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1. Introduction
We shall construct Banach spaces X and Y having some peculiar properties.

(a) X is a separable £ space.

(b) X is a Radon-Nikodym space. Since a separable £, space cannot be imbedded
isomorphically into a separable dual space, this example solves negatively the following
conjecture of Uhl: Is every separable Radon-Nikodym space isomorphic to a subspace of
a separable dual space?

(¢) X is a Schur space, i.e. weak and norm compactness coincide in X. This answers
negatively a conjecture of Lindenstrauss who asked in [10] whether a space which has
the weakly compact extension property is necessarily finite dimensional (see also Theorem
2.4). In [11] Pelezynski and Lindenstrauss and in [12] Lindenstrauss and Rosenthal
asked whether every [, space contains a subspace isomorphic to ¢,. Our example
disproves this conjecture.

(d) X is weakly sequentially complete. Since X* is a (, space, X* is also weakly
sequentially complete. For a long time it was conjectured that a Banach space is reflexive
if and only if both X and X* are weakly sequentially complete.

(a’) The Banach space Y is a separable C., space.

(b’) The Banach space Y is a Radon-Nikodym space.

(¢’) Y is somewhat reflexive, i.e. every infinite dimensional subspace of Y contains an
infinite dimensional subspace which is reflexive.

Since Y does not contain a subspace isomorphic to [, it follows from results of Lewis
and Stegall [9] that Y* is isomorphic to I,. It is strange that Y does not contain a copy

of ¢,. Since Y is a L, space it also has the Dunford-Pettis property and hence there are
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Dunford-Pettis spaces which are somewhat reflexive. For some time the Dunford-Pettis
property was understood as a property opposite to reflexivity. Following these lines
W. Davis asked whether a somewhat reflexive space could have the Dunford-Pettis
property.

We think that the paper might be interesting for two reasons. First it solves some
conjectures in Banach space theory. Secondly it gives a new way of constructing £,
spaces. We think that this paper is the first paper where C, spaces are built using
tsomorphic copies of I%. The known examples of C,, spaces where constructed using iso-
metrie copies of Iy, and hence they all are isomorphic to preduals of L;. We also show that
there is a continuum number of mutually non-isomorphic £, spaces.

The notations used in this paper are standard and coincide with the notations
introduced in [14]. We also use this text as reference for any unexplained notion on
Banach spaces. For more details on abstract vector measures we refer to {5]. Besides the
introduction the paper contains four more chapters. Chapter two deals with a brief in-
troduction in the theory of £, spaces, for more details and for the origin of the problems
the reader may consult [10], [11] and [12] (see also [13]). In [10] the Hahn-Banach problem
is investigated and the £ spaces are characterized as those Banach spaces which have the
compact extension property. Chapter 3 contains some basic definitions of Radon-Nikodym
spaces. For more details we refer to [5]. Chapters 4 and 5 contain the construction of the

Banach spaces X and Y.

2. Hahn-Banach problems and C,, spaces

By a Hahn-Banach problem we mean the following: given Banach spaces Z,, Z, and
X, where Z, is a subspace of Z,, given an operator T,: Z,—~> X, when does there exist an
operator T,: Z,—~X extending T, i.e. T,|;,=T,. We say that a Banach space X has
the compact extension property (C.E.P.) if a compact extension T, exists whenever 7', is
compact. In the same way we say that X has the weakly compact extension property
(W.C.E.P.) if a weakly compact extension T, exists for every weakly compact operator T',.
In [10], [11] and [12] (see [13] for the details) a characterization of Banach spaces with
the C.E.P. is given. Since we use some of this theory we recall some definitions and

theorems.

Definition 2.1. If X and X' are Banach spaces then the Banach-Mazur distance
between X and X’ is given by

AX, X')=inf {||T||-||T-||| T: X—>X' is an onto isomorphism}.
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Definition 2.2. (i) A Banach space X is a £, ,; space (A=1) if for all E< X, where E
is a finite dimensional subspace of X, there is a finite dimensional subspace F< X, such
that Ec F and d(F,I3™)<A. Here I3, means the n-dimensional real vector space R"
endowed with the norm ||(x;, ..., z,)|| =max,<,|2|.

(i) If X is a L, ; space for some A then we simply say that X is a L, space.

The characterization of Banach spaces having the C.E.P. is given in the following
theorem, see [13] for proofs.

THEOREM 2.3. The following are equivalent:

(a) X is a L, space.

(b) X has the compact extension property, i.e. if Z,, Z, and X are Banach spaces, Z,
being a subspace of Z,, if Ty: Z,—~X is a compact operator, then there is a compact operator
T, Zoy= X extending T,.

(c) Same as (b) but the extension T, is not required to be compact, i.e. every compact
operator has a continuous extension.

(d) X* is isomorphic to a complemented subspace of an L, space.

For X separable (a), (b), (c) and (d) are equivalent with

(e) X* the dual space of X s isomorphic to I, or to M[0, 1], the Banach space of Radon
measures on [0, 1]. Moreover X* is isomorphic to 1, if and only if X does not contain a

subspace isomorphic to 1.

The following theorem was known for a long time but since there was no example it

was useless,

THEOREM 2.4. A Banach space X has the W.C.E.P. if and only if it is a L, space
having the Schur property.

Proof. Suppose X is a L, space having the Schur property. Since every weakly com-
pact operator arriving in X is necessarily compact the W.C.E.P. and the C.E.P. coincide.
Since X is a L, space the preceding theorem shows that X has the W.C.E.P.

