DEFORMATION CLASSES OF MEROMORPHIC FUNCTIONS AND
THEIR EXTENSIONS TO INTERIOR TRANSFORMATIONS.

By

MARSTON MORSE and MAURICE HEINS

Institute for Advanced Brown University
Study PRINCETON, N. J. PROVIDENCE, R. 1.

§ 1. Inmtroduction. The first objective of this paper is to use topological
methods and concepts to enlarge the store of knowledge of meromorphic funec-
tions. Deformation classes of meromorphic functions are defined. The extension to
interior transformations results in new homotopy theorems and contrasts between
interior and conformal maps. Earlier papers have shown that there is a con-
siderable body of theorems which can be formulated so as to retain meaning and
validity after arbitrary homeomorphisms of the z- or w-spheres. Many theorems
involving the relations between zeros, poles, and branch point antecedents and
the images under f of boundaries are of this character. See Morse and Heins,
(1) and Morse (2).

The second objective is to distinguish hetween the properties of meromorphic
functions which are shared by interior transformations and those which are not.
For the transformations from {|z] <1} to the w-sphere which are considered we
find no difference' between meromorphic functions and interior transformations
with respect to the invariants necessary to characterize a deformation class of
functions with prescribed zeros, poles, and branch point antecedents. However,
sequences [ fi(2)] of meromorphic functions properly taken from different deforma-
tion classes cover the w-plane in a manner suggestive of the Picard theorem on
essential singularities but with no counterpart for sequences of interior trans-
formations. The discovery of such properties points to the problem of finding
the non-topological assumptions which must be imposed upon interior transforma-
tions in order that they may share the non-topological properties discovered.

! For domains for 2 other than the disc differences may arise.
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Topologically - we are concerned with the homotopy classes of open simply-
connected Riemann surfaces with prescribed properties, conformally with the
existence of deformations of prescribed type through meromorphic functions when
it is known that such deformations are possible through interior transformations.
We seek to construct models of all deformation classes by »composing> homeo-
morphisms of {|z| < 1} with an interior transformation with the prescribed zeros,
poles, and branch point antecedents. Conformally this is possible only in trivial cases.

Interior transformations are used essentially in the sense of Stoilow. (4)
With Whyburn (3) they are »interior» and »light>. Whyburn has studied the
underlying point set characteristics of these transformations in a very general
setting. The uniformization theorems of Stoilow are found useful. See also,
v. Kerékjart6, (5) pp. 173—184.

The following section gives a summary of the principal results without details
or proofs. A detailed exposition follows.

§ 2. The problem and the principal results. In the sense in which we shall
use the term an snlerior transformation w=f(z) will be a sense-preserving con-
tinuous map of the open dise S{|z| < 1} into the complex w-sphere with the
following characteristic property. If z, is any point on § there exists a sense-
preserving homeomorphism ¢(z) from a neighborhood N of 2, to another neigh-
borhood N, of z, with 2z, fixed, such that the function f[p(2)] = F () is analytic
on N except at most for a pole at 2z, and is not identically constant. The trans,
formation f is said to have a zero or pole at z, if 7’ has a zero or pole at 2z,
more precisely f is said to have a zero or pole of the order of the zero or pole
of I at z,.

If 2z, is the antecedent of a branch point of the r-th order of the inverse
of F, 2, is said to be an antecedent of a branch pornt of the »rth order of the
inverse of f. In any case it is seen that » + 1 is the number of times a neigh-
borhood of w,=f(z,) is covered by f(2) for |z — 2,| sufficiently small.

We shall restrict ourselves to the case in which f has a finite set of zeros

(2.1) @y, Ay, .« ., Gr (r > o),
and poles
(2.2) ri1y - oy Qn (m> 1),

! In all cases m = » + 1 shall denote the total number of zeros and poles. The casesm =1
and m = o are treated in § 14.
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with branch point antecedents
(2' 3) bl’ v b/t (1”' = 0)7

with » > I until § 14 is reached. In the principal study we shall assume that the
zeros, poles, and branch points are simple, that is, have the order 1. The zeros,
poles, and branch point antecedents will form a set of points

(a)z(am <oy On, bl’ o bt"‘)

termed characteristic. Two. points in the set (¢) both of which are zeros, or poles,
or branch point antecedents are said to be of like character. Any reordering of
the points of (¢) in which points of like character are reordered among them-
selves will be termed admissible. Except in the case u= 0, m =2 we shall use
no reordering in which a, is changed in relative order.

Admissible f-deformations. We shall admit deformations D of f of the form

w=F(e1) (2] < 1) o=t=1)
in which f is the deformation parameter and
Fle,0) = f(2). |zl <1)

We require that F map (z,{) continuously into the w-sphere and reduce to an
interior transformation for each fixed ¢. Let (¢f) be the characteristic set of F
at the time ¢. We require that the points of (¢f) vary continuously with ¢, remain
simple, distinet and constant in number and character as ¢ varies from o to I,
return respectively, when {==1, to some one but not necessarily the same one
of the characteristic points of f(2) of like character. The terminal transformation
F(z,1) has the same characteristic set as f with a possible reordering.

If (e!) is independent of ¢ the deformation is termed restricted. If («°)=/(a’),
the deformation is termed ferminally restricted. If (¢!')is an admissible reordering
of (&%), D is termed semi-restricted. We let X denote any one of these three types
of admissible deformations. Interior transformations which admit a deformation
into each other of type X will be said to belong to the same X-deformation class
and to be X-equivalent.

The invariants J;, We shall define a set (J) of » numbers J; (f,e) (¢==1,..., n)
associated respectively with the respective pairs (g, 4:). The .J/s are invariant
under any restricted deformation of f. The set (J) is thus associated with an
ordered set (¢) in which the first zero q, plays a special role. If F' is a trans-
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formation with the ordered set (a), then all sets (J) belonging to transformations
S with the same ordered set (¢) have the form

(2. 4) Ji(f, o) =Ji(F,a) + 7 (l=1,...,n)

where »; is an arbitrary integer. All such sets are realizable.

Topological models with prescribed sets (@) and (J). One begins by exhibiting
an interior transformation F with the given ordered set (¢). Then (2.4) defines
the ensemble of sets (/) which are »associated» with (). Any one of these sets
(J) associated with («) belongs to a transformation f obtainable from F in a
simple way.

To obtain these models use is made of sense-preserving homeomorphisms 7(z)
of the disc S=1{|z|< 1} onto itself. We term % restricted if (a) is 'point-wise
invariant under %, semi-restricted if points of () are transformed into points of
(¢) of like character. Set » + 1 =m. Except’ when m = 2 and u= 0, one can
prescribe the ordered set (¢) and any one of the associated sets (J) and affirm
the existence of a semi-restricted homeomorphism 7, dependent on (e) and (J), such
that the function® F'y has (¢) as an ordered characteristic set and (J) as its set
of invariants. The case m = 2, u = 0 is exceptional.

Meromorphic models. The preceding models f are not in general meromorphie.
Nevertheless there exists an explicit formula for a meromorphic function f with
a prescribed ordered characteristic set (¢) and associated invariants (J).

Restricted deformation classes C. A necessary and sufficient condition that
two transformations f; and f, with the same ordered set () be in the same class
C is that f; and f, possess the same invariants (J) with respect to («). If £, and
J; are meromorphic, the restricted deformation of f, into f, which is affirmed to
exist can be made through meromorphic functions. This is equally true of the
deformation classes C' and C” to which we now refer.

Terminally restricted deformation classes C°. A new invariant is needed here.
Two transformations f with the same ordered set (¢) will be said to belong to

the sawme category if the sums

for the two functions are equal mod. 2. There are three principal cases (assuming
m>1 until § 14).

1 We are excluding the case m << 2 until § 14 in order to avoid complexity of statement.
When m << 2 there are no invariants (J).

? We write F(n (2)) = Fy.
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I uw>o0 or m odd.
IT u=o0, m=4,6,8, ...
IIT p=o0, m==2.

In Case I any two functions f; and f, with the same set (¢) are in the same
class C'. In Case II, f; and f; are in the same class C’ if and ouly if they are
of the same category. In Case IIT f, and f, are in the same class C’ if and
_only if they have the same invariant J; with respect to (a).
" Semivrestricted deformation classes C”. 1f m>2 or u>>o there is but one class
C” with the given set (¢). The case w==0 and m = 2 is again exceptional.

Other exceptional cases. The cases in which m < 2, are excluded until § 14.
We have required that 7> 0 in (2. 1), thus excluding the possibility that f have
poles but no zeros. This exceptional case is readily brought under the preceding
by replacing f by its reciprocal. The case where there are no poles is admitted.

Cases in which the characteristic points are not simple can be treated
essentially as in the simple case provided the deformations which are admitted
are required to preserve the multiplicity of the respective characteristic points.
If one permits the multiplicities of the characteristic points to change by virtue
of various types of coalescence, an interesting theory of degeneracy arises
analogous to the theory which describes the degeneracy of elliptic functions into
trigonometric functions. It is planned to return to this problem in a later paper.

Topologecal and conformal differences. A first difference has already been
indicated. Exzcept when m =2 and u=o0 models of all restricted deformation
classes with a given set (¢) can be obtained as functions F by compesing a par-
ticular model F, with characteristic set (¢) with suitably chosen semi-restricted
homeomorphisms # of S. This is impossible if one operates only with meromor-
phic functions.

A second difference appears in the extent to which the w-sphere is covered
by an infinite sequence [fi] of transformations with a prescribed set (@) and at
most one representative from each restricted deformation class. We term [fi] a
model sequence. Let R be any connected region of the ew-sphere which contains
w=0 and w = oo and whose closure does not cover the w-sphere. If the models
[f] are not required to be meromorphic a model sequence [f;] can be defined
so as to cover no points on the complement of R and with no subsequence con-
verging continuously on § to o or co. This is impossible if the functions f; are
meromorphic.
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To give a more revealing statement in the meromorphic case let a point 2,
of S be termed a covering point of [fi] if corresponding to any arbitrary neigh-
borhood N of z, the set of images of N under [fi] covers the finite w-plane
(w =0 excepted) infinitely many times. Let H be any connected neighborhood
on S of the points

(ag, ay, . . ., an) = (a)

with the points (a) excluded. Any model sequence [fi] of meromorphic functions
no subsequence of which »converges continuously» to o or to oo on H possesses
at least one covering point on H.

This theorem follows readily from a theorem of Julia on normal families
‘(see Montel (6), p. 37) once the appropriate properties of meromorphic models
have been derived. Other theorems concerning the covering points z, of [ f;] are
obtained.

We begin the detailed study with the development of homotopy properties
of locally simple ares # and introduce invariants d(k) designed to make possible '
a topological definition of the invariants J.

Part 1. The Topological Theory.

§ 3. The difference order d(k) of a locally simple arc k. The object of this
section is to attach a number d(k) to a locally simple, sensed arc £ with pre-
scribed end points in such a manner that d(4) remains invariant under a class
of deformations of k (to be defined) and characterizes k as representative of its
deformation class.

Local simplicity. See Morse and Heins (1) I. The arcs £ which are admitted
are »represented» by continuous and locally 1—1 images

w(t) = u(t) + 2v(t) o=t=t)

of a line interval (o,f,) and shall intersect their end points w{o) and w(t,) only
when ¢t=o0 and ¢, respectively. The condition of local simplicity implies that
there exists a constant ¢ >0 such that any subarc of ¥ whose diameter is less
than e is simple; such a constant e is called a norm of local simplicity of k.
Any set of locally simple curves which admit the same norm of local simplicity
will be termed wniformly locally simple.
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Strictly speaking, w(¢) is a representation of k and not identical with k. We
admit any other representation of % obtained by mapping the interval (0 < t=<t,)
homeomorphically onto another interval (o,¢,). The arc ¥ can be identified with
a class of such representations. The property of local simplicity of an arc % is
independent of the representation of % which is used, because the existence of
a norm of local simplicity is independent of the representation used.

Let the end points of ¥ be w =a and w = b respectively.

Admissible deformations of k. We shall admit deformations D of % with the
following properties. The ares of D shall be represented in a locally 1—1 way
in the form

(3.1) - w=H(t,A) o=st=t) (0=A=1)
where H maps the (¢,2) rectangle continuously into the finite w-plane with
H(o,A)=a H(ty,4)=1b

The arc % shall be represented by H(t,0). The arc k is »deformed> at the »time>»
A into the arc &* represented by H(t,A). The arcs k* shall be uniformly locally
stmple and shall intersect a and b only as end points.

