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This paper treats the Wiener-Hopf  equation in the framework of a Banach con. 

vo]ution algebra A 2 of functions on the real line tha t  has been constructed and i n -  

vestigated by Beurling, by  whose permission we here reproduce par t  of tha t  theory. 

The author also acknowledges with much pleasure his great indebtedness to Professor 

Beurling for his guidance in this research. 

We use few specialized notations and conventions. Our function spaces are all 

spaces of complex valued functions on the real line, hence we denote by  L 1 (L s) the 

space of all functions tha t  are integrable (square integrable) over the whole real line. 

When an integral sign carries no limits, the integral is understood to be taken over 

the whole real line. The elements of the two principal function spaces A 2 and B s 

(the Banaeh space dual of A s) are also distinguished by  letting Latin minuscules 

denote elements of A s and Greek minuscules elements of B s. The norm sign II/11, I1~11 

is only used for the norms of A S and B ~. By the above convention no ambiguity 

may  arise therefrom. All infinite sequences are indexed by  the natural  numbers and 

sum and product signs with no limits mean sum and product respectively over the 

whole set of natural  numbers (we use only absolutely convergent sums and products). 

Since the original paper  of Wiener and Hopf  [6] many  authors have worked to 

remove its growth restrictions on the kernel of the equation. The case when the 

Fourier transform of the kernel has no real zeros is t reated in a recent big expository 

paper by  Krein [4]. The case when the transform of the kernel is real and has real 

zeros has been treated by  Widom [5] and is also the object of the present paper. 

The essential feature of this s tudy is tha t  it yields, for kernels / E A  s tha t  satisfy 

certain additional restrictions on its Fourier transform f, all solutions in B s of the 

Wiener-Hopf  equation. A similar s tudy was made earlier by  Beurling [2], using still 
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more restrictive conditions of f, namely, that  f -  1 have only a finite number of zeros 

and near each zero be bounded from below in absolute value by the absolute value 

of some non-constant linear function. 

1. Properties of  the Beurling algebra A 2 and its dual space 

The algebra A 2 

All results in this section (together with many generalizations) are due to Beur- 

ling [1]. In order to make our paper self-contained, we give here the part of the 

theory in the cited paper that  we will use in the sequel. 

Let ~ be the convex cone in L 1 that consists of those bounded positive func- 

tions that  are symmetric about the origin and non-increasing on the positive half-axis. 

For wEA~, put N(w)=oJ(O)§ We call the function N:  ~-->R + the norm of ~.  

:PROPOSITION 1. The cone ~ is closed under addition and convolution (i.e., ~ is 

a semiring) and the norm. is additive and submultiplicative with respect to convolution. 

Moreover, an increasing (in the order determined by ~ )  sequence o/elements o/ ~ whose 

norms are bounded converges a.e. to an element o/ A~ with norm bounded by the same 

bound. 

The verification of these statements is easy. 

We now define a (convolution) subalgebra A 2 of L 1 as follows 

/2 oo}. {/ I / e L 1, inf {N f dx [ e = l,/,,2 < (1) 

I t  follows directly from the Cauchy-Schwarz inequality that  S ]/[dx<~ ][/][ so that we 

could a priori have taken / to be only measurable. Another expression for the func- 

tion /-->H/H (which we will soon show is a norm) is obtained by minimizing along 

half-rays in /2 
]]]]]=�89 inf {N(eo)+ f ~ d x ] o ) E ~ } .  (2) 

So lar we do not know if A s is a linear space, let alone a Banach space. However, 

suppose that  /1, /~ cA2 and take ~ol, so that they determine ll/lll and lit211 re- 

spectively within an arbitrary e > 0  by equation (2). Then 

f f ~o 1 + o~ 2 o~ 1 J o92 
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by  an elementary inequali ty ( ( a -  b) 2 ~> 0, pu t  a = to1 I/ 1, b = tos [/~l). Thus /1 + /2  fiA 

and [[/ l+/sl l~<ll/al l+ll /~ll+2e,  but  e was arbi trary,  hence we have the triangle in- 

equal i ty  and we now know t h a t  /-+[[/[I is a norm, since it is obviously homogeneous 

and vanishes only for null functions. Suppose we had  a Cauchy sequence {/,}~o in 

this norm. By  passing to a subsequence we m a y  assume tha t  [ [ / , - / m l l < 2 - ~ e  for an  

a rb i t ra ry  e > 0, m ~>n. Since the L 1 norm is domina ted  by  the A s norm, the theorem 

of Beppo Levi shows tha t  the sequence converges almost  everywhere to a limit func- 

t ion /. Pu t  F =  lim~_~r [[/, [[ , obviously [ F - ] l / n l l [ < 2 - n e .  Now choose to each [n an  

ton E ~ subject to the conditions N(to~) = F, and ~ l/his to~  dx < F + 2-n+s e. This can 

be done, if necessary at  the cost of passing again to a subsequence. Now, with the 

hypotheses made, 

>~ F _  2_ne 

if m/> n. Since 

by  equat ion (1) we have then  

\ O)n tom 

or equivalently, by  an e lementary ident i ty  

f tontom /n /m 2 

tOn § tom ton tom 

ton § tom ] 

dx < 2-n+48 .  

This, however, proves in the s tandard  fashion using the Beppo Levi theorem tha t  

l imn-~/n / ton=g exist a.e. on the support  of /. Namely,  if I is an open interval  

symmetr ic  about  the origin and  I '  its complement,  then ton is bounded  from below 

on I by  ( F + 4 e ) - l S r [ / n [  2 dx and since j'[/[Sdx,.<[[/[[~ for any  / C A  2 implying tha t  

] = lira/n is also an L 2 limit, this bound is uniform for large enough n, provided / 

does not  vanish d.C. on I ' .  Let  J be the union of all symmetr ic  open intervals I 

such tha t  / does not  vanish a.e. on I ' ,  then we have actual ly  proved tha t  the limit 

funct ion g exists a.e. on J and  we define g=O on J ' .  Pu t  l imto~=to ,  then / = t o g  

a lmost  everywhere since / = 0  a.e. on g- l (0)  and on the complement  of g- l (0)  the 

sequence con converges a.e. to  //g. Now Fa tou ' s  lemma yields N(co)<~F, ~[/[2to-ldx= 

[/g] dx <~ F which shows t h a t  to e ~ and tha t  / e A 2 with [[/[[ ~< F.  We then apply  the 

whole procedure over again to the s e q u e n c e / , - / ,  and find tha t  [ [ / - /1[[  < e. Bu t  e > 0 

was arbi trary,  hence we have proved tha t  lim [[ /- /~[[  = 0 and tha t  A s is a Banaeh space. 
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As a byproduc t  of the proof we have also found tha t  for a n y / E  A 2 the infimum 

in equat ion (2) is actual ly  a t ta ined at  some o~1E~ and it is s t ra ightforward to check 

in the manner  of the preceding proof t h a t  /-->eof is a one-valued application. This is 

a seemingly non-trivial  result  t ha t  is not  in [1]. F rom the Cauchy-Schwarz  type  in- 

equal i ty  

and 

then  follows II/~-gll~ II/11 Ilgll, hence A S is a Banach algebra under convolution. 

