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Introduct ion 

Singularities of solutions of differential equations have always attracted attention. Frobe- 

nius, Hwiamard, and Painlev~, to  name a few authors, developed tools for their investi- 

gation. A typical problem is the occurence of a logarithmic singularity, but also, where 

a logarithmic term is expected, its absence. The present paper studies this problem for 

a particular class of differential equations which naturally arises from the analysis on 

manifolds. 

Let (M, g) be an analytic pseudo-Riemannian manifold of dimension n>2.  A linear 

analytic differential operator L on M is called Laplace-like if it has the same principal 

part as the Laplace-Beltraml operator A with respect to g. Note that L is elliptic if 

g is properly Riemannian, hyperbolic if g is Lorentzian, and ultrahyperbolic otherwise. 

Let r(x,9) denote the distance between two points x and y in M (the definition is 

given below--for definite metrics it is the geodesic distance). Hadamard's elementary 
solution is a solution u=u(x, y) of Lxu=O which qualitatively behaves like r(x, y)2-n as 
the running point x approaches the fixed (but arbitrary) point of origin y. It was shown 

by Hadamard (see [8], [7]) that there exists an elementary solution of the form 

u=Ur2-n +lllogr 

where U=U(x,y) and bl=U(x,y) are defined and analytic in a neighborhood of the 

diagonal of M x M ,  and U(x ,x)- i  on the diagonal. If n is odd we always have//--0,  

but if n is even the logarithmic term is generally present. The exceptional behaviour in 

which we are interested here is precisely the absence of this term (that is , /~-0) .  In this 

case the elementary solution u is called logarithm-free. 
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In addition to being mathematically interesting, the search for logarithm-free ele- 

mentary solutions also has some physical relevance. In the even-dimensional Lorentzian 

(hyperbolic) case, the absence of the logarithmic term for the operator L is equivalent to 

the property that its formal adjoint L* obeys Huygens' principle locally, that is, solutions 

to the equation L ' u = 0  propagate sharply, just as waves in even-dimensional Minkowski 

space-time are known to do (see [7]). Furthermore, in the properly Riemannian (el- 

liptic) case the equation Lu=O can sometimes be interpreted as the field equation for 

scalar gravitation; in this case the elementary solution is the gravitational potential of a 

central point mass, and a log-term is expected to act as a potential barrier for a point 

particle moving to infinity. In Newton's theory we have L-----A; certain deviations from 

this are discussed under the name of the 'fifth force' (see [15], [19]). In particular, the 

Helmholtz equation (A+)~)u=O, where A is a constant, has been taken as a candidate for 

a gravitational field equation. 

It is a long-standing unsolved problem to generally characterize the Laplace-like 

differential operators which admit a logarithm-free elementary solution. Tractable sub- 

problems emerge by restriction of the class of differential operators and the class of spaces 

under consideration. Here we restrict to the Helmholtz operators 

L--Lx=A+)~,  )~ = const E C, 

on harmonic manifolds. We call ~ an exceptional Helmholtz number for (M,g) if La 

admits a logarithm-free elementary solution. 

As an example, consider the even-dimensional Euclidean space R n = R  2m+2 with the 

flat Riemannian metric. Then r(x, y)= {x-y[. In this case, if ~ - - - a 2 r  then La has the 

elementary solution u=cr-'nK, n(ar), where c r  and Km is a modified Bessel function 

of the second kind ([25, pp. 47-48]). Since the latter exhibits a logarithmic part, ~ is not 

exceptional. If ,~----0 then L0=A has the elementary solution u=r -2m. Hence 0 is the  

only excePtional Helmholtz number for the flat R n. 

In the first part of this paper we associate to any even-dimensional harmonic mani- 

fold a polynomial h of degree m= �89 which we call the Hadamard polynomial. The 

main result in this part is the observation that ~ is exceptional if and only if it is a root 

of the Hadamard polynomial (Theorem 3.1). Hence there are at least one, and at most 

m exceptional Helmholtz numbers for (M, g). The Hadamard polynomial gets its name 

from a close relationship to the Hadamard coefficients of A, but it can also be described 

independently by a simple algebraic recursion formula (Theorem 3,2). Finally, we also 

establish (in Theorem 3.3) the existence of a solution u=u(x, y) to the (2m)th order 

equation h(--A)u=O of the form 

u=r-2+Z, (1) 
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where Z is defined and analytic in a neighborhood of the diagonal. It follows that if A is 

a root of h then ( A + A ) - l h ( - A ) u  is a logarithm-free elementary solution to L~ (up to  

a constant multiple). 

In the second part we explicitly determine the exceptional Helmholtz numbers for 

the (even-dimensional) isotropic spaces, a family of homogeneous harmonic spaces that 

includes the two-point homogeneous spaces (which are properly Riemannian) and the 

spaces of constant curvature (not necessarily properly Riemannian). In particular we 

thus obtain the complete answer to the problem of determining the exceptional Hehnholtz 

numbers for the closed simply connected harmonic manifolds, as well as for the Lorentzian 

harmonic manifolds, since it is known that a manifold of the first type is two-point 

homogeneous (see [27]), and that a manifold of the second type has constant curvature 

(see [21, p. 68]). (There are however open properly Riemannian harmonic manifolds 

which are not isotropic, see [4].) The exceptional Hehnholtz numbers are found by 

explicit determination of a function u as in (1), which is annihilated by an rath order 

polynomial in - A .  Consequently this polynomial is a constant multiple of h, and its roots 

A1, ..., Am are the exceptional Helmholtz numbers (some of which may occur twice). The 

fact that the product of the operators A + Ak (k----1,..., m) has a logarithm-free elementary 

solution which becomes singular like r(x, y)-2 as x-*y, is a curved analog of the fact that 

in the fiat even-dimensional R n the iterated Laplace operator A m has the logarithm-free 

elementary solution u = r  -2 (whereas A k for k > m  requires logarithms, see [25, p. 47]). 

