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Preface. 

T h e  origin of th is  p a p e r  was a desire  for  a def in i t ion of a p lane  curve  which 

should  require  a cu rve  to  be in some sense in one piece w i thou t  r equ i r ing  i t  to  

be closed or to  be  of the  v e r y  special  c h a r a c t e r  of a J o r d a n  curve .  To  t a k e  a 

s imple  example ,  the re  m u s t  be  some  sense in which a l emnisca te  dep r ived  of a n y  

po in t  b u t  the  node  is a single cu rve  bu t  a l emnisca te  d e p r i v e d  of the  node  is 

two  curves .  T h e  d i scove ry  of the  p r o p e r t y  of a se t  which I define in sec t ion  

2o and  descr ibe  b y  say ing  t h a t  a se t  is un i t ed  led to  the  def in i t ion of a c u r v e  

on a sur face  which is g iven below in sect ion 38 of the  paper ,  1 b u t  a roused  a f resh 

d i sconten t ,  since th is  def ini t ion g a v e  no clue to  the  d is t inc t ion  in th ree -d imens iona l  

space  be tween  a curve  a n d  a surface,  a d is t inc t ion  which the  def ini t ion since 

evolved ,  g iven  in sec t ion  36, enables  m e  to  draw.  

Al though  the  work  was begun for  the  sake  of a t heo ry  of d imensions ,  i t  is 

no t  on a c c o u n t  of the  t h e o r y  sugges ted  in the  concluding  sect ions t h a t  th is  p a p e r  

is publ i shed;  much  remains  to  be done  before  t h a t  t h e o r y  can  be p roved  va luab l e  

or  valueless .  B u t  of the  t h i r t y -n ine  sec t ions  of th is  p a p e r  the  f i rs t  t h i r t y - f i v e  

a re  concerned  on ly  wi th  ideas which ce r t a in ly  h a v e  technica l  use as well as in- 

t r ins ic  i n t e re s t ;  a m o n g  these,  the  f u n d a m e n t a l  idea  of  which I h a v e  found  ~ no  

1 These definitions of a united set and of a curve on a surface were given in a short 
note entitled ~Definition of a plane curve~ in The Journal of the Indian Mathematical Society, 
Vol, vii. pp. ]75--I77 (~9x5), the set being there described as ~erfectly cwnne~ted. 

(Added November I916) This statement only reveals my ignorance when it was written. 
Undeniable traces are to be found in SCHOENFLIES' definition (Math. Annalen, bd. 58 (19o4), s. 21o) 
of a plane set of 'a special kind as eohe~'ent if every pair of its members can be joined by a 
simple path within the set, and in a footnote (American Journal of Mathe~tic#, v. 33 (19J]) 
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t race  elsewhere is the  idea associated here  with the  word un i ty ,  and the  p a p e r  

is essent ial ly  the  offer  of this idea for  considerat ion.  

The  pape r  conta ins  n o  proofs.  I t  seems to me t h a t  proofs  are  a lmost  wor th -  

less unless g iven in f undamen ta l  logical symbols,  and  a t  p resen t  I have  no t  the  

t ime to  p repa re  detai led proofs  for  publ ica t ion.  Moreover ,  m a n y  of the  ideas 

he re  p u t  forward,  and  in pa r t i cu la r  the  idea of u n i t y  and  the  der ived  idea of a 

cell, are to  be just i f ied less by  proposi t ions  than  b y  examples,  and  in an y  case 

an  accoun t  of a sub jec t  in general  te rms is a valuable  p re l iminary  to  a formal  

deve lopment .  

Cer ta in  acknowledgment s  of deb t  I am glad to  make:  m y  def ini t ion of a 

congrega te  of points  was suggested in p a r t  by  JORDAn'S t r e a t m e n t  of a closed 

set  d'un seul tenant, in pa r t  b y  the  desire for  a def in i t ion expressible in a simple 

form wi th  the  symbol ism of aPrincipia  Mathematica*), the  use of this symbol ism 

alone has enabled  me to  cons t ruc t  proofs  of the  proposi t ions  which I asser t  and  

of o thers  t h a t  shew the  impor t ance  of the  var ious  definit ions,  and  to the influ- 

ence of RUSSELL and  WHITEHEAD are due among  o ther  fea tures  the  form in which 

the  subjec t  m a t t e r  of the  pape r  is descr ibed in section 2 and  the recogni t ion a t  

var ious  points  of the  re levance of the  mul t ip l iea t ive  axiom. 

This  work was done  in the  first  instance in ignorance of FR]iCHET'S t h e o r y  1 

of d imension- types ,  bu t  a compar ison of the defini t ions of section 36 with his 

defini t ions is to be found in the  closing section. Since the  idea of a un i ted  set  

does no t  en t e r  in to  FR~CHET'S theory ,  m y  work is a l toge ther  independen t  of his, 

bu t  p robab ly  an  earl ier  acqua in tance  with FR~CHET'S pape r  would have  led me to  

develop the  present  t heo ry  as a con t r ibu t ion  to the  classification r a the r  of abs t r ac t  

aggregates  t h a n  of sets of points .  The  universe with which I deal expl ic i t ly  is 

less general  t han  FRkCH]~T'S class L (l. e., s. I45) and more  general  t h an  his class 

E (1. c., s. i6o), inasmuch as I assume the  exis tence of separa t ing  numbers  b u t  

assume ne i ther  t h a t  two points  separa ted  b y  the  n u m b e r  zero necessarily coincide 

nor  t h a t  the inequa l i ty  x z ~ x y  + yz is t rue  for  every set  of th ree  e lements ;  exac t ly  

how much  of my  pape r  is in fac t  i ndependen t  of the use of n u m b er s  I do no t  

p. 319) in which LENNES remarks that obviously there are complete connected sets which contain 
no continuous arcs joining certain pairs of their points, the one writer using ~,simple paths, and 
the other ~continuous arc~ according to a precise definition. LE~ES' definition, unlike SCHOE~" 
FLmS', is applicable to aggregates in general, but neither writer anticipates the kind of use made 
of the conception in the present paper. 

1 MAURICE FafiCHET, ~Les dimensions d'un ensemble abstrait~, Math. Annalen, bd. lxviii, s. I4$ 
--i68 (i92o): the study of dimensions is now associated so closely with the name of BaouwEa 
that it is as well for me to state definitely that none of his work that I have seen indicates a 
perception of what I call unity, and that there is therefore nothing in this paper for which I 
am indebted to Prof. BROUWER. 
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know, but  it  is evident that  the definitions of united sets and of cells require 

only the assumption tha t  such limits as exist are members of the universe, and 

tha t  if limits are defined by means of neighbourhoods, then plots and con/ined 
limiting points also can be defined, whether or not the definition of a neighbour- 

hood is numerical. On one detail, not of logic but of nomenclature, I incline to 

disagree with M. FR]~CHET, who wishes to restrict the phrase ,>of n dimensions~) 

to an aggregate whose type is tha t  of the complete geometrical space with n 

coordinates; since there is no ordinal similarity between the types of dimensions 

and the signless real numbers, insistence on a one-one correlation in the parti- 

cular case in which the numbers are integral is actually misleading, and I 

prefer to allow tha t  the surface of a sphere may be described legitimately as 

well as popularly as two-dimensional. Nevertheless, not actually to contradict 

M. FR]~CHET, I have spoken of the dimension-integer rather than of the number 

of dimensions of a set. 
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1. Introduction. 

The vocabulary  of the theory  of sets of points is evidence tha t  it has been 

left too much to the writers whose interests are primarily philosophical to insist 

on the ex ten t  to which the nature  of the derivat ive of a set of points F depends 

on the nature  of the universe of points V of which F is a part .  Technical mathe- 

maticians, instead of recognising frankly tha t  they  need to deal sometimes with 

a universe of one kind, sometimes with a universe of another  kind, have expended 

a considerable amount  of ingenuity in reducing their special universes by a var ie ty  

of more or less elaborate conventions to a common pat tern.  What  is most sur- 

prising is tha t  the chosen pa t te rn  is a universe of a different kind from Euclidean 

space and tha t  the conventional reduction of Euclidian space to the s tandard 

form is no easy task. 

A universe of points V is said to be limited or closed if every infinite set 

of points in V has a ]imiting point  in V. Thus the surface of a sphere is a closed 

universe, and so is the set formed of all the points inside or on the perimeter  of 

a plane triangle: on the other  hand, the points inside a sphere do not compose 

a closed universe, neither do the points inside a triangle, nor, to take the most 

important  cases of all, do the points of Euclidean space or of a Euclidean plane. 

Mathematicans, fully alive in some connections to the advantages of dealing with 

open ra ther  than with closed sets, as is shewn in the use made of circular domains 
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in the theory of functions of a complex variable, have nevertheless shewn curious 

and I think unwarrantable reluctance to contemplate an open universe of points. 