The conjugate space B 2 

Any  given continuous linear functional  /--+0(]) on A 2 is also continuous in the 

stronger topology defined by  the pseudo norm ,~[/[2a)-~dx for any  ~oe~ ,  hence re- 

presentable where this norm is finite by  0(/)= S/Cfdx with some measurable function 

satisfying S IV]2~odx< ~ .  Actually, f rom the definition of norm on A 2 in (1) one 

readily deduces, put t ing  / = ~ w  tha t  ff[~12(Ddx<N(o))H(I)]l 2, where H(I) H denotes the 

norm of (I) as an  element of the strong dual Banach space B 2 of A e. The representa- 

t ion ~ is only defined as a measurable funct ion on the support  of w, however, dif- 

ferent representat ions are equal a.e. on the common par t  of their domains since if 

~ ~ e ~  and  ~1, ~2 are the respective representations, then  ff/(q51 -fff2)dx represents 

the zero functional  on { / [ ~ [ / [ ~  ~dx< ~ ,  o)= Min (col, w2) } hence ~1= ~2 a.e. on 

supp co = supp w 1 N supp w2. Thus we m a y  th ink  of (I)(/) as represented by  a measurable 

funct ion ~ on the whole line and the previous representatives as the restrictions of 

this funct ion to  the supports  of the respective corresponding co. We also drop O as 

a nota t ion for the element of B 2 in favor  of ~ and we then  have 

= s u p  /(~dx [N(ml) ~ 

We collect our results in a theorem. 
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THEOREM 1 (Beurling). The set A 2 de/ined by (1) is a Banach algebra under con- 

volution with norm given alternatively by (1) or (2). The strong dual B 2 o/ A ~ (as a 

Banach space) can be represented by {~ ] sup {(N(w)) -1 ~ [~210) dx [ 0) 6 ~ }  = [[ 9 [[~ < oo} 

and this norm is the correct dual norm under the duality S /~dx  : A~• B2-->C. 

In this paper, we will always use latin letters for the elements of A ~ and greek 

letters for the elements of B 2. Hence we take the liberty of using the same sign for 

the norms in A 2 and B 2. 

When computing the norm in B 2 the following proposition is useful. I t  says 

roughly that  one need only consider those functions to that  are characteristic /unc- 

tions of intervals. 

PROPOSITION 2. The norm o/ an element 9 6 B  ~ is alternatively given by IIq ll = 

sup {p(r, 9) It > O} with p(r, 9) = [(1 + 2r)  -1 j ' r r  191 dx? 

Proo/. If 0)6 g/ is a step-function, it may be thought of as a positive linear com- 

bination of characteristic functions of symmetric intervals, whence ~[9[~0)dx = 

a~ (1 + 2r~) (p(r~, 9)) ~ ~< N(0)) (P(9)) ~, putting for the moment sup {p(r, 9) [ r > 0} = P(9). 

An arbitrary function 0)6f /  is the limit a.e. of a decreasing sequence of step-func- 

tions so that  ~[9120)dx<-,,N(0))(P(9)) 2 for all 0)6f~, implying P(9)~>][9[[. But  the 

opposite inequality is trivial, hence P ( 9 ) =  [[9[[ as claimed. 

An immediate consequence of Proposition 2 is that  A 2 and B 2 are not reflexive 

Banach spaces since the strongly closed subspace B0 ~= (g l l im,_~p( r ,  9 ) =  0} of B ~ is 

not orthogonal to any non-vanishing element of A 2. We will show now that  A 2 is 

actually the dual space of B02 (this particular result is not in [1]). We first need a 

lemma. 

LEMMA 1. For every ] 6 A  2, / 0 ) ] l e B  2 and has norm 1. 

Proo/. By the Hhlder inequality, [[/0)71]] >/ I ] / l l -xs[ /0)f~dx= 1. Conversely, if 

[[/0)f ~ [[ > 1 then by Proposition 2 for some r, Sr_r ][I ~ o)72 dx > 1 + 2r. Put  0)(y)= 0)f+ y 

if [x[<.r, 0)(y)=0)f if [x[>r, then 

d lip (l lip 0)P dx) +2r-f:, I,/,,<0, 

contradicting the definition of 0)r. Hence H/0)f~H=I, as claimed. 

Now suppose that  ~ F ( 9 ) : B ~ - + C  is a continuous antilinear functional on B~ 

and let B~ be the closed subspace of B~ consisting of those functions that  vanish 
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outside of [- r, r]. Then if ~ e B~, II ~I] ~ < Y-~ ] ~ ]~ dx < (~ + 2~) ]] ~I] ~ so that F is repre- 

sentable on Br ~ by 

F(q)) = j-~r ]~ dx (/EL2( - r, r)). (3) 

If / is continued as the zero function outside [ - r ,  r] then /EA 2. Substitution of 

~=/co71 in (3) yields, by Lemma 1, 

Ilfll-<llF]l. 

:For r =  1, 2 . . . .  we construct the corresponding functions /1, /2 . . . . .  On the set 

[ -  n, n] (1 [ -  m, m] the two functions/n and/m agree a.e., hence ]imn=or = / exists a.e. 

and by the lemma of :Fatou and the Lebesgue dominated convergence theorem j"/95 dx 

exists for every ~0EB ~ and satisfies ]S/~'odxl<--.llFl] ]]q~][" Thus F ( T ) i s  represented by 

/(o dx on the closed hull of the union of all B2r, which is B~. We have proved Propo- 

sition 3. 

PROPOSITION 3. A 2 is the strong dual o/ B~. 

Our next remark concerns the convolution of functions in A 2 with functions 

in B 2. Given / , gEA ~ and tvEB 2 we have by Theorem I the repeated integral in- 

equality 

By Fubini's theorem, it is permitted to interchange the order of integration, hence also 

f(f/(y-x) ~(x)dx)g(y)dy<~ [[/][ [[g[[ [1~[[" 

This together with Theorem 1 proves Proposition 4. 

PROPOSITION 4. l /  / C A  ~, cFeB ~ then /-~q~EB 2 and in/.~nl~<ll/ll licit  

The subspaee Bo 2 is stable under the operation of convolution with a function 

in A S. I t  is practically evident that  ~0EB~ implies /~-~0EBo 2 for any /EA,  since 

I,~r-r/(X-- y) ~(y) dyl 3 < Srr [ / ( x -  y)I s dy Sr_r I(p(y)12 dy t ha t  tends to zero as x tends to 

infinity. The continuity of the convolution as expressed by Proposition 4 and the 

previously used fact B~= UB~ then shows that  /*cfeB~) for any ~eB0  2. However, a 

stronger "one-sided" stability holds : 

PROPOSITION 5. I /  / C A  2, qJEB 2, q)Z(- 0% O)EB~ then (/-)eq))"Z(- oo, O)EB~. 
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Proof. I n  view of the  above  r emark  we need only show t h a t  

z ( -  ~ ,  o/ /(x - y/f(yl dy = ~o(x/e Bg. 

Indeed,  ~(x) tends to zero as x --> - ~ ,  since [~p(x)[~ ~ [[ ~[[z [[/[[ l~  oo [[1 s co/~ dx. Thus  

Proposi t ion 5 is proved.  

