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Multiple summing operators on C(K) spaces

David Pérez-Garcia and Ignacio Villanueva(!)

Abstract. In this paper, we characterize, for 1 <p<oc, the multiple (p,1)-summing multi-
linear operators on the product of C(K) spaces in terms of their representing polymeasures. As
consequences, we obtain a new characterization of (p,1)-summing linear operators on C(K) in
terms of their representing measures and a new multilinear characterization of Loc spaces. We
also solve a problem stated by M. S. Ramanujan and E. Schock, improve a result of H. P. Rosenthal
and S. J. Szarek, and give new results about polymeasures.

1. Introduction and notation

Motivated by the importance of the theory of absolutely summing linear op-
erators, there have been some attempts to generalize this concept and the related
results and tools to the multilinear setting. Most of the previous efforts in this di-
rection use the following definition of multilinear (q:p;, ..., pn)-summing operator,
for certain choices of ¢ and p;:

A multilinear operator T:X, x...x X, =Y is called (¢:p1, ..., ps)-summing if
there exists a constant K >0 such that

m 1/q n _
(S izt apir) <x TLHems,

for all choices of meN and a7, ..., 27 €X;.

The interested reader can consult [9], [19] or [22] and the references therein to
know more about this class of operators.

Recently, F. Bombal and both authors in [5] and [24]. and M. C. Matos in
(20] have defined and studied the class of multiple summing multilinear operators,
see Definition 2.1 (although the origin of this class goes back to [27]). This class
extends the notion of p-summing operator to the multilinear setting in a different
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way, it behaves better in many ways than the previous definitions of p-summing
multilinear operators, and seems to be the “right” generalization of the linear case
for many applications.

In particular, we prove in [5]. [23]. [24] and [25] several multilinear general-
izations of Grothendieck’s theorem and relations with nuclear and Hilbert-Schmidt
multilinear operators that extend and generalize classical linear results. It is easy to
see that this “good behavior” is not shared by the (¢: p;. ....p,)-summing operators
defined as above.

In this paper we continue studying the multiple summing multilinear opera-
tors. We give a simple characterization of the multiple 1-summing operators and the
multiple (p, 1)-summing operators on the product of C{K) spaces in terms of their
representing polymeasure. As a particular case, we obtain a new characterization
of (p,1)-summing operators defined on C(K) spaces in terms of their representing
measure. As an application we can prove the rather surprising Corollary 3.2. This
corollary will be the main tool used in Proposition 3.4. where we improve a result
of H. P. Rosenthal and S. J. Szarek. Another application of our results is Propo-
sition 3.6, which gives a multilinear characterization of £ spaces related to the
main result of [9].

Several results in this paper (particularly Theorem 2.2 and Proposition 3.1)
show that the class of multiple p-summing multilinear operators is relatively “small”.
Thus, these results are especially surprising when compared with the Grothendieck
type theorems given in [5] which show that every multilinear operator from the prod-
uct of L spaces to an £; space is multiple 2-summing. and that every multilinear
operator from the product of £, spaces to a Hilbert space is multiple 1-summing.

In addition, we use some results of [5] to establish Example 3.13, which solves a
problem stated in [27], and also to give non-trivial new results about polymeasures
(Corollaries 3.18 and 3.21).

The notation and terminology used throughout the paper are standard in Ba-
nach space theory, as for instance in [12]. This book is also our main reference
for basic facts, definitions and unexplained notation throughout the paper. How-
ever, before going any further. we shall establish some terminology: K will be the
scalar field, which can be considered to be either the real or complex numbers; X;
and Y will always be Banach spaces; and £(X.Y") will denote the Banach space
of bounded linear mappings from X to Y. For n>2. £L"(X;..... X,:Y) will be the
Banach space of all the continuous n-linear mappings from X; x...x X, into Y.
When Y =K we will omit it and. from now on. operator will mean linear or multi-
linear continuous mapping. As usual, X;%. ... 2.X, stands for the (completion of
the) injective tensor product of the Banach spaces X;..... X, and X184 ... 8. X,
will denote (the completion of) their projective tensor product. Given a Banach
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space X, Bx denotes its unit ball. X* stands for its topological dual and «* for the
weak-star topology in X*.
Given X, 1<p<oc and a finite sequence (x;)7, CX. we let

||<xi);’;1||;f=sup{(z|r x |P) ey .