If the requirement of uniform local simplicity were replaced by the re-
guirement that the arcs %* be separately locally simple, there would be but one
deformation class of arcs with the end points a and b, instead of the countably
infinite set of deformation classes which actually exists.?

Any two arcs k* appearing in the above deformation are said to be in the
same deformation class. Actually the deformation is one of »representations», but
it is immediately obvious that any two representations of the same arc can be
admissibly deformed into each other. See (1) I p. 603. Accordingly the property
of two arcs of being in the same deformation class is independent of their
representations.

To avoid misunderstanding, the following should be pointed out. The pos-
sibility that ¢ = b is admitted. Let %, and %, be proper simple subares of k with
a the initial point of k; and b the terminal point of k;. The arcs %, and % can
intersect in infinitely many points, even coincide. Fig. 1 shows four examples
of arcs £ in the same deformation class in the case a=b. The figures must of
course be superimposed so that the point ww=a coincides with w=">b in all four
cases. The lower right curve is designed to indicate the possibility of a curve

! Cf. Lemma 3. 3.
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w= q

Figure 1.

S
©

in the given deformation class with a simple spiral terminal arc. Another figure
could be drawn indicating an arc in the same deformation class with spiral like
simple subarcs at both ends. Reversed in sense the four arcs in Fig. 1 belong
to a second and different deformation class.

The regular case a<b. The arc k is termed regular if it admits a represen-
tation w(f) in which «'(¢) exists, is continuous and is never zero. For many
purposes it will be convenient to measure angles in rofational units, that is, in
units which equal 2 7 radians. The algebraic increment in

1 ’

— =t
(3-2) 5o BTg W ® ost=t,)
as ¢ increases from o to {, and arg w’() varies continuously will be denoted by P (k).
The angle P is in rotational units and represents the total angular variation of
the tangent to % as the point of tangency w(f) traverses k. Let ¢ be either end
point of k. The limiting algebraic increment of
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2—‘7; arg [w(t) — c] [o<t<t)

as t increases from o to ¢, and the argument varies continuously will be denoted

by Qc(%).
In the regular case with a#b we tentatively define d(k) by the equation

(3.3) d (k) = P(k) — Qa(k) — Qv (k) (@ # b)

and show that d(k) ts an integer.
The number d(%) equals the rotational units in the total angular variation
of a unit vector X which varies continuously as follows from

b—a
b—al

(3.4) |

back to the same vector. Let X start with the vector (3.4) and coincide with

(3.5) 'I%%{%l (t, =t > o)

as ¢ decreages from ¢, to o, excluding 0. Let X then coincide with

(3.6) IZ’)% o=t=t,)

as t increases from o to ¢,. Finally let X coincide with

(3.7) T —w)] (t,> t= o)

as t decreases from #, to 0. The initial and final vectors coincide with (3.4).

The algebraic increments of arg (2—7;) corresponding to the variations associated

with (3.3), (3.6) and (3.7) respectively are
- Qav P’ - va

8o that the resultant algebraic increment in angle is given by (3.3). The varia-
tion in X is continuous so that the statement in italics follows.

The general case a7b. The arc kis no longer assumed regular. A subarc of
k will be defined by an interval (o, ) for ¢{. If this subare is simple the vector

(3-8) w(z) — w(o)
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has a well defined direction. This direction will vary continuously with ¢ and
7 so long as the arc (o, 7) remains simple and ¢ <z. We term such a variation
an admissible chord variatzon. In such a variation we suppose that the angle

I

(3-9) 572 218 [0 () —w(o)]
has been chosen so as to vary continuously with ¢ and z. For an admissible
chord variation the algebraic increment of (3.9) depends only on the initial and
final simple subares.

Let %, and ks be respectively proper simple subarcs of ¥ of which the initial
point of ks is @ and the terminal point of % is b. Let the chord subtending
ks vary admissibly into the chord subtending %;. Let

P(k’ ka, kb)

represent the resulting algebraic increment of (3.9). Let the algebraic increment of
I
(3.10) S arg [w(®) —a]

as ¢ increases from its terminal value ¢, on %, to f{, be denoted by Q.(%, %) and
let the algebraic increment of

(3.11) L arg [w()— 3]

27T

as ¢ increases from o to its initial value #, on %, be denoted by @(k,%).
The difference order d(k) when a #£b is defined by the equation

(3.12) d(k) = P(k, ka, k) — Qalk, ko) — Qb (%, ks) (@a#1)

We state the lemma.

Lemma 3.1. The difference order d(k) as defined by (3.12), where a#b, is an
integer which is independent of the choice of ko and kv among proper szmple subares
of k with end poimts as prescribed.

The proof that d(k) is an integer is essentially the same as in the regular
case. As before, d(k) measures the angular variation of a unit vector which
initially and terminally coincides with (3.4) and may be broken up into the
variations which define — Q,, P, and — @, respectively in (3. 12).

It should be noted that any one of these three component angular variations
may be arbitrarily large in numerical value and increase without limit as %, or
ks tend to a or b respectively. This would certainly happen if £ had spiral like
terminal simple subarcs. We have the following lemma.
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Lemma 3.2. If k is regular
(3.13) k) =P— Q.— @ (@)
conststent with the earlier definition (3.3).

The following lemma is also immediately obvious.

Lemma 3.3. The difference order d(k) (ab) ts independent of any admaessible
deformation of k. There are accordingly at least as many deformation classes as there
are different values of d(k) for admissible arcs joining a to b.

For any integer m a »model> arc Kn joining a to b and with d(k)=m can
be defined as follows. For n=o0 take K, as the straight line segment from a to b.
Let ¢ be the mid point of K, and C be a unit circle tangent to K, at ¢ and to
the left of K, To define K, for n>o0 trace K, from a to ¢, then trace C » times
in the positive sense, and finally trace K, from ¢ to b. Take K_, as the reflec-
tion of K, in K, That d(Ky,)= m follows from (3.13). Since d(%) is invariant
under admissible deformations no two of the models K, are in the same de-
formation class. It can be shown' that each admissible curve % which joins a
to b and for which d(k¥)=m is admissibly deformable into K.

The case b=o00. We suppose that a is finite as previously, and make the
obvious extensions of previous definitions as follows.

The are & may be given in the w-plane. By convention it joins w=a to
w=o0 if its closure ¥ on the w-sphere joins w =ga to w =oco. It is termed
locally simple if % is locally simple on the w-sphere. Admissible deformations
are defined as previously but on the w-sphere. If kis locally simple there exists
a- value 7 with 0 <7 < {, such that the subarc z < ¢ < {, is simple in the finite
w-plane. On this arc |w(f)| becomes infinite as # tends to .

To define d (k) let #* represent the subarc (o0, s) of k, with o < s <, Then
d(%) is well defined. It is clearly independent of s provided s> 7. We ac-
cordingly set

(k)= d{k) (r<s<ty).

That d(k) is invariant under admissible deformations follows as previously.
The arc £ is termed regular if its closure & on the w-sphere is regular; one
then has the lemma.

! We make no use of this theorem and accordingly omit the proof.
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Lemma 3.4. In case k 7s regular on the w-sphere, a is finite and b==—o0, then

(3. 14) d(k) = P(k) — Qa(k).

In case % is regular on the w-sphere % has a definite asymptote in the finite
w-plane as t tends to #. The subarc % of % is regular, and if w(t) represents %,

d(k) = P(#) — Qu(#) — Quin (#).

On letting s tend to f, the last term tends to zero and the first two terms tend
to the corresponding terms in (3.14). Thus Lemma 3.4 holds as stated.
The case a =b. We here suppose that a is finite. The values

Qa (ky ]Ca) Qb (k, kb)

are undefined since they involve the null vector b —a. Moreover, the value of
d(k) which wounld be obtained by taking an appropriate limit as a tends to b is
not the invariant which is useful. Instead we proceed as follows.

In the regular case one sets

(3.13) d(k) = P(k) — Qa(k). (@a=1)
In the general case let
Qa (k, ka, kb)

equal the algebraic increment of
1
(3. 16) L [w(t) — a]

as ¢ varies monotonically from its terminal value f, on k. to its initial value

tp ou ks. In the general case one sets
(3 17) d(k) = P(ka ka, kb) - Qa(k, ka, kb) ((l = b)
The first relevant facts are as follows:

Lemma 3.5. The value of d(k) when a=0 equals % mod 1. It ts independent
of the choice of ko and ky among proper simple subarcs of k with end points as
preseribed, and is invariant under admissible deformations of k.

The angular variation which defines d(k) is that of a vector ¥ which starts
with {f,)—a and ends with this vector reversed in sense. In fact it is suffi-
cient if Y first varies admissibly as a chord from its initial position to the vector
b —w(t;) subtending %s; this variation gives P in (3.17). One continues with a

variation of
b—wlt)
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in which ¢ decreases from ¢ to ¢; and in which the angular variation is measured
by Q. in (3.17). But the terminal vector Y coincides with the initial vector ¥
reversed in sense so that d(k), measured in rotational units, equals { mod I.
The independence of d(k) of the choice of k, and kb is clear as is its in-
variance under admissible deformations.
We note the following.

Lemma 3.6. If k is regular and if a =1 (finite), or if a is finite and b=oo, then
(3. 18) d(k) = P(k) — Qa(k).

Models for the different deformation classes when b= oo are obtainable from
those for which b =0, (b, finite) by making a directly conformal transformation
of the w-sphere which leaves a fixed and carries b, to oo.

In case a = b (finite) the values of d(k) are found to be

. ey

—_— -

—3 L3
2 272 2
A positively sensed circle (' through a has a difference order . Reversing sense
always changes the sign of the difference order. To obtain a curve K, with a
difference order ')z=2—7i'2+‘1, and with » > o0, one attaches a small positively
sensed circle (, to € within C, and tangent. to C at some point ¢ other than
@ =b; one then traces C until ¢ is reached, then traces C; » times in the positive
sense, and continues to b on (. To obtain a curve with difference order — =
one can reverse the sense of K,, or more symmetrically reflect K, in the tangent
to C at a.

It can be shown that these models represent all possible deformation classes
of admissible curves when a=1>5. We shall not use this fact.

§ 4. Three deformation lemmas. Let h be a simple arc joining two different
points z; and 2z, in the finite z-plane. »Admissible> deformations of such an are
keep 2z, and #, fixed. If in addition only simple arcs are employed, the deforma-
tion will be termed an ¢sofopic deformation of /. A first lemma is as follows.

Lemma 4.1. Any simple arc h, joining z, and 2z, (2,7 2,) in the finite z-plane,
can be tsotopically deformed on an arbitrary nerghborhood N of h into a simple,
regular, analytic are joining z, to 2,.
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We begin by proving the following:

(a) The arc h can be isotopically deformed on N into a simple arc h* on which
sufficiently restricted terminal subarcs are straight.

For simplicity take 2, =o0. Choose ¢ so that 0 < 2e<|z,|. Let C be the
circle |z|=e¢ and E the open disc {|z|<e}. Let k; be a maximal connected
subarc of & on E with #=0 as an initial point. Let %, be a simple open
arc of which h, is a subarc, which lies on & and whose closure is an arc joining
diametrically opposite points of C. There exists a sense-preserving homeomorphism
T of E which leaves z =0 and C pointwise fixed, and maps /; onto a diameter
of E. It follows from a theorem of Tietze (7) that 7 may be generated by an
isotopic deformation o4 of E from the identity leaving C and z =0 pointwise
fixed.

1f e is sufficiently small, # will deform 2V E only on N and yield an image
of h with a straight initial subarc. Such a deformation of h will be isotopic.
Neighboring 2, b can be similarly deformed, so that (a) follows.

To complete the proof of the lemma, let g be a closed Jordan curve of
which the arc h* in (a) is a subare, and which is analytic and regular neigh-
boring z; and z,. Let R be the Jordan region bounded by g. Let R be mapped
homeomorphically onto a circular dise, conformally at points of B. On the disc
the pencil of circles throngh the images of z; and z, will have antecedents on
R which will suffice to deform h* isotopically on N into a simple, regular,
analytic are joining 2, to z,.

This completes the proof of the lemma.

