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1. Introduction 

We shall construct Banach spaces X and Y having some peculiar properties. 

(a) X is a separable /:oo space. 

(b) X is a Radon-Nikodym space. Since a separable 1:oo space cannot be imbedded 

isomorphically into a separable dual space, this example solves negatively the following 

conjecture of Uhl: Is every separable Radon-Nikodym space isomorphic to a subspace of 

a separable dual space? 

(c) X is a Schur space, i.e. weak and norm compactness coincide in X. This answers 

negatively a conjecture of Lindenstrauss who asked in [10] whether a space which has 

the weakly compact extension property is necessarily finite dimensional (see also Theorem 

2.4). In  [11] Petczynski and Lindenstrauss and in [12] Lindenstrauss and Rosenthal 

asked whether every s space contains a subspace isomorphic to c 0. Our example 

disproves this conjecture. 

(d) X is weakly sequentially complete. Since X* is a 1:1 space, X* is also weakly 

sequentially complete. For a long t ime it was conjectured tha t  a Banach space is reflexive 

if and only if both X and X* are weakly sequentially complete. 

(a') The Banach space Y is a separable E~ space. 

(b') The Banach space Y is a Radon-Nikodym space. 

(c') Y is somewhat reflexive, i.e. every infinite dimensional subspaco of Y contains an 

infinite dimensional subspace which is reflexive. 

Since Y does not contain a subspace isomorphic to 11 it follows from results of Lewis 

and Stegall [9] tha t  Y* is isomorphic to 11. I t  is strange tha t  Y does not contain a copy 

of c o. Since Y is a I:o0 space it also has the Dunford-Pettis property and hence there are 
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Dunford-Pettis spaces which are somewhat reflexive. For some time the Dunford-Pettis 

property was understood as a property opposite to reflexivity. Following these lines 

W. Davis asked whether a somewhat reflexive space could have the Dunford-Pettis 

property.  

We think tha t  the paper might be interesting for two reasons. First it solves some 

conjectures in Banaeh space theory. Secondly it  gives a new way of constructing C~ 

spaces. We think tha t  this paper is the first paper where E~ spaces arc built using 

isomorphic copies of l~. The known examples of ~ spaces where constructed using iso- 

metric copies of l~ and hence they all are isomorphic to preduals of L 1. We also show tha t  

there is a continuum number  of mutual ly  non-isomorphic i:~ spaces. 

The notations used in this paper are standard and coincide with the notations 

introduced in [14]. We also use this text  as reference for any  unexplained notion on 

Banach spaces. For more details on abstract  vector measures we refer to [5]. Besides the 

introduction the paper  contains four more chapters. Chapter two deals with a brief in- 

troduction in the theory of E~ spaces, for more details and for the origin of the problems 

the reader may  consult [10], [11] and [12] (see also [13]). In  [10] the Hahn-Banaeh problem 

is investigated and the ~:~ spaces are characterized as those Banach spaces which have the 

compact extension property.  Chapter 3 contains some basic definitions of Radon-Nikodym 

spaces. For more details we refer to [5]. Chapters 4 and 5 contain the construction of the 

Banach spaces X and Y. 

2. Halm-Banaeh problems and s  spaces 

By a Hahn-Banach problem we mean the following: given Banach spaces Z 1, Z 2 and 

X, where Z 1 is a subspace of Z=, given an operator TI: ZI-,-X , when does there exist an 

operator T=: Z = ~ X  extending T1, i.e. T2]z ~= T 1. We say tha t  a Banach space X has 

the compact extension property (C.E.P.) if a compact extension T 2 exists whenever T 1 is 

compact.  In  the same way we say tha t  X has the weakly compact extension property 

(W.C.E.P.) if a weakly compact extension T 2 exists for every weakly compact  operator T r 

In  [10], [11] and [12] (see [13] for the details) a characterization of Banach spaces with 

the C.E.P. is given. Since we use some of this theory we recall some definitions and 

theorems. 

Definition 2.1. I f  X and X '  are Banach spaces then the Banach-Mazur distance 

between X and X '  is given by 

d(X, X ' )  = inf {][TI[. [[T-1]I I T: X + X '  is an onto isomorphism}. 
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Definition 2.2. (i) A Banach space X is a s space ( ~ 1 )  if for all E c X ,  where E 

is a finite dimensional subspace of X, there is a finite dimensional subspace F c X ,  such 

tha t  E c F  and d(F, l~ ~n~) <.).. Here l~ means the n-dimensional real vector space R n 

e n d o w e d  t h e  n o r m  II(xl . . . . .  =maxk< l kl. 

(ii) If  X is a s ~ space for some ~t then we simply say tha t  X is a s  space. 

The characterization of Banach spaces having the C.E.P. is given in the following 

theorem, see [13] for proofs. 

THEOREM 2.3. The following are equivalent: 

(a) X is a s  space. 

(b) X has the compact extension property, i.e. i t Z1, Z~ and X are Banach spaces, Z 1 

being a subspace o t Z~, i t TI: ZI ~ X is a compact operator, then there is a compact operator 

T~: Z2~ X extending T 1. 

(e) Same as (b) but the extension T 2 is not required to be compact, i.e. every compact 

operator has a continuous extension. 

(d) X *  is isomorphic to a complemented subspace o t an L I space. 

_For X separable (a), (b), (c) and (d) are equivalent with 

(e) X*  the dual space o t X is isomorphic to 11 or to M[0, 1], the Banach space o /Radon 

measures on [0, 1]. Moreover X *  is isomorphic to l 1 i t and only i t X does not contain a 

subspace isomorphic to 11. 

The following theorem was known for a long time but  since there was no example it 

was useless. 

THEOREM 2.4. A Banach space X has the W.C.E.P. i t and only i t it is a Eoo space 

having the Schur property. 

Proot. Suppose X is a s  space having the Schur property.  Since every weakly com- 

pact  operator an~ving in X is necessarily compact the W.C.E.P. and the C.E.P. coincide. 

Since X is a s  space the preceding theorem shows tha t  X has the W.C.E.P. 