The proof is strongly related to Helgason's analysis of integral (Radon) transforms for 

the two-point homogeneous spaces ([9], [10] or [12, Chapter I, w 

For the even-dimensional Lorentzian hyperbolic spaces we have thus obtained all 

the values A for which the Klein-Gordon equation (A+A)u=0 obeys Huygens' princi- 

ple locally; there are precisely m different such values A1, ...,Am (these can be shown 

to be exceptional as well by an argument of conformal invariance, as was also observed 

independently by Orsted (unpublished)). In addition we obtain that the product of the 

operators A+Ak ( k = l ,  . . . ,m) obeys Huygens' principle, even globally: It has a funda- 

mental solution supported on the boundary of the light cone. We derive this result 

from Helgason's inversion formula for the orbital integrals for these spaces ([12, Chap- 

ter I, Theorem 6.17]). It is a curved analog of the fact that in the flat even-dimensional 

Lorentzian R n the iterated d'Alembertian A "~ has such a fundamental solution (see [14, 

w 

We are grateful to Professors T. Bra~on, S. Helgason, G. 6]aE~son and B. Orsted 
for helpful discussions. In particular, it was {Drsted who suggested the possibility of 

using Helgason's results on integral transforms in this context. At an earlier stage, Drs. 

W. Quapp and V. Pohlers assisted with computer calculations. 
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I. Harmonic  manifo lds  

Let us review here some well-known properties of harmonic manifolds. For details, see [2], 

[21]. For a smooth pseudo-Riemannian manifold (M, g) the distance r(x, y)>~O between 

two points x and y can be defined as follows: Firstly one defines Synge's function a(x, y) 
by 

a(x, y):---- ]g(y)(Exp~ -1 x, E x p ;  1 x) e R 

where Exp~ denotes the exponential map from T~M to M. It is defined and smooth in a 

neighborhood of the diagonal of M • M and takes the value 0 on the diagonal. Secondly 

If M is properly Riemannian then r(x, y) equals the geodesic distance between x and y, 

for x in a normal neighborhood of y. 

It follows from the definition of a that  it satisfies the differential equation 

(grad a, da) = 2a. (2) 

Here and in the following ( . , . )  denotes the natural pairing between vector fields and 

1-forms, and the differentiations take place with respect to x. 

From a some other useful quantities are derived. The normal volume f~nction ~(x, y) 

is defined in local coordinates (Xl, ..., x , )  on M by 

~(x, y ) : =  ~ [det 0x, 0~j a(x, Y)I-1, 

for (x, y) in a neighborhood of the diagonal of M x M. Here 

0 
= [det gij[, g~j = g(0=,, 0= 5), 0=, = Ox~" 

In fact ~ is independent of the choice of local coordinates, it is the Radon-Nikodym 

derivative of the Riemannian volume element on M with respect to the push-forward 

by Expu of the volume element on TuM. On the diagonal we have ~ (y ,y )= l .  Let 

D ( x , y ) = ~( x , y ) - I be the van Vleck determinant, and 

, (x ,  u):= y ) - n ) .  

It is easily seen that/~(y,  y)=0.  

A function u on a neighborhood of the diagonal in M x M is called radial if it factors 

through or, that  is u ( x , y ) = f ( c ( x , y ) ) .  When applied to the first variable of a smooth 
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radial function u(x, y)=f(a(x, y)), the Laplace operator reduces by means of (2) to the 

expression 

Azu = 2af"(a)+(21.t+n)f'(a). (3) 

A smooth manifold (M, g) is called harmonic if the Laplace operator Ax maps smooth 

radial functions to radial functions again. It follows from (3) that M is harmonic if 

and only if # (or equivalently, Axa) is radial. Another equivalent criterion reads that Q 

(or D) is radial (see [21, p. 35])' In this case a radial elementary solution to the Laplace 

equation Au=O is represented by the integral 

= [ a-m-lD(a) da, (4) u 

J 

and we have the expression 

(see [21, pp. 39-40]). 

# = a ~ a l o g 0 =  x d ~r~r r log (5) 

Every harmonic manifold is Einstein. As a consequence a properly Riemannian 

harmonic manifold is analytic (see [3, Theorem 5.26]). Likewise, a Lorentzian harmonic 

manifold has constant curvature, and such a manifold is known to be analytic (see [12, 

Theorem 1.6.1]). Hence an assumption of analyticity (to be imposed later) will only 

(possibly) be a proper restriction in the non-Riemannian, non-Lorentzian case. 

2. Hadamard~s  approach  

Let (M, g) be a smooth pseudo-Riemannian manifold. To every Laplace-like operator L 

on M there is associated a sequence of smooth functions Hk=Hk(x,y) on a neighbor- 

hood of the diagonal in M x M, called the Hadamard coe1~icients, defined by a certain 

differential-recursion system (see [7, p. 155]). Assume for simplicity that L=A+W, 
where the so-called WeitzenbSck term W is a smooth function on M. Then the defini- 

tion of the Hadamard coefficients reads 

(grada, dHo)+#Ho=O, Ho(y,y)= l, 
(6) 

(grada, dHk)+(#+k)Hk= LHk_l, k >~ l, 

(As always the differentiations take place with respect to x.) As shown in loc. cit. the 

Ilk are uniquely determined by this system. 

Assume that n=dimM is even, and let m=�89 By definition an (Hadamard) 

elementary solution u=u(x, y) to L is a solution of Lu=O of the form 

u = + u  log I,rl, (7) 
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where U and /2 are defined and smooth on a neighborhood of the diagonal in M x M ,  

and U - 1  on the diagonal (thus u is only defined outside the set where a=0) .  Notice that 

in general the functions U and 12 in (7) are not uniquely determined by the elementary 

solution u alone. We say that u is logarithm-free if it allows an expression of the form 

(7) in which /2=0. 

PROPOSITION 2.1 (see [8], [20], [7, p. 227], [22]). Let n=2m+2~>4 be even and let u 

be an elementary solution of the form (7) to the Laplace-like operator L = A + W .  Then: 

(i) We have L U = o ( l a l  k) for all k=0 ,  1, 2, .... 
(ii) There exists, for each p=0,  ..., m, a smooth function Rp on a neighborhood of 

the diagonal such that 

m_-a -1_ ak _ . 

nk-g. +~a~. (8) 
k= 0  

(iii) There exists, for each p = m +  l , m +  2, ..., a smooth function R.p on a neighbor- 

hood of the diagonal such that 

1 p--m--1 ak 
- / 4 =  (m-1)--------~ Z (--1)k2-k-'nH~+m-~. +P~ap-m" (9) 

k= 0  

(iv) u is logarithm-free if and only if the m-th Hadamard coeI~icient H,,, admits a 

as a factor (that is a - l  Hm is smooth on a neighborhhood of the diagonal). 