The converse is less obvious. Suppose that X has the W.C.E.P. and let K< X be a
weakly compact set in X. By the factorization theorem of Davis, Figiel, Johnson and
Petozynski [3] there is a reflexive space R as well as an operator 7: R—X such that
K< T(B(R)) (B(R) is the closed unit ball of R). The Banach space R is canoniecally
isometric to a subspace of C(B(R*)), the space of real valued continuous functions on the
unit ball of R*, this unit ball being endowed with the weak* topology o(R*, R). Since R
is reflexive, the operator T': R—X is necessarily weakly compact and since X has the
W.C.E.P. this operator has a weakly compact extension 7": C(B(R*))—X.
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We now use the Dunford-Pettis property of C(B(R*)) (see [6], [5] or [14]). This
property says that a weakly compact operator defined on the space of continuous func-
tions maps weakly compact sets onto norm compact sets. It follows that TV(B(R)) is

compact and hence also T(B(R)) and its subset K. This proves that X has the Schur
property. Q.E.D.

The known theorem that follows is not difficult but it plays a central part in the
solution of Uhl’s conjecture. The theorem is a slight generalization of the Bessaga-

Pelczynski theorem on the imbedding of ¢, in a dual space. See [1], [5] and [14].

THEOREM 2.5. Let X be an infinite dimensional L, space. If Y is a Banach space such
that X is isomorphic to a subspace of Y*, then Y contains a complemented subspace Z which is

isomorphic to l,. In particular Y* is not separable.

Proof. Let 1: X —> Y* be the inclusion map. Transposition gives a map: 7@ ¥ > X*
defined as T'(y)(x) =i(z)(y). It follows that 7™: X**— ¥™* and that T™|,=1.

If T is a weakly compact operator then also 7™ is a weakly compact operator and
hence the inclusion map 7 being a restriction of T is also a weakly compact operator.
Since X is an infinite dimensional £, space it is not a reflexive space and hence ¢ is not
weakly compact. It follows that 7' is not weakly compact. Hence the image T'(B(Y)) is
not a relatively weakly compact subset of X*. From Theorem 2.3 we know that X* is
isomorphic to a complemented subspace of an L, space and hence the Kadec-Petczynski
theorem [8] applies. The set T(B(Y)) contains a sequence (e,),»; such that (e,),s, is
equivalent to the usual basis of I, and such that §=span (e,, n >1) is complemented in X*.

Let P: X*— 8 be a continuous projection. Take for each n>1 an element y,€ B(Y)
such that T'(y,) =e,. It is elementary to see that (y,),»; i3 equivalent to the usual basis of
I, and also to (e,),>,. Let now Z =§);Jn_(y,,,72—l) and let V: §—>Z be the operator defined
by the relation V(y,)=e,. If @ is defined as @ =VoPoT then clearly @ is a projection
Y—~Z. Q.E.D.

3. Uhl’s conjecture on Radon-Nikodym spaces

From [5] we recall some definitions and notations. A probability space (Q, 4, P) is a
triple where Q is a set, 4 is a ¢-algebra on  and P is a ¢-additive positive measure,
defined on Q and with total mass P(Q) =1. Measurability will be defined only for variables
taking values in a separable Banach space. For more general definitions and problems
the reader can consult an advanced texthook on measure theory. If X is a separable

Banach space and & Q— X is a mapping then £ is measurable if £-1(0)€ 4 for all open set
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0in X. If § is measurable then it is easily seen that ||£(w)|| defines a real valued measurable
function. If also f ||£(w)||dP is finite then & is called Bochner integrable and [ &dP
denotes the integral of & with respect to P. A function u: 4— X which is s-additive is
called a vector measure. The measure u is P-continuous if P(4) =0 implies u(4)=0. For a

vector measure u we define the bounded variation norm ||u]| as:

ll]| = sup {IZI (4| |4y, -, A, & partition of Q}.

If £ is Bochner integrable then u(A)= f, &dP defines a vector measure whose bounded
variation norm is ||u|| = f||&(w)||dP = ||£]|;. In general a measure with bounded variation

is not of this form.

Definition 3.1. A Banach space X has the Radon-Nikodym property (RNP) if for
each probability space (Q, 4, P) and each P-continuous vector measure y of bounded
variation there is a density, i.e. there is a & Q— X, Bochner integrable such that u(4) =
Ja &dP for all A€ 4.

As examples of RN spaces we can give separable dual spaces as well as subspaces of
RN spaces. Since the only known examples were of this kind, Uhl conjectured that every
separable RN space is isomorphic to a subspace of a separable dual space (see [5] page 82
and page 211-212). We know that if X is isomorphic to the dual space of a separable
Banach space then X has RNP if and only if X is separable. We also know different
geometric characterizations of separable RN spaces. If Uhl’s conjecture were true then a
beautiful geometric description of subspaces of separable dual spaces would be obtained.
(Un)fortunately Uhl’s conjecture is wrong.

For later use we mention the following, see [5] for a proof.

Lemma 3.2. If u: A— X is a P-continuous vector measure with bounded variation then
u has a density if and only if there is a sequence of vector measures w, such that u, has

finite dimensional range and u,—pu in variation norm.

4, The basic example

By means of a rather simple construction we will make a Banach space which is a
L space, a Schur space and a RN space. Before passing to the details we will fix some
notation. From [13] we recall that if X =l_J:fn where F, is an increasing sequence of
finite dimensional subspaces and if d(F,, [3) <A then X is a L, ;.. space for all £¢>0. The
sequence F, will be constructed in the following way.

