ON THE COMPLETENESS OF SOME SETS OF FUNCTIONS.

By
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1. Introduction.

A set of functions {y, (x)} is said to be complete in a space L?(a, b) (1< p=<o0),
b

if ff(:v)tTJ,.(ac)dx=o (n=1, 2, 3,...) implies f(z) =0 when f(z) < L?(a, b). Let

a

the differential equation
2

_d
Ly =1y, L=—dm,+4(x) (L)

together with linear homogeneous boundary conditions at the end-points of an
interval (a, b) (— oo < a<b< +00) define a regular or singular boundary-value
problem of a Sturm-Liouville type', whose eigenfunctions form a set, complete
in L®(a, b). Then, in general, the set of squares on the eigenfunctions cannot
be complete in LZ*(a, b) (for instance the set {sin®nx}, belonging to (L) for
g(x) =0 and boundary conditions y(0) = y (#) = 0, has the completeness properties
of the set {cos 27nz}). In this paper some completeness properties of sets of
eigenfunction-squares will be studied. The problems arose at the study of so-
called inverse boundary-value problems, i. e. problems where the differential
equation is to be determined from the knowledge of the spectrum and boundary
conditions.?

The main results are, roughly speaking, the following.

! In the sequel we use S-L as an abbreviation of Sturm-Liouville.

? G. Bora, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta math. 78 (1945).
——, Inverse Problems in the theory of Characteristic Values of Differential Systems, Dixiéme
Congrés des Mathématiciens Scandinaves, Copenhague 1946. In these papers some results con-
cerning eigenfunction-squares of regular S-L problems are contained.

34 —48173. Acta mathematica. 81. Imprimé le 28 avril 1049,
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If to one set of eigenfunction-squares there is added another, belonging to
other boundary conditions, then the combined set is complete in the space M (a, b)
of functions, effectively bounded on (a, b). The precise wording is given in No. 3

2n +.1 }

(a trivial instance: {sin*nx} and {sin2 the latter set equivalent to

{cos(2m + 1)z} and belonging to boundary conditions y(0) =y’ (=) = o).

The combined set is not normalized, nor in general minimal. Yet holds that
at most 2 of the eigenfunction-squares are superfluous — at least in the case of
regular or regularly singular S-L problems. The proof is given in No. 9.

The examples and results above indicate that one set of eigenfunction squares
is complete in a space of functions, defined only on half the original interval —
if this is finite. This property is at last, more precisely formulated, proved in
No. 10 for regular and regularly singular S-L problems.

2. Notations and Known Properties of Singular S-L Problems.

Some of the fundamental methods and results concerning singular S-L
problems will be needed.! The differential eq. is as above
Ly=1Ay (L)
where

d?
L=gq@)~ 75

¢(x) will be supposed to be continuous within an interval o =< x < b,.
by may be + oo. If by < oo, g(x) may have a singularity for x = b,.
The boundary conditions are

for x = o: y(0)cos e + ¥ (0) sin @ = 0, o<a<m,

(R)
for x = by: y(x) < L*(o, bo)

with the addition of another condition in the limit circle case.®

We quote this boundary value problem as (L, R). Further we put, following -
TiTcHMARSH,

' H. WeyL, Uber gewdhnliche Differentialgleichungen mit Singularititen ..., Math. Ann.
68 (1910).
E. C. TitcAMARSH, Eigenfunction Expansions, Oxford 1946. This book is in the sequel
quoted TITCHMARSH. We refer in this No. especially te TITCHMARSH, ch. 2nd.
* Cf. H. WEvYL, loc. cit.
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6 (x, 1) = the solution of (L), which takes the initial values
0 (0,) =cos a, 8 (0, A) =sina
é (z, A) = the solution of (L), which takes the initial values
¢(0,4) = sin e, ¢’ (0,4) = — cos a.
Then ¢{x, 4) satisfies the boundary condition (R) for z =o0.
Let '
S (x, ) =0(x,4) + 1(2) ¢ (, 4)

and [(A) = () be chosen so that

9 (b, ) cos B + & (b,A)sing=o0 (2.1)
holds, i.e.
0(b,A)cos 8 + 6 (b, A)sing

)= " ¢(b,A)cosf+ ¢ (b, A)sin B (2.2)

When 2 and b are fix numbers (Im (A) # 0), and 2z = cot 8 describes the real z-
axis, the complex number I(3) describes a circle C, in the complex l-plane. The
interior points of the circle are characterized by the ineq.

flﬂ(x,l)+l¢(x,l)|’dx<—i—$—((7l))- (2.3)

From this follows that if ' < b, then the circle Cy, includes the circle Cj,
and hence that Cj converges to a limit point or a limit circle as b — b,.