The first difficulty for which this reluctance is responsible in the treatment 

of Euclidean space is in the application of the words closed and open to unlimited 

sets, that  is, to sets tending in some manner to infinity. The obvious interpreta- 

tion, sanctioned b y  the effects of establishing, for example, a point-to-point cor- 

respondence between the finite points of a plane and all the points except one 

on a sphere, is to regard an unlimited set as closed or open according as points 

at  infinity have or have not an actual existence. This interpretation does not  

meet the difficulty: unless by the invention of ideal points existence has been 

conferred on points at  infinity, such limiting points as a set posesses must  be 

in the finite par t  of the universe, and a set which tends to infinity but  has no 

finite limiting point simply has no limiting point  whatever, and cannot be regarded 

as an open set without a change in the fundamental definitions; moreover, the 

introduction of ideal points and points at  infinity is often accompanied by a 

change in the definition of distance, and if a point at  infinity is to be regarded 

as a limiting point the definition of a limiting point must  be changed from the 

form which is naturally the first to be adopted. 
We must not be supposed to assert that  the difficulties in this subject cannot 

be surmounted, or rather evaded, by  a multiplication of conventions. Every  

s tudent  of the theory of functions of a complex variable knows that  much can 

be accomplished by  introducing what is really an incomplete symbol zoo or oo, a 

symbol of which only the uses are defined, it being agreed for example that  to write 

is to mean 

[z--|  

But  even in this case the properties of oo as a limit are different from those of 

any other limit; for example, if (un) and (v~) are two sequences of complex num- 

bers with a common finite limit, u,~--v,~ must tend to zero, while if (u~)and (vn) 

both tend to oo, that  is, to infinity, u ,~ - - v n  may behave in any manner as n in- 

creases, converging to any finite number, oscillating in any way, or diverging to 

infinity. I t  is not, however, on technical troubles of any particular kind that  the 

case for a candid consideration of facts is based: to be content rather  to evade 

a difficulty than to analyse it and to understand it is the mark distinguishing 

not the technical mathematician from the philosopher but  the computer  from 

the mathematician. 
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2. Points and Separating Numbers. 

The one requirement of the theory before us is a one-many relation, subject 

to certain conditions, between signless real numbers and cardinal couples of indi- 

viduals. The individuals, in virtue solely of the fact that  every member of the 

converse domain of the fundamental relation is a pair of them, are called points, 

and the real number associated with a pair of points is called the separating 

number of the two points, or between the two points, forming the pair, or the 

number separating one of the points from the other. We use for points the 

letters v, w, x, y, z and we denote the separating number of x and y by xy;  because 

the separating number of x and y is a number related to the cardinal couple 

composed of x and y, not to either of the ordinal couples composed of the same 

individuals, y x  is the same as x y ,  and the further hypotheses as to the nature 

of the fundamental relation must be enumerated. I t  is assumed not only tha t  

it  is between pairs of points tha t  there are separating numbers, but also tha t  if 

there are separating numbers y v  and z w  there is a separating number yz ,  an 

assumption we express by saying tha t  our points compose a universe. I t  is 

assumed that  if the two points forming a cardinal couple are identical, the number 

associated with the couple is zero, tha t  is, tha t  if x is any point, the separating 

number x x  is zero, but it is not assumed tha t  the separating number of two 

distinguishable points is necessarily different from zero. I t  is assumed tha t  the 

class of signless real numbers defined by the criterion tha t  ~ belongs to the 

class if for every group of three points x, y, z the separating number x z  is equal 

to or less than the sum of the separating numbers x y ,  y z  provided only tha t  x y  

and y z  are both less than Q is a class which has members other than zero: from 

the form of the class, if a belongs to it so does every number less than a; in 

Euclidean space every real number belongs to this class, and by dealing with 

the class itself we avoid both the indefinite and unnecessary restriction involved 

in choosing one of its members arjd the introduction symbolically of an infinite 

number. From the assumption just explained it follows that  if the separating 

number y z  is zero, then for every point x for which either x y  or xz  is sufficiently 

small, x y  is equal to x z ,  and we make the final assumption tha t  in fact if y z  is 

zero then for every point x the numbers x y  and x z  are the same. 

I t  must  be realised tha t  the separating number of two points need not be 

the distance between the points in any space in which they can be represented. 

As an example of the latitude we allow, the universe might consist of the sur- 

faces of two non-intersecting spheres in Euclidean space, and we might take for 

the separating number of two points on the same sphere their least geodesic 
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distance apart  and for the separating number of two points of which one is on 

each of the spheres their distance apar t  in space. Moreover, the separating number  

regarded as a function of the two points on which it depends, may vary  consi- 

derably in form without  involving any change in the classification of classes of 

points with reference to any of the properties which it is our object to describe. 

Indeed, in the case in which the universe is space of a finite number n of dimen- 

sions and a point  x is determined by  its n coordinates xl, x~ . . . .  x,, while some 

writers use for the separating number of two points x, ~ the distance between 

them, which if the axes are orthogonal is I/I {Z( x ~ -  ~?r )~}, others, following JORDAn, 

use for the separating number ~ [ x r - -  ~ [ ,  and others again, including MOSKOWSXI, 

use ~ the greatest among the numbers of the form [ x ~ - - ~ [ ;  none of the proper- 

ties of classes of points which separating numbers are used to described are af- 

fected by  a choice between these three functions. 
An excellent example of the mode of embodying ideas in the definition of 

separating numbers when these numbers are divorced entirely from distances is 

to be found in the geometrical t reatment  of the complex variable. To just i fy 

the usual method of dealing with the point at  infinity, it is common to suppose 

a sphere drawn to touch the plane of the variable z at  the origin O, and to say 

that  often a value z of the complex variable is associated not with a point  zp of 

the plane but  with a corresponding point z, of the sphere, z, being obtained by  

joining zp to the point of the sphere diametrically opposite to O; if we wish to 

concentrate our at tention on the plane, we have only to say that  limiting points 

are determined not with reference to distances in the plane but  with reference 

to a distinct system of separating numbers, the separating number of two 

points ~p, ~p of the plane being the distance between the corresponding points 

~,, ~, of the sphere or some other number suggested by  geometry, bu t  the most 

satisfactory method is to regard the complex variable itself as a point, and the 
separating number not as a number separating two points of a plane or of a 

sphere but  as a number separating two values of the complex variable. Probably  

the most useful number separating the complex numbers 4, ~ is 

which is the actual distance in space between the corresponding points on a 

sphere of unit diameter, bu t  the number  

~ Th i s  last  choice has  t he  advan tage  of be ing  far  more  widely appl icable  in  space of an  
i n f i n i t y  of d imens ions  t h a n  e i t h e r  t he  Car tes ian  measure  or JORDAN'S: I have  found  the  con- 
s ide ra t ion  of t h i s  k ind  of space w i t h  t h i s  species of sepa ra t ing  n u m b e r  va luable  in r emov ing  
prejudices .  



70 Eric H. Neville. 

+ + Ix l  + lyl) O + + l i/I)}, 

constructed on JORDAN'S model, is equally effective; denoting either of these 

separating numbers by ($s we can define the uses of the symbol ~ by the 

assertion tha t  ( z ~ )  denotes I /V ( I  + [zl ~) or i / ( i  + ]xl +]y[)~ and that  (~oo) is 

zero, and oo then exists, for the statement that  the complex number oo exists 

means only tha t  the numbers separating oo from all complex numbers including 

itself are defined and satisfy certain conditions. 

More interesting is the t reatment  of RIEMA~ surfaces, which we may illustrate 

by the simple example of the surfaces connected with the representation of w'/2. 

In the primitive form, these are a double plane and a double sphere, with cross- 

connections along the positive halves of the real axes in one case and along 

overlying semicircles in the other case. Logically, in the space in which w ~/2 is 

a one-valued function each point consists of a complex number z and a variable 

t which has only two values (most conveniently, I and 2); if m and n coincide 

and if in a plane corresponding to the one variable z the chord joining ~p to ~p 

does not cross the positive half of the real axis, or if m and n are different and 

if in this plane the chord does cross this half-axis, then the number ~m~, separat- 

ing the RIEMA~r point Sm from the RIEMA~N point ~, is a number ( ~ ) s u c h  as 

was defined in the last paragraph, while in other cases the separating number 

~ , ~  is the smaller of the two numbers (zo) + (~o), ($ ~ )  + (~ ~o ), where o denotes 

the complex number zero. Here we have distinct points at  zero distance apart,  

for it is simpler to say that  there are two points o~, 02 and two points oo~, oo 2 

and tha t  o, o2 and ~ ~ are zero than to say tha t  while almost every point of 

the RIEMAN3 surface consists of a complex number and a two-valued variable 

there are certain points which consist of complex numbers alone. 