For each n the space E, is the subspace of I, spanned by the first d, coordinates, i.e.
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E,={x€l,|7,=0 for k>d,}. The space F, is then an extension of E,, more precisely
there is an isomorphism 4,: E,—~1, such that 7, 0%, is the identity on E, and such that
F,=1i,(E,). Here m, means the natural projection of l, in E,, i.e. m,(x) is the restriction
of x to the first d, coordinates. To construct 7, we will use a weak* limit procedure on /.
For each m <n we define an injection ¢, ,: £,,—~ F, in such a way that they satisfy

(&) yoip n =idg, for m<n,

(ﬂ) im,nOil.m :il,n if I<m<n.

The mapping ¢, is then defined as ¢,(z)=lim, %, {z). We now pass to the technical
description of i, ,. First we give the general argument and afterwards we give details for
small n.

Let A>1 be fixed and take 6 >0 such that 1+2484 < A. This ¢ is fixed for the complete
construction. Let d, =1, let d,, (m<n) be known, let ¢, , (m <I<n) be constructed such
that they satisfy (a) and (8). For m<mn; 1 <i<d,; 1<j<d,; &'=+1; &"=+1, define the
functional f,, ;. .~€E}y as follows:

fm. l.j.e’.e”(x) = Slxi +68”(Z_im.nnm(x))r
Consider the set of functionals
Fo={fm1..e0r|m<m; 1<i<dy; 1<j<d,; &' ==%1; "=+1}.

Let d,,; =d, + card (F,) and enumerate the elements of F, as g4,.1, ..., 94, ,,- The mapping

tn.nst En— B, is now defined as
ty nay(®) = (g, 2y, ..., Tgs Ga,+1(%), Fa,+2(2), s Ga, 1(2), 0, .., 0, .00)

We also put i, .3 =%, ns19%m.» for m<n. The properties (o) and (f) remain trivially
verified. The heart of the example lies in the metric properties of the injection. Before
studying these properties we give details for n=1, 2, 3.

(i) n=1. There is no possible value of m and hence dy=d, =1 and i, ,=idg,.

(ii) n=2. Possible value of m =1, possible value of ¢=1, possible value of j=1. It
follows that card (F,)=4 and d,=5.

fi.1.1, 11, 1(®) = 2, +0(x —my(2));, =,
F.a, 4.0 =2
fr1.1, -1, 1(®) = =2 +0(x —my (7)), = —2;

fra, +1,4®) = — 2.
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(iii) n=3. Possible values of m=1, 2. In both cases there is one value of ¢ and 5
values of j hence there are 40 possibilities. The number d,=d;+40=45. As a typical
element we evaluate

fr1..0.6(%) = &2 +06" (X 14y 5(2)),
=&’y +0e" (g —(—2,))
= (¢’ + "), + 0e"x,.

The following lemma is crucial in the construction of the space X. In particular the
estimate (2) will give that X is a C,, space. The estimate (5) will give that X is a RN space
with the Schur property.

Lemma 4.1. 4, , (m<n) satisfy:

(1) d(B, I2) =1,

@) [[om.nll <2,

(8) WOl n =idg,,

(4) Gy nOlm =145 (I<m<mn),

(8) for all x€E, and all m<n we have

llén, 2@ 2 [|7m(@)]| +0]|2 —5, n7wm(2)]|.

Proof. (1), (3) and (4) are obvious from the construction.
(5): For m<n, the elements 4,4, &, ¢ can be chosen such that &'z,=|m,()| and

(€ — 5, n (X)) = || T =iy, n70m()]]. Hence
[lin.nsa(@)]| = [72m(@}|| +8[[% — i, n7m(®)]|-

(2): Since ||é; 4[| =1 we can proceed by induction. Suppose we already havej||i,, .|| <2
for all m <n. We first prove that ||i,, ni] <4.

To see this take f, ; ;.¢..~€F, and observe that by induction we have
@) <l|7n(@)|| +0]|2 = im,n wn(@)|| < |l2]| +8(l|]| +Al|2]) < (1 +262)||]| <A||]|.

By definition of 4, ,,, we then have ||, ,.1]| <A. Let now m<n and calculate i, ,.,.

Since %y 541 ="%n.ni1%m.n We have that

lim.nsall = max {[lim,alls [[fim, o]l where f€F.}.

Since also ||7,,,]| <A by induction, it remains to prove ||fi,, ,|| <4 for all f€JF,. Let now
/=fm’.l,!.e’,e"EFn' Then

fom (@) = fret 1.60.67(0m, n(®)) = & (T im.n(x))l +£"0(2pm, n() _im'.n T b, n(%));-
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Hence

"ﬂm.n” < ”ﬂm’im.n” +6””:m.n_im‘.n”m’ Zm.n” .

We distinguish the two cases m'<m and m’ >m. If m’' <m we have @, i,, , =7, and hence

fim,all < |t 0 im.all + [[im,n0 70 |])
<1+06(+4) <A.

If m'>m we have @, in n=Tntm ntmm 80A Cpron T by =% n b, =0tm,n- HleNCE

Ufim,nll <l ]l +O< 2. QE.D.

Fix now n and E,. For each k> the function ¢, ,: E,— E, is constructed as above and
is injective. At each stage new coordinates are added to the existing ones and for each n
and all z€ B, the elements i, ,(z), k>n are uniformly bounded by A||z||, hence the limit
tim,, . 7, (%) exists in the weak* topology of I, (i.e. for the topology o(l, /,)). Let us put
(%) =lim; %, x(2) and let F, be the image of 7, i.e. F, =i, (E,).

Lemma 4.2, The following properties hold:

(6) tp="1ptn. , forall m<n,
(7) Fu= F, for m<mn,
8) ||7a|l <4,
(9) d(By, Fo)=d(Fy, IZ) <2,
(10) for x€F, we have for all m<n: ||z|| = ||7a(2)|| +8|x — i wm(x)]|.

