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w I. Introduction. The first objective of this paper is to use topological 

methods and concepts to enlarge the store of knowledge of meromorphic func- 

tions. Deformation classes of meromorphic functions are defined. The extension to 

interior transformations results in new homotopy theorems and contrasts between 

interior and conformal maps. Earlier papers have shown that there is a con- 

siderable body of theorems which can be formulated so as to retain meaning and 

validity after arbitrary homeomorphisms of the z- or w-spheres. Many theorems 

involving the relations between zeros, poles, and branch point antecedents and 

the images under f of boundaries are of this character. See Morse and tteins, 

(I) and Morse (2). 

The second objective is to distinguish between the properties of meromorphic 

functions which are shared by interior transformations and those which are not. 

For the transformations from {]z] < I} to the w-sphere which are considered we 

find no difference 1 between meromorphic functions and interior transformations 

with respect to the invariants necessary to characterize a deformation class of 

functions with prescribed zeros, poles, and branch point antecedents. However, 

sequences [fk(z)] of meromorphie functions properly taken from different deforma- 

tion classes cover the w-plane in a manner suggestive of the Picard theorem on 

essential singularities but with no counterpart for sequences of interior trans- 

formations. The discovery of such properties points to the problem of finding 

the non-topological assumptions which must be imposed upon interior transforma- 

tions in order that  they may share the non-topological properties discovered. 

' For domains for z o the r  t h a n  t he  disc  differences m a y  arise.  
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Topologically we are concerned with the homotopy classes of open simply- 

connected Riemann surfaces with prescribed properties, conformally with the 

existence of deformations of prescribed type through meromorphic functions when 

it is known that  such deformations are possible through interior transformations. 

We seek to construct models of all deformation classes by ,composing, homeo- 

morphisms of { I z I < I } with an interior transformation with the prescribed zeros, 

poles, and branch point antecedents. Conformally this is possible only in trivial cases. 

Interior transformations are used essentially in the sense of Stoilow. (4) 

With Whyburn (3) they are ,>interior~ and ~light,. Whyburn has studied the 

underlying point set characteristics of these transformations in a very general 

setting. The uniformization theorems of Stoilow are found useful. See also, 

v. Ker6kj~rt6, (5) PP. I73--I84.  

The following section gives a summary of the principal results without details 

or proofs. A detailed exposition follows. 

w 2. The problem and the principal re~lts. In the sense in which we shall 

use the term an interior transformation w = f ( z )  will be a sense-preserving con- 

tinuous map of the open disc S{[z I < t} into the complex w-sphere with the 

following characteristic property. I f  Zo is any point on S there exists a sense- 

preserving homeomorphism 9(z) from a neighborhood N of z 0 to another neigh- 

borhood 3~ of Zo with zo fixed, such tha t  the function f[9(z)]  = F(z ) i s  analytic 

on A r except at most for a pole at zo, and is not identically constant. The trans, 

formation f is said to have a zero or pole at zo if F has a zero or pole at  z0- 

more precisely f is said to have a zero or pole of the order of the zero or pole 

of F at z 0. 

I f  Zo is the antecedent of a branch point of the r-th order of the inverse 

of F, zo is said to be an antecedent of a branch point of the r-th order of the 

inverse of f .  In any case it is seen that  r + I is the number of times a neigh- 

borhood of w o ~-f(zo) is covered by f(z) for ] z -  zo] sufficiently small. 

We shall restrict ourselves to the case in which f has a finite set of zeros 

(2. i) So, . . . . .  a ,  (r > o), 

and poles 

(2 .  2) a r + l ,  �9 � 9  a n  ( n  > I )  1, 

t I n  a l l  c a s e s  m = n + i s h a l l  d e n o t e  t h e  t o t a l  n u m b e r  of ze ros  a n d  po l e s .  T h e  c a s e s  m = ! 

a n d  m = o a r e  t r e a t e d  i n  w 14. 
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with branch point  antecedents  

(2. s) b~ . . . .  , b~, (~ _>-- o), 

with  n > I unt i l  w 14 is reached. In  the principal s tudy we shall assume tha t  the 

zeros, poles, and branch points are simple, tha t  is, have the order I. The zeros, 

poles, and branch point  antecedents  will form a set of points 

( a ) -  (ao, �9 � 9  an, b~ . . . .  , bA 

te rmed characteristic. T w o  points in the set (a) both of which are zeros, or poles, 

or branch point  antecedents  are said to be of like character. Any reordering of 

the points of (a) in which points of like character  are reordered among them- 

selves will be termed admissible. Except  in the case g = o, m ~-2 we shall use 

no reordering in which a o is changed in relative order. 

Admissible fldeformations. We shall admi t  deformat ions  D of f of the form 

w = F ( z , t )  (lel < i) ( o - _ _ t ~  I) 

in which t is the deformat ion parameter  and 

r (z, o) ~ f(z). (I ~ I < i) 

W e  require t ha t  F map (z,t) cont inuously  into the w-sphere and reduce to an 

inter ior  t ransformat ion  for each fixed t. Le t  (a t) be the characterist ic set of F 

at  the t ime t. We  require tha t  the points of (at) vary continuously with t, remain 

simple, dist inct  and cons tant  in number  and character  as t varies from o to I, 

re turn  respectively, when t----I, to some one but  no t  necessarily the same one 

of the characterist ie  points of f (z)  of like character.  The terminal  t ransformat ion  

F(e ,  I) has the same characterist ic set as f with a possible reordering. 

I f  (a t) is independent  of t the deformation is termed restricted. I f  (a ~ .----(a'), 

the deformat ion is termed terminally restricted. I f  (a ~) is an admissible reordering 

of (a~ D is te rmed semi-restricted. We  let X denote any one of these three types 

of admissible deformations.  In te r ior  t ransformat ions  which admit  a deformat ion 

into each other  of type X will be said to belong to the same X-deformation class 

and to be X-equivalent. 

The invariants J(. W e  shall define a set (J) of n numbers J~ (f, a) (i =-: I . . . .  , n) 

associated respectively with the respective pairs (ao, a~). The J,-'s are invar iant  

under  any restr icted deformat ion of f .  The set (J) is thus  associated with an 

ordered set (a) in which the first zero a o plays a special role. I f  am is a trans- 
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format ion  with  the ordered set (a), then  all sets (J) belonging to t ransformat ions  

f wi th  the same ordered set (a) have the form 

( 2 . 4 )  J,(f, , )  = J , ( F ,  + r ,  ( i  = I . . . .  , .) 

where r~ is an arbi t rary integer. All such sets are realizable. 

Topological models with prescribed sets (a) and (J). One begins by exhibi t ing 

an interior t r ans format ion  F with the given ordered set (a). Then (2.4) defines 

the ensemble of sets (J) which are ~,associated>> with (a). Any one of these sets 

(J) associated with  (a) belongs to a t ransformat ion  f obtainable from F in a 

simple way. 

To obtain these models use is made of sense-preserving homeomorphisms ~(z) 

of the disc S =  {Izl < I} onto itself-. We  term ~ restricted if (a) is 'point-wise 

invar iant  under  7, semi-restricted if points of (a) are t ransformed into points of 

(a) of like character.  Set n +  l-----re. Except  ~ when m ~ 2  and / ~ - o ,  one can 

prescribe the ordered set (a) and any one of the associated sets (J) and affirm 

the existence of a semi-restricted homeomorphism V, dependent  on (a) and (J), such 

tha t  the funct ion ~ F ~  has (a) as an ordered characterist ic  set and (J) as its set 

of invariants.  The case m - ~  2, /~ ~ o is exceptional. 

Meromo~Thic r~odels. The preceding models f are not  in general  meromorphic.  

Nevertheless there  exists an explicit formula  for a meromorphic  funct ion f wi th  

a prescribed ordered characterist ic set (a) and associated invariants  (J). 

Restricted deformation classes C. A necessary and sufficient condit ion tha t  

two t ransformat ions  f l  and f~ w~th the same ordered set (a) be in the same class 

C is tha t  f~ and f~ possess the same invariants  (J) with respect to (a). I f  f~ and 

f~, are meromorphic,  the restricted deformat ion of f~ into f~ which is affirmed to 

exist can be made th rough  meromorphic functions.  This is equally t rue  of the 

deformat ion classes C' and C" to which we now refer. 

Terminally restricted deformation classes C'. A new invar iant  is needed here. 

Two t ransformat ions  f with the same ordered set (a) will be said to belong to 

the same category if the sums 

for the two funct ions are equal mod. z. There are three principal cases (assuming 

m >  I unt i l  w I4). 

1 We are  e x c l u d i n g  the  ease m < 2 u n t i l  w 14 in  order  to  avo id  c o m p l e x i t y  of s ta tement .  

W h e n  m < 2 t he re  are  no i n v a r i 3 n t s  (J) .  
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I / z : > o  or m odd. 

I I  ~ = o ,  m = 4 , 6 ,  8 . . . .  

I I I  ~ = o ,  m ~ 2 .  
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In Case I any two funct ions  f~ and f~ with the same set (a) are in the same 

class C'. In  Case I I ,  f l  and f2 are in the same class C ~ if and only if they are 

of the same category.  In  Case I I I  f~ and f~ are in the same class C' if and 

only if they have the  same invar ian t  J1 wi th  respect  to (~). 

Semi-restricted deformation classes C". I f  m > 2 or # > o there  is but  one class 

C" with the given set (a). The  case / z - - o  and rn = 2 is again exceptional .  

Other exceptional cases. The cases in which m < 2, are excluded unt i l  w 14. 

We  have required  t ha t  r >  o in (2. I), thus  excluding the possibility tha t  f have 

poles bu t  no zeros. This except ional  case is readi ly  b rought  under  the preceding 

by replacing f by its reciprocal.  The  case where there  are no poles is admit ted.  

Cases in which the  character is t ic  points  are not  simple can be t r ea ted  

essentially as in the simple case provided the deformat ions  which are admit ted  

are required to preserve the mult ipl ic i ty  of the respective character is t ic  points.  

I f  one permits  the  mult ipl ici t ies of the character is t ic  points to change  by v i r tue  

of various types of coalescence, an in teres t ing  theory  of degeneracy arises 

analogous to the theory  Which describes the degeneracy of elliptic funct ions  in to  

t r igonomet r ic  funct ions.  I t  is p lanned to r e tu rn  to this problem in a la te r  paper.  

Topological and con formal differences. A first difference has already been 

indicated.  Excep t  when m = 2 and /~ = o models of all res t r ic ted deformat ion  

classes with a given set (a) can be obtained as func t ions  T' by composing a par- 

t icular  model F 0 with character is t ic  set (a) with suitably chosen semi-restr icted 

homeomorphisms  ,/ of S. This  is impossible if one operates only with meromor-  

ph ic  funct ions .  

A second difference appears  in the extent  to which the w-sphere is covered 

by an infinite sequence []~] of t r ans fo rmat ions  with a prescribed set (a) and at  

most  one representa t ive  f rom each res t r ic ted  deformat ion  class. We te rm [f~] a 

model sequence. Let  R be any connected  region of the w-sphere which contains 

w = ' o  and w = oo and whose closure does not  cover the w-sphere. I f  the models 

[fk] are no t  required to be meromorphic  a model  sequence [fk] can be defined 

so as to cover no points  on the  complement  of R and with no subsequence con- 

verging continuously on S to o or oo. This is impossible if the funct ions  j~: are 

meromorphic .  
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To give a more revealing statement in the meromorphic case let a point Zo 

of S be termed a covering point of [fk] if corresponding to any arbitrary neigh- 

borhood N of z 0 the set of images of -h T under [fk] covers the finite w-plane 

(w = o excepted) infinitely many times. Let H be any connected neighborhood 

on S of the points 

(a0, a ,  . . . . .  = (a)  

with the points (a) excluded. Any model sequence [•] of meromorphic functions 

no subsequence of which ,,converges continuously,, to o or to oo on H possesses 

at least one covering point on H. 

This theorem follows readily from a theorem of Julia on normal families 

(see  Montel (6), p. 37) once the appropriate properties of meromorphic models 

have been derived. Other theorems concerning the covering points z0 of [fk] are 

obtained. 

We begin the detailed study with the development of homotopy properties 

of locally simple arcs k and introduce invariants d(k) designed to make possible 

a topological definition of the invariants J~. 

P a r t  I. T h e  T o p o l o g i c a l  T h e o r y .  

w 3. The difference order d(k) of a locally simple arc k. The object of this 

section is to attach a number d(k) to a locally simple, sensed arc k with pre- 

scribed end points in such a manner that  d(k) remains invariant under a class 

of deformations of k (to be defined) and characterizes k as representative of its 

deformation class. 

Local simplicity. See Morse and Heins (I) I. The arcs k which are admitted 

are ,>represented,) by continuous and locally I - - I  images 

w(t) ~- u(t) + iv(t) (o < t <= to) 

of a line interval (o, to) and shail intersect their end points w(o) and w(to) only 

when t = o and t o respectively. The condition of loeal simplicity implies that  

there exists a constant e > o sueh tha t  any subarc of k whose diameter is less 

than e is simple; such a constant e is called a norm of local simplicity of k. 
Any set of loeally simple curves which admit the same norm of local simplicity 

will be termed uniformly locally simple. 
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Strictly speaking, w(t) is a representation of k and not identical with k. We 

admit any other representation of k obtained by mapping the interval (o < t =---to) 

homeomorphically onto another intervM (o, tl). The arc k can be identified with 

a class of such representations. The property of local simplicity of an arc k is 

independent of the representation of k which is used, because the existence of 

a norm of local simplicity is independent of the representation used. 

Let the end points of k be w = a and w = b respectively. 

Admissible deformations o f  k. We shall admit deformations D of k with the 

following properties. The arcs of D shall be represented in a locally I--x way 

in the form 

(3. I) w ----- H(t ,  ~) (o ~ t <--_ to) (o <= Z ~ ~o) 

where H maps the (t, ~) rectangle continuously into the finite w-plane with 

B (o, z) = a n ( t 0 ,  b 

The arc k shall be represented by H(t ,  o). The arc k is >-'deformed>> at the >>time>> 

into the arc k z represented by H(t ,  ~). The arcs k z shall be uniformly locally 

simple and shall intersect a and b only as end points. 

I f  the requirement of uniform local simplicity were replaced by the re- 

quirement that  the arcs k x be separately locally simple, there would be but one 

deformation class of arcs with the end points a and b, instead of the countably 

infinite set of deformation classes which actually exists. 1 

Any two arcs k ~ appearing in the above deformation are said to be in the 

same deformation class. Actually the deformation is one of >)representations*, but 

it is immediately obvious that  any two representations of the same arc can be 

admissibly deformed into each other. See (i) I p. 6o3. Accordingly the proper~y 

of two arcs of being in the same deformation class is independent of their 

representations. 

To avoid misunderstanding, the following should be pointed out. The pos- 

sibility that  a ~--b is admitted. Let ~a and k~ be proper simple subarcs of k with 

a the initial point of ka and b the terminal point of kb. The arcs ka and kb can 

intersect in infinitely many points, even coincide. Fig. I shows four examples 

of arcs k in the same deformation class in the case a = b. The figures must of 

course be superimposed so that  the point w = a  coincides with w ~ b  in all four 

cases. The lower right curve is designed to indicate the possibility of a curve 

i Cf. L e m m a  3 . 3 .  



w ~  Ot 

Marston Morse and Mauriee Heins. 58 

F i g u r e  I .  