Proof. Since it is dlfHcult to point out a specific reference we sketch the proof briefly. 

It follows from the equation Lu=O that a r" log lalLL/is smooth over the diagonal. This 

implies (i). Using a similar procedure as in (6) one can define a sequence of smooth 

functions Ro, R1, ..., Rm recursively by Ro=U and 

2(m-k+l)[(grada,  dRk)+(p+k+l)Rk]=LRk_l+am-k+lL(loglal /2)  (10) 

for l<~k<~m (the expression on the right involving log lal is smooth because of (i)). It is 

easily seen that the sequence 

2k m - 1  k! (Rk-Rk+la) ,  m - l ,  

obeys exactly the same recursion system (6) as does Hk. The uniqueness of the latter 

implies that these sequences are identical, and (8) follows by induction. 

The recursion in (10) breaks down when k = m +  1. Instead we define Rm+l as follows: 

2[(grad a, dR, m+ 1) + ( # + m +  2)Rm+l] = LRm +log lalL/2. (11) 
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It is then easily seen that  the smooth quantity - 2 m ( m - 1 ) ! ( H + R m + l a )  satisfies the 

equation for H,~ in (6), and we obtain (9) for p = m + l .  In order to obtain (9) for all p 

we define Rm+2, R~+3, ... by 

2 ( m -  k+  1)[(grad a, dRk) + ( # + k +  1)Rk] = LRk-1 +am-k+lLl,t 

for k>~m+2. By similar argumentation as above we get that  

(--1)k-m2k(k--m)! (m-- 1)! (Rk -R~+la)  = Hk 

for k>m, and (9) follows. 

Finally (iv) is obtained as follows. If u is logarithm-free then we may assume H=0,  

and it follows immediately from (iii) that  Hm admits a as a factor. Conversely, assuming 

that  Hm admits a as a factor, it follows from (iii) that  also L/admits  a as a factor (for 

any expression (7) for u). We claim that  then L/ also admits a k+l as a factor for all 

k/> 1. In order to establish this claim by induction assume that  H admits a k as a factor, 

and define a smooth function S by 

2k[(grad a, dS) + (# + m + k + 2 )S] = L( a -k lg) - a - k  L H 

(the expression on the right is smooth because of the induction hypothesis and (i)). It is 

then easily seen that  the smooth quantity T = a - k H + S a  satisfies 

(grad a, dT) + (# + m + k )T = O, 

from which it follows that  T=0 .  Hence H admits 0 "k+ l  a s  a factor, and the induction is 

complete. The property of H we have obtained implies that  a m log lal H is smooth, and 

then the expression 

u = ( V + a  m log lal ll)a -m +0 log lal 

shows that  u is logarithm-free. [] 

Notice that  Proposition 2.1 does not address the problem of existence of elementary 

solutions, I t  was proved by Hadamard that  if (M, g) and L are analytic then a real 

analytic elementary solution u exists. Hence in this case the condition in (iv) that  Hm 

admits cr as a factor is necessary and sufficient for L to admit a logarithm-free elementary 

solution. This is a generalization of Hadamard's famous criterion for Huygens' principle. 

It follows from (iv) that  the necessity holds in the general smooth case as well. Moreover if 

L is elliptic or hyperbolic (or:equivalently, (M, g) is properly Riemannian or Lorentzian) 

the sufficiency can be generalized to the smooth case (see [22], [20, w but in the 
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ultrahyperbolic smooth case the existence of elementary solutions seems to be an open 

problem. 

Let (M, g) be smooth harmonic and assume that the WeitzenbSck term is constant, 

W=AEC.  We claim that it follows that the Hadamard coefficients are radial, that is, 

k=O, 1,.... (12) 

Under the assumption of (12) the recursion system (6) reduces by means of (2) to the 

following system of ordinary differential equations: 

2aF +gFo=O, fo(0)  = 1, 
(13) 

2aF~+(~+k)Fk=L~Fk_l ,  k>~ l. 

Both existence and uniqueness of a smooth solution system Fk to this recursion system is 

easily seen (see for example [1, pp. 208-209]). Together with the unicity of the Hadamard 

coefficients this justifies (12) (see also [23, Theorem 3.1]). 

Assume now in addition that (M, g) is analytic (as noted in w this is only a possible 

restriction in the ultrahyperbotic case). We claim that there exists a radial elementary 

solution. Indeed Hadamard's existence proof shows that (9) with p ~ o o  gives a converg- 

ing expansion for a real analytic function H satisfying LH=O. Hence this function is 

radial. We now define Rm+l by (9) with p = m + l ;  this function is also radial. By the 

lemma below it follows that (11), interpreted as an equation for an unknown quantity 

Rm, admits a radial solution. Inserting this Rm in (8) with p = m  we obtain a radial 

function U, which inserted together with H into (7) yields a radial elementary solution 

?2. 

LEMMA 2.1. Let (M,g) be an analytic harmonic manifold, and let f be a real an- 

alytic radial function. Then the inhomogeneous equation L a z = f  admits a real analytic 

radial solution z in a neighborhood of a=O. 

Proof. The proof is elementary. Since z is required to be radial the equation is an 

ordinary differential equation by means of (3). This equation is of Fuchsian type and can 

be solved by standard power series methods. [] 

3. The  H a d a m a r d  po lynomia l  

Let (M, g) be a smooth pseudo-Riemannian manifold of even dimension n=2m+2>~4, 

and let Hk(x, y, A) denote the kth Hadamard coefficient to the Helmholtz operator L~. 
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PROPOSITION 3.1. The Hadamard coefficients Hk(x,y,  A) to Lx are determined by 

the Hadamard coefficients Ha(x, y, O) to Lo = A as follows: 

k Al 
Hk(x ,y ,A)= E Hk_l(x ,y ,O)~ " . (14) 

1=0 

Proof. Both sides of (14) obey the recursion system (6). [] 

In particular, we infer that Hk(x, y, A) is a polynomial of degree k in A. We now 

assume that (M, g) is harmonic. Then it is a consequence of the radiality of the Hadamard 

coefficients that the polynomials Hk(x,x,A)--Fk(O,A) do not depend on x. We put 

h( A ) =Ha(x ,  x, A ), and call it the Hadamard polynomial. 