For 1<p<g<oo, we write I, ,,(X.Y) for the Banach space of (g.p)-summing
operators from X into Y, and 7, ,)(T) stands for the (g.p)-summing norm of
Tell,,)(X.Y). When g=p we have the p-summing operators, and the notation
will then be II,(X,Y’) and ,(T).

Let 1<p<oo and A>1. A Banach space X is said to be an £, 5 space if
for every finite-dimensional subspace EC X there exists another finite-dimensional
subspace I', with ECF C X and such that there exists an isomorphism v: —>lgim F
with [Jv]| [[o~!||<A. We say that X is an £, space if it is an £, 5 space for some
A>1. Clearly, L,(u ) is the basic example of an £p-space.

Givenn,mi. ..., mn €N, (w;, ;)] 7" denotes a multiindex sequence with
the index ¢; varying from 1 to m;, 1<j<n.

IFT: Xy x...xX,—=Y is a multilinear operator, we write AB(T): X{* x
X;*—=Y™ for its so-called Aron-Berner extension. which in general is not unique
(see (3], or [8] and the references therein. for basic facts and different equivalent
formulations of the Aron—Berner extension).

Let 3; be the Borel o-algebra of a compact space K;, 1<j<n (or. in general.
a o-algebra defined on a set ;). A function 7:¥; x...x%, —Y is a (countably
additive) polymeasure if it is separately (countably) additive.

Given a polymeasure v: 1 x...x ¥, =Y. as in the case n=1, its semivariation
is defined as the set function

vl E1%...x 2, — [0, +x]

given by

n

Z > a), ap v(AL - Ak)H

ki1=1 kn,=1

HA/”(Al: An) =Ssup

where the supremum is taken over all the finite X;-partitions (A{ )i, of Aj.
PRV ~

1<j<n, and all the collections (af;?);';’fl in the unit ball of the scalar field.
N J—
Let us also recall that its variation is defined as the set function

v(7): X1 X x X, = [0, +2¢]
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given by
T1 Tn
() (A An)=sup 3 o S (AL AL
k1=1 kn=1

where the supremum is taken over all the finite X;-partitions (Afcj):i _, of Aj,
1<i<n.
In general, given 1<p<oc, we can define its p-variation as the set function

vp(7): 1 X XX, — [0, +o¢]

given by
71

Tn i/p
vp(’y)(Al,...,An)zsup<z Y ||7(A}Cl,...,AZn)||”) ,
k,=1

ki=1

where the supremum is again taken over all the finite ¥;-partitions (Afcj)?] _, of A;,
1<j<n.

If v has finite semivariation, an elementary integral [(fi. fa,.... fn)dy can
be defined, where f; are bounded X;-measurable scalar functions, just taking the
limit of the integrals of n-tuples of simple functions (with the obvious definition)
uniformly converging to the f;’s.

If K, ..., K, are compact Hausdorff spaces, then every multilinear operator T'€
LMC(K1),...,C(K,);Y) has a unique representing polymeasure 7: 31 X ... XX, —
Y** with finite semivariation, in such a way that

T(frveefo) = [ fi)dr for € CUR))

and such that for every y*€Y™, y*ov is a separately regular countably additive
scalar polymeasure. The idea behind this representation theorem can be easily
described.

Given a compact Hausdorff space and its Borel o-algebra ¥, we write B(X) for
the completion under the supremum norm of the space S(X) of the ¥-simple scalar

valued functions. It is well known that C'(K )LléB(Z)‘—laC(K )**, where 4 denotes
isometric embedding. So, for the operator T we consider its Aron—Berner extension
to the product of the biduals AB(T) (which is unique in this case) and restrict it
to T: B(X1) x...x B(X,)—=Y**. Now we define v(A1,..., 4,)=T(x4,: - ; Xa.)- In
fact, as for the case of C(K) spaces, simple reasonings yield an isometric isomor-
phism between £"(B(%,)...., B(£,):Y) and bpm(Z:.....Z,:Y), the Banach space
of the polymeasures with bounded semivariation defined on ¥ x ... x%,, with values
in Y, endowed with the semivariation norm (see [6] and the references therein for
more information about polymeasures and the representation theorem).
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2. Definition and first results
We start by recalling our definition.

Definition 2.1. Let 1<py,...,p,<g<+oc. A multilinear operator 7: Xj X ... X
Xn—Y is multiple (q; 1, . pn) summing if there exists a constant K >0 such that,
for every choice of sequences (z] )l 1, CX; the following relation holds

W (i...inma,. ||‘1)1 <KH1| N

i1=1  in=1
In that case, we define the multiple (g;p1. ... pn)-summing norm of T by

T(g:py....pn) (1) =min{K : K satisfies (1)}.