W ~ O .  

in the given deformation class with a simple spiral terminal arc. Another  figure 

could be drawn indicating an arc in the same deformation class with spiral like 

simple subarcs at both ends. Reversed in sense the four arcs in Fig. I belong 

to a second and different deformation class. 

The regular case a ~b.  The arc k is termed regular if it  admits a represen- 

tation w(t) in which w'(t) exists, is continuous and is never zero. For  many 

purposes it will be convenient to measure angles in rotational units, that  is, in 

units which equal 2 z radians. The algebraic increment in 

2) w'(t) (o _-< t _-< to) 
2:7V 

as t increases from o to t o and arg w'(t) varies continuously will be denoted by P(k). 

The angle 19 is in rotational units and represents the total angular variation of 

the tangent  to k as the point of tangency w(t) traverses k. Let  e be either end 

point of k. The limiting algebraic increment of 
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arg [w (t) - -  c] [O < t < to] 
2 ~  

as t increases from o to to and the a rgument  varies cont inuously will be denoted  

by Q~(k). 

In  the regular ease with  a ~ b we tentatively define d(k) by the equation 

(3.3) d(k) = P(k)  - -  Qa(k) - -  Qb(k) (a ~ b) 

and show that d(k) is an integer. 

The number  d(k) equals the rota t ional  units  in the to ta l  angular  variat ion 

of a uni t  vector X which varies cont inuously as follows from 

b - - a  
(3.4) ] b - - a ]  

back to the  same vector. Let  X start  with the vector  (3.4) and coincide with 

,w( t )  - a (to > t > o)  
(3.5) I w ( t ) -  al 

as t decreases f rom t o to o, excluding o'. Let  X then coincide with 

w'(t) 
(3.6)  [ w'(t) 1 (o _-< t =< to) 

as t increases f rom o to to. Final ly let  X coincide with 

b - w (t) (to > t > o) 
(3.7) I ~ - w (t)~ = 

as t decreases f rom to to o. The initial  and final vectors  coincide with (3.4). 

The algebraic increments  of a r g ( ~ ) c o r r e s p o n d i n g  to the  var iat ions associated 

with (3.5), (3.6) and (3.7) respectively are 

- q o ,  •, - -Qb ,  

so tha t  the resu l tan t  algebraic increment  in angle is given by (3-3). The varia- 

t ion in X is cont inuous  so tha t  the  s ta tement  in italics follows. 

The general case a ~ b. The arc k is no longer assumed regular.  A subarc of 

k will be defined by an interval  (a, $) for  t. I f  this subarc is simple the  vector  

(3.8) w (~) - -  w (a) 
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has a well defined direction. This direction will vary continuously with a and 

v so long as the arc (a, ~) remains simple and a < ~. We term such a variation 

an admissible chord variation. In such a variation we suppose that  the angle 

(3.9) I _  arg [w (~) --  w (a)] 
2 ~  

has been chosen so as to vary continuously with a and ~. For an admissible 

chord variation the algebraic increment of (3.9) depends only on the initial and 

finaI simple subarcs. 

Let  ka and kb be respectively proper simple subarcs of k of which the initial 

point of ka is a and the terminal point of kb is b. Let  the chord subtending 

ka vary admissibly into the chord subtending hb. Let 

P (k, ka, k~) 

represent the resulting algebraic increment of (3.9). Let  the algebraic increment of 

(3. IO) I arg [w(t)-- a] 
2 ~  

as t increases from its terminal value ta on ~a to to be denoted by Qa(k, ka) and 

let the algebraic increment of 

(3. i i )  I__ arg [w(t) - b] 
2 ~  

as t increases from o to its initial value tb on hb be denoted by Qb(k, hb). 

The difference order d(h) when a # b is defined by the equation 

(3. i2) = P(h, ho, (a b) 

We state the lemma. 

L e m m a  3.1. The difference order d(h) as defined by (3.12), where a # b, is an 

integer which is independent of the choice of  ha and kb among proper simple subarcs 

of k with end points as prescribed. 

The proof that  d(h) is an integer is essentially the same as in the regular 

case. Aa before, d(k) measures the angular variation of a unit  vector which 

initially and terminally coincides with (3.4) and may be broken up into the 

variatiuns which define --Qa, P, and --Qb respectively in (3.12). 

I t  should be noted that any one of these three component angular variations 

may be arbitrarily large in numerical value and increase without  limit as ha or 

kb tend to a or b respectively. This would certainly happen if h had spiral like 

terminal simple subarcs. We  have the following lemma. 
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consistent with the earlier definition (3.3). 

The  fol lowing lemma is also immedia te ly  obvious. 
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I f  k is regular 

d (k) -~ P -- Q~ - Qb (a ~ b) 
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L e m m a  3 .3 .  The d~erenee order d(k) (a ~ b) is i~dependent of any admissible 

deformation of k. There are accordingly at least as many deformation classes as there 

are different values of d(k) for admissible arcs joini~g a to b. 

For  any in teger  m a ~model,~ arc K~ jo in ing a to b and with d ( k ) = m  can 

be defined as follows. F o r  n ~-o  take K o as the s t ra igh t  line segment  f rom a to b. 

Le t  c be the  mid point  of K o and C be a un i t  circle t an g en t  to  K o a t  c and to 

the  lef t  of K o. To define K~ for  n > o t race  K o f rom a to c, then  t race C n t imes 

in the positive sense, and finally t race  K o f rom c to  b. Take  K - n  as the reflec- 

t ion of Kn in K 0. T h a t  d(K,n)= m follows f rom (3. I3). Since d(k) is invar ian t  

unde r  admissible deformat ions  no two of the  models Km are in the same de- 

fo rmat ion  class. I t  can be shown 1 t h a t  each admissible curve k which joins a 

to b and for  which d(k)-----m is admissibly deformable  into K~.  

The  case b = co. We  suppose t h a t  a is finite as previously,  and make  the  

obvious extensions of previous definit ions as follows. 

The  arc k may  be given in ~he w-plane. By convent ion  i t  joins w ~ - a  to 

w = c o  if its closure k o n  the  w-sphere joins w ~ a  to w~--co. I t  is t e rmed  

locally simple if k is locally simple on the w-sphere. Admissible deformat ions  

are defined as previously bu t  on the w-sphere. I f  k is locally simple there  exists 

a value ~ with o < z < to such t h a t  the subarc �9 ~ t < t o is simple in the  finite 

w-plane. On this  arc ]w(t)] becomes infinite as t tends  to t o. 

To define d (k) let  ld represent  the  subarc (o, s) of k, with o < s < t 0. Then  

d(/d) is well defined. I t  is clearly independen t  of s provided s > ~. W e  ac- 

cordingly set 

d (k) ---- d (k') (~ < s < to). 

T h a t  d(k) is inv~riant  under  admissible deformat ions  follows as previously.  

The arc k is t e rmed  regular if  its closure k on the  w-sphere is regular ;  one 

then has the  lemma. 

1 We make  no use of th i s  theorem and accordingly omi t  the proof. 
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I n  ca,ve ~ is regular on the w.sphere, a is .finite and b~-oo, then 

d(]c) = ~D(]C)_ ~a(]c). 

I n  case ~ is regular  on the w-sphere k has a definite asymptote in the finite 

w-plane as t t ends  to to. The subare k' of  k is regular ,  and if w(t ) represen t s  k, 

= Q o ( k  - -  

On le t t ing  s tend  to to the  last  te rm tends  to zero and the first two terms tend  

to the corresponding te rms in (3. I4). Thus  L e m m a  3.4 holds as stated.  

The case a ~---b. We here  suppose tha t  a is finite. The values 

Qa (k, ]ca) Qb (]C, kb) 

are undefined since they involve the null vector  b - - a .  Moreover,  the value of 

d(]c) which would be obta ined by taking  an appropr ia te  l imit  as a tends to b is 

not  the  invar ian t  which is useful. Ins tead  we proceed as follows. 

In  the regula r  case one sets 

(3-IS) d(k) = P(k)  - -  Qa(]C). (a = b) 

In  the  general  case let  
Qa (k, ]ca, ]cb) 

equal  the algebraic  increment  of 

(3 16) I arg [w( t ) - -  a] 
2 ~  

as t varies monotonical ly  f rom fls terminal  value t. on ka to i ts init ial  value 

tb on kb. In the general  case one sets 

(3. I7) d(]c) = ~ (k ,  ka, kb) - Qa(k, ka,]cb). (a = b) 

The first re levant  facts are as follows: 

L e m m a  3 .5 .  The value of d (]C) when a ~ b equals ~- rood z. I t  is independent 

of  the choice of  ]ca and ]cb among proper simple subarcs of  ]C with end points as 

prescribed, and is invariant  u~der admissible deformations of ]C. 

The angula r  var ia t ion which defines d(k) is t h a t  of  a vector  Y which s tar ts  

with w ( t ~ ) - - a  and ends with this vector  reversed in sense, i n  fact  i t  is suffi- 

c ient  if  Y first varies admissibly as a chord f rom its ini t ial  posi t ion to the  vector  

b ~ w ( t b )  sub~ending ]co; this var ia t ion gives P in (3. I7)- One cont inues with a 

var ia t ion of 
b - -  w (t) 
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in which t decreases f rom tb to ta and in which the  angu la r  var ia t ion  is measu red  

by Qa in (3- I7). Bu t  the  t e rmina l  vector  Y coincides with the  ini t ia l  vec tor  Y 

reversed  in sense so t h a t  d(k), measu red  in ro t a t iona l  uni ts ,  equals  1 mod  I. 

The  independence  of d(lc) of the  choice of ]Ca and  kb is clear  as is its in- 

va r iance  under  admiss ible  deformat ions .  

W e  no te  the  following.  

L e m m a  3 .6 .  I l k  is regular a~zd i r a  = b  (finite), or i r a  is finite and b = o o ,  then 

(3. 18) d(]c) = P(k)  - -  Qa(k). 

Models for  the  different  de fo rma t ion  classes when  b =  co are ob ta inab le  f rom 

those for  which b = b~ (b~ finite) by m a k i n g  a direct ly  con fo rma l  t r a n s f o r m a t i o n  

of the  w-sphere which leaves a fixed and  carr ies  b t to oo. 

I n  case a = b (finite) the  values of d(k) are found  to be 

- -3  I I 3 
2 2 2 2 

A posit ively sensed circle C t h r o u g h  a has  a difference order  �89 Revers ing  sense 

a lways  changes  the  sign of the  difference order.  To obta in  a curve Kr  wi th  a 

2 r + l  
difference order  ,n . . . .  , and  wi th  r >  o, one a t t aches  a small  posi t ively  

2 

sensed circle C1 to C wi th in  C, and  t a n g e n t  to C a t  some point  c o the r  t h a n  

a = b; one t h e n  t races  C unt i l  e is reached,  then  t races  C1 r t imes  in the  posi t ive 

sense, and  cont inues  to b on C. To obta in  a curve wi th  difference order  - - n  

one can reverse  the  sense of  /~%, or more  symmet r i ca l ly  reflect K~ in the  t a n g e n t  

to C a t a .  

I t  can be shown tha t  these  models  r ep re sen t  all  possible de fo rma t ion  classes 

of admissible  curves when a =  b. W e  shall  no t  use this fact .  

w 4. Three deformation lemmas. Let  h be a s imple arc jo in ing  two dif ferent  

po in ts  z 1 and  z~ in the  finite z-plane. ~Admissible~> de fo rmat ions  of such an arc 

keep z~ and z~ fixed. I f  in addi t ion  only simple arcs are employed,  the  deforma-  

t ion will be t e rmed  an isotopic de fo rma t ion  of h. A first l e m m a  is as follows. 

L e m m a  4. 1. Any simple are h, joining zl and z2 (zl ~ z~) i~ the finite z-plane, 

can be isotopieally deformed on an arbitrary neighborhood N of  h into a simple, 

regular, m~al?ltie are joining zl to z~. 
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We begin by proving the following: 

(a) The arc h can be isotopically deformed on • into a simple arc h* on which 

sufficiently restricted terminal subarcs are straight. 

For simplicity take ~1=o-  Choose e so that  o < 2 e < ] z ~ l .  Let C be the 

circle I z l = e  and E the open disc {Izl <e}.  Let hi be a maximal connected 

subarc of h on E with z = o  as an initial point. Let h~ be a simple open 

arc of which hx is a subarc, which lies on E and whose closure is an arc joining 

diametrically opposite points of C. There exists a sense-preserving homeomorphism 

T of /~ which leaves z = o and C pointwise fixed, and maps h2 onto a diameter 

of /~'. I t  follows from a theorem of Tietze (7) that  T may be generated by an 

isotopic deformation z/ of /g from the identity leaving C and z = o pointwise 

fixed. 

I f  e is sufficiently small, J will deform h V ~' only on _A r and yield an image 

of h with a straight initial subarc. Such a deformation of h will be isotopic. 

Neighboring z~, h can be similarly deformed, so that  (a) follows. 

To complete the proof of the lemma, let g be a closed Jordan curve of 

which the arc h* in (a) is a subarc, and which is analytic and regular neigh- 

boring zx and z~. Let R be the Jordan region bounded by g. Let ~ be mapped 

homeomorphically onto a circular disc, conformally at points of /~. On the disc 

the pencil of circles through the images of z~ and z~ will have antecedents on 

/~ which will suffice to deform h* isotopically on ~V into a simple, regular, 

analytic arc joining z~ to z~. 

This completes the proof of the lemma. 

In deriving deformation theorems for h when h joins z~ to z~ on S and 

zx~z~, no generality is lost if it is supposed that  a is real and positive and that, 

with a < I, 

Zl - - ,  z .  = ,  (a o). 

For S can be mapped conformally onto itself so that  z I and z~ go into - - a  and 

a respectively for a suitable value of a. 

A non-singular ~ran,~ormation of coordinates. Let the z-plane be referred to 

polar coordinates (r,O). For the above a and for each constant b on the interval 

o ~ b < I a transformation from polar coordinates (0, 9) to (r, 6) will be deflated 

by the equations 

(4.!) r = , o  _ 0 2 ~  , 8---~ (o <: Q~be < I). 
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F o r  b = o ,  (4. I) reduces  to the ident i ty .  Fo r  b ~ o  the  in te rva l  o ~ r <  c~ and  

the  in te rva l  

I (4.2) o=<e<~ 

cor respond  in a I - - I  manner .  The  circle Q = a cor responds  to the  circle r =  a. 

Sub jec t  to (4-2) the  r ec t angu la r  t r a n s f o r m a t i o n  of coordinates  defined by (4. I) 

is I - - I ,  ana ly t ic  and  non-s ingular .  The  circle #----- I cor responds  to the  circle 

for  which 
I - -  a 2 b e 

(4.3) r =  I - b  e . .  

We  shall  make  use of the  t r a n s f o r m a t i o n  (4. I) and  prove  the  fol lowing lemma.  

L e m m a  4.9.. A simple, regular, analytic are h joining - - a  to a on S can be 

isotopicaIly deformed on S through regular anatglic ares h ~ i~do a circular are joiMng 

- - a  to a on S m~der a deformation in which the point with le~gth parameter x on 

h corresponds to a point  

o~ 
(4.4) z = z (s, t) [ 

at the time t, where z (s, t) is m~alytic in the real rariables (s, t), and z, ~ o. 