In deriving deformation theorems for & when % joins 2, to 2, on § and
2,7 25, no generality is lost if it is supposed that a is real and positive and that,
with ¢ < 1,

i =—u zy=a (a # o).

For 8 can be mapped conformally onto itself so that z, and 2, go intoc —a and
a respectively for a suitable value of a.

A non-singular transformation of coordinates. Let the z-plane be referred to
polar coordinates (r,6). For the above @ and for each constant b on the interval
0= Db <1 a transformation from polar coordinates (g, @) to (r, 6) will be defined
by the equations

22
w —o(258). 0mp Gzeren
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For b= o0, (4.1) reduces to the identity. For b > o the interval 0 =< r < oo and
the interval

(4.2) o§g<%

correspond in a 1—1 manner. The circle ¢ = & corresponds to the circle » = a.
Subject to (4.2) the rectangular transformation of coordinates defined by (4.1)
is 1—1, analytic and non-singular. The ecircle ¢ =1 corresponds to the circle
for which

(4.3) 7=
We shall make use of the transformation (4.1) and prove the following lemma.

Lemma 4.2. A simple, regular, analytic arc h joining —a to a on S can be
isctoprcally deformed on S through regular analytic arcs ht into a cireular are joining
—a to a on S under a deformation in which the point with length parameter s on
h corresponds to a point

fo=t=1
4.4 z==2z(s, 1)
(4.4 lo =s5s=y9,

at the time t, where z (s, t) is analytic in the real variables (s, t), and z; # o.

To define the deformation (4.4) let ¢ be a Jordan curve on S which includes
h as a subarc and which is analytic and regular neighboring ¢ and — a. Let
R be the Jordan region on § bounded by g. Let C be a circle on £ and let R,
be the subregion of R exterior to C. The region R, can be mapped 1 — 1 and
conformally on an annulus 4 in such a manner that the mapping can be ex-
tended 1 — 1 and conformally over C and h. Suppose that the image £ of h is
on the outer circular boundary of 4. We shall deform % through concentric
circular ares £, o=t =1, on A into a prescribed arc % on the inner circular
boundary of 4. Such a deformation is readily defined in terms of the polar
coordinates of the annulus so as to have a regular analytic representation in
terms of ¢ and the arc length on k. The antecedent h: on R; of % on 4 will
deform h = h, into a subarc A, of C.

During the deformation h; of & the end points of s move. To remedy this
defect let h; be carried by a linear transformation az + d (unique) into an arc
H; joining —a to a. Note that H,=hy=~h, and that H; will be on S provided
the above arc %, has been chosen sufficiently short, and this we suppose done.

5 — 61491112 Acta mathematica. 79
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The deformation H; satisfies the lemma except that H may not remain on S,
although it begins and ends on §. We shall accordingly modify H; as follows.
Let r(f) be the maximum value of + on H; Note that »(0) and (1) are < 1.
Let [:] be the set of values of ¢ on which »(f)= 1. Let b(f) be a real analytic
function of ¢ for o =< ¢ =1 such that

(4.5) o=sb(t)<1 bo)=1(1)=o,
and so near 1 on [{] that
(4.6) rif) < L7 b=t=1)

With &(¢) so chosen let 7; be the transformation from the z-plane of (r, 6) defined
by the inverse of (4.1) when b= b(t), and let A' be the image T;H; of H; at
the time t. It follows from the choice of b(f) and from (4.6) that ¢ < 1 on A
so that Af is on S. Moreover, h°=~h and for every ¢ the end points of h‘ are a
and — a respectively. The arc h' is the circular arc H,.

The deformation h!, suitably represented, satisfies the lemma. The represen-
tation of A! is completely determined by the requirement that z(s, ) represent the
point on X! at the time ¢ into which the point s on h has been deformed. The
condition 2,5 0 is obviously satisfied and the proof of the lemma is complete.

(b) In the preceding lemma at most a finite number of arcs b pass through any
point of S not on h.

To verify (b) let z, be a point on S not on %. The set of pairs (s,f) on the
(s,t) rectangle which satisfy the condition z(s,?) = 2, is empty, or consists of a
finite number of pairs, or includes at least one analytic arc s =s(f). In the last
case the fact that z(s, f) 0 insures that the are ¢(¢) can be continued analytically,
in either sense, and in particular in the sense of decreasing ¢ until a boundary
point (s*, f,) of the (s, {) rectangle is reached. But z(s*, %) is then a point of h,
so that z, is a point of h, contrary to hypothesis. Hence (b) holds as stated.

The following lemma is a consequence of Lemma 4.2 and (b).

Lemma 4.3. Any two simple, regular, analytic arcs hy and hy which join —a
and a on S (as40) can be isotopically deformed into each other on S through simple,
regular, analytic arcs no more than a fintte number of which pass through any point
of 8 not on hy or h,.

The are ks, ¢ = 1,2, can be deformed on § in the manner stated in Lemma
4.1 and in (b), into a circular arc %; joining —a to a. But &, can be deformed
into %, through a pencil of circles joining —a to @ on S. Lemma 4.3 follows.
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§ 5. The ¢nvariants J;. Before coming to the definition of the invariants J;
a theorem on interior transformations will be recalled. See ref. (1) II p. 653. Let
g be a locally simple, sensed, closed plane curve: w == w(f), with w(f + 2 7) = w(f).
If e, is a sufficiently small positive constant, and o <e < ¢

;ﬂ arg [w(t + ) — w(t)] o=t=2m)

will be well defined,! and as ¢ increases from 0 to 27, will change by an integer
p(g) independent of e<e;, We term p the angular order of g. If g does not pass
through w = o, its ordinary order with respect to w =2 0 will be denoted by ¢(g).
The theorem which we shall use is as follows:

Theorem 5.1. Let B be a closed Jordan curve in the z-plane with interior G and
let F(z) be an interior transformation of some region R which includes G in its
interior, and which maps R into the w-sphere. If B is free from branch point an-
tecedents and has an image g which does not intersect w == 0 or oo, then

(5.1) n(0) + n(0) —u =1+ qlg) — p(9)
where n(0), n(co) and u are respectively the numbers of zeros, poles, and branch point
antecedents of F on G counting these points with their multiplicities.

To come to the definition of the invariants J;, let f be an interior trans-
formation from S = {|z|< 1} to the u-sphere with the characteristic set

(Ot) = (ao, Ay, « .o .y Op, blv ey b[u) (m= n + I).

Let A be a simple curve joining a, to a; on S with ¢ >o0. Two curves h; will be said
to be of the same fopological type if they can be isotopically deformed into each
other on § without intersécting the set (a¢) other than in h;'s end points a, and a;.
Let hf denote the image of h; under f. The curve A! will join f(a,) to f(a:) in
the w-plane and be locally simple. If %; is isotopically deformed for o = ¢ =<1
through curves of the same topological type, ki will be admissibly deformed in
the sense of § 3 through a uniformly locally simple family of ares joining fl(a,)
to f(a;) and intersecting f(a,) and f{a;) only as end points. The difference order
d(hf) is accordingly invariant under such deformations.

However d(A}) will change in general with the topological type of h; It is
possible to define another function V(h;) of h; which changes with the type of
h: exactly as does d(h]). To that end set

! Here and elsewhere the argument of any continuously varying non-null function F will be
taken as a branch which varies continuously with F.
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Alg,a)=(e—ay) 2 —ay) ... (2 —an)

(5.2) Blz,e)=(z —by) (e —b5) . .. (e — b (>0
B(z,e)=1 (w=0)
(5.3) Cile, a) = (Z:@wiz_évz;lggqu) (i > o).

The right member of (5.3) has a removable singularity at z = a, and at z = a.
We suppose that C;(z,a) takes on its limiting values at a, and a; so that

(@ — ) B{ao, @)

(5.4) Ci(ao, @) = Aaga)
(as — ag) Bl ) e
(a5, @) = (% @) Bla, a)
(5 5) Cl (ah (Z) A'(a,-, a)
Corresponding to a variation of z along h; set
‘ 1 z=a;
(5.6) Vi) = - farg Cile, o)) 2
Regardless of the arguments used
(5.7) V(k) =~ [arg Ci(as ) —arg Cilag,a]  (mod 1)

We shall prove the following theorem:

Theorem 5.2. The value of the difference
(5.7) d(h) — V (k) C=1,..., n)

is independent of h; among simple curves which join a, to a; without intersecting the
other points of the characteristic set ().

The value of the difference (5.7) is clearly independent of isotopic deforma-
tions of h; through curves of the same topological type, since this is true of both
terms in (5.7). By virtue of Lemma 4.1 we can accordingly restrict attention
to ares h; which are admissible in the lemma and in addition are regular and
analytic. If A} and h; are two such curves we seek to prove that (5.7) has the
same value for hi as for A;.

In accordance with Lemma 4.3 there exists an isotopic deformation of
hi into A; through simple, regular, analytic arcs ki (0=<¢=1) such that h{ inter-
sects the set (a) — (ag,a;) for at most a finite set of values ¢, of ¢£. It is only
as t passes through such a value ¢, that
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Figure 2.

(5.8) a(h7) — V()

could possibly change. Suppose that h* passes through just one point z=c¢ of.
the set («) —(ag, ai). The proof in the case in which there are several points z = ¢
on kP will be seen to be similar. We shall show that there is no net change in
(5.8) as ¢t —1t, changes sign.

Let 7', ", and h® be respectively the arcs h for which t=1{,—e, t,+ ¢ and f,.
For e, sufficiently small and o < e <e,, the curves h’ and A" will intersect ()
in a, and a; only. We suppose that e <e,. Without loss of generality we can
suppose that k' passes' z=_¢ to the right of h°. If h” likewise passes z =c to
the right of A% it is possible to deform P’ into h” without intersecting z = ¢.
(One moves each point of b’ along a normal® to h° until 2" is met.) In this
case (5.7) has the same value on " as on A”.

Suppose then that & passes z=c to the left of 2°. Without changing the
topological type of A" one can deform the points of A’ along normals to h° so
that 2’ comes to coincide with h, except on a short open arc %' which lies to
the right of h° neighboring z =¢. Similarly one can deform A" so that it comes
to coincide with h, except on a short open arc ¥’ which lies to the left of A°
neighboring 2=¢. We can also suppose that the end points of ¥’ and %” on h,
coincide in points P and Q. See Fig. 2.

Let M and N be points of 2° such that the arc (M N) of h° contains the
arc (P @) of A° on its interior. Let # be a simple open arc which joins M to N
to the left of h” so near h” that

B"=8(MP)K'(QN)

! More definitely, we suppose that 2’ intersects the normal to %° at z=c to the right of k.
? Provided e, is sufficiently ,small.
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is a Jordan curve with no points of (¢) on the closure of its interior. We refer
to the subarcs (M P) and (QN) of h°. The closed curve

B'=8(MP)K(QN)

is then simple and contains no point of («) other than z=¢. Let B and B” be
taken in their positive senses relative to their interiors. Let G’ be the region
bounded by B’, and G” the region bounded by B”’. We shall apply Theorem 3. 1
to f as defined on G’, and to f as defined on G”.

Case I. fon G'. Let ¢’ be the image of B’ under f. The point z=c¢ is the
only zero, pole, or branch point antecedent on G’. The numbers %(0), n(cc) and
u refer to z=¢. One only of these numbers differs from zero. In accordance
with Theorem 3. 1,

(5.9) n(0) + n(o0) —u =1+ ¢(g") — p{g).

Case II. f on G”. Let ¢” be the image of B’ under f. There are no zeros,
poles or branch point antecedents on G’ so that

(5.10) =1+ q(g")—pQ")

From (5.9) and (5.10) one obtains the relation
(5.11) n(0) + n{o0) — u=1[plg") — al¢")] — [p(9") — q(g"]).

Equation (5.11) will give us our basic equality.

On taking account of the fact that B’ coincides with B” except along the
arcs &' and % respectively, and that b’ (as altered) similarly coincides with h”
(as altered) except along &' and %" respectively, it appears that the right member
of (5.11) has the value

(5.12) A7)y —d(r)

in accordance with the definition of the difference order d.

On the other hand, V (k') — ¥V (h”) reduces to the variation of arg C; along
the closed curve % k”, and so equals the number of zeros minus the number of
poles of C; within this curve. Thus

-

(5.13) / V%)~V {#") = u— nlo) — n(eo)

in accordance with the definition of ;. From (5.11) then
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(5. 14) d(R") — d(h7) =V (") =V (¥).

