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1. Introduction 

In  this paper  we introduce a new method to obtain one-sided and two-sided integral 

inequalities for a class of quasi-linear operators. Some of our assumptions are similar to 

those of the Marcinkiewicz interpolation theorem. However, in contrast  to the Marcin- 

kiewicz theorem, the operators tha t  we s tudy here are local in a certain sense and are 

usually most conveniently defined on martingales. In  fact, the suitable choice of starting 

and stopping times for martingales, together with the systematic use of maximal functions 

and maximal operators, is central to our method. 

Before describing our results in detail, we consider a few simple applications. We 

begin with an application to classical orthogonal series. 

Let  Z0, 21 . . . .  be the complete orthonormal system of Haar  functions on the Lebesgue 
r162 a unit interval. Let  ~k-0 gZ~ be the Haar -Four ie r  series of an integrable function / and 

S(/) ~ [ ~ = 0  (a~Zk)2] �89 Then 

c~ Iis(/)llp < I[/]l~ < cp [Is(/)ll~, 1 < p  < ~ .  (1.1) 

This inequality is due to R. E. A. C. Paley [14], who stated it in an equivalent form for 

Walsh series; the Haar  series version (1.1) was noted by Marcinkiewicz [11]. Inequal i ty  

(1.1) should be compared with the inequality 

  lll*ll, I l l l l ,< IIl*ll,, 1 <p  < (1.2) 

where / * = s u p ,  [~oakZkl ,  which follows from the maximal inequality of Hardy  and 

Littlewood [10]. The two inequalities imply tha t  

IIs(/)ll, I I /% c,  Ils(/)ll,, (1.3) 

for 1 < p  < co. Although it is known tha t  neither (1.1) nor (1.2) hold in general for 0 < p  ~< 1, 

our results reveal a quite different picture for the last inequality: from the fact tha t  (1.3) 

holds for 1 < p  < co, we are able to show tha t  it holds for the entire range 0 < p  < r This 

extrapolation effect is typical of our method. Even more is true: the fact that  (1.3) holds 

for two values of p is enough to imply tha t  (1.3) holds for all p.  

The next  example has m a n y  of the same elements. Suppose tha t  X = {X(t), 0 ~<t < co } 

is standard Brownian motion (see Section 7) and v is a stopping t ime of X. Let X * be the 

process X stopped at  v: X*(t)=X(~ A t), 0 ~ t  < ~ .  I t s  maximal function is defined by  

( x 0 *  = sup I x  ~ (t) I. 
O~<t<~ 

Let b be a positive real number  and consider the stopping time ~ A b. Then the inequalities 
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c, I1(~ A b)% < IIx(~ A b)lb < c, ll(~ A b)% 

c, II(x,^~),lb < IIx(~ A b)lb < I I(x'^~ 
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(1.1') 

(1.2') 

are known to hold for all 1 < p  < c~. The first follows from the results of Millar [13], and the 

second is a Standard martingale maximal inequality (see Doob [5], Chapter VII ,  Theorem 

3.4 and page 354). I f  we combine these inequalities as before, and use the monotone con- 

vergence theorem, we obtain 

c,, II~% < II(x')*ll,, < co I1~*11,, (1.3') 

for 1 < p  < c~. As in the previous example, it is known tha t  neither (1.1') nor (1.2') can be 

extended to the interval 0 < p  ~< 1. However, again the last inequality is different: our 

method shows that  (1.3') is, in fact, valid for the entire range 0 < p  < ~o. 

Related integral inequalities for stopped random walk and sums of independent ran- 

dom variables are given in Section 5. 

Both of the above examples may  be considered from a common viewpoint. Let  

1= (11, Is . . . .  ) be a martingale on some probabili ty space and d =  (d 1, d~ .. . .  ) its difference 

sequence, so tha t  

/ .= ~d~, .>tl .  
k ~ l  

L e t / *  denote the maximal  function of the sequence / :/* = SUpn ]/, [. The maximal  function 

~ :~  d 2)~ by  the inequality is related to the function S(]) -- ~z,k-1 k 

% IIs(/)lb < II1% < c~ I1~(1)11,, 1 < p  < oo. (1.4) 

(See Theorem 9 of [1] and Theorem 3.4 of Doob [5], Chapter VII.)  We obtain new informa- 

tion about this inequality in two directions. For a special class of martingales, our extra- 

polation method allows us to extend this inequality to the range 0 < p  < c~. In  particular, 

this extension implies (1.3) and (1.3'). In  a second direction, the operator S:/-~S(])  may  be 

replaced by  other operators. An interesting class of such operators, which we call operators 

of matr ix  type, is defined as follows. Let (ask) be a matr ix  of real numbers such tha t  

c< ~.a~k<~C, k>~l, 
t = 1  

where c and C are positive real numbers. Define the operator M by 

M / = [ ~  (lim sup l ~ a, kdkl)~] t. 
i ~ 1  n--~r k - 1  
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Clearly, S is an operator of matr ix  type with (ajk) the identity matrix. Another example 

of an operator of matrix type is the "Li t t lewood-Paley" operator 

k = l  

where ak = ~=l/s/k. This operator has been studied and used in connection with martin- 

gales by  T. Tsuchikura [16] and E. M. Stein [15]. Let  n be a positive integer and/~  the 

martingale / stopped at  n :/~ = (]1 . . . . .  / , - 1 , / , , / ~  . . . .  ). Define the maximal operator M* by  

M*/= sup M/'~. 
l~<n<or 

Notice ,  for example, tha t  S*=S;  also [~/* is the maximal operator associated with 

/-+lim sup~ l/~ I, which is another example of an operator of matr ix  type. We show tha t  

for any operator M of matr ix  type, 

%IIM*tlI,<III*II,<GIIM*III,, 1 < p <  r162 

for all mart ingales/ .  For martingales in a special class, our method allows us to extend this 

inequality to the entire range 0 < p  < r162 

W e  also obtain similar inequalities for more general operators. An interesting example 

of an operator tha t  is not of matrix type is 

s(/) = [ Y. E(d~ IAk-1)?.  
k - 1  

This operator is useful in the study of random walk since it often happens tha t  s([ ~) ='ci, 
where T is a stopping time and/~  is the random walk ] stopped at  T. 

The L f n o r m  inequalities described in the above examples are special cases of more 

general integral inequalities. Inequali ty (1.3'), for example, is a consequence of the in- 

equality 

c foo[(x,),]< C 

Here (P is any nondecreasing absolutely continuous function satisfying a growth condition; 

the choice of c and C depend only on the rate of growth of (P. 

Finally, the assumptions of most of our theorems cannot be substantially weakened. 

This is supported by a number  of remarks and examples, some of which are contained in 

Section 8. 
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2. Preliminaries 

Notation. Let  (~,  •, P)  be a probabi l i ty  space. I f  B is a sub-a-field of I4 and / is an 

integrable  or nonnegat ive  A-measurab le  function,  recall t h a t  E(/IB), the  condit ional 

expecta t ion  of / given B, is a n y  B-measurable  funct ion g sat isfying 

Such a funct ion g always exists and  is unique up to a set of measure  zero. We usual ly  do not  

distinguish between funct ions equal  a lmost  everywhere.  

Le t  A0, A1, ... be a nondeereasing sequence of sub-a-fields of A, ] = (]1,/2 . . . .  ) a sequence 

of real functions on ~ ,  and d = (d 1, d 2 . . . .  ) the  difference sequence of ] so t h a t  

~d  
k ~ l  

Recall  t ha t  / is a martingale (relative to At, A2 . . . .  ) if d~ is Ak-measurable  and integrable,  

k>~l, and  
E(dklA~_l) ----0, k~>2. 

The sequence / is a martingale trans/orm (relative to A0, Ai  . . . .  ) if 

k - 1  k ~ l  

where v k is .~k_l-measurable, k >~ 1, and  x =  (xl, x 2 . . . .  ) is a mar t ingale  difference sequence 

relat ive to A1, .42 . . . . .  

A mar t ingale  t rans form ] is also a mar t ingale  if each dk is integrable,  in which case, 

E(dklAk-x)  =%E(xklAk-~)=0, k~>2. 

A s topping t ime is a funct ion r f rom ~ into (0, 1 . . . .  , ~ }  such t h a t  the  indicator  func- 

t ions I (v  ~< k) are Ak-measurable,  k >~ 0. (If A ~ ~, I(A) denotes  the funct ion on ~ tak ing  the 

value 1 on A and the value 0 off A.) The mar t inga le  t r ans form / stopped at v, denoted b y  

]~ = (/],/~ . . . .  ), is defined by  

1~ = ~ I(~/> k) dk, n >/1. 
kffil 

The  mar t ingale  t r ans form ] started at/a, where/z  is a s topping t ime,  is denoted b y  #1 where 

n 

~/n = ~ I ( / ~  < k) dk, n ~> 1. 

Finally,  / started at iz and stopped at ~ is wr i t t en  as ~[v, 
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~']'n= ~ I(la<k<~v)dk, n>~l. 
k = l  

Notice that  I(v >1 k) is Az_l-measurable so tha t  I v is also a martingale transform. The same 

is true of ~1 and ~1~. The following relations are easily verified: 1=!~ § ~1, (!~)~ =1~^~, ~(~1)= 

gVr! and / g _ / v = v / g _ g ! : ,  where V and A denote the usual max and min operations. 

I f  {# = n} = ~ for some n, 0 ~< n < r we write "/~ for s!:; then 0/~ =/~ and po= / .  

Throughout the paper T/denotes the collection of all martingale transforms relative 

to A0, A1, .-.- Let x= (xl, x~ .. . .  ) be a fixed martingale difference sequence relative to 

A1, As ...; we denote by  ~ the subcollection of T/consisting of all martingale transforms 

Of X. 

Our principal aim is to s tudy certain operators T defined on ~ or T/with  values in 

the set of nonnegative A-measurable functions on ~ .  Three important  examples of such 

operators are 
1"= sup If.l, 

l~<n<e,c 

s(1) = ( ~ d~)+, 
k--1 

s(/) = [ ~ E{d~lAk_,)] j. 
k - 1  

We adopt the following notation: 

T,/=T/n, l<<.n<~, 

T*/= s u p  Tn/, 
l~<n<or 

T**I = sup Tn! = T*! v T!. 
l ~  n<~ ~ 

In  some cases, T = T* = T**; for example, S and s have this property.  However, T / =  

lim sup I/, I does not since it can happen tha t  T/</*= T*/. 
n - - ~  

We use the notation 

[fo, ]"" Illnlb= lnl" , O < p < o ~ ,  

even if the integral is infinite. Also, it is convenient to let 

II/Ib= sup II/=lb 
l~<n<r 

I f  IIlll, is finite, then the sequence / is Lv bounded. 
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The letter c, with or without subscripts, denotes a positive real number, not necessarily 

the same from line to line. The letter C is also used for the same purpose. 

Assumptions. In  this section are collected the conditions we sometimes impose on 

martingale transforms and operators. Recall tha t  ~ is the set of all transforms of the 

martingale difference sequence x= (x 1, x2 ... .  ). This set is closed under addition: if ] and g 

belong to ~ ,  t h e n / • 1 7 7  l~+-g2 . . . .  ) also belong to ~ .  Moreover, ~ has the even 

more important  property of being closed under starting and stopping; tha t  is, if/~ and r 

are stopping times and ] belongs to ~ ,  then ~I p also belongs to ~ .  

Let  0 < (~ < 1 and ~/> 2. We say tha t  condition A holds if, for all k >~ l, 

A1. E( Ixk I I~k-1) >~ ~, 

A2. E(xk 2 I.,4k_1) = l, 
A3. E( Ix~ le IAk-~) ~< c. 

Note tha t  these conditions are redundant  in some cases. I f  A2 holds and ~ = 2, A3 imposes 

no extra restriction and CA3, the c in A3, may  be taken to be 1. I f  A2 and A3 hold with 

>2,  then A1 holds, which follows from Hhlder's inequality. For further discussion of 

these conditions, see Section 8. 

Now consider an operator T from ~ (or ~)  into the nonnegative R-measurable func- 

tions. The operator T satisfies condition B if, for ~ >~ 1, 

B1. T is quasi-linear: T(1+g ) <~,(T] + Tg); 
B2. T is local: TI=O on the set (s(/) =0}; 

B3. T is symmetric: T ( - 1 )  = Tt. 

Nonnegativi ty and symmetry  are not essential: if T does not satisfy these conditions, 

it can be replaced, without loss of generality for our results, by  T / =  ITll v IT ( - / )  I" 
Note tha t  BI  and B3 imply tha t  T(/-g)<~7(Tt+ Ty). Also, if T satisfies condition B, 

then so do T* and T**. 

There is another local condition tha t  is sometimes satisfied: T 1 = 0 on the set where 

1 = 0. This is more restrictive than B2 since / = 0 on the set where s(/) = 0 but  not always the 

other way around: note that  d~ = 0 almost everywhere on the set A = (E(d~ I Ak-1) = 0} since 

f d~ = fAE(d~ [Ak-1) = O. 

The operators/-+/*,  S, and s are sublinear (~ = 1) and satisfy condition B. 

Let  0 <Pl  <P~ ~<Q, where ~ is the same as in A3. The operator T satisfies condition 

R if, for all 2 > 0 and / E ~ ,  

1 7 -  702901 Acta maShematica. 124. Imprim~ le 29 Mai 1970. 
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R1. ~'P(I*> ~)<clITIII~:; 

R2. ~*P(T/> ~)<cll/*ll~:. 
Let  0 <re, <~. The operator  T satisfies condition L if, for all ~ > 0  a n d / s  7/L 

+k rag1. LI. ~'P(T/>~)<-<~III I1~,, 
L2. Condition R holds; 

L3. Tn/ i s  An-measurable, n ~> 1.(*) 

Preliminary lemmas. Here  we collect some inequalities, remarks,  and lemmas. 

I f  / is a martingale,  and ~ > 0, then 

~'P(l*>,t)<<llll[~, 1 ~ < p <  oo; (2.1) 

lltll,<ll/%<qll/Ib, v-,+q-~=l, l<p<oo; (2.2) 

2P(S(I) > ,,1) < c II/ll,; (2.3) 

Xp(l* > 2) < c IIs(l)lh; (2.4) 

c, IIs(l)ll,-< II/ll,-<-< G I1,~(1)11,, 1 <p < co.  (2.5) 

For  (2.1) and (2.2), see Doob [5]; and for (2.3), (2.4), and (2.5), see [1]. 

By  these inequalities, the operator  S satisfies condition R with p ,  = 1 and  p 2 = 2 ,  

and  condition L with 7q = 1. 

Suppose T satisfies condition B. I f  # and v are s topping times, then 

I(t,<k<v)<.I(l~<V), k>~l, 

implying tha t  s(~/v) <~ I(t, <v) s(/) 

(as usual, 0. co = 0). Therefore, by  the local condition B2, 

Tff, p) = 0 on {~ ~>v}. (2.6) 
I n  turn,  (2.6) implies t ha t  

T(I t ' -P)  = 0 on {/, =v} (2.7) 

since T( /~- I  v) = T(v/~-~1~) ~ ~[T(v/~)+ T(~/~)]. 

Recall t ha t  Tn/= T/n, 1 ~n  <~ co. I f  T is local, we extend this definition in a consistent 

way  for n = 0  by  sett ing T 0 / = 0  , since s( /~ Now define Tr  any  stopping t ime T 

as follows: 
Tr Tn/ on {~=n}, 0~<n~<co. 

I t  can happen tha t  Tr T/7; however, we do have the following double inequality.  

(*) The L1 part of condition L is a temporary assumption only; in Remark 8.3, we show that it is 
not needed to obtain the results of this paper and can be eliminated. 
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L ~ M ~ A  2.1. Let T be an operator satis/ying condition B. I / v  ks a stopping time, then 

~-lTd < TI~ <~,T,I. 

Proo/. Let  0 < n < c~ ; on the  set {T = n}, 

T/~ = T[F + (/3 _p)] < 7[Tp + T(/,  - p ) ]  = ~,T, /= 7 T J .  

Here  we have  used B1 and  (2.7). The proof of the  lef t -hand side is omi t ted  since it  is similar.  

Remark 2.1. I t  can happen  t h a t  T does not  sat isfy R1 bu t  T** does. (Consider T]= 

lira supn I]n I') I n  such a case there  would be no loss in replacing T b y  T** provided R2 is 

satisfied b y  T**. I n  this connection, the  following fact  is useful: I f  T satisfies condit ion B 

and the  measurab i l i ty  condit ion L3, then  T** satisfies R2 whenever  T does. To see this, 

let v(w) = inf (1 < n < ~ : (Tn/) (co) > 2}, ~0 e ~ ,  where inf O = oo. Then  T is a s topping t ime  b y  

L3, and  

2P"P(T**/>2) = 2~"P(Tj  >2)  < 2"P(TT/~ >2) < cll (f)*ll~: < cll/*ll~:" 

LEMMA 2.2. Let 0 < p < 2 .  I / / i s  a martingale transform in ~,  then 

llI*ll, < c lls(/)ll  �9 

The choice o] % depends only on p. 

See Section 5 for other  results abou t  s(/). This one can be obta ined direct ly  and  is 

needed in case the  n u m b e r  P2 in R2 is less t han  2. 

Proo/. We m a y  assume t h a t  [is(/)H, < ~ .  xf p =2,  by  (2.2) and  the  or thogonal i ty  of t h e  

difference sequence d o f / ,  we have  t h a t  II/* 112 < 211/112 = 2 II S(/)]]3 = 2 H s(/)I] 2- Now let 0 < p  < 2. 

Since 

s, (/) = s(/n) = [ ~ E(d~ [~k_l)]  �89 
k=l 

is ~n_l-measurable ,  
T = inf { 0 < n <  c~: sn+l(/) >;t} 

is a s topping t ime. Le t  g=/~. Then  s(g) =s~(/) ~<2, s(g) <.s(/), and 

P(/* >2) < P(s(/) >2) +P(/* >2, s(t) <2). 

Since g = / o n  (T= oo} = (s(/)<2}, the  last  p robabi l i ty  is equal  to 

< 2) < P(g* > 2) < 2-  2 HgH~ - 2-2f(s(r,>~} s(g) ~ P(g* > 2, 8(/) 

"~- 2-2 /(s(,)<<.~}8(g)2 < "(8(/) > 2) ~- ~-2 f ~s(D<~}8(/)2" 
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f/ fo L7 Therefore, H/*Hg=p ]~,-~P(]*>,~)da<~2Hs(/)[[~,+ p s(/) ~ V-ad]~ 
( 

= Ils(l)ll~ [2 + p / ( 2  - p ) ]  = c~ IIs(t)ll~. 

In  Section 5, we improve this upper bound by showing tha t  cW may  be chosen to be 

bounded on the interval 0 < p  ~<2. 

Remark 2.2. I f  T is an operator on 7~ satisfying condition B such that ,  for a l l / q  ~/, 

II TIII,< clllll,, 

then liT/lip < %lls(l)ll,,, o < p < 2 ,  

by an argument  similar to the proof of Lemma 2.2. 

The underlying idea of the next  lemma is well known. See Zygmund [17; Chapter V, 

8. 26]. 

L~,MMA 2.3. Suppose that g is a nonnegative A-measurable /unction, o~, ~, Pl, P2 are 

positive real numbers with Pl <P~, A E •, 

ag ~" >~ ~v' P(A ), 

and,/or all ~] > O, ~v, p (g > ~], A) <~ fl~' P(A ). 

/ \P~I w 
Th~ ,  P(a>O~,A)~> (, -O") "~-Pi t~ ) ~  J"---" P(A), o<0<1. 

Proo]. I t  is sufficient to prove this for A = ~ ,  Pl = 1, and p~ = p  > 1. 

For any positive real number  B, 

/ 'o~ / ,  B~ 0r 

++jo 
. < 0 = +  = 

p - -  1 B p-l" 

Let  B =  1 - 0  p - 1  " 

Then P ( g > O ~ ) > ~  1 -  p - 1  k~] BV- ' j  = ( 1 - 0 ) - - p - - ~ j  . 
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The next  lemma shows how the variabili ty of /*  and, more generally, T] is controlled 

by  the variability of s([). 

LEMMA 2.4. Suppose condition A holds. I] ] E ~ ,  A>0, and AEAm /or some m>~O 

such that 
A < {sin(l) = 0, A <~s(/) ~<2A}, (2.8) 

then P(/* > cA, A) >~cP(A), (2.9) 

f ]/*l,<cA,p(A), 0 < p <  e. (2.10) 

I / T  is any operator satis/ying conditions B and R, then 

P(T/>cA, A) >1 cP(A). (2.11) 

The choice o/ c(~.9 ) depends only on (~; that o/ c(2.1o~ only on p and c~; and that o/c(~.m only 

on the parameters o /A,  B, and R. 

Pro@ We m a y  assume in the proof tha t  

s(/) = 0 off A. (2.12) 

For consider g = mf with v the stopping t ime defined by  

v = m o f f A ,  v = o o o n A .  

Then s(g)=Oof fA,  g = / o n A ,  

so tha t  g satisfies not only (2.8) but  also (2.12). I f  g satisfies the conclusions of the lemma, 

then so does/ .  This is clear for the first two, (2.9) and (2.10). For the third, note tha t  v = oo 

and s(/m) =0 on the set {Tg>C2, A}, so tha t  

6'2 < Tg = TIp  - l"]  <~[Tp + TI "~] =~,Tp <r~T~l =~,2TI. 

Therefore, letting c =y-2  C, we have tha t  

P(T/>c,~, A) >JP(Tg>CA, A) 

and we may  assume (2.12). 

As usual, write 
= n  d /n ~ ~= ~ VkXk, n~>l,  

k ~ l  k z l  

and note that ,  under condition A 2, 
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~(I) = ( ~ "~,)~ k=l 

so that 8(1)s(1) >i ~1l vk d ~ l _  = k~,Z vl I~1. 

Therefore ,  b y  A1, A2, and (2.8), 

Also, we have  t h a t  

~S(1)2 L =  k=rn+l ~ Vk2 2 L xk = k-m+i~v2=L8(l)2~'~422P(A)" 

The  conditions of L e m m a  2.3 are satisfied by  g = S(/), a = 2-102, fl = 2 2, Pl  = 1, p~ = 2, 0 = 

2 -1 , so t h a t  
P(S( / )  > 2-e ~2, A) ~> 2 - s ~ P ( A ) .  

Therefore,  b y  (2.12), {2.3), and (2.2), 

f l* II1"111> I l l lh>c2P(S( l )cA)  c2 P(A),  

f~ I/* I ~ ~ 11/'1122 < 4 IIII1~ = 4118(1)11~ = 4f~ ~(1) ~ < 16 z P(A). 

Another  appl icat ion of L e m m a  2.3 now gives (2.9). 

I f  2 < p  < ~, t hen  by  (2.5), (2.12), and  the  inequal i ty  E ( I x d  p lAb- l )  ~< c, which follows 

f rom A 3, we have  t h a t  

L f 
<~ c2 ~-2 ~ v~ <~ c2 "-2 8(/) ~ < c2~P(A). 

k=m+l 

I f  0 <p  < 2, t hen  b y  L e m m a  2.2, 

This proves  (2.10). 

~1/ *1" ~< II1"11~ < c I1~(I)11~ = cf~,~(l), < c 2 ~ P ( A )  �9 



QUASI-LINEAR OPERATORS ON MARTINGALES 261 

Using (2.12), B2, R1, and (2.9), we have that  

fal T]]~' = IIT/II~: >~ c2~'P(/* > cA) >1 c2~'P(A). 

By R2,  (2.12), and (2.10), for ~ > 0 ,  

~" P( T/ c2~' P( A ). 

Therefore, (2.11) follows after another application of Lemma 2.3. This completes the proof. 

The following two theorems provide upper bounds for stopped martingales. 

THEOREM 2.1. Suppose that condition A holds and 0<p~<~. / / / E ~ ,  /n=~.~=lVkXk, 
n >~ 1, v = (Vl, v2, ...) is uni/ormly bounded by a positive real number b, and T is the stopping 

time defined by 
= inf (n: I/~l >b}, 

then I[ (]~)* II~ <~ cb[ P(s(/) > 0)] 1/p ~< cb. 

The choice o/c depends only on p and the parameters o/A. 

Condition A cannot be substantially weakened. See Example 8.3. 

THEOREM 2.2. Suppose that condition A holds and 0 <p <~. Let T be an operator satis- 

/ying conditions B, R, and L3. I /  / E ~ ,  /,=~=lV~Xz, n>~l, v=(vl, v2, ...) is uni/ormly 

bounded by a positive real number b, and 7: is the stopping time de]ined by 

T =inf (n: Tn]>b}, 
then 

][ (/~)*l]~ ~< cb[P(s(/) > 0)] 1~" ~< cb. 

The choice o/c depends only on p and the parameters o/A, B, and R. 

Theorem 2.1 follows immediately from Theorem 2.2: let T be the operator defined by 

T]=/*. In  this case Tn/=(/n) * and B, R, and L3 are satisfied with ~=1 ,  p l = l ,  p~=2,  

%1 = c~2 = 1. 

Proo/ o/ Theorem 2.2. Let N be a positive integer. We must show that  

II < cb [P(s(/) > 0)] I/p 

with e not depending on N. 

Let  2 = 272 b/fl where /~ = c(~.m < 1. Note tha t  v*~ b < 2. Define the multiplier se- 

quence w: 
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w k = vk, 1 < k <~ N,  wk = tI(sk(/) > 0), k > N; 

le t  g be the  cor responding  t rans form:  g= = ~ , ~  1 wk xk, n/> 1. Then  g q ~ , / ~  = g~, 1 <~ n <~ 1V, 

a n d  on the  set  { s ( / )>  0), 

k ~ l  

as n-~ cr Define a sequence of s topp ing  t imes  as follows. L e t  

/~0 = inf  {n >~0: s~+l(/) >0}.  

This  is a s topp ing  t ime.  No te  t h a t  {go < ~ } = {s( / )>  0} and  s(g "o) = 0. I f  j /> 1 and  g~_x is a 

s topp ing  t ime,  le t  
g j  = inf {n: s(mg ~) > i }  

on the  set where  #s-~ = m, m >1 O, and  le t  g j  = r162 on the  set  where /x  j_ 1 = ~ .  Then  ~tj i s  a 

s topp ing  t ime  sa t i s fy ing 

gJ-1 < / x j <  ~ on {s(/) >0},  

g j = ~  on {s( / )=0}.  

L e t  hj = (hjx , hi2 . . . .  ) denote  the  mar t inga le  t r ans fo rm ~J-~g~, ~" ~> 1. Since w* ~<t a n d  s("g n) 

s(mg n-l) + Iwn [, we have  t h a t  

2 < s ( h j ) < 2 ~ t  on { s ( / )>0} ,  

j 1> 1. Also,  h* = 0 on {s(/) = 0}. 

Now le t  a = i n / { j :  T~jg > b}, 

~u~=c~ ,  and  v=/xa .  No te  t h a t  a > ~ l :  b y  L e m m a  2.1 and  B2,  T~, f f~yT*g~~ since 

s(g~~ Also,  z A N y < v :  if n~<N,  t h e n  on the  set  { v = n } ,  we have  t h a t  b < T * g =  

T* g n = T* /~ = T* ] and  ~ ~< n. Therefore  

since on {a = i}, 

a ~  

(1~^~)* = (g~^~)* < (g~)* < Y~ I (~  >1 j) h*, 
t=1 

(g~J)*=(g'*+"~ ... + ~J-19~)* = (0 + h i  + . . .  +hj)* <h~ + ... +h~, i>~ 1. 

Consequent ly ,  

for  0 < p <  r F r o m  now on assume t h a t  0 < p < ~ .  
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Am={lui_1=m, T* g<..5}, m>~O. 

Clearly, {(r >~ j, s([) > 0} -- {T~i_lg ~< b, s(/) > 0} = m~O Am. 

Note that  Am c {sm (hi) = 0, 2 ~< s(hi) <~ 2 2}, 

and AmEA, ~ by L3.  Applying Lemma 2.4 to h~, we have that  

IIz(~>~j)Vllg=llz(~>~j,s(/)>o)hTIlf= ~ f. IhTl" 
m = O  m 

Oo 

<~ c2 p ~. P(Am) = c2"P(a >1 j, s(/) > 0). 
m=0 

On the set where T*fl <<. b and / , j  < co, 

Th I = T[g~J - gt, j-1] <.< r[Tg~q + Tgt*t -1] <~ r2[T~ g + T~j_, g) ~< 2 ?u Tts g < 2 r '  b = ill. 

Therefore, applying Lemma 2.4 to h i a second time, we obtain 

~o 

P((r >1 ] + 1, s([) > O) = P(T~g < b, s(/) > O) = 5 P(/*t-1 = m, T$~g < b) 
m = 0  

<~ ~ P(Thj<fl2, A,~) <~ (1 - f l )  ~ P(Am) -- (1 - f l )  P(a>~j, s(/) > 0). 
m=O m=O 

By induction, for all j i> 1, 

P(a >1 j, s(/) > O) ~< (1 - ~)t-~P(a >i 1, s([) > O) = (1 - ~)t-~ P(s(/) > 0). 

Accordingly, for 0 < p  ~< 1, 

O0 O0 

II(/'^~)*llg < 5 lllz(~ 1> j) h 7 g < E c2,(1 -fl),-aP(s(/)> o) =c;~vP(s(l) > o), 
= 1=1 

and for 1 ~< p ~< ~, 

11(/~^~)% < ~ II1(~ 1> J) hTIl, < ~ [r - ~),-*e(s(/)  > o)] 1'~ = c2[P(s(/) > o)]'~. 
1=1 1=1 

This completes the proof of Theorem 2.2. 

LI~MMA 2.5. Suppose that conditions A1 and A2 ho/d. Then/or  all 2 > 0  a n d / E ~ ,  

P(v* >2) < cP(cd* >2) 

with the choice o/c depending only on d. 
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Recall that  d is the difference sequence of / and dk=v~x~, k~>l; as usual v* and d* are 

the maximal functions of the sequences v and d, respectively. 

Proo/. Let v=inf{k :  [vkl>~} and Ak=(v=k }, k>~l. Then A~E.,4k_x and, by A1, 

f A Ixkl >>" ($P(/k); 

by  A2, f a k ~  = P(Ak); 

hence by Lemma 2.3, P(Ixkl > c, Ak) >1 cP(A~). 

Therefore, P(v* > 4) = ~ P(Ak) <~ c ~. P(lxkl > c, A~) 
k=l  h:=l 

<c ~ P(ldd > c4, A~) < cP(cd* > 4). 
k=l  

L~MMA 2.6. Let y) be a nonnegative measurable ]unction on the real line satis]ying 

f a_~o ~p(t ) dt < co 

B = {t : y)(t) < ~p( t  + I)} 
/or some real number a. I! 

/or a real number ~ > 1, then 

Then 

f ?  ~p(t) dt ~ [ 1 dr. <~ W(t + ) 

Proo]. For each real 4, let 

A~ = {t < 2 :~(t)/> a~(t + ].)}, 
B~ = {t < 4 : V(t) < a~p(t + 1)}. 

w(,)dt < W(t)dt 

=o, fA~'(t+l)at+o:f ,~'( t+l)dt<f_.~'( t)dt+~f V'(t+l)dt. 

If S x_~r ~p(t) dt < co, then 

f~.~p(t)dt<~--~ fBy)(t + 1)dr. 

(2.13) 
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Therefore, the desired result holds if S~-0r co for all real 2. If, on the contrary 

Sx_~ y)(t) dt < r but  f2+1 j_:r ~p(t)dt = c~ for some 2 (by our assumption, the only other pos- 

sibility), inequality (2.13) shows tha t  fByz ( t+ l )d t=  ~ ,  so the desired result holds in 

any  ease. 

3. The rlght-hand side 

In  this section, we prove tha t  

II/% <cilT*fil., ~era, (3.1) 

under conditions A, B, and R for 0 < p < o o  as specified in (3.13). In  fact, we prove a 

stronger inequality (Theorem 3.3). 

I /  it were true tha t  P(/* > 2) <- cP(c T*/> 2) for all 2 > 0, then (3.1) would follow easily 

from the formula 

il/*ll~ =p f :  2"-1P( ]  * > 2) d2. 

However, even in simple examples, there may  be no such inequality between distribution 

n x = ( x .  x2 . . . .  ) i s  functions over the entire interval 0 < 2 < c o :  cons ide r /n=~k=l  k/k where x 

an independent sequence such tha t  xk = _ 1 with equal probability. Then S(/) = (~=11/k2) �89 

and P(cS(/) >2) = 0  for all large 2. On the other hand, P(/* >2) > 0  for all 2 > 0 .  In  spite of 

such examples, it turns out tha t  distribution function inequalities do exist for sufficiently 

many  values of 2 to allow us to use integral formulas such as the one above. A substitute 

for a full strength inequality between distribution functions is provided by the following 

theorem. This, in conjunction with Lemma 2.6, leads to integral inequalities such as (3.1). 

TttEOREM 3.1. Suppose that conditions A, B, and R hold. Let a~>l a n d f l > l .  Then 

P(]* >2) ~< cP(cT*] >2) +cP(cd* >2) (3.2) 

/or all / in ~ and 2 > 0 satis/ying 

P(/* >2) ~< o~P(]* >f12). (3.3) 

The choice o /c  depends only on o~, fl, and the parameters o /A ,  B, and R.  Furthermore, this 

choice may be made so that, with fl and the other parameters/iced, the/unction ~z-+c is non- 

decreasing. 

Recall tha t  d is the difference sequence o f / .  I f  d* ~cT*[, as sometimes happens, then 

(3.2) simplifies to 
P(/* >2) < cP(cT*/>2). 
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Proo/. The last assertion is obvious since if 1 ~< ~z < ~2 < co, then  the set of pairs (/, it) 

satisfying (3.3) for  a = ~1 is a subset of the  set of pairs (/, it) satisfying (3.3) for  a = ~2. 

Therefore,  if c is suitable for cr = ~ it  is also suitable for cr = :q. 

Le t  i t>0.  We first prove (3.2) for all / in ~ satisfying (3.3) and 

v* ~< it. (3.4) 
Here dk =vkx~, k >~ 1, as usual. 

Le t  0 = ( f l -1) /2 .  Then  either 

P(/* >it) < 2aP(/* >flit, d* <0it) (3.5) 

or P(/* >it) ~< 2~P(d* >0it), (3.6) 

since otherwise, (3.3) would not  hold. If  (3.6) is satisfied, then  (3.2) holds trivially. There- 

fore, f rom now on we suppose tha t  (3.5) is satisfied. 

Define stopping t imes/x and v as follows: 

# = irff {n: [l. I >it}, 

~, = in /{n :  ]1. ] > fit}. 

Then  {/z< r  ( v <  oo}={/*>fl i t},  and/z~<v. Le t  g=lq,,. Then g E ~  and 

P(g* >0it) >P(I*  >flit, d* <-.Oit) 

since, on the la t ter  set , /x  <v  < c~, and 

g*> I/,-l~l ~ ]l~ [- It~ [ >~ i t - ( i t  + d*) > 8  it - ( i t  +0i t)=02.  

Therefore,  by  (3.5), 
P(g* >0it) >~cP(]* >it). 

We now wish to  apply  Lemma  2.3 to the funct ion Tg on the set A = {/* >it}. To do this, 

we establish upper  and lower estimates as follows. By  the local condition B2, 

{ T g = O }  = { , ( g ) = 0 }  = = = {I* < i t } .  

Therefore,  by  R 1 and the preceding paragraph,  

f< [TglP'=llTgl]~'l >'c(Oit)~" P(#*> Oit) >"cit~"P(/*> it)' 
f*>~- 

so tha t  the lower (Pz) est imate holds. 

Le t  b=2~it and ~ = i n f  {n: ](g/), [>b}. Then  T>~v: since T>~/x, we see tha t  T>~v on the 

sets {/z=~} and {~= c~}. Also, v~>v on {/z<v, T <oo} ,  since 

I/ 1 = I-I/,, J >b-,eit=,eit. 
l~ote tha t  the  multiplier sequence defining ~1 is uniformly bounded by  b, using (3.4) and 

i t<b.  
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Therefore, by Theorem 2.1 with p=p~,  

I1 *11   = Ilem*ll   < II(q l% <  bcP( Cq)> 

<~ cb[P(iu < co )]l/v, = c2[P(I* > 2)] I/*'. 

This leads to the upper (p~) estimate: for all ~ > 0, we have, by R 2, tha t  

7P'P( Tg > 7,1" > '~ ) <~ 7v'P( Tg > 7 ) < c IIg*]l~ <~ c2P'P(/* > 2). 

Applying Lemma 2.3 to Tg, we obtain 

P ( T g  > cA, I* > 2)>i cP(/* > 2). 

Therefore, P(/* > 2 ) <~ cP( Tg >c]t) <~ cP(cT**/ > 2), 

using Tg = T(I" - p') <~ y[ TI" + Tp'] <-< r~[ T ~ l + T ~ l] < 2~ '~ T**I. 

In summary, we have shown that  for all / and 2 such that  (3.3) and (3.4) hold, we have 

the inequality (3.2) with T** in place of T*. Fix such an ] and 2; there is a positive integer N 

such that  for all n >N,  

p((/n)* >2) ~< 2~P((/n) * >f12). 

Note that  T**p <~ T*]. If we now apply what we have already proved to T**p with 

replaced by 2a, we obtain 

p((f t) ,  >2) <~cP(cT**] n >2) + cP(cd* >2) <~cP(cT*/>2) +cP(cd* >2). 

Finally, since the above inequality holds with c independent of n for n >N ,  we may let 

n-~ co to obtain (3.2) under assumption (3.4). 

We now eliminate assumption (3.4). Consider any / in ~ satisfying (3.3). Let  

a = in f  {n~>O: ]v,,+a 1>2). 

Since vn+l is ~4n-measurable, ~ is a stopping time and h =/~ belongs to 771. Note that  h 

satisfies (3.4). Either 

P(/* >2) ~< 2~P(/* >fiX, v* <2) (3.7) 

or P(/* >2) < 2~P(v* >2), (3.8) 

since otherwise, / would not satisfy (3.3). If (3.8) is satisfied, then (3.2) holds by Lemma 2.5. 
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From now on suppose that  (3.7) holds. From this, and the fact that  h* ~< ]* with equality on 

the set {v* 44}, it follows that  

P(h* >4) < P(]* >4) < 2~P(]* > ~ ,  v* 44) = 2~P(h* >fiX, v* <2) < 2~P(h* >~2). (3.9) 

So h satisfies (3.3) with ~ replaced by 2~. Therefore, by what we have already proved, 

P(h* >4) < cP(cT*h >4) +cP(cd* >4). 

Here we have used the fact that  the difference sequence of h has a maximal function no 

greater than d*. By Lemma 2.1 applied to T*, 

T*h < ~,T* / < y T*]. 

Therefore, using part of (3.9), we have that  

P(/* >4) < 2~P(h* >fiX) < 20cP(h* >4) < cP(cT*/>4) + cP(cd* >4). 

This completes the proof of Theorem 3.1. 

We now turn to integral inequalities. Consider a function q) on [0, oo] such that  

0 < b <  co, 

for some nonnegative measurable function ~ on (0, co) satisfying 

~(22) <c~(;t), 4>0.  (3.10) 

We also assume that  qb(1) < oo. (This together with (3.10) implies that  ~P(b) < oo, 0 <b < co .) 

For example, if 0 <p  < co  r b p defines such a function. Also, many Orlicz spaces may 

be determined by such functions; for example, the space L log L is determined by r = 

(b § 1) log (b + 1). If a is real and positive, let k be the smallest nonnegative integer such 

that  a < 2k; since r is nondecreasing, we have that  

~P (ab) <~ ~P(2kb) = f~'b ~(2)d2 = 2~f~ ~(2k2) d2 < 2kckqb(b) (3.11) 

using ~(2~2)<ck~(2), which follows from (3.10). From this it follows, for example, that  

~ qb(/*) and S~r are simultaneously finite or infinite. Also, by Fubini's theorem, 

we have the integral formula 
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THEOREM 3.2. Suppose that conditions A, B, and R hold. Let ap be as above and/E~tl. 

Then 

The choice o/ c depends only on c(a.lo) and the parameters o/A,  B, and R. This choice may be 

made so that, i/the latter are fixed, the ]unction c(a.lo)--->c is nondecreasing. 

If,  in addition, we assume tha t  for a specific function ap, 

RO. ~O(d*)<~cfaO(T*/) 

for a l l / E  :1/$, the inequality (3.12) may  be simplied as follows: 

THEOREM 3.3. Suppose that conditions A, B, R, and Rap hold. Then, /or a l l / E ~ ,  

f ~ ap(/*) ~< c f nap (T*/). 

The choice o/c depends only on c(a.10) and the parameters o/A, B, R, and Rap. This choice may 

be made so that, i/the latter are ]ixed, the/unction c(a.10)-+c is nondecreasing. 

In  particular, if conditions A, B, and R hold, and, for some p, 0 < p  < oo, 

114% < c:ll T'Ill: (3.13) 

for a l l /E  :1/$, then we have (3.1) as mentioned at  the beginning of this section. 

Some regularity assumption such as condition A is required in the theorems of this 

section and their left-hand analogues in Section 4. See the examples in Section 8. 

Proo/ o/ Theorem 3.2. In  preparation for using Lemma 2.6, we define 

y)(t) = aeat99(eat)P(/* > eat),  

B = {t: yJ(t) <2~v(t + 1)}. 

Here we take a = l o g  2 so tha t  e a(t+l) =2e at. The assumption of Lemma 2.6 is satisfied by ~p 

since 

; ; f, v2(t)dt= q~(~)P(/*>~)d~<~ ~(2) dy = ap(1) < c~, 

so that ,  by  Lemma 2.6, 

f~= y~(t)dt<2f y~(t + 1)dt. (3.14) 

Now, note that  if t E B, then ), = e at satisfies 
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a4q~(4)P(/* >~) < 4a4~(24)P(/* > 24) ~< 4 c(8.1o~a4q~(l)P(/* > 24). 

In  particular the above inequality implies that  ~(4) is positive and finite, so that  P(/* > 4) ~< 

~P(/*>24) with ~=4c(3.10). With this choice of ~, 

2~p(t + 1) < zero(t) 

since P(/*>24)---<P(/*>4). Therefore, by  (3.14), Theorem 3.1, and (3.11), 

f c(/*)=f[ (t)dt<2f,p(t+l)dt<-o:fT(t)dt 
<~ ~ ~B aeat cl)(eat) [cP(cT* / > e at) + cP(cd* > eat)] dt 

The assertions about the choice of c are evident, once the above argument is examined. 

This completes the proof. 

4. The left-hand side 

In  this section, we prove integral inequalities analogous to those in Section 3. In  

particular, if 0 < p  < c~, then 
]1 T**]% cllt*l], 

for all / E '1'/1, under conditions A, B, L, and (4.4). Our discussion is briefer here because the 

proofs have much the same pattern as those of Section 3. The principal changes are as 

follows: (a) The function d* is replaced by A*, the maximal function of the sequence A = 

(A1, A~, ...) defined by A n = T(n-1/n), n >~ 1. (b) Instead of the sequence/n, n ~> 1, the sequence 

Tn/, n/> 1, is used to define stopping times. 

THEOREM 4.1. Suppose that conditions A, B, and L hold. Let o~>~1 and fl>79. Then 

P(T**/>4) ~ cP(c/* >4) +cP(cA* >4) 

/or all / in ~ and 4 > 0 satis/ying 

P(T** / > 4) <~ aP(T** / > fld). 

The choice o / c  depends only on o~, fl, and the parameters o/ A, B, and L. Furthermore, this 

choice may be made so that, with fl and the other parameters/ixed, the/unction a ~ c  is non- 

decreasing. 

Proo[. We proceed in steps, always assuming A, B, and L. 

(i) Let ~ 1  and fl>yd. Then 
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P(T*/> i) < cP(c/* > 1) + cP(cA* > 2) (4.1) 

/or all / in ~ and I > 0  satis]ying v* <~t and 

P(Y*/> ~) <~ ~P(T*]>fl2). (4.2) 

Le t  0 = (fly-4 _ 1)/2. E i ther  

P(T*/>~) < 2~P(T*] >f12, A* 402) 

or P(T*] > 2) < 20cP(A* > 02). 

The  la t t e r  possibil i ty leads direct ly  to (4.1); therefore we assume the  former.  

Le t  ke = inf {n: T,~]>t}, 

= inf {n: TJ>f l2} ,  

and  ff=~/~. B y  L3, /~  and  v are s topping t imes.  On the  set where/~ is finite, 

T ~ I  < ~,(2 + A*). 

To see this, let n be a posit ive integer.  Then,  on {~u = n}, 

T j  = T ~ I  = T I  ~ = T ( I  "-1 +"-V ~) < 7(T._~I+A.)  < ~(2 +A*). 

On the  set  where T*[ >ill and A* ~02, we have  t h a t  ~u ~<v < ~ ,  and  

f12 < T , I  <~ ~T/" = yT(l~ +g) <~ ~S( T / ,  + Tg) <. Ta( T ~l + Tg ) <. ~(2  +O