The converse is less obvious. Suppose tha t  X has the W.C.E.P. and let K ~ X  be a 

weakly compact set in X. By the factorization theorem of Davis, Figiel, Johnson and 

Petczynski [3] there is a reflexive space R as well as an operator T: R ~ X  such tha t  

K ~  T(B(R))  (B(R) is the closed unit ball of R). The Banach space R is canonically 

isometric to a subspace of C(B(R*)), the space of real valued continuous functions on the 

unit ball of R*, this unit ball being endowed with the weak* topology a(R*, R). Since R 

is reflexive, the operator T: R ~ X  is necessarily weakly compact and since X has the 

W.C.E.P. this operator has a weakly compact extension T': C (B(R*) )~X .  
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We now use the Dunford-Pettis property of C(B(R*)) (see [6], [5] or [14]). This 

property says that  a weakly compact operator defined on the space of continuous func- 

tions maps weakly compact sets onto norm compact sets. I t  follows that  T'(B(R)) is 

compact and hence also T(B(R)) and its subset K. This proves that  X has the Schur 

property. Q.E.D. 

The known theorem that  follows is not difficult but  it plays a central part in the 

solution of Uhl's conjecture. The theorem is a slight generalization of the Bessaga- 

Pelczynski theorem on the imbedding of c o in a dual space. See [1], [5] and [14]. 

T H ]~ 0 R E M 2.5. Let X be an infinite dimensional Eoo space. I /  Y is a Banach space such 

that X is isomorphic to a subspace o/ Y*, then Y contains a complemented subspace Z which is 

isomorphic to 1 r In particular Y* is not separable. 

Proo/. Let i: X-~ Y* be the inclusion map. Transposition gives a map: T: Y-+X* 

defined as T(y)(x)=i(x)(y). I t  follows that  T*: X**-~ Y* and that  T*lx=i. 

If T is a weakly compact operator then also T* is a weakly compact operator and 

hence the inclusiort map i being a restriction of T is also a weakly compact operator. 

Since X is an infinite dimensional Eoo space it is not a reflexive space and hence i is not  

weakly compact. I t  follows that T is not weakly compact. Hence the image T(B(Y)) is 

not a relatively weakly compact subset of X*. From Theorem 2.3 we know that X* is 

isomorphic to a complemented subspace of an L 1 space and hence the Kadec-Pelczynski 

theorem [8] applies. The set T(B(Y)) contains a sequence (en)n~l such that  (en)n>~l is 

equivalent to the usual basis of 1 x and such that  S =span (en, n >~ 1) is complemented in X*. 

Let P: X*-~ S be a continuous projection. Take for each n >/1 an element yn e B(Y) 

such that T(yn)= ca. I t  is elementary to see that  (Yn)n>~l is equivalent to the usual basis of 

11 and also to (en)~l. Let now Z =span  (y,, n >~ 1) and let V: S--*Z be the operator defined 

by the relation V{y~)=e~. If  Q is defined as Q= VoPoT then clearly Q is a projection 

Y ~ Z .  Q.E.D. 

3. Uhl's conjecture on Radon-Nikodym spaces 

From [5] we recall some definitions and notations. A probability space (~, J4, P) is a 

triple where ~ is a set, ~4 is a a-algebra on ~ and P is a a-additive positive measure, 

defined on D. and with total mass P(~) = 1. Measurability will be defined only for variables 

taking values in a separable Banach space. For more general definitions and problems 

the reader can consult an advanced textbook on measure theory. If X is a separable 

Banach space and 2: ~ X  is a mapping then ~ is measurable if 2-1(0)EA for all open set 
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0 in X. I f  ~ is measurable then it is easily seen tha t  I1~(~o)]] defines a real valued measurable 

function. I f  also S II~(w)lIdP is finite then ~ is called Boehner integrable and S~dP 

denotes the integral of ~ with respect to P. A function #: A - ~ X  which is ~-additive is 

called a vector measure. The measure # is P-continuous if P(A) = 0 implies #(A) =0.  For a 

vector measure # we define the bounded variation norm II/~11 as: 

I1~11 = s u p  = ~(A~)II]Ax ..... A= a partition of n . 

If  ~ is Boehner integrable then/~(A) = ] ~  ~dP defines a vector measure whose bounded 

va r i a t i o=  n o r m  is I1 11 = SII ( )II d e =  11 11  In  general a measure with bounded variation 

is not of this form. 

De/inition 3.1. A Bausch space X has the Radon-Nikodym property (RNP) if for 

each probabili ty space (~, ~4, P) and each P-continuous vector measure # of bounded 

variation there is a density, i.e. there is a ~: ~ X ,  Bochner integrable such that~u(A)= 

SA ~ dP for all A e M. 

As examples of RN spaces we can give separable dual spaces as well as subspaces of 

RN spaces. Since the only known examples were of this kind, Uhl conjectured tha t  every 

separable RN space is isomorphic to a subspace of a separable dual space (see [5] page 82 

and page 211-212). We know tha t  if X is isomorphic to the dual space of a separable 

Banach space then X has R N P  if and only if X is separable. We also know different 

geometric characterizations of separable RN spaces. If  Uhl's conjecture were true then a 

beautiful geometric description of subspaces of separable dual spaces would be obtained. 

(Un)fortunately Uhl's conjecture is wrong. 

For  later use we mention the following, see [5] for a proof. 

LEMMA 3.2. I / # :  . ,4~ X is a P-continuous vector measure with bounded variation then 

t* has a density i/ and only i/ there is a sequence o] vector measures #n such that #~ has 

[inite dimensional range and ttn ~ lx  in variation norm. 

4. The basic example 

By means of a ra ther  simple construction we will make a Banach space which is a 

l:oo space, a Schur space and a RN space. Before passing to the details we will fix some 

notation. From [13] we recall tha t  if X =  LlnFn where Fn is an increasing sequence of 

finite dimensional subspaces and if d(Fn, l~ ~) <A then X is a s x+~ space for all e > 0. The 

sequence F n will be constructed in the following way. 

For  each n the space E~ is the subspaee of loo spanned by  the first d= coordinates, i.e. 
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E n = {x E l~ I xk = 0 for k >d~}. The space F .  is then an extension of E n, more precisely 

there is an isomorphism in: En~ l~  such tha t  ~ o i ~  is the identi ty on E~ and such tha t  

.F,, = in(En). Here gn means the natural  projection of I~ in En, i.e. gn(x) is the restriction 

of x to the first d~ coordinates. To construct i .  we will use a weak* limit procedure on l~. 