There is thus no change in (5.7) as ¢ passes through {, and the theorem follows.
The invariants J;. As suggested by Theorem 5.2 we set

(5.15) Ji(f,a) = d(h) —V (k) (z=1,..., 7

for any simple arc h; which joins ay to a; without intersecting (a) — (ay, a:). The
numbers J; are independent of the choice of h; among admissible arcs h; and of
restricted deformations of f.

A necessary condition that two interior transformations with the same
characteristic set {(¢) be in the same restricted deformation class is accordingly
that their invariants J; be respectively equal. It will be shown in § 12 that this
condition is sufficient.

If (8) is an admissible reordering of (), then

Ji(f, @) # Ji( £, 8)

in general. In case of ambiguity we shall refer to J;(f, «) as the ¢* invariant
J: with respect to (c).

The value of V(h;) is independent of f and depends on (¢). The values of
d(hf) obtainable by changing f, differ by integers. One can accordingly include
all values of J; with respect to (a) in the set

(5.16) Ji=Ji(f% a) + m;

where m; is an integer and f° an interior transformation with the characteristic
set (). We thus have the theorem,

Theorem 5.3. The invariants J;(f,a) for a given ¢ belonging to two different
transformations f with the same characteristic set (¢) differ by an integer m.

It will be seen that there are functions with the prescribed set (@) for which
the integers m; are prescribed.

We term the sets (J) given by (5.16) with m; an arbitrary integer the sets (J)
associated with (a). '

§ 6. The existence of at least one interior transformation f with a prescribed
characteristic set (¢). In this section we shall establish the existence of at least
one f with the characteristic set (¢) by exhibiting the Riemann image of S with
respect to f. In the next section we shall show that except when u=o0 and
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m = 2, f can be composed with suitably chosen semi-restricted homeomorphismns
of S to obtain compesite functions f7 with invariants Ji(f, ¢) + 7: where 7; is
an arbitrary integer. These models are meromorphic only in special cases. Mero-
morphic models will be described by formula in § 10.

The following lemma will be used.

Lemma 6.1. There exists a sense-preserving homesmorphism T of S onto itself
in whici the image of an arbitrary point set

(6.0) 2y 2
of s distinct points on S is a prescribed set
(6.1) Wy, - o .y We

of s distinct points on S.

Let g be a simple arc which joins two points on the boundary of S but which
otherwise lies on S and passes through the points (6.0) in the order written.
Let £ be a similar arc passing through the points (6.1). The closed domains
into which g divides S can be carried respectively by sense-preserving homeomor-
phisms 7, and 7, into the closed domains into which % divides S and these
homeomorphisms can then be modified so as to. transform g into £ and in parti-
cular to carry the respective points z; into the ecorresponding points w; The

lemma follows.

Theorem 6.1. There exists at least one interior transformation f of S with a
prescribed characteristic set (a).

The set (@) is proposed as an ordered set of » zeros, s poles and p branch
point antecedents.

The function f affirmed to exist will be defined by deseribing the Riemann
image H of S with respect to f over the w-sphere 3. As defined H will be the
homeomorph of &, will cover the point w =0 of I r times, the point w=o00¢
times, and possess u simple branch points covering points of 3 distinct from w=o0
and ¢ =o00. One starts with an arbitrary open disc-like piece k£ of 2 which does
not cover w=0 or w =00, One then extends r+s narrow open tongues from £
over 3 with tips covering w =0 7 times and w =00 s times, keeping the extended
surface free from branch points and simply connected. To the boundary of % so
extended one joins u two-sheeted branch elements making each junction along a
short simple boundary are of the branch element so that these elements do not cover
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w=o0 or w=00. We can suppose that the boundary of the resulting open
Riemann surface does not cover w =0 or w =oco.

The Riemann surface H so obtained can be mapped homeomorphically in a
sense-preserving fashion onto § and, by virtwe of the preceding lemma, in such
a manner that the # points of H covering w = o, the s points covering w =00,
and the u branch points of H go respectively into the proposed zeros, poles,
and branch point antecedents of the given set (a).

The proof of the theorem is complete.

The case w=0 m==2. In all cases except this one the composition of
a particular transformation f possessing a prescribed characteristic set, with a
suitably chosen homeomorphism 7 of § will yield (cf. § 8) a transformation f7
with the given set (¢) and invariants J; differing from those of f by arbitrary
integers.

This method of composition fails when p=o0 and m==2. In this case there is
but one function Ci(z,¢), namely C,=1, so that V(h;) as given by (5.6) reduces
to 0. There is but one invariant J; namely J;, and

(6. 2) J, = d(R).

The set (a) reduces to (ay, a,) and there are two cases according as @, is a zero

or pole. In the case of two zeros a, and a,, the only possible values of J, are
(63) __.i, — ey =y T, e

and in the case of a zero g, and a pole o,
(6. 4) cie—2, —1, 0, 1, 2,

We state the following theorem:

Theorem 6.2. In case u=0 and m=2 there exists an interior transformation
fof 8 with a prescribed characteristic set (ay, a,) with J, arbitrarily chosen from
among the values (6.3) when a, is a zero, and from among the values (6.4) when a,
ts a pole.

A proof of this theorem may be given by constructing a Riemann surface
for the inverse of a function of the required type. However, the theorem is
also established by the formulas of § 10 and the more topological proof will
be omitted.
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§ 7. The variation in J;(f,e) caused by variation in (¢). Let f be an interior
transformation of S with the characteristic set (¢). Let ff, o =< ¢ =1, be an ad-
missible deformation of f in which (¢f) is the characteristic set of f* at the time ¢.
Recall that

(7.0) Ji(f,a) = d(Bf) — V (ha),
by definition. As f is deformed, d(hf) remains invariant while ¥ (h;) depends on

(¢) but not on /. We have the important result:
The algebraic increment

(7.1) d4d;=Ji(f*, ') — Ji(f°, &)
in the tnvariants J; in an admissible deformation f! depends only on the path (af)

and not on f.
More explicit formulas for J; and 4J; are needed. To that end set

(7.2) d(h]) = w; (mod 1),

and recall that »; can be taken as { when a; is a zero, and o when a; is a pole.

Let ¢; be 1 or —1 according as a; is a zero or a pole. Then

(mod 1).

N

1
(7.3) wi— ——arg o=

To make the formula for J; more definite we shall use a branch arg X of the

argument for which
o=arg X <z2nw

signalling this branch by the addition of the bar. In accordance with the de-
finition of C; in (5. 3)

e, o) = 289 4, — (i %0
Ci(ao, a) = Af,—((t:)j—z% (ao - ai).

On referring to the formula (5.7) for V(h;) and making use of (7.0), (7.2) and
(7.3), one finds that

(7. 2) ,L(ﬁa)—@[?“‘”i’“—“)] @[A;(M]+L- (i=1,...n)

" 27| Blaye) | 27 | Blag o)

where I; is an integer, and e;=1 when a; is a zero, and —1 when a; is a pole.
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The integers I;(f, e) are invariant under restricted deformations of f and are
uniquely determined by f and (@). They are fundamental in the meromorphic theory.
From (7.4) and the continuity of J(f% o) one obtains the following result:

Lemma 7.0. If f!, o< t=1, is an admissible deformation of a transforma-
tion f with characteristic set (¢) and with (¢f) the characteristic set of f*, then the
difference

(7.5) 4 = Ji(f1, ') — T ( f° ) G=1,...n)

zs given by
=] 2z Ei;a.—_ai) _ %(aﬁ '_bj) =
(76) 0;()-)"“ [; 277 (af]_ai _72 27 af)—bg

where

kE=1,..,t—1,¢+1,..,n j=1,..., 4;

where ) represents the path (¢!); and where the argument in (7.6) is immaterial as
long as a branch which varies continuously with t is wused.

A path (¢f), 0 < ¢ =1, which leads from a set (§) back to (8) will be called
an a-circuit. We shall also use paths A in which (e') is an admissible reordering
of (¢®)=(8). We term such a path an admissible a-circuit mod 8. As previously,
admissibility of a path A requires that a; = af.

The difference #J; in (7.5) will concern us not so much as the difference

8= (4, 8) — Ji(£,6) G=1,...n)

because it is necessary to compare the J;'s with reference to the same set (8).
When A is an e-circuit,

0J; = 4,

and in this case dJ; depends only on i and not on the initial and final sets (J).
If 4 is an admissible e-circuit mod 8 which is not an c-circuit, this is never the
case, as we shall see.

The group 2 of J-displacement vectors. Let {J, 8} denote the set of invariants
(J) realizable as invariants of an interior transformation with the characteristic
set (8). It will presently be seen that the set {J, 8} is identical with the complete
set of (J)'s »associated> with (§) in (3. 16).

When (¢f), 0o =t = 1, represents an c-circuit A leading from () to (8), the
differences 4 J; given by (7.6) are integers »;. If one sets

Ji=Ji(f*, 8) T () = J:(f", 8)
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it is seen that the a-circuit A Znduces a transformation
Ti(J)=(J) + ()

of {J,B} onto itself, in fact a translation. We term (r) the J-displacement vector
tnduced by i The J displacement vectors induced by a-circuits from (8) to (8)
form an additive abelian group £. The group Q is a subgroup of the additive
group G of all integral vectors (r); 2 may coincide with &, be a proper subgroup
of G and even reduce to the null element.

We shall seek a set of generators of Q.

To that end let 2z, and 2z, be any two distinct points of (8). An eo-circuit
G (2, 2,) leading from () to (8) will be defined in which all points of (8) except the
pair (z,2,) remain fixed while the paths 2,2 (0 = ¢ < 1) are such that 2, — ¢
rotates through an angle —2x2. We suppose, moreover, that these paths lie on
a topological disc on S which does not intersect the set (8) — (2,,2,). Such paths
clearly exist. The disc can then be isotopically deformed on itself, into a disc
arbitrarily close to a point. If this e-circuit is used in (7. 6), the only terms which
will make a non-null contribution are those which involve &) — 2! or 2} —2i.

The case p>o0. In this case we introduce the «-circuit

A= G (ax, b)) k=1,...,n)
and obtain the following lemma.
Lemma 7.1. Whern pu> o, there exist a-circuits A, k=1, ..., n, for which the
components of the corresponding J-displacement wvectors are 08 ¢=1,..., n. These

vectors generate £ as the complete group G of integral vectors (r).
The case w =0 and m > 2. In this case the «-circuits

X-rs = G(ar, as) (74 < S)
are introduced. The following lemma results.

Lemma 7.2. When u=o0 and m>2 there exist a-circuils Ars(r,s=o0,1,..., n;
< s), for which the corresponding J-displacement vector D,s has the components

(7.7) — 0 — 4 ((=1,2,...,0)

when rs7# o, and when r =0 has all components 1 except the s-th, which is zero.

The vectors D,; generate the group Q. When m s odd, 9 s the group G of all
integral vectors (r). When m=4,6, 8, ..., 2 is the subgroup of G of vectors (r) for
which Zv; 1s even.

! The Kronecker delta gives the 7-th component.
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The components of D,, are obvious from (7.6).
When m is odd, the matrix whose columns are the components of the vectors

(7.8) Dy, Dys, ... Dn_yn Dy, (m=mn+1)
has the determinant w =— 1. For example, when m = j:
—I O o0 o© —r o o0 o
~I1 —I O I —I —1 ©0 O
0 —I —1 I 0o —1 —I ©
o o—1 1| | o o—1 1

When m is odd, the vectors accordingly generate G and hence 2.

To treat the case m =4, 6, 8, ..., let us term a vector () for which Iv; is
even, of even category, otherwise of odd category. When m is even, each vector
D;, is of even category, and hence the vectors generated by the vectors D,, are
of even category.

The vectors D, generate the group R.

To see this let 4 be an arbitrary admissible a-circnit. The vector af— af
(r <s) rotates through 2s an integral number m,s of times (possibly zero) as ¢
increases from o to 1. It follows from (7. 6) that the J-displacement vector induced
by A has the form

—~ZMys Drs
where the summation extends over the pairs (r,s) with » <s. Thus the vectors
D, generate Q.

