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On Rebelo's theorem on 
singularities of holomorphic flows 

Patrick Ahern and Jean-Pierre Rosay 

I n t r o d u c t i o n  

A holomorphic vector field Z on a complex manifold M is said to be R + 
complete, resp. R complete or C complete if the initial value problem 

r = p ,  r 1 6 2  

can be solved in forward time, t>O, resp. in real time, - c x ~ < t < + c c ,  or in complex 
time, t c C .  Of course, complete in complex t ime implies complete in real t ime im- 
plies complete in positive time. On any Stein manifold tha t  does not support  any 
bounded, non-constant,  plurisubharmonic function, complete in positive t ime im- 
plies complete in complex t ime ([1], generalizing [9]). In some sense, fields complete 
in positive t ime are much more abundant  than  those complete in real time. For 
example, in the unit disk, among non-constant fields vanishing at the origin, only 

the rotation fields are complete in real t ime but any small per turbat ion of the field 
Z ( ~ ) = - ~  is complete in positive time. Rebelo's theorem says the following. 

T h e o r e m .  (Rebelo [13].) I f  a C complete holomorphie vector field on a two 

dimensional complex manifold has an isolated zero at some point p, then at this 

point the two je t  of the field is not zero. 

Our goal is to show tha t  there are several ways to easily strengthen this result. 
We will use the following notation: if Z is a holomorphic vector field defined near 
a point p in some complex manifold, Jk(Z ,p)  will denote the k jet of Z at p. 

P r o p o s i t i o n  1. Let M be a complex manifold of dimension two. Let Z be an 

R + complete holomorphic vector field on M .  Assume that Z has an isolated zero 

at p. Then J2(Z,p)~O.  I f  J l (Z ,p )=O then there is an embedded Riemann sphere 
E in M such that pCE and Z is tangent to E. 
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Proposit ion 2 deals with vector fields which may not be complete, but which 

are limits of complete ones (for more on this topic see [5] and [8]), and it is also a 
more local statement.  

Proposit ion 2. Let M be a two dimensional complex manifold and let pC M .  

Assume that Z is a holomorphic vector field defined on some neighborhood V of 

p c M .  Assume that Z is the uniform limit on compact sets in V of a sequence of 

R + complete holomorphic vector fields defined on M ,  and that Z has an isolated 
zero at p. Then J2(Z,p)TLO. I f  J l (Z ,p )=O then there is a (germ of a) smooth 

holomorphic curve C through p such that Z is tangent to C and every holomorphic 

function on M is constant on C. 

Even if V = M  we have not been able to show the existence of an embedded 
Riemann sphere as in Proposition 1. 

Since writing this paper  we became aware of the paper  [11] by Ghys and Rebelo. 
In [11], the authors obtain deep results on "semi-complete" holomorphic vector 
fields (that we prefer to call monodromic vector fields). They have a complete 

classification of their germs, at a point where their first jet is trivial. Using the 
Enr iques-Kodaira  classification of compact  surfaces they show that  only Hirzebruch 
surfaces F~ can carry holomorphic vector fields with isolated zero of order 2. Our 
paper  is much more elementary in nature. The proof of Proposit ion 1 is in fact 

extremely short (see also [11, top of p. 1172]). Our results are in a somewhat 
different direction. 

Remarks and questions 

The above results are somewhat  in contrast with the fact that ,  from another 
point of view, there are many  complete holomorphic vector fields on C ~. Indeed 
every polynomial vector field on C ~ is a finite sum of complete polynomial vector 
fields. This fact, implicit in the Andersen Lempert  theory [3] and [4], was made 

explicit in [10]. 

The hypothesis of isolated zero is of course crucial: the vector field (0, z N) is 
indeed a C complete field on C 2 (for any N c N ) .  

A natural  question is, of course, whether a C complete holomorphic vector 
field on a two dimensional Stein manifold can have two distinct isolated zeros? (It 
cannot have one of order >_2.) The answer is yes (see the example after the proof 
of Proposit ion 2). However we do not know if this can happen in C 2. Perhaps it is 
worthwhile at this point to recall the work of M. Suzuki, [13], [15]. In these papers 
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Suzuki gives a characterization (up to conjugation) of all polynomial flows and all 

'proper'  flows on C 2 (see [15] for a definition of proper). These two lists, taken 

together, seem to include all known flows on C 2. None of them has more than one 

isolated fixed point. 