For each m < n  we define an injection im.~: E , , ~ E n  in such a way tha t  they satisfy 

(~) :~,~oirn. n = idEm for m <n, 

(fl) i,n.,~oiz.,n=il.,~ if l < m < n .  

The mapping i n is then defined as in(x)=lim~:.._~i,.k(x). We now pass to the technical 

description of i~. ~. First we give the general argument  and afterwards we give details for 

small n. 

Let  ~t > 1 be fixed and take 5 > 0 such tha t  1 + 2~2 ~< ~. This (~ is fixed for the complete 

construction. Let  dl--1 , let d,, (m<~n) be known, let i,n.z (m<l<~n) be constructed such 

that  they satisfy (~) and (fl). For  m<n;  1 <~i<dm; 1 <~]<dn; e ' = _ + l ;  e "=  _+1, define the 

funct ional /~,  f. j. e'.~" e E* as follows: 

/~. ~. j.~,.~,,(x) = ~  ~'x~ + 5 : ( x - i ~ .  nnm(X))j. 

Consider the set of functionals 

~n={ /m. t . j . r . : lm<n;  l<~i<~dm; l~<i~<dn; s'=___l; e " = _ l } .  

Let  d,~+l =d,~ + card (:~n) and enumerate the elements of :~  as g~+l ... . .  g~n+r The mapping 

in,~+i: En")'En+1 is now defined as 

i , , . , ,+l(x)  = (x l ,  x2 . . . . .  Xd,, gd,+l(X),  g ~ : ~ ( Z )  . . . . .  g~,+~(X), 0 . . . . .  0 . . . .  ) 

We also put  i,,. ,+l=i, .  n+loi,,.n for m<n.  The properties (a) and (fl) remain trivially 

verified. The heart of the example lies in the metric properties of the injection. Before 

studying these properties we give details for n = 1, 2, 3. 

(i) n = l .  There is no possible value of m and hence d 2 = d l = l  and il .2=ids, .  

(ii) n=2.  Possible value of re=l ,  possible value of i= 1, possible value of j - -1 .  I t  

follows tha t  card (:~2)=4 and d3=5. 

/i. 1.1. +1, +i(x) = xl + ~(x -~i(x))i = xl 

il, I, I.--I, +I(2~) = -- Xl -~- (~(x --~I(X))I = -- X 1 

/I.I,I. "l-l,--I(~) = -- XI" 
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(iii) n = 3 .  Possible values of r e = l ,  2. In  both eases there is one value of i and 5 

values of j hence there are 40 possibilities. The number d 4 = d a + 4 0 = 4 5 .  As a typical 

element we evaluate 

/1,1.4,  ~'.~"(x) = ~ ' z l  + ~ " ( x  - i l ,  3(x))4 

= g x l  + ~s"(z4 - (-x0) 

= (d + ~e")Xl+(~e"x 4. 

The following lemma is crucial in the construction of the space X. In  particular the 

estimate (2) will give tha t  X is a C~o space. The estimate (5) will give tha t  X is a R N  space 

with the Schur property. 

LEMMA 4.1. in . .  (m<n)  saris/y: 

(1) d(En l~ n) = 1, 

(2) Ilim.J[-<4, 
(3) ZrmOim.n = idEm, 

(4) im,nOiz,m=it,.  ( l < m < n ) ,  

(5) /or all x E E  n and all m < n  we have 

ll<n+,(~)ll i> II-m(~)ll +~ll~--r 

Proo/. (1), (3) and (4) are obvious from the construction. 

(5): For re<n,  the elements i, j, e', e" can be chosen such tha t  e'x,= II~m(~)ll and 

V(~--r = II~--~m.n~n(~)]l" Hence 

(2): Since I l i i .d l - -1  we can proceed by induction. Suppose we already haveSIF~.nll <4 

for all m < n. We first prove tha t  IFn. n+dl-<4. 

To see this take /m. t. j., ' .," E ~n and observe tha t  by induction we have 

II(~)I < ll~n(~)ll +~llx--im.n~,,(~)ll < II~II +~(II~II +~ll~ll)<(~ + 2~X)ll:~ll <;tll~ll. 

By definition of in.n+1 we then have IFo.n+~ll .<4. r ~ t  now m < n  and calculate i,.,+x" 

Since im.n+l=in.n+~im., we have tha t  

I1r = max {IF,~.~II; 11r162 where ]E:~,}. 

Since also llim,nll "<~ by induction, it remains to prove Illim.nll-<~ for all r ~ t  now 

/=/m,.t,j.~, ~,,~Fn. Then 

/im. n(x) = /n ' , f  t, e'. *"($m, n(X)) = 8'(7~m' ira, n(X))! + 8n~(im. n(x) -- ira'. n ~'gm' ira. n( x))I" 
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Hence 

I l l im,.l l  < II~,,,.i,.,.ll +al l i , , , , . - i , . . . ,~ ~., . im,. l l .  

We distinguish the two cases m' < m  and m' >m.  If  m' < m  we have 7~ m. ira.. =7~m" and hence 

llli,~.~ll < ll~m.ll +a(lli,~.~ll + llim.,.o~,~,ll) 
< ] +c~(,,!. +2) <g. 

If  m'>m we have zm, i,~.,=Xe,~,i,~,nim.,n, and i,~,.,z,~.im.,=im, nim.m,=i,n.n. Hence 

[]/im..[[ ~< [[i~.~[[ + 0 < 4 .  Q.E.D. 

Fix now n and E . .  For  each k > n the funct ion in,k: En -~ E~ is constructed as above and 

is injective. At  each stage new coordinates are added to the existing ones and for each n 

and all x E E.  the  elements i.,k(x), ]c >n are uniformly bounded by  2Hxll , hence the limit 

l i m ~  i.,k(x) exists in the weak* topology of l~o (i.e. for the topology a(l~,/1)). Le t  us pu t  

i.(x)=]imk-~oi..k(x) and let ~'n be the image of in, i . e . F . = i . ( E . ) .  