It remains to show that every vector (r) of even category is in Q. To that

end we introduce a vector £ whose components are §;. The matrix whose columns

are the components of the vectors
(7. 10) Dy, Dyyy ..., Dy, E

is of odd order » and has a determinant 1 so that the vectors (7. 10) generate G.
Thus (r) is of the form

(7.11) (r)=sE+D
where s is an integer and D is in £. Observe that
.D]g_D23+.D34"—+""_‘_Dn-—1n+Dl'n:—zE

so that s in (7.11) can be taken as 1 or 0. The vector D is of even category,
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and if (r) is of even category, s in (7. 11) cannot be 1. Thus (r) is in R, if of
even category. This completes the proof when m=12,4,6,8,....

The case w=o0, m=2. In this case there is but one value of 7 in (7.6),
and #J;,=o0. Hence 2 reduces to the vector (r) =o.

§ 8. The generation of interior transformations by composition f with restricted
homeomorphisms n. We have seen in § 6 that there is at least one interior trans-
formation f with a prescribed characteristic set (8). We shall see to what extent
one can choose restricted homeomorphisms 7 of S onto itself so that f# has
invariants (J) arbitrarily prescribed from those associated with ().

To that end we first connect restricted homeomorphisms 7 leaving (8) fixed
with e-circuits from (8) to (8).

Any sense-preserving homeomorphism 7 of S may be generated as the ter-
minal homeomorphism of an isotopic deformation 7' of § from the identity.
More explicitly there exists a I-parameter family #' of homeomorphisms S onto
S of the form

(8.1) =gz (o=t=1)
where ¢ is continuous in z and ¢,

z=gplz,0)
and

(&) =@z 1).

Let (of) be the antecedent of () under 5. If 7 is a restricted homeomorphism
leaving (8) fixed, (of) determines an e-circuit 4 from (8) to (8). We shall say that
n tnduces this e-circuit. If f is an interior transformation with the characteristic
set (8), the composite function of 2z, f#', affords a terminally restricted deforma-
tion f* of f in which the characteristic set of f* at the time ¢ is (af).

Formula (7.6) is applicable to the fdeformation f!= f#' with its associated
a-circuit (¢f), o <t=1, and yields the result

(3. 2) T @ — LB =r  (i=12...,0)

where (r) is the J-displacement vector determined by {ef). This displacement vector
is independent of the choice of e-circuits A induced by % since for the same
S (8), and % in (8.2), a second choice of a i induced by #» cannot change (r).
The vector (1) is a J-displacement vector D,(n) determined by 5 in the group L.
If D,(4) is the vector in Q deternined by the «-circuit A, then

D,(n) = D, (2)
whenever 2 is induced by #.
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It can be shown that any e-circuit (¢f), 0 <¢=1, from () to (8) is induced
by some restricted homeomorphism of S leaving (8) fixed; to establish this one
must show that there exists an isotopic deformation 7! of S from the identity
in which (¢!) is the antecedent of (8) at the time f and in which %' is a restricted
homeomorphism leaving (3) fixed. The details of a proof of this need not be
given. It is sufficient to suggest to the reader that 7' can be defined by a
sequence of deformations in each of which just one point of (af) is moved from
an initial point 2, to a nearby point z,. One can make use of a deformation o/
from the identity of a small circular neighborhood N of #, defining the deforma-
tion o as the identity outside of N.

We summarize as follows:

Lemma 8.1. FEach restricted homeomorphism n of S leaving (8) fixed induces
a class of a-circusts A leading from (8) to (8), and every a-circust leading from (8)
to (8) 7s induced by a class of restricted homeomorphisms n leaving (8) fixed. If g
induces A and (r) is the J-displacement vector determined in (7.6) by 1, then (8.2)
holds for every interior transformation with (8) us a characteristic set. The vector
() depends only on 1 and not on the choice of an a-cireuit A induced by 7.

The reciprocal relations between restricted homeomorphisms 7 and their induced
a-circunits and the theorems on the nature of the group 2 of J-displacement vectois
induced by a-circuits yield the following theorem:

Theorem 8.1. If f° is an interior transformation of S with the characteristic
set (8) and invariants (J°), suitably chosen restricted homeomorphisms 1 of S leaving
(8) fixed will yield interior transformations f°n with invariants (J°) + (v) where

(1) (r) s an arbitrary integral vector when u> o0, orr when w=0 and m is odd,

(2) () #s an arbitrary integral wvector of even category when u = o and
m=4,6,8,...

(3) (r)=(0) only, when u=o0 and m = 2.

No other values of (J) can be obtained by composition fOn of f° with restricted
homeomorphisms 1.

§ 9. a-circuits mod (B) and semi-restricted homeomorphisms' 9 of S. We resume
the theory of admissible e-circuits mod (3) initiated in § 7. As in § 7 we are
concerned with an admissible deformation f?, o <¢= 1, for which (¢ is the
characteristic set of f' at the time £. We suppose that (¢') is an admissible re-
ordering of (¢°). In particular a}= aj.

! The present section could be omitted by a reader who wishes to comprehend first the main theory.
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Such a reordering defines a permutation = of (1, ..., n) in which 7 is replaced
by =) and
(9. 1) ai = ax() (t=1,..., n).
For any interior transformation f with characteristic set (a?),

(9-2) Ji(f,0') = Jxw ([, @) (t=1,...,m)

in accordance with the definition of (J). If (xy,...,%n) is an arbitrary set of »
symbols, we shall write

(9:‘,,(1), oy Taf)) = n(x)
Thus (9.2) takes the form

[/ (f, e)] = = [T (£, a°)].

It follows from (7.6) that

(9.3) Ji(f1, a’) =Ji(f*, a") + 6:(2) [% = ().

From (9.2) and (9.3) one sees that

(9-4) Tai (1, 8) = Ji(f°, ) + 0:(2) (8) = («°).
Equations (9. 4) may be written in the vector forms

(9-35) a[T(f* 8] = [J(f°,8)] + [6].

(9.6) L7 (Y 8] == {T (£, 8) + (61}

We thus have the following lemma:

—t
——

Lemma 9.1. Any admissible a-circuit mod (8) of the form i={{a!), 0=t

n which
1 1 0 0
(ai, ..., an)=n(al, ..., an),
tnduces a transformation

(9.7) T (J) = a {(J) + (W)}

of {J,8} such that for any admissible deformation f' of an interior transformation
in which (&) is the characteristic set of [t the invariants (J') of f* with respect to
(8) are the transforms Ti(J°) of the invariants (J°) of f° with respect to (8).

The transformation 7T of {J,3} is compounded of a translation (J) + (6) and a
permutation 7' of the components of the translated vector. It is a translation
if and only if = is the identity. If s is not the identity, the numbers 6;(1) are
not integers in general, so that (J) + (f) is not in {J,3} in general.
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It follows from (g.4) that

(9.8) Z [/ 8) — Ji( /0. 8)] = 26, = q(4),

introducing ¢q. Here ¢ is an odd or even integer depending only on A. The trans-
formation T; is termed of odd or even category according as ¢ is odd or even.
When p=0 and m =4, 6, 8, .. ., all translations of {J,} induced by a-circuits
have been seen to be of even category. Transformations of odd category are
sought in this case. We shall prove the following lemma:

Lemma 9.2. When =0 and m is even, a necessary and sufficient condition
that an admassible a-circuit A mod (B) induce a transformation U; of {J,8} of odd
category is that (¢') be an admissible odd permutation of (°).

To prove the lemma we evaluate ¢(4) in (9.8). When u =0, a summation
of the right members of (7.6) yields the result

(n _n_l) arg H (ab — af,)] )
3

where ¢, 7, k=1,2,...,n with ¢<j. Since a;=af and % — 1 is even, the con-

(9-9) 0= [E - o~

n PR
¥

o)

tribution of the last term in (9.9) is an even integer. Observe that

(9. 10) [T ~a) =+ 1T (@t —a)

ij i,j
according as (a') is an even or odd permutation of (¢%) so that ¢() is corres-
pondingly odd or even. This completes the proof of the lemma.

It is a consequence of this lemma that, when y=o0 and m=4,6,8, ...,
there exists a transformation U; of {J, 3} of odd category. For two at least of
the points a,, a,, a;, are of like type (zeros or poles) and there accordingly exists
an admissible a-circuit mod (§) which interchanges these two points but which
otherwise leaves () fizxed.

The following lemma can now be proved:

~Lemma 9.3. Let J° be an arbitrary set in {J, 8} and let (») be an arbitrary

set of n integers. When u=o0 and m==4,6, 8.+ .., there exists a transformation
T, of {J,8} induced by an admissible a-circuit & mod (8) such that the relation
(9.11) Ti(T)=(J) + ()

holds for (J)={(J° and the given set (»).

6~ 61491112 Acta mathematica. 19
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The lemma is a consequence of Lemma 7.2 when (r) is of even category.
There then exists a 7' such that (g.11) holds for every (J) in {J, g8}.

Suppose then that (r) is of odd category. It follows from the preceding
lemma that, when pu=o0 and m =4, 6, 8, . . ., there exists a transformation U of
{J,8} of odd category induced by an admissible a-circuit mod (3) which replaces
(8) by an admissible reordering (8'). Set

(9. 12) U — () = (s).

The set (s) is of odd category and hence (r) —(s) is of even category. In ac-
cordance with Lemma 7.2 there exists a translation 7 of {.J, 8’} of even category
induced by an e-circuit from (8') to (§') such that
VIT+ (&= [J° + (s)]] + () — ().
On making use of (9. 12) it is seen that
VU= (J% + ()
Hence the transformation 7'= V [ satisfies the lemma.
The case w==0, m = 2. In this case there is but one invariant J, and this
invariant has the form
J(f, @) = J,(f, ap, a,) = d(R])
where h, is a simple curve joining «, to a, on S. The term ¥V (h,)=o0 since
(,(z) =1 in this case. When a, is a zero and a, is a pole, we admit no relative
a-circuits which interchange ¢, and a,.
When both a, and a, are zeros, we shall admit relative ¢-circuits which inter-
change a, and a,. When m =2 and u = 0, the right member of (7.6) is devoid

of terms so that
(0. 13) Ji (L a4y, ap) = J1(f0a Uy, a,)

it (¢f) interchanges a; and @, during the deformation f.

A simple but striking illustration may be given. Let f be an interior trans-
formation of § with u=o0, m =2, and with zeros at real points ¢ and — a.
(o<a<1) Let F(z)=f(—2). There exists no admissible deformation of f into
I which returns each zero into its initial position. This is a consequence of the
fact that
(9, 13) JIE, ag, a) =— J(f, ag, a)) # 0
while the existence of the deformation would require that

J(F, ag, @) = I (S, ag, ay)

’

contrary to (9.13)
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Let %, be h, reversed in sense. Then in accordance with the definition of J
(9.14) Ji(f ag, ;) = d(h]) =~ d(k]) = — J,(f, ay, ao)-

It follows from (9. 13) and (9. 14) that when (a!) interchanges the zeros in a de-
formation f*

(9. 15) I (S ag, a)) = — I, (f°, ay, ay).

We summarize in the lemma:

Lerama 9.4. When p =0 and m = 2, admissible deformations f* with charac-
teristic sets (a'), 0 < ¢ = 1, may inlerchange two zeros a, and a, but must return a

zero al, and pole a to their initial positions. In any case

(9. 16) Ji(fap a) =% J, (f°, ao, ay)

where the minus sign prevails if and only if (') interchanges two zeros.

Contrast this result with the fact that, when fis an even admissible function
with just two zeros on S and no poles, f can be restrictedly deformed into f'(— 2);
in fact by the identity. The reason is found in the fact that an even function
has a branch point antecedent at the origin so that u>o.

Semi-restricted homeomorphisms 5. The developments of § 8 showing the reci-
procal relationship between a-circuits, (¢f) and restricted homeomorphisms 5 which
induce them is paralleled here by the relationship between admissible a-circuits 4
mod # and semi-restricted homeomorphisms 7 which admissibly reorder (8). Let
7' be an isotopic deformation of S generating # and let {c!) be the antecedent
of (8) under #t. We say that 7 induces the relative e-circuit A= {(cf) 0 = t=1}.
The fdeformation f*= f»' has the characteristic set (¢!) and with i comes under
Lemma 9. 1, so that for the transformation 7; of [.J, 8} given by (9.7) and in-
duced by 1

(9.17) T (fn, (8] = T.1J(f,8)]

As in § 8 we infer that each such relative ¢-circuit A is »induced» by some semi-
restricted homeomorphism 7. Hence if 4 is an arbitrary admissible e-circuit mod g,
there exists a semi-restricted homeomorphism 7 admissibly reordering (8) such
that (9. 17) holds for every f with the characteristic set (8).