3. Sets and Classes of Sets. 

Our subject is the classification of classes of points, and for the sake of 

emphasis a class of points is called a set of points, or simply a set, while set is 

not  regarded in any  other sense as equivalent to class. A set is usually deter- 

mined by the statement of a group of conditions which a point is to satisfy if 

it is to belong to the set; if there are no points satisfying simultaneously all the 

prescribed conditions, the group of conditions is said to determine the null set. 

For sets in general we use the letters F,  J ,  O, O, ~2, the universe is itself a set, 

which is denoted by V, and the null set is denoted by .4. For a general class 

of sets we use 7, while u 'F  and ~'.F denote classes of sets related in a special 
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manner to a set F; thus each of the letters x, �9 may be regarded as denoting 

either a relation between a class of sets and a single set or an operation by 

which from any set is derived a class of sets having a particular relation to 

that  set. Similarly we use Lat in capitals other than F to denote particular rela- 

tions between one set and another, or operators deriving from any given set 

certain other sets related to it, while we use K ' ( x , F )  and T ' ( x , F )  for special 

sets connected with a point x and a set F. 

When we have to deal with classes of sets, the whole theory of selections 

is applicable to our work, and we have to consider whether or not in a class of 

sets ~ every member F has a representative. We say that  the universe is a 

ZERMELO universe if in every class of existent sets each set has a representative, 

or in other words if every class of mutually exclusive existent sets is multipliable, 

and we say tha t  a set F is a ZERMELO set if every class of mutual ly exclusive 

existent sets contained in F is multipliable; in a ZERMELO universe every set is 

a ZERMELO set. 

4. Bounded Sets and Sets with Separating Numbers Finite; 
the Span of a Set. 

Sets and universes may be classified according to the magnitude of the 

separating numbers which are possible between points belonging to them. A set 

is bounded with reference to an origin v if there is a finite upper limit or 

maximum to the numbers separating its points from v. If there is a number 

a, necessarily different from zero, such tha t  if x, y belong to F,  then xy is less 

than a, there is a least number q which is such tha t  if x ,y  belong to F and a 

is greater than q, then xy is less than q; this number is an upper limit or maxi- 

mum to numbers separating pairs of members of F,  and is called the span of 

F.  If x z  is never greater than x y + y z ,  a set bounded with reference to any 

origin has a finite span. 

A set is a set with infinite separating numbers or a set with separating 

numbers finite according as it does or does not contain two points whose separat- 

ing number is infinite. Every set with separating numbers limited is a set with 

separating numbers finite, but the converse is not true: for example, in Euclidean 

space, not subjected to any  conventional closing, the distance between any two 

points is finite, but  there is no upper limit or maximum to the distances possible; 

by replacing the points and lines of Euclidean space by ideal points and lines 

we can obtain a space in which there are actual points at  infinity, and in this 

space infinite distances are possible. 
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5. Units. 

A set which includes a point x need not include all the points separated 

from x by the number zero, and we denote by T ' (x , / ' )  the set composed of all 

the points of F separated from the point x of /~ by the number zero, calling 

T' (x,l") the unit  of F containing x; if x does not belong to F, the set T ' ( x , F )  

is defined to be null, even if I" contains points separated from x by the number 

zero. A set is called a unit of r if it is the unit  containing some point of /~, 

and we denote by v'I" the class of units of F.  If y is a member of T ' (x ,F ) ,  

the units T' (x, F) and T' (y, F) are identical, and x and y contribute the same 

member to the class v' F.  

If F is not null, the class v 'F is a class of mutual ly exclusive existent sets 

whose sum is / ' ;  even if F is null, the null set is not a member of v 'F :  if F is 

null, ~'F is the null class of sets, not the class whose member is the null set. 

The set T'  (x, F) is a unit  of the universe, and while every unit  of a set F 

is contained in some unit  of the universe, a unit  of /~ need not coincide with 

the uni t  of F which contains it, and the class v 'F  need not be contained in 

the class v' F. 

6. The Cardinal Number and the  Reduced Number of  a Set. 

The number of different points belonging to a set F is called the cardinal 

number of the set and denoted by Nc'F.  A set is called finite or infinite accord- 

ing as its cardinal number is or is not inductive, and is called singular if it 

has only one member, plural if it has more members than one. 

For many purposes the number connected with a set F which is of greatest 

importance is not the number of points belonging to F but the number of units 

contained in F, tha t  is, the number of sets belonging to ~ 'F;  this number, Nc'~'F, 
we call the reduced number of F and denote by Ncr 'F.  We say tha t  a set is 

scattered finitely or infinitely according as its reduced number is or is not induc- 

tive, and we call a set a unit  set if it has only one unit, a multiple set if it has 

more units than one. 

In formal work unit  sets, both singular and plural, require at tent ion out 

of all proportion to their interest, which is negligible. The universe may itself 

be finite, in which ease every set is finite, or finitely scattered, when every set 

is finitely scattered, but none of our definitions give any but the most trivial 

results when applied to sets in a finitely scattered universe. 
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7. Reduction and Expansion. 

To reduce a set is to omit from it any set of points each of which is separated 

by the number zero from some one of the points retained. Reduction is possible 

as long as the set contains units which are not singular, and we say tha t  a set 

or a universe is fully reduced if all its units are singular, tha t  is, if it includes no 

two distinguishable points whose separating number is zero. If a set is fully 

reduced its cardinal number is the same as its reduced number, but  the converse 

implication holds only if the set is finite. A set is called a reduced form of a set 

F if it is contained in F and includes one and only one member of each unit  of 

F ;  in more technical language, the reduced forms of F are the selected sets of 

the class of units of F.  To say tha t  reduced forms of F exist is to assert tha t  

the class of units of F is multipliable, and since this assertion can not be made 

of every set unless the multiplicative axiom is assumed, we content ourselves 

with describing a set as reducible if there are reduced forms of it. In a fully 

reduced universe every set is fully reduced, but a reducible universe may contain 

sets tha t  are not reducible; in a ZERMELO universe all sets are reducible, but  we 

have no reason to suppose tha t  if every set is reducible the universe is a ZERMELO 

universe, for every class of unit sets migh t  be multipliable while some classes 

including multiple sets were not multipliable. I t  is important  to notice tha t  

every finitely scattered set is reducible. 

The converse of reducing a set is adding to it any set each of whose points 

is separated by the number zero from some point already included, and this process 

is called expanding the set. Expansion is possible if there are units of the set 

which do not coincide with the units of the universe containing them, and we 

say tha t  a set is fully expanded if every pair of points of which one belongs to 

the set and the other does not has a separating number different from zero. 

The set obtained by expanding F fully is the sum of the class of units of the 

universe containing points of F,  and we denote it by E'F. If F is a set having 

points in common with another set J ,  to expand F in d is to add to F any 

members of d separated by the number zero from points belonging to both F 

and J ,  and we denote by E4'F the set obtained by expanding as far as possible 

in z/ the part  of F contained in ,d; the set E,~'F is contained in both E ' F  and 

d ,  but there may be points common to E'F and z/which do not belong to Ea' F.  

8. Sequences. 

Of infinitely scattered sets the simplest are fully reduced sets whose members 

can be put  into a one-one correlation with the inductive cardinals; if such a 
.Aeta mathemat /ca .  42. Imprim6 le 12 juin 1918. 1828s l 0  
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correlation has been established, and xn is the point corresponding to n, then the 

relation of n to x~ is called a sequence and denoted by (x~), and the set of points 

is the converse domain of this relation. 

9. Complements. 

The points which do not  belong to a set /1 compose a set called the com- 

plement of F,  which we denote by C' F .  If  F and J are any two sets, the points 

of z/ which do not belong to F form a set called the complement of /~ in J ,  

which we denote by C~'F; if J is contained in F, there is no point of ~/which 

does not belong to F,  and C,~'F is null. 

10. Neighbourhoods. 

By the neighbourhood of x with radius Q we mean the set composed of all 

points separated from x by numbers less than Q. The character of a neighbour- 

hood depends on the nature of the universe; for example, if the numbers separat- 

ing x from points outside the unit  to which it belongs have a lower limit or 

minimum ~ other than o, then for any  value of ~ between o and a the neighbour- 

hood of x with radius Q coincides with the unit  which includes x. Whatever the 

character of the universe, the neighbourhood of any point x with zero radius is 

null, but every other neighbourhood of x includes at  least the one point x, and 

neighbourhoods with radii that  are not zero may be distinguished as existent 

neighbourhoods. 

