theorem.

The value of I, for the complete singularity has been defined by a formula
which involves the numbers I;;. These numbers I;; are associated with com-
pound singular points each of which has but one distinct tangent. Then by
Theorem II each I; may be replaced by its corresponding I, ; and the final
formula obtained defining the value of I; for the complete singularity:

J

I = Z(Ip,i—ri)+r+ Z(J— 1)

i=1

wherein
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&
Iy = 12 ran(rin+ 1) —si—1
2=
is the number of invariants accounted for by s; consecutive multiple points of
orders 7, where ¢ is fixed for any one series and 7; =1y 1.

The value of I; for the most general singularity at a point P is therefore
given in terms of the order » of the singularity, the number j of distinct sets
of branches along which one or more multiple points are consecutive to the
principal point, the number of branches 7; in each set and the numbers I, ; each
of which is the number of invariants accounted for by one of the j sets of 7;
branches considered as a distinct singularity.

Compound singularities formed by the superposition of singular points such
that tangents coincide have been discussed in section four. In every case, the
singularity could have been formed by the consecution of multiple points and
the value of I, was so obtained. Likewise in each case the value of I, can be
obtained by treating the singularity as if formed by consecutive multiple points.

At the end of section four, singularities that consist of singular points
some of whose tangents are multiple lines were discussed. Since no double
points or lines are added by the coincidence, by Theorem I the values of /, and
I; are each increased by the samne amount which is unity for each such coinci-
dence. For example, the value of I, for a flecnode is three.

7. The effect of cusps on the value of I;. So far, in determining the
value of I, for a compound singularity, it has been assumed that the singularity
contains no cusps. The occurrence of cusps in a simple multiple point does not
affect the value of Ii, but this does not hold for compound singularities.

Any singularity of order » at P contains r branches of f through P and
these branches form r—1 loops. The maximum number of cusps that may occur
as components of any singularity, simple or compound, of order » is, there-
fore, rr—1.

In a compound singularity, both branches of certain loops have the same
tangent. Such a loop must, therefore, contain a point of inflection. This loop
vanishes when the node adjacent to it becomes a cusp, but when this occurs,
the stationary tangent at the inflection on the loop coincides with the tangent
to the singularity, replacing one of the bitangents. This occurs whenever aloop
formed by branches involved in the consecution of the principal point with one
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or more multiple points vanishes. Then, since replacing a bitangent by a station-
ary tangent increases the value of I, for that singularity by unity and since this
occurs when each cusp is introduced, it follows that replacing a node by a cusp
in a compound singularity (except, as noted below, in that part of the principal
point not involved in the consecution) increases the value of I, as well as that
of I, by unity.

When a cusp is introduced in the principal point replacing a node whose
branches are not involved in the consecution of the principal point with one or
more multiple points, I, is increased by unity, but I is not affected just as in

the case of a simple multiple point.
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