The results of the present section on transformations 7 of {J, 8} induced
by relative e-circuits A together with the results of the preceding section on

translations in the group £ lead to the following theorem:
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Theorem 9.1. Let f be an interior transformation of S with the characteristic
set (8) and let (v) be an arbitrary set of n integers. Except in the case in which
=0 and m =2 there erists a semi-restricted homeomorphism n of S, admissibly
reordering (8) but leaving a, fixed, such that

(9.18) Ji(fn,8) =J(f,8) + r: G=1,...n).

When u=o0, m =2, and 1 ¢s an arbitrary homeomorphism learing a, and a,
Sfixed, or wnterchanging a, and a, in case a, and a, are zeros, then

Jl(f’%ao’ax):i' Ji(f, ap, a,)

where the minus sign holds if and only if n interchanges a, and a,.

It is of interest to add that when % in (9. 18) is restricted, and (r) is fixed,
(9.18) holds for all transformations f with the characteristic set (8) if it holds
for one such f. This is not the case in general if % is not restricted.

Part II. Meromorphic Functions.

§ 10.1. The residual function @(z) and the canonical functions F (z, a,r).
Suppose that f is meromorphic on S and possesses the characteristic! set (a).
The function @(z) defined by the equation

@) (2) Bz, q)

(ro.1) 7o)~ PO 4(z0)

is analytic on S except for removable singularities, and never zero. We term
@ (2) the residual function of f.

The algebraic increment of arg ¢ along any simple regular arc A; joining a,
to a; on S equals 27J;(f, o), as we shall see. To establish this fact a lemma
is needed.

Let h: be referred to its arc length ¢ measured from z =@, Suppose that
the total length of h; is o. Let e be a constant with o < e < 6. Suppose that
z(s) and z,(s) are functions of s of which z(s) represents the point s on h; and
z,(s) the point s + #s on h;, where 4s=e. The parameter s shall vary on the
interval

(10.2) 0O=Zs=o0—e

! In the preceding we have supposed that > 1. The results of the present section hold for
m=1 and with obvious interpretations for m =o.



Deformation Classes of Meromorphic Functions. 85

With z(s) and 2,(s) so determined, set
(10.3) dz=1z(s)— z(s).

We shall consider the increment of angle given by

Az ]s=u-c.
2,(8) — ay) (z(s) — ay)

(r0.4) Uhi, &)= [arg (

a=20
Lemma 10.1. The value of Ulhi,e) is zero.
Reference to the definition (3.12) of the difference order shows that

2xd (ki) = U(hi,e)
regardless of the choice of ¢ <g. On letting e¢ tend to o it appears that
U(hi, e) = Q.
The following theorem is one of the bridges between the theory of interior
transformations and meromorphic functions.

Theorem 10.1. The algebraic increment E (h:) of the argument of the residual
Sunction @ of f as z traverses a simple, regular arc h; leading from a, to a; on S
equals 2w J;(f, ).

The value of E(h:) is independent of the choice of h; among regular arcs
leading from @, to a4; since p %0 on 8. Hence no generality will be lost if
h: does not intersect the set (@) — (a,,a). We suppose h; so chosen.

We make use of the terminology preceding Lemma 10.1. Set

df=flz,(s)) — flz(s]] o=s=o—e)
Recall that
¢ :‘}‘— E .
It is clear that E(h;) is the limit as e tends to o of

§=0g—¢

A4
[arg 2{— arg f— argz]

8=0
where 2 =12(s) in f, B and A.' Recall that
B C;‘ (Z, a)

A (z—a)(z—a)
It thus appears that E (k) is equally the limit of
(10.3) larg 4f —arg f—arg C;— U (hs, )=, °.

s8=0

. B . .
! Strietly arg f and arg i are not defined for s = o, but limiting values exist. The appropriate

conventions are understood.
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But U(h:, e) =0 according to Lemma 10.1, and
§=o¢

V (k)= =~ arg C;

$=0
In the terminology of (3.3), it follows that

E(h) = 272 {P(h]) — Q(h]) — V (h)}.
By virtue of Lemma 3.6,

a(hf) = P(R)) — Qo(h)

so that _
E(h) =2nr[d(h]) — V (k)] = 2 n (e, a).

This completes the proof of the theorem.
On multiplying the members of (10.1) by 2 —a; and letting z tend to a; as
a limit, one finds that

(10.6) pla) = o

where ¢;=1 if a@; is a zero and —1 if g; is a pole.
The following lemma is basic.

Lemma 10.2. Corresponding to an arbitrary admissible characteristic set ()
and 15 a function Y(z) which is mon-null and analytic on S and satisfies (10.6) in
terms of (), there exists a function F(z) which is meromorphic on S, possesses the
characteristic set (), and for which the residual function zs ¥(z).

Such a function F is obtained as an integral of (10.1) in the form

LN
(10.7) F=0Ced 4°° (C = const > 0)
upon removing singularities at the proposed zeros and poles of («), and any
function F with the residual function ¢ and characteristic set (¢) is of this form.

Because 1(z) satisfies (10.6) the residue of %B at a; is ¢, so that a; is a zero

or pole of F' as required. Moreover

F_ B

F ¥
and since Y70, F'=o0 only at the zeros of B. Thus F possesses the charac-
teristic set (e) and has the residual function (z).
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It will simplify the notation if one sets

(10.8) Ejél(((j:: Z; = g;(a) (j=o,...,n)

where ¢;=1 if a; is a zero and —1 if a; is a pole. The g/s are functions of (a)
which one can suppose given before one has knowledge of the existence of a
function f from which they are derived. In taking arguments of these gi's we
have referred to a choice of the argument for which

(10.9) o=arg X <2nx
signalling this choice by adding the bar. Similarly we shall write
(10. 10) log X =1log | X |+ V —1arg X.

With this terminology we write (7.4) in the basic form

(10.11) eﬁ(f,a)=ﬁ—g;f:(a)—*£r—if:(a) + Ii(f, @)

recalling that I; is an integer. Given (a), (I) uniquely determines (J) and conversely.

The fundamental existence theorem for meromorphic functions follows.

Theorem 10.2. Corresponding to any admissible characteristic set (a) and ar-
bitrary set (r) of n integers there exists a function F(z, a,r) which is meromorphic
in 2z on S, whose characteristic set is (@) and whose invariants [I(F,a)} = (r).

In terms of the given integers (r) with 7, =0 adjoined, set
(10.12) ¢j(a,r) = log g:(e) + 21V —1 (j=o0,...,n).

The Lagrange interpolation formula suffices to yield a polynomial® P(z) such that
Plaj) = ¢ (j=0,...,n)

For fixed (¢) and (r) we shall show that the function'

(10.13) W(z) = eP®

is admissible as a residual function and yields a solution ¥ of our problem.

In fact,
4’ ((Ij, (Z)
B (a;, @)

Play) = eFY) = ¢ = g; = ¢; (j=o0,1,...n)

! More explicitly we could write

P=P(z0a,r) Y=y, ar.
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so that conditions (10.6) on a residual function are satisfied. To apply Lemma
10.2 we note also that ¥(2) is non-vanishing and analytic on S. Hence 1 is the
residual function of a function F with the given characteristic set (a).

It remains to prove that I,(F,a)=17; Since 9> 0 on § there exists a single-
valued continuous branch of argy over §, and for any such continuous branch

(10.14) 2 Ji(F, o) = arg y(a) — arg ¥(a)

in accordance with Theorem 10.1. For the moment let X denote the coefficient
of V=1 in X. Then P(z) is a continuous branch of arg v by virtue of (10. 13).
On setting arg ¥ = P(2) in (10.14) we find that

2nJi(F, o) = Pla) — Pla) = & — &.

From the definition of ¢; it then follows that
Ji(F, a) = (a.r_gg_L + ,.{) __argge.
27 27

Reference to (10.11) shows that

L(F a) =1 (t=1,...,n).

Thus the characteristic set of I' is (¢), and its invariants (I) with respect to
(¢) equal {r). This completes the proof of the theorem.
The preceding polynomials P will be taken in the explicit Liagrangian form

Ca O
(ro.138) P(Z’c)=A[(z“:a0)A6+” +(z~—a,,)Af,:|

where
A=(z—a)la—a)...(¢— an

and A; is the value of A’ when z =g;, With ¥ given by (10.13) we shall refer

to the canonical functions

vz,
(10. 16) Flz,a,r) = Uef i
and will determine ' by the condition that

F.(a, e, 7)=1.
In (10.16)
A=A(z,¢) B=Blza yYv=vl ar).
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§ 11. The monogenic continuation with respect to (a) of the funmctions F(z,a,r).
Starting with a particular value (8) of (a), a point 2z and set (r), one can continue
F(z,a,7) as a function of (@), into a monogenic function M (z,a) of (o). As we
shall see, M (z,a) may be single-valued in (c), as happens in the case p =0, m=2,
or it may be infinitely multiple-valued. The branches of M(z, ) form a subset
of the functions F(z, e,7) including the extreme possibilities that this subset
consists of all of the functions F(z, a,7) or just one. For different sets (r) no
two functions F'(z, a,7) are identical in z; identity of the functions would imply
identity of their invariants (J) and through (10.11), identity of their invariants
(I) =(r).

The mechanism of the continuation is best understood by noting that M (2, @)
is' a function of () defined by (10. 16} through the mediation of the ¢'s. The ¢'s
enter through the polynomial P(z,¢) of (10.15). Finally, the ¢'s are given as

functions
(11.1) ¢jle, ") = log g; + 2min; (ro=0o0).
For each set of integers (r)=1(ry, ..., 7s), (11.1) defines [¢(c,7)] as an analytic

vector function, more precisely as a branch of an infinitely multiple-valued fune-
tion of (a). It is not implied that all elements [c(a,r)] are branches of the same
monogenic function of (). As («) varies continuously through a point (8) the
functions ¢j(¢,r) may suffer jumps of the form

(r1.2) A= 2mw10; (1=0,...,n)
where gj==1 1. We need the following lemma.

Lemma 11.1. A jump of the c;la,7)'s in which all ¢i's change by 27i or by
—2m¢ corresponds to no singularity in the right member of (10. 16).

Corresponding to any change in the ¢'s in which ¢ is a constant % in-
dependent of j set ¢j=c¢; + k. Then

P(z,¢) + k= Ple, ¢).
When in particular ¥ =1 27 the new residual function is
w(z, cl) —_ eP(z, ey teni — w('g’ C)

so that there is no change in the right member of (10.16).
Any continuation of an element [e¢(e,7)] by itself alone or through other
elements [¢(a,s)] in which the only singularities are a finite number of jumps of
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the type in Lemma 11.1 will be termed effectively analytic: such a continuation
causes no singularity in the right member of (10. 16). The set of elements [¢ (e, )]
defined by (11.1) will not in general include all of the analytic continuations
with respect to (¢) of a given element [c(e,s)], because we have taken r,=o.
However, the set of elements [¢(e,7)] does permit »effective» analytic continuation
of any given element [c(e,5)]. A continuous variation of (¢) in which the func-
tions ¢(e,s) suffer jumps (11.2) at a point () will correspond to no singularity
in a continuation of M(z,e) in which one changes at (8) from [c(e, s)] to [¢(e,7)]
with
ri=8 — 0; + 0, (t=1,...,n)
in (10.12).
The following theorem is a consequence of this result.

Theorem 11.1. Awy one of the monogenic functions of (a) obtained by analytic
a-continuation of a particular element F{z, a,s) ts composed of single-valued branches
Jorming a subset of the canonical functions I'{z, «,7).

There remains the problem of determining how the functions F(z, e, r)
combine to make up the monogenic functions M(z, @) of (¢). A necessary and
sufficient condition that F(z,a,r) be continuable with respect to (o) into F(z, , s)
is that there exist an e circuit 4 ={(cf), 0 <¢=<1,} from (8) to (§) and a func-

tion M (z, ) monogenic in (e¢) such that the family of functions

(r1.3) Sft=DMz,d)
obtained by analytic a-continuation from the branch

Mz, 8)= Flz,8,7)
terminate with the branch
M(z,8) = F(z,8, s).