The Fourier transform classes of  A 2 and B 2 

We will now invest igate  the  propert ies  of the  Fourier  t ransforms of elements  in 

A s and  B s and we s ta r t  wi th  the class B s, which is the easier. However ,  the  Fourier  

t rans forms  of elements of B 2 do not  a lways exist in the classical sense and  we will 

here represent  t hem b y  funct ions t h a t  are harmonic  in the upper  half-plane of a 

(~, ~)-eoordinate system, in the  following way  

= ~ =  f~(x) e -~x-~N dx. ~) 

For  a n y  given ~ > 0 the  Four ier  t rans form exists and  determines  the  funct ion ~ in 

the  classical way. This, of course, holds t rue  in much  wider classes of functions 

( tempera te  distributions),  however,  among  these the  funct ions in B s are character ized 

by  a precise condit ion on the  growth of ~(~e, ~]) as ~1 tends  to zero. Let  2HM~(~) 

denote  the  square of the  no rm of ~(~, ~]) in JS~(-  0% c~), 

then  Theorem 2 gives the  precise character izat ion of B 2 on the Fourier  t ransform side. 

THEOREM 2. (Beurling). I] q~EB 2, then /9(~])<]]~]]2(1+~-1) for all ~ > 0 .  Con- 

versely, i/ s u p { ( l + ~  1 ) - I / V ( V ) [ ~ > 0 ) = M <  0% then v E B  2 and [[~[[S<eSM. 

Proof. Suppose t h a t  ~ E B s, t hen  b y  the  Parseval  formula  and  Theorem 1, 

M9(~1) ~]-1). 

Conversely, if M~(~/)~< M(1 �9 ~/-a), then  Proposi t ion 2, the  Parseval  formula  again  and  

some computa t ion  shows t h a t  

[l~[[S= sup (1 +2v 1)-~f '-' f [~(x) ]s dx ~< e s sup (1 + 2~-~) -~ [ ~0(x)[ s e -s~ I~1 dx <<. e~M. 
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Hence Theorem 2 has been proved. The subspace B0 2 also has a characterization 

by Fourier transforms, as expressed by Proposition 6. 

PROPOSITION 6. A necessary and su//icient condition /or an element q~ o/ B s to 

belong to the subspace B~ is lim~=0uM~(u)=0. 

Proo/. We have for all ~0 E B s and U > 0 

f f eSuM~f(U) = e ~  [~(x)I s e -2~'x' dx >~ (U + 2) (1 + 2U-1) -1 _ 7_1 ~(x)12 dx. 

This shows that  the condition is sufficient. On the other hand, if ~ E B0 2 we get by 

partial integration putting ~r_r ]cf(x)l~dx=e(r)(1 + 2r) 

vM~(v)=v f l~(x)l~ e-~"X'dx= 2 f /e  (;) (V+ 2x)e-SX dx 

and the last expression tends to zero with ~/ by Lebesgue's bounded convergence 

theorem since s(x/u ) tends to zero a.e. while bounded by ]I~H ~. Hence the condition 

is necessary too, as claimed. 

We conclude the list of properties of ~(~, U) with a proposition on the pointwise 

growth of its absolute value near the C-axis. 

PROPOSITION 7. I /  q~EB s then I~(~,U)l ~< {2u-1M~v(U/2)) �89 which is O(U -1) /or  small 

U and o(u -1) i~ q~EB~. 

Proo/. By the Cauchy-Schwarz inequality and Parseval's formula 

Ir f l~(x)le-"X'dx< {fe-"~'dx f I~(x)l~ e-"X'dx}�89 M~(v/2)} '. 

and the rest of Proposition 7 follows by Theorem 2 and Proposition 6. 

The Fourier transforms of the elements of A s all exist in the classical sense. 

We collect in Proposition 8 the immediately obvious properties of this class of Fourier 

transforms. 
/ N  

PROPOSITION 8. The class A 2 o/ Fourier trans/orms I o/ /unctions in A s as a 

Banach algebra (with norm trans/erred /orm A s) under pointwise multiplication. I /  

[ E A  s, then ~ is a continuous /unction, lim~=~ [(~)= 0 and ]E 5 s ( -  oo, c~). The Schwarz 

class S o /  in/initely di//erentiable /unctions tending to zero at in/inity together with all 

their derivatives more rapidly than any negative power is contained in A s. 
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A contractor is a function z--->K(z):C--->C such tha t  K ( 0 ) = 0  and [K(z)-K(w)] <. 

[ z - w  I for all z, weC. In  [1], Beurling has shown tha t  every contractor operates on 

A Q, in fact, IIK(f)H < 6  I[f]] for all / C A  2. This, of course, implies tha t  if F(z)is analytic 
/~, /% 

on the set of values of / E A 2 and if F(0) = 0, then $'(]) E A 2. On the other hand, there 

are plenty of non-analytic contractors. This shows how the restriction from L 1 to A 2 

has altered the properties of the transform space, since by  a theorem of Helson, 

Kahane, Katznelson and Rudin [3], the space L 1 of Fourier transforms of functions 

in L 1 admits no non-analytic operators. 

The cited theorem of Beurling has a rather  lengthy proof depending on the com- 

putat ion of an equivalent norm in terms of the transformed function. In  this paper 

we need only the weaker proper ty  tha t  analytic functions operate on A 2, and this 

will follow from the Wiener-Levy theorem of general Banach algebra theory if we 

can identify the regular maximal  ideals of A/~ with the sets 7~ = {fl f ez~,  f(zr 0}, or, 

equivalently, the regular maximal  ideals of A 2 with the sets I~ = {/[ / E A 2, S fix) e - ~  dx = 0}. 

I t  is trivial to check tha t  these sets are indeed regular maximal ideals, and the essen- 

tial idea is to prove tha t  every maximal ideal has this form. From the general theory 

we know tha t  any  such ideal is expressible in the form Ir = {/] / E A 2, S/(x) (p(x) dx = 0} 

with some non-null function ~ E B e such tha t  the func t iona l / -+~ /~  dx is multiplicative. 

Obviously Sx~dx#O for some bounded interval I and its characteristic function may  

then be approximated from below by  a continuously differentiable positive function g 

so tha t  ~ g~ dx :4: O. The relation ~ gx+z ~ dy ~ g~ dy = ~ gx ~ dy ~ gz ~ dy follows from the 

multiplicativity property with the usual notation g~(x)=g(x+ a); if we differentiate it 

with respect to z at  z = 0  we find tha t  the function ql defined by  q~l(x)=~gx~dy 

(~ g~dy) -1 satisfies the differential equation ~ (x) = ~v~ (0) % (x). Moreover, as a con- 

sequence of Proposition 2, 11%]]~<(l+21xl) �89 ]]~vll , hence ~1 is O(]x]�89 at  infinity and 

consequently is of the form ql (x)= e ~ for some real a. Now we use the multiplicativity 

once more, this t ime together with Fubini 's theorem, to deduce tha t  [S/ (x)cf(x)dx-  

S/(x) e - ~  dx] ~ g(y)" of(y) dy = ~ /( - x) [~ g~ ~f dy - e ~ S g~ dy] dx = 0, i.e., Iv = I~. This proves 

the following proposition. 

PROPOSITION 9. I/  ]EA ~ and F(z) is a /unction satis/ying F ( 0 ) = 0  and analytic 

on the set o/ values o/ ], then F(])eA 2. 