To define the  de fo rma t ion  (4.4) let  g be a J o r d a n  era're on S which includes 

h as a subarc  and which  is ana ly t ic  and  regu la r  ne ighbor ing  a and - - a .  Le t  

R be the J o r d a n  region on S bounded  by g. Get  C be a circle on _R and  let  R,  

be the  subregion  of R ex te r ior  to C. The  region //1 can be mapped  I --  I and 

conformal ly  on an annulus  A in such a m a n n e r  t h a t  the m a p p i n g  can be ex- 

t ended  I - -  I and  conformal ly  over  C and h. Suppose t h a t  the  image  k of h is 

on the  outer  c i rcular  boundary  of A. W e  shall  deform k t h r o u g h  concent r ic  

c i rcular  arcs kt, o =< t =< I, on A into a prescr ibed arc X" 1 on the  inner  c i rcular  

boundary  of A. Such a de fo rma t ion  is readi ly  defined in t e rms  of the  po la r  

coordina tes  of the annulus  so as to have  a regu la r  ana ly t ic  r ep resen ta t ion  in 

t e rms  of t and the  are length  on k. The  an teceden t  ht on R ,  of la on A will 

de fo rm h = ho into a subarc  h, of C. 

D u r i n g  the  de fo rma t ion  ht of  h the  end points  of  ht move.  To remedy  this  

defect  let  ht be carr ied by a l inear  t r a n s f o r m a t i o n  az  + d (unique) into an arc 

Ht jo in ing - - a  to a. No te  t h a t  H o = h o = h ,  and  t h a t  //1 will be on S provided 

the  above arc k, has  been chosen sufficiently short ,  and this we suppose done. 
5 61491112 Acta mathem~tica. 79 
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The  deformat ion  /I t  satisfies the  iemma except  t h a t  H may not  remain on S, 

a l though  i t  begins and  ends on S. We shall accordingly  modify  /art as follows. 

Le t  r(t) be the max imum value of r on Ht. Note  tha t  r(o) and r ( I )  are < I. 

Let  [t] be the set of values of t on which r ( t ) ~  I. Le t  b(t) be a real analyt ic  

func t ion  of  t for  o ~ t = < I  such tha t  

(4.5) o <: b(t) < I 

and so near  I on [t] t ha t  

(4.6) r (t) < 

t ( o )  = = o ,  

I - -  a" b ~ (t) 
- t,  ( t )  

( 0 ~  t ~  I). 

Wi th  b(t) so chosen let  Tt be the t r ans fo rma t ion  from the z-plane of (r, 8) defined 

by the inverse of (4. I) when b = b ( t ) ,  and let  h t be the image TtHt  of He at 

the  t ime t. I t  follows f rom the  choice of b(t) and f rom (4.6) t h a t  r  I on h t, 

so t ha t  h t is on S. Moreover,  h ~  and for  every t the end points of h t a r e a  

and - - a  respectively.  The arc h ~ is the circular  arc //1. 

The  deformat ion  h t, sui tably represented,  satisfies the lemma. The represen- 

ta t ion  of h t is completely de te rmined  by the requ i rement  tha t  z(s, t )represent  the  

point  on h t at the t ime t into which the point  s on h has been deformed.  The  

condi t ion  z~ ~ o is obviously satisfied and the proof  of the  lemma is complete.  

(b) _rn the preceding lemma at most a finite number of arcs h t pass through m~y 

point of  S not on h. 

To verify (b) let  Zo be a point  on S no t  on h. The set of pairs (,~,t) on the  

(s, t) rec tangle  which sat isfy the condi t ion z(s, t ) = Z o  is empty,  or consists of a 

finite number  of pairs, or includes at  least one analy t ic  arc s = s(t). In  the last  

case the fac t  t ha t  z,(s, t) ~ o  insures tha t  the arc s(t) can be cont inued analytical ly,  

in e i ther  sense, and in par t icu lar  in the sense of decreasing t unt i l  a boundary  

point  (s*, to) of the (s, t) re.ctangle is reached.  But  z(s*, to) is then  a point  of h, 

so t ha t  z0 is a point  of h, cont ra ry  to hypothesis.  Hence  (b) holds as stated.  

The  fol lowing lemma is a consequence of Lem m a  4.2 and (b). 

L e m m a  4. 3. Any  two simple, regular, analytic arcs h I and h e which join - - a  

and a on S (a ~ o) can be isotopically deformed into each other on S through simple, 

regular, analytic arcs ~o more than a finite ~umber of which pass through any point 

of  S not on h 1 or h.2. 

The  arc hi, i -= 1,2, can be deformed on S in the m an n e r  s ta ted in L e m m a  

4. I and in (b), into a circular  arc k~ joining ~ a  to a. But  kl can be deformed 

into k~ th rough  a pencil of circles jo ining - - a  to a on S. Lem m a  4-3 follows. 
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w 5. The invariants J~. Before coming to the definition of the invariants  Ji  

a theorem on interior  t ransformat ions  will be recalled. See ref. (I) I I p .  653. Le t  

g be a locally simple, sensed, closed plane curve: w -~ w(t), with w(t + 2 z) ~-- w(t). 

I f  el is a sufficiently small positive constant ,  and o < e < el 

I 
arg [w (t + e) - -  w (t)] (o _--<_ t =< 2 ~) 

27g 

will be well defined, ~ and as t increases from o to 2 ~r, will change by an integer  

p(g) independent  of e < e r  We term p the angular order of g. I f  g does not  pass 

th rough  w--~ o, its ordinary order with respect to w ~ o will be denoted by q(g). 

The theorem which we shall  use is as follows: 

Theorem 5.1.  Let B be a closed Jordan curve in the z-plane with interior G and 

let F(z)  be an interior transformation of some region R which includes G in its 

interior, and which maps t~ into the w-sphere. I f  B is fi'ee from branch point an- 

tecedents and has an image g which does not intersect w ~ o or oo, then 

(5. i) n(o)  + n ( o ~ ) - - ~ =  ~ + q ( ~ ) - - p ( ~ )  

where n (o), n (oo) and ~ are respectively the numbers of zeros, poles, and branch point 

antecedents of F on G counting these points with their multiplicities. 

To come to the definition of the invariants  Ji, let f be an inter ior  trans- 

formation f rom S- - - -{ Iz [<  I} to the w-sphere wi~h the characterist ic set 

(~) = (a0, ~1, 

Let  hi be a simple curve joining a o to 

to be of the same topological type if 

. . . ,  a,~, bl . . . .  , b,)  (m--- -n  + I). 

at on S with i > o. Two curves hi will be said 

they  can be isotopically deformed into each 

other on S wi thout  intersect ing the set (a) other than  in h/s  end points a 0 and ai. 

Le t  h~ denote the image of h~- under  jr. The curve h~ will join f(ao) to f(at) in 

the w-plane and be locally sflnple. I f  h~ is isotopically deformed for o ~ t ~ I 

th rough  curves of the same topological type, h~ will be admissibly deformed in 

the  sense of w 3 th rough  a uniformly locally simple family of arcs joining f(ao) 

to f(ai) and intersect ing f(ao) and f(a~) only as end points. The difference order 

d(h~) is accordingly invar iant  under  such deformations.  

However d(h~) will change in general  with the topological type of hi. I t  is 

possible to define another  funct ion V(h~) of hi which changes with the type of 

hi exactly as does d(h{). To t h a t  end set 

Here  and  e l sewhere  t h e  a r g u m e n t  of a n y  c o n t i n u o u s l y  v a r y i n g  n o n - n u l l  f unc t i on  F wil l  be  
t a k e n  as a b r a n c h  w h i c h  var ies  c o n t i n u o u s l y  w i th  _~: 
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A(~' , f f )  = ( g - -  ao) ( g - -  a l )  . . . ( 2 ' - -  an) 

(5. : )  B ( ~ ,  ,~) = (~ - -  b~) (.~ - -  t . ) . . .  (~ - -  t , )  (~, > o) 

B ( ~ ,  , )  = ~ (~ = o) 

. . . .  - A - ( ~ ] - ~ y  . . . . . .  (i > o).  

The r ight  member of (5.3) has a removable s ingular i ty at  z = a o and at  z = ai. 

We suppose t ha t  Ci(z, a) takes on its l imi t ing  values at  a o and ai so tha t  

(5.4) C} (ao, a) = (a~ --  a~) B (ao, a) 
A' (ao, ,~) 

- -  ao) B (ai, a) 
(5.5) C~ (a,, a) ----- (ai A'  (ai, a) 

(i > o) 

Corresponding to a variat ion of z along hi set 

( s . 6 )  V(hi) = [arg C~(z, a)l z=ai. 
" ~ Z  ~ a o 

Regardless of the arguments  used 

(5.7)' V(hi) ~- ~ [arg Ci(ai, a) --  arg C/(a o, ~)] (mod I). 
2~V 

We shall prove the following theorem: 

Theorem 5.2.  The value of  the difference 

(ft. 7) d(h~) - -  V(hi) (i = i,  . . . ,  n) 

is independent of  hi am'ong simple curves which joi,n a o to ai without intersecting the 

other points  o f  the characteristic set (a). 

The value of the difference (5.7) is clearly independent  of isotopic deforma- 

t ions of hi th rough  curves of the same topological type, since this is true of both  

terms in (5.7). By virtue of Lemma 4. I we can accordingly restr ict  a t ten t ion  

to arcs hi which are admissible in the lemma and in addit ion are regular  and 

analytic.  I f  h ~ and h~ are two such curves we seek to prove tha t  (5.7) has the 

same value for h~" as for h ~ 

In  accordance with Lemma 4.3 there exists an isotopic deformat ion of 

hi into h~ through simple, regular, analytic arcs h~ ( o ~ t ~  I) such tha t  h~ inter- 

sects the set (a)--(a0, ai) for  at  most  a finite set of values t o of t. I t  is only 

as t passes th rough  such a value t o t h a t  
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J 

a. d ai 

Figure 2. 

( s .  s )  - r 

could  poss ib ly  change .  Suppose  t h a t  h~ ~ passes  t h r o u g h  j u s t  one  po in t  z = c o f  

t he  set  (a) - - (a0 ,  at). T he  p r o o f  in the  case  in wh ich  the re  are  severa l  po in t s  z ~ - c  

on  hti o will be seen to  be s imilar .  W e  sha l l  show t h a t  t h e r e  is no  n e t  c h a n g e  in 

(5.8) as t - - t  o c h a n g e s  sign.  

L e t  h', h", a n d  h ~ be respec t ive ly  the  arcs  h~ fo r  wh ich  t :  t o -  e, t o + e a n d  t o. 

F o r  e 1 suf f ic ien t ly  smal l  a nd  o < e < el, t he  curves  h '  and  h"  will  i n t e r sec t  (a) 

in a0 a n d  at only.  W e  suppose  t h a t  e < e~. W i t h o u t  loss o f  g e n e r a l i t y  we can  

suppose  t h a t  h' passes  ~ z ~ - c  to  t he  r i g h t  of  h ~ I f  h" l ikewise  passes  z : c  to  

t he  r i g h t  of  h ~ it  is possible  t o  d e f o r m  h'  i n to  h" w i t h o u t  i n t e r s e c t i n g  z : c. 

(One moves  each  po in t  of  h '  a l o n g  a n o r m a l  ~ to  h ~ u n t i l  h" is met .)  I n  th is  

case (5.7) has  the  s a m e  va lue  on h' as on h".  

Suppose  t h e n  t h a t  h" passes  z : c to  the  lef t  o f  h ~ W i t h o u t  c h a n g i n g  the  

topo log ica l  t y p e  of  h' one can  d e f o r m  the  po in t s  of  h' a long  n o r m a l s  to  h ~ so 

t h a t  h' comes  to  co inc ide  wi th  h o excep t  on a s h o r t  open  arc  k' w h i c h  lies to  

t he  r i g h t  o f  h ~ n e i g h b o r i n g  z : c .  S imi la r ly  one  can  d e f o r m  h" so t h a t  i t  comes  

to  co inc ide  wi th  h o excep t  on  a sho r t  open  a rc  ~" w h i c h  lies to  the  lef t  o f  h ~ 

n e i g h b o r i n g  z :  c. W e  can  also suppose  t h a t  t he  end  po in t s  of  k' and  k" on h o 
coinc ide  in  po in t s  P a n d  Q. See F ig .  2. 

L e t  M a n d  N be po in t s  of  h ~ such  t h a t  the  arc  ( M N )  of  h ~ c o n t a i n s  t he  

a rc  ( P Q )  of  h ~ on its in te r io r .  L e t  fl be a s imple  open  a rc  wh ich  jo ins  M to  ZT 

to  t he  lef t  o f  h "  so n e a r  h "  t h a t  

B " :  fl(MP)k" (Q N) 

1 More definitely, we suppose that h' intersects the normal to h ~ at z =  c to the right of ho. 
2 Provided el is sufficiently ,small. 
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is a Jordan curve with no points of (a) on the closure of its interior. We  refer 

to the subarcs (MP) and (QN) of h ~ The closed curve 

B'--- fl(MP)k' (Q N) 

is then simple and contains no point of (a) other than z = c. Let  B' and B" be 

taken in their positive senses relative to their interiors. Let  G" be the region 

bounded by B', and G" the region bounded by B". We shall apply Theorem 5. I 

~' G-" t o f a s  defined on G ,  and t o f a s  defined on . 

Case I. f o n  G'. Let g'be the image of B ' u n d e r  f. The p o i n t z = c i s t h e  

only zero, pole, or branch point antecedent on G'. The numbers n(o), n(c~)and 

tt refer to z = c. One only of these numbers differs from zero. In accordance 

with Theorem 5. I, 

(5.9) , (o)  + n ( o o ) - - t t - ~  I + q(g')--p(g'). 

Case II. f on G". Let  g" be the image of B '  under f .  There are no zeros, 

poles or branch point antecedents on G" so that  

(5. ,o) o =  I + q(g")--p(g"). 

From (5.9) and (5. Io) one obtains the relation 

(5. ~ )  . ( o )  + , ( ~ ) - ~  = [ p ( g " ) -  q(g")] - [ p ( g ' ) -  q (g')], 

Equation (5.1 I) will give us our basic equality. 

On taking account of the fact that  B '  coincides with B" except along the 

arcs k' and k" respectively, and that h' (as altered) similarly coincides with h" 
(as altered) except along k' and k" respectively, it appears that  the right member 

of (5. I I) has the value 

(5. ~2) d(h ''J) -- d(h 'f) 

in accordance with the definition of the difference order d. 

On the other hand, F'(h')- V(h") reduces to the variation of arg Ct along 

the closed curve k'k", and so equals the number of zeros minus the number of 

poles of Ct within this curve. Thus 
F 

(5. i3) r (h ' )  - -  r (h")  = ~ - -  . ( o )  - -  . ( o o )  

in accordance with the ~tefinition of Ct. From (5. I I) then 



Deformation Classes of Meromorphic Functions. 71 

(S. I4) d(h ''f) --  d(h 'f) = V(h") --  V (h'). 

There is thus no change in (5.7) as t passes through to, and the theorem follows. 

The invariants Ji. As suggested by Theorem 5.2  we set 

(5" I5) Ji(f ,a)----d(h{)--V(hi)  ( i =  i . . . .  , n) 

for  any simple arc hi which joins a o to a~ without intersecting ( a ) -  (ao, a~). The 

numbers J~ are independent of  the ehoice of  hi among admissible arcs hi and of  

restricted deformations o f f  

A necessary condition that two interior transformations with the same 

characteristic set (a) be in the same restricted deformation class is accordingly 

that  their invariants ~ be respectively equal. I t  will be shown in w I2 that  this 

condition is sufficient. 