A multiple (¢; p, ..., p)-summing operator will be called multiple (¢.p)-summing,
and we write 7, ) for the associated norm. Moreover, a multiple (p. p)-summing
operator will be called multiple p-summing and we write 7, for the associated norm.
The class H?q:,plf...,pn)(le ce s X V) of multiple (¢: py. .... pp }-summing multilinear
operators is easily seen to be a Banach space with its norm m(g.p, ... p,)-

As in the linear case, if there exists 1<j<n such that p;>q. only the zero op-
erator can satisfy (1). This is the reason to introduce the hypothesis 1<pj, ..., pn <
g<+oo. Let us start showing the most basic example of this class of operators.
Let T: X, x...xX,—Y be a multilinear operator. Suppose that T is continu-
ous in the e topology and that its linearization T: X ... 2.X,—Y is (¢.p)-
summing. Then, it follows easily from the definitions that T is multiple (g.p)-
summing. In particular, for any 7€ X7, the multilinear form z7%..®x} de-
fined by (2}®...Qz%) (@1, ..., zn)=2}(x)) ... 2} (z,) is multiple (g, p)-summing for
any 1<p<g<oo. It is probably worth mentioning that. in general, multilinear
forms need not be multiple p-summing, as follows from Propositions 3.1 and [20].

Note that in this definition we require the sum

(Z % IT(z], . "‘”’z‘"h)liqj/q

i1=1 in=1

to be controlled by the product []}_, ||(zf}):“: 1[5+ whereas in the definition of
(¢;p1, -.. , Dn )-summing operators mentioned in the introduction and used previously

by other authors, it is the “diagonal” sum

m 1/q
(Z 1Tt .. .,x?>||Q)
i=1
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that must be controlled by the same product.

We show first the good behavior with respect to the extensions to the bidual
that our operators share with the (g.p)-summing linear operators. Recall that
the Aron—Berner extension of a multilinear operator is. in many ways, the natural
generalization of the bitranspose of a linear operator. In that sense, the notion of
weakly compact linear operator extends to the notion of multilinear operator whose
Aron-Berner extension remains in the image space. Following exactly the steps
given in the proof of [14, Theorem 2.2] we obtain the following result.

Theorem 2.2. Let T: X x..x X, —Y be a multiple p-summing multilinear
operator. Then its Aron—Berner extension AB(T) belongs to L{X7*,.... X" Y).

We also have the following result which we will need later.

Theorem 2.3. Let 1<p;,....p,<g<x. A multilinear operator T: X X...x
Xn—=Y is multiple (q:p1,....pn)-summing if and only if its Aron—Berner extension
is multiple (q;p1, ... . pn)-summing.

Moreover, in that case

Tgpr..om)(T) = T (gipy.... p) (AB(T)).

The proof is obvious once we prove the following lemma.

Lemma 2.4. Let X be a Banach space. n€N and 1<p<oc. Let (z;)it, CX**.
Then there exist a directed set Q and nets (2)aca CX such that

i z; forevery 1<i<n

and such that
[(za)itilly SN(z)itill,  for every a €.

Proof. According to [11, Proposition 8.1]. we know that the mapping given by
(Y)Y " | €i®y; establishes, for every Banach space Y. an isometric isomor-
phism between the Banach space of sequences of m vectors of Y, endowed with the
norm | - ||, and [3'®@:Y. Moreover the following isometric embeddings hold:

l;;n®€X N l;,nng** oy (l;)n XEX)**-

Since (z;)™, Cly®: X" C (2. X)**, there exist a directed set 2 and a net
(Wa)aea Cl ®: X such that

we == (z)iL, and  fua | S [(z)20 05
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Let 2% be such that wazzgl e;Zx.,. We have that

@) lly = lwall < (207 Il
and that, for every z*e X*,

m

(x*,zh) = (€] @z w,) s <€?~X$*. Z €k sz> =z. U
’ k=1

The following proposition can be easily proved as [19. Proposition 2.5].

Proposition 2.5. Let T: X, x..x X,, =Y be a multilinear operator, let 1<
k<n—1 and let Ty: X1 ¥ .. x X =L % (Xpp1..... X0:Y) be the associated k-linear
operator.