7- -  622906 Acta mathematica. 108. I m p r i m 6  le 6 n o v e m b r e  1962. 
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2. Formal solutions 

The Wiener-Hopf equation 

We will s tudy the Wiener-Hopf  equation 

: / ( x -  y) of(y) dy = q~(x) (x O) (4) 

for a kernel ] in the algebra A 2. Under certain additional assumptions on / we will 

find all functions ~ in B 2 tha t  satisfy equation (4). We use the standard reformula- 

tion of tha t  equation; with the understanding tha t  ~ ( x ) = 0  for x < 0 ,  ~p(x)=0 for 

x ~> 0 we write 

f /(x - y) of(y) dy = ~(x) + F(x). (5) 

Equation (5) contains equation (4) together with a relation that  defines ~p E B ~ once 

a solution ~ E B 2 has been found. Proposition 5 shows tha t  in such case one actually 

has ~ E B~. The harmonic transform of F, v~(~, U) = S ~ ~ ~(x) e -~x+~ dx = S ~ ~ ( x ) e  -~(~+~)~ dx 
is evidently an analytic function in the upper 2u-plane and will be denoted by  ~(~ + iU)- 

Correspondingly, the harmonic transform of ~ is anti-analytic, hence we make the 

notation 95(2, U)= q5(2 - iU) with ~ analytic in the lower half-plane. 

Since a e B  2, I-c(x)]~la(x)l a.e. implies T e B 2 and [[~]] ~ [I all the function 

(5,7(x) = f / ( x -  y) of(y) [e - 'Iyl - e -~I~l] dy 

is in B ~ for all U. Moreover, 16~(x)] ~< ]/]~]~], hence by  the Lebesgue dominated con- 

vergence theorem (~,(x)-->0 a.e. as U-*0 (in fact  everywhere, as the family 6~(x) is 

equicontinuous). By  the same theorem, S(i,(x)g(x)dx-->O as ~-->0 for all g ~ A  ~. This 

condition is, by  the Parseval relation, equivalent to the following where we have in- 

troduced our new notations for the Fourier transforms of ~ and ~ and made use of 

equation (5), 

lim f [ ( ] ( 2 ) -  1 ) 9 ~ ( 2 - i ~ ) - ~ ( 2 + i u ) ] ! J ( 2 ) d 2 = 0  for all ~ e A  2. (6) 
~ = + 0  J 

Equation (6) is the starting point for the computation of the solution of the Wiener-  

Hopf  equation. The remainder of the work on this solution will be carried out in 

three stages. In  the first we derive a formal solution, in the second we derive nec- 

essary conditions on the parameters of this solution and in the third we prove that  
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these conditions are also sufficient. In the first and second stages we make addi- 

tional restrictions on the nature of the kernel, but  the third stage contains no addi- 

tional assumptions in this direction. We thus obtain in the end a sharp result that  

is summarized in the last section of the paper (Theorem 3). 

The faetorization lemma 

We now restrict ourselves to the case where f is real-valued (i.e., the kernel is 

Hermitian symmetric). :Furthermore, we suppose that  log [f(~)-  1[ is locally integrable, 

hence f is not identically equal to one on any interval. We also introduce the nota- 

tion (a,, b~) for those maximal disjoint open intervals on which [(~)>~1, so that  

{~ [ f(~) ~> l} ~ = LI ~ (a~, b~). Since [ tends to zero at infinity, this union is a bounded 

set. Put  ~ = ~ + i~ and let log ([~ - b~]/[~- a~]) denote the' branch of the logarithm 

function (with a cut from a~ to b~ along the real axis) that  takes real values on the 

real axis outside [a~, b~]. Then the relations 

h ~ ( ~ ) ~ - 2 ~  t - ~  • 1 7 6  (7) 

define hl(~) as an analytic function in the upper half-plane and h2(~) as an analytic 

function in the lower half-plane, the upper sign of the last term taken in the former 

case and the lower sign in the latter. Indeed, the infinite parts of the integral in (7) 

converge since both log l f - 1 ]  and ( t -~ ) -1  are square intcgrable outside some bounded 

interval. Also, the sum 

( : -  b~) (1- b~- a~ 1 Z log \~ _ a~/= Z log ~ - a~! 

converges uniformly outside each neighbourhood of {a,} U {b~}. The two functions have 

limiting values hl(~ ) and h2(~ ) a.e. on the real axis, given by the expressions 

h2(,)j=~(~-hl(~)/1'' h(~)-ig(~))+l(~]og ~ ~ - b "  + ] o g s g n ( f ( ~ , - 1 ) ) ,  

where h (~ )= log l f (~ ) -  1[ and g(~)= l [ h(t) j t - ~  dr 

The Hilbert transform g of h exists since h can be expressed as the sum of one func- 

tion in L 1 and one in L 2. Also, we have put  log ( + 1) = O, log ( - 1) = is.  Hence the fol- 

lowing factorization holds a.e. on the real axis 

e ~ ' +  e - ~ +  = f ( ~ )  - 1 .  
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Thus ]-I can be written as the product of two factors, one that is the limit of an 

analytic (and zero free) function on the upper half-plane and another that satisfies 

these conditions for the lower half-plane. The limits of these functions on the real 

line, i.e., the factors themselves, are not  so well-behaved; however, in a certain sense, 

t hey  are in A s on every finite closed interval  on which ~ - 1  does no t  vanish. The 

following lemma expresses exact ly  what  we will need for our purpose. 

LEMM.~ 3. I/  ~ EA,  ~(~)=0 /or ~[a ,b]  and ~(~)#  1 /or ~E[a,b], then 
/ N  

~(~) e -h'(}) EA 2. 

Proof. I t  is sufficient to find for each of the four factors e -�89 e -�89 

1-I I~-a~/~-  b~]*, and e �89176 in 

I a �89 ^ e-h~(~)--e-�89 e-2g(~)]-[ I ~ -  v e�89 - ~ ( s )  

a funct ion in A s t h a t  coincides with the respective factor  on [a, b]. As the Schwarz 

class S of infinitely differentiable rapidly decreasing functions is contained in A s, it 

is contained in A 2 too. For  a ny  real numbers  a ' "  < a"  < a '  < a, b < b' < b" < b '"  such 

tha t  f(~)~=l on [a"', b'"] there exist functions r, s ES with values in [0, 1] such tha t  

s(~) = 1 for ~ E [a, b] and s(~) = 0 for ~ ~ (a', b'), r(~) = 1 for ~ E [a", b"] and r(~) = 0 for 

~ (a'", b'"). The third  and four th  factors become functions in S after  multiplication 

with r or s, and  the factors thus modified coincide with the original ones on [a, b]. 

Suppose ~< 1 on [a, b]. Then h(~)=logl[(~)-1]=log (1-f(~)) and if we pu t  hz (~ )=  

log (1 - r(~) ~(~)) then hz E ~ by  Proposi t ion 9 since F(z) = log (1 - z) is analyt ic  on 

the set of values of r]. I f  we have ~ > 1  we may  put  h z ( ~ ) = l o g ( l + r ( $ ) ( ~ ( ~ ) - 2 ) )  

since the funct ion r ( ~ - 2 )  has values in ( - 1 ,  ~ )  and F(z) = l o g  (l + z) is analyt ic  on 

this set. I n  bo th  cases hm=h on [a", b"]. Hence e - �89  l + r ( ~ )  is a funct ion in 

A z tha t  coincides with the first factor  on [a, b], as desired. 