11. L imi t ing  Poin ts  and Limi ted  Sets. 

Having agreed rather to classify universes according to their properties than 

to consider only universes of special kinds, we define the limiting points of a set 

by the definition tha t  x is a limiting point of F if there is a point of F outside 

the unit  containing x in every existent neighbourhood of x, and we admit  no 

modification which leads to a change in the content of the set of limiting points 

of any  set whatever. The set whose members are the limiting points of /~ is 

called the derivative of F and denoted by D ' / ' .  

I t  is a fundamental  proposition tha t  every set which has a limiting point 

is infinitely scattered; the converse is not true. There are universes in which 

every infinitely scattered set has a limiting point, and such universes are said 

to be limited; for many purposes the distinction between a limited universe and 

an unlimited universe is the most important  distinction between one universe 
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and another. In any universe a set is called unlimited or limited according as 

it does or does not contain an infinitely scattered set without a limiting point, 

and a limited universe may be defined as a universe in which every set is limited. 

I t  was proved by WEIERSTRASS and is said by Young  to have been known to 

earlier writers tha t  in the simplest types of space every infinitely scattered 

bounded set has a limiting point. But  it is easy to show tha t  this proposition 

is not true for all spaces: if the universe consists of all signless rational numbers 

in a finite stretch and separating numbers are arithmetical differences, then every 

set is bounded but no set is limited which in a wider universe would have irra- 

tional limits; again, if the point is a progression of numbers (xl, z2 . . . . . .  ) and the 

separating number ~ is the greatest among the differences I ~1 - -  x~ I, I ~l - -  x2 I, - . . ,  

the sequence (i, o, o . . . .  ), (o, i ,  o . . . .  ), (o, o, I . . . .  ), . . . .  in which the nth  point 

has its nth coordinate uni ty  and its other coordinates zero, is an infinitely scat- 

tered bounded set, with span unity,  but  with no limiting points. 

12. Simple Sets. 

A set which is the converse domain of a sequence may have no limiting 

points, or any finite number of limiting points; indeed, as is shewn by the 

familiar correlations of the rational numbers in a finite interval with the natural 

numbers, the cardinal number of the derivative of such a set may be an infinite 

number greater than the cardinal number of the set itself. A set is said to be 

simple if it is the converse domain of a sequence and has not more than one 

limiting point, and a sequence is said to be simple if its converse domain is 

simple. The use of simple sets comes from the theorem that  each limiting point 

of any ZERMELO set F is the unique limiting point of some simple set contained 

in F,  from which it follows tha t  a ZERMELO universe is limited if every simple 

set has a limiting point. 

In Euclidean space of any number of dimensions, if (yn)is a sequence whose 

converse domain is simple and unlimited and x is any point of the universe, 

and if the separating number of two points is the distance between them, then 

xy~ tends to infinity, but  this property is not common to all unlimited universes. 

13. Adherences and Coherences, Isolated Points  and In te rna l  Points ,  
Edges and Boundaries. 

There is no general relation of inclusion between a set and its derivative. 

Points which belong to /~ but not to D ' r  are called isolated points of /~ and 
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compose a set known as the adherence of F,  and points which belong both to 

F and to D ' F  form a set called the coherence of F.  Points of F which are 

limiting points of the complement of F constitute the edge of F,  and points of F 

which do not belong to the edge of F are called internal points of F.  Of the points 

of the derivative D' F,  those which belong to F can of course be distinguished 

from those which belong to C'F, but it is unnecessary to invent names for the 

two sets indicated by this distinction, for the points common to D'F and F 

compose the coherence of F,  and the points common to D ' F  and C'F form the 

edge of the complement of F.  Hero we may add that  the sum of the edges of 

F and C'F is called the boundary of F.  

If x is an isolated point of / ' ,  every point of the unit of F containing x is 

an isolated point, and the unit  itself is called an isolated unit  of F.  If x is a 

limiting point of F,  every point separated from x by the number zero is a limi- 

ting point of F,  and therefore every derivative is a fully expanded set. 

14. Complete Sets and Closed Sets. 

We say tha t  a set of points, limited or unlimited, is complete if it contains 

all its limiting points; thus in Euclidean space hyperbolas and helices are no less 

complete than circles, and a universe is necessarily complete. I t  is only to sets 

tha t  are both complete and limited tha t  we give the description of closed; a set 

is open if it is either incomplete or unlimited. Since a universe can not be in- 

complete, to say tha t  a universe is closed is the same as to say tha t  it is limited; 

moreover, in a limited universe all sets are limited, and therefore in a limited 

universe there is no difference between closed sets and complete sets. 

15. Extension and Completion. 

Extension of a set is addition to it of any set of its limiting points which 

it does not include originally, tha t  is, addition of any part  of the edge of the 

complement. If to a set F is added the whole of the edge of C ' F ,  the set F 

is said to be completed or fully extended,  and we denote the set obtained, which 

may be described simply as the sum of F and D' F, by G' F. If  F is not limited, 

neither is G'F, and therefore G'F is not necessarily closed, but the limiting 

points of G'F are those of F itself and belong to G'F, whence it follows tha t  

G'F is in all circumstances complete. The adherence of G'F is the same as 

the adherence of F,  and so G'F need not be fully expanded, and for some pur- 

poses we have to use the set E' G'F obtained by expanding G'F fully, which is 

the same as the set G'E 'F  obtained by completing E'F .  
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16. Dense Sets and Perfect Sets. 

If every po in t  of a set is a limiting point of the set, the set is said to be 

dense, and a set  which is both complete and dense is called a perfect set, whether 

or not  it is limited. A dense universe is necessarily perfect, bu t  although the 

commonest and most important  universes are dense, there is no logical necessity 

for a universe to be dense even if it is infinitely scattered. The simplicity of a 

dense universe comes chiefly from the fact that  in a dense universe if F is any 

set whatever  every point  is a limiting point either of F or of C ' F ,  

Any set obtained by  extending a dense set is itself dense, and therefore 

the set obtained by  completing any dense set is perfect. Although a dense uni- 

verse must  contain perfect sets, it is not  every dense universe that  contains sets 

both perfect and limited. 

17. Inseparability. 

We say that  two sets are inseparable if the corresponding completed and 

fully expanded sets have at  least one point in common; thus F and d are inse- 

parable if there is a point which belongs to both E ' G ' F  and E '  G 'd ,  that  is, if 

there is a unit of the universe which contains members of both G'F and G ' J .  

With this definition the null set is not  inseparable from any set. 

18. Congregates of  Points.  

A set in any universe we call a congregate of points if in every expression 

of it as the sum of two existent sets the two components are inseparable. If two 

sets have a common point they are certainly inseparable, and therefore although 

it is only a division into mutually exclusive sets tha t  it is natural  to contemp- 

late when considering whether or not a se t  is a congregate, there is no need to 

complicate the definition of a congregate by  requiring the sets considered to 

be mutually exclusive; since, however, the null set is not inseparable from any 
other set, it  is necessary to insist tha t  in every case neither of the components 

is null. Removing the word inseparable we may say that  a set is a congregate 

if however it is expressed as the sum of two existent components the completed 

and fully expanded sets corresponding to the two components have at ]east one 

common point. 
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19. Connected Sets. 

American writers have adopted a definition of considerable interest, which 

implies cohesion of a higher order  than is essential to a congregate: a set is said 

to be connected if in every  expression of it as the sum of two existent comple- 

menta ry  components one of these components includes a limit of the other;  the 

definition recalls the Dedekindian axiom of continuity.  Obviously every connected 

set is a congregate, and it is easy to shew tha t  every complete congregate 

is connected, but  the set formed of those points of a sphere which do not  lie 

on a part icular  great circle presents a simple example of a congregate tha t  is 

not  connected. 

The step from a congregate to a connected set introduces precisely the con- 

dition essential for a theorem tha t  is both interesting and valuable: a connected 

set tha t  includes both a point  tha t  belongs to a set ,I/ and a point  tha t  does not  

belong to J necessarily includes a point  on the boundary  of d .  

20. Uni ted Sets. 

We come now to an idea 1 which appears to be of fundamental  importance. 

We say tha t  a set F is uni ted if every pair of members of /" is contained in a 

closed congregate contained in the fu l ly  expanded set E ' F .  I t  can be shewn 

tha t  every closed congregate is united, but  while a united set is a congregate in 

the original sense it may be incomplete or unlimited and may indeed be both 

incomplete and unlimited. Closed congregates are necessary as a means to t h e  

definition and s tudy of united sets, but  the properties of closed congregates which 

are valuable and arise from the combination of their  qualities seem to be preci- 

sely those which belong equally to all united sets. 