If
k . ~k .
TkeH(q;pl AAAAA pk)(Xl-,"-kafHFq;pk;l‘.,..p")(Xk'+1~-~~‘any))‘
then
Ten?q;mw-,pn)(Xl’""X”:Y) and  Tigpy o) (T) < Tigipy.... i) (Tk)-

We will see in Example 3.13 that, in general, the converse implication is not
true. Nevertheless, it follows from Proposition 3.1 and [19] that the converse is true
when g=p;=...=p,=1 and all the X are C'(K) spaces (or in general L. spaces).
or when g=p;=...=p,, =2 and all the X; and Y are Hilbert spaces.

We state the following composition theorem for reference purposes. its proof,
which can be seen in [5], follows along the lines of {12, 2.22].

Theorem 2.6. Letu; €Il (X,.Y;) and Tely(Yi.....Y,: Z) and let 1 <r<+oc

be such that
1 1 1
=24,
r p 49
Then S=T(u1, ..., un) is multiple r-summing and m,(S) <m,(T) [T}, 7q(u;).

3. The main results

Given two Banach spaces X and Y. we will denote by I{X.Y) the space of
integral linear operators from X to Y. It is a Banach space with the integral norm
| - line (see [13, p. 232] for the definitions).
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A multilinear operator T€ L"(X7..... X,,:Y) is integral if there exists a regular
Y**-valued Borel measure G of bounded variation on the product Bx; X...x Bxx
such that

T(z1,...,Tp) :/ i (zy) . xh(z,) dG(2], ... . x})
BXI X XBx~

for all (z1,...,2,)€X) x...x X,,. The space L} (Xj..... Xn:Y) of integral multilinear
operators is a Banach space with the norm ||7T||jne=inf{v(G): G represents T as
above}. These operators were defined in [30] (where they are called G-integral),
although the definition is just a technical modification of a previous definition in [2].
In [30] it is proved that a multilinear operator T: X; x ... x X,, =Y is integral if and
only if its linearization T is continuous in the = topology and T:X 18e . R XY
is an integral operator. Moreover, in that case |[T| im:Hf [lint -
We can now prove the following result.

Proposition 3.1. Let K, .... K, be compact Hausdorff spaces, T: C(Ky) x...x
C(K,)—Y be a multilinear operator and let ~ be its representing polymeasure. Then
the following are equivalent:

(i) T is multiple 1-summing:

(il) v(y)<oe;

(iii) T is integral;

(iv) Ty EIL(C(K). T (C(Ka). oo T (C(Kno1), L (C(K,). V) .0)-

Moreover, in this case, all the norms coincide, i.e.

() =v() = 1T [line = 71(T1).

Proof. The implication (i) = (ii) follows immediately from Theorem 2.3 and
the fact that, if (2, %) is a measurable space and (A4,)™, is a partition of {2, then
the sequence (xa,)",CB(X) satisfies [|(x4,)7; [l <1. The equivalence between
(i) and (iii) follows from (7, Corollary 4.2] and (iii) = (iv) is a consequence of [30.
Proposition 2.9]. Finally, (iv) = (i) follows from Proposition 2.5. O

As an immediate consequence we obtain the following very surprising result.

Corollary 3.2. Let X;, Y; and Z be Banach spaces. 1<j<n. Let u;€
y(X,;,Y;) and Te§(Yy, ..., Ya: Z). Then S=T(uy,....u,) is integral and

Slline < 72(T) ] ] 722
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Proof. It follows from the linear factorization theorem for 2-summing operators
[12, Corollary 2.16] that there exist compact spaces K; and 2-summing operators
bj: C(K;)—Yj such that u;=b;0i;, where i;: X;<»C(K;) are isometric inclusions.
1<j<n. Let us consider the operator R=T(b;.....b,) €L (C(K;)....,C(K,): Z).
Applying Theorem 2.6 and Proposition 3.1 we get that R is integral. Our result
follows suit. 0O

Remark 3.3. After the first version of this paper was written we have been able
to prove that the operator S in Corollary 3.2 is actually nuclear (see [25]).

We can apply this corollary to prove a proposition that improves one of the
results in [29] (see the remark below). We will say that a Banach space Y is a GT
space, or that Y satisfies Grothendieck’s theorem, if every linear operator from Y to
Iz is 1-summing. According to Grothendieck’s Theorem, £; spaces are GT spaces,
but there are several instances of GT spaces which are not £;-spaces, for example
L1/H* or the quotient of an L; space by a subspace isomorphic to a Hilbert space
(see [26]). All the known examples of GT spaces have cotype 2, and it remains an
open question whether this must always happen.

Proposition 3.4. For 1<j<n, let X; be an L space. Y; a GT space with
cotype 2 and u;: X;—=Y; a linear operator. Then, the operator

U D QUn: X1 . e Xy — Y10 . RV

s well defined and continuous.