Finally, the funct ion g(~) t ha t  enters into the second factor  of (8) is modified 

according to  the formula 

g~(~)=7~ = ~ t - ~  " 

Clearly g~ = g  on [a, b]. The first te rm in the expression for g~ is in A s since the 

Hilbert  t ransform is an  i sometry  of A ~ (it corresponds to mult ipl ication b y  - i  sgn x 

in A s which is an obvious isometry). The second term is even in S, because it is the 
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product of one infinitely differentiable factor tha t  vanishes outside (a', b') and one 
,A, 

factor which is analytic on (a" ,b") .  Hence g,~EA 2 and the desired modification of 

the second factor is given e.g. by  e -�89 1 +s(~). Lemma 3 is now proved. 

We remark that,  by  a classical theorem of Szegh, the condition tha t  log I f - 1 1  

is locally integrable is not only sufficient but  also necessary for the existence of a 

faetorization of the desired type. Thus this condition stands apar t  from the more ad 

hoc conditions tha t  will be imposed on f later. The author has not been able to 

prove or disprove tha t  the mere existence of a non-trivial solution to equation (4) 

would imply log I f - l [ eL~oo .  However, it is true tha t  if f - 1  = 0 on some interval 

then ~ und ~0 must  vanish. To outline the proof, let I be such an interval, then 
/N 

equation (6) implies tha t  lim~= +0 ~ ~(~ + iu) ~(~) d~ = 0 for all ~ e A ~ with support  in I .  

Then by  the same method tha t  will be used in the proof of Proposition 10 below 

(the continuation principle) it follows tha t  ~ may  be continued analytically across I 

to the zero function in the lower half-plane, hence ~p = 0. Now we repeat  the same 

argument  on some interval on which f - 1  does not vanish and obtain ~ =0 .  

The continuation principle 

According to the preceding section the function e-a '(~ is analytic in the 

upper half-plane and the function e-h~(~)~(~) is analytic in the lower half-plane. We 

will show in this section that  these two functions continue each other across the real 

axis at  every point ~ for which f(~)~= 1. Since log I f - 1 1  is now supposed to be locally 

integrable, this in fact means on a set tha t  is o p e n  and dense in the real axis and 

contains a neigbourhood of infinity. The resulting function E($) tha t  is analytic and 

single-valued in the whole plane except a t  the set f - l (1)  on the real axis will be 

called the formal solution of the Wiener-Hopf  equation, since its values on any line 

I m  ~ = const < 0 yield the function ~ by  multiplication with e h'(:) and inverse Fourier 

transformation. 

We will need the following elementary lemma in the proof. 
/ 'x 

LEiVlMA 4. Put  w(~)= ( ~ - a )  ( b -  ~), a, b real. Then w+(~) e A  ~ and vanishes outside 

(a, b) and the same holds true /or w+(~)u(~) i] u is in/initely di//erentiable on some 

open set containing [a, b]. 

Proo/. Since w is negative on the real axis outside [a, b], we could prove the 

rest  of the lemma by  the same methods as those of the proof of Lemma 3 if we 

only knew tha t  w+(~)E-~. Now this clearly follows for arbi t rary a, b when proved 
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for a = - 1, b = 1. But  (1 - ~2)+ is the transform Of g(x) = 7e -1 (1 § d2/dx 2) x -1 sin x and 

an elementary computation shows tha t  ff Ig]2/wdx is finite if w(x)= (1 §  2) 1. Hence 

Lemma 4 is proved. 

We formulate the principal result of this section in a proposition. 

PROPOSITIO=~ 10. The /unction E(~) de/ined by E(~) = e-h ' (~  I m  ~ > 0 and 

E(~)=e-h~(r /or I m  ~ < 0  can be continued to a /unction that is single-valued and 

analytic in the whole plane except on the subset / - I ( i )  o/ the real axis. 

Proo/. Let the auxiliary function Eo(~) , 0 > 0 ,  be defined on the complement of 

the real line by  Eo(~)=e-h'(:~(~§ for I m  ~>0 ,  Eo(~)=e-h~(~ for Im ~<0 .  

Suppose / 4 1  on [a,b] and 'let C be the rectangle with vertices a+_i, b ! i .  For 

e In t  C -  (a, b), consider the identity (note that  ( / -  1) e -A' = e -h~ on the real axis) 

1 w§ e-h,(~) Eo(:)=2~iw(r176 
where w(r ( C - a ) ( b - g )  (cf. Lemma 4). The function w serves a convergence factor 

for the first integral of the right hand side of equation (9). Indeed, the pointwise 

growth estimates of Proposition 7 show tha t  the integrand in the contour integral is 

uniformly bounded in z as 0 tends to zero. The limit of the integral therefore de- 

fines a function that  is analytic in In t  C including the interval (a, b) of the real axis. 

The second integral on the right in equation (9) tends to zero for every non-real r 

as shown by  Lemma 3, Lemma 4 and equation (6). Since E(g)=limo=oEo(g) on the 

complement of the real line, E(r has a continuation tha t  is analytic in (a, b). But  

since every point $ such tha t  1(~)~ 1 is interior to some interval [a, b/ tha t  is con- 

tained in the complement of /-1(1) this proves the continuation proper ty  claimed by 

Proposition 10. The singte-valuedness is evident. 

In  the sequel E(r will denote the continued function. 

3. Necessary conditions 

The pole nature of certain singularities 

We have shown tha t  to every solution of the Wiener-Hop/  equation (equation 

(4) or (5)) with kernel / satisfying l o g [ / - l I e L ~ o o  there corresponds a function E, 

called the formal solution, which is analytic in the whole plane except a t  /-1(1) on 

the real axis. The problem is now to determine what conditions must  be imposed on 

a formal solution, i.e. a function E that  is analytic outside the subset /-1(1) of the 
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real axis, in order tha t  it determines a solution of the Wiener-Hopf equation by  the 

appropriate backward transformation. 

To do this, we need first two propositions that  declare singularities at zero and 

infinity respectively to be poles if certain growth requirements are satisfied. 

PROPOSITION 11. I /  /(Z) is a non-constant /unction, analytic in the extended plane 
except at zero (i.e. /(z -1) is entire), that satis/ies I/(z)l <~ C l Imz I ~ in some neighbourhood 
o/ zero /or some c~, 0 < 0~ <o% then / has a pole at O. 

PROPOSIT:O~ 12. I /  /(z) is an entire /unction that 8atis/ies <Max (~ I:m l 
D I Im z I ~) /or some positive and /inite constants C, D, ~, and fi, then / is a polynomial. 

Proo/. We prove here only Proposition 11, since the proof of Proposition 12 is 

entirely similar. The function log+ ]/I is subharmonic in the extended plane outside {0}. 

Hence we may use Green's function G(z,e~~ = (2~)- lRe (z§  ~o)(z_e-*O)-I for the 

exterior of the unit circle to obtain the following estimate 

l~176 l~ / ( ~  e~~ dO<3~176176 

where we have also used the elementary relations 

2~tG(2~zUe~~ and ;~ log , s i nOIdO=-2~ log2 .  