I f  (fl) is an admissible reordering of (a), then 

d,( f ,  a) # J i ( f ,  fl) 

in general. In  case of ambiguity we shall refer to J i ( f ,  a) as the i th invariant 

Ji with respect to (a). 

The value of V(h~) is independent of f and depends on (a). The values of 

d(h{) obtainable by changing f ,  differ by integers. One can accordingly include 

all values of J i  with respect to (a) in the set 

(5. I6) Jt = g , ( fo ,  a) + m, 

where mi is an integer and f 0  an interior transformation with the characteristic 

set (a). We thus have the theorem, 

Theorem 5.3.  The invariants J~ (f ,  a ) for  a given i belonging to two different 

transformations f with the same characteristic set (~) differ by an integer mi. 

I t  will be seen that  there are functions with the prescribed set (a) for which 

the integers m~ are prescribed. 

We term the sets (J) given by (5. I6) with ms an arbitrary integer the sets (J) 

associated with (a). 

w 6. The existence of  at least one interior transformation f with a prescribed 

characteristic set (a). In this section we shall establish the existence of at least 

one f with the characteristic set (a) by exhibiting the Riemann image of S with 

respect to f .  In the next section we shall show that  except when /~----o and 
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m-----2, f can be composed with suitably chosen semi-restricted homeomorphisms 

of S to obtain composite functions f u  with invariants J i ( f , a )  + r, where ri is 

an arbitrary integer. These models are meromorphic only in special cases. Mero- 

morphic models will be described by formula in w Io. 

The following lemma will be used. 

Lemma 6. 1. There exists a sense-preserving homeomorphism T of S onto itself 

in which the image of an arbitrary point set 

(6. o) z , . . . ,  z~ 

of s distinct points" on S is a prescribed set 

( 6 .  I )  w ,  . . . ,  w ,  

of s distinct points on S. 

Let g be a simple arc which joins two points on the boundary of S but which 

otherwise lies on S and passes through the points (6. o) in the order written. 

Let k be a similar are passing through the points (6. I). The closed domains 

into which g divides S can be carried respectively by sense-preserving homeomor- 

phisms T 1 and T~ into the closed domains into which k divides S and these 

homeomorphisms can then be modified so as t o  transform g into k and in parti- 

cular to carry the respective points z~ into the corresponding points wi. The 

lemma follows. 

Theorem 6.1. There exists at least one interior transformation f of S with a 

prescribed characteristic set (a). 

The set (a) is proposed as an ordered set of r zeros, s poles and # branch 

point antecedents. 

The function f affirmed to exist will be defined by describing the Riemann 

image H of S with respect to f over the w-sphere 2~. As defined H will be the 

homeomorph of S, will cover the point w = o  of ~ r times, the point w = c ~ s  

times, and possess tt simple branch points covering points of ~ distinct from w = o 

and w--~ c~. One starts with an arbitrary open disc-like piece k of ~ which does 

not cover w = o  or w = o o .  One then extends r + s  narrow open tongues from k 

over ~ with tips covering w ---- o r times and w-~oo s times, keeping the extended 

surface free from branch points and simply connected. To the boundary of k-so 

extended one joins /~ two-sheeted branch elements making each junction along a 

short simple boundary arc of the branch element so that . these elements do not  cover 
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w = o  or w-----oo. We can suppose t h a t  the boundary  of the resul t ing  open 

Riemann surface does no t  cover w = o or w----oo. 

The  Riemann surface H so obta ined can be mapped homeomorphica l ly  in a 

sense-preserving fashion onto S and, by vir tue of the preceding  lemma, in such 

a manne r  tha t  the r points of H cover ing w = o, the s points cover ing w-~oo ,  

and t h e  /~ branch  points  of H go respectively into the proposed zeros, poles, 

and branch point  an tecedents  of the given set (a). 

The  proof  of the  theorem is complete.  

The case / ~ = o  m ~ 2. In  all cases except  this one the composi t ion of 

a par t icu lar  t r ans format ion  f possessing a prescribed character is t ic  set, wi th  a 

sui tably chosen homeomorph i sm V of S will yield (cf. w 8) a t r ans format ion  f~/ 

with the  given set (a) and invar iants  J~ differing f rom those of f by a rb i t r a ry  

integers.  

This me thod  of composi t ion fails when ~----o and m-----2. In  this case there  is 

but  one func t ion  C~(z,a), namely C~--= I, so tha t  V(h~) as given by (5.6) reduces 

to o. There  is bu t  one invar ian t  Ji, namely J1, and 

(6.2)  = d (h(). 

The set (a) reduces to (a0, al) and there  are two cases according as al is a zero 

or pole. I n  the case of two zeros ao and an, the  only possible values of J~ are 

(6.3) 3 i I 3 
2 2 2 2 

and in the case of a zero a 0 and a pole a~ 

(6.4) . . . .  2, - - I ,  o, I, 2 , ' . . .  

We  state  the fol lowing theorem:  

Theorem 6.2 .  In  ease t * = o  and m ~ 2 there exists an interior transformation 

f of  S with a prescribed characteristic set (so, al) with dl arbitrarily chosen from 

amon 9 the values (6.3) when al is a zero, and from among the values (6.4) when a 1 

is a pole. 

A proof  of this theorem may be given by cons t ruc t ing  a Riemann surface 

for  the inverse of a funct ion  of the required type. However ,  the theorem is 

also established by the  formulas  of w Io and the more topological  proof  will 

be omitted.  
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w 7. The variation in J i ( f ,  a) caused by variation in (a). Let  f be an interior  

t ransformat ion  of S wi th  the characterist ic set (a). Le t  f t ,  o < t < I, be an ad- 

missible deformat ion of f in which (a t) is the characterist ic set o f f f  at  the t ime t. 

Recall tha t  

(7. o) ,~ (f, a) = d(h 0 --  V (hi), 

by definition. As f is deformed, d(h{) remains invar iant  while V(hi) depends on 

(a) but  no t  on f l  We have the impor tan t  result:  

The algebraic increment 

(7. i) j j i  _~ j , ( f , ,  al) _ j , ( f o ,  ao) 

in th'e invariants Ji in an admissible deformation f f  depends only on the path (a t) 

and not on f 
More explicit formulas for 3:~ and d J i  are needed. To tha t  end set 

(7.2) d(h0 -- ui (rood I), 

and recall t ha t  ui can be taken as ~ when ai is a zero, and o when ai is a pole. 

Let  ei be i or - - I  according as ai is a zero or a pole. Then 

I I 
(7.3) u i - -  - -  arg e , -  (mod I). 

2 ~ r  2 

To make the formula for J~ more definite we shall use a branch ~ X of the 

a rgument  for which 
o ~ a r g X < z ~  

signall ing this  branch by the addit ion of the bar. In  accordance with the de- 

finition of C~ in (5-3) 

C,(a,, ,)  = B (a~, a) A'(~,_~) (a, --  ao) (i # o) 

B (ao, a), 
Ci(ao, a) = A '  (ao, a) (a~ --  a,). 

On referr ing to the formula (5.7)' for V(hi) and making  use of (7. o), (7.2) and 

(7.3), one finds tha t  

(7.4) J~. (f, a )a rg [e ,A ' (a , ,a ) ]  a ~  [A'Lao, a) 1 
= t ] - [B (ao,- )  J + L ( i  - . : - ,  . . . .  , n) 

where Ii  is an integer,  and ei---~ I when ai  is a zero, and - - I  when a,. is a pole. 
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The integers l i ( f ,  a) are invariant under restricted deformations o f f  and are 

uniquely determined by f and (a). They are fundamental in the meromorphic theory. 

From (7.4) and the cont inui ty  of j ( f t ,  a t) one obtains the  fol lowing result:  

Le inma 7.0.  I f  ~ ,  o <= t < i, is an admissible deformation of a transforma- 

tion f with characteristic set (a) and with (a t) the characteristic set o f f  ~, then the 

difference 

J ~  = J~(f ' ,  a') -- j , ( f o ,  ao) (i -= I , .  .., n) (7.5) 
is given by 

(7.6) 

where 

[ ~  t t t t t = l  
Oi(Z) = argla~,a~.]  a r g / a , - -  b~t ] 

J 

k = I , . . . ,  i - - I ,  i +  I , . . . ,  n; j =  I , . . . ,  ~; 

where Z re2resents the path (at); and where the argument in (7.6) is immaterial as 

long as a branch which varies continuously with t is used. 

A path  (at), o _--< t =< I, which leads f rom a set  (fl) back to (/3) will be called 

an a-circuit. W e  shall also use paths  Z in which (a a) is an admissible reordering 

of (a ~ = (#). We term such a pa th  an admissible u.circuit rood ft. As previously,  

admissibil i ty of a pa th  g requires  tha t  a~-----ao ~ 

The difference J J i  in (7.5) will concern us not  so much as the  difference 

6j~ = j~(f~,  fl) _ j , ( fo ,  ~) (i = I , . . . ,  n) 

to compare the J~'s with reference to the same set (fl). because it is necessary 

W h e n  2 is an a-circuit, 

and in this case 6J~ depends only on g and not  on the initial  and final sets (J). 

I f  g is an admissible u-circuit rood fl which is not  an u-circuit, this is never the 

case, as we shall see. 

The group ~ of J-displacement vectors. Let  {d, fl} denote the  set of invar iants  

(J)  realizable as invariants  of an interior  t ransformat ion  with the characteris t ic  

set (#). I t  will present ly be seen tha t  the set {J, #} is identical with the complete 

set of (J) 's  ~>associated,> with (fl) in (5.16). 

W h e n  (at), o _--< t =< I, represents  an a-circuit g leading from (#) to (#), the  

differences J J ~  given by (7.6) are integers  ri. I f  one sets 

Or,. = j f  (fo, $) Tz (J~') = J l  ( f ' ,  ,8) 
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i t  is seen tha t  the a-circuit ~ induces a t ransformat ion  

Tx(J)  = (J) + (r) 

of {J, fl} onto itself, in fact  a translation.  We term (r ) the  J-displacement vector 

induced by 4. The J-displacement vectors induced by a-circuits from (/1) to (•) 

form an additive abelian group ~2. The group ~2 is a subgroup of the addit ive 

group G of all integral  vectors (r); ~ may coincide with G, be a proper subgroup 

of G and even reduce to the null element. 

We shall seek a set of generators  of ~. 

To tha t  end let zp and zq be any two dist inct  points of (fl). An a-circuit 

G(%, Zq) leading f rom (fl) to (fl) will be defined in which M1 points of (fl) except the 
t _ _  Z t t (o < t < I) are such tha t  Zp q pair (z~,, zq) remain fixed while the paths z t, Zq = = 

rotates  through an angle - - 2 z .  We suppose, moreover, tha t  these paths lie on 

a topological disc on S which does not  intersect  the set (t?)--(z~,zq). Such paths  

clearly exist. The disc can then  be isotopically deformed on itself, into a disc 

arbitrari ly close to a point.  I f  this a-circuit is used in (7.6), the only terms which 

will make a non-null contr ibut ion are those which involve z t - -z~ or z ~ -  4" 

The ease tt > o. In  this  case we introduce the a-circuit 

Z~ = a(a~,b,) (k = ~ , . . . ,  n) 

and obtain the following lemma. 

L e m m a  7.1.  When ~ > o, there exist a-circuits s k =  I , . . . ,  n, for which the 

components of  the corresponding J-displacement vectors are d~, 1 i = I . . . .  , n. These 

vectors ge~erate ~ as the complete group G of integral vectors (r). 

The case [~ ~ o and m > 2. In  this case the a-circuits 

Zrs = G (at, a,) (r < s) 

are introduced.  The following lemma results. 

Lemma 7.2.  When / ~ = o  and m > 2  there exist a-circuits ; ~ ( r , s = o ,  I , . . . ,  n; 

r < s), for which the corresponding J-displacement vector D~.s has the components 

( 7 . 7 )  - - ( i  = . . . ,  n )  

when r s  ~ o, and when r =  o has all components ~r except the s-th, which is zero. 

The vectors D,~ generate the group ~.  When m is odd, ~2 is the group G of  all 

integral vectors (r). When m -~ 4, 6, 8, . . . ,  s is the subgroup of  G of  vectors (r) for  

which Xr~ is even. 

i The Kronecker delta gives the i-th component. 
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The  components  of Dr~ are obvious f rom (7.6). 

W h e n  m is odd, the  mat r ix  whose columns are the components  of the vectors  

(7.8) D1,., D2s,.  . . D n - t  n Do1 (m --~- n + I) 

has the  de t e rminan t  w = - - I .  F o r  example, when m = 5: 

- - I  0 

- - - I  - - I  0 

0 - - I  - - I  

0 0 - - I  

(7.9) r = 
O0111 = O0 I - - I  - - I  0 

0 ~ I  - - I  

0 0 - - I  

= - - I ,  

W h e n  m is odd, the vectors accordingly  genera te  G and hence $2. 

To  t rea t  the case m = 4, 6, 8 , . . . ,  let  us t e rm a vector  (r) for  which ~r~ is 

even, of even category,  o therwise  of odd category.  W h e n  m is even, each vector 

Dr8 is of even category,  and hence the  vectors genera ted  by the vectors  D~s are 

of even category.  

The vectors  D~s genera te  the group $2. 

To see this let  )~ be an a rb i t ra ry  admissible a-circuit.  The  vector  a t~_ ast 
(r < s) ro ta tes  t h rough  2 z an in tegra l  number  m~ of t imes (possibly zero) as t 

increases f rom o to I. I t  follows f rom (7.6) t h a t  the J -d isplacement  vector  induced 

by ~ has the fo rm 
- - ~ m r s D r s  

where the summat ion  extends over the pairs (r,s) with r <  s. Thus  the  vectors 

Drs genera te  $2. 

I t  remains  to show tha t  every vector  (r) of even ca tegory is in $2. To tha t  

end we in t roduce a vector  E whose components  are ~ .  The ma t r ix  whose columns 

are the  components  of the vectors 

(7" IO) /)1~, -D~s,..., D n - l n ,  E 

is of odd order  n and has a de te rminan t  I so tha t  the vectors (7. IO) genera te  G. 

Thus  (r) is of the fo rm 

(7. I I) (r) : s E  + D 

where s is an in teger  and D is in ~. Observe tha t  

D,~ - -  D~a + D~4 - -  q- . . . .  D n - l n  -F Din  = - -  2 E  

so t ha t  s in (7. I I )  can be taken  as I or o. The vector  D is of even category,  
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and if (r) is of even category,  s in (7. I I) cannot  be I. Thus  (r) is in ~,  if of 

even category.  This completes the proof  when m ~ 2, 4, 6, 8 . . . . .  

The case ~-~o ,  m : 2 .  In this case there  is but  one value of i in (7.6), 

and J J l : O .  Hence  ~ reduces to the vector  ( r ) ~  o. 

w 8. The generation of interior transformatio~2s by composition f v  with restricted 

homeomorphisms 7. We have seen in w 6 tha t  there  is at  least one interior  trans- 

format ion  f with a prescribed character is t ic  set  (fl)- W e  shall see to what  ex ten t  

one can choose restr icted homeomorphisms V of S onto itself so tha t  f 7  has 

invariants  (J)  arbi t rar i ly  prescribed from those associated with (fl). 