Proof. By [7], it is sufficient to prove that, for every T€L"(Y;.....Y,), the
composition T(uq, ..., un)ELF(X1,.... X,). It is shown in [5] that 7" is multiple
2-summing and, by {12, Theorem 11.14], u; is 2-summing for every j. Therefore,
an appeal to Corollary 3.2 finishes the proof. O

Remark 3.5. In [29], H. P. Rosenthal and S. J. Szarek mention that it would be
desirable to determine pairs of (classes of) Banach spaces for which the conclusion
of Proposition 3.4 holds. They obtained the result (in the case n=2) for £, and
L, spaces. In that case, a direct proof can be given using induction. It is well
known (see [15, Proposition 7] for a proof) that the projective tensor product of
L1 spaces is an £ space, and that the injective tensor product of £, spaces is an
Lo space. Therefore, all we have to do is to prove the case n=2. Let X; and X»
be L., spaces, let Y7 and Y; be £; spaces. and let u;: X;—Y; be a linear operator,
j=1,2. As in Proposition 3.4, we have to prove that S=T{(u;.us): X1 xX2—>K is
integral for every T'€L£2(Y,,Y,). This is equivalent to prove that the associated
linear operator S7: X1 —X3 is integral. Now, we have the decomposition S§;=u3-
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Tyou1. By Grothendieck’s theorem [12, Theorem 3.7). u; and w3 are 2-summing.
Then, [12, Theorem 2.22] tells us that S; is 1-summing and therefore integral [28,
Theorem II1.3].

It must be noticed that this argument gives also the case n=2 of Proposi-
tion 3.4. However, the general case cannot be obtained by this simple induction
reasoning since GT and cotype 2 spaces are not stable under projective tensor prod-
ucts. In fact, by [26, Theorem 10.6], there exists a GT space X with cotype 2 such
that X®, X =X®&.X. By [16, Remark 1] and [12, Theorem 14.1], this implies that
X®,X does not have finite cotype and therefore (see [26, Corollary 6.13] and [12,
Theorem 14.5]) X, X cannot be a GT space.

Proposition 3.1 also allows us to give a new multilinear characterization of £
spaces.

Proposition 3.6. Given X,.....X,, Banach spaces, the following are equiva-
lent:

(i) Xi,.... X, are L. spaces:

(ii) for every Banach space Y and for every multiple 1-summing n-linear op-
erator T: X3 x .. x X, =Y, we have that T is integral.

Proof. To see that (ii) implies (i) we consider an arbitrary Banach space ¥ and
an arbitrary absolutely summing linear operator u: X;—~Y. By [28. Theorem I11.3],
if we prove that w is integral, we will obtain that X; is an L. space {we rea-
son identically for 2<j<n). For 2<j<n we consider r;€Bx, and SC;EBX; such
that x’;(xj):l. It is trivial that T=ugr3%...22%: X1 X...x X, =Y is multiple 1-
summing. Using the hypothesis. we have that T: X; 2. ... 2. X, =Y is integral, and
SO is u:fv, where v: X135 X, 2. ... 2.X,, is given by v(z1)=218...22,.

To see that (i) implies (ii). we reason for the case n=2 (the general case can be
obtained similarly by induction). Choose a bilinear operator T: X; x Xo—Y, and
let T1: X1 —L£(X,,Y) be its associated linear operator. Using standard localization
arguments we can deduce from Proposition 3.1 that. if T€II3(X1, X5:Y), then
Ty elli (X1, 11, (X3,Y)). Now. [28, Theorem I11.3] tells us that Ty € I[(X,.1(X3.Y))
and, by {30], we can conclude that T is integral. O

Remark 3.7. Since 1-dominated multilinear operators (see [20] for definition
and basic facts) are easily seen to be multiple 1-summing. Theorem 3.6 is weaker
in one direction and stronger in the other direction than the main result in [9].

Next we are going to prove our main result relating multiple (p, 1)-summing
multilinear operators with the p-variation of their representing polymeasure.
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Theorem 3.8. Let (Q;,%;), 1<j<n, be measurable spaces, let 1<p<oc and
let Y be a Banach space. Consider a multilinear operator T: B(X1)x...x B(%,)—
Y with representing polymeasure ~: %1 x...x%,—Y. Then T is multiple (p.1)-
summing if and only if v,(v)<oco. Moreover. in that case

2= () in the real case,

9n(2-1/p)y, w(7) in the complex case.