This is possible if and only if there exists an «-circuit A from (8) to (§) for which
the induced J-displacement vector in £ is

(11.4) AT =d1=(s)—(r).

The necessity of this condition is obvious since f* is merely a special case of
the more general restricted fdeformations considered in § 7. The existence of
such an a-circuit A = (af) is also sufficient. For one can continue F'(z, e,7) along
the path (o) through the family {11.3). Relation (11.4) will then hold so that the
invariants (I), with respect to (8), of the terminal canonical function must be (s).
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The lemmas of § 7 on the group R accordingly yield the following theorem.

Theorem 11.2. The canonical functions F'(z, a,r) combine as branches of func-
tions M (z, «) monogenic in (a) as follows:

(1) When u>o0, or w=0 and m is odd, all canonical functions F are branches
of a single monogenic function M (z,c);

(2) When u=o0 and m=4, 6, 8, . . ., all canonical functions F (2, a, r) for which
(r) 25 of even category are branches of one monogenic function of (@), while all for
which (r) is of odd category are branches of another;

(3) When u=o0 and m =2, each canonical function F(z,a,7) s of itself
monogenic in ().

§ 12. Equivalence of meromorphic functions. Restricted, terminally restricted,
and semi-restricted equivalence of two interior transformations f; and f, of S have
been defined in § 2, in terms of admissible f‘deformations. If the deformations
employ meromorphic functions only, the equivalence is said to be of meromorphic
type. The first theorem on equivalence follows.

Theorem 12.1. Necessary and sufficient conditions that meromorphic functions
Ji and f, with the same characteristic set (a) be restrictedly and meromorphically
equivalent are that

(12.1) Ji(fr, @) = Ji( fy, @) (t=1,... n).

That the conditions are necessary has already been established. We shall
accordingly prove the conditions sufficient assuming that (12.1) holds.
Let @, and ¢, be residual functions of f; and f, respectively. Set

(12.2) Pz, t) = e1-Dlog pittlog g, o=t=1)
using continuous branches of log ¢, and log ¢, with

(12.3) - log @, (ao) = log . (a,).

The condition {12.3) can be fulfilled since

@1(‘10) = @ (@)

in accordance with (10.6). The resulting function (z, () satisfies the conditions
on a residual function in Lemma 10.2 regardless of the value of ¢, as will now
be shown.
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First, for o<¢t=1 and for z on S, W(z,{) is nonnull and analytic, since
¢; and @, are non-null and analytic on S. The proof that conditions (10.6) are
satisfied by (2, ¢) is as follows.

The relation

(12.4) log 9,

a. ay

(t=1,...,n)

=log g,

[

1
will first be verified. The real parts of the logarithms are equal at g, as well
as at a;, since @, and ¢, satisfy (10.6).

The hypothesis (12.1) in the form
4

= arg @s

o

ag

arg @,

Qp

then insures the truth of (12.4). It follows from (12.4) that for branches of the
logarithm for which (12.3) holds

(12.5) log @, (a:) = log @s{a) (t=1,...,n).
Using (12.3) in (12.2) we find that
lan )= d%nm —g,@)  G=1,...0)

Thus (z, ¢} satisfies (10.6).
In accordance with Lemma 10.2 1¥(z,¢) is the residual function of a mero-
morphic function of 2

W—Bd:
(12.6) fle,t)=¢) 4 o=t=)
with characteristic set («).
It follows from (12.6) that

f(Z,O): Olfl(z) ' C,#o0

Sfle, 1) = C, fo(2) Cy#o0
where C, and (), are constants. The function

2, t

(12.7) C{}'LU){Q fo=st=r)

gives the required meromorphic deformation of f, into f,.

The canonical (a)-projection of a transformation f. If an interior transforma-
tion f has a characteristic set (¢) and integral invariants (I) with respect to (a),
Flz,a,I) will be called the (e)-projection of f. If f is meromorphic it has just
been seen that f admits a restricted deformation of meromorphic type into its
(«)-projection.
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If (¢') is any admissible reordering of (a) it will be shown that the (¢)- and
(a')-projections of f are identical as functions of z. If (I') is the set of integral in-
variants of f with respect to {«') this statement takes the form of an identity in 2.

(12.8) F(z,a,1)= Flz,c!, IY).

To establish (12.8) recall that the definition of a canonical function involves the
functions g; and ¢; of () as well as 7. If

(a;) EEEEEY a?‘i) = ﬂ:(ah AR a?l))

one verifies that in passing from the (o) to the (a')-projection of f a similar
permutation = of g, ¢; and I;, (=1, ..., ) is made with g, and ¢, unchanged.
The Lagrange polynomial P(z,¢} is invariant under this change and (12. 8) follows.

If f is admissibly deformed through a family f!, o= ¢=1, of interior trans-
formations with (¢!) the characteristic set of f*, the (¢!)-projection F*! of f* will
admissibly deform the («)-projection F° of f through a family of canonical func-
tions. If M(z,a) is the monogenic function of (¢) of which F°is a branch, then

Ft= Mle, ot ost=1

provided the appropriate branches of M (z,¢!) are selected for each t. This de-
formation F' is termed canonical. In these terms one can state that a necessary
and sufficient condition that two meromorphic functions f*! and f* with the same
characteristic set () be terminally restrictedly and meromorphically equivalent
is that their (8)-projections admit a canonical deformation into each other. The
latter condition is merely that the two (§)-projections be branches of the same
function M (z, ) monogenic in (¢). Hence Theorem 11.2 yields the following.

Theorem 12.2. Necessary and sufficient conditions that two admaissible mero-
morphic functions ' and f? with the same characteristic set (8) be termanally re-
strictedly and meromorphically equivalent are that either

(i) w>0 or wu=0 and m be odd, or

(i) u=o0, m=4,6,8, ..., and the tnvariants (I') and (I*) of f* and f* with
respect to (@) be in the same category, or

(iii) w=o0, m=2 and (I') =(I?).

We complete this section with the following theorem.

Theorem 12.3. (a) Any two admissible meromorphic functions f' and f* with
the same characteristic set (§) are semi-restrictedly and meromorphically equivalent

except in the case p =0 and m = 2.
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(b) In case w=0 and m=2, and a, is a pole, f* and f* are equivalent in
the sense of (a) if and only if their invariants J, with respect to (a,, a,) are equal.
If a, ts a zero, f' and f* are equivalent if and only if their invariants J; with
respect to (ay, a,) are equal in absolute value. A

Statement (a) follows from Theorem 12.2 except when u=o0, m==4,6,8,...,
and (I') and (I%) are of opposite category. In this case one first deforms f* into
its (B)-projection F'. One then continues F'! with respect to (¢) along any ad-
missible path (¢f) that leads to a set (¢') which is an admissible odd permutation
of (8). In accordance with Lemma 9.2, the canonical function F* into which
I'' is thereby continued will have an invariant set (I*) with respect to () of a
category opposite to that of (I'), and hence of a category which is the same
as that of (I®). It follows from Theorem 12.2 (ii) that F* can be terminally re-
strictedly and meromorphically deformed into f* This completes the proof of (a).

The necessary conditions for equivalence of ' and f? in (b) have already
been affirmed in Lemma 9. 4.

We come to sufficient conditions. When the invariants J; with respect to
(8) are equal, a restricted deformation carries f! into f* There remains the case
of two zeros in which the invariants J; with respect to (8) are equal but opposite
in sign. In this case we regard S as a hyperbolic plane and make a hyperbolic
rotation about the hyperbolic mid-point of a, and «,, carrying g, into a,. Let
7' be the analytic, isotopic deformation of S thereby defined, o =¢= 1. The
composite function f'n' deforms f! into a function f* which in accordance with
{9.15) has the same iuvariant J, with respect to {8) as does f%. Hence f* can
be restrictedly deformed into /2.

Statement (b) follows.

8 13. Kquivalence of interior transformations. Let f be an interior transfor-
mation of S with a characteristic set (8). By virtue of a theorem of Stoilow (4)
there exists a homeomorphism ¢ from a simply.connected region R of the z-plane
to S such that the composite function 75 is meromorphic on E. When the
boundary of B consists of more than a point, B can be mapped dirvectly con-
formally onto §. In such a case we can suppose that [ is a homeomorphism
from S to S, and we say that f then comes under Case A.

When the boundary of R consists of a point, one can first restrictedly de-
form f on S into a function f; that comes under Case 4. To this end let ¢ be
so small a positive constant that all.points of () lie on the disc {|z|<1—2e¢}.
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Let £' be an isotopic deformation of S onto 8" = {|2] < 1—e} which leaves points
of § at which |z]=1—2e fixed. Thus {'is a homeomorphism from S to S’
The composite function f{' deforms f into a function f; again defined over S.
The function f; comes under Case A. For the Riemann image of § under w = f, ()
simply covers the Riemann image under w = f(z) of S’. This Riemann image
is then conformally equivalent to a subregion of R whose boundary consists of
more than one point.

Wehavethe following lemma concerning admissible interior transformations of 8.

Lemma 13.1. Any such transformation f* of S admits a restricted defor-
mation into a function f for which a homeomorphism § of S exists such that f{ is
meromorphic on S.

Use will be made of the canonical functions M(z,a) monogenic in («) of the
preceding sections. Let 5’ be an isotopic deformation of S from the identity and
let {¢f) be the image of (8) under #!. The characteristic set of

(13.1) M, ) o=t=1)
remains constantly (8). For example, if a; represents a zero of (8), then 7f(a;) = a! and
Mdl, ¢!)=o0

since (¢f) is the characteristic set of M (z, o).
The basic theorem here is as follows.

Theorem 13.1. Any interior transformation f with a characteristic set (8) ad-
mits a restricted deformation into its canonical B-projection.

In accordance with Lemma 13.1 one can suppose that a homeomorphism {
of § exists such that f{ is meromorphic on 8.

The proof of the theorem is relatively simple once the appropriate auxiliary
functions are defined. These functions are as follows:

{(2)= A homeomorphism of S such that f{ is meromorphic on S.
n(z) = The inverse of { on S.

A(¢) = The meromorphic function f. The characteristic set of A is the image
of (8) under 7.

7' = An isotopic deformation of S from the identity, generating . (o =t¢=1).

(¢) = The image of (8) under %" at the time ¢. The characteristic set of 4 is («!).
F; = The («')-projection F(z,c¢',7) of A.

A= A restricted deformation of meromorphic type of 4 into F,. (0=t=1).

M(z,¢) = The function M (z,¢) monogenic in (¢) of which F'(z,e,#) is a branch.
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The required deformation of f will be given as a sequence of two deforma-
tions of ¢ in both of which (8) remains the characteristic set.
The first deformation is defined by the composite function,

(13. 2) Ay fo=st=).

When ¢=o0, this function reduces to f and when ¢=1 it becomes F,%n. The
characteristic set of A’y remains constantly that of 7, namely (§).
The second deformation is defined by the functions

(13.3) M @), o) o=t=<1)

with # however decreasing from 1 to 0. As noted in connection with (13.1), the
characteristic set remains constantly (8). When ¢==1 one starts with the branch

M, e)= Flz,a,7)
at the set (e!). When f =1, the function (13.3) reduces to
My, ') = Fyn.

When ¢= o, the function (13. 3) becomes M (z,8). This is the (8)-projection of f.
It has the characteristic set (8); it also has the invariants (I) of f since it is
obtained from f by a restricted deformation.

The deformation (13.2) followed by the deformation (13. 3), with decreasing ¢,
thus deforms f into its (8)-projection, as required.

The deformation classes into which meromorphic functions may be divided
are, in the sense of the following theorem, not affected by the inclusion or ex-

clusion of interior transformations which are not meromorphic.

Theorem 13.2. Two meromorphic functions f, and f, with the same charac-
teristic set (8) are restrictedly, terminally restrictedly, or semi-restrictedly equivalent
only of they are meromorphically equivalent in the same sense.

Let F, and F, be the (8)-projections of f; and f, respectively. The func-
tions f; and f; are restrictedly and meromorphically deformable into F and I
respectively. Any admissible deformation f' of f; into f, in which (af) is the
characteristic set of f* implies a deformation It of F, into ¥, through the (af)-
projection of f*. The deformation F® will be restricted, terminally restricted, or
semi-restricted in the same sense as f*. In addition, I is of meromorphic type.