As simple an example as there is of an open united set is the set formed of 

all the points on one side of a straight line in a reduced Euclidean plane, the 

distance between two points being chosen for their  separating number. In Eucli- 

dean space of any number  of dimensions, if y and z are any two points the set 

formed of y and z and all points between them on the straight line through them 

is called the closed chord joining them; this set is closed and connected. If y 

and z lie on the same side of any  straight line in a plane every point  of the 

closed chord joining them lies on the same side of tha t  line. Hence in the set 

described, the closed chord joining any two points of the set is a closed eongre- 

1 This idea seems narrowly to have escaped formulation by Prof. R. B/~IIcE, but I have 
failed to find an account of it in any of his writings that I have seen. 
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gate containing the points and contained in the set, and the set is therefore united, 

although it is unlimited because it extends to infinity and incomplete be- 

cause the points of the straight line used in defining it are limiting points which 

it does not include. In Euclidean space a set F is called convex when if g and 

z are any two points belonging to r every point of the closed chord joining y 

and z belongs to F, and after what has been said it is hardly necessary to point 

out tha t  if the separating numbers are distances every convex set is united. 

The nature of uni ty  may be illustrated further by means of a reduced 

Euclidean circle deprived of one point or of two points, the separating numbers 

again being distances. If F is such a circle and v, w are distinct points of F, 

then F itself, the set obtained by removing v from F, and the set obtained by 

removing from F both v and w, are all limited congregates, but only the first 

of them is complete.. The second of these three sets is, however, united, since 

if y, z are any two of its points the arc of r which has y and z for its end points 

and does not include v is a closed congregate containing y and z and con- 

tained in the set in question. But the third set is not united, for there are two 

arcs of /~ which have v and w for end points, and if y is any point distinct from 

v and w in one of these arcs and z is any point distinct from v and w in the 

other, every complete congregate contained in /~ and containing both y and z 

includes either v or w, and there is therefore no closed congregate containing y 

and z and contained in the set obtained by depriving F of v and w. 

An example even more instructive than the last is given by a lemniscate 

or any  other figure which might be described as a figure-of-eight. This is a 

closed connected figure and the set obtained by removing from it any one point 

is a congregate although it is incomplete; if the point removed is any  other point 

than the node, or if the curve is supposed to have two distinct points at  the 

node and only one of these is removed, the set remaining is united, but if the 

node is regarded as one point and is removed, or if all the points at  zero distance 

from the node are removed, there remain two distinct sets, each in itself united, 

which do not together form a united whole. 

A multiple united set is necessarily connected, but an example proves tha t  

the converse is not true, and tha t  even a complete connected set may fail to be 

united. As simple an example as any  is given by a branch of a hyperbola in a 

Euclidean plane together with any  stretch contained in one of the asymptotes 

and a sequence of lines in which every line is parallel to this asymptote and 

cuts the curve and the sequence has the asymptote for sole limit: this set is 

connected and is complete if the stretch consists of the whole asymptote but  

every conneeted component which includes both a point in the asymptote and a 
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point not on tha t  line is unbounded and is therefore open since the space is 

Euclidean. In this example it is to be remarked tha t  the set deprived of the 

points belonging to the asymptote  is a united set, whence follows the interesting 

theorem tha t  extension, whether partial or full, of a united set may result in a 

loss of the unity.  

Since every multiple united set is connected, such a set cannot leave any 

other set without crossing the boundary of tha t  set. In a dense universe, if a 

unit  contains both points of a set F and points of the complement C' F,  either 

all the points of F in the unit  or all the points of C ' F  in the unit  belong to 

the boundary of F,  and therefore in a dense universe the theorem just stated 

can be enunciated of all united sets and not of such only as are multiple. More 

generally, if a united set which is not contained in an isolated uni t  of the uni- 

verse includes both a point of a set F and a point of the complement of F,  it 

includes a point of the boundary of F.  

To illustrate the way in which the result enunciated in the last paragraph 

may be used to endorse the conclusions of common sense, let the universe be a 

reduced Euclidean plane, let g be a straight line in this plane, and let O be the 

set formed of points on one side of this straight line and ~ the set formed of 

points on the other side, separating numbers being distances. Then as already 

remarked, O and �9 are both united. If, however, y is a point of O and z a point 

of q), then since z belongs to the complement of O and every closed congregate 

is connected, every closed congregate containing both y and z contains a point 

of the boundary of O, tha t  is, a point of d .  If then F is the sum of O a n d O ,  

there are points y and z belonging to F such tha t  every closed congregate con- 

taining y and z contains a point of the complement of F,  or in other words such 

tha t  there does not exist a closed congregate containing y and z and contained 

in F ;  tha t  is to say, the complement of a straight line in a Euclidean plane is 

the sum of two united sets but is not itself united. If, however, to the sot F we 

add a single point x belonging to the line g ,  then if y and z are any two points 

of the resulting set, the sum of the closed chords joining y to x and x to z is a 

closed congregate containing y and z and contained in the set considered, and 
this set is therefore united. 

21. The Separating Number of Two Sets. 

From this point we propose a digression to compare the qualities we indi- 

cate by calling a set a congregate with the properties associated with the word 
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connex. The digression, interesting in itself, begins with the introduction of a 

notion tha t  can be made to serve many  useful purposes. 

If F and , /  arc any two sets, the class of signless real numbers each of 

which is not less thaa  the number separating some point of F from some point 

of J is such tha t  if a belongs to it so does every number greater than a; this 

class has therefore a lower limit or minimum, and this lower limit or minimum 

we call the separating number of the two sets F and J .  If the separating num- 

ber is a true minimum, tha t  is, an at tained minimum, of the class by which it 

is defined, then there exist points y, z belonging one to each of the sets F, ,/ ,  

such that  the separating number of the two sets is the separating number y z 

of the two points, but if the separating number of the two sets is an unattained 

lower limit, then even to be entitled to assert tha t  either there are a point y 

belonging to one of the sets and a simple sequence (zn) whose converse domain 

is contained in the other set such tha t  the separating number yz , ,  tends to the 

separating number of the sets, or there are simple sequences (yn), (zn) whose 

converse domains are contained one in each of the sets F,  , /  such tha t  ynzn 

tends to the separating number of the sets, we must know tha t  the sets are Zer- 

melo sets. I t  is convenient to modify the conclusion just reached as to Zermelo 

sets by using the fact that  a simple sequence (xn) such tha t  for every value of 

n the point xn belongs to a set 0 is either limited or unlimited and if limited 

has a limiting point belonging to D' q}. We deduce tha t  if two sets F,  ,~ are 

Zermelo sets, and their separating number is r then either there are points y,z 

belonging one to each of the completed sets G 'F ,  G ' , /  such tha t  the separating 

number y z is equal to r or there are a point y belonging to the set obtained 

by completing one of the sets F,  , /  and a sequence (zn) whose converse domain 

is contained in the other of the sets F , ,4  and has no limiting point, such that  

y z,~ tends to r or there are sequences (y~), (z~) whose converse domains are con- 

tained one in each of the sets and have no limiting points, such tha t  ynz,,  tends 

to r This is a result to which it is easy to apply knowledge of distinctive pro- 

perties of the sets F , J  or of the universe; for example, in Euclidean space of 

any finite number of dimensions with distances for separating numbers the se- 

cond case cannot occur, while in any limited ZER~ELO universe if the separating 

number of two sets is Q, there are points y, z belonging one to each of the cor- 

responding completed sets such tha t  y z is equal to r I t  is noteworthy tha t  

extension and expansion, partial or full, are without  effect on the separating 

number of two sets. 

An example in which the separating number of two sets is an unat tained 

limit will prove useful for reference. In a Euclidean plane with distances for 
Acto  m ~ h e m a t i c a .  42. Imprim6 lo 12 Juin 1918. ~lms 11 
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separating numbers, let F be a branch of a hyperbola and d a line parallel to 

one of the asymptotes of the curve, a t  distance Q from this asymptote, and on 

such a side of the asymptote if Q is not  zero tha t  it does not intersect F.  Then 

the separating number of F and J is ~, but  F and ~/are  both complete and the 

distance of any point of F from any point of J is greater than e. This example 

emphasises the difficulty of giving a satisfactory description of such features as 

this by a process beginning with a conventional closing of the universe; there 

are different methods of closing the Euclidean plane, but in all of them parallel 

lines meet at  infinity, and so it must  be agreed if the universe is closed either 

tha t  in this example the separating number of F and J is zero whatever the 

value of Q, on the ground tha t  r and , /  have a common point, or tha t  a point 

at  infinity may be at  a distance greater than zero from itself. 

By means of the general idea of the separating number of two sets it  is 

possible to simplify particular definitions in many important  cases. For  example, 

if J has only one member, x, the separating number of J and F is called the 

number separating x from F,  and if this number is zero either there is a point 

o f /~  in the uni t  of the universe which contains x or x is a limiting point of r .  