0a(1) < oy (T) < {

Proof. Let us first suppose that T is multiple (p, 1)-summing and let us consider
T;

Ej'PartitionS' (Aij )kal Of Q]. 1 SJ Sn FOI- evel'y l‘l] GB(Z] )* \Vith Hl[,] H S]_ we have
21 ;A3 )| <1. Therefore

(Z S ||7<Ai1,-..,Az,,>1|P)l/p (

ki=1  kn=1

1/p
> Z ITCxay ,...,XAEH)”;)

ki=1
ﬂ(p‘l)(T)'

We now prove the converse in the real case. the complex case follows easily
considering real and imaginary parts. Using density, it is enough to check for
sequences in S(3;). So, let (fj )1 21CS(E;), 1<j<n. There exist X;-partitions

(Aij);izl of Q;, 1<j<n, and real numbers aij_kj such that

L

J J )
5= § : Gk Xaf

kj=1

Claim 1. The norm ||(fj )ZJ_IH1 <1 if and only if |ja;||<1, where a;: 17 —1{"
is the operator defined by
m;
= Z a?j-k.ieif

’i_jzl

my

Proof of the claim. Let us first suppose that ||(fi)é]:1||f§1, and consider
(ij)Z:;ZIEBl:j. For each 1<k;<r;, choose wkjEA]k_j and let ujzzgzlckiéwkj,
where 5% is the evaluation at wy,. Then u;€Bp(s;)- and

laj((cx, ) )l = Z Dol = ()1
i;=1'%;=1 iy=1

which finishes this part of the proof.
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For the converse, suppose that |ja;||<1 and choose u;€ Bps:,)-. Clearly

Z’ﬂ] |<1

k=1
and we get
S ()= 3|3 e ia >} — g (s (AL )P )l < 1
;=1 ij=1"k;=1

which finishes the proof of the claim.

We consider now the (non-linear) mapping
F: (. My <. x i~ ") —R

defined by

Flee)= (303

71=1 i =1

Z Z ey e (AL AR

k=1 k=1

p>1/p
where C'Zj,kj:@j(ekj)eeij)‘
It is easy to see that F is continuous and separately convex. Therefore, its
maximum in the compact set Bign Ay XX Brrn oy 1s attained on the product
of extremal points (b, ....by,).

Claim 2. If bjeextBC(l;-j "y then. for every k;e{l,...,r;}, there emist
“t1

ij(kj)ole{ls..,,mj} and aije{l,—l} such that bgj_kasijdzlj(kj). Obuviously, i;(k;)
and Eij are unique.

Proof of the claim. If there is a k? such that (bf ko);nle is not of the form

€x0€;, (k0)- then (b] )l ., is not an extremal point of B =;. Consequently, there

kO
exist two different sequences (yz;)z;_l (7{, )i L1 € By with bJI,] le +12] for all
ii=1,...,m;.
By setting
' 0 ‘ £ 0
j . b}]'],kjt kj#kj‘. q j _ i’frkj-, k‘j#kj‘,
yij k: 5 0 an Zij.kj - j k __ko
yijv k_]:k] z,’,je 7= Ry
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we have that bf & —‘2919 k; +1 zf K for every i;.k;. that (yfwk])i‘,.k}-#(ij_kj)ij.kj

and that (yljfkj),,,j. j,(zl) J) ks EBc(I';J.I’I"J')'
which finishes the proof of the claim.

In conclusion. b; is not extremal,

So, we have

(i % ||T(fill""’fﬁ)||p>l/p

i1:1 in,:l
=F(a1,...,ap)
<F(b,..,b,)

(X%

1= 1 ln-‘l

2

{kyiiy(ky)=i1}  {kniin(ka)=in}

<Z "Z(Z Yoo Z V(AL AT

i1=1 in=1 ‘@pcd klerzlyo(l) kn€rn

in.o(n)

/1\"1 ""An /(AKI : A&)

)y

o

P)l/P

with
Jow={kytij(ky) =ij and = =1}
3 _= {k’] l](k]) :27 and 5{1‘ = ~1}

and ® the set of mappings from {1.....n} to {+.—}. _
We note by BZ? +:Ukjer{]4+ Ai} and by B{;-‘:UA‘JGI‘{JV, A{CJA We have that,

for each j, the sets 31 . and ijﬁ are all disjoint. So.

m M 0
(;'”i;HT( LR Zl)ﬂp>

i1=1 in=1 “0&d N
(1)

