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I n  his paper  "S~tze iiber algebraische Ringe ''1 T. Nagel l  has discussed 

cer ta in  proper t ies  of algebraic rings. The  present  note  concerns  i tself  with the 

general izat ion of these results  to relat ive algebraic  r ings;  the  theorems will be 

t r ans fe r red  wi thout  essent ial  change.  

In  wha t  follows we shall mean  by F a finite algebraic n u m b er  field and by 

R the  r ing of the  in tegra l  elements  of F .  Le t  f u r t h e r  ~ be an algebraic field 

over  F of degree n and le t  P be the r ing of the in tegra l  e lements  of ~. I t  is 

well known tha t  in ~ there  are n e lements  z, col, �9 � 9  con, being l inearly independen t  

with respect  to F ,  such tha t  every e lement  of ~ possesses a unique representa-  

t ion of the  form 
co = alcol + " "  + an con (I)  

with coefficients in F .  The  coi are called the  basis of ~ with respect  to F .  Le t  

be an e lement  of P of the exact  degree n, t h a t  is, ~ is a roo t  of an i r reduc ib le  

algebraic equat ion x '~ + r  I x  ~-1 + . . . + r n - - - - - o  where r~. are in R. In  view of (I) 

we may set 

= e lcol + . . .  + (2)  

for  k = o ,  I . . . .  , n - - I .  Since ~ was chosen so as to be of the exact  degree n, 

the  de t e rminan t  c----Icktl of the coefficients in (2) does no t  vanish, and so the  

system may be inver ted,  and t h en  we get  

1 
co, = - (b,1 + b,~ ~ + . . .  + b,,, ~"-1), (b,~,  F )  (3) 

c. 

fo r  i---- I, 2, . . . ,  n. 

19 

i Math. Zeitsehrift 34 (1932), PP. 179--I82. 
2 The elements of F will be denoted by Latin, those of ~ by Greek letters. 
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For  the sake of convenience we suppose t h a t  the r were so chosen tha t  

whenever ~ in (I) is integer,  the a~ are all integers, i. e., are all in/ / . .  Then so 

are of course the e~i in (2) [and hence c] as well as the b~ in (~). 

On account  of (I) and (~) one sees at once t ha t  

_ ~o = -  a,(b,x + b , ,~  + -., + b , .~  "-~) = I { (~a,b,a)  + . . .  ~- (:~a~ b,,,) ~"-x}, 
l=1  

t h a t  is to say, by means  of the powers of ~ every element of P has a representa- 

t ion of the form 

I 
= -(c~ + e, ~ + - .  + c~ ~ - ~ ) ,  (e,~ R). (4) 

e 

(4) is unique in ct, for  I, ~, . . . ,  ~ - 1  are l inearly independent  with respect to R. 

Le t  now P* be a subring of P conta in ing ~. Every element  ~ of P* may 

clearly be represented in the form 

I 
7 = ~ ( c 1 + e 2 _ ~ + ' "  + c ~ - 1 ) ,  (c~,R, 1 < l ~ n )  

where cz ~= o. Consider all the 7 for a fixed number  1. I t  is easily seen tha t  

the  last  coefficients s cz const i tute  an ideal in // .  Tha t  this  ideal ~z must  con- 

t a in  a non-vanishing element  and so ~z is dis t inct  from the zero-ideal, is evident. 

Set t ing ~z=(ct(j) . . . .  , czc~z)}, i t  is also evident  t h a t  to each basis element c~(~; 

there corresponds a number  7~ ~) of P" with the  last coefficient e~): 

y~l = ~_ ~el~ + c~ ~ + . , .  + c~ ~- ' )  
c X l l  

(5) 
c!,l ~ R, ~ 1  = e~l, 13 ~ll  ~ ~ I ,  . . .~ m l ) .  

The elements 7~ II, ., 7~,}, ~,cll . . . .  �9 " t2 , " ", 7~ ~'), ., }'~), ., 7~m~ ), or, if we want  to have 

the indices runn ing  successively f rom I unt i l  h r ~  ~ ~z, the elements 7 z , . . . ,  ~,v 
l--1 

form a basis of P* with respect to  R, t h a t  is to say, eve~7/ element  o f  P* can be 

expressed in  the f o r m  

7 ----- d, Y, + " "  + dzr 7~', (d, ~ R). (6) 

However, this representat ion is no t  unique, in general. 

s M o r e  p r e c i s e l y :  t h e  c - t i m e s  o f  t h e  l a s t  c o e f f i c i e n t s .  