The theorem follows.
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Corollary 13.1. Conditions on the invariants (J) of two interior transforma-
tions f, and f, with the same characteristic set (8) together with conditions on p
and m which are necessary and sufficient for the equivalence of f, and f; tn any
one of the senses of the theorem are precisely those stated in § 12 for equivalence
in the same sense of meromorphic functions.

The functions f; and f, have the same characteristic set (8), and character-
istic integers u and o, and invariants (J') and (J*) with respect to (8) as their
respective (8)-projections I, and Iy. In accordance with Theorem 13.2 the equi-
valence of f; and f; in a given sense implies and is implied by the meromorphie
equivalence in the same sense of F, and [, The conditions for the latter equi-
valence in terms of w, m, (/') and (J?) are thus the conditions for the equivalence
of f; and f, in the given sense.

The theorem follows.

§ 14. The special cases m =0 and m = 1. We admit u branch point aute-
cedents as previously. In case m =0 or 1 there are no invariants .J;. The con-
struction of a function with the given characteristic set as given in § 6 is still
valid here. When m==1 we assume that g, is a zero. The case of a pole is
treated by considering /7'

In the meromorphic case the residual function ¢ is defined by the equation

S 9B
f ’ (3 - ao)m

both when m =0 and m=1. A canonical function with a given characteristic

set may be given in the form
B(z) dz

]TV'T"‘ {z— ﬂ.,)"'i

If'm (Z, (() == ¢ (’ﬂ?, =0 0Or I).

The residvual function must satisfy the condition

1
(ag) = 4 (m =1);
P Bla)
it must be analytic and non-null on §.
If f, and f, are two meromorphic functions with the same characteristic set

(¢) and residual {functions ¢, and ¢, the function

I'q'z*( q{_, Bdz

o e (0=

A
L
A

T — 614981112 Acta mathematica. 79
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suffices to deform restrictedly and meromorphically a constant multiple of f; into
a constant multiple of f,. Hence f; and f, are restrictedly and meromorphically
equivalent. Any interior transformation f with the characteristic set (a) can
be restrictedly deformed into its (a)-projection Fy(z,«) following the proof of
Theorem 13.1.

We summarize what is essential as follows:

Theorem 14.1. When m=o0 or 1, any interior transformation f with the
characteristic set (a) can be restrictedly deformed into its (a)projection Fy (2, ),
meromorpheeally of f is meromorphic.

In the very special case in which m =0 and u=o0 the characteristic set ()
is empty, B(z) may be taken as 1 and ¢ as the canonical function into which
each interior transformation with an empty characteristic set can be admissibly

deformed.

§ 15. Covering properties of sequences of wmeromorphic transformations of S.
We shall be concerned with infinite sequences [ fi] of meromorphic transformations
of § with the same characteristic set (¢). The number m of zeros and poles in
the set

(IS'I) (aOv ag, .. a")"_‘(a)

shall be at least two. A sequence [fi] in which each of the functions f; is
meromorphic and no two functions f; are in the same restricted deformation
class will be termed a model sequence. We shall be concerned with the set W of
points ¢« = fi(z) on the w-sphere given by a model sequence for z on S. When
the set (15.1) includes both zeros and poles, we shall see that the set TV covers
each point of the w-sphere infinitely many times. When the set (15.1) consists
of zeros alone, the set W will cover each point of the w-sphere infinitely many
times (i =00 excepted) provided fi does not converge uniformly to zero on every
compact subset of §.

A term due to Carathéodory is convenient. A sequence [I,] of functions
of 2z meromorphic on a region K is said to converge continuousty to I' on R if,
with respect to the metric on the w-sphere, [F,] converges uniformly to I’ on
every closed subset of R. The function /' is necessarily meromorphic on R, or
reduces to the function F' =oc0.

Suppose that each function /9, is meromorphic on S and has the charac-

teristic set («). If [F,] converges continuously on S to F, then I is identically
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0 or oo or else has the characteristic set (). If [F,] converges continuously on
S — (a) to a function F not identically o or oo, then [F,] converges continuously
on S without exception. If 77, has no poles, the preceding statement remains valid
with the condition ¥ 20 omitted. These results follow from classical theorems.

The principal results of this section are an immediate consequence of theo-
rems on normal families of functions. A family M of functions meromorphic on
a region R of the z-plane is termed normal if corresponding to an arbitrary
sequence [F,] of functions of the family there exists a subsequence which con-
verges continuously on R to a meromorphic function F' or to oo. According to
a theorem of Julia a necessary and sufficient condition that M be normal on R
is that M be normal on some neighborhood of each point of E. Cf. (6), p. 37.
The property which connects the theory of normal families with Picard’s theorem
is the following. If the family M is not normal on R, then every point w on
the w-sphere, with the possible exception of two points, is covered infinitely
many times by points f(z) defined by members of the family for 2 on R. In
particular if M is not normal on R, there exists at least one point z, on R in
no neighborhood of which M is normal. Such a point z, is called a point J, and
the images under the functions of M of an arbitrary neighborhood of a point
J cover the «-sphere infinitely many times, two poinis at most excepted.

Let R be a subregion of S. A model sequence [ fi] no subsequence of which
converges continuously to o or oo on R will be termed proper on R. We shall

prove the following lemma.

Lemma 15.1. A model sequence which is proper on S—(a) ts not a normal
Jamily on S — (a).

Suppose the lemma false and that a subsequence [F,] of the given model
sequence converges continuously on S — (a) to a function F. The function F is
analytic on §—(a) and never zero. It follows from the definition of a residual
function that the sequence [g.] of residual functions of the functions F, con-
verges continuously on §-—(a) to a function @ which satisfies the relation
¥ B

(15.2) Fo73

on S —(a), and is accordingly analytic and never zero on S — (¢). Hence the
functions ¢, converge continuously on § without exception to a function ¢ that
is analytic and never zero on S. The invariants J? of F, must then converge

in accordance with Theorem 10.1. Since the invariants .J » differ for different
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values of n by integers, it follows that for n exceeding some integer n, J7 is
independent of n.

This is contrary to the hypothesis that the members of the sequence [/fi]
belong to different restricted deformation classes. We infer the truth of the lemma.

We state a lemma concerning quasi-normal sequences. Cf. (6) p. 66.

Lemma 15.2. Lei [F,] be a sequence of functions which are meromorphic on
a neighborhood N of a point z, and analytic and not zero on N —z, If [F,] con-
verges continuously to oo (0) on N — z, but fails to so converge on N, then for n
suffictently large* and for some z on N, F, assumes any given value w cxcept oo (0).

The two cases involved in this lemma are reducible to each other on re-
placing I, by its reciprocal. The case in which F = oo is treated in the above
reference.

A point z, will be called a covering point relative to a model sequence [f;]
if the totality of w-images of the functions f;, £=1, 2,..., for z on an arbitrary
neighborhood of 2, cover the points of the w-sphere infinitely many times,
w =0 and « = oo at most excepted. The first covering theorem follows.

Theorem 15.1. Let [fi] be a model sequence of meromorphic functions.

1. If [fx] 7s proper on S —(a), there exists at least one covering pornt on S— (a)
relative to [ fi].

II. If a subsequence of [fi] converges continuously to oo [0] on S—(a), then
any zero [pole®] a; is a covering point relative to [ fi].

Case I or 1L alicays occurs.

In Case I [fi] is nob normal on §S—(a) in accordance with Lemma 15.1.
There accordingly exists a point z, of type J on §— (a). For any neighborhood
of z, relative to S—(a), w =0 and w =00 are values not taken on by [fi]. Hence
every other value is taken on infinitely often. Thus z, is a covering point rela-
tive to [/z]. In Case II the theorem follows from Lemma 15.2.

Corollary. If [fi] is a model sequence there exists at least one covering point
on S, excepling only the case in which there are no poles in (a) and [fi] converges
continuously to zero on S.

Recall that the case in which there are no zeros in («) has been excluded.
If admitted, this case would parallel the case in which there are no poles.

! That is for # exceeding an integer n, depending on N and <.
* If there are any poles.
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Given a model sequence [fi] which is not proper, a proper model sequence
can be readily obtained by replacing each fi by a constant multiple ; /i with ¢
suitably chosen. In particular it is sufficient to choose the constants ¢ so that
|ec fi| is bounded from o and oo at some point not in (a).

The following theorem is a consequence of Bloch’s theorem. Cf. {g) p. 230.

Theorem 15.2. If [fi] 7s a model sequence no subsequence of which converges
to o on 8, and if the characteristic set (&) includes no poles, there then corresponds
to any posttive constant r, no matter how large, a member frir of the sequence and
a circular disc D, of radius v in the w-plane such that D, is the one-lo-one image
under frn of some subdomain of S.

This theorem follows from Bloch's theorem provided the values

(15.3) A (k=1,...)

are unbounded on some compact subset of S.

Let S. be the subdisc of & concentric with S and of radius ¢. If the values
(15.3) admitted a bound M. on S, for each ¢, o <e <1, |fi| would be bounded
independently of k¥ on each S, and [/fi] would be normal on §. Since no sub-
sequence of [fi] converges continuously to zero by hypothesis, the sequence [f]
would then be proper. This is contrary to Lemma 15.1. Thus for some ¢ <1
the values (15.3) are unbounded on S.. Hence there are points z on this S, and
values of % for which |f;| is arbitrarily large.

The theorem follows.

The preceding theorems can be extended as follows. Let J, be defined as o.
Let a sequence [fi] of meromorphic functions with the given characteristic set
be termed wmodel with respect to two points (ar, as) in (a) if no two pairs (Jr, J3)
and (J7, J;) belonging to different functions in the sequence [fi] have the
property that

(15.4) Ji—Jr=dJ,—J,.

If a, and a;are not both poles, we could suppose that a- is a zero and change
the notation so that a, = a,. The condition (15.5) would then take the form

Jt =,

If a, and a. are both poles one could replace each function fi by its reciprocal,
noting that the residual function of f; and its reciprocal are negatives of each
other.
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Lemma 15.1 can now be replaced by the following.

Lemma 15.3. A sequence [fi] which is model with respect to a, and a, and
which is proper on N — (a,, ai), where N is any connected neighborhood of a, and as,
is not a normal family on N — (a,, a;).

With a, taken as a, the proof is essentially the same as that of Lemma 15. 1.
Lemma 15.2 is unchanged for present purposes. Theorem 15.1 takes the fol-

lowing form.

Theorem 15.3. Let [ fi] be a sequence which is model with respect to a, and as
and let N be any connected neighborhood of ar» and a,.

I If [fi] is proper on N — (a,, a,), there exists at least one covering point on
N — (ar, as) relative to [ £i].

II. If a subsequence of [ fi] converges continuously to oo [0] on N — (ar, as), then
any zero [pole] in the pair (ar, a;) is a covering point relative to [fi].

Case 1 or 11 always occurs.

The set of points J taken relative to a model sequence [f;] is closed on S
by virtue of the definition of a point J. One can then establish the following.

Theorem 1B6.4. If a model sequence [fi] is proper on every subregion of a
region R then the set E of points J on R is perfect (possibly empty) relative to R.
Each non-empty component E, of E contains at least one zero and one pole of (a),
or else has a limit point on the boundary of R.

No point 2z, of E can be isolated in E. To see this let N be a neighborhood
of z, such that N — 2, contains no point of (¢). Continuous convergence of a
subsequence [F,] of [fi] on N —¢, to a function F implies that F is analytic
and not null on N —¢, since [fi] is proper on N — 2, and no f; has a zero or
pole on N —z, It follows that [F,] converges continuously on N so that z,
cannot be a point J. We infer that z, is not isolated in E and that E is ac-
cordingly perfect relative to R.

Suppose that F,is on B. We shall show that E, must contain at least one
zero and one pole in (a). Suppose in particular that E, contained no pole in (a).
Then E, could be separated on R from the poles in (2) and from the boundary
of R by a finite set (g) of regular Jordan curves on R which do not intersect E
or (a) and bound a subregion R, of R on which E, lies. The sequence [ ;] would
be normal on a neighborhood N of (g). On N a subsequence [F,] of [fi] would
converge continuously to a function ¥ which would be analytic and never zero
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on N —(a). It follows that [F,] would converge continuously on R, so that I,
would be empty.

The supposition that E, is on R and contains no zero in (a) would similarly
lead to the conclusion that £, is empty. The theorem follows.
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