Let m(4) be the limit point or a point on the limit circle (for the definition
of which one additional condition at x = b, is needed, cf. (R) above), then

Wi 1) =00z, 2) + m(L) ¢ (w, 2) < Lo, b) (2.4)
and
f Ly (@, D[ do = — I‘;‘{i”a;m. (2.5)

0

Regarded as a function of 2,1;(4) is meromorphic (|4 < oo) and converges
boundedly in the upper (and lower) half of the i-plane to the function m(4).

3. The Theorem of Completeness.

We shall assume that m (i) as (i) is a meromorphic function (|| < oo).
Then the spectrum {i,} of (L. R) is the set of poles, thus a discrete point set.
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We shall further assume that there exists a finite number ¢ so that

, Zi_l,.ll?““_‘<°° (e > o). (3.1)

(We shall in the sequel always assume all 1, # 0; this is no restriction, for the
addition of a constant ¢ to ¢(x) transforms the spectrum {,} into {1, — ¢}).

If these two conditions are satisfied, we will say that (L, R) has a point
spectrum with a finite convergence exponent (p).!

Let (R') be the boundary conditions (R) with « exchanged for «* (i.e. the
conditions at x =>5, unchanged). To all functions, numbers, and relations de-
fined in connection with the problem (L, R), then correspond functions, etec.,
belonging to the problem (L, R*). We shall only use a * to distinguish them
from the former ones. For instance the eigenvalues of (L, R) will be denoted
by {4.}, those of (L, R*) by {i%}, the normalized eigenfunctions by {yn(x)} and
{wh(x)} respectively, the meromorphic functions by m (1) and m*(2) respectively.

We shall prove the following theorem.

If the spectra of the boundary-value problems (L, R) and (L, R*) (¢ = « mod x)
both are point-spectra with a finite convergence exponent, then the set of all the
squares of eigenfunctions (W) (x), vhi(x)} (n,m=1,2,3,...) is complete in class
M (o, by) of functions effectively bounded within the interval o <x <b,.

Remark. The classical S-L problems, regular or regularly singular at x=18,
satisfy the conditions of the theorem.

4. A Boundary-Value Problem with Eigenfunctions {y; ()} and {y:i®(z)}.

Let g, (x) and y,(x) be solutions of (L), then u(x) =y, -y, is a solution of

ey

Du+4iv'=u" + 4 —q@)u —2q (@Ju=o0, (D)

where for the sake of simplicity we assume ¢ (z) continous (0 =< = < by). Then
s (x) and yn?(x) are solutions of (D) for A =4, and i = Az respectively. They
may bo looked upon as the eigenfunctions of a boundary-value problem, con-
sisting of the eq. (D) and boundary conditions, corresponding to the conditions
(R) and (R*) above.? We will prove our theorem by constructing a function.
I'{z, t, J) which will serve as a Green’'s function of this problem.

! This is of course especially the case, if m (1) is assumed to be of finite order.
? Cf. G. Borg, Inverse Problems . .. Dixieme Congrés des Mathématiciens Scandinaves.
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5. Green’s Fanction of the Boundary-Value Problem in No. 4.

Under the assumptions in No. 3, m{1) must be real on the real axis of 2,

for we have I(1) =1(A). Hence lim Im (m @) = finite number except possibly for
’ m@=0 Im (4)
A= {As}. Thus by (2.5)
Pz, 2) < Lo, by) for A 5% {Aa)}. (5.1)

To the boundary value problem (L, R) belongs the following Green’s function
[l Mot 1), =t

L A) = .2
7= e e D), z<t, 5-2)
which according to (5. 1) satisfies

By

[17@t, )P de < oo, 45 {i}, ¢8x. (5-3)

0

We recall the following two properties of Green’s function, which are of
importance in proving completeness theorems.

dy(x, t, 2)

a. y(x, ¢t 1) and 7

t = x, where

are continuous within o <z, ¢ < b, except at

t=2—0
Oy(x, £ A
orietn »
i=z+0
_azy(xv ta A) . t#x
b =L+ =Ll g @Orle D=0, T (59)