T h e  C a m a c h o - S a d  t h e o r e m  

This is the theorem which, as Rebelo saw, allows one to reduce two dimensional 

problems to easy one dimensional ones. 

T h e o r e m .  (Camacho-Sad [6].) Let M be a two dimensional complex manifold 
and pE M. Let Z be a holomorphic vector field defined near p. Then there exists 
an irreducible one dimensional analytic set A, defined in a neighborhood of p, such 
that pEA and Z is tangent to A \  {p} (A may have a singularity at p). 

A C a m a c h o - S a d  m a n i f o l d  t h r o u g h  p 

Here we assume that  M is a two dimensional complex manifold and that Z is a 
holomorphic vector field defined on M with an isolated zero at pCM. Let A be an 

analytic set (defined near p) as given by the Camacho Sad theorem. By shrinking A 

if necessary, we assume that  p is the only stationary point of Z in A. Pick qEA\{p}.  
Let Lq be its complex orbit. Then Lq is a one dimensional complex manifold in 

M (possibly not a closed submanifold). Of course, Lq is independent of q. Set 
L=LvO{p}, and extend the topology of Lq to a topology on L by considering A 

to be a neighborhood of p in L. (This may not be the topology induced from M.) 

Finally, L has a natural structure as a smooth holomorphic manifold. This is clear in 

case p is a regular point of A. If A has a singularity at p, the analytic structure near 

p is obtained by the Puiseux parameterization, see Section 6.1 or 9.5 in [7]. This is 

a local parameterization of A by a neighborhood of 0 in C, @-+ (hi (4), h2 (~)), where 

hi and h2 are holomorphic, (hs, h2) is one to one, (hi(0), h2(0))=p, but possibly 
h~(0)=h~(0)=0.  So L is a holomorphic manifold but the inclusion map L--+M is 
not an immersion, and even when L is immersed, L may not be closed nor have its 

topology induced from the topology of M. This holomorphic manifold L is called 

a Camacho Sad manifold through p. 

Remark. The proofs of Propositions 1 and 2 are based on the existence of 

a Camacho-Sad manifold which exists, in general, only in dimension two ([12]). 
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The proofs are equally valid in higher dimensions if we assume the existence of an 
invariant one dimensiona] analytic set passing through p. 

Definition. We say that  a holomorphic vector field Z on a complex manifold M 
is monodromic if and only if the following holds: for every q EM,  whenever we have 
connected open sets ~ j  with 0E~ j ,  and Cj:f~j--*M satisfying r1 6 2  j = l ,  2, 

such that  r162 then r162 on a l n a 2 .  

Remark. We note here for further use that  Z is monodromic if and only if for 
any q E M  there is a connected open set f t c C  with 0Eft  and a mapping r f~-~M 
such that  r 1 6 2  and r  and such that  if ~nCft and ~n--~0ft, then r 
leaves every compact subset of M. 

In the terminology of Rebelo, monodromic vector fields are called semi-com- 
plete. They are the topic of [13] and [11]. It is only for the convenience of the 
reader that  we include a proof of the following lemma. 

L e m m a  1. Suppose that Z is monodromic at p and that F is a curve in M 
such that F(O)=p, F(1)=q,  F does not pass through any zeros of Z and 

r ' ( s )  = 

for some complex valued function )~. Then the curve v ( t ) = f ~  )@-) d% 0<t_<l,  lies 
in It and r In particular if V(1)=O then p=q. 

Proof. For small values of t, v(t) lies in fK For small values of t, r  
satisfies the same differential equation as F with the same initial condition. So 
r ( t ) = r  for small t. If 3  ̀ did not lie in ft then there would be a sequence 
t~-~to with 3`(tn)Eft but tending to a point z0 in the boundary of ~2. But then 
r 2 4 7  contradicting the definition of monodromic. 

Hence 3' lies entirely in ft and r  

Monodromic  vector fields in (C, 0) 

L e m m a  2. Let Y be a non-constant holomorphic vector field defined in some 
neighborhood V of 0 in C that vanishes at O. I f  Y is monodromic then either 
JI(Y, 0)~r or Y is equivalent to z20/Oz by a holomorphic change of variable in a 

(possibly smaller) neighborhood of O. 