Proof. (6): For 2 € E,, we have i,1, ,(€)=limy_,p 1y, gip, (@) =lim,_ o, ¢ o(x) =0, (x),
(7): Fm = im(Em) =imim.n(E)Cin(En) =F, for m <n,
(8): Since [[i,,x]| <A for all & we have that ||i,| <4,
(9): Since 7,1, =idg, we obtain d(E,, F,)< ||| ||é.]| =2,

(10): For € F, we have ||z =lim,||i, ,(z)||. In particular for k>n,

Il = ||5n. kr17ea(@)]|
= "nm'l'n k+17tn “ +6“in.k+1”n(x) _im.k+1ﬂmin.k+lnn(x)”
= ” ” +(§“:ftk+1 *im.k+1ﬂm(x)“'

By passing to the limit:

Jel) = lln(@)] + 6|z — ina()]]- Q.E.D.
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Let us now put X equal to the closure of U, F,. The space X can also be seen as the
direct limit of the system

7:1.2 ?:2,3 Iin.n+1
E, E, E, E, Epp— ...

The estimates |7, ,.10%,_1,,0...0%; 1| <A or the estimates (9) give that X is a L 14

space for all £>0. The estimate (10) of Lemma 4.2 can now be restated as.

COROLLARY 4.3. For all x€X and all m we have
[|]| = [len(@)|| + 0|2 —inmun()]]-

Proof. First let x€ U, F,, i.e. suppose 2 € F,, for some ». If m <n then the inequality is
precisely estimate (10). If m>n then a=i, 7, (x) hence the inequality is trivial. For

x€X we proceed by a limit argument. Q.E.D.
TurEorREM 4.4. X is a L, space having the Schur property.

Proof. The fact that X is a C, space is already observed above. Let us prove the
Schur property. We will prove that if 2,€X, ||2,]|=1, 2,0 coordinatewise then there
is a subsequence (¥,),»1 Of (Z)r>, such that y, is equivalent to the usual basis of ;. This
will prove the Schur property as well as the statement that every infinite dimensional
subspace of X contains a subspace isomorphic to I, (both properties are related by [15]
but in this case it is easy to prove them explicitly). To see that the above property is
sufficient we proceed as follows. Let z, be a sequence in X such that z,—~0 weakly, we
have to prove that ||z,]]-0. If this is not the case we may suppose that ||z||>¢>0 for
some and all k (eventually we take a subsequence). Since ||z||>&>0 we have that
2] * is bounded above and hence 2|z~ =2,—~>0 weakly. Clearly 2,0 coordinatewise
and ||zf| =1. By the statement above z;, contains a subsequence y, equivalent to the
I, basis. Since z,—~>0 weakly we also have y,=0 weakly but this is a contradiction to the
fact that y, is equivalent to the usual basis of l,. Let now Z be an infinite dimensivnal
subspace of X. Since Z is infinite dimensional there is a bounded sequence 2, in Z and
£>0 such that ||z,—z| >¢ for k=:1. Since 2, is a bounded sequence we may suppose
(eventually take a subsequence) that for each coordinate 7+ we have z, ; is convergent.
Put now 2= (2 —2sk41) ||2ex —Zax ]| 2. By construction x,€Z, |jz||=1 and x,—0 co-
ordinatewise.

By our statement z, contains a subsequence y,€Z, equivalent to the usual [, basis.

Hence Z contains an I, copy.
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We now construct the subsequence y,. For each k take g,>0 such that

[T(1-e)>%
=1

and
@ P
25<3158)

Inductively we construct 1=n,<n,<... and §, <s,<... so that
lres @) = (1 —gyy)||]| for x€span (2,,, ..., )
||xnp —ly, nsk(x,,p)" <g forp<k
i, 705, (%, )|| <& for p<k.
Put now y,==z,, and let a,, ..., a; be real numbres. From Corollary 4.3 it follows that

llayyy + .. + @yl = (|7sl@yyy + ... +ay)]|
= ”nsk—l(alyl + . +akyk)"
+6|[(@yy; + .+ WYi) — s,y Ty (@191 F e+ Y|
= 1s_ @1y + oo + Gy Yomo) | — || £ +0(1 — ) | | —pzk d|a,|ex

2 (1 —g)||ayy, + ... +“'k—1?/k—1” +6(1 —&) |ay| — (1 +6)ge, %c Iapl .
»

Inductively
k k
v+ gl > (Sl TT 1= e) = @ +0) (3 &) ( 3 I
P D
6 k
= - a,|.

23l

This proves that (y,) is equivalent to the usual /; basis. Q.E.D.

Remarks. 1f Z is a L, , space for all 4>1 then it turns out that Z* is isometric to an
L, space. In this case Z is called predual of L,. In [17] Zippin has shown that such a space
contains a subspace isometric to ¢, In [10], [11], [12] and [13] it is conjectured that

(i) If a Banach space V has the W.C.E.P. then V is finite dimensional,
(i) every L, space contains a subspace isomorphic to ¢,
(iii) every L, space is isomorphic to a predual of L,

(iv) every L, space’is isomorphic to a quotient of a C(K) space.
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From Theorem 2.4 it follows that (i) is the weakest of all four conjectures. The Banach
space X constructed above satisfies the hypothesis of Theorem 2.4 and hence has the
WCEP. This proves that all four conjectures are wrong. From the remarks made in
chapter 2 it also follows that X* is weakly sequentially complete (X* is isomorphic to an
L, space). Since X is a Schur space it is weakly sequentially complete. As far as we know
this space is the first non reflexive space such that both X and X* are weakly sequentially

complete.
THEOREM 4.5. The Banach space X has the Radon-Nikodym property.