This shows that  the function zn/(z) is continuous at zero for large enough n, as 

claimed. 

Analysis of the square of the formal solution 

We now turn our attention to the function B(~) defined in the domain of re- 

gularity of E(~) by B(~) = E(~) E(~). From equation (7) and the relations defining E($) 

it follows that  

B ( ~ ) = - ~ ( ~ ) ~ ( ~ ) y I ~  for I m p > 0  

and, of course, B(r = - q3(~) ~0(~) I~ ~ for I m r  < 0 . 

Suppose that  ~ is an isolated singularity of B(~), i.e., some isolated point of f-l(1).  

Then, if ~, is a small circle with center at ~ whose exterior contains the rest of f=l (1), 

the function B~(~) defined outside 7+ by B ~ ( ~ ) = -  (2~i)-lS~,B(z)(z-~)-ldz has as its 
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only singularity a singularity a t  ~ of the same nature as the corresponding singu- 

larity of B(~). Proposition 7 shows tha t  B($) satisfies an inequality of the type 

[B(~)[ ~< C Jim ~[-~ for [Im $[ small enough. This obviously implies tha t  the same type 

of inequality holds for B~(~), since the singularity at  ~ was isolated. Hence Propo- 

sition 11 applied to the function / (z )=B~(z+~)  shows tha t  the singularity of B~ at  

is a pole. Thus we now know that  every isolated singularity of B is a pole; an 

inspection of Proposition 7 together with the fact tha t  the pole must  have even order 

now reveals tha t  if ~:Fb~ for all ~, the "pole" has order zero whereas if ~=b, the 

order may  be 2 or 0. A similar argument  applied to the function B~ (~) defined in- 

side a circle F surrounding all singularities of B by  B~(~)=(2ni)-lSrB(z)(z--~)-ldz 
and employing Proposition 12 instead of Proposition 11 shows that  B ( ~ ) t e n d s  to 

zero a t  infinity. 

At this stage we introduce a new restricting hypothesis on the kernel func t ion /  

tha t  can be stated as ~[bv[ < oo. This, in particular, means that  zero is the only 

point of accumulation for the set {br}. I t  will be clear from the following work tha t  

we could carry out the same computations for kernels with an arbi t rary finite set 

of accumulation points of this type. In  order to utilize the above reductions to con- 

clude that  B is regular in the extended plane except a t  {by} : {by} 0 0 we need now 

precisely suppose tha t  /-1(1) is countable. Namely, since this set is closed, removing 

recursively the isolated points of the remainder of /-1(1) one after the other trans- 

finitely we arrive after a countable number of steps (Cantor-Bendixson decomposi- 

tion) at  a perfect set which is then either void or uncountable. 

The condition ~ [bv] < oo makes it possible to remove all singularities of B except 

the one at zero by  multiplication with the appropriate infinite product. Indeed, we 

may  choose an integer n and a positive constant [c[ 2 so tha t  the function BI (~ )=  

~2, [c[-2 I ]  (1 - b~/~) 2 B(~) has value 1 at  infinity and is analytic except at  zero. Since 

B 1 is also the "square"  of an analytic function EI(~) = ~nc-1 YI ( 1 -  b~/~) E(~), i.e., 

B I ($ )=EI (~ )EI (~ )  the zeros of B 1 must  be either real and of even order or non-real 

and occurring in conjugate pairs. We may  thus denote the set of zeros of B~ by 

{fir} U {fir}, and we order the sequence {fl~} so tha t  {fir{ 1>{fir+,{ for all ~. 

Proo/. We introduce the counting function n(t)=2Max{~{{~[>~t} and apply 

Jensen's formula to the entire function Bl(z-1); 

N ( r ) =  f ; t-' n(t) dt= (2z~) -1 ;"log {Bl (ret~ dO. 
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The sum of the series X I fl~], whether finite or infinite, equals the value of the inte- 

gral - � 8 9  tdn(t). This integral may be estimated by partial integration. 

2 r 2 oo -f~tdn(t)=rn(r)+ f/n(t)dt< f+n(t)dt+ f/n(t)dt< ./+n(t)dt 

f,~ y/ f,~ f, 4 r = - 2  tdN(t)<~4 N(t)dt<~4 n(t)dt<~ - tdn(t). 
r r r r 

Hence the series ~ [fl~[ converges or diverges together with the integral 

f: r } 27t N( t )d t  = log [l-~(1-a~/te~~ dt 
d o  [ d o  

+ log I I-I (1 - b./t  e'~ 

The convergence of the first integral to the left is equivalent with the convergence 

of ~ Idol. This becomes clear if one substitutes a~ for fir in the definition of n(t) and 

copies the above argument showing the equivalence of the convergence of ~ [fi~l and 

~ N ( t )  dr. Similarly the second integral converges or diverges together with ~ I b~l. 

The third integral converges like ~lologtdt by the bounds given in Proposition 7. 

Since the convergence of 5 l a~] is obviously equivalent to that of 5 I bg, we have 

proved Lemma 5. Note that  the integrals within { }-brackets above vanish for large 

t by Jensen's formula and by the condition B I ( ~  ) = 1. 

Because of Lemma 5 we may now divide out the zeros of B 1 by simple infinite 

products. Consider the function B 2 ($) = log B 1 (~) YI (1 - fl~/~)-i (1 - ~/~)-1; it is single- 

valued and analytic except at zero, and B ~ ( ~ ) = 0 .  The infinite products I-I(1-fl~/~), 

YI (1 - / ~ / $ ) ,  l-I (1 - a~/~) and 1-~ (1 - b~/~) are entire functions of ~-1 with growth at 

most of order one, minimal type, whereas log r and log ~ grow along vertical lines 

like log ]Im~[ -1, uniformly in Re ~. Hence B2 satisfies the requirements of Proposi- 

tion 11 (with :r 1) and so either has a simple pole at zero or else vanishes inden- 

tically. However, the growth of B~ as one approaches zero along the imaginary axis 

is o([~[-1), thus B2~-0. We sum up the result of this section in a lemma. 

L~MMA 6. I] ~]b~]< ~ ,  and ]-1(1) is countable, then there exists a positive in- 

teger n, a positive real number ]cl 2 and a complex sequence {fl~} satis/ying ~ lflvl < 

so that 

E(~) E($)= Ic[2~ -2" 1-I (1 - ~gr  - Z#~)(1 - bg;)  -~. 
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The parameters of the formal solution 

Our object is now to " take  the square root"  of the above expression for B. First 

we rearrange (if necessary) the set {~,} U {/~} of Zeros of B so tha t  {ft,} is the set 

of zeros of E. Then the function Es defined by  E 2 (~) ~ E(~) c - l~"I-I  (1 - fl,/$)-i (1 - b,/~) 

is defined analytically outside the subset ]-1 (1) of the real axis. Also, since E2(~)E2(~) = 1, 

it is zero free and we may  adjust  the argument of the constant c so that  E 2 ( ~ ) =  1. 