(Z Z(Z B oo ~B:i,.o(,,)>u)p)w

i1=1 in=1 “0&d

my my L/p
szﬂ“‘”’”( S 30 Y Bl iy Bl

ip=1] in=10ed

S ) AL AR

kler‘ o k'ler?,,,ogn

e

<2tV (7). O

Using Theorems 2.3 and 3.8 and the comments above about polymeasures, it
is very easy to obtain the C(K) version of Theorem 3.8.
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Theorem 3.9. Let K; be compact Hausdorff spaces, Y a Banach space and
T:C(K1)x...xC(K,)—=Y be a multilinear operator with representing polymeasure
V1 X x X, =Y ** . Then, T is multiple (p, 1)-summing if and only if v,(v)<oc.

Moreover, in this case,

2n(1=1/P)y (v) in the real case,

Vp(Y) L7 ) (T S{ .
PN <7y (T) 272=1/Py (~) in the compler case.

Remark 3.10. The case n=1 of Theorem 3.9 gives a new characterization of
(p,1)-summing linear operators from C(K) spaces in terms of their representing
measure.

As a corollary, we obtain a new proof of a classical result (21, p. 14]).

Corollary 3.11. Let K be a compact Hausdorff space, p>1 andY be a Banach
space. A linear operator T: C(K)—Y is (p,1)-summing if and only if

@ s (g HT(fz->||”)1

/p
(fi)iz, € Boky with disjoint supports} < oc.

Proof. First of all, it should be noticed that. if (f;)72, have disjoint supports,
then ||(f:)72, |I¥ =maxi<i<m || fil- So. by Theorem 3.9, it is enough to see that v,(~)
is less than or equal to (2), where v: £—-Y™** is the representing measure of 7. The
proof of this fact for p=1 can be seen in [13, p. 163]. The general case can be
obtained with obvious modifications. O

Remark 3.12. The constant 27(1~1/P) in the real case for Theorems 3.8
and 3.9 is optimal. To see this, we can consider T:[% x..xI% —R given by
T{z1,91) - (il‘myn)):H?:](yn—xn)- In the complex case, however, we do not
know (even in the case n=1) what the optimal constant is.

It is now a natural question whether we can obtain a result similar to Propo-
sition 3.1 for multiple (p, 1)-summing multilinear operators. The answer is no and
the clue is [5, Theorem 3.2] (see Theorem 3.17 below).

Ezxample 3.13. Let X, Y and Z be infinite-dimensional £, spaces. Then we
have that

1) (X, 21y (Y. 2%)) G T, (X Y: Z7).
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Proof. Using a version of Grothendieck’s theorem ([12, Theorem 3.7]), we know
that Il 1)(Y, Z*) is isomorphic to (Y ®, Z)*. Moreover, it follows from Dvoretzki’s
theorem that, for any £>0, Y*®.Z* contains the I".’s, (14-¢)-uniformly (see [16,
Remark 1}). Since Y*®.Z* is isometrically embedded into (Y£,Z)*, we get that
(Y®rZ)* contains the I’s, (1+¢)-uniformly (complemented).

Let il = (Y®x Z)*, pn: (YR Z)* I be such that ppip=Idin , |lin]l=1
and ||p,[|<2. Let X be an L. ) space, then, for every n€N, we can consider
projections Ry,: X 17 with ||R,|[|<\ and 721)(Rn)> /7.

For every neN, we consider the operator T,,=i,R,: X = (Y&, Z)* and its
associated bilinear operator T,,: X xY — Z*. Since Z* is an £ space, it has cotype 2.
So, [5, Theorem 3.2] tells us that there exists C'>0 such that, for every neN,

m21)(Tn) S C| T, || S AC.

As 12,1y {Rn) >/, we have that 75 1)(T)=m(2.1)(in Rn) >3/ . This proves
the non-equivalence of the corresponding norms, and, hence. the existence of an
operator TEH?QJ)(X, Y'; Z*) such that its associated operator T1: X =115 1)(Y, Z*)
is not (2, 1)-summing.

To give an explicit counterexample, let X=cy. Y=2Z=I.. Then (Y&,Z)*
contains an isomorphic copy of ¢ (see [1]), and we can consider T: X xY —Z* as
the bilinear operator associated to Ty:co—(Y&,Z)*. O

Remark 3.14. In fact, if we use the multilinear version of Grothendieck’s the-
orem given in [5, Theorem 3.1} instead of [5, Theorem 3.2]. we can prove, with the
same argument, the existence of a multiple 2-summing bilinear operator T7: X xY —
Z such that T1 ¢I1,(X,II,(Y, Z)), solving a question stated in [27].