Proof. Let (Q, 4, P) be a probability space and let u: 4—-X be a P-continuous
measure. We will show that u can be approximated by “finite dimensional” measures.

For every set A€ 4 and every n we have
I > el )] + 8] =5l ).
Taking the supremum over all partitions we obtain
|| = |7enpe] +0| = tnrvnp] .

Let now A4, ..., 4; be partition of Q such that

6l < 3 Ity +ef2

Let ny be large enough so that

k k
2 lrapld) > 2 N(ds)|| /2> || —e

for all n>mn, Since |m,u|>Ji1||mapu(4,)]| we obtain |m,u|>|u| —¢ and hence
|4 — 7, pu] <61 for all n>n,. This shows that lim 4,7, =p in variation norm. Q.E.D.

Remark 1. Combining Theorem 4.5 and Theorem 2.5 gives that X is a separable
RN space which does not imbed in a separable dual space. Also X is not complemented
in its second dual space.

Remark 2. The proof that X has the Schur property is related to the following

concept.

Definition (see [2]). A sequence (§,;) of finite dimensional subspaces of a Banach
space Z is an I,-skipped blocking decomposition of Z provided following conditions are
fulfilled:
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(a) Z=[G,]i21=closed linear span generated by (G,), t=1, 2, ...,
(k) G.n [Qj]m={0} for all ¢,
(¢) If m, and n; are sequences of positive integers so that m; <n,+1 <y, then the

sequence of spaces F,=[G,]/*,, is an I, decomposition of [F, ] ;.

In [2] it is proved that if Z has an [,-skipped decomposition then Z has the strong
Schur property and Z is an RN space. The proof of Theorem 4.4 shows in fact that X
has an [;-skipped decomposition. We prefer to include a proof of the RN property since

the results of [2] are much more technical than the given proof.

Remark 3. The idea of the proof of Theorem 4.5 is due to Uhl. The original proof
involved martingale theory and was a little more complicated, although it used the

same principle.

5. Another example
A look at the example of the preceding paragraph might suggest that a L, space

either contains a copy of ¢, space or a copy of l,. The Banach space Y constructed in
this chapter does not contain subspaces isomorphic to ¢, or to /;. It turns out that the
space Y is somewhat reflexive, i.e. every infinite dimensional subspace Z of Y contains an
infinite dimensional subspace which is reflexive.

The construction follows the same line as in the preceding chapter. Again the same
numbers (d,),>; are introduced. The spaces E,, are the same as in chapter 4. The func-
tionals f€ F, are defined in a similar way, for m<n;1<i<d,;1<j<d; e =+1,¢"=+1,
we define

frm. 15,6060 (®) = '@z, +"b(x — iy, (), for all xEE,.

The numbers ¢ and b are chosen so that

(1) 0<b<a<l,
(2) a+2bA<2; hence a+b(1 +A) <4,
3) a+b>1.

The existence of such numbers follows from the inequality A>1. We define 4, , :

E,—~E,., as in chapter 4 and 3, ,,, is defined as i, 11 ="10n nr19y, , for m<n.

Lemma 5.1. The following properties hold:

(1) d(E,, I3)=1,
(2) “im,n” <A fOr all m<mn,
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(3) Ry, n=idg, for all m<m,
4) tmntim=1,n forl<m<n,
(8) for x€EE,:

[l2]

(— =max{ .
” n,n+1 ” a"nm(x)" +b”x—7/m,n7tm(x)”; m<n.

Proof. (1), (3) and (4) are obvious. (2) follows from ||i,, ,;(2)|| =max,cs (|||, [f(2)])
and |f(z)] <a||z| +b]|% —in,nal®@)]| <a+b(1+1) <A
The proof in the general case (m<n) as well as the proof of (5) are now done in the

same way as in Lemma 4.1, Q.E.D.

As in chapter 4 we now define ¢,: E,—~1, and we put F,=1¢,(F,).

LeEMmMaA 5.2. The following properties hold:
(8) tn=1,0y,, form<mn,

(7) Fo=F, form<mn,

(8) [l <4,

(9) d(F,, I <A,

(10} for z€F, we have

o = {

0|7 (®@)|| +bl|x — i (@) ||; m<m.
Proof. Only the estimate need to be proved. For x€ F, it is clear that
el = im i )]
Let us fix k>n and let us calculate ||r;4(x)|. Since

T 41(%) = T, 141 (@) = G, s Bn, 1 ) = T, o3 70()
it follows that
[low ()]

lrisa(@)]] = max {a"nm(x)“ +b][tu(@) — i nl@)], Mk,

But for k>m=>=n we have m,(x) =1, r7t,(*) and hence we have

“”k(x)”

a]|7en(@)|| +b||wl) — b,k ()|, M <.

(@) — mox {
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An easy induction on %k then shows

[EAEN]

afln(@)| +bllm(@) = im k(@) m<n.

l7ex 11 ()] = max {

Letting k— oo we obtain the desired estimate. Q.E.D.

Let now Y be the direct limit of the system

E, .2 E, b8 By vees
i.e. ¥ =closure of U,»1 F, in [,. Again Y is a C,, space.
Lemma 5.3. Y does not contain a copy of 1.