To that  end we first connect  restr icted home0morphisms 7 leaving (~) fixed 

with a-circuits f rom (fl) to (fl). 

Any sense-preserving homeomorphism 7 of S may be genera ted  as the  ter- 

minal  homeomorphism of an isotopic deformat ion  ~t of S f rom the identi ty.  

More explicitly there  exists a I -parameter  family 7] t of homeomorphisms  S onto 

S of the  form 

(s. 7 ' =  t) (o _-< =< 

where 9~ is cont inuous  in z and t, 

-= e o) 
and 

Let  (a s) be the antecedent  of (8) under  7 t. I f  7 is a res t r ic ted homeomorphism 

leaving (~} fixed, (a t) determines an a-circuit J~ f rom (~) to (fl). W e  shall say tha t  

V induces this a-circuit. I f  f is an interior  t ransformat ion  with the character is t ic  

set (t?}, the composi te  funct ion of z, f 7  t, affords a terminally restr icted deforma- 

t ion f~ of f in which the characterist ic  set of f t  at  the  t ime t is (at). 

Formula  (7.6) is applicable to the f -deformat ion f t - - - fT t  with its associated 

~-circuit (ctt), o ~ t ~ I, and yields the result  

(8.2) Js(f7, f l ) - -J i ( f ,  f l)=ri ( i :  1 , 2 , . . . ,  n) 

where (r) is the J -d i sp lacement  vector  de termined by (at). This displacement  vector  

is independent  of the choice of a-circuits A induced by 7 since for  the same 

f ,  (if), and ~ in (8.2), a second choice of a 2 induced by 7 cannot  change (r). 

The vector  (r) is a J -displacement  vector  D~(~7) determined by ~7 in the  group ~2. 

I f  D.2(Z) is the vector in ~ determined by the a-circuit ~, then 

D~ (7) = D~ (;~) 
whenever  ). is induced by 7. 
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I t  can be shown tha t  any a-circuit (at), o ~ t ~ I, from (fl) to (fl) is induced 

by some restr icted homeomorphism of S leaving (~) fixed; to establish this one 

must  show t h a t  there exists an isotopic deformat ion vt of S from the ident i ty  

in which (a t) is the antecedent  of (~) at  the time t and in which ~ is a r e s t r i c t e d  

homeomorphism leaving (fl) fixed. The details of a proof of this  need not  be 

given. I t  is sufficient to suggest  to the reader  tha t  V~ can be defined by a 

sequence of deformations in each of which jus t  one point of (a t ) is moved from 

an init ial  point  z o to a nearby point  z~. One can make use of a deformat ion J 

from the  ident i ty  of a small circular neighborhood _AT of Zo, defining the deforma- 

t ion J as the ident i ty  outside of N. 

We summarize as follows: 

L e m m a  8.1.  Each restricted homeomorphism B of S leaving ([~) fixed induces 

a class of a-circuits ~ leading from (fl) to (fl), and every a-circuit leading from (fl) 

to (fl) is induced by a class of  restricted homeornorphi8ms ~ leaving (fl) fixed. I f  B 

induces ~ and (r) is the J-displacement vector determined in (7.6) by ~, then (8.2) 

holds for every interior transformation with (fl) as a characteristic set. The vector 

(r) depends only on ,~ and not on the choice of an a-circuit ~ induced by 7. 

The reciprocal relat ions between restr icted homeomorphisms B and their  induced 

a-circuits and the theorems on the na ture  of the group ~Q of J-displacement  vectors 

i n d u c e d  by a-circuits yield the  following theorem: 

T h e o r e m  8. 1. I f  f o  is an interior transformatio~ of S with the charactel"istic 

set (fl) and invariants (jo), suitably chosen restricted homeomorphisms B of S leaving 

(fl) fixed will yield interior tran.~formations fo  B with invariants (jo) + (r) where 

(I) (t-) is an arbitrary integral vector when t~ > o ,  or when t*-~o and m is odd, 

(2) (1") is an arbitrary integral vector of even category when I~ = o and 
m - ~ 4 , 6 ,  8 , . . . ,  

(3) (r)----(o) only, when t*-~ o and m = 2. 

No other values of (J) can be obtained by composition fo~  of fO with restricted 

homeomorphisms ~. 

w 9. a-circuits rood (fl) and semi-restricted homeomorphisms ~ B of S. We resume 

the theory of admissible a-circuits mod (fi) ini t ia ted in w 7. As in w 7 we a r e  

concerned with an admissible deformat ion )it, o ~ t_--_ < I, for  which (a t) is the 

characterist ic set of f t  at  the t ime t. We suppose t ha t  (a ~) is an admissible re- 

ordering of (a~ In  part icular  a~o-----a ~ 

The present section could be omitted by a reader who wishes to comprehend first the main theory. 
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Such a reorder ing defines a permuta t ion  ~r of ( x , . . . ,  n) in which i is replaced 

by ~(i) and 

, o (i  I ,  n) .  (9" I) a~ = a~ (i) ~- . - . ,  

For  any inter ior  t ransformat ion  f w i th  character is t ic  set (a~ 

( 9 . 2 )  J,(A , ' )  = J , ( , ) ( f ,  ~o) (r = ~, . . . ,  ,) 

in accordance with the definition of  (J). I f  (xx , . . . ,  x,) is an arbi t rary  set of n 

symbols, we shall write 
(x~(1) . . . .  , x , ( , ) )  = ~ ( x ) .  

Thus (9.2) takes the form 

[J(f,  a~)] = z [ J ( f ,  a~ 

I t  follows f rom (7.6) tha t  

(9.3)  j , (f , ,  a a) ___ j . ( f 0 ,  a0) + O,(~) [Z -~ (at)]. 

From (9.2) and (9.3) one sees tha t  

(9.4) j,(,) (f~, fl) : j ,  (fo, fl) + 0,(~) (fl) -~ (a~ 

Equat ions  (9-4) may be wri t ten in the  vector forms 

(9.5) ~r [ J ( f ' ,  fl)] = [ j ( f 0 ,  fl)] + [0]. 

(9.6) [ j  (f~, fl)] ___ z~-i { j ( f 0 ,  fl) + [0]}. 

W e  thus have the fol lowing lemma: 

Lemmn. 9 .1 ,  Any admissible a-drcuit rood (fl) of the form ~ ----- {(at), o ~ t _--< I } 

in which 

induces a transformation 

(9.7) 

a l ~  . �9 .~ . ,  , 

T~.(J) ----- zr -~ {(J) + (0(Z))} 

of {J, 8} such that for any admis.n'ble dejbrrnation f t  of an interior transformation 

in which (a t) is the characteristic set o f f  t the invaria.nts (j1) o f f 1  with respect to 

(#) are the transforms T~(J ~ of the im'a,'iants (jo) of fo  with respect to (8). 

The t ransformat ion  Tz of {J, 8} is compounded of a t ranslat ion (J) + (0) and a 

permuta t ion  ~-1 of the components  of the t ranslated vector. I t  is a t ranslat ion 

if and only if Jr is the identi ty.  I f  ~ is not  the identi ty,  the numbers  0;(Z) are 

not  integers in general, so tha t  ( J ) +  (0) is not  in {J, fl} in general.  
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I t  follows f rom (9.4) t ha t  

(9. S) ~ [ j , ( f , ,  fl) _ j , ( f o  ~)] = Z~9, = q(;~), 

in t roducing q. Here q is an odd or even integer  depending only on ).. The trans- 

format ion  Ta is termed of odd or even category according as q is odd or even. 

W h e n  g ----- o and  m ~ 4, 6, 8, . . . ,  al l  t rans la t ions  of {J, fl} induced by a-circuits 

have been seen to be of even category. Transformat ions  of odd category are 

sought  in this  case. We  shall prove the fol lowing lemma: 

L e m m a  9.2.  When i~ ~ o and m is even, a ~ecessary and s~ficient condition 

that an admissible a-circuit ~ rood (fl) induce a tra.~.~formation U~. of  {J, fl} of  odd 

category is that (a I) be an admissible odd permutation, of  (a~ 

To prove the lemma we evaluate q(2) in (9. 8). W h e n  /~----o, a summat ion  

of the r igh t  members of (7-6) yields tile result  

(9.9) q ()~) = (a~ -- aJ) (n --  I) arg 1-[ (at~ -- a~) 
2 ~ 

: , 3  L" t ~ O  

where i , j , k =  1 , 2 , . . . , n  with i < j .  Since ao ~ = a  ~ and n - -  I is even, the con- 

t r ibut ion of the last  term in (9. 9) is an even integer.  Observe tha t  

(9- ,o) I I (a~ --  oj) = ' +  [ [  (a~ --  ~;) 
~,j i,j 

according as (a 1) is an even or odd permutat ion  of (a ~ so t ha t  q()~) is corres- 

pondingly odd or even. This completes the proof of the lemma. 

I t  is a consequence of this  lemma that ,  when / ~ o  and m ~ 4 , 6 , 8  . . . .  , 

there exists a: t r ans fo rmat ion  U~. of {J, fl} of odd category. For  two at  least of 

the  points a~, a.~, a~, are of lik~ type (zeros or poles) and there accordingly exists 

an admissible a-circuit rood (~) which interchanges  these two points but  which 

otherwise leaves (fl) fixed. 

The fol lowing lemma can now be proved: 

L e m m a  9. 8. Let  j o  be an arbitrary "set i.n {J, fl} a~d let (r) be a~ arbitrary 

set of  n integers. When ~ ~ o a ,d  m - - 4 ,  6, 8. : . . ,  there exists a transformation 

T~ of  {J, ~} induced by an admissible a-circuit ~ rood (fl) such that the relation 

(9. II)  T).(J) ~ - (J )  + (r) 

holds for  ( J ) -~  (jo) a~d the given set (r). 
6 --  6 1 4 9 1 1 1 2  Acta mathematica. 7 9  
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The  l e m m a  is a consequence of L e m m a  7-2 when (r) is of even category.  

There  then  exists  a T such t ha t  (9. I I )  holds for  every (J) in {or, fl}. 

Suppose then  t ha t  (r) is of odd category.  I t  follows f rom the p reced ing  

l e m m a  tha t ,  when  /~ : o and  m ~ 4, 6, 8, . . . ,  t he re  exists a t r a n s f o r m a t i o n  U of 

{J, fi} of  odd ca tegory  induced  by an admissible  a-circuit  rood (fl) which replaces  

(fi) by an admissible  r eo rder ing  (fl'). Set  

(9. i2) U (jO) _ (jo) _~ (s). 

The  set  (s) is of odd ca tegory  and  hence  ( r ) - - ( s )  is of even category.  I n  ac- 

cordance  with  L e m m a  7.2 the re  exists a t r ans la t ion  V of {,7, fl'} of even ca tegory  

induced by an a-circui t  f rom (fl') to (fl') such t h a t  

v [ y  ~ + (8)] = [ j 0  + + ( , . )_  (8). 

On m a k i n g  use of (9-I2)  it  is seen t ha t  

V U ( J  ~ -= (jo) + (r). 

Hence  the  t r a n s f o r m a t i o n  T = V U satisfies the  lemma.  

The case /~ = o, m = 2. In  this  case there  is but  one inva r i an t  J ,  and  this  

i n v a r i a n t  has  the  f o r m  
J ( f ,  a) ~ J,(,]: do, al) : d(h~ r) 

where h l is a s imple curve jo in ing  a o to a 1 on S. The te rm V ( h l ) =  o since 

Cl(z)-~ I in this  case. W h e u  a0 is a zero and a~ is a pole, we a d m i t  no re la t ive  

a-circuits  which in te rchange  a 0 and a 1. 

W h e n  bo th  ao and al are zeros, we shall  admi t  re la t ive  a-circuits  which inter-  

change  ao and  a~. W h e n  m---- 2 and  ix = o, the  r igh t  m e m b e r  of (7.6) is devoid 

of t e rms  so t h a t  

(9" I 3) r ( f l ,  a l  ' 80) : J ,  (f0, a0, a,) 

if (a t) in te rchanges  a 1 and a0 dur ing  the  de fo rma t ion  f t .  

A simple but  s t r ik ing  i l lus t ra t ion may  be given. Le t  f be an  inter ior  t rans-  

fo rma t ion  of S wi th  #----o,  m ~ 2 ,  and  wi th  zeros at  real  points  a and - - a .  

(o < a < I). Le t  F(z )  - ~ f ( - -  z). There  exists no admissible  de fo rma t ion  of f into 

T '  which re turns  each  zero into its ini t ial  posit ion.  This  is a consequence of the  

fac t  t h a t  

(9, I3)'  J , ( F ,  a0, a , ) - -  - -  J i ( f ;  ao, al) # o 

while the  existence of the d e f o r m a t i o n  would require tha t  

con t ra ry  to (9. I3)'. 
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Let  kl be h 1 reversed in sense. Then in accordance with the definition of J l  

(9.14) J~ (f, a0, a~) = d (h.~) = -- d (~{) :-= - -  J~ (j; al, ao). 

I t  follows f rom (9. I3) and (9. '4) tha t  when (a t) in terchanges the zeros in a de- 

format ion f f  

(9. I5) J l ( f  1, ao, a,) -~ -- J1 (fo, a0, an). 

We summarize in the lemma:  

Lemma 9 .4 .  When ~----o and m - ~  2, admissible deformations f t  with charac- 

teristic sets (at), O ~ t ~ I, may interchange two zeros a o and a 1 but must return a 

zero ato and pole a t to their init ial  positions. In  any case 

(9. I6) Ji  ( f ' ,  ao, al) : +- 4 ( f  ~ ao, ax) 

where the minus sign prevails i f  and only i f  (a t) intereha~ges two zeros. 

Contras t  this resul t  with the  fact  that ,  when f is an even admissible funct ion 

with jus t  two zeros on S and no poles, f can be restr ictedly deformed into f ( - -  z); 

in fac t  by the identity.  The reason is found  in the fac t  t ha t  an even funct ion 

has a branch point  anteceden~ at the origin so tha t  f~ > o. 

Semi-restricted homeomorphisms ~7. The developments  of w 8 showing the reci- 

procal relat ionship between a-circuits, (a t) and restr icted homeomorphisms ~7 which 

induce them is paralleled here by the re la t ionship between admissible a-circuits ). 

rood fl and semi-restricted homeomorphisms ~7 which admissibly reorder ({~). Let  

~t be an isotopic deformat ion  of S generat ing ~7 and let (a t) be the antecedent  

of (t3) under  ~7 t. We  say tha t  ~7 induces the relat ive a-circuit Z ~ {(at) o ~ t--_< ,}. 

The f d e f o r m a t i o n  .ft. _~_f~t has the character is t ic  set  (a t) and with 2 comes under  

Lemma 9. I, so tha t  for  the t ransformat ion  T~. of {J, fl} given by (9.7) and in- 

duced by )L 

(9. '7) [J(f~7, (fl)] = I';, [ J ( f ,  fl)]. 

As in w 8 we infer tha t  each such relative a-circuit Z is >>induced>> by sonie semi- 

restr icted homeomorphism r 1. Hence  if Z is an arbi t rary admissible a-circuit rood C?, 

there  exists a semi-restricted homeomorphism ~] admissibly reorder ing (fl)such 

tha t  (9. '7) holds for  every f with the characteris t ic  set (fl). 