The function Ea(~)=logEs(~) is then defined as an analytic and single-valued func- 

tion outside ]-~(1) by  the requirement Ea (c~)=0 .  I f  ~ is an isolated point of ]-1(1) 

and y is a circle with center at  ~, so small tha t  the rest of f-l{1) is outside, then 

as before the function E$ defined outside y by E ~ ( ~ ) = -  (2~i ) - lYrEa(z ) (z -~)dz  is 

such that  E~(z-$)  satisfies the conditions of Proposition 11 with a =  1. Namely, of 

the logari thms of the factors in E s the only one tha t  has not already been analyzed 

is ~ ( t - ~ ) - l l o g l ] ( t )  - l ld t  (c.f. equation (7)), however, since l o g / / -  1] is the sum of 

one L 1 and one L" function, this te rm of E 3 is 0 ( l lm ~1-1), uniformly in I~e~, and 

pointwise o(lIm~l 1). Hence the singularity of E~ at  ~ is at  most  a pole and since 

the growth of E~ at  ~ along the line R e ~ = ~  is o(]~]-1), the "pole" is in fact a 

regular point. Thus E a is analytic in the extended plane by  the transfinite induction 

argument  used earlier on B. Hence E a = 0 as desired and we have proved Lemma 7. 

LEMMA 7. Under the hypotheses log ] ] -  1] ELiot, [-1(1) countable and ~ Ib l < 

the parameters o/ the /ormal solution E(~) = c~ -~ [I (1 - fl,,/~) (1 - b,/~) -1 are the complex 

number c, the positive integer n and the complex sequence {/~} satis/ying ~ I~I < co. 

4. Sufficient conditions 

The solution of the Wiener-Hop/equation 

The main theorem of this paper, that  we prove in this section, is the following 

THEOREM 3. Under the hypotheses so /ar made on the trans/orm f o/ the kernel, 

a /ormal solution E yields a solution o/ the Wiener-Hop/ equation (5) by means o/the 

/ormulae ~(~ - i~) = e h~(~ i~) E ( ~ -  i~]), ~(~ + i~) : e hl(~+i€ E(~ + i~) (~j > O) i /and  only i/, /or 

su//iciently small ~ > O, ~ I~(~ - i~7)12 d~ <~ M~ -1/or some constant M and ~ [~(~ § i~)[2d~ <~ 

s(~?) ~-1 /or some bounded /unction s that tends to zero with ~. 

In  terms of the parameters  of the formal solution the conditions of the theorem 

are as follows (~ = ~ + i~) 
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f (~(~, ~))-~ I~1 ~ V I l l  - #~/~1~1 ~ - ~ J ~ l  -~ I~ - bJ~l -~ d~ ~ M ,  -~ 

f ~ ( ~ ,  I$1 ~ 1-I I ~ - t ~ /~ [  ~ I ~ - ~ / ~ 1  -~ I ~ - bJ$l - ld$  < -~ ~) E(T]) 

with r(~,~)=exp(~r-l~v[(t-~)~+~2]-llogll(t) l ldt ). Note that  r(~,~) tends to 

I t ( ~ ) - ~ l  as ~-~0. 
Suppose for the moment that  the set {by} were finite, then going back to the 

construction of B an easy inspection reveals that  this function is then rational, hence 

in particular the set {b~} is finite too. Then the second condition is a consequence 

of the first, since as ~] tends to zero the proportion of the first integral that  comes 

from an arbitrary neighbourhood of [-1(1) tends to one whereas on precisely these 

neighbourhoods r(~, ~]) becomes small. I t  is easy to make this argument precise. 

Also, in this case, the growth of  the integrals depends on the local behaviour 

at a countable number of points. For  each point $~6[-1(1) we then introduce an 

order d, defined by  the relation 

d, = {mind I d non-negative integer, 3 s, M > 0 

such that  (r($,~]))-l[($-~=,)2+~2]d-'~d~<M~] !, 

where e = 1 if ~ 6 {a,} U {b,} and e = 0 otherwise} 

and our conditions may be reformulated: the Wiener-I-Iopf equation has a solution 

if and only if ~ d , < m ~  where m is the number of points of {b.} and the formal 

solution can be written E(~) = P(~) 1-I ( ~ -  ~,)e~ l iP  ( ~ -  b~) -1, where P(~) is an arbitrary 

polynomial of degree less than m - ~ d . .  Hence the space of solutions of equation (5) 

is Spanned by a certain minimal solution (corresponding to a constant P(~)) and  its 

derivatives of order less than m - ~  d~. 

Another immediate remark is that  for ~ >~10>0, both r(~ e, ~) and (r(~, ~))-~ are 

bounded by constants depending only on z]0. Hence we may replace the left hand 

side of the inequalities by M(1 +~-1) and e(~)(1 +~-x) respectively. 

We now begin the proof of Theorem 3. Suppose that  E were given and satis- 

fied the conditions of the theorem. We then know by these conditions, the above 

remark, Theorem 2 and Proposition 6 that  r and ~ are the transforms of functions 

~c 6B = and W 6B~ respectively and also that  ~(x) vanishes for x <  0 and V(x)for x >  0. 

Hence 6 6B 2, where 6(x) = f f / (x"  y) ~c(y) dy -  q~(x)- V(x) and we consider that  the 

formal solution yields a solution in the ordinary sense if ~(x)= 0 for almost all x. 
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In  order to show this we define the function V as an analytic function in the 

complement of the real line by V(~)=~~ for I m p > 0  and V(~)= 

- ~  ~(x)e -~r for Im ~<0 .  Our first goal is to prove the following lemma. 

LEMMA 8. The /unction V can be continued to a /unction analytic outside the 
closed subset ]-~(1) o/ the real axis. 

Proot. This proof follows closely the proof of Proposition 10. Suppose, as we did 

there, tha t  [a, b/ is a closed interval on which ]~= 1 and let C be the rectangle with 

vertices a+i, b+i. For 0 > 0 ,  define Vo by Vo(~)=V(~+iO)for I m p > 0 ,  V0(~) = 

V(~-iO) for Im ~<0 .  The counterpart of equation 9 is the identity 

Vo(~)=2ziw(~)(fcVo(z)w(Z)dz+ 1 z - ~  f (10) 

valid for ~ E Int  C - ( a ,  b). Because of its definition and of Proposition 7, V($) grows 

as O(lIm$1-1) when approaching the real axis along vertical lines, hence following 

the reasoning of the proof of Proposition 10, equation (10) will prove Lemma 8 pro- 

vided we can show that  the second integral on the left hand side tends to zero with 

0 for fixed ~ with Im ~=0 .  

By Parseval's equation this integrals equals 

f { f  / ( x -  y) ~v(y) e-~ d y -  (~(x) + y~(x) ) e-~ g(x) dx (11) 

with g denoting the Fourier transform of w+(~)(~-~)-1 (g clearly belongs to A2). 

However, S { l / ( x -  y)q~(y)[e -~ - e  -~ dy} g(x)dx tends to zero with 0 by  the Lebesgue 

dominated convergence theorem since S/(x-y)qD(y)[e -~  ~ does so too for 

all x by  the same theorem (exactly this reasoning has been used once before, in the 

introductory section on the Wiener-Hop/ equation). Hence (11)has the same limit as 

~{/ (x-  y) qJ(y) e -~ d y -  (q~(x) + y~(x)) e -~ g(x) dx and this, by the Parseval relation 

equals ~ [([(~) - 1) ~(~ - iO) - ~(~ + iO)] w+(~) (~ - ~)-ld~ = S [e hl(~-'~ h,(~) E(~-  iO) - 
e h*(~+~~ E(~ + iO)] w+(~) e h~(~)(~- ~)-ld~ that  obviously tends to zero with 0 since 

the integrand is continuous on, say, the rectangle a ~< ~ < b, 0 ~< 0 < �89 iIm ~[. We have 

now proved Lemma 8. 