Proof. Let Y=a(z )O/Oz  and assume that  a(z) vanishes only at the origin. Now 
consider a curve F(t), 0 < t < l ,  in V that  does not pass through the origin. We may 
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write 
r ' ( t )  -- r ' ( t )  

a(P(t)) a(F(t))" 

So if we let A(t)=F'(t)/a(F(t)) then Lemma 1 tells us that  if f01 A(t) dt=O then F 

is a closed curve. But f01 A(t) dt=fr a(z) i dz. In other words, if Y is monodromic 
and F is not a closed curve then fF a(z) I dz~O. This allows us to eliminate most 
fields a(z)O/Oz. 

Now a non-zero holomorphic vector field can, via a local holomorphic change 
of variable near 0, be reduced to the normal form 

Y = (zV+~z2p-1) O .  

This is well known (see [2, Proposit ion 3]). By making a complex linear change 

of time, which does not modify the question of monodromy, we can even reduce 
to either Y=zPO/Oz (A=0) or Y=(zV+z 2v 1)O/Oz (A#0). I t  is therefore enough 
to check tha t  in no neighborhood of 0 are the vector fields zPO/Oz, p>3, and 
(zP+z2p-1)O/Oz, p > 2 ,  monodromic.  We know from the above discussion that  to 

check that  the holomorphic vector field Y=a(z)a/Oz is not monodromic it is enough 
to find a non-closed curve F in V\{0}  such tha t  f r  a(z) -1 dz=O. 

Of course, the case a(z)=z p, p > 3 ,  is trivial. Next we look at the case a ( z ) =  
z2+z 3. Fix c > 0  small enough. I t  is easy to show tha t  there exists Zl on the ray 
{zEC:z=s+te -~,  t < 0 }  close to 0 such tha t  f~l(z2+z3)-I dz is real, simply by 
using/(z2+z3)  -1 d z = - l / z - l o g  z+log( + 1). Take Then 

e dz dz_o,__ 
1 Z2+Z3 -~- JE Z2-~-Z3 

but the pa th  made from the line segments [zl, c] and [E, z2] is not closed. 
The non-monodromy of the field (z2+z3)O/Oz can also be seen from the dy- 

namical point of view (see Figure 2 in [2]). 
The case a(z)=zP+z 2p-1 is proved in [13, Proposit ion 3.1]. This case can also 

be reduced (as in [2, p. 560]) to the case a(z)-z2+z 3 by the singular change of 
variables ~-+z=~ p-l, since the pull-back of the differential form (z2+z3) -1 dz is 
the form (n-1)(~P+~2P-~) -~ d~. Therefore by lifting by a determination of the 
( n - 1 )  th root a non-closed curve along which the integral of (z 2 +z3) -1 dz is zero, 
one gets a non-closed curve along which the integral of (zP-~-Z 2p-1) 1 dZ is zero. 

For p > 2  one could also reduce to the c a s e  a ( z ) : z  p, either by treat ing the case 
a(z)=zP+z 2p-1 as a per turbat ion (as is done in [13]), or by conjugating the two 
cases, not on a full neighborhood of 0, but on a sector (of angle up to 27c). 
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T h e  pu l l -back  of  a v e c t o r  f i e ld  v i a  a P u i s e u x  m a p  

Let A be a germ of an irreducible analytic set at 0 in C 2. Let h be a Puiseux 

parameterization of A, i.e. a map from (C, 0) into (C 2, 0) which is injective and 

whose image is A. Assume that h vanishes to order m at 0 (h(0)=h'(0)  . . . . .  
hm-l(0)=0 but hm(0)~0).  Let Z be a vector field on d \ { 0 } ,  tangential to A, 

vanishing to order >_k (J(Z(q)l<Clqlk), with k_>l. The pull-back of Z is defined (a 

priori) on a neighborhood of 0 with 0 deleted, and is denoted by h ,  1 (Z). 

L e m m a  3. (With the above notation.) The vector field h , ~ ( Z )  extends holo- 

morphicaUy at 0 to a vector field vanishing to order at least ( k - 1 ) m  + 1, and there- 

fore to order greater than 2 i f  k >O, m > 0  unless k = l ,  or, k 2 and r e = l ,  i.e. unless 
A vanishes to order one only or Z vanishes to order two only and A is non-singular. 