From the function I'(x,{, 1) mentioned above, we shall require two cor-
responding properties

1° I and %!{ continuous within o<z, t < b,
ir osr
0t12 » T » » o=x, t<<by, t#x
,1 {=2—0
x, t, ’
EEGE [ =4 (5-6)
t=z+0
2° DI (x,t, A + 44Tz, ¢, 4) =0 (xfix) for 0 <t < by, t 7% . (5.7)

18
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The last property indicates that I'(z, ¢, ) must be a sum of products of
solutions of (L) (cf. No. 4). The property 1° together with 4° later in this No.

require the functions y(z, t, ) and y*(x, £, ) for the comstruction of I'(x, ¢, 4).

If we put
gz, ) =0, Nt ) — 0t N (x, ) =y(z, V(. ) — vt N ¢ (x4 (5.9)
= w' (x, 2‘) 95. (t’ 2’) - 'P' (ty l’) ¢' (x: A’)
it is easy to prove that the function
t,A)y*(x, t,4), =t
rman={”@’)’%x ) z )
2y(@, t, )y (@, ) + 29, t, )y + ), z=¢

has the required properties. Since I (x,?, 2) is a sum of products of solutions
of (L} — for t#x — 2° follows. The property 1° is easily proved through
straightforward computations, using the relations (5.4) and (5.4%) and

a—g(g’t—t—’—l—) =—1 (5.9)

t=z

g(t t,A)=o,

by
Now let f(x) < M(o,b,). The integral fI‘(x, t, A flx)dx (t fix, 2 5= {4}, {An})

exists according to (5.3), (5.3*). Put
(i) = foF(x, t, 4 flx)dz, flx) < Mo, by). (5.10)

Then @(t, 4) and the first two derivatives are absolutely continuous within
0=t<b, Using 1° we find

ot 1) = f T t, ) flx)de, @t 1) = fb I (@, t, 1) f(z) da

[}
)
Q' (¢ A) = f I (x, t, A f@)dx— 4 f(t) p.p. (presque partout)
0

and hence by (5.7)
DOt 2) + 42@:(t,A)= —4f(t) p.p. foro=<i{<by. (5.11)

The function I'(x, ¢, A} has some further properties, which will be needed:

3° If the spectra {i,} and {i,} are point-spectra with a finite convergence ex-
ponent, then @({ 4) is a meromorphic function of a finite order (|a| < o) for
every fix {-value. {1,} and {A7} are the onmly poles.
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@ (i, A) converges to 0, || > oo, except possibly in an arbitrarily small angle
largi] <e, |argd — x| <.
4° The principal part of @(f,A) at a pole =24, is of the form

‘ bo .
(}.—1,.)“-v,.(t)ftp,’,(ac)f(x)dx. (5.12)
v
The proof of the theorem is then brought to an end in the following way.

Asgsume
by

[v@)f@de= [vi@f@de=0 m=1,2,3..). (513

0

Hence, owing to (5.12), (5.12*) @(f,4) is an integral function (¢ fix), which
according to 3° is of finite order. Since it converges to o in the manner men-
tioned in 3° it follows by the well-known theorem of Phragmén-Lindelof that
®@(¢,2) is bounded in all the i-plane, i.e. constant and so = o according to 3°.
Thus o

D(t,A)=o0 for all £ <by, and all 4.

Hence, on account of (5.11)
fl)=o  p.p,
which means that the set {yn(x), Yn®(x)} is complete in M (o, by).

6. Proof of the Property 3° of No. 5.

If the reverse is not explicitly stated we assume 4 5% {in} and # {iz}. Ac-
cording to (5.10) and (I') we have
bo

Ot =2[ 7yt Ny @t f@dz+ 2 [ gl t, )y + ) f@)dz.  (6.1)

0

'The first integral may be expanded in a series. We have?!

et )~ YNl (6.2)

hence by (5.3) and the Parseval relation

! TITCEMARSH, pag. 33. {¥,(f)-(A—24,)-1} are the Fourier coefficients of y(x,?, 2} with
respect to the set {y, (x)}.
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b, b,
[ria. 07 st ae= 3 2”"(2,[7 NPV CIACTE
=’§1;p-(2' mjlfi(zr).n nm (6.3)

ba
where Gum = f Yo(x)Ym(x) f(x)dz. The summation order may as well be in-
/]

verted.
To prove that the left hand member is a meromorphic function of a finite
order, we will first estimate the difference

be

d=fy(9c, LAY (x, 8, 4) flx)dx — 2 Z }m Qg"'(tl,)a (6.4)