The results of the  present  section on t ransformat ions  .7'~. of {J, #} induced 

by relative a-circuits Z toge ther  with the results of the preceding section on 

t ransla t ions  in the group .Q lead to the following' theorem: 
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Theorem 9. 1. Let  f be an interior transformation of  S with the characteristic 

set (fl) and let (r) be an arbitrary set o f  n in tegers . .Except  in the case in which 

ft = o and m - ~  2 there exists a semi-restricted homeomorphism ~ o f  S, admissibly 

reordering (~) but leaving ao fixed, such that 

(9. J , ( f ,  8) + r ,  (i = . . . . .  n). 

IV'hen iz----o, m - ~  2, and ~l is au arbitrary homeomorphism leaving ao and a~ 

fixed, or i.nterchanging ao and al in case a o and at are zeros, then 

J1 ( f  Y, ao, al) ----- +- J, ( f ,  ao, al) 

where the minus sign holds i f  and only i f  V interchanges ao and al. 

I t  is of in teres t  to add t h a t  when V in (9. I8) is restr ic ted,  and (r) is fixed, 

(9-i8) holds for  all t r ans format ions  f with the character is t ic  set (~) if  i t  holds 

for  one such f .  This  is no~ the case in general  if ~ is no t  restr ic ted.  

Part  II. M e r o m o r p h i c  F u n c t i o n s .  

w Io. I. The residual function 9~(z) and the canonical functions F (z, a, r). 

Suppose t h a t  f is meromorph ic  on S and possesses the character is t ic  1 set (a). 

The  func t ion  ~0(z) defined by the  equat ion 

f '  (z) B (z, a) 

is analyt ic  on S except  fo r  removable  singulari t ies,  and never  zero. W e  te rm 

~0(z) the residual funct ion of f .  

The  algebraic  incre lhent  of arg  T along any simple regular  arc h~. jo in ing a 0 

to ai on 8 equals 27 r J i ( f ,g ) ,  as we shall see. To establish this  fac t  a lemma 

is needed.  

Let h~ be re fe r red  to its arc length  s measured f rom z ~ ao. Suppose t h a t  

the  to ta l  l eng th  of ht is a. Le t  e be a cons tan t  wi th  o < e < a. Suppose t h a t  

z(s) and zl(s) are func t ions  of s of which z(s) represents  the poin t  s on hi and 

zz(s ) the  poin t  s + d s  on hi, where  ~ s - ~  e. The  paramete r  s shall vary on the 

interval 

( m .  2) o =< s =< - e. 

In the preceding we have supposed that m ~ I. The results of the present section hold for 

m ~ I and with obvious interpretations for m----o. 
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Wi th  z(s) and z l(s) so determined, set 

0 0 . 3 )  d ~  = < ( . ~ ) -  ~(s). 

We shall consider the increment of angle given by 

[ HZ ] ,=o-c  

(xo. 4) U(hi, e ) =  [arg  (z,(s) - -  aH-(z(s) - -  a[)J,= 0 " 

Lemma I0. I. The value of  U(he, e) is zero. 

Reference to the definition (3.12) of the difference order shows that 

2 ~ d (he) ---- V (h,, e) 

regardless of the choice of e < a. On letting e tend to a it appears that  

t r  (he, e) = o. 

The following theorem is one of the bridges between the theory of interior 

transformations and meromorphic functions. 

Theorem 10. 1. The algebraic increment E (hi) of  the argument of  the residual 

function ~ o f f  as z traverses a simple, regular are h~ leading from ao to a~ on S 

equals 2 z ~ ( f ,  a). 

The value of E(hi) is independent of the choice of hi among regular 'arcs 

leading from a 0 to a2' since T # o on 8. Hence no generality will be lost if 

h~ does not intersect the set (a)--(a0, ai). We suppose hi so chosen. 

We make use of the terminology preceding Lemma Io. I. Set 

J f - =  f [z, (s')] --  f [z (s)] 
Recall that  

f '  A 

I t  is clear that  aN(hi) is the limit as e tends to o of 

z/.f B ]  8="-* 
arg Jzz - -  a r g f - -  a r g o ] , =  ~ 

where z----z(s) in f, B and A.* Recall that  

B Ct (z, a) 

2 = (~ - a0)(~ - a,)" 

I t  thus appears that  E(he) is equally the limit of 

( io .  S) 

( o - < ~ - - -  o - , ) .  

[arg J f - -  a r g f - -  arg C ~ -  U(h,, e)]~-o -e . 

B 
i Strictly a r g f  and a r g ~  arc not defined for s = o, but l imit ing values exist. The appropriate 

conventions are understood. 
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But  U(h~, e ) =  o according to Lemma IO. I, and 

I 
~ o  

V(hi) = ~I arg Ci . 
2 7 g  * = 0  

In  the terminology of (3.3), i t  follows tha t  

.E(h,) = 2 g {P(h~) -- Qo(h{) --  V(h,)}. 

By virtue of Lemma 3.6, 

d(h~) ~- P ( h ~ ) -  Qo(h~) 
so t ha t  

E(hi) = 2 ~ [d(h{) --  V(h~)] ---- 2 zJ~(z, a). 

This  completes the proof of the  theorem. 

On mul t ip lying the members of (IO. I) by z ~ a j  and le t t ing z tend to aj as 

a limit, one finds t ha t  

A'(.,.) 
(Io. 6) 9 ( a j ) = e i B ( a j ,  a) ( j = o ,  I, . . . ,  n) 

where ej = I if aj is a zero and - - I  if aj is a pole. 

The following lemma is basic. 

L e m m a  10.9.. Corresponding to an arbitrary admissible characteristic set (a) 

and t9 a function ~V(z) which is non-null and analytic on S and satisfies (IO. 6) in 

terms of  (a), there exists a funct ion F(z)  which is meromo~Thic on S, possesses the 

characteristic set (a), and for  which the residual function is ~p(z). 

Such a funct ion F is obtained as an integral  of (IO. I) in the form 

f ~ R a ~  
(io. 7) F = CeJ .l (C = const  # o) 

upon removing singularit ies at  the proposed zeros and poles of (a), and any 

funct ion F with the residual funct ion ~ and characterist ic set (a) is of this form. 

Because g)(z) satisfies (io. 6) the  residue of ~ at a~" is e~., so tha t  aj is a zero 

or pole of T' as required. Moreover 

F '  B 

and since ~ 0 # o ,  F ' =  o only at the zeros of B. Thus F possesses the charac- 

teristic set (a) and has the residual  funct ion ~V(z). 
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I t  will simplify the no ta t ion  if one sets 

A'(aj,  a) _ gJ (a) (j = o , . . . ,  n) (Io. S) ej B (aj, a) 

where e j = l  if  aj is a zero and - - I  if aj is a pole. The gfs are funct ions of(a)  

which one can suppose given before one has knowledge of the existence of a 

funct ion f f rom which they  are derived. In  tak ing  arguments  of these gj's we 

have ref.erred to a choice of the a rgumen t  for which 

(I o. 9) o --<_ arg X < 2 z 

signall ing this  choice by adding the bar. Similarly we shall write 

(IO. IO) l o g X = l o g I X l + V - - I a r g X .  

W i t h  this terminology we wri te  (7.4) in  the basic f o r m  

(Io.  11) J ~ ( f , a )  = arg g,(a) arg go(a) + I i ( . f ,a)  

recalling that I t  is an integer. Given (a), (I)  uniquely  de termi ,  es (J)  and conversely. 

The fundamenta l  existence theorem for meromorphic funct ions  follows. 

T h e o r e m  10. 2. Corresponding to any admissible characterist ic set (a) and ar- 

b i trary  set (r) o f  n integers there exists a func t ion  F (z, a, r) which  is meromo~Thic 

in  z on S, whose characterist ic set is (a) and whose invar ian ts  [ I ( F ,  a)] = (r). 

In  terms of the  given integers (r) with r o--- o adjoined, set 

(IO. I2) Cj(a, r) = l o g  g,(a) + 2 z r j  ] / ~ I I  ( j  -~ 0 , . . . ,  n). 

The Lagrange  in terpola t ion formula  suffices to yield a p o l y n o m i a l  1 P ( z )  such tha t  

P(aj)  ---- ej ( j  = o , . . . ,  n). 

For  fixed (a) and (r) we shall  show tha t  the funct ion ~ 

(IO. I3) 'l])(Z) = e P(z) 

is admissible as a residual  funct ion and yields a solution /~ of our problem. 

In  fact,  

A'(ai, a) ( j  = o , t , . . . ,  n) ap(aj) -~ eP(aj ) --~ eej = gj --~ eJ B (aj, a) 

i More explicitly we could write 

P =  P(z, ~, r) = ~o (z, a, r). 
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so that  conditions (,o. 6) on a residual function are satisfied. To apply Lemma 

IO. 2 we note also that  ~p(z) is non-vanishing and analytic on S. :Hence ~p is the 

residual function of a function F with the given characteristic set (a). 

I t  remains to prove that  L ( F ,  a)-----ri. Since ~p# o on S there exists a single- 

valued continuous branch of arg ~p over S, and for any such continuous branch 

(m.  '4) 2 ~ di(F, a) = arg ~p(ai) - -  arg ~P(ao) 

in accordance with Theorem IO. I. For the moment let X denote the cSefficient 

of V - ,  in X. Then /3(z) is a continuous branch of arg ~p by virtue, of (IO. 13). 

On setting arg~p = ib(z) in (Io. '4) we find that  

2 , J , ( F ,  ,~) = P ( ~ , )  - i ' ( ~ o )  = & - ~o. 

From the definition of c~ it then follows that  

Reference to (IO. I I) shows that  

I~ ( I , ,  . )  - r i  

arg go 
2 ~  

( i  ---~ I ,  . . . ,  $~). 

Thus the characteristic set of F is (a), and its invariants (1) with respect to 

(a) equal (r). This completes the proof of the theorem. 

The preceding polynomials P will be taken in the explicit Lagrangian form 

(,o. IS) 

where 

Co fin ] 
P ( z ,  c) = A ( z - -  ao) Ao  + + (z - -  a , )  A,~ 

A = (~ - -  ~o)(~  - -  " , ) .  �9 �9 (~ - -  ~ , )  

and A~ is the value of A' when z----aj. Wi th  ~ given by (IO. 13) we shal l refer  

to the canonical function,s 

(,o. ,6) ~ (~, ~, ~.)= cef ~" -  

and will determine C by the condition that 

In (IO. I6) 

A = A (z, c~) 

~ ( ~ o ,  ~, ,-) = i. 

B----- B(z,c~) ~---~V(z~a,r) .  
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w II. The monogenic continuation with respect to (a) of the fu~ctions F(z ,a ,  r). 

Start ing with a particular value (~) of (~), a point z and set (r), one can continue 

F(z, a, r) as a function of (a), into a monogenie function M(z,a) of (a). As we 

shall see, M(z,a) may be single-valued in (a), as happens in the c a s e / ~ o ,  m ~ 2 ,  

or it may be infinitely multiple.valued. The branches of M(z, a) form a subset 

of the functions F(z, a, r) including the extreme possibilities that  this subset 

consists of all of the functions F(z,  a, r) or jus t  one. For different sets (r) no 

two functions F(z, a, r) are identical in z; identity of the functions would imply 

identity of their invariants (J) and through (:o. : I), identity of their invariants 

(x) = (r). 

The mechanism of the continuation is best understood by noting that M(z, a) 
is a function of (a) defined by (io. 16) through the mediation of the c#'s. The efs 

enter through the polynomial P(z,c) of (:o. I5). Finally, the c#'s are given as 

functions 

( I I .  I)  Cj (a, r) = l o ~  gj  -q- 2 ~ i ,~ (r 0 ----- o). 

For each set of integers ( r )=(r~ . . . .  , r~), (II.  I) defines [c(a,r)] as an analytic 

vector function, more precisely as a branch of an infinitely multiple-valued func- 

tion of (a). I t  is not implied that  all elements It(a, r)] are branches of the same 

monogenic function of (a). As (a) varies continuously through a point (fl) the 

functions cj(a,r) may suffer jumps of the form 

(I I. 2) J Cj = 2 7~iffj ( j  ~ -  O, . . . ,  , )  

where aj ~ _  I. We need the following lemma. 

Lemma 11.1.  A .jump of the e~(a,r)'s in which all cjs change by 2z~i or by 
- 2 z ~ i  corresponds to ~o ~4ngularity in the right member of (IO. I6). 

Corresponding to any change in the cfs in which J c j  is a constant k in- 

dependent of j set c~=cj  § k. Then 

P ( z ,  c) + = P (z ,  c'). 

When in particular k----_+ 2 z i  the new residual function is 

c') = e P / : , c / -  =  0(z, c) 

so that  there is no change in the right member of (IO. I6). 

Any continuation of an element [c(a,r)] by itself alone or through other 

elements [e(a,s)] in which the only singularities are a finite number of jumps of 
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the  type in Lemma I I. i will be termed effectively analytic; such a cont inuat ion 

causes no s ingular i ty  in the r ight  member  of (lO. 16). The set of elements [c(a,r)] 
defined by (I 1.1) will not  in general  include all of the  analyt ic  cont inuat ions 

wi th  respect to (a) of a given element  [c(a,s)], because we have taken r o = o. 

However,  the set of elements [c(a, r)] does permit  ))effective* analyt ic  cont inuat ion 

of any given element  [c(a,s)]. A continuous var iat ion of (a) in which the  func- 

t ions cj(ct, s) suffer jumps (i1.2) at  a point  (fl) will correspond to no s ingular i ty  

in a cont inuat ion  of M(z,a) in which one changes at  (f l)from [c(a,s)] to [c(a,r)] 

with 
r,: = si -- a, + a o (i ----~ I ,  . . . ,  n )  

in (IO. 12). 
The fol lowing theorem is a consequence of this  result. 

T h e o r e m  11.1.  AnY one of the monogenic functions of (a) obtained by analytic 
a-continuation of a particular element F(z, a, s) is composed of si~gle-valued branches 
forming a subset of the canonical functions F(z ,  et, r). 

There remains the problem of de termining  how the funct ions  F(z,a,r)  
combine to make up the monogenic funct ions M(z,a) of (a). A necessary and  

sufficient condi t ion t h a t  F(z,a,r) be cont inuable  with respect to (a) in to  F(z, a, s) 
is t ha t  there exist an ac i r cu i t  2--{(at),  o ~ t ~  I,} from (fl) to (fl) and a func- 

t ion M(z,a) monogenic in (a) such tha t  the family of funct ions 

(1 I. 3) f t  _ -  M (z, a s) 

obtained by analytic a-continuat ion from the branch 

fi/= r) 
t e rmina te  with the branch 

M (z, t) = F(z ,  t ,  s). 

This is possible if and only if there exists an a-circuit ~ from (fl) to (/~) for which 

the induced J-displacement  vector in ~ is 

(II .  4) , f f J =  J c I =  (8) --  (r). 

The necessity of this condition is obvious since f t  is merely a special case of 

the more general  restr icted f d e f o r m a t i o n s  considered in w 7. The existence of 

such an a-circuit ~ = (a t) is also sufficient. For  one can continue ]~(z, a , r ) a l o n g  

the path (a t) th rough  the family (11. 3). Relat ion (I I. 4) will then  hold so t h a t  the  

invariants  (I), with respect to (fl), of the terminal  canonical  funct ion must  be (s). 
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The lemmas of w 7 on the group ~ accordingly yield the following theorem. 