Again, the number separating x from the set obtained by depriving F of all its 

points in the unit  of the universe containing x is the isolating radius of x and 

F ;  if y is any point separated from x by a number which is not  zero but  is less 

than this isolating radius, y belongs to the complement of /1, and if x belongs 

to F,  the unit o f / "  containing x is an isolated unit  if the isolating radius is not 

zero but x belongs to the coherence of r if the isolating radius is zero. 

22. Connex Sets. 

The first definition of a connex set was given by CA~TOR, according to whom 

a set F is eonnex if given any signless number r other than zero and any two 

points y, z of F, there can be formed a set d including y and z, contained in F ,  

and consisting of a finite number n of points which can be correlated with the 

first n natural numbers in such a way tha t  if xm corresponds to m, the first point 

xl is y, the last point x~ is z, and every pair of consecutive points of , /  has a 

separating number not  greater than Q. 

A definition of an entirely different kind was proposed by JOI{DA~, who drew 

at tent ion to the property possessed by a limited complete set if the separating 

number of every pair of existent sets of which it can be expressed as the sum 

is zero. Such a set is, in our sense of the word, united, and it is evident from 
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JORDAN'S work 1 that  it is this characteristic tha t  he wishes to emphasise, though 

he defines it  only for closed sets. If we detach the property which JORDAN de- 

scribes from the elementary properties which he adds in order to obtain a united 

set, we are led to consider the nature of any set which is such tha t  the 

separating number of every pair of existent sets of which it is the sum is zero, 

and we have no difficulty in shewing tha t  the sets which have this property are 
the sets which are connex according to CANTOR'S definition. 

23. The Relation between Connex Sets and Congregates. 

In any universe a set which is a congregate is connex, but  an unlimited 

connex set may fail to be a congregate, and it is only in a limited universe tha t  

every connex set is a congregate. 

An example tha t  we have already used will serve again. Let  the universe 

be a reduced Euclidean plane with distances for separating numbers, let F be a 

branch of a hyperbola and d an asymptote,  and consider the set obtained by 

adding F and J .  If this set is expressed as the sum of two existent sets O, O, 

either F contains both a point of 0 and a point of O, or J contains both a 

point of 0 and a point of ~, or O coincides with one of the sets F,  J and q9 

coincides with the other. In the first two cases, from the properties of straight 

lines and hyperbolas, it is true both tha t  G'O and G ' ~  have a common point 

and tha t  the separating number of O and �9 is zero; in the last case the separat- 

ing number is zero, but the sets are not inseparable. Thus there is a division 

of the whole set into two separable sets but  there is no division into two sets 

whose separating number is not zero, and therefore the set is not a congregate 

but by JORDAN'S criterion it is connex. The same example will serve to illustrate 

CANTOR'S definition. Of any pair of points of the set, either both members belong 

to F, or both members belong to J ,  or one member belongs to F,  and the other 

to J .  If F, z are any two points of F or are any two points of J ,  let ~ ,  de- 

note the length of the curve or line between y and z, and if # is any signless 

real number let [~] denote the integer next  below o (which is o ~ I  if o is itself 

an integer). Then if r is any signless number other than zero and if y and z 

are distinct points of F or distinct points of J ,  the curve or line between y and 

z can be divided into [~z/r + I parts of equal length, and the end points of 

these parts,  [~ym/Q] + 2 in number, compose a set of the required form; if, how- 

ever, with the same value of r we have to consider two points y, z of which y 

Above all, from his phrase d'un seul tenant. 



84 Erie H. Neville. 

belongs to /~ and z to .Y, the first step is to select a point t, of T and a point 

w of J whose distance apart  is not greater than ~, a selection tha t  is possible 

because d is an asymptote of F,  and we can then find a set of the required 

kind with the finite number [;tu,,/Q ] + [;~,,/a] + 4 of points. 

We have said tha t  a limited connex set is necessarily a congregate. Since 

in practice mathematicians have dealt almost exclusively with limited sets, it is 

impossible at  present to pronounce on the importance of connexity when possessed 

by a set which is not a congregate. But  there is no doubt that  in many 

cases it is easier to apply the criterion of inseparability than to utilise either 

CANTOR'S criterion or JORDAN'S, and I think it is safe to predict  tha t  for logical 

developments the hypothesis tha t  the separating number of two sets is zero will 

prove to be conveniently analysed into the form that  either the sets are insepar- 

able or they are separable but  their separating number is zero and one at  least 

of them is unlimited. 

I t  should be added tha t  the idea of congregates as distinct from connex 

sets is not necessary to the definition of united sets, since in that  definition 

closed congregates only are used and there is no extensional difference between 

closed congregates and closed connex sets. For the theory of sets of points it 

might seem more elegant, because more economical, to define united sets by 

means of connex sets and not by means of congregates, but  for the course we 

have adopted there is a double justification tha t  the definition of a congregate 

lends itself more readily than the definition of a connex set to symbolic treat- 

ment  and that  while the notion of a connex set is inapplicable except to sets of 

points the idea of a congregate can be extended to any universe in which ag- 

gregates have derivatives of their own type. Here concludes our digression. 

24. Continuous Sets and Continua. 

A study of the formal definitions reveals tha t  every unit set is united. 

This result is in fact desirable, but there are many properties of multiple united 

sets which do not belong to unit  sets: to mention the simplest, a multiple united 

set is dense, as is any multiple congregate, but a unit  set is not dense. On 

account of the differences of which this is a typical example, a distinctive epi- 

thet  is given to a united set which has more than one unit:  a multiple united 

set is said to be continuous. 

There appears to be no agreement among mathematicians as to the use of 

the word continuum; in simple cases, to some writers a continuum is essentially 
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complete, while to others a continuum must  have a complete complement; to 

all writers a continuum is a multiple set, and therefore the universe is the only 

set which is not inherently incapable of satisfying every definition that  has been 

used. To us it would seem natural  to define a continuum in the terms we have 

just used of a continuous set, but  in spite of the absence of unanimity in its 

present employers we hesitate to appropriate the name; the sets which one class 

of writers calls continua can be described with sufficient brevity as complete 

continuous sets, and the sets which writers of the other class find it convenient 

to use add to continuity a property which we shall presently associate with the 

word domain and can be called continuous domains. 

25. The Cells o f  a Set. 

When the nature of a united set has been grasped, a valuable analysis of 

any set presents itself, following naturally on some of the examples we have given. 

If �9 is any  point of a set F,  what is conveyed in untechnical language by 

saying tha t  y is a point which we can reach from x without  leaving F is tha t  

there is a closed congregate containing x and y and contained in F. The points 

which we can reach from a point x of a set F without  leaving F compose a set 

which we call the cell of F containing x and denote by K'  (x, F). If y is a point 

of the cell o f / "  containing x, the cell containing y is identical with the cell con- 

taining x, and we call a set a cell of F if it is the cell of F containing some 

point of F ;  the class whose members are the cells of F we denote by x 'F .  

Every cell of F is a united set contained in F, no two cells have a common 

point, and every point of F belongs to one cell; by means of its cells, F is ex- 

pressed as the sum of a class of mutual ly  exclusive sets, and the members of 

this class ~ ' F  are precisely the sets which common sense regards as the distinct 

pieces of which F is composed. The number of the cells of a set is a number 

of considerable importance; for example if /1 is a plane set this number is related 

to the connectivity of the complement of r ,  while a united set is a set with 

only one cell and properties are not wanting which arc peculiar to sets with 

other specific cell-numbers. 

The definitions of this section may be illustrated by examples some of which 

we have already used. A circle deprived of two units, a hyperbola, a figure of 

eight deprived of its node, the set complementary to a straight line, are all sets 

in a Euclidean plane which have two cells, while a circle deprived of one unit  

and the set obtained by adding to the complement of a straight line any  existent 
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set of points contained in the line itself are sets with only one cell; more gene- 

rally, by depriving a circle of n units we obtain a set with n limited cells, while 

by depriving a Euclidean s t ra ight  line of n units we obtain a set with n ~- I 

cells of which 2 are unlimited and n -  I are limited. 

I t  is to be noticed tha t  a limiting point of one cell o f  a set may actually 

belong to another cell of the same set; in particular, the individual cells of a 

universe may be incomplete, although the universe as a whole is necessarily 

complete. 

26. Sets Continuous in Every Part. 

A cell of a set may be either unit  or multiple and therefore every cell is 

either a unit  cell or a continuous set. A set of which every cell is continuous 

is said to be continuous in every part.  A set may be continuous in every part  

without being continuous as a whole, and without being complete or limited, 

but  a set continuous in every part  is necessarily dense. 

27. Plots.  

If x is any point and /~ any set, there may be no value of Q such tha t  the 

points  of 1 ~ separated from $ by numbers less than Q form a united set, and 

even if this set is united for a particular value a of Q there may  be values of Q 

both smaller and larger than a for which the set is not united. But  if x belongs 

to F,  then for every value of Q other than  zero x belongs to the set formed of 

points of F in the neighbourhood of x with radius Q, and the cell of this set 

containing x we call the plot of F with centre x and radius Q, ]f x does not 

belong to F, or if ~ is zero, the plot of F with centre x and radius e is null. 