L]~MMA 4.2. The/oUowing properties hold: 

(6) i,.=i,i,~., /or all m<n,  

(7) F , ~  F ,  /orm<n, 

(8) I1i~11 ~<2, 
(9) d(E., F.) =d(F., l~') <~, 

(10) [or xE~F. we have /or all m<n: IIxll >~ II~(x)][ +~Hx-im~,~(x)l[. 

Proo/. (6): For  x E E~ we have in ira. n(x) = l i m ~ o  in, ~im, n(x) = lim~_~r ira, k(x) = ira(x), 

(7): Fm=im(Em)=imim,n (E)c in (En)=Fn  for m<n, 

(8): Since [[i.,kH <2  for all b we have tha t  Hi.H-<<2, 

(9): Since 7enin=idE. we obtain d(En, En)<~ II~.ll" Ili.II =4, 
(10): For  xEF.  we have IIx]l =limz]]i..k(x)H. In  par t icular  for k ~ n ,  

II~II >/Ili..k+~.(x)ll 
H:7~min.k+l~7~n(X)l[ +OHin.k+lTgn(Z)--im.k+l~rnin.k+lT~n(X)[[ 
II:r~rn(X) I[ +(~l[gk+,(z)  --im.k+itTrn(Z)ll. 

By passing to the limit: 

Q.E.D.  
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Let  us now put  X equal to the  closure of U n>~l F~. The space X can also be seen as the  

direct limit of the system 

The estimates <z or the estimates (9) give tha t  X is a s 

space for all s > 0 .  The estimate (10) of L e m m a  4.2 can now be restated as. 

COROLLARY 4.3. For all x E X  and all m we have 

Proo/. First  let x E U ,  F~, i.e. suppose x E F~ for some n. I f  m < n then the inequali ty is 

precisely estimate (10). I f  m ~ n  then x=im~z,~(x ) hence the inequali ty is trivial. For  

x E X  we proceed by a limit argument .  Q.E.D.  

T~EOREM 4.4. X is a I~oo space having the Schur property. 

Proo/. The fact tha t  X is a Coo space is already observed above. Let  us prove the 

Schur property.  We will prove tha t  if xkEX,  [Ixkll = 1, xk-~O coordinatewise then there 

is a subsequence (Yn)n>~l of (Xk)k~ 1 such tha t  Yk is equivalent  to the usual basis of 11. This 

will prove the Schur proper ty  as well as the s ta tement  t ha t  every infinite dimensional 

subspace of X contains a subspace isomorphic to l 1 (both properties are related by  [15] 

bu t  in this case it is easy to  prove them explicitly). To see t h a t  the  above proper ty  is 

sufficient we proceed as follows. Let  z~ be a sequence in X such tha t  z~-~0 weakly, we 

have to prove tha t  Ilzkll-~0. I f  this is not  the  case we m a y  suppose t h a t  llzkll > ~ > 0  for 

some and all k (eventually we take a subsequence). Since Ilzkll > ~ > 0  we have t h a t  

Hz~l[ -1 is bounded above and hence zkllzd1-1 -~xk~O weakly. Clearly xk-~0 coordinatewise 

and Hx ll =1.  By  the s ta tement  above x k contains a subsequence y,  equivalent  to the 

11 basis. Since xk-~0 weakly we also have y~ = 0  weakly bu t  this is a contradict ion to the 

fact  t ha t  Yn is equivalent  to the usual basis of 11. Le t  now Z be an infinite dimensional 

subspace of X. Since Z is infinite dimensional there is a bounded sequence z~ in Z and 

e > O  such tha t  [Iz~-zlll >~ for k i l l .  Since z k is a bounded sequence we m a y  suppose 

(eventually take a subsequence) t ha t  for each coordinate i we have zk. l is convergent.  

P u t  now Xk=(Z2k--Z2k+l)[[Z,k--Z2k+,]1-1. By construct ion x~,6Z, [[xk]l = 1 and xk-~O co- 

ordinatewise. 

B y  our s ta tement  z k contains a subsequence y,,6Z, equivalent  to the usual 11 basis. 

Hence Z contains an 11 copy. 
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and  

We now const ruct  the  subsequence Yk. For  each k t ake  e k > 0  such tha t  

( 1 -  ~) > �89 

5 e , <  
~_, 4(1 + ~)" 

Induc t ive ly  we construct  1 = n 1 < n  2 <. . .  and s 1 < s  2 < . . .  so t h a t  

Ilzsk(x)ll >~ (1-ek+l)]]xll for x e  span  (x . . . . . . .  xnk) 

< for p k 

P u t  now Yk--x,~ and  let al  . . . . .  a~ be real numbres .  F r o m  Corollary 4.3 it  follows t h a t  

[[alYl + . . .  +azyk H >1 H,3,(aly 1 + ... +a,  yk) H 

>I ]]z,,_,(a,u , -b ... § -- lak]ea +~(1 --ez)[az[ -- 5 Olal,[e~ -,  
p~k  

p~k 

Induc t ive ly  

I[a, yl + ... + akykH >~O -~ la,]t~-ij (1-- e,) - - ( l + ( ~ ) \ ~ < ~  e~/ ~IaPl 

t=1 

This proves t h a t  (Yk) is equivalent  to  the  usual l 1 basis. Q.E.D.  

Remarks. I f  Z is a s  ~ space for all/~ > 1 then  it turns  out  t h a t  Z* is isometric to  an  

L 1 space. In  this case Z is called predual  of L r In  [17] Zippin has shown t h a t  such a space 

contains a subspace isometric  to  c o. In  [10], [11], [12] and  [13] it  is conjectured t h a t  

(i) I f  a Banach  space V has the  W.C.E.P .  then  V is finite dimensional,  

{ii) every  s  space contains a subspace isomorphic to  c 0, 

(iii) every  s  space is isomorphic to a predual  of L 1, 

(iv) every  s  space ' i s  isomorphic  to a quot ient  of a C(K) space. 



A CLASS OF SPECIAL ~co  SPACES 165 

From Theorem 2.4 it follows tha t  (i) is the weakest of all four conjectures. The Banaeh 

space X constructed above satisfies the hypothesis of Theorem 2.4 and hence has the 

WCEP. This proves tha t  all four conjectures are wrong. From the remarks made in 

chapter 2 it also follows tha t  X* is weakly sequentially complete (X* is isomorphic to an 

L 1 space). Since X is a Schur space it is weakly sequentially complete. As far as we know 

this space is the first non reflexive space such tha t  both X and X* are weakly sequentially 

complete. 