Theorem 11.2. The canonical functions F(z,  a, r) combine as branches of  fitnc- 

tions M(z, a) monogenic in (a) as follows: 

(1) When /x>o, or tt = o and m is odd, all cano~dcal functions F a r e  branches 

of  a single monogenic function M(z ,  a); 

(2) When ,u ----- o and m -~ 4, 6, 8, . . . ,  all canonical functions F(z,  a, r) for which 

(r) is of  even category are branches of  one monogenic function of  (a), while all for 

which (r) is of odd category are branches of another; 

(3) When ~t ~ o and m=--2, each canonical function J~'(z, a,r) is of itself 

monogenic in (a). 

w 12. Equivalence of  meromo~Thic functions. Restricted, terminally restricted, 

and semi-restricted equivalence of two interior transformations f~ and f~ of S have 

been defined in w 2, in terms of admissible f-deformations. I f  the deformations 

employ meromorphic functions only, the equivalence is said to be of ~neromorphic 

type. The first theorem on equivalence follows. 

Theorem 12. 1. •ecessary and sufficient conditions that meromorphic functions 

f z  and fz  with the same characteristic set (a) be restrictedly and meromorphieally 

equivalent are that 

(12. I) J i ( f l ,  ct) = J i ( f 2 ,  vt) (i = I, . . . ,  n). 

That the conditions are necessary has already been established. 

accordingly prove the conditions sufficient assuming that  (I2. I) holds. 

Let 9t and ~02 be residual functions of f l  and f~ respectively. Set 

We shall 

( i2 .2 )  t) = ell-tl o ,p,§ (o <= t <= 1) 

using continuous branches of log 91 and log ~ with 

112.3) log  ol(ao) = log  o (ao) 

The condition (12.3) can be fulfilled since 

9, (a0) = 9,  (ao) 

in accordance with (Io. 6). The resulting function ~V(z,t) satisfies the conditions 

on a residual function in Lemma IO. 2 regardless of the value of t, as will now 

be shown. 
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First, for o =< t _--< I and for z on S, ~p(z, t} is non-null and analytic, since 

~01 and ~, are non-null and analytic on S. The proof that  conditions (Io. 6) are 

satisfied by ~ (z, t) is as follows. 

The relation 

(t 2.4) log ~ ~ ( i  - -  i ,  . . . ,  n) 
aD 

will first be verified. The real parts of the logarithms are equal at ao as well 
as at ai, since ~1 and ~2 satisfy (Io. 6). 

The hypothesis (12. I) in the form 

then insures the t ruth of (I2.4). I t  follows from (I2.4) that  for branches of the 

logarithm for which (I2.3) holds 

(i 2.5) log ~, (a;) - -  log ~,(a~.) (i = i, . . . ,  n). 

Using (I2.5) in (I2.2) we find that  

(a , ,  t) = e ~  ~, (~ = ~ ,  (a,)  ( i  = i ,  . . . ,  , ) .  

Thus ~V(z, t) satisfies (Io. 5). 

In  accordance with Lemma Io. 2 ~(z,t) is the residual function of a mero- 

morphic function of z 

( i 2 . 6 )  f ( z ,  t) = e (o <= t < I) 

with characteristic set (~). 

I t  follows from (12.6) that 

f ( z ,  o) = Ca.f, (z) C1 ~ o 

f (g ,  I) : C2A(Z ) (,Y$ ~ 0 

where Ct and Uz are constants. The funetion 

f ( z , t )  ( o  <--_ t<= I) 

gi~es the required meromorphic deformation of f l  into f~. 

The canonical (a)-projection of  a transformation f .  If  an interior transforma- 

tion f has a characteristic set (a) and integral invariants (I) with respect to (a), 

F(z,  a, I) will be called the (@projection of f .  I f  f is meromorphic it has jus~ 

been seen that  f admits a restricted deformation of meromorphic type into its 

(a)-projection. 
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I f  (~.~) is any admissible reordering of (a) it  will be shown tha t  the (a)-and 

(at)-projections of f are identical  as funct ions of z. I f  (I  ~) is the set of integral  in- 

variants  of f with respect to (a 1) this s ta tement  takes the form of an ident i ty  in z. 

To establish (I2.8) recall t ha t  the definition of a canonicai  funet ion involves the 

funct ions gi and el of (a) as well as li. I f  

(a ' , , . . . ,  a;J = ( a , , . . . ,  a,),  

one verifies t ha t  in passing from the (a) - to  the (al)-projection of f a similar 

permuta t ion  z~ of g,., c~: and li, ( i-~ I , . . . ,  n) is made with go and c o unchanged.  

The Lag range  polynomial  P(z,  c) is invar iant  under  this change and (I2.8) follows. 

I f  f is admissibly deformed through a family f*, o ~ t ~ I, of interior  trans- 

formations with (a*) the characterist ic set of f t ,  the (at)-projection ~ t  of f t  will 

admissibly deform the (e~)-pro.~ection F ~ of f th rough  a family of canonical func- 

tions. I f  M(z ,a)  is the monogenic funct ion of (a) of which F ~ is a branch, then  

F t ---- M(z, ,*) o =< t ~ I 

provided the appropriate branches of M ( z , a  t) are selected for each t. This de- 

format ion  F t is te rmed canonical. In  these terms one can state t ha t  a necessary 

and sufficient condit ion tha t  two meromorphic  funct ions f I a n d f  2 wi th  the  same 

characterist ic set (/~)be terminally restrictedly and meromorphical ly equivalent 

is tha t  their  (~)-projeetions admi t  a canonical  deformat ion into each other. The 

la t ter  condit ion is merely t ha t  the two (fl)-projections be branches of the same 

func t ion  M(z ,  a) monogenic in (a). Hence  Theorem 1 I. 2 yields the following. 

Theorem 12.2.  Necessary and sufficient co~ditions that two admissible mero- 

morphic functions .f~ and f *  with the same characteristic set (fl) be terminally re- 

strictedly and meromo;~phically equivalent are that either 

(i) / z > o  or ~ - ~ o  a~d m be odd, or 

(ii) /~ : o, m = 4, 6, 8 , . . . ,  and the invariants ( I  1) and ( I  ~) o f  j '1 and f~ with 

respect to (a) be in the same category, or 

(iii) ~ : o ,  m = =  2 a,,d (I') ---- (F'). 
We complete this section with  the fol lowing theorem. 

Theorem 12.3.  (a) An y  two admissible meromorphic funct ions f l  and f ~  with 

the same characteristic set (fl) are semi-restrictedly and meromorphieally equivalent 

except in the case # ~---o and m ~ 2. 
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(b) In case t t = o  and m - ~ 2 ,  and al is a pole, f 1  and f~  are equivalent in 

the sense of  (a) i f  and only ~ their im,ariants Jl with respect to (ao, al) are equal. 

I f  a~ is a zero, f~  and f* are equivalent i f  and only i f  their i~wariants J1 with 

respect to (no, at) are equal in absolute vahte. 

Statement  (a) follows from Theorem I2.2 except when ,u = o, m =  4, 6, 8, . . , 

and (I*) and (I ~) are of opposite category. In  this case one first d e f o r m s f  t into 

its (fl)-pro~eetion F L  One then  continues F ~ with respect to (a) along any ad- 

missible path  (a t) t ha t  leads to a set (a ~) which is an admissible odd permutat ion 

of (fl). In  accordance with  Lemma 9.2, the canonical funct ion F* into which 

F ~ is thereby cont inued will have an invar iant  set (I*) with respect to (fl) of a 

category opposite to t ha t  of (I~), and hence of a category which is the  same 

as t ha t  of (I~). I t  follows from Theorem i2 .2  (it) t ha t  F*  can be terminMly re- 

strictedly and meromorphical ly deformed into f2.  This completes the proof of (a). 

The necessary condit ions for equivalence of f l  and f*  in (b) have already 

been aff irmed in L e m m a  9-4. 

We come to sufficient conditions. W h e n  the invariants  3"1 with respect to 

(fl) are equal, a restricted deformat ion carries f~ into f-~. There remains the case 

of two zeros in which the invariants  J1 with respect to (fl) are equal but  opposite 

in sign. In this case we regard S as a hyperbolic plane and make a hyperbolic 

rotat ion about the hyperbolic mid-point of a0 and a~, carrying a o into a~. Le t  

U' be the analytic,  isotopic deformat ion of S thereby defined, o < t <  I. The 

composite funct ion f l u t  deforms f t  into a funct ion f *  which in accordance with 

(9-I~) has the same iuvuriant  J~ with respect to (fl) ~s does f2. Hence f*  can 

be restrictedly deformed into J'e. 

S ta tement  (b) follows. 

w 13. Equivalence of i~2terior tra~7,~formatioJ~s. Let  f be an interior transfor-  

mat ion of S with a characterist ic set (f3). By virtue of a theorem of Stoilow (4) 

there exists a homeomorphism ~ from a simply-connected region B of the z-plane 

to S such tha t  the eomposite function ( ~  is meromorphie on R. When the 

boundary of R consists of more than  a point, R c~n be mapped directly con- 

formally onto S. In  such a ease we can suppose tha t  ~ is a homeomorphism 

from S to S, and we say tha t  f then comes under Case A. 

When the boundary of R consists of a point, one can first restrictedly de- 

form f on S into a funct ion f~ tha t  comes under  Case A. To this end let e be 

so sinai1 a positive constant  tha t  a l l .points  of (J) lie on the disc { I z l <  I - - 2 e } .  
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Le t  ~t be an isotopic deformat ion of S onto S '  ~-- {Iz] < I --e} which leaves points 

of S a t  which I z l ~ i - - 2 e  fixed. Thus ~1 is a homeomorphism from S to S'. 

The composite funct ion f~ t  deforms f into a funct ion f l  again defined over S, 

The funct ion f~ comes under  Case A. For the Riemann image of S under  w ~ f ~  (z) 

simply covers the Riemann image under w ~ f ( z )  of S'. This Riemann image 

is then  conformally equivalent  to a subregion of R whose boundary  consists of 

more than  one point.  

We have the fo l lowinglemma concerning admissible interior  t ransformat ions  of S. 

Lemm& 13.1. Any such trans/brmation f*  of S admits a restricted defor- 

mation into a fitnction f for which a homeomorphism ~ of S exists such that f ~  is 
meromorphic on S. 

Use will be made of the canonical  funct ions M(z, a) monogenic in (a) of the 

preceding sections. Let  , /  be an isotopic deformation of S from the ident i ty  and 

let (a t) be the image of (fl) under  V t. The characterist ic  set of 

(I 3" I) M(~t, eft) (o ~ t ~ I) 

remains constant ly (~). For  example, if a~ represents a zero of (fl), then  Ft(a~) = a~ and 

M -9 = o 

since (a t) is the characterist ic set of M(z, a~). 

The basic theorem here is as follows. 

Theorem 13.1. Any interior transformation f with a characteristic set (fl) ad- 
mits a restricted deformatio~ into its ca~onical fl-projection. 

In  accordance with Lemma 13. I one can suppose tha t  a homeomorphism 

of S exists such tha t  f ~  is meromorphic  on S. 

The proof of the theorem is relatively simple once the appropriate auxiliary 

functions are defined. These funct ions are as follows: 

= 

= 

= 

~t 
= 

A homeomorphism of S such tha t  f~" is meromorphic on S. 

The inverse of ~ on S. 

The meromorphic  funct ion f~ .  The characterist ic set o f / .  is the image 
of (fl) under  ~. 

An isotopic deformat ion of S f rom the identi ty,  genera t ing  ~. (o G t G I). 

The image of (fi) under  ~ at  the time t. The characteristic set of s is (a'). 

The (c:~)-projection F(z,c:', r) of ).. 

A restr icted deformat ion of meromorphic type of s into F 1. ( o < t <  I). 

The funct ion M(z, cr monogenic in (c~) of which F(z, a, r) is a branch. 
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The required deformation of f will be given as a sequence of two deforma- 

tions of t in both of which (fl) remains the characteristic set. 

The first deformation is defined by the composite function, 

(o _-< t __< 

When t = o ,  this function reduces to f and when t = I it becomes F~/ .  The 

characteristic set of Zt~] remains constantly that  of 2~], namely (fl). 

The second deformation is defined by the functions 

(I3.3) M(r/'(z), a ~) (o _--< t N I) 

with t however decreasing from I to o. As noted in connection with (13. I), the 

characteristic set remains constantly (fl). When t == x one starts with the braneh 

~ ( z ,  e) = ~'(z, a,,-) 

at the set (a~). When t-----I, the function (I3.3) reduces to 

= 

When t = o ,  the function (I3.3) becomes M(z,  fl). This is the (fl)-projection o f f .  

I t  has the characteristic set (fl); it also has the invariants (I) of f since it is 

obtained from f by a restricted deformation. 

The deformation (I 3. 2) followed by the deformation (I 3. 3), with decreasing t, 

thus deforms f into its (~)-pro~ection, as required. 

The deformation classes into which meromorphic functions may be divided 

are, in the sense of the following theorem, not affected by the inclusion or ex- 

clusion of interior transformations which are not meromorphic. 

Theorem 13.2. Two ~neromorphic functions/1 and f~ with the same charac- 

teristic set (fl) are reMrietedly, terminally restrietedly, or semi-restrietedly equivalent 

only i f  they are meromorphically equivalent in the same sense. 

Let 171 and F~ be the (fl)-pro.~ections of j ]  and f~. respectively. The func- 

tions f1 and f2 are restrictedly and meromorphically deformable into /~'1 and F2 

respectively. Any admissible deformation jet of f l  into f~ in which (a t) is the 

characteristic set of f t  implies a deformation F t of ~ into T~ through the (a~) - 

projection of ft .  The deformation F t will be restricted, terminally restricted, or 

semi-restricted in the same sense as f t .  In addition, 1 ''t is of meromorphic type. 

The theorem follows. 
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Coro l l a ry  13.1 .  Condition,s o, the invariants (J) of two interior tran,Jbrma- 

tions f~ and f2 with the same characteristic set (fl) together with co~ditio~s on tt 

and m which are ~eee,vsar!/ and su.~'ficient for the equivalence of.f~ and f,, in am/ 

one of the senses o f  the theorem are preei,,'el!/ those stated ,i~ ~ z2 for equivalence 

in the same sen,r o./" meronw~7~hie .function,s. 

The funct ions  ./] and  ,]12 have  the  sunie char~cLeristie set  (fl), and  character-  

istie in tegers  ft ~nd ~ ,  and  inva r i an t s  (J~) and  (J'-') wi th  respec t  to (fl) as the i r  

respect ive (fl)-projections I"~ and F,,. In accordance  with  T h e o r e m  13. 2 the  equi- 

valence of .f~ and  f~ in a given sense implies and  is impl ied  by the  m e r o m o r p h i c  

equivalence in the  same sense of F 1 and P'2. The  eondi t ions for  the  l a t t e r  equi- 

va lence  in t e rms  of !t, n*, ( j l )  and (J'-') ' tre thus  the  condi t ions  for  the  equivalence 

of .fl and f2 in the given sense. 

The  theorem follows. 

I4. The .s7~eeial (.ast,s ~n----o and m = J. W e  admi t  tt brunch poin t  ante- 

cedents  as previously.  In  ease n~ = o  or I there  are no invar ian t s  J,.. The  con- 

s t ruc t ion  of a func t ion  with the  g iven eh,~raeteristic set  as given in w 6 is still 

w l i d  here. W h e n  m--= I we assume th,~t ao is a zero. The  case of a pole is 

t r ea t ed  by cons ider ing  .f-~, 

In  the meromorl )hic  ease the, res idual  funct ion 9 is defined by the  equa t ion  

. / "  ~ s~ 
.t" ( . ~ -  ao) "~ 

both  when m = - o  ~Lnd m--= I. A canonical  func t ion  with a given char,Lcteristic 

set  may  be given in the fo rm 

fl~_(~) ,l_. . 
1% (z ,  . )  : =  e Y ' t ~ ' ~  ( . . . . .  )m ( m  = o o r  I).  