Proof. Let ¢,€Y be a sequence equivalent to the usual basis of ;. First suppose
(eventually take a subsequence) that e, is weak* convergent. Take now y,=e¢,,—é,, ;.
This sequence is still an I, basis but x,(y,)—~0 as n-—>oo. By density of U,3; ¥, we can
replace y, by a sequence u, such that z,(u,) =0 for m <n and u,€ Fy;, where my<mg<...
is a good subsequence. (We have to pass to a subsequence and we have to apply
Theorem 10.1 p. 93 of [16].) By a result of James [7] there is a block basis z, of (i) such
that

(1) flzli =1,

(2) mu(2,)=0 for m<n,

(3) 2, € Fy where mi<mz<...,
N

2(1—¢) > |an-

nw=l

N
Z Ay 2
k=1

(4)

Here >0 is chosen such that 4¢<1—a. Let now z,=2, and let m;>m] be such that
|72m,(21)]| > 1 —&. Let @, =z, where k, is such that 7,,(2,) =0 for k> k,. Take now m, such
that my>my,, my>my and ||wm,(@,)|| >1 —e.

Take then k; such that m,(z,)=0 for k>k; Let z;=2, and take n such that
l[7en(zs)|| >1—¢ and z3€ F,. We now calculate the norm of #=a; +,+ ;. Of course by
James’ construction ||| >3 --3¢e. Successive applications of Lemma 5.2 will give upper
bounds on ||z|.
ll7a()}

a||n(@)|] +b||x —inmn@)|, m<n.

o = max |
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(x) m<my:
al|en(®@)|| +0]|2 — ()|
= a||om(® + 2, + Xg) || + 0| + 2y + X5 — () + 25 + 5) |
< aflmn(@y) || + 0|2y = inm(@y) || +b|y + ]|
< flagl| +bllwe + 4]
<1+ 2b.
(B) my<m <y
| (@) + ||z — tpn@)|
= 0|[n(®y + 2y +5) || + b @, + @y + X5 — 6Ty 25+ 25) |
= ol (@, + o) || +b]|2y + 2, — inn(y +25) || + 0] 5
< 2y o] + |l
<2+b.
(y) mg<m<mn:
|| (@)|| + b — i T ()|
= || (@, + g+ T3) || + 0|1 + 2y + X5 — 1Ty + 25 + 25)||
< |7 (@, +2p) || +aljn(@s) || + |2y + 2, — ity +22) || + |25 —dnvm(s) |
S af|ay +ay|| + ||2s]| (since @ +xy=i,7,(2, +2,))

<2a-+1.

(6) If the norm of x is at least 3 —3¢ then this norm cannot be attained in the first

d,., coordinates.

Indeed for these coordinates x; is zero. Hence we have to give bounds for the co-

ordinates of z, situated between d,,+1 and d,. These coordinates are bounded by

||nn(x3)|| + coordinates of (x,+2,). From Lemma 5.2 we know that these coordinates are
bounded by quantities of the form

a’””m(xl +x2) ” + b"nn(xl +x2) —'imnnm(xl +x2) ",

where m <m,. We distinguish two cases:

(61) m<my:
al| (@, +2,) || +bl|a () + o) — U, wTom(@y +Xa) ||
= a’"nm(xl)" +0ll7a(@y) = i, nﬂm(zl)” +b"nn(x2)"
< flzafl +Bllra(,) |
<1+6.
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(62) my <m<my;

a”nm(xl +1,) " + bllnn(xl +Z3) — U, n (%1 + 22) “
< a"”m(xl) " +a||nm(xz)|| +b"7tn(x2) —‘im,nnm(xz)”

< aflay || + ||
Summarizing (), (£), (¥), (61) and (62) gives:
flz| <max (1+2b, 2+b, 1+2a, 2+b, 2+a) <2+a < 3—4¢ by the choice of &.
This inequality contradicts ||z|| >3 — 3¢ and hence proves Lemma 5.5. Q.E.D.
LemMA 54. Y is a Radon-Nikodym space.

Proof. We again use Uhl’s argument. Let u: 4—Y be a vector measure with bounded
variation. Put v =p —i,7,p. As in Theorem 4.5 we have |v|>a|m,»|+b|v —i,7m,|. Let
4, ..., 4, be a partition of Q such that |v| <>5_1||»(4,)|| +&/2 and let m, be large enough so
that for m =mg: 3, |war(A,)]| = S5-1 [P(4y)|| — /2. Tt follows that |7,»| = S5 1 ||m,v(4,))| =
lv] —¢, and hence |v—i,7,»v| <((1—a)/b)|v|+ae/b for all m>m, But for m>n we
have v —8,50,v = — 0, Ty fh — 1y T fd + 4 T0 8T b = Y ~ 8,70, and hence for m > max (mg, n):

|~ tmmp| < ((1—a)/b) |1t —ip7w, | +aefb.
Hence L
i | — i t] < (1 ~)B) | —inryps] +aefb
and i
B |~ ittt < (1= @)/B) B |t i, + e
M0 =200

Since this inequality holds for all £ >0 and since a + & > 1 we obtain lim,, .., |# —in7au}=0.

Q.E.D.
LeMmMma 5.5. Y is somewhat reflexive.

Proof. Let Z be an infinite dimensional subspace of Y. We will construct a basic
sequence in Z which is shrinking and boundedly complete. From the results in [16] it
follows that such a sequence spans a reflexive space. Since ¥ does not contain a copy of
l; and since Z is infinite dimensional there is a basic sequence (z,) in Z such that ||z,|| =1
and z,—0 weakly. We use the perturbation theorem on basis to produce a sequence
(¥ )1 €quivalent to a subsequence (z,.) of z, and with following properties:

(1) flgall =1,
(2) there is a sequence m,; <my<... such that

¢ K
Tom (Z asys) =0, ( > asys) for all k<t,
s=1 s=1
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@)

k 3
Z a/sys—'imﬂm(z a’sys)

g=1 $=1

k k
nmk(glacys—imnm ( zla‘sys)) H 2(l1—¢)

for all m<my_, and all a,, ..., a,. Here £>0 is chosen so that y=(a-+b)(1—-¢&)2>1.