Now, we are going to extend, to the multilinear setting. another linear prop-
erty that extends the field of applications of the above results. First we need a
proposition, whose proof follows immediately from the definitions.

Proposition 3.15. Let T: X x...x X, =Y be a multilinear operator and let
1<py, ..., pn<q<o0. The following are equivalent:

(i) T is multiple {g;p1, ..., pn)-summing;

(i) there exists a constant K >0 such that for every ma,...,m, €N and every
choice of sequences (zgj):;LlCXj, with ||(xf]):”:1||;] <1, 2<5<n, we have that the
associated linear operator

S5: X1 — 1" (Y)

given by
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s (q,p1)-summing and it satisfies

(3) Tq.p)(S) < K.

In this case, T(qp,....p)(T)=min{K:K satisfies (3)}

Proposition 3.16. Let 1<p;.....p,<g<x and let Ki.....K, be compact
Hausdorff spaces. A multilinear operator T:C(K1)x..xC(K,)—=Y is multiple
(g, 1)-summing if and only if it is multiple (q:py. ... . Pn)-sSumming.

Proof. We reason in the bilinear case. the reasonings being similar in the general
case. Suppose T:C(K;)xC(K2)—Y is multiple (g.1)-summing. Then. for any se-
quence (z} ){"L, CC(K;) such that ||(z},)["L, [l¥ <1. the operator S: C(Kz)—17"(Y)
defined as in Proposition 3.15 is (g.1)-summing and satisfies

Tq)(8) S 7.y (T).

Let i:1;*(Y)—1,(Y") be the natural inclusion. Applying [12. Theorem 10.9] to
S, and using the injectivity of the operator ideal of the (g.p) summing operators,
we get that S is (g, p2)-summing and that

T(q.pa) (5) S Kmg1y(T).

my

where the constant K& does not depend on the choice of (] )/'L;.
Therefore, T is multiple (g:1.p2)-summing. We choose now any sequence
(z7)i2; CC(K3) such that [|(27 )2, ]|% <1 and reason similarly. [J

ig=1
To end the paper, we are going to state some results concerning the p-variation
of polymeasures. The starting point is [5. Theorem 3.2]. which says the following.

Theorem 3.17. Let X; be a Banach space for 1<j<n and let Y be a cotype
q space. Then, every multilinear operator T: X, x..x X, =Y is multiple (q.1)-
summing and
(g (T) < Cy(Y)"[IT]I-

where Co(Y') s the cotype q constant of Y.
Using this result, the proof of the following surprising corollary is trivial.

Corollary 3.18. Let Y be a cotype q space and 1: X1 X ...x X, =Y be a poly-
measure of bounded semivariation. Then vy(7)<C(Y)"|5|l. In particular. every
scalar polymeasure of bounded semivariation has bounded 2-variation.

Note that, in general, scalar polymeasures do not have bounded variation
(see [7]).
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We can improve the scalar case of the last two results. To this end, we consider
the following classical theorem (see [4], [10]. [17], [18]).

Theorem 3.19. (Littlewood-Bohnenblust-Hille) If T is a continuous n-linear
form on cg, then

o0 20 (n+1)/2n
(Z > |T el ....eyn)|2"/<"+1>> <2007y

i1=1 in=1
This theorem allows us to prove the following result.
Corollary 3.20. Let Xy,...,X, be Banach spaces. Every n-luear form
T: X3 x..x X, =K is multiple (2n/(n+1).1)-summing and

Tan /(i) (T) <20 D2 T
Proof. Consider, for 1<j<n, sequences (r{j)ZLLICXj with ||(zfj):;1||‘f§1

T ot car (e Ye=pd i
The operator u;:lx’ — X; given by u; (elj)axij satisfies

gl =117 L4 Y <1

i lis=1
We can now apply Theorem 3.19 to the multilinear operator
S=T{(uy, ..., up): I x..xIZ* — K

to obtain that

my My (n+1)/2n
( Z Z |T(l‘111 ’$Z)|2n/(n+1)>

71=1 in=1
My Mr (n+1}/2n
= (Z -3 |S<e31,.-~,ezznz"“"“)) <2(n=1/2) g <227, O

i1=1 ip=1

Finally, we have the following result.

Corollary 3.21. Ewvery scalar polymeasure v: %1 x%...x 2, =K with bounded
semivariation satisfies

Van /(1) (7) S 207D 2.
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