The residual  func t ion  mus t  sat isfy the  condi t ion 

1 

~(a0) = Bi -o)  (" = ~); 

i t  mus t  be ana ly t ic  and non-null  on S. 

I f  ./] and ./~ are  two m e r o m o r p h i c  func t ions  with the  same charac te r i s t i c  set  

(ct) and res idual  func t ions  % and ~e the funct ion  

r ,r r176 ( o ~ t ~  I) 

7 - 6 1 4 9 1 1 1 2  A cta mathemat ica .  79 
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suffices to deform res t r ie tedly  and meromorphica l ly  a cons tan t  mult iple o f f x  into 

a cons tan t  mult iple of f~. Hence  j'~ and j~ are res t r ic tedly  and meromorphica l ly  

equivalent .  Any in ter ior  t r ans fo rma t ion  f wi th  the  character is t ic  set (a) can 

be res t r ic tedly  deformed into its (a)-projection Fm (z, , )  fo l lowing the proof  of 

Theorem I3. I. 

We  summarize what  is essential  as follows: 

Theorem 14. 1. WheJ~ m = o or I, aT~y interior tran~/brmatio~ f with the 

characteristic set (a) can be restrictedly defbrmed into its (a)-prq]ection E~(z,  c~), 

meromorphically i f  f is meromorphic. 

In  the  very special case in which m = o and t t - o  the character is t ic  set (a) 

is empty,  B(z) may be taken  as I and e ~ as the canonical  func t ion  into which 

each in ter ior  t r ans format ion  with an empty character is t ic  set can be admissibly 

deformed.  

w 15. Covering properties of  sequences of meromorphic transformations of S. 

We shall be concerned with infinite sequences [2'~'] of meromorphic  t r ans fo rmat ions  

of S with the same character is t ic  set (a). The  number  m of zeros and poles in 

the  set 

(I~. I) (aO, a, .... , an)~ (&') 

shall be at least two. A sequence [j~.] in which each of the functions j): is 

meromorphic and no two functions j~. are in the same restricted deformation 

class will be termed a model sequence. We shall be concerned with the set W of 

points w---- f~.(z) on the w-sphere given by a model sequence for z on S. When 

the set (i 5. l) includes both zeros and poles, we shall see that the set W covers 

each point  of the w-sphere infinitely many times. W h e n  the set (I 5. I) consists 

of zeros alone, the  set W will cover each point  of the  w-sphere infinitely many 

t imes (w = o o  excepted) provided J~ does not  converge uni formly  to zero on every 

compact  subset of S. 

A te rm due to Cara thdodory  is convenient .  A sequence [F,,] of funct ions  

of z meromorphic  on a region R is said to eo~t~e~ye coutin~ous./y to F on R if, 

with respect  to the metric on the w-sphere, [F.]  converges uni formly  to I" on 

every closed subset  of / t .  The  funct ion 1,' is necessari ly meromorphic  on 1/, or 

reduces to the funct ion  F--~c~. 

Suppose tha t  each funct ion  1", is meromorphic  on S and has the charac- 

teristic set (c~). I f  [F,]  converges cont inuously  on S to 1", then  1,' is identical ly 
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O or c~ or else has the charac ter i s t ic  set  (c~). I f  [s converges cont inuous ly  on 

S - -  (a) to a func t ion  F no t  ident ical ly o or c~, then  [F,]  converges cont inuously  

on S wi thout  exception.  I f  F ,  has no poles, the preceding s ta tement  remains  valid 

wi th  the  condi t ion F ~ o  omit ted.  These  results follow f rom classical theorems.  

The  principal  results  of this section are an immedia te  consequence of theo- 

rems on normal  families of funct ions.  A family  M o f  funct ions  meromorphic  on 

a reg ion  R of the z-plane is t e rmed  ~wrmal if  cor responding  to an a rb i t r a ry  

sequence [F , ]  of func t ions  of the  fami ly  there  exists a subsequence which con- 

verges cont inuous ly  on R to a meromorph ic  func t ion  ~' or to c~. According to 

a theorem of Ju l i a  a necessary and sufficient condi t ion tha t  M be normal  on R 

is t ha t  M be normal  on some ne ighborhood  of each point  of /~. Cf. (6), p. 37. 

The  proper ty  which connects  the theory  of normal  families with Picard ' s  theorem 

is the  fol lowing.  I f  the fami ly  M is no t  normal  on R, t hen  every point  w on 

the  w-sphere, with the  possible except ion  of two points,  is covered infinitely 

many  t imes by points  f ( z l  defined by members of the  family for  z on R. In  

par t i cu la r  if i l l  is not  normal  on R, there  exists at  least one point  z0 on R in 

no ne ighborhood  of which M is normal.  Such a point  z0 is called a point J, and 

the  images under  the  func t ions  of M of  an a rb i t r a ry  ne ighborhood  of a point  

J cover  the w-sphere infinitely many times,  two points  at most  excepted.  

Le t  R be a subregion of S. A model  sequence [j~.] no subsequence of which 

converges cont inuously  to o or ~ on R will be te rmed proper o~ R.  W e shall 

prove the fol lowing lemma. 

L e m m a  15.1.  A model sequence which is proper o~ S -  (a) i.~ ~2ot a normal 

f a m i l y  on S -  (a). 

Suppose the  lemma false and t h a t  a subsequence [t~L] of the given model  

sequence converges cont inuously  on S - - ( a )  to a funct ion F.  The  func t ion  F is 

analyt ic  on S - - ( a )  and never  zero. I t  follows f rom the definit ion of a residual  

func t ion  t ha t  the sequence [~.] of residual  func t ions  of the  funct ions  T'~ con- 

verges cont inuously  on S - - ( a )  to a func t ion  T which satisfies the re la t ion 

F '  B 

on S - - ( a ) ,  and is accordingly analyt ic  and never  zero on S - - ( a ) .  Hence  the 

funct ions  ~0,, converge cont inuously  on S wi thout  except ion to a funct ion T tha t  

is analyt ic  and never  zero on S. The  invar ian ts  J'~ of ~ ,  mus t  then  converge 
i 

in accordance with Theo rem  io. I. Since the invar iants  J~' differ for  different  
�9 i 
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values of ~ by integers,  i t  fol lows t h a t  for  ~ exceeding some in teger '~0 ,  j n  is 

i ndependen t  of n. 

Th is  is con t ra ry  to  the  hypo thes i s  t h a t  the  m e m b e r s  of the  sequence [j~] 

be long to di f ferent  res t r ic ted  d e f o r m a t i o n  classes. We infer  the  t ru th  of the lemma.  

We  s ta te  a l e m m a  concern ing  quas i -normal  sequences.  Cf. (6) p. 66. 

Lemm~. 15 .2 .  Let [T;] be a scque~ce of  functions which a~e ~nerornorphic o~2 

a neighborhood N of  a poi~t Zo and a~alytic a~d ~ot zero on N - - z o .  I f  [I~,] con- 

verges continuously to oo (o) on N - - z o  but fa i l s  to so convezye on N, then for  n 

suJficiently large 1 aJ~d for  sonde z or, N, _~,~ assumes a~y given value w except oo (o). 

The two cases involved in this l e m m a  are reducible  to each o ther  on re- 

p lac ing /J;, by its reciprocal .  The case in which F - - c ~  is t r ea t ed  in the  above 

reference .  

A po in t  z o will be called a covering point  re la t ive  to a model  sequence [f i ]  

if  the  to ta l i ty  of  w-images of  the  func t ions  f~, k = I, 2 , . . . ,  fo r  z on an a rb i t r a ry  

ne ighborhood  of z 0 cover  the  points  of the w-sphere infinitely many  t imes,  

w - o  and  w = oo a t  mos t  excepted.  The  first cover ing  theo rem follows. 

T h e o r e m  15.1 .  Let  [fk] be a nwdel sequence of  meromorphic function, s. 

I. I f  [fk] is proper on S - -  (a), there exists at least o~e covering point  on S - -  (a) 

relative to [fi] .  

I I .  I f  a subsequence of  [f i]  converges continuously to oc [o] on S -  (a), then 

any zero [pole ~] a~ is a covering point relative to []~.]. 

Case I or I I  abcays occurs. 

I n  Case I [j~.] is no t  no rma l  on S - - ( a )  in accordance  with L e m m a  I5. I .  

There  accordingly  exists  a po in t  z o of type  J on S - - ( a ) .  For  any ne ighborhood  

of Zo re la t ive  to S - -  (a), w = o and  w = o o  are values not  t aken  on by [.~-]. Hence  

every o the r  value is t aken  on infinitely often.  Thus  z o is a cover ing  point  rela- 

t ive to [fi] .  I n  Case I I  the  t heo rem follows f rom L e m m a  15.2. 

Coro l la ry .  I f  [f~] is a model sequence there exists at least one eoveri~g point 

on S, exeepti~Tg only the case in which there are J~o poles in (a) and [j~] converges 

eo~tinuously to zero on S. 

Recal l  t h a t  the  case in which there  are no zeros in (a) has  been excluded. 

I f  admi t ted ,  this  case would paral lel  the  case in which there  are no poles. 

1 T h a t  is  fo r  n e x c e e d i n g  a n  i n t e g e r  n o d e p e n d i n g  on ~,~7 a n d  w. 

I f  t h e r e  a r e  a n y  po les .  
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Given a model  sequence [f i]  which is not  proper,  a proper  model sequence 

can be readily obta ined by replacing each fk by a cons tan t  mult iple  c'kfi: with ek 

suitably chosen. In  par t icu lar  it  is sufficient to choose the constants  ck so tha t  

]c~.f~] is bounded f rom o and c~ at  some point  not  in (a). 

The  fol lowing theorem is a consequence of Bloch's theorem.  Cf. (9) P- 23o- 

T h e o r e m  15.2.  / f  [fk] is a model seque~ce ~lo subsequenee of  which converges 

to o on S, a~M ~f the characteristic set (c~) includes no poles, there then eorrespo~ds 

to a , y  po.~itive consta~# r, ~o matter ]ww larqe, a member fz.(~l of  the sequeJ~ee and 

a eireular dise D~ of  radius r i'n the u:-pla~m sueh that D,. is the one-to-one image 

under ~.(r) of  some subdomain off" S. 

This theorem follows f rom Bloch's theorem provided the  values 

(15.3) IJ~;[ ( k =  I , . . . , )  

~re unbounded  on some compact  subset  of S. 

Le t  S,. be the subdisc of S concent r ic  with S and of radius c. If  the values 

(15.3) admi t ted  a bound ]lc on S, for  each e, o < c <  I, [ i l l  would be bounded 

independent ly  of k on each S,: and [j~] would be normal  on S. Since no sub- 

sequence of [3~] converges cont inuously  to zero by hypothesis ,  the sequence [f i]  

would then  be proper.  This is cont ra ry  to Lamina I5. t. Thus  for  some e < I 

the values (15. 3) are unbounded  on Sc. Hence  there  are points z on this Se and 

values of k for  which If~'l is ~rbi t rar i ly  large. 

The theorem follows. 

The  preceding  theorems can be ex tended  as follows. Le t  Jo be defined as o. 

Le t  a sequence [f~.] of meromorphic  funct ions  with the given character is t ic  set 

be t e rmed  ~nodel with respect  to two points  (a~, a,) in (a) if no two pairs (J~, J~) 

and (J~, J~) belonging to different  funct ions  in the sequence [f i]  have the 

proper ty  t ha t  

(15.4) d~ - - J ~  = d , - - J ~ .  

I f  a~ und as are not  both  poles, we could suppose tha t  a~ is a zero and change 

the nota t ion so tha t  a ~ =  %. The condi t ion (15. 5) would then take the form 

J~* := d~. 

I f  a~ ~nd a~ are bo th  poles one could replace each func t ion  fk by its reciprocal,  

no t ing  tha t  the residual  func t ion  of f~. and its reciprocal  are negatives of each 

other.  
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L e m m a  15. I can now be replaced by the following. 

Lemma 15.3.  A sequence [fk] which is model with respect to ar and as and 

which is proper on N - -  (at, a~), where N is any connected neighborhood of a, and as, 

is not a normal fami ly  on N ~ (a~, a~). 

With  a~ taken  as a o the proof  is essentiaUy the same as t h a t  of L e m m a  15. I. 

Lemma I5 .2  is unchanged  for  present  purposes.  Theorem I5. I takes the  fol- 

lowing form. 

Theorem 15.3 .  Let [J~.] be a sequence which is model with respect to a~ and a, 

and let N be any connected neighborhood of ar and a,. 

I. I f  Ilk] is proper on N -  (a~, a~), there exists at least one covering point on 

N - - ( a , ,  as) relative to [fk]. 

I I .  I f  a subsequence o f  [f i]  converges continuously to cr [o] on N - -  (a~, a~), then 

any zero [pole] in the pair (a~, a,) is a covering point relative to [j~.]. 

Case I or I I  always occurs. 

The set of points  J taken re la t ive  to a model  sequence [jq.] is closed on S 

by v i r tue  of the definit ion of a point  or. One can then  establish the following. 

T h e o r e m  15 .4 .  I f  a model sequence [fk] is proper on every subregion of a 

region R then the set E of points J on R is perfect (possibly empty) relative to R. 

Each non-empty component I~'1 of  E contains at least one zero and one pole of  (a), 

or else has a limit point on the boundary of R.  

No point  zo of E can be isolated in E.  To see this  le t  N be a ne ighborhood  

of z 0 such tha t  N - - z  o contains  no point  of (a). Cont inuous  convergence of  a 

subsequence [F , ]  of [aCE] on N - - z  0 to a func t ion  F implies t h a t  F is analyt ic  

and no t  null  on N - - z  o since [fk] is p roper  on N - - z  o and no fk has a zero or 

pole on N - - z  o. I t  follows tha t  [F,]  converges cont inuous ly  on N so t h a t  z o 

canno t  be a point  J .  We  in fe r  t ha t  Zo is not  isolated in E and t h a t  E is ac- 

cordingly perfec t  re la t ive  to R. 

Suppose tha t  E~ is on R. W e  shall  show th a t  E~ must  conta in  at  least  one 

zero and one pole in (a). Suppose in par t icu la r  t ha t  E~ conta ined  no pole in (a). 

Then  E~ could be separated on /~ f rom the poles in (a) and from the boundary  

of R by a finite set (g) of r egu la r  J o r d a n  curves on R which do not  in tersect  E 

or (a) and bound a subregion R~ of R on which E 1 lies. The sequence [ark] would 

be normal  on a ne ighborhood  N of (g). On N a subsequence [F,,] of [j~.] would 

converge  cont inuously  to a func t ion  F which w o u ld ' b e  analyt ic  and never  zero 
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on ~Y--(a). I t  fol lows tha t  [F , ]  would converge cont inuously  on 1~1 so tha t  E 1 

would be empty.  

The supposi t ion tha t  ]~]'1 is on / /  and contains no zero in (a)would  similarly 

lead to the conclusion tha t  E l  is empty.  The theorem follows. 
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