We now show that y, is boundedly complete. Let (a;) be a sequence of real numbers
such that vy=>11a,y, is bounded. We have to prove that vy is convergent or what is
the same: vy is a precompact sequence. Suppose now that [lvy|| <1 for all N and that
there is §>0 with

lim ”UN‘im”mvN” >p. *)
N>

For all p<s<t and all m<m,_, the following estimates hold (Lemma 5.2):

t t
2 WYy~ b T, ( 2. akyk)
k-1 kel

Za

t t
Ty ( Z akyk_im”m (2 a’kyk))
k=1 k=1

|

¢t t t ¢
%m‘ ( Z ak?fk_imxm ( Z ak?fk)) - 1:mp,m,nmvj ( 2 a’kyk_imnm (z ak?fk))
kw1 =1 J k=1 x=1

t t
Ty ( 2 WYy =y Ty ( 2 “k?/k)) ”
kel k=1
t t t t
T, ( Z “kyk) - im.m,nm ( Z akyk) - im,,'m, TTn,, ( Z a’kylc) + im.m,nm ( Z a’kyk)
k=1 Kl k=1 k=1

|
1.

+&

|

=a

+b

=a

¢ t
Tm, 2 A Y = U, Tom 2 Yy
k=1 ’

k=1

¢ t
T, ( 2 Y= Uy T, ( 2. a’kyk)) “ +b
k=1 k-1

=a

[2 ¢
nm, ( Z Y™ imp nmp ( zl Qe yk))
Jom-

k=1

p 14

Trm, ( 2 Y= U Ty ( > “k?/k)) ‘l +b
fo=1 k=1

Given m take now p such that

>p(l-e),

» P
Z Y= b T ( Z a’kylc)
k=1 el

hence also

P P

Ty ( 2 akyk'—imnm ( 2 ak?/k)) “ >ﬂ(1 - 8)2'
k=1 k=1

For this p take now ¢ such that

t ¢
“ 2 “fc?/k—émp“mp(z “k?/k) >B(1—¢),
k=1 ka1

12 — 802905 Acta mathematica 145, Imprimé le 6 Février 1981
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hence also

T, (él WY — b Ty (él U y,,)) “ > B(1—e)

From these choices it follows that

>(a+b)f(l—e)=9B.

t ¢
2 ak?/k"'im”m(z akyk)
k=l x=1

This inequality proves that (*) holds for ¢ instead of S.

Repeating the argument M times where M is such that y¥f>1+1 gives a contra-
diction with ||vy—in7a(vy)|| <144 for all N.

It follows that (y,) and hence (z,.) is a boundedly complete basic sequence.

To construct a shrinking basic sequence we proceed as follows. Since Y is a
separable (., space without a copy of [, it follows from [9] that Y* is isomorphic to I,
and hence is separable. Since U =span (z,.) is a subspace of Y, its dual as a quotient of
1, is also separable. From results of Dean, Singer and Sternbach [4] it follows that U
contains a sequence x, which is a block basic sequence of (2,.),- and which is shrinking. Since
(%,), is equivalent to a block basis of {y,), it is also boundedly complete. Q.E.D.

Remark. The Dunford-Pettis property was understood as a property opposite to
reflexivity. From this reasoning Davis asked following questions:

(1) Suppose Z is a Banach space without an infinite dimensional reflexive subspace.
Is Z & Dunford-Pettis space?

(2) Suppose Z is a somewhat reflexive Banach space. Need Z to fail the Dunford-Pettis
property?

Both questions have a negative answer. Question 2 has a negative answer because the
Banach space Y is somewhat reflexive and as a L, space it has the D-P property. (We
remark that if Z is a Banach space which has the D-P property and does not contain an
1, subspace then Z* is a Schur space.)

Question 1 also has a negative answer. Take for instance the Orlicz function ¢(z) =
e ¥ (x>0) and let Z be the Orlicz sequence space construted with @. It can be seen that
Z is not a D-P space but it does not have an infinite dimensional reflexive subspace.

For each a and b we constructed a Banach space Y, ,. The aim of the following reasoning
is to show that for fixed @ the Banach spaces (Y, ,), are mutually non-isomorphic. This gives
a continuum number of separable mutually non isomorphic £, spaces. (We remark that
there are only uncountably many separable mutually non-isomorphic C({K) spaces.) To
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prove that the spaces Y, , are not isomorphic we will construct a basic sequence (e,), in
Y,., such that for all n we have the estimate ||e, + ... +¢,|| <n*. Here « is the unique number
such that (a¥?~®4pY3-®)1-2=1. On the other hand we show that if ||z, =1 and 2,~0
weakly then there is a subsequence (z,) and a constant €' > 0 such that ||z, +... +2,| = Cne.
Since for fixed a the parameter « is in one—one correspondence with b, this shows that the
spaces Y, , are not isomorphic. More precisely Y, , is not isomorphic to a subspace of
Y, ,if b<b'. We now pass to the details.

LEMMA 5.6. There is a sequence of natural numbers (n )., with following properties:

(1) d3<m <d;<my<dg< ... Sy <M Sdyyg ...
(2) If x€E,, and x,=2,=0 then i,(x),, =0 for all k>m.