TIt~OREM 4.5. The Banach space X has the Radon-Nilr property. 

Pro@ Let  (~, ,~, P) be a probabili ty space and let /~: A - ~ X  be a P-continuous 

measure. We will show tha t  /~ can be approximated by "finite dimensional" measures. 

For every set A E A and every n we have 

II (A)II > II=n (A)ll 

Taking the supremum over all partitions we obtain 

> 

Let  now A 1 .... .  Ae be parti t ion of ~ such tha t  

k 

II (A,)II 
Let n o be large enough so tha t  

k k 

~-1  p -1  

for all n>~n o. Since I~n/~l>~.~.lll~mu(A~)ll we obtain I zn /~ [~>lFI -e  and hence 

I # - i ~ u ]  ~<e6 -1 for all n>~n o. This shows tha t  lira i~:~/~=/~ in variation norm. Q.E.D. 

Remark 1. Combining Theorem 4.5 and Theorem 2.5 gives tha t  X is a separable 

RN space which does not imbed in a separable dual space. Also X is not complemented 

in its second dual space. 

Remark 2. The proof tha t  X has the Schur property is related to the following 

concept. 

De/inition (see [2]). A sequence ( ~ )  of finite dimensional subspaces of a Banach 

space Z is an /l-skipped blocking decomposition of Z provided following conditions are 

fulfilled: 
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Z QO (a) = [ ~ , ] , = l = e l o s e d  linear span  genera ted  by  (~,) ,  i =  1, 2 . . . . .  

(b) O,N [q , ] , . ,  = {0) for all i, 

(c) I f  mk and nk are sequences of posit ive integers so t ha t  mk<nk+ 1 <mk+l,  then  the  

sequence of spaces $'k=[O,]~--*~, is an 11 decomposi t ion of [F~]~~ 

In  [2] it  is p roved  t h a t  if Z has an /1-skipped decomposi t ion then  Z has the s t rong 

Schur  p roper ty  and  Z is an R N  space. The  proof of Theorem 4.4 shows in fact  t h a t  X 

has  an /x - sk ipped  decomposit ion.  We  prefer  to include a proof of the  R N  prope r ty  since 

the  results of [2] are much  more  technical  t han  the  given proof. 

Remark 3. The idea of the  proof  of Theorem 4.5 is due to  Uhl.  The  original proof 

involved mar t ingale  theory  and  was a little more complicated,  a l though it used the  

same principle. 

5. Another example 

A look a t  the example  of the  preceding pa rag raph  might  suggest  t h a t  a l:oo space 

either contains a copy of c o space or a copy of 11. The  Banach  space Y constructed in 

this chapter  does not  contain subspaces isomorphic to c o or to 11. I t  tu rns  out  t h a t  the  

space Y is somewhat  reflexive, i.e. every  infinite dimensional  subspace Z of Y contains an 

infinite dimensional  subspace which is reflexive. 

The  construct ion follows the  same line as in the preceding chapter .  Again the  same 

numbers  (dn)n~> 1 are introduced.  The  spaces Em are the  same as in chapter  4. The  func- 

t ionals /E :~n are defined in a similar way,  for m < n; 1 ~< i ~< din; 1 ~<j ~< d~; e ' = _  1, # ' =  • 1, 

we define 

/m.i,),e.,~,,(X)-~'axt§ j for all xEEn. 

The numbers  a and  b are chosen so t h a t  

(1) O<b<a<l ,  

(2) a+2b~t~<X; hence a + b ( 1  +X) ~<~, 

(3) a + b > l .  

The  existence of such numbers  follows f rom the inequal i ty  ~ > 1. We define Q.=+,: 

En~En+l as in chapte r  4 and  i~.n+ 1 is defined as i,~.n+l=in.,~+li,~.n for m<n. 

LEMMA 5.1. The /ollowing properties hold: 

(1) d(En, l~) = 1, 

(2) Him.nil ~<~ /or all m<n, 
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(3) ~ m i z . n = i d ~  /or all re<n, 
(4) im.~il.z=iz,n /or l<m<n, 
(5) /or xE En: 

[[~=,~§ = m a x  t 
l 

llxll 
all:~m(x)ll + b l l ~ - ~ m . ~ ( x ) l l ;  ~ < n .  

Proo]. (1), (3) and (4) are obvious.  (2) follows f rom Ili~,=+i(x)ll = m a x r ~ . ( l l x l l ,  I / (x)[)  

and I/(x) l ~<a]]x H +bHx-im.=gm(X)] I <~a +b(1 +~)~<~t. 

The  proof in the  general case ( m < n )  as well as the  proof  of (5) are now done in the 

same way  as in L e m m a  4.1. Q.E.D.  

As in chapter  4 we now define iz: E=-+loo and we pu t  F==i=(E,~). 

LEMMA 5.2. The /ollowing properties hold: 

(6) im=i~im,n for m<n, 
(7) FmcF~ /orm<n, 

(8) I1r 
(9) d(Fn, I~r .) <2, 

(10) /or xeF~ we have 

H~II = m a x  t 
( all~.(z) l l  + bllx - im 7~m(X)][; m < n. 

Proo/. 0 n l y  the es t imate  need to be proved.  For  xEFn it is clear t h a t  

II~ll : lira Ilin,~(x)ll. 
k-....~o 

Let  us fix k > n  and let us calculate I1=~+~(~)11. Since 

it  follows t h a t  

Zk+x(X)=in.k+lgn(x)=ik.k+lin.kZn(X)=ik.k+lZk(X) 

I ll~(x)ll 
H~+I(X)H = m a x  taii~m(x)l I +bll~(z)-im,~m(x)il, m~k. 

But  for k>m>~n we have ~k(x)=im.kgm(X) and hence we have  

II~k+,(x)ll = / II~k(x)ll 
m a x  [ aH~m(x)H +bHzk(x)_im.k~,~(x)H, m < ? ~ .  
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An easy induct ion on k then shows 

max  [ a nxem(X)II § b IIg~(x) - ira. k 7~m(X)I[' m ~ n .  

