SOME THEOREMS ON ALGEBRAIC RINGS.

By
LADISLAS FUCHS

in BUDAPEST.

In his paper “Sitze iiber algebraische Ringe’! T. Nagell has discussed
certain properties of algebraic rings. The present note concerns itself with the
generalization of these results to relative algebraic rings; the theorems will be
transferred without essential change.

In what follows we shall mean by F' a finite algebraic number field and by
R the ring of the integral elements of F. Let further ¢ be an algebraic field
over F of degree » and let P be the ring of the integral elements of ¢. It is
well known that in ¢ there are » elements®, w,, . . ., w., being linearly independent
with respec:t to F, such that every element of ¢ possesses a unique representa-
tion of the form

' w=aw + -+ anw, (1)
with coefficients in F. The w; are called the basis of ¢ with respect to F. Let
§ be an element of P of the exact degree », that is, & is a root of an ¢rreducible
algebraic equation z* + 7, 2"' + - + 1, =0 where 7; are in R. In view of (1)
we may set

’“=ck1w1 + -+ Crpwp, (ck,-eF) (2)

for k=o0,1,..., n— 1. Since § was chosen so as to be of the exact degree =,
the determinant c¢=]c;| of the coefficients in (2) does not vanish, and so the
system may be inverted, and then we get

1
w; =E (bn + bigE 4+ + bin g"—l), (b,-ke F) (3)

fori=1,2,...,n.

! Math. Zeitschrift 34 (1932), pp. 179—182.
* The elements of F' will be denoted by Latin, those of ¢ by Greek letters.
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For the sake of convenience we suppose that the w; were so chosen that
whenever w in (1) is integer, the a; are all integers, i. e., are all in R. Then so
are of course the ¢; in (2) [and hence ¢] as well as the bz in (3).

On account of (1) and (3) one sees at once that

w = {{(Zaiba) + -+ (Sas b)) 51},

1
c

[~

N ai(bir + biak + - + bin ) =
=1

that is to say, by means of the powers of § every element of P has a representa-
tion of the form

w ==

(g + e E+ -+ caf™Y), (cieR)- (4)

SR

(4) is unique in ¢, for 1,§, ..., &1 are linearly independent with respect to R.
Let now P* be a subring of P containing §. Every element y of P* may
clearly be represented in the form

7=§(CI+CS§+""+Q§L—I)» (cier lslén)

where ¢;#0. Consider all the y for a fixed number /. It is easily seen that
the last coefficients® ¢; constitute an ideal in R. That this ideal £; must con-
tain a non-vanishing element and so £; is distinct from the zero-ideal, is evident.
Setting & = (¢, .. ., &™), it is also evident that to each basis element ¢
there corresponds a number ¥ of P* with the last coefficient c{*:

1

(WeR, c=cp, p=1,...,m)

The elements ), ..., yimd, yi, .y 9@ . ym4) or, if we want to have
n

the indices running suceessively from 1 until N = Z my, the elements 7, ..., yx
=1

form a basis of P* with respect to R, that is to say, every element of P* can be
expressed in the form

y=diy+--+dnyy, (deR). (6)

However, this representation is not unique, in general.

# More precisely: the c-times of the last coefficients.
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The powers of & are in P*, we can therefore find numbers x of R such

that for 2 > 1
k

gt = D @+ + afmiyim),  (afeR) (?)

1=1

If we replace here ' by their values taken from (5), one sees immediately that
the coefficient of £ is 1 on the left side, while on the right side

2(“”2’) o) + - + o) elme) =%*
c: being a number of ;. From the equality of the two coefficients, implied by
the linear independence of 1, §,..., 5!, it follows ¢ = c:. We thus get that ¢

is an element of every L:(k > 1):

Theorem 1. The determinant ¢ = |ci:| is divisible by & for k > 1.
We further get from (5) the equality

y,) gl = (6‘(’? Ft4.o 4 Gw §j~1)

showing that ¢/ and similarly, every basis element of &; is contained in &; for
l<j. This implies that & =0(g) for I <j, that is in words,

Theorem 2. & s divisible by & of 1 <.
Let us now turn our attention to the proof of

Theorem 3. ¢ s divisible by .

Proof by the principle of mathematical induction. For [ =1 the asser-
tion is trivial. Let us suppose that c}) for k<1 — 1 is divisible by £ and
so a fortiori by £_,, in accordance with theorem 2. Consider y and take an

element ¢’ of g—lg— The last coefficient® of ¢ yi*), ¢’ ¢! lies in &-;, therefore
L

elements y:¢ B can always be chosen such that ¢’ ¢ =y, ¢, + - + ym,_ 10({"’1“1)

holds. Hence we conclude that ¢'y® — (y, ), + - + ym,_ 17, ™-1) £ contains only

powers of § with exponents not greater than ! — 2; so that we obtain
-1 .
¢y = Z (A0 + -+ 2 ) + (g, y0, 8+ gy E):

Setting here for the y{ their values taken from (5), we see that on the right
hand side the first subscripts of c(kﬁ’]’. are not greater than [ — 1, therefore by
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assumption we may hence conclude that the (c-times) coefficients of the powers
of § are divisible by &_,. The fact that the coefficients of the same powers
of £ must be equal on the two sides implies that ¢’ o) =0(8;-,). Since ¢’ was

arbitrary in ===', we finally get that c) must be contained in £, and this

M-t
&
completely establishes the theorem.

We now pass to the proof of the following theorem.

Theorem 4. The relative discriminant of P* with respect to R:

19'Pt/R = ;:—‘ (81 . e gn)2 * D(E) (8)

n

where D (&) is the relative discriminant of &.
All the determinants of order » of the matrix*

Oy
el U
IR,

generate an ideal €* in a Galois-overfield of ¥ containing ¢. The square of £*
is an ideal in R and is equal to the relative discriminant of P* with respect

to R. €' may easily be verified to be the cln-times product of

I I P |

.................

and the ideal £ generated by the n-ordered determinants of

011 031 o« o e CN]
clz 623 CN2
CinCan. . CNn J

¢ y,(f) is the ¢th conjugate of 7, .
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where the ¢,; are the coefficients for which

1 n
= (Zee)
=1
{cf. (5); some of ¢,; are vanishing). As I have proved elsewhere®, 2 is equal to
the idealproduct &,...8,, so that we are led to the result enunciated in
theorem 4.

' A theorem on the relative norm of an ideal, Commentarii Math. Helvetici 21 (1948), pp.
29—43; See theorem 1I.

37— 48173. Acta mathematica. 81. Imprimé le 20 avril 1949.