LEmMMA 5.7. If €E,, and 7,,_y(x) =0 then [|i (x)| = |=]|.

Both statements are obvious. Let now ¢; be the element of E, ., defined as (e;),=1 if
i=my and (e;); =0 if 7=n,. Put then e, =4 4(e;). By Lemma 5.7 we have ||| =1.

From the estimates of Lemma 5.2 and from Lemma 5.6 we deduce that the sequence
¢, 18 an unconditional basis (with unconditional constant =1) and that the normofe; +... + ey
is attained in the extension beyond the coordinate dy,s. Hence

lles+ - +ex]| = m?,xs(a||n,,,(e1+...+e,v)”+b|[e1+...+eN—i,,,n,,,(e1+...+eN)]])
m<N+
< max (ale;+... +epg| +]|€nz+ ... +ex|])
m<N+8

< 1’1‘13,: (alley+ ... +ex| +0]|€xsy+ ... +ex]])-
<

Put now yy=8sup,s,[jex+1+ - +exsxl|. The above estimate then gives

(1) yy S maxyoy (@i +byni),
(2) y=1.

LeMwma 5.8. If (yy) is a sequence of real numbers satisfying (1) and (2) then
Yy S Ne,
where « 18 the unique number between 0 and 1 satisfying

Q- L plid-a _ 7
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Proof. By induction on N. Suppose the estimate holds up to N —1. Then
yy <max {az*+b(N — z)2|2 real and 0 <z <N}.

Elementary calculus gives that the maximum is attained at x=N-a"?~* and hence
yySNe, Q.E.D.

Suppose now that z, is a sequence in ¥, , such that ||z,|| =1 and z,~0 weakly. By
taking subsequences and using the perturbation theorem on basic sequences we may
suppose that

(1) there is a sequence of natural numbers s, <s, ...,

(2) % €F, for all k and ||z,]| =1,

(3) [Jmwsy(@))|| =0 for 1>k,

@) llms (@) = (1 —g)||lz]]  for all xEspan (2, ..., #),

(6) 11 (1 ~¢)>0 and g, is decreasing.

Put now dy=inf, ||€c; + ... +¥n||. Clearly 6;=1 and by Lemma 5.2,

(1%esa+ - +esnll = all7oy [ Frsr + o+ T )|
+ 0| sr + o F T — By, sy (Ter F o + 24|
2 ||, @usr + o+ Beap) ] F 0] spir + oo+ Bl
Za(l—eg) 0,+b0y_p.
Hence

(1) dy=max (a(l —&,)0, +bdy_p),

p<N

(2) 6, =1.
LemMA 5.9. Under the above conditions there is a constant C'>0 such that
Oy =2 CN«
where o is given by aV?~® 4 pVI"0 =1,

Proof. To improve clarity we put =a"*"* <1 and we put [z] equal to the greatest
natural number <z. We also put Ao(N)=N and 4,(N)=[4_,(N)n]. Since 4 is decreasing
there is a unique number ky(N) such that 4,,_1(N)>1 and 4,,(N)=1. In this case we have
Meo-1(N) =1 and hence Ay, _1(N)>%~1. Inductively we obtain A,_,(N)=>7n~' and N=
Ao(N)=n~". Since a>b we have that >} and hence there is N, such that [Ny]>
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N —[Nn] for all N2 N,. Since dy>0 there also is C*>0 such that §y=>C'N= for all N<N,,.
Let us put

1\ LI
Cn={1—&nm) -« (L= &3,00) (l_m)) (1_}“"0"1(1\7)) ¢

By induction we will prove that 6,>CyN*.
For N <N, this is clear by definition of ¢'. Now suppose that N >N,.

ov=(1—¢,)ad,+bdy_p, forall p<N
> (1 —&,m) (@O, + B0y _s,an)

= (1= e2,m) (@03,m A (V) + by 10 (N — A4 (N))").
Since N> N, we have 1,(N)>N —1,(N) and hence C;,,<Cy_s,n) We obtain

0w = (1~ ea,an) Cauany (@4, (N)* + B(N = 2,(N))%)

A

2 (1 —&,w) (@(Nn)* +b(N — Nn)%) (N7 Cram

1 &%
Z(L—&,w) (1 - m) Crany N*

> O N°.

To complete the proof we only need to show that infy Cy>0:

Cv=(—-¢)...(1—¢) (I “zl‘l)a'“ (1__1_)“0:
2 (1-&,) . (I—g) (L=n)* ... L=y )

>0 Tl (1—¢)(1-9)>0. QED.
=1

THEOREM 5.10. If b'>b then Y, , i3 not isomorphic to a subspace of}Y, ,-.

Proof. If b<<b’ then o’ >a where a’/® £ pV1-2 1 and gV~ 4 p'VA- =], Let e,
be the sequence constructed above. Since W does not contain a copy of I,
and since e, is unconditional we obtain e,-» 0 weakly. Suppose now that ¥, , is isomorphic
to a subspace Z of Y, ,. Let , be the element of Z corresponding to e,. Since «, - 0 we also
have z,=a,/||2,[| >0 weakly. By passing to a subsequence and by applying Lemma 5.9

above we obtain
3C >0 such that ||z, +...+2,]| >CN~.

Hence 3C” >0 such that ||z, +... +zy|]| > C"N* (note that z, is unconditional).
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On the other hand the estimation of Lemma 5.8 remains true for subsequences of e,.

We obtain,
3C” with [lo;+...+2y|| <C”N%,

which is a contradiction. Q.E.D.

CorOLLARY 5.11. For all A>1 there is a continuum number of mutually non-isomorphic

Lo,z Spaces.
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