Lett ing k-~ oo we obtain the desired estimate. Q.E.D. 

Let  now Y be the direct limit of the system 

il, 2 i2. s 
E 1 , E~ , E a �9 . . . ,  

i.e. Y =closure  of U,~>lFn in l~o. Again Y is a s  space. 

LEMMA 5.3. Y does not contain a copy o/ 11. 

Pro@ Let  en6 Y be a sequence equivalent  to the usual basis of 11. First  suppose 

(eventually take a subsequence) t h a t  en is weak* convergent.  Take now yn=e2n-e2~_l.  

This sequence is still an 11 basis bu t  nm(yn)oO as n-~oo. By  densi ty of (Jn~l F= we can 

replace Yn by a sequence un such tha t  gm(un)= 0 for m < n and un E Fm~, where m'x < m~ < ... 

is a good subsequence. (We have to  pass to a subsequence and we have to apply  

Theorem 10.1 p. 93 of [16].) By  a result  of James  [7] there is a block basis zn of (Yk) such 

tha t  

(1) llznll = 1, 

(2) ~z(Z~)=0 for m < n ,  

(3) zkEFm ~. where m~ <m~ < .... 

(4) k~akzk  >t-(1-- s).-1 ~ la"[" 

Here e > 0  is chosen such tha t  4 e < l - a .  Let  now x l = z  1 and  let ml>m'~ be such tha t  

]lum,(zl)n > 1 - s .  Let  x~. =zk, where k~ is such tha t  zm,(zk) = 0  for k >i k~. Take now m 2 such 

t h a t  m2>m~ ,, m z > m  1 and ]]~m,(x2)ll > 1 - s .  

Take then k s such tha t  Zm,(Zk)=O for k>~k a. Let  xa=zk . and take n such tha t  

tlgn(xa)ll > 1 - a  and x s e F  ~. We now calculate the  norm of x = x 1 + x 2 + x  a. Of course by  

James '  construct ion UxU >~3--3s. Successive applications of Lemma 5.2 will give upper  

hounds on Ilxll. 
{ll  (x)ll 

Ilxll = max all~m(X)[[ +bllx_i,nZ~m(X)[i, m < n .  
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(~) re<m1: 

~ll~m(~)ll +bllX-~m~m(~)ll 

= a[[Y[m(Xi § § +bllXl § § § § xa)H 

< a [[;Tgm(xi)I[ + b [[ x I --  smT/:m(Xl)[[ + b I[x2 + x3H 

~<l+2b.  

(fl) m l  < m ~ - m 2 :  

= all-re(x, +x2 + xa)ll + bllXl +x2 +xa --im~m(Xi +X2 +Xa)[[ 
= all.rn(X 1 +x2) H +b[[x 1 + x ~ -  ime~m(X 1 q-xu) H +bHxal I 

< I1~ +~211 § 
~ 2 + b .  

(~) m z < m < n :  

allTtm (x) II + b II �9 - i~m(~)II 

= a II:~m(Xl + X~ + xa)]1 + b II x i  + xz  + x a - im~m(X 1 + X z + Xa)II 

< a l l~ (x t  +z2)l[ +al[~m(x3)[[ +bllx~ + x ~ - i ~ . ~ ( x ~  +x,)ll  +bl lxa- im~. , (xa) l l  

< a[lx~ +x2ll + IJXal[ (since x 1 + x  2 =imZrm(x I +Xz) ) 

~ < 2 a + l .  

(5) If the norm of x is a t  least 3 - 3 e  then  this norm cannot  be a t ta ined  in the first 

d~  coordinates. 

Indeed for these coordinates x a is zero. Hence we have to give bounds for the co- 

ordinates of x, si tuated between d~, + 1 and d~. These coordinates are bounded by 

II~(Xs)H + coordinates of (x t+/2) .  From L emma  5.2 we know tha t  these coordinates are 

bounded by  quantit ies of the  form 

all~m(Z x + x~)II + bll~=(~l + ~)  --imn:rgm(Xi "1" X2)II, 

where m < m ~ .  We distinguish two eases: 

(61) m<~ml: 

all ~m(X, + ~)11 + b l l~ ( /1  +~)--im.nYtm(Xl q-X~)][ 
< all~m(XOl[ + b l l ~ ( x l ) -  ira. ~m(X~)ll + bll~(~2)ll 

I1~111 +bll~(z~)ll 
< l + b .  
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((~2) ml <m ~m~: 

all~(Xl+X~)ll + bll n( , 

< a[iTlm(Xi)[[ § § 

< aHx, ll + IIx21i. 

Summariz ing  (~), (fl), (y), ((~1) and ((~2) gives: 

[[x[[ ~<max (1 +2b,  2 + b ,  1 +2a ,  2 + b ,  2 + a )  ~ 2 + a <  3 - 4 t  b y  the choice of e. 

This inequal i ty  contradicts  [[xil >~ 3 -  3e and  hence proves L e m m a  5.5. Q.E.D.  

LEMM~. 5.4. Y is a Radon-Nikodym space. 

Proo/. We again use Uhl ' s  a rgument .  Le t  #: A-+ Y be a vector  measure  wi th  bounded  

variat ion.  P u t  v=l~- i~n[~.  As in Theorem 4.5 we have  Iv[ >~a[gmv [ +b[v-i ,nzmv[.  Le t  

A~ .. . . .  A k be a par t i t ion  of ~ such t h a t  Iv [ ~< ~.~-1 [[v(A~)[[ + el2 and let m 0 be large enough so 

t h a t  for m ~> m0: ~ [[~r(Ap)[[ > / ~ _ ,  [[~(Ak)[[ - e/2. I t  follows t h a t  [ ~ v  ] >~ k -" ~ = ,  ]]7~mv(Ap)l[ >/ 

and  hence <-(O-a)/b)l~] +at/b for  all m>~m o. But  for m>~n we 

have  v - i ~ v  = # - i n ~n ju - i m  gin# + i~gm i~n~u =~u - i~m~U and hence for m >/max (m0, n): 

[#- imzm/~[  ~<( (1 -a ) /b ) ] /~ - ingn#[  +ae/b. 
Hence 

lira [/~-im~m/~} g ( ( 1 - a ) / b ) l / ~ - i , g , ~ # ]  +ae/b 
m--~r 

and 
lim I /~- imnm#[ < ( ( 1 - a ) / b )  l im +ae/b. 