Some Theorems on Algebraic Rings. 987 

The powers of ~ are in P*, we can therefore find numbers x of R such 

that  for k >  I 
k 

~ - 1 =  y,  (~i,)~ill + ... + xl,.,,r~.~)), (~J ~) .  (7) 

I f  we replace here ft a) by their values taken from (i), one sees immediately that  

the coefficient of ~-1  is I on the left side, while on the right side 

v~k k C 

ck being a number of ~ .  From the equality of the two coefficients, implied by 

the linear independence o f  I, ~ . . . .  , ~-~, it follows c ~ ok.  W e  thus get that r 

is an element of every ~k(k > I): 

T h e o r e m  1. The determinant c-----let,[ is divisible by ~ for k > t. 
We further get from (5) the equality 

~,~') �9 ~ - ~  - -  -~ ~c~)~J-~ + . . -  + c(~) ~ - ' ~  
- - e ~  l l  II / 

showing that c~q) and similarly, every basis element of ~t is contained in ~ for 

l - - j .  This implies that  ~l----o(~j) for l--~j, that  is in words, 

T h e o r e m  2. ~t is divisible by ~ i f  l ~ j. 
Let u s n o w  turn our attention to  the proof of 

T h e o r e m  3. cl~) is divisible by ~ .  
Proof by the priric~ple of mathematical induction. For  1 -  I the asser- 

tion is trivial. Let  us suppose that  c(~ for ] c - -~ l - - I  is divisible by ~k and 

so a fortiori by ~_~, in accordance with theorem 2. Consider ~ )  and take an 

element c' of ~t-__~ The last coefficient ~ of c'~) ,  c'cl~) lies in ~t-~, therefore ~ "  

elements y~ ~ B can always be chosen such that c' c~) = y~ cl~ ~ + . . .  + Y~t-1 C(/~/11) 
' ) - (m~-~)~ holds. Hence we conclude that  c ~,~ -- ~:~( . . . .  ~-~(~) + "'" § Y~-I ~t-~ ~ ~ contains only 

powers of ~ with exponents not greater than l - - 2 ;  so that  we obtain 

.l--1 
c' ~I~)= ~ c~(~)~,) + . . .  + ~ ( ~ ( ~ ) ~  + (,:, ~ )  ~ + . . .  + ~(~-,) ~). 

',~k r  ~ k  r  / i t - -1  Yml--1 / I - -1  
k = l  

Setting here for the ~,(~e) their values taken from (5), we see that  on the right 

hand side the first subscripts of c~ are not greater than l - - ~ ,  therefore by 
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assumption we may hence conclude that  the (e-times) coefficients of the powers 

of ~ are divisible by ~z-~. The fact that  the coefficients of the same powers 

of ~ must be equal on the two sides implies that  c'e~ ) - -  o(~1-1). Since c' was 

arbitrary in --~-, we finally get that  ~j~(~) must be contained in ~t, and this 

completely establishes the theorem. 

We now pass to the proof of the following theorem. 

T h e o r e m  4. The relative diseriminant of P* with respect to R: 

I a.,/B 

where 1)(~) is the relative d i s~mi .an t  of ~. 

All the determinants of order n of the matrix 4 

(8) 

. . . . . . .  o . . . 

generate an ideal ~* in a Galois-overfield of F containing 4. The square of ~* 

is an ideal in R and is equal to the relative discriminant of P* with respect 

I 
to R. ~* may easily be verified to be the ~-times product of 

I I . . .  I 

�9 , ~  . . .  . . . . . . . . . . .  

~ ( 1 ) , - 1  ~ ( ~ ) , - 1  . . . ~ ( , ) n - x  

and the ideal ~ generated by the n.ordered determinants of 

cn e~l . . . .  e~-i ] 

I et~ e2z . . . .  e , v 2  

~ l n e 2 n  . . . .  C N n  

�9 7(i) is t he  i t h  con juga te  of ~ .  
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where the c,~ are the coefficients for which 

- C~,i ~ i - 1  

(cf. ~5); some of c,~ are vanishing). As I have proved elsewhere 5, ~ is equal to 

the idealproduct  ~ j . . .  ~,~, so tha t  we are led to the resul t  enuncia ted  in 

theorem 4. 

6 A theorem on the  relat ive no rm of an ideal. Commentar i i  Math.  Helvetiei  21 (i948}, pp. 

29- -43 ;  see theorem I. 

Y 
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