THEOREM 3.1. Let (M, g) be an even-dimensional harmonic manifold, and A E C a 

constant. 

(i) If  )~ is an exceptional Helmholtz number then it is a root of the Hadamard poly- 
nomial h. 

(ii) Assume in addition that (M, g) is analytic. Then the roots of the Hadamard 

polynomial h are exceptional Helmholtz numbers. 

Proof. An immediate consequence of the results in the previous section (alternatively 

the existence in (ii) follows from Theorem 3.3 below). [] 

The evaluation of the Hadamard polynomial h from its definition is quite com- 

plicated, because it involves the successive determination of the Hadamard coefficients 

H1, ...,Hm by means of the differential recursive system (6). We shall now derive an 

algebraic recursion formula for it, which is independent of the Hadamard theory. 

We define a sequence of polynomials hk(A), k=O, 1, ...,m, recursively by ho=l and 

k h k ( A ) + E  2 k-I #k-~h~(A)=Ahk-1(A), k ) l ,  (15) 
l=O 

where #~ denotes the kth derivative of #=p(a )  at a=O. Clearly hk has degree k, for 

aUk. 

THEOREM 3.2. The Hadamard polynomial h--Ha(x,  x, .  ) is identical with the poly- 

nomial hm. 

Proof. Let A be fixed, and let Urn(x, y) denote the summation term in the expression 

(8) for U (with p=m),  that is, 

Um(x,y)-- ~ 2 -k m 1 gk(x,y,)~)-~. (16) 
k-~O 
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where a=a (x ,  y) (notice however that we are not ass,,ming the existence of U). Then 

Urn(x, y) is smooth and radial. Let uk for k=0, ..., m - 1  be the coefficients in the Taylor 

decomposition 

Urn= E 2-k rn;1 u~.+z(a)a m (17) 
k-----0 

with z smooth. We claim that 
uk = h~($) (18) 

for k=0, ..., m ' l .  In order to prove this claim we apply L~ to Urea -m. It follows easily 

from (3), (13) and (16) that 

L~(Uma_m) : 21_,n 1 _ (19) (m_l)!(L)~Hm_l)a 1. 

On the other hand it follows from (3) and (17) that 

m-1 ( ) - 1  1 
L~(Uma-'n)= E 2-k m;1 uk~.[_2(m_k)(#(~)+k)ak_m_l+.~ak_m]+L~z. 

k=0 

Inserting the Taylor series for ~(a) at a = 0  (with a suitable remainder term; recall that 

#(0) -0)  and reorganizing the terms we get an expression 

L~(Uma-m) = E 21-~ -kua-  -- 2k-~#a-lUl+)~Uk-1 a k-m-1 
k=0 (m--l)! 

+21-m 1 [ m-1 ] - 

/=0 

where ~ is smooth. Now a comparison with (19) yields 

for k=0, . . . , m - l ,  and 

k - 1  

_kuk_ E { m - l \  k-l 
l = 0  k-Z )2 =O ( 2 0 )  

m - - 1  

L),Hm-1 = - E 2m--t /Z'n--zUl +AUra--1 +2 m-1 (m-- 1)! ar (21) 
1=0 

The claimed identity (18) is an immediate consequence of (20) and the definition (15) 

of h~. 
Furthermore, inserting the identity (18) just obtained into (21) and using the defini- 

tion of hm we get LxHm_l=rnhm()Q+2~-l(m-1)! a~, that is, L;~Hm-l(X, x)=mhm()Q. 
But from (13)it follows that LxHm-1 equals mHm on the diagonal. Hence Hm(x,x)= 
hm(~), and the theorem is proved. [] 
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COROLLARY 3.1. Let (M,g) be an even-dimensional analytic harmonic manifold, 

and let ho, ..., h,~=h be the associated polynomials as above. There exists, for each A E C, 

a radial elementary solution ux to Lx of the form 

ux(a) E 2-a m ; 1  1 h(A)~;x(a) log a, 
= (m- I)i 

k=O 

where the radial functions Zx and "Ix are analytic in a neighborhood of a=O, and L];x =0, 

Vx(0)=I. 

Proof. The corollary follows immediately from Proposition 2.1 and the proof of 

Theorem 3.2. [] 

Notice that if M is simply harmonic, which means that #--0 (for example if M 

is the fiat Rn), then it follows from (15) that ha(A)=la/k!, and hence exactly A=0 is 
exceptional (for R n this was already seen in the introduction). 

The absolute terms ha(0) of the polynomials ha(A) can be expressed in terms of the 

derivatives of the van Vleck determinant D(a): 

P R O P O S I T I O N  3.2. There holds ha(O) =2 a ('~)D(a)(0) for k=0, ..., m. 

Proof. The van Vleck determinant is determined by 

a D ' + p D = 0 ,  D(0) = 1. 

Here we differentiate k times and set a=0 ,  then 

k - 1  

1-----0 

from which the relation to ha immediately follows. [] 

As a consequence 0 is an exceptional Helmholtz number if and only if D(m)(O)=O 

(this could also be seen from the integral formula (4)). 

We have seen above (in the analytic case) that each of the operators Lx=A+A,  

where A is a root of h, admits a logarithm-free elementary solution. The following result 

shows that a similar statement holds for the product of these operators (roots counted 

with multiplicities). Up to a constant multiple, this product is the operator h ( -A)  of 

degree 2m. 

THEOREM 3.3. Let (M, g) be an even-dimensional analytic harmonic manifold, and 

let h be the associated Hadamard polynomial. There exists a real analytic function Z on 

a neighborhood of a = 0  such that the radial function u given by 
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solves the equation h(-A )u=O. 