Exact ly as we have done before with the functions B and E s we now see that  

the possible singularities of V at the isolated points of [ 1 (1)are  at  most poles. 

However, since OZ(- oo, 0)~ B~ (el. Proposition 5), Proposition 7 shows that  V is of 

growth o(]Im ~l) -1) as one approaches the real axis perpendieularily from above. I t  
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follows that  the isolated singularities are removable and we continue V transfinitely 

to an analytic function in the whole plane. However, by Theorem 2, Proposition 7 

and Proposition 12 this entire function must be a polynomial, whereas the Riemann- 

Lebesgue lemma applied to the definition of V shows that  V tends to zero when 

Re ~ tends to infinity for fixed Im $ ~ 0 .  Hence V is the zero function and must be 

the transform of a function that  vanishes a.e. Now Theorem 3 is proved. 

Examples 

I t  is not obvious that  there exists any non-trivial solution satisfying the condi- 

tions of Theorem 3 for any kernel ] with {b~} infinite. In  the final Proposition 13 

we give a more stringent set of sufficient conditions and we show afterwards that  

there are examples that  satisfy these conditions. 

PROPOSITION 13. I /  the analytic/unction ~-2~ 1-I (1 -/3~/~) 2 (1 --av/~) -1 (1 -b~/~) -1 

is the sum o/ a series o/ partial /ractions o/ the type C/~ + ~A~(~-a~) : I  + B~(~-b~) -1, 

IA~] + IB~I < c~, and i/ m{ t ] ] f ( t ) -  11< 8} = O(s q) /or some q > 1, then the conditions 

o/ Theorem 3 are satis/ied. 

Prod/. In the conditions of Theorem 3 we may replace integration over the whole 

axis by integration over some bounded interval I tha t  contains the set f-~(1) in its 

interior. Since S~ I ~ -  t I- ~ d~ < M log V with a constant M independent of the real vari- 

able t and S ~ l ~ - t { - q d ~ < M q u  ~-q we have, by the H61der inequality and the fact 

that  r(~, ~) ~< sup If(~) - 11 that  the conditions of Theorem 3 are satisfied provided 

that  ~i(r(~,~]))-Pd~=O(~] -p/q) with p - l + q - l = l .  Now we will show that, in fact, the 

second condition of Proposition 13 implies that  r(~, U)> ~ / q  with a positive 5 in- 

dependent of ~. For this, we may assume that  If-11~< 1. By partial integration we 

obtain r(~, U) = exp ( - ~-1 ~1 ~ s 1 oe(~, ~?, 8) ds), where ~(~, U, 8) denotes the angle sub- 

tended at ~ + i~  by the set { t / I f ( t ) - 1  I~s}  whose measure is bounded by Ms q for 

some M <  ~ ,  by hypothesis. We suppose that  U < 1 and use the bounds  ~-lMsq and 

for ~ on [0,~ l/q/ and [~l/q, 1] respectively. This yields r (~ ,~ )>~  1/q with ~= 

e x p ( - M / z c q )  >0,  as claimed, and we have now proved Proposition 13. 

To construct an example that  satisfies the conditions of Proposition 13 we need 

a simple lemma. 

L~MMA 9. I /  f and its derivative are both in L ~, then l E A  ~. 

Prod~. By Parseval's relation, ~]/[~ dx < do and ~ x~[/[~ dx < ~ ,  hence S I/[2 co-1 dx < do 

with eo = (1 + x~) -1. 
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We will make  f continuous and  let it vanish  outside a compac t  set, hence it  

will be obvious t h a t  f e L  ~. Since it  is easy  to reconst ruct  ] f rom g ( ~ ) = l h ~ ) - l ]  

whose der iva t ive  has the  same L 2 norm as t h a t  of ~, we give here a descript ion of 

g only. Suppose t h a t  all a~ and  b~ are posi t ive and  let t~ be the  monotone  decreasing 

sequence whose set  of values is {a~} U {Q}. Pu t  g(@)= In f  (1, 12 ~ I TM, I t -  tl 1 l/q, ((t~+~- @)+ 

/y~+l + ( ~ -  t~+l)+/y~)l/q), where y~ is another  monotone  decreasing sequence,0 < y~ ~< 1, 

with ~ yy < c~. Since m{t  I g(t) < s} ~< 2(1 + ~ y~) s q the  second condit ion of Proposi t ion 

13 is indeed satisfied. I f  q <  2 then  ~ y-2/q(t~-t~+l)- l+2/q< c~ implies t h a t  g' EL 2 and  

hence, b y  L c m m a  9, t ha t  l E A  2. One implemen ta t ion  of these conditions is g = 3 / 2 ,  

7~ = v-8/~ and  t~ ~< ~ 10. 

We now turn  to the par t ia l  fract ions condit ion of Proposi t ion 13. Suppose t h a t  

{Q} is posi t ive and  monotone  decreasing. All zeros of the sum ~ b ~ / ( $ -  b~) lie in the  

in terval  (0, bl), exac t ly  one in each of the intervals  (b~+l, b~), and  we let ay denote  the 

zero t h a t  lies in (b~+l, b~). Then 

1 - [ ( 1  - b~/$) ~ b~/(~- b~) = ~-1 ~ b~ l~ (1  -ay/~) 

since the  lef t -hand side is an entire funct ion of 1/~ of a t  most  order one, minimal  

type.  Now 

2 I ]  (1 - a~/~) (1 - b~/~) :1 = ( - ~-~ ~ by + ~ b~/(~ - b,,)) (~. b~) -1 

and  we have  an example  of the type  required by  Proposi t ion 13 if we t ake  n =  1 

and  fir = a~ for all u. 

I f  one has one decomposi t ion into a par t ia l  f ract ions series of the type  required 

then  an obvious computa t ion  shows t h a t  one m a y  change a finite number  of the 

non-zero pa rame te r s  fir and  still have  the  same kind  of decomposi t ion of the  func- 

t ion ~ - ~  l-i (1 - fi~/$)2 (1 - a~j~) -1 (1 - b~j~) -1. Fur the rmore ,  b y  linear combinat ions  one 

m a y  then  reach a rb i t r a ry  high values of the  index n. One m a y  also mul t ip ly  by  

as long as this doesn ' t  depress the index below one. As an appl icat ion of a poly- 

nomial  in the differentiat ion opera tor  to the  solution of the W i e n e r - H o p f  equat ion 

corresponds to a mul t ip l icat ion of the above  funct ion with a polynomial  in ~ having 

zeros of even order, we see t ha t  in all cases covered b y  Proposi t ion 13 the  solution 

space is infinite dimensional.  Also, in cont radis t inc t ion  to the case when {by} is finite, 

there is no minimal  solution f rom which all others m a y  be ob ta ined  b y  differentia- 

t ion and  ]inear combinat ion.  
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