The plot of /" with centre x and radius Q must not be confounded with the part  

of the cell of F containing x which lies within the neighbourhood of x with centre 

F ;  the plot is contained in the set last described, but  this set is not neces- 

sarily united. 

Given any point x and any number Q, there is a plot of the universe itself 

which has centre x and radius Q; this plot, which is not null unless Q is zero, 

may be only a par t  of the neighbourhood with centre x and radius ~, and only 

a part  of the cell of the universe containing x. Every  plot of the universe is 

fully expanded, but  a plot of any  other set F is contained in F and if /" is not 

fully expanded some of its plots are not fully expanded. 
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28. Confined Limiting Points. 

We say that  a point �9 is a confined limiting point of a set F with respect 

to a set J if there is a point of F outside the unit  containing x in every exist- 

ent  plot of J which has x for centre, and we denote the set of limiting points 

of F confined with respect to J by D4' F .  I t  follows at  once from the defini- 

tion tha t  whatever J may be, the confined derivative D~'F is contained in the 

derivative D' F,  but we note tha t  even Dr '  F,  the derivative confined with respect 

to the universe, is not necessarily the same as D ' F .  The derivative of F con- 

fined with respect to J is the same as the derivative confined with respect to 

J of the product of F and J ,  tha t  is, of the set composed of the points common 

to F and J .  

29. Brinks and Borders. 

The set formed of the points of a set r which belong to a set J and are 

confined limiting points of C'F with respect to J we call the brink of F in J ,  

and the sum of the brinks in J of F and C'F we call the border of F in J 

and denote by B'~ F. The brink and the border of F in the universe are called 

simply the brink and the border of F,  or if a contrast  is felt to be desirable 

the absolute brink and the absolute border. Since the brink and the border in 

d of F are identical with the brink and the border in J of the part  o f / "  con- 

tained in J ,  it is an easy mat ter  to pass from theorems concerning absolute 

brinks and borders to theorems concerning brinks and borders in sets other than 

the universe. The absolute brink of any set is contained in the edge of the s e t ,  

and the absolute border is contained in the boundary, but  before proceeding 

with abstract  work we describe cases in which the brink differs from the edge 

and the border from the boundary, and we shall see in these examples the kind 

of part  tha t  confined limiting points may play. 

Suppose tha t  in Euclidean space of three dimensions v, w are two points 

and ~ is a set contained in the chord joining v and w and such tha t  both 

and its complement are dense in this chord. First let the universe V be the 

family of concentric spheres whose centre is v and whose radii are the distances 

from v of the points of ~, let distances be separating numbers, let ~ be one of 

these spheres, let O be a great circle on this sphere, and let I ' ,  J be the un- 

bounded hemispheres lying one on each side of O. Every point of ~ is a limiting 

point of sets contained in the other spheres, and therefore is a limiting point of 

C'F; hence F is contained in D' C'F and F is its own edge. But  if there is no 
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connection between ~ and the spheres composing C' ~, the cell of l z containing 

any  point of ~ is ~ itself, 1 and D ' v C ' F  is the sum of z/ and {9, so that  r has 

no brink, but {9 is the brink of C'F and the border of F. If, however, we add 

to the universe just considered all the points of the chord joining v and w, still 

using distances for separating numbers, and if this chord cuts Z in a point y, 

then if x is any point of ~ and r is not greater than xy, the plot of the uni- 

verse which has x for centre and Q for radius is contained in ~, and if x is di- 

stinct from y then x is a confined limiting point of a set q) if and only if x is a 

limiting point of the part  of q) in ~, but  if x coincides with y then x is a con- 

fined limiting point of C ' ~  and of the complement of every set contained in :~, 

and every set contained in ~ and including y has y upon its brink. In the case 

of the unbounded hemispheres F and d ,  if y lies in d or 0 the brink and the 

border of /" are alike unaffected by the addition to the universe, but  if y lies 

in I" then the brink of r contains this one point only, the brink of C'F is the 

great circle 0 as before, and the border of /~ is the set obtained by adding the 

point to the circle. 

30. The Relation between Unity and Borders. 

Far more fundamental  than the relation between connected sets and boun- 

daries is the relation between united sets and borders, expressible in the form 

tha t  if a united set contained in a set d but  not in an isolated unit  of z/ in- 

cludes both a point which belongs to a set /~ and a point which does not belong 

to F, then it includes at  least one point of the border of F in zl. Whenever 

the border of a set differs from the boundary, and in particular in the cases in 

which a set is contained in its boundary but  not  in its border, the present theo- 

rem gives results of greater value than the similar theorem enunciated earlier. 

An important  application of the theorem of this section is to the determi- 

nation of the criterion for the existence of a border; it is readily proved tha t  

an existent set F in a universe V has an existent border if there is a cell of F 

which does not coincide with the cell of V in which it lies and is not contained 

I We notice tha t  if y, z are any two points  of th is  universe  t he  points  of Vbelonging  to the  
closed chord  joining y and z form a set  wh ich  in V is complete  and  connected,  but  th is  set  is 
unl imi ted ,  for  it  contains  sequences  wh ich  have no l imi t ing poin ts  in V; to mee t  such cases 
as this ,  we should have to make  uni ty  depend  on closed congregates  and not  on completr 
congregates,  even  if we had no examples  in Eucl idean space of comple te  congregates  tha t  a re  
no t  united.  
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in an isolated unit  of V, and to pass from this result to a theorem giving the 

condition for the existence of a border of any one set F in any other set J 

requires little more than verbal modifications. 

31. Part i t ions  and Permeation.  

Deserving of passing notice is an idea closely related to ideas involved in 

the theorem of the last section. A set {9 is said to par t  two sets F , d  or to be 

a partition between them if no point of r or J belongs to {9 but  every united 

set containing a point of F and a point of J necessarily includes a point  of {9. 

For  example, in a reduced Euclidean plane a straight line par ts  any two sets of 

which one lies wholly on one side of the line and the other wholly on the other 

side. We recognise from this example that  a point of a partit ion between two 

sets may be a common limiting point  of the sets. One set is said to permeate 

another if there is no parti t ion possible between them, and inseparable sets which 

do not permeate each other have a common limiting point. 

32. Fronts.  

The border B~'F of the border of a set F is not necessarily identical with 

the original border By' F, but  is a set which we call the front I of F,  and simi- 

larly the border in J of the border of F in d ,  which we call the front of F in 

J ,  may differ from B~' F.  For example, if the universe is a Euclidean plane 

with distances for separating numbers, and F is contained in a circular area 

every point of which is a limiting point  of both I" and C' F, the border By' F, 
which in this case is the boundary,  consists of the whole circular area together 

with the circumference, bu t  the front is the circumference alone. 
I t  is not difficult to prove that  in any universe the border of any set is a 

complete set and the front and the border of any complete set coincide; from 

these propositions it follows that  the border of every front is the front itself, 

so that  for every value of n greater than two B~'F is identical with /~4'F, and 

it is this theorem which gives unique value to the front. 

1 JORDAN gave the  name of frontiers de F to tile set  we are calling the  boundary  of F, 
and both boundary and f ront ier  are in use in Engl ish  as equivalent  to his  word fronti~rr I t  
is unfor tuna te  tha t  in a subject  requir ing so ex tens ive  a vocabulary as does the  theory  of sots 
of points  two express ive  te rms  have been  consecrated to a single idea, but  an a t t empt  to reco- 
ver  the  word boundary  for f resh  service,  leaving f ron t ie r  to fulfil its original funct ion,  would 
lead to confusion. 

Aeta rnathernatica. 42. Imprim~ le 22. novembre 1918. l~ 
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33. Domains. 

An ex is ten t  set  is called a domain  if the  cor responding  ful ly  ex p an d ed  set  

has no br ink.  The  simplest  domains  are  ful ly  expanded ,  and  the  charac te r i s t i c  

p r o p e r t y  of a fu l ly  expanded  domain  m a y  be expressed  in a v a r i e t y  of ways ;  

for  example ,  a fu l ly  e x p a n d e d  domain  is an ex is ten t  set of which the  bo rde r  is 

con ta ined  in the  complement ,  and  a fu]ly e x p a n d e d  set  is a domain  if i t  exists  and  

its complemen t  is complete ,  no te  being made  t h a t  a null set is formal ly  complete .  