Pro@ We have 

Ih,  l (Z) ( ( ) l  = ]h,(~) I IZ(h(C))I <_ C ~ < C(l~l(k-1)'~+l). 

F i e l d s  o n  R i e m a n n  s u r f a c e s  

L e m m a  4. Let S be a connected Riemann surface. Let Z1 be a non-zero R + 

complete holomorphic field on S, vanishing at some point p E S .  Then either S ~ C  

or S ~ U ,  the unit disk in C, in which case Z1 vanishes to order one at p and has 

no other zero, or S ~ P I ( C )  in which case Z1 may vanish to order two at p with no 
other zero or Z1 vanishes to order one at p and has exactly one other zero, also a 
simple zero. 

Proof. The vector field Z 1 defines a semi-group (r of holomorphic injective 

maps from S into S. Since holomorphic injective maps from C to itself or from 

PI (C)  to itself are bijective, the cases S ~ C  or S ~ P I ( C )  are easily understood. 

Next, suppose that  S ~ U .  That is, we may assume that  we have an R + complete 

field X on U such that  X(0)=0 .  First we note that if X were to vanish to order 

greater than one at 0, then we would have 0~ (0) = 1, which would imply, by Schwarz's 

lemma, that r  for all t and z. Hence X has a simple zero at 0. If X ( z o ) = 0  

for some z0r then we would have Ct(zo)=zo for all t, again by Schwarz's lemma. 

For the general case: the vector field Z1 lifts to an R + complete field Z1 on 
S, the universal cover of S. Unless S ~ P I ( C ) ,  S = C  or S = U  and since Z1 is then 

allowed to have only one zero the cover is single sheeted, so S ~ C  or S ~ U .  
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R + c o m p l e t e  f ields 

A connected subset f~ of the complex plane will be called an R + domain if 
z + t E ~  for all zCft and all t>0.  We note here some elementary facts about such 

domains. 

L e m m a  5. I f  f~ is an R + domain and z, wE~2 with I m z > I m w  then there is 
M > 0  such that {x+iy:Imw<y<<_Imz, x > M } c f ~ .  

Proof. If not, then for every N > 0  there is a point XNd-iyN in the complement 

of ft with xN>N and I m w < y N < I m z .  Since ft is an R + domain the line segment 
LN--{x4-iyN:X<XN} is contained in the complement of ft. These line segments 

cluster on a full horizontal line L which lies in the complement of f~ and which 

separates z from w. This contradicts the connectedness of ft. 

From this lemma we easily obtain the following lemmas. 

L e m m a  6. An R + domain is simply connected. 

L e m m a  7. I f  ~21 and ft2 are R + domains then so is f~=f~l A~t2. 

Proof. It is clear that  ft is invariant by translations to the right, so we need 

only check that  ft is connected, but this follows from Lemma 5. 

Now suppose that  M is a complex manifold. Suppose further that there is a 
holomorphic vector field Z defined on M that is R + complete. Now fix p C M ,  then 

we can find a solution r to the equation r 1 6 2  r  in a disk A centered 

at the origin. Because of the hypothesis, this solution extends to be a solution in 

A + R  +, an R + domain. Now consider pairs (ft, r where ft is an R + domain 

containing A + R  + and Ca is a (single valued!) solution of our differential equation 

that agrees with 00 in A + R  +. Suppose that (ftj, Caj), j = l ,  2, are two such pairs. 

Note that  since ftl Nft2 is connected and (~1 =(~'~2 on a non-empty open subset of 

this intersection, we can find a single valued solution to our equation on the union 

of ftl and ft2. Let ~ be the union of all such domains. By the above discussion we 

have a single valued solution r defined in ~ that  agrees with 00 in A + R  +. Now 

suppose that  z E ~  and D is a disk with center at z such that D is not a subset of 

and there is a solution f of the differential equation defined in D that agrees with 

in a neighborhood of z. Then f extends to be a solution in D + R  +, an R + domain. 