° n=1 m=1

for all A belonging to the region Dg: |4|< R with the exclusion of small circles
round the poles 4, and A3 (n=1, 2, 3,...). From (6.3) follows

wn(t) < ¥ o wm(t <
d= .anm
n= %—1 A m=1 %ﬂ n=1
S vl vall)
+ > Y e dme (6.3)
n,mﬁ\'«l—ll }' l

Now for the first of the series on the right we get

bo

=Z 2 = ;/:;(!ﬁm lm)anm=f( x, t, ) — Zw"(x !Pn(t) *(x, t, ) f(x)dx (6.6)

(the Parseval relation, cf. (6.2)). Hence, if |f(x)] < M p. p.,

wxt e firre) -

o0

-

>

N+1

The series

Ya (t)
A—2

3|

o l,ll >
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which are convergent according to (6.2) and (5.3), are also uniformly con-
vergent in Dg, hence uniformly bounded (this fact being easily proved, is taken
for granted). It is then always possible to choose N independent of i so great
as to make the right-hand member of (6.7) less than a given ¢ in Dr.
Analogous arguments apply to the other two series of (6.5), whence the
difference d (6.4) is less than 3¢ for all A < Dp if N is chosen great enough.

Hence fy(x 82y (e, t, ) f (= )dx is meromorphie in |2.| < oo and {in}, {}.,,} are

the only poles.
- The order of this meromorphic function is finite, for by (3. 1) one can choose

q
the polynomials @, (A) = L} ot 4 of a degree g <o, so that
Ay g\4

= ﬁ (I —%—) et@  P*(i)= ﬁ(‘ __)_f';) proqe
v=1 4

v=1 4

are integral functions of finite order with the zeros i, and A} respectively
(v=1,2,3,...). Then

P()-P*(2)- fbﬁyxtl)y (x, t,A) flx)dx

is an integral function of a finite order. For, putting P, = %@ [ (1 — —;}) €@ (@),

e v
Pr= ..., we get from (6.7) for N=o
| P() fwfdac|<M{ | O P ] w00 )
1 n
wn ‘pu

l.

<u{3|%f3

Now, if |A]|=r is great enough, the right hand member is < e***, for such
an inequality holds manifestly, uniformly in #, for all P,(1) and Pr(i). Thus

} Max Max | P() P4 (3)].

n,m  |il=r

bo

f yy* fdx is the quotient of two integral functions of a finite order, which
o -

proves the statement above.

Do
At last we prove that f yy* fdx converges to zero, when |i| » oo in the
0 ,
region
35—48173. Acta mathematica. 81. Imprimé le 28 avril 1949.
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e<argi=m—¢ } (68)

mte<argl=2m—¢

(e Being arbitrarily small, as above we assume An, An 7% 0).
From (6.6) and (6.7) follows for N=o0
0N
} ) (6.9)

Putting ¥, = d, we have

_Yn
A—an

Yn
A—4q

] -]
2
]

2

p % < oo (ef. p. 272, last row, p. 273)
and
8 2 %2 —‘&s. I)_nls_kl_lnls '
PR N B N I e [2— 2 [

Put A =r¢'? and let for a moment 4, be a variable, continuously varying from

and the

—oo to + oco. Then the last factor assumes its max. for 4, = co: 3
max. is cos®3(1 — cos? $)~1. Further the inequality
cos® 9 - (1 — cos® )1 < cos®e(1 — cos®&)!

holds for all i:s belonging to (6.8). From this follows that the series on the
right of (6.9) converge uniformly towards o in the region (6.8). For if we choose
N fix and so great as to make

oo‘ % 2
An

14

=¢

_ )
Ntl 1 Co8™ &

(¢' arbitrarily small) then for every 1 in the region (6.8)

& 6 P ‘i( 3 r ‘a 2) 318 1 ”\a,ﬁ ,
= — i1 +HE D= = - —i =e.
\% L—2n % A=, 2 J,% Il ~ 1—cos®e & | hn :

Hence, since every term of the series in (6.9) converges to o, the truth of the
statement follows. v

Thus the first integral of (6.1) has the property 3° of No. 5. We will now
prove that this is also the case of the second. We shall restrict ourselves to
one part of the integral: 7

Tt : |3

It )= [gle, t, Vy(z, t, N f (@) de = [g(x, t,}) ¢ (x, ) @ (t ) f (@) d.

0 v
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The remaining part is to be treated in formally the same way. Since ¢(t,4) and
6(t 1) for t fix < b, are integral functions of a finite order, and Y(¢{ 4)=
=0(tA) +m()¢(t ), we immediately find that I(¢ A) is a meromorphic func-
tion with the poles {1,}. Its order is finite, if this holds of m(4). This is really
the fact. Using TircemarsH (rel. 2.5.7) we obtain the Parseval relation

by w 7';fotp,l(t)y(t)dt
fw(t,l)g(t)d.t=2 e

n=1

0

(ra = the residue of m@) in A= Ay, g(x) < L%(0, by), i.e. for

' . b
,o=zx=<} =mm(1, 4’),
g{x) = - .2
o, b <x=<i

14 0

b b,
m (l)f ¢t A)dt =D (l—ln)"lrflf Ya(t)g(t)dt— f@(t, Adt. (6.10)
0 =1 0 0
As in the case of the series (6.3) one finds that the series of (6.10) represents a
meromorphic function of a finite order (owing to the property (3.1)). Hence from
the definition of the order of a meromorphic function we conclude that m(A),
defined by (6.10), is so too. :

It thus remains to be proved that | I(¢,1)] > 0, when |A] - oo in the region
(6.8). For the proof we need the properties of m (i), mentioned at the end of
No. 2. In consequence of them

St =06(2 + LR (A

describes (for A,t¢ fix) a circle Sy as z= cot 8 describes the real axis of z (for
Iy describes the circle C, and (4 is of the form a + bl;). The circle S is
interior to the circle Sy, if " < b. If m(4) is the limit point or a point of the
limit circle of the circles Ch(b—>b,), then w(t, ) =06(t2) + m(A)¢ (¢ A) is the
corresponding point, relatively the circles Sp, i.e. a point inside an arbitrary
one of them. Let M, be the centrum, r, the radius of the circle S (b << by).

Then we have ‘
[w(t, )| <|M] + 7. (6.11)

The radius of S, is manifestly |¢ (¢, 2)| times the one of C, and the centrum
is by the formula M, =0+ l¢ given in terms of the centrum of C». Then,
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using the well-.known expressions for these last quantities’, we get

| My|=]|W(g®, ¢, 2, 3(b)] {2Im (A f|¢(t/1|”dt

b

ro=|¢t, N {2Im @A) [ ¢t A [Fdt},

0
where W(u(x), v@) == u@) v (x) — v (x)v(z) and g(z, ¢ 1) is defined in (5.8).
Now we will choose the fix number b < b, and > t,x. As is well known,
we have for all 1:s greater than a positive number R

¢ (t,2) = (cos Vit sin e — At sin Vit cos &) (1 + 0G~Y)
gz, t,4) = A"t sin Vi(e — &) (1 + OQA-H).
Putting A =1*¢%7, we get after simple calculations

lo(t A)] } Ice’"“i““ , sina>o0
e (¢ 2) lc;‘le"“‘n‘f' gine=o0
ce®—trlsinyl - gin g 50

| Wigh, t,, ¢, )] < {

cr-lel2d-trlsinyl  gip ¢ =0

b ¢r|cosy|-|sinhyp(2brsiny)|, sinaxo
l2Im @) [ |0t 2)*dt 2{
fistarar

¢r~'| cosy|-|sinhyp (2brsiny)|, sine=o.

The relations hold for all i:s in the region (6.8) and satisfying |A]> R. ¢ is
here and in the sequel a constant, independent of z, ¢ and A, which has not
necessarily the same numerical value in all cases.

T

According to (6.8) we have fs;rsf—-f or —+
2 2 2 2

Wle
A
=
IA
]
|

|cosy| = sm > 0. Hence by (6.11)
er-le-trisinyl  ging %o
lw(t, )= .
: cetrlsinrl = ging=o0.

From the definition of I(t, 2) it now immediately follows that

t
cflfldx
|I(t,}.)|S—°—m—— t<b<b, Ain(6.8), |2] > R.

The property 3° of No. 5 hence follows.

! TITCHMARSH, p. 20.
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7. Proof of the Property 4° of No. 5.

If n#m then 1,# A, and i} 7 A). Further it holds that i, = A for all
n and m. For otherwise there must be two solutions ,(x) and ¥y (x), linearly
independent owing to the fact that W, =11¢(x, ix) and yn =rit ¢n(z, 23)!, and
belonging to L*(0, by). This is impossible in the limit point case. In the limit
circle case we have

Y, )=(@a@+cm* Q)[@(x, ) + (b + dm*) (@ + em*) ¢ (z, )], (7.1)

where a, b, ¢, d are constants, independent of i (defined by 8* (@, h)=ab + b¢,
¢*(x,2)=cO0 +d¢). Now

P, )=0"+1"¢"=(a+cl*)[0+ B+ dl")(a+ cl*)¢]
satisfy the boundary condition 9* (b, 2) cos 8 + 9*' (b, 4) sin g = 0, i. e. the quotient
(b+ di*){a + ¢l*)"! is a point of the circle C, as well as I(2).® The boundary
conditions (R) and (R*®) mean in the limit circle case that as b — by, 1(1) con-

verges to a certain point m () of the limit circle and that the quotient (b + dI*).

(@ + cl’)! converges to the same point. At the same time I*(1) converges to
L]

m* (A), a point of the limit circle of the circles C3. Thus
mR) =+ dm* Q) (@ + em® Q). (7.2)

If An=2An, we must have ¢ =0, i. e. ¢* (x, ) = d ¢ (z, A), which is impossible,
owing to the fact that o* = a (mod ).

by
So the poles of @ (¢, 1) = f I(x,t ) f(x)dx are simple. We will determine
0

the residue in one of them, for instance A= 1,.

lim (l-——l,.)fnl‘(x, t, A f(x)dx = lim (l-—ln)f"Z)’?"fdw +
0 i=dy 0

a=1iy

+ lim(l—-ln)ftzg(x, t, Ny + y) fdx.

i=i,

From (6.3) we obtain for the first limit

20n(0) 3 220 [0yt olf @ dz = 2900 [ 7@ t W palal @z, .4

' TITCHMARSH, p. 24. 2 Cf. No. 2.
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The last expression is obtained by the Parseval relation, noticing that A, > {43},
i. e. that y*(z, ¢, Ax) < L*(0, by).

Let as above 7, denote the residue of m(4) in A=1,. Then, according to
Y (@) =1t (x, 4,)", we obtain for the second limit

t t

lim (A — ln)f 2g(x t, )y +9*)f(2) dx=}i1;1 (A—2n) f 2g9(x, t, Ay, t, ) fx)dx
’ ; ' (7.5)
= 2fg(x, t’ 2’") wﬂ (.2’/') 1Pn (t)f(l’) dx)

for the interval (o, ¢) is finite and ¢(x, 1) > ¢(x, 4u), glx, ¢, A) > g(x, ¢, A4,) uni-
formly in that interval.
Adding (7.4) and (7.5) and using the last of the relations (5.8) we get

2 (8) 68 (6 A0) [ (@) ¥* (@, ) F @) dv.

Now *(x, 4,) is a solution of Ly — A,y =o0, which belongs to L?(o, b,). In the
limit-point case this means that ¥*(xz, 4») = ¢ Wa(x)(cs being independent of x).
Using (7.1) and (7.2) we easily find that the same relation holds also in the
limit circle case. Thus

Jim (1= 2) [ T(o, 6, /(@) do = 2exa (04" (1, 1) [ 95 () (o)

The residue in A=21; will be computed in the same way. It has the corre-

Bo .
sponding form: 2cyyn (84 (¢, An) f Yol (x)f(x)dxz. The property 4° of No. 5 is
0

proved.

8. The Point x = b, (by < o) is Regular or Regularly Singular.
In this case is
Yz, ) =(@—"0b)*"0(1), Reo=o0

2;}=(x_b°)i_"0(l) Reo = o, (8.1)

bo

i.e. @(x, ) < L*(o, by). Then @(t, ) = f I(z, t, ) f(x)dx has a sense also when

0

! TITCHMARSH, p. 24.



On the Completeness of Some Sets of Functions. 279

only f(x) << L*(o, by) is assumed. It is also easily proved that the theorem of
‘No. 3 holds if, in the present case, the class of functions M (o, b) is exchanged
for the class L2(0, by). Only a few modifications in the proof above are needed.
These depend upon the fact that the inequality, leading to the relation {6.7),
does not generally hold. But instead we have equality in the relations (6.2),
(6.2*), which gives all that is needed for the proof. The validity of these equal-
ities follows from the fact that the functions y.(x) are in this case uniformly
bounded and that 2 A-¥—* < co. These last properties can in their turn be traced
back to the corresponding properties of the Bessel functions (of 1st kind). We
need only write the eq. (L) in the form

x

v ==t LIt~ VD + [ o, 68|00~ -] v 02,

bo

where g, (z, ¢, 4) is the function g(x, ¢, 4) of (5.8), but now belonging to the eq.

dy a o i

izt + (A (bo—m)’)y_o’ and where, further, a =" —}, and chosen so that

q(x)—(b—q—x); has no pole of order 2 at x =1>8,. Then we apply a Liouville-
o —

Birkhoff estimation of y(x) to find the results above. We do not enter upon
details. The method is often used by R. E. Lancee.

9. On the Minimality of the Set {y:(x), ynt(z)}.

A set {u(z)} is said to be minimal (un << L%(0, by) in L2(0, by), if no func-
tion of the set can be approximated arbitrarily exactly by sums of the others.
It especially holds, that {u,(x)} is minimal, if there is a set {v,(x)} (vn < L*(0, by)
of such a kind that {un(x); va(x)} is a biorthogonal and normal set.

The set {yi(x), Yr®(x)} is not orthogonal. Therefore it is of interest to know
something about the question of minimality. We shall prove

If (L) is reqular or regularly singular at x = by, then the set {Y} (x), Ym® (x)}
is minimal after the exclusion of at most two eigenfunetion-squares.

We will briefly sketch the proof, which is a generalization of an earlier
-one.! Put

! Cf. G. Bora, Acta math. 78 (1945), p. 57 f.
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Uan—1 () = Yn (x), U2n(x) =% (x), n=1,2,3...

We shall form a set {v.(x)}, of such a kind that (. (@); ta@) (n =13, 4,5,...)
is biorthogonal and normal. We state that the set may be defined as follows:

tam—1(2) = %ﬁ (o W (@) ¢* (@, Am) — dm Y1 @) $° @, ) — en Yl (@) ¢ (x, A7)

vam () = gd;c (om Wm ¢ (x, An) — di 1y @) ¢° (@, &) — en YT @) ¢ (x, AD)

(m=2,3,4,...), if the constants ¢cn, cn etc. are appropriately determined. It
may be observed that the principal term of vam—, (%), emyYm(x)¢® (x, 4n), is pro-
portional to the function v,(z), entering into the principal part of @(x, 1) at the
pole A=2, (cf. No. 7 and 4° of No. 5). Owing to (8.1), all these functions be-
long to L*(o, by). We nééd further the relation (27) of the paper mentioned
above', which here takes the form
by by ba - ba
N do = (1 — b _ly.n | ]y, 8
(}.u-—}.v)f(uv —u'v)dx = (A }.,,)(zbfuv dz - o[uv)-—'y,) ’7', ly,’ v !’

o
if we put w=g9*(z), v=17(x){(x) and the functions y, 7, { satisfy the egs.
Ly—2uy=o0, Ly—ynp=o, _L§—Z.{=o.
Now let 4 = ua(x) and
v=cuPn(2)¢" (z, In), = —dny(@)¢* (2, &), = — eath] (@) ¢ (x, A1)

successively and 4, 7% An, 4;, Al. All right hand members = o according to the
boundary conditions. Dividing by (As — Am), (A — 4;) and (4. — A7) respectively
and adding, we get-(Vim—1 = cntnd’ — dn¥, ¢"— enP? ¢)

2 fun(x) vames (2) d — ] ten (@) Vames () = 0.

It is. now a simple matter to determine the constants dy and e, so that
b

tn () Vam—-1(x) = 0 independently of the values of »; for we only need to solve

! Cf. G. BorG, Acta math. 78, p. 40 f.
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the system of two linear egs.

dn 1 () ¢* (@, &) + en P (2) ¢ (2, A) = om Ym () ¢° (2, Am) (9-1)
for x = b, and x =o.

They always have finite solutions. In the same way dy and em are determined
Thus

be

f ttn () vm (x) dx = O, n % m.

0

At last, after simple calculations’, using (9.1), we get
By

b
f“an—l (x) van—1 (@) da = -czﬂ W (Y (@), ¢ (x, ln))fw,’. (x)dx
[1]

0

and analogous for even indices. Hence the constants ¢, and cn can always be
chosen so as to make the set {ux(z); va(x)} normalized.
This proves the theorem.

10. On the Completeness of the Set {wn(x)}.

The set {sin nx} is complete in L2(o, #); the set of squares {sin®nzx} is
complete in L? (o. L:), i. e, in “‘half” the former space. We shall prove the fol-
lowing generalization of this property?

If the eq. (L) is regular or regularly singular at x = by (by < 00) then the set
of eigenfunction-squares of (L, R) vs complete in the space L® (b—;,bo), i. e. in the
Hilbert space, belonging to half the original interval (0, by). '

For_ the proof we will use the theorem of No. 3, but still one clause is

needed. We assume f(x) < L? (%, bo) and

fu¢;(x)f(x)dx=o, n=1,2,3,...

bo/2

The consequence wanted is f(x) = o.

! Cf. G. Borag, loc. cit. p. 43.
? This theorem is a result of Qiscussiong with Prof, A. BEURLING, Uppsala. I take the op-
portunity to thank him for this’and for valuable advice during the preparation of this paper.

36—48173. Acta mathematica. 81. Imprimé le 28 avril 1949,
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Let m(4) = %, where 7'(1) and N(A) are integral functions without a com-

mon divisor, and put
o

¥ () = £ N (2, ) f(x)de.

In the present case, N(1) and T() are integral functions of a middle type
of order 1/2 (ZA-%~* < oo, cf. the argument of No. 6 p. 275). This property is
the real foundation of the proof. We will only carry it through in the following
special case.

Let =10, be a regular point, and y{0) =y (b)) = O be the boundary con-
ditions (R). Then it holds that

_sin V(b —2) sinl/ib.,}" AL
Y (x, A) % { Vi (1 ! O(Vi))

o [fsin? vz(bo_x)( O(L_)) .
Y= ) Ve v, U 0\

and thus

Since the integrand is < C-|f(x)||4]|~* exp {(2 -%— bo) | Im (V2) |} for all 1:s

C
in the region (6.8), we get |F (1) < 1—/|7[’ A in the region (6.8). Further ¥(2)

is meromorphic of a finite order and the principal parts at the poles 1= 4, are

of the form
b

(A~ A) " en [ Wi (@) f (@) dz,
byj2
whence, according to the assumption above, they are all = o0, and ¥(4) is an
integral function of a finite order. As in the case of theorem of No. 3 we then

get ¥(A)=o, i. e.
By

fw’(x, ANflx)dx=o.

bo/2

From this we conclude that f(x) is orthogonal to any set of eigenfunction-

squares, belonging to (L) and boundary conditions y (%’) cosa +y (%‘-’) 8in ¢=0;
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y{bo) =o0. Applying the theorem of No. 3 (in the version of No. 8) for the
.interval (by/2, by), we get f(x) = 0 as stated.
Further we state without detailed proof that

The set {yn (x)} is after the exclusion of at most one eigenfunction-square min-

imal in every space L* (%— e, bo)) (e > o).

The proof depends again upon a construction of a biorthogonal set. We
choose boundary values (R*) and form the biorthogonal set {u, (x); v (x)} of No. 9.
This can be done in such a way that at most one eigenfunction-square is super-
fluous, viz. the function i(x). Then the set {1} (x), van—1{x)} (=2, 3,4,...)
is biorthogonal in L*(0, b,), and all functions v;m(x) are orthogonal to all v (x)
(n=2,3,4,...). Further it is possible to prove that the set {vom(x)} is complete

in L* (0, 929 — .s). The proof is analogous to that above in this No. Then for

every n we can approximate tz,—i(x) by a sum ¢, v, (x) in L* (o, b—z" — s).

Putting
P~ Vaucs () — Zenetae (2
we get

[viEgndz= [ viEgn@ldz

2

and the first member also equals ., (Kronecker d) according to the biortho-
gonality property of the set {un(x); va(x)}.

The applications of the theorems above to Bessel functions, belonging to a
boundary value problem over a finite interval, and to Legendre functions are
immediate.

In a later paper 1 shall further unfold the results and apply them to in-
verse boundary-value problems.

Uppsala, oct. 1947.