Proof. For k=0, 1, ... let rk denote the real analytic function given by 

k (T j r 1 

j = l  

in the Taylor expansion of #(a) at a=0.  Note that krk-l=#k+ark for k~>l. The proof 

of the theorem is based on the identity 

k - 1  
khk(-A)[qk-m-1] Z 2k-z rn-l ~ ,n 

t=0 k- l  
k=O . . . .  , m ,  ( 2 2 )  

which can be seen by induction on k as follows. For k=0 both sides of (22) vanish. For 

the induction step one uses that 

khk(--A)=--hk-l(--A)A--Z2k-tlk=-i (k-l)m-l #k_tht(_A) (23) 

by (15), together with the identity (from (3)) 

ho "k-m-1 ~ -  2 ( k - m -  1)(k- 1"[- ~ )O " k - m - 2  --~ 2(k -m-  1)(k- 1 § 

application of (23) to a k-m-1 easily leads to (22), when (k-1)hk_l(-A)a k-m-2 is 

determined by means of the induction hypothesis. 

For k=m the right side of (22) is real analytic, hence h(-A)a -1 is real analytic. 

By successive use of Lemma 2.1 there is a real analytic radial solution Z to the inhomo- 

geneous equation h(-A)Z+h(-A)a -1 =0, on a neighborhood of the diagonal, and the 

theorem follows. [] 

In the following sections we shall present an explicit expression for the u in Theo- 

rem 3.3 in the case of the isotropic spaces (see Theorem 5.1). 

The following can be said on multiple roots. Let the multiplicity of an exceptional 

Helmholtz number denote the largest number p~m for which the pth power L~ of L~ 

admits a logarithm-free elementary solution, that is a solution u=u(x, y) to L~u---O of 

the form 

u = V(cr),  p-l-m 

with U smooth. 
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THEOREM 3.4. Let ( M, g) be an even-dimensional analytic harmonic manifold, and 

let h be the associated Hadamard polynomial. The following assertions are equivalent: 

(i) A is an exceptional Helmholtz number of multiplicity at least p. 

(ii) Hk(x,x,~)=O for k - - -m-p+l , . . . ,m.  

(iii) A is a p-fold root of the Hadamard polynomial h. 

In particular it follows that counted with multiplicities there are exactly m exceptional 

Helmholtz numbers. 

Proof. The equivalence of (i) and (ii) is shown in the forthcoming paper [24]. Item 

(iii) means by definition that 
Ok 

b~ k g.~(x,  x, ~) = 0 

for all k ~ p - 1 .  By Proposition 3.1 this is equivalent to item (ii). [] 

Notice the formal resemblance of the problem of the exceptional Helmholtz numbers 

and the eigenvalue problem for the Laplace operator. In fact there is a relation between 

the two problems if M is closed: 

THEOREM 3.5. If  two closed properly Riemannian harmonic manifolds of even di- 

mension have the same spectrum then they have the same exceptional Helmholtz numbers 

with the same multiplicities. 

Proof. It is well known from spectral geometry (see for example [1, p. 215]) that if 

two closed manifolds are isospectral then they exhibit the same sequence 

MHk(X,x,O)dvol(x) for k=O, 1, 

The integrands are constants for harmonic manifolds, thus the sequence reduces to 

Hk(x,x,O)VolM for k=O, 1,... . 

By Proposition 3.1 the subsequence for k ~ m  contains exactly the same information as 

the polynomial Hm(x, x, ~). Now the result follows from Theorem 3.1. [] 

Notice that the converse of Theorem 3.5 is false: The sphere S n and the projective 

space ~Pn(R) are locally isomorphic, hence they have the same exceptional Helmholtz 

numbers (which will be determined below), but they have different spectra. 

4. The  isotropic spaces  

Particular examples of harmonic manifolds are the pseudo-Riemannian isotropic spaces. 

Recall (see [29, p. 377]) that a pseudo-Riemannian manifold (M, g) is called isotropic 
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if it has the following property: Given a point yoEM the group of isometries of (M,g) 
leaving y0 fixed acts transitively on the level sets of the quadratic form Q(~) =g(y0)(~, ~) 

on T~,oM\{O ). By [29, Lemma 11.6.6] the group G=I(M) of isometries of (M,g) then 

acts transitively on M. 

In order to show that an isotropic manifold is harmonic, notice first that ~ is invariant 

for the action of G on M x M  defined by a.(x,y)=(a.x,a.y), aEG, hence G acts on each 

level set of a in M x M. Now the isotropy implies that this action is transitive off the 

diagonal: If a(xl, yl)=a(x2, Y2) we choose aEG such that Yl =a.y2. Then we have 

o'(a -1  "Xl, Y2) : o ' (x l ,  Yl) : o'(x2, Y2), 

hence there exists an element hEG such that 

by the isotropy, and then 

h'y2 =y2 and a-t.xl = h.x2, 

(z l ,  ~1) = ah.(x2, ~2) e G(x2, Y2) 

as claimed. It follows that a smooth function on M x M is radial if and only ff it is Go 

invariant, and since the Laplace-Beltrarni operator is Goinvariant, it maps smooth radial 

functions to smooth radial functions. Hence M is harmonic. 

The isotropic spaces have been classified (see [29, p. 390]). The properly Riemann- 

ian isotropic spaces are precisely the two-point homogenous spaces (that is, Riemann- 

ian manifolds with the property that for any two pairs xl,ylEM, x2,y2EM satisfying 

r(xl,yl)=r(x2,y2) there exists an isometry of M taking xl to x2 and simultaneously Yl 

to Y2, see [11, p. 535]). According to the classification, a two-point homogeneous space 

is (up to local isometry) either a Euclidean space R N or a (compact or non-compact) 

Riemannian symmetric space of rank one (see [11, p. 535]), that is one of the projective, 

compact spaces ~PJV(A) or one of the hyperbolic, non-compact spaces ~ ' ( A ) ,  Here A 

is one of the algebras R,  C, H or O of real numbers, complex numbers, quaternions or 

octonions, respectively, and N is the dimension of the space over this algebra. The real 

dimension is then given by n=Nu with ~'=dimR A = l ,  2, 4, 8. 