By the proposition above ~ M ( D + R  +) is connected and f = r  on a non-empty open 

subset of that  intersection. This contradicts the maximality of the domain ~. It 

follows that no such analytic continuation f can exist. This implies the following. 

L e m m a  8. I f  Z is an R + complete field then Z is monodromic. Moreover, 

the open set f~ referred to in the definition of monodromic is simply connected. 
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P r o o f s  o f  P r o p o s i t i o n s  1 a n d  2 

Although par t  of Proposition 1 is a special case of Proposit ion 2, for the sake 
of simplicity we start  with the proof of Proposition 1, which requires fewer tools. 

Proof of Proposition 1. Let L be a Camacho-Sad manifold through p. The 
vector field Z on M gives by restriction an R + complete vector field Z1 on the 
Riemann surface L. If Z vanishes to order k at p, then Z1 vanishes to order greater 
than 2 at p in L, unless k = l  or k = 2  and r n = l  (in the notat ion of Lemma 3), i.e. 
k = 2  and the inclusion map L--~M is an immersion (as already noticed in [13]). If  
L is compact  it is then of course an embedding. By applying Lemma 4, we then get 
either k = l  or k=2 .  If  k=2 ,  then L is an embedded Riemann sphere in M,  going 

through p, and to which the vector field Z is tangent. 

Proof of Proposition 2. Let A be an irreducible analytic set at p, as given by 
the Camacho-Sad  theorem. Let h: U~A be a Puiseux map, h (0)=p ,  U being the 
unit disk in C. Let Y=a(z)O/Oz=h71 (Z). As we have seen from Lemma  3, a(z) has 
a removable singularity at 0 and a(0)=0.  Now we pick zoCU, zor and consider 
the differential equation r 1 6 2  r  in U. Let us be clear here. We consider 
the complex manifold U with the holomorphic vector field a(z)O/Oz and our first 
aim is to show that  this field is monodromic in the sense of our definition. Suppose 
that  we have connected open sets ~ j  and Cj, j = l ,  2, as in the remark following the 
definition of monodromic. Fix a point ~0 in ~lAf~2. Let 3"j be a curve tha t  joins 0 to 
@ in a j ,  j = l ,  2. Let K=h(r162 We may approximate  Z as closely 
as we want near K by R + complete fields. The solutions to these R + complete fields 
will approximate h(q~j) on h(3"j). Since these approximating fields are monodromic,  

it follows that  h( r162 and hence that  r162 Tha t  is, Y 
is monodromic. (The fact that  limits of monodromic fields are monodromic has 
already been used by several authors ([5], [8], [11]).) 

Now that  we know that  Y is monodromic we can apply Lemma 2 to conclude 
that  J2(Y,O)r from which it follows that  J2(Z,p)r by Lemma 3. Now, if 
Jl(Z,p)=O then we would have JI(Y, 0)=0  and hence, by Lemma 2, Y would be 
(equivalent to) z20/Oz. 

Of course the solution to this equation is r and its natural  
domain is f t = { r  Let 3' be a circle in ft that  is not homotopie to a 
point in ft. Consider K=h(r  We approximate  Z by R + complete fields Zn 
on K.  The solutions r to the approximating fields will approximate h(r on 3". 
Notice that  once the domain f t ,  of Cn contains 3' it contains its interior as well, 
because f~n is an R + domain. Now let f be a holomorphic function on M. Then 

f ( r  will converge to f (h ( r  on 3'. This gives an analytic continuation of f (h ( r  
to an entire function on C. More precisely, we have an entire function g so that  
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g ( ~ ) = f ( h ( z o / ( 1 - z o ~ ) ) )  for ~Eft. Letting ~--~oc we see that  g is constant. From 

this it follows that f is constant on V. 

An example. In this paragraph we give an example of a connected two di- 

mensional Stein manifold M, and of a C complete holomorphic vector field Z 
on M with more than one isolated zero: Let M = { ( z ,  w, p ) E C 3 : p 2 = ( 1 - z w ) }  and 

Z = z ( O / O z ) - w ( O / O w ) .  It is easily checked that  M is a connected smooth manifold 

and that Z is tangent to M. In fact the flow corresponding to Z is r w, Q)= 
(etz, e-tw, ~) which leaves M invariant in C 3. The field Z has two isolated zeros 

on M, viz. (0, 0, • 
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