Since this inequal i ty  holds for all t > 0 and  since a + b > 1 we obtain  limm_~o [/z - imz~m/~ [ = O. 

Q.E.D.  
LEMMA 5.5. Y is somewhat reflexive. 

Proof. Let  Z be an infinite dimensional  subspace of Y. We will const ruct  a basic 

sequence in Z which is shrinking and boundedly  complete.  F r o m  the results in [16] it  

follows t h a t  such a sequence spans a reflexive space. Since Y does not  contain a copy of 

l~ and since Z is infinite dimensional  there  is a basic sequence (z~) in Z such t h a t  [[z~[[ = 1 

and z~-~0 weakly.  We use the pe r tu rba t ion  theorem on basis to produce  a sequence 

(Yn)n>~ equivalent  to a subsequence (zn,) of z n and  with following properties:  

(1) II  ll 
(2) there  is a sequence m~<m2<..,  such t h a t  
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(3) ~mk a,y,- i~n~,~ a, ys 1> (1 - ~) a,y, - i,~7~m a, ys 
8 - I  

for all m<m~_ 1 and all al, . . . ,a k. Here e > 0  is chosen so that  7=(a+b)(1-e)2>l. 
We now show that  y~ is boundedly complete. Let (ak) be a sequence of real numbers 

N such that  vN=~s:la~y~ is bounded. We have to prove that  vN is convergent or what is 

the same: v~ is a precompact sequence. Suppose now that  live[ I ~<1 for all N and that  

there is fl > 0 with 

lim IIvN- im~mvNII > ft. (*) 

For all p<s<t and all m<m~_ 1 the following estimates hold (Lemma 5.2): 

+ bllzvm, (z~la~y~-imgr~ ( ~ , Y ~ : ) ) -  i,n,.m, gm~ (~akyz--irnx~n (~ la~yk) )  1t 

=a ~m,(~aeyk--irn~rn(~la~Yk) ) 

+b 7~m,( tk~lakyk)--i.~.r~,gm( tk~.lakYk)--i,.~,m, Znp(~_lakyk)§ ..... g.(~akyk) ] 

= a l gm, (e~. J a k y~ -- i m gm (k~l akye) ) + b ~m, (e~_l ae Yk -- impY~m~ ( ~  ae Yz)) ]l 

Given m take now p such that  

I~_la~y~-i,n~(~.~a~y,) > fl(1 -- ~), 

hence also 

I z~m,(~.a~y~-i,nxe~(~a~Y~)) ~>fl(1-e) s. 

For this p take now t such that  

1 2 -  80290~ ,4eta matbematica 14~. Imprimd lc 6 FSvricr 1981 
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hence also 

From these choices it follows tha t  

t 

This inequality proves tha t  (*) holds for ~fl instead of ft. 

Repeating the argument  M times where M is such tha t  ~Mfl > 1 + 2  gives a contra- 

diction with IlvN-im m(vN)ll <1 +4 for all h r. 

I t  follows tha t  (y~) and hence (zn,) is a boundedly complete basic sequence. 

To construct a shrinking basic sequence we proceed as follows. Since Y is a 

separable s162 space without a copy of 11 it follows from [9] tha t  Y* is isomorphic to 11 

and hence is separable. Since U = s p a n  (zn,) is a subspace of Y, its dual as a quotient of 

/1 is also separable. From results of Dean, Singer and Sternbach [4] it follows tha t  U 

contains a sequence x~ which is a block basic sequence of (z,~,),~, and which is shrinking. Since 

(z~)~ is equivalent to a block basis of (y~),, i t  is also boundedty complete. Q.E.D. 

Remark. The Dunford-Pettis property was understood as a property opposite to 

reflexivity. From this reasoning Davis asked following questions: 

(1) Suppose Z is a Banach space without an infinite dimensional reflexive subspace. 

Is Z a Dunford-Pettis space? 

(2) Suppose Z is a somewhat reflexive Banach space. Need Z to fail the Dunford-Pett is  

property? 

Both questions have a negative answer. Question 2 has a negative answer because the 

Banach space Y is somewhat reflexive and as a E~o space it  has the D - P  property.  (We 

remark tha t  if Z is a Banach space which has the D - P  property and does not contain an 

ll subspace then Z* is a Schur space.) 

Question 1 also has a negative answer. Take for instance the Orliez function ~(x)=  

e -1/x' (x >0) and let Z be the Orlicz sequence space construted with ~. I t  can be seen tha t  

Z is not a D - P  space but  it does not have an infinite dimensional reflexive subspace. 

For each a and b we constructed a Banach space Ya.b. The aim of the following reasoning 

is to show tha t  for fixed a the Banach spaces (Ya,~)b are mutually non-isomorphic. This gives 

a continuum number  of separable mutually non isomorphic s  spaces. (We remark t ha t  

there are only uncountably many  separable mutual ly non-isomorphic C(K) spaces.) To 
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prove t h a t  the spaces :Ya.o are no t  isomorphic we will construct  a basic sequence (e=). in 

Y,.~ such tha t  for all n we have the estimate I le~ 4 . . .  + e=ll "< n=. Here ~ is the ~mque number  

such t h a t  ( a l / ( 1 - a ) §  1 - z t =  1. On the other  hand  we show tha t  if [[x~l [ =1  and x ~ O  

weakly then  there is a subsequenee (z~) and a cons tant  C > 0 such t h a t  I1~ +.. .  + ~=U >/Vn~. 

Since for fixed a the parameter  ~ is in one-one correspondence with b, this shows t h a t  the  

spaces Ya.b are not  isomorphic. More precisely Ya.b" is not  isomorphic to a subspace of 

Y~.b if b <b ' .  We now pass to the details. 

LEMMA 5.6. There is a sequence o/natural numbers (nk)k>~l with/ollowing properties: 

(1) d 3 < n  1 ~<d 4 < n  2 ~<d 5 < ... ~<dk+~ <nk <dk+a .... 

(2) I / x e E , ~  and x~=x~=O then im(X),k=O /or all k>m. 

LEMMA 5.7. I/ z e ~ m  and .~_~( z )=0  t ~  ]Ji~(z)ll = IIzll. 