More generally the isotropic spaces are (modulo local isometry) the fiat spaces S p'q= 
R p+q with the metric of signature (p, q) and the projective hyperbolic spaces 

~ ( A )  = V(p+ 1, q; A)/U(1; A) x U(p, q; A) 

of signature (vp, uq), where A is one of the four algebras above, O<~p~N, q=N-p,  and 
where U(p,q; A) denotes the group of (p, q)-pseudoorthogonal matrices over A. Then 
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we have TN(A)=~fN(A) and ~fN(A)=~KoN(A). For A = O  only N = 2  is allowed, G=  

U(p+ l ,q ;O)  is to be interpreted as an exceptional Lie group of type F4, and H =  

U(1; O)x  U(p, q; O) as a subgroup of type SO(9) in the definite cases or SO(l, 8) in 

the indefinite case. 

In particular, the Lorentzian isotropic spaces are exactly (modulo local isometry) 

R l'q, 9{/~_l(R ) and ~'{:IN(R). 

The isotropic spaces can geometrically be realized as follows when A = R ,  C, H. For 
x, yEA N+I let 

[X, y] "= YOXO"~-... + ~lpXp--Yp+ l Xp+ 1 --...--~]NXN, 

then 

9{N(A) = {x e A N+I I Ix, x] -- 1}/U(1; A), 

where the action of U(1; A) on A N+I is given by right multiplication (for A = O  this real- 

ization breaks down, see [28] for a substitute). We prefer to use the pseudo-Riemannian 

structure on 9{N(A) induced by the form - [ .  ,. ], of signature (uq, up), because this is re- 

lated to the Killing form of G by a positive multiple. In particular, this normalization of 

g implies that it is negative definite on the compact properly Riemannian spaces and pos- 

itive definite on the non-compact properly Riemannian spaces. The real spaces 9~;N(R) 

have constant sectional curvature - 1  for all N,p. The origin is the point o=(1, O, ..., 0). 
Using the invariance of a it is easily seen that 

�89 2 ifl[x, y l l=coshr>~l ,  

a(x,y)= - �89  2 if I[x,y]l=cosr<~l, 

for x in a neighborhood of y. Arguing as in [12, p. 165 and p. 206] one then obtains that 

cosh ~'-1 r if a(x, y) >>. O, 
~(x,y)---- . ,~-i (24) 

cos -i r 

This formula remains true in the case A =  O since the derivation is only based on calcu- 

lations with root vectors. In this case we use the pseudo-Riemannian structure given by 

the Killing form, suitably normalized. In the flat case we have 0(x, y )= l .  

Notice that ~ is independent of the signature of the metric, but that the pseudo- 

Riemannian structure that we use is negative definite for the compact two-point homo- 

geneous spaces (q=0), so that in this case only a~<0 occurs, and positive definite for 

the non-compact two-point homogeneous spaces (p=0), so that only a~>0 occurs. In all 

other cases both signs occur. 
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By insertion of (24) into (4) one obtains an explicit elementary solution of Au=O 

for the spaces under consideration. 

From (5) and (24) we readily obtain 

( n -  1) (r coth r -  1)-t- ( v -  1)r tanh r 

2#= ( n - 1 ) ( r c o t r - 1 ) - ( v - 1 ) r t a n r  

if a = �89 2 ~> 0, 
(25) 

if a = - � 8 9  2 <0 .  

5. The exceptional Helmholtz numbers for the isotropic spaces 

Let (M,g) be one of the isotropic spaces ~f~(A) of even real dimension n--vN-= 

2m+2~>4, equipped with the pseudo-Riemannlan metric as above. Define the numbers 

)h, -.., ;~m by 
Ak =2k(2m+v-2k ) ,  k=  1,...,m, (26) 

and let P be the polynomial 

P()0 = (A+A1)..... (A+Am). (2~) 

THEOREM 5.1. Let 

sin -2 r 

u = u(x, y) = - sinh -2 r 

for a(x,y)~tO. Then 

P ( A ) u = 0  

if ~(x, y)= -�89 2 <0, 

if o(~, y) = �89 ~ > 0, 

for a~tO. Moreover, let S be a subset of {1, ..., m}, with 1 elements, l<m. 

exists a smooth radial function U(a) on a neighborhood of a=O such that 

I I  (~+~k)u = u(~)~ -'-1 (29) 
kES 

and U(0)#0. 

Remark. Notice that  we have the simple expression u(x ,y)=(1- l[x ,  y]l~) -1 except 

in the case A = O  where it does not make sense. 

Proof. It is easily seen from (3) and (25) that  the radial part of A is given by 

1" -~r2 +[(n-1)co thr+(v-1) tanhr]  d if a > 0 ,  
(30) 

- d2 - [ (n -  1) cot r -  ( v -  1) tan r l d r  if a < 0 .  
dr 2 

(28) 

Then there 
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Let uk be the radial function uk(a)=u(a) k for k = l ,  2, ..., where u is as above, then ul =u ,  

and a straightforward computation shows that  

Auk = 4k( m -  k )uk + l -- )~k Uk. (31) 

Now (28) is immediate. Moreover it follows from (31) that  

k E S  

is a linear combination of ul ,  ...,ul+l, and that  the coefficient to ut+l is given by ct= 

[Itk=l 4k (m-k ) .  This shows (29). [] 

COROLLARY 5.1. The exceptional Helmholtz numbers for (M, g) are the numbers 
given by (26). 

Hence ) ~ P ( - A )  is identical with the Hadamard polynomial, up to a constant factor 

(which can be determined from Proposition 3.2 and (24)). 

Proof. It follows from (28) that  (29) is a logarithm-free elementary solution for the 

operator I-Ikes(A+A~), up to a constant multiple. This shows that  the numbers Aa 

are exceptional, with at least the multiplicity by which they appear in this list. Now 

Theorem 3.4 ensures that  there are no other exceptional Helmholtz numbers. [] 

Remark. It is easily seen that  (30) with the substitution 

sin z r if a ----- - -  l r 2  ~ 0 ,  

z =  �89 r2>~0, - s inh  2r if a =  - 

becomes the operator 
dZu du 

4 z ( z -  1) ~ z  2 +2(uz+n(z -  1))~zz" 

Hence (A+A)u=0  becomes a hypergeometrie equation, so that  for each )~ an elementary 

solution can be given explicitly in terms of a hypergeometric function. The expansion 

at z=0  can then be deduced from [5, p. 63, (18)]. In this fashion an alternative proof 

of Corollary 5.1 can be obtained, independently of the results in w See also [6, pp. 

382-384]. 