In  the  def ini t ions  of the  b r ink  and  the border  of a set F in a set A it  is 

i r r e l evan t  whe the r  or  no t  F is con ta ined  in A; we do not ,  however ,  say  t h a t  /1 

is a domain  in d unless no t  on ly  does the  ful ly  ex p an d ed  set  E'I" exis t  and  

have  no br ink  in , /  b u t  /" i tself is con ta ined  in A. In  general ,  if t he re  are  poin ts  

of /" in A bu t  E ' F  has no br ink  in A, i t  is the  p a r t  of F in A which is a do-  

main  in A. 

I f  F is a domain  and  x is a n y  po in t  of / ' ,  t he re  is a n u m b e r  Q such t h a t  

e v e r y  po in t  s epa ra t ed  f rom x b y  a n u m b e r  less t h a n  Q is sepa ra ted  b y  the  n u m -  

ber  zero f rom some poin t  of /1, while if /" is a ful ly ex p an d ed  domain  and  x is 

a n y  po in t  of /" t he re  is a n u m b e r  r such t h a t  e v e r y  po in t  sepa ra ted  f rom x by  

a n u m b e r  less t h a n  Q ac tua l ly  belongs to  / ' .  

34. Capacious Sets. 

I f  the  set  E'I" ob ta ined  b y  expand ing  fully a set  F is con ta ined  in its own 

brink,  there  are  no domains  conta ined  in F ,  b u t  if E ' F  has points  no t  belonging 

to  i ts br ink  t hen  whe the r  or not  r is a domain  there  are  domains  con ta ined  in 

F ;  we call 1 a set capacious  if i t  conta ins  domains ,  and  we call one set  F capacious  

in ano the r  set  d if there  is a set  con ta ined  in F which is a domain  in d .  

35. Extreme Points. 

An i m p o r t a n t  idea de r ived  f rom t h a t  of a domain  is t h a t  of the  e x t r e m i t y  

of a set.  A po in t  is an  ex t r em e  po in t  ~ of a set F if there  is no domain  i n / ~ t o  

which i t  belongs, and  the  ex t r em e  poin ts  of F compose  a set  we call the  extre-  

m i t y  of F .  To  de te rmine  whe the r  or no t  a po in t  is an ex t r eme  po in t  of I" i t  is 

no t  necessary  to consider  F as con ta ined  in a more  comprehens ive  set. 

1 What JORDAN calls a domaine is what we are calling a capacious set; our use of domain 
is the use common in English mathematical writings, but we require a phrase to embody 
JORDAS'S idea. 

In the case of a plane curve an end point as defined by W. H. and G. C. Yousa, The 
Theory of Sets of Points, p. 221 (1906) is not necessarily an extreme point in our sense. 
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36. The Dimens ion- In teger  of  a Set,  and the  Definit ions o f  Curves 
and Surfaces.  

We do not  need the definition of a domain in order  to define a curve, a 

surface, and inductively a set of any  finite dimension-integer. A set F is a curve 

if it is united, if it is not a unit set, and if every existent cell of the front  in 

F of every  set contained in F is a unit  cell. A set F is a surface if it is united, 

if it is neither a unit  set nor a curve, and if every  existent  cell of the front  in 

F of every  set contained in F is either a unit set or a curve. In general a uni ted 

set has the dimension-integer n if it  has a dimension-integer not  smaller than 

n and if every existent cell of the front in F of every set contained in F has a 

dimension-integer smaller than n, a unit  set being regarded as having dimension- 

integer zero; and if a set is not  uni ted its dimension-integer is the greatest  num- 

ber occurring among the dimension-integers of its cells. 

I t  is interesting to notice tha t  extension, partial  or full, may increase inde- 

finitely the dimension-integer of a set; perhaps the most impor tant  classification 

of sets with a common dimension-integer is based on the increase effected by 

completion, the simplest sets of dimension-integer n being those whose comple- 

tions also have dimension-integer n. From a theorem stated in section 19 it 

follows that  extension even if full may increase the number  of cells of a set, so 

tha t  extension of a curve or a surface may result in a set which is not  a single 

curve or a single surface even if it does not  result in an increase of the dimen- 

sion-integer. 

37. P u r e  Sets and ] I ixed  Sets. 

Reference must  be made to the distinction between a pure set and a mixed 

set of dimension-integer n, a distinction tha t  in contrast  to the notion of the 

dimension-integer involves an idea derived from tha t  of a domain, namely, the 

idea of a capacious set. The cylindroid is a locus furnished analytically which 

is uni ted but  in some sense consists of a surface together with curves which 

do not  lie in the surface. We say tha t  a set F of dimension-integer n is a pure 

set if the front  in F of every  fully expanded set capacious in F has dimension- 

integer n - - i ,  and we describe a set as mixed if it is not  pure. I t  is easy to 

verify tha t  with this definition a cylindroid is a mixed set. 

38. Curves on Surfaces .  

I t  can be proved tha t  if F is such tha t  the set E~'F obtained by  the full 

expansion of F in J is contained in i'ts own border  in J ,  then the dimension- 
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integer of the part  of F in J is smaller than the dimension-integer of J .  This 

principle enables us to define a curve in any set which is known to be a sur- 

face in terms simpler than those of the general definition of a curve; a curve on 

a surface is a multiple united set contained in the surface such that  the corre- 

sponding set fully expanded in the surface is contained in its own border in the 

surface, tha t  is, is identical with its own brink in the surface. For example, if 

the universe is a reduced plane a curve is a multiple united set of points con- 

tained in its own boundary. But  a multiple united set contained in its own 
border in a reduced space whose dimension-integer is 3 may be either a curve 

or a surface, and to deal with dimensions in general by successive reduction 

from the universe not only assumes the universe to have a finite dimension-in- 

teger but  also requires a method of discrimination between a decrease by uni ty  

and any  greater decrease in a dimension-integer, and this discrimination is ren- 

dered difficult by the existence in any set with dimension-integer not less than 

2 of sets that  are not pure. 

39. Dimension-integers and Dimension-Type~. 

The definitions proposed in the last three paragraphs differ from the defini- 

tions in other theories of dimension in being independent of any comparison of 

one set with another, but  although the property described in the last paragraph 

as characteristic of a curve on a surface appears to be the fundamental  property 

tha t  any system of definitions must reproduce, the uti l i ty of the definitions in 

section 36 doubtless depends on the possibility of ascertaining dimension-integers 

by comparison. A correlation of one set /" with another set A in general con- 

nects classes of members of F with classes of members of A; if to each point 

of F corresponds one and only one point of A, the correlation of F with A is 

many-one, and if the correlation of A with F is many-one, the correlation of F 

with A is one-many; a correlation which is both many-one and one-many is one- 

one. Let  (9 be a set contained in F, and let �9 be the corresponding set in A, 

a many-many correspondence existing between F and A; to the par t  of the derived 

set D 'O which is contained in F there corresponds some set contained in A, 

but this set has not neoessarily any points in common with D' q~; if the correlate 

in A of the par t  belonging to F of the derivative of every set O contained in F 

is the part  contained in A of the derivative of the correlate in , /  of @, the cor- 

respondence of F with A is continuous from F to A; a correspondence which is 

continuous both from F to A and from A to F is a bicontinuous correlat ion of 

F and J .  A one-one correlation is not necessarily bieontinuous, nor is every 
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bicontinuous correlation one-one, but the correlations which are valuable in the 

theory of dimensions are correlations which are both bicontinuous and one-one, 

and if a correlation of this kind exists between two sets the sets are said to be 

homomorphous and each is called an image of the other. 

In FR~CHET'S theory of dimension-types, the type of F is said to be not lower 

than the type of J if F contains an image of J ,  and two sets are said to have 

the same type if each contains an image of the other;  it is easy to prove that  

with our definitions two sets between which exists a bicontinuous one-one corre- 

lation have the same dimension-integer, and the dimension-integer of a set J can 

not be greater than the dimension-integer of any set in which J is contained, 

and it follows tha t  our ideas are not at  variance with FR~CH~.T'S. F~.CHET, how- 

ever, can assign the integers arbitrarily to any set of ascending types, and for 

him the assertion tha t  n-dimensional Euclidean space, - -  the space in which a 

point x is the ordered class (x, x2 . . . .  xn) of n independent real numbers and the 

separating number x ~ is either V(~ (xr - -xr )~  or ~ [ x r - - x r l ,  - -  is of dimension- 

type n, while requiring for its justification the fundamental  dimension-theorem 

tha t  no bieontinuous one-one correspondence is possible between two complete 

spaces of this kind which do not depend on the same number of coordinates, is 

nevertheless an arbi t rary  definition. We have to recognise tha t  if the definitions 

of section 36 are to be adopted, despotic assignment of dimension-integers is im- 

possible, and the dimension-integer of Euclidean space with n coordinates is in- 

trinsically determinate:  if this integer proves to be n, and if every set with 

dimension-integer n contains an image of the complete Euclidean space with n 

coordinates, the relation of the present theory to the theory of dimension-types 

is perfect. 

T 