Both  s ta tements  are obvious. Let  now e~ be the element of Ek+3 defined as (e~)~ = 1 if 

i=nk and (e~h = 0  if i#nk.  Pu t  then e~ =ik+s(e~). By  Lemma 5.7 we have ]]ekll = 1. 

F rom the  estimates of Lemma 5.2 and from L e m m a  5.6 we deduce t h a t  the  sequence 

% is an  uncondit ional  basis (with uncondit ional  constant  = 1)  and tha t  the norm of e~ +... + e~ 

is a t ta ined in the extension beyond the  coordinate dN+3. Hence 

lie, + .  § = max (all~(e~ +. . .  +ev)ll +blle~ + .  +ev--imYgm(e I § . . .  +e~)ll) 
m<N+3 

< m a x  (alle, + . . .  + em-~l +blle~-~ +.. .  +evlD 
m<V+8 

< m a x  (allei +. . .  +e~ll +blle~+~ +. . .  +evll)- 
k < N  

Pu t  now yzc=supk~o[iek+x +... +ev+k[l. The above estimate then gives 

(1) yv ~< maxk<N (ayk+byv-k), 

(2) Yt = 1. 

LEMMA 5.8. I /  (Yv) is a sequence o/ real numbers satis/ying (1) and (2) then 

YN ~ N% 

where ~ is the unique number between 0 and 1 satis/ying 

a 1/(1- ~) § b 1/(I-~) = 1 .  
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Proo]. By induction on N. Suppose the estimate holds up to N - 1 .  Then 

7N ~< max {ax ~ + b(N - x) ~ Ix real and 0 <x  <N}. 

Elementary calculus gives tha t  the maximum is attained at  x = N ' a  l/a-~) and hence 

y N < N  ~. Q.E.D. 

Suppose now that  xn is a sequence in Ya.a such that  IIx l[ = 1 and x=-+0 weakly. By 

taking subsequences and using the perturbation theorem on basic sequences we may 

suppose that  

(1) there is a sequence of natural numbers s l < s  2 .... 

(2) xkeF,~ for all /c and IIz ll =1, 
(a) II   (x,)ll =0 for l>/c, 

(4) ll~s~(x)l t ~>(1--ea)]lxll for all xEspan (x I ..... xz), 

(5) I-I~~ (1 --sk) >0 and ez is decreasing. 

Put now Clearly 61=1 and by Lemma 5.2, 

I[Xk+1 + ...-'~:Vk+NI[ ~ aHY~s~+p(Xk+ 1 ~-... q- Xk+N)H 

/> all~,+~(Xk+l +...  + xk+~)[[ + b Hx~+~+l+... + xk+NH 

>7 a(1 --%)"~r +b. ($N-~. 

Hence 

(1) 5N~max (a(1 -ep)(~ v +b~N_~), 
p<N 

(2) a~ = 1. 

Lv.I~MA 5.9. Under the above conditions there is a constant C > 0  such that 

ON >I C N~ 

where o~ is given by all(1-~) q-bll(1-~)= 1. 

Proo/. To improve clarity we put ~ =alJa-~)<l  and we put  Ix] equal to the greatest 

natural number ~<x. We also put 20(N)=N and ~k(N)=[~_I(N)~]. Since ~k is decreasing 

there is a unique number/co(N ) such that  2k0-1(N)> 1 and 2k~ 1. In this case we have 

~k~ and hence ~k._l(N)>~-l. Inductively we obtain ~k0_j(N)>~-J and N =  

~to(N)>~ -k'. Since a > b  we have that  U>�89 and hence there is N o such that  [hr~]>~ 
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N - [N~/] for all N >~ N 0. Since (~N > 0 there also is C' > 0 such that  ON >t C ' N  a for all N ~< N 0. 

Let  us put  

1 Ott~(1--8~,(N))...(1--e~o~N))(1--~l--~))~...(1 ~,c0_~(N))  C' .  

By induction we will prove that  ~N~> CA, iN ~. 

For N ~<N o this is clear by definition of O'. Now suppose that  N > N 0. 

ON~ > (1--er)a~2,+b(~N_ ~ for all p < N  

>/(1 -- 8~,(N)) (aC~,(N))q(N) ~ + bCN_~,(N)(N - 21(N))~). 

Since N > ~ N  o we have t l ( N ) > N - A x ( N  ) and hence C~,(m<~G~_~,(N ). We obtain 

6~> (1 - e~,(m) C~,(s)(a21(N) ~ + b(N - 21(N)) ~) 

+ b i n  N ~ '~(N)~ ~ 

>~ (1 - 8,,(N)) (1 - ~I-~N)N))~ Ca,(N)/V~ 

>~CNN ~. 

To complete the proof we only need to show that  inf N CN>0: 

>i (I - ca,) ... (I - 81) (I --~)~ ... (I -- ~k'-l)~c' 
oo 

i> C' I-I (I - ej) (I - ~)~> 0. Q.E.D. 
I-1 

T ~ o a ~ . ~  5.10. I / b ' > b  then Y~.o is not isomorphic to a subspace O/]Ya, b.. 

Proo]. If b < b '  then g '>zt  where a~a-~)+bl/(~-~)=l and a~a-~')+bn/(~-~')=l. Let  e~ 

be the sequence constructed above. Since span (e,, n>~ 1) does not contain a copy of l~ 

and since e, is unconditional we obtain en~ 0 weakly. Suppose now that  Y~.a is isomorphic 

to a subspaee Z of Y~.~,. Let  x~ be the element of Z corresponding to %. Since x=-~ 0 we also 

have ~=~lllx~[I~o weakly. By passing to a subsequenee and by applying Lemma 5.9 

above we obtain 
: I C > 0  such that  I1~,+'"+~-II 

Hence 3G" >0  such that  C'N ' (note that is unconditional). 
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On the  o the r  h a n d  the  e s t ima t ion  of L e m m a  5.8 remains  t rue  for subsequences of e~. 

We obta in ,  
3c" 

which is a cont radic t ion .  Q.E.D.  

C o • o L L ), R Y 5.11. For all ~ > 1 there is a cont inuum number o /mutua l l y  non-isomorphic 

s spaces. 
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