6. T h e  f u n d a m e n t a l  so lu t ions  

In the previous section we explicitly determined Hadamard's elementary solutions u =  

u(x, y) for the equations (A+Ak)u=0 on the isotropic spaces. From these the funda- 

mental solutions, that  is, distributions u on M satisfying (A+),k)U=5o where 6o is the 

18 - 945204 Acta Mathematica 173. Imprim6 le 2 d6eembre 1994 
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Dirac measure centered at the origin, can be derived. Here we do this in the properly 

Riemannian case. We also point out the relations to Helgason's results mentioned in the 

introduction. 

Let (M, g) be a properly Riemannian isotropic space, that  is, a two-point homoge- 

neous space, of even dimension n=2m+2>~4. Assume that  M is ~pN(A) or ~KN(A) with 

n=Nv ,  and let g be normalized as earlier. In particular this means that  it is negative 

definite in the compact cases and positive definite otherwise. Let y = o E M  be the origin, 

and 5o the Dirac measure centered at y. Let u be defined on M \ { y }  as in Theorem 5.1, 

that  is, 
u(x) = { sin-2 r(x,y) if M is compact, 

- sinh -2 r(x,  y) if M is non-compact, 

and let A1, ..., Am and the polynomial P be defined as in the previous section. 

THEOREM 6.1. The function u on M \  {y} is locally integrable on M with respect 
to the Riemannian measure. This function, considered as a distribution on M, satis- 

fies P(A)u=CSo for some non-zero constant c. Thus (1/c)u is a fundamental solution 

for p(a). 

Proof. For a radial function f (x )=F(r(x ,  y)) on M its integral with respect to the 

Riemannian measure is given by 

fM f (X) dX= ~o~ F(r)A(r) dr (32) 

in the non-compact cases, where A(r)=12,~Q(r)r n-1 with fl,~ the area of the unit sphere 

S n - 1 .  In the compact cases we have the same formula, except that  the upper limit of 

the integral is replaced by ~7r.1 It follows that  u is locally integrable. 

The function uk(~r)=u(a) k is locally integrable when k<.m, hence it can be consid- 

ered as a distribution on M. We claim that  for k < m  the equation (31) holds on M in 

the distributional sense, whereas for k = m  it has to be replaced by 

Aura  ~- C~.nSo -- Amum (33) 

for some constant CredO. To show these claims it suffices to apply the distributions to 

radial test functions, because the distributions themselves are radial. Then the assertions 

follow by means of (32) and (24), using the following formula of partial integration: 

~ b( ( Ar162162 A r  ) )(r)A(r) dr = • r162162162 

with •  a. Clearly the theorem is implied by (31) and (33). [] 
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For the case A = R  the statement of Theorem 6.1 can also be derived quite easily 

from Helgason's inversion formula for the 2m-dimensional Radon transform on M, [12, 

Chapter I, Theorems 4.5, 4.7] (see for example loc. cit., (28)). For the case A = C  it 

similarly follows from loc. c i t ,  Theorems 4.11, 4.17. The proof given above for the general 

case is essentially identical with Helgason's proofs for these two cases. In the remaining 

cases, A = H ,  O, Theorem 6.1 cannot be derived directly from the corresponding results 

of Helgason. 

The fundamental solution for each individual operator A+Ak is immediately found 

from Theorem 6.1, one only has to apply the remaining factors of P(A)  to (1/c)u. 

Notice that  the equation P(A)u=C6o is not valid for the real sphere S n, the double 

cover of ~Pn(R). Here one has to replace the upper limit in the integral (32) by ~r instead 

of �89 with the result that  6o should be replaced by 6o+6a where 6a is the Dirac measure 

centered at the antipodal point of o, 

Let us now turn to the Lorentzian isotropic spaces. In this case the fundamental 

solutions for the exceptional Helmholtz operators A+Ak can be found from Helgason's 

inversion formula, [12, Chapter I, Theorem 6.17], for the orbital integrals on  M. 

Let M be one of the Lorentzian spaces G / H  where (G, H) is one of the symmetric 

pairs (SOo(n, 1), S O o ( n -  1, 1)) or (SOo(2, n -  1), SO0(1, n -  1)), n=2m+2 ~>4. Then M 

is a two-fold cover of 9 ~ _ 1 ( R  ) or ~f~(R), respectively. We geometrically realize M as 

the hyperbolic space 

M = { x e R , + l l [ x , x ]  2 2 2 2 2 = xl +x2 +~(x3 +.-. +x~) - x~+l = 1} 

with ~=1, - 1  for the two cases, and we use the metric of signature (1, n - 1 ) ,  respectively 

( n - 1 , 1 ) ,  given by the form - [x ,  x]. The origin is o= (1, 0 .... ,0). Let F C M be given by 

F = { x e M l a ( x , o ) = O } = { x � 9  Ix1 =1},  

and let F+ C F consist of those points x E F for which xn+l > 0 if c = 1 and x2 > 0 if ~ = -  1. 

It is easily seen that  H acts transitively on F+. The closure of F+ is called the boundary 

of the forward light cone, or sometimes just the light cone. 

LEMMA 6.1. There is a unique (up to constant factors) positive H-invariant measure 

ao on F+. 

Proof. Consider the point ~/+ =(1,1,  0, ..., 0,1) in F+. We will determine its stabilizer 

in H. 

Let L be the stabilizer in H of the point (1, 0, ..., 0, 1), respectively (1, 1, 0, ..., 0), 

then L " S O ( n - 1 )  and L is a maximal compact subgroup of H. Let A c H c G  be the 
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one-parameter subgroup of ( n +  1) • ( n +  1)-matrices of the form 

f l  

cosh s sinh s 

6 8 
1 

~ 1 7 6  , s E R  

1 

sinh s cosh s 

(with zeroes outside the indicated entries), then a8 .% =(1,  e 8, 0, ..., 0, eS). It is easily seen 

that  there is an Iwasawa decomposition H = L A N  of H such that  N stabilizes 7+- The 

stabilizer in L of ~+ is the subgroup Mo~-SO(n-2) of matrices of the form 

1 
~J 

1 

with vESO(n-2) .  The stabilizer in H of 7+ is now determined as MoN. 
Since both H and MoN are unimodular the lemma follows from [12, Chapter I, 

Theorem 1.9]. More explicitly, it follows from loc. cit., Proposition 5.1, that  we can take 

f f dao = f ~ :  f z  f(las.7+ ) dl e("-2)S ds, (34) 

for fEC(F+) ,  where dh, el1 are Haar measures on H and L, respectively, and ds denotes 

the Lebesgue measure on R.  [] 

THEOREM 6.2. Let P be the polynomial defined by (27), and let (~o be the above 
measure on F+, considered as a distribution on M. Then P(A)a0=c~o  for some non- 
zero constant c. Thus (1/c)a0 is a fundamental solution for p(  A ). 

As a consequence p (A) ,  as well as all its factors, obeys Huygens' principle: the 

fundamental solution is supported on the closure of F+. 

In the proof of Theorem 6.2 we shall need the following lemma. For r > 0  let x ~ I E M  
be given by x~ = (cosh r, 0,..., 0, sinh r) and x~ -x = (cos r, sin r, 0, ..., 0) then these points are 

both located at distance r from o. Let 4-1 _4-1 1 S r = H . x r  c M  denote the H-orbits  through x~ 

and x~ -1, then these sets are two of the four components of the set of points at distance 

r from o. It is easily seen in the two cases 6=-1-1 that  S~ approaches F+ as r -~0.  The 

isotropy subgroup of H at xr e is the maximal compact subgroup L=SO(n -1 ) ,  in the two 

cases, and hence there is a unique (up to constant multiplication) H-invariant positive 

measure ~r on Sr ~ given by 

Jsf  J./S(h (35) 
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LEMMA 6.2. Let the measures ~ be determined by (35) with a fixed Haar measure 
dh on H. Then 

l imrn-2~s  f(x)dar(X)=C ~r f(x)d~o(x ) (36) 
r--*O ~ + 

for f ECc(M), with a suitable positive constant c. 

Proof. It follows from the Caftan decomposition of H and [12, Chapter I, Theo- 

rem 5.8] that (35) equals 

which is 

if c=1, and 

c f(la, .x~) dl sinh '~-2 s ds, 

c f(l. (cosh r, sinh s sinh r, 0, ..., 0, cosh s sinh r)) dl sinh "-2 s ds 

c f(l.(cosr, coshssinr, O,...,O, sinhssinr))dlsinh'~-2sds 

if e = -  1. After the substitutions e t =cosh s sinh r, respectively e ~ =cosh s sin r, dominated 

convergence shows that both these integrals, when multiplied by r n-2, converge to c 

times (34). [] 

Remark. The following alternative proof of Lemma 6.2 was suggested by Professor 

Helgason: By [12, p. 216, (31)] and its proof the limit in (36) exists and gives a positive 

H-invariant measure a supported on the closure r+U{o} of r+. Its restriction to F+ 

must equal cc~0. Writing f = f x + f ( 1 - X )  where X is the characteristic function of the 

ball of radius ~} around o, we have a(f(1-X))--cao(f(1-X)).  The proof of [12, p. 216, 

(31)] with K=~} shows that a ( fx )  is bounded by C7} for some constant C. Since ao(fX) 

is also bounded by C~/we obtain a(f)=cao(f) in the limit 1/--,0. 

Proof of Theorem 6.2. Let f e ~ ( M )  be a test function. We must show that 

ao(P(A)f)=cf(o). By [12, Chapter I, Theorem 6.17] we have 

1 lira r"-2P(Ar)f(r)  (37) f ( o )  = -m ( m -  1)! 

where Ar is the radial part of A and 

Fir) =/H f(h.x~) dh 
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is the orbital integral of f .  By loc. cit., Theorem 6.13 and Corollary 6.16, (37) is equivalent 

to 
1 lim r '~-2 f ( P ( A ) f ) ( h . x ~ )  dh f(o) (4~r) -m 

( m - l ) !  r-~0 

(see also loc. cit., (34)). The theorem now follows, by Lemma 6.2 above. [] 

Remark. For the spaces ~ ( R )  with p odd and n even, a generalization of The- 

orem 6.2 can be derived from [16, Theorem 2.37]. Again p(A)  admits a singularly 

supported fundamental solution. 

7. Further  remarks 

For the spaces ~ ( R )  of constant curvature there is a parametrization of the numbers 

A1, ..., Am which is more convenient than (26): 

LEMMA 7.1. For u = l  the exceptional Helmholtz numbers are also given by 

A = m ( m + l ) - l ( l + l ) ,  l =0,  1 , . . . ,m-1.  

In particular, all multiplicities equal one. 

Proof. The transformation from (26) reads 

l = {  m - 2 k  if 2 k ~ m ,  

2 k - m - 1  if 2k >m.  
[] 

Notice that for v > l  it follows from (26) that some of the exceptional Helmholtz 

numbers may have multiplicity 2 (but not higher). More precisely, the values of (26), for 

k = l v + j - 1  with l~<J~<�88 occur twice. 

Returning to the reed case considered in Lemma 7.1, we obtain for l--O the excep- 

tional Helmholtz number A-- m(m + 1) which can also be written as - ( n -  2 )R /4 (n -  1), 

where R is the scalar curvature (which is related to the sectioned curvature K - - - 1  by 

R = n ( n - 1 ) K ) .  In this case the Helmholtz operator 

a+ =a (n-2)R (38) 
4(n-1) 

coincides with the conformal Laplacian. It has been known for long by an argument 

of conformed invariance, that (38) admits a logarithm-free elementary solution. More 

generally, the same conformed transformations relate the exceptional operators A + Ak to 

a set of Huygens-type operators constructed by Stellmacher (see [26]). Since the property 
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of having a logarithm-free elementary solution is conformally invariant (see [18], [17] or 

[13, w the statement that  the Ak found here (for u = l )  are exceptional is thus equivalent 

with the well known fact that  Stellmacher's operators obey Huygens' principle (see [22, 

Proposition 3.4] for details). 

For low n, we get the following exceptional Helmholtz operators for 9f~(R)  (any p): 

n = 4 :  A - 1  ~R, 

n = 6 :  A - 1  2 R  ~R, A -  zs , 

n = 8 :  A -  I~R, A - 5  R 28 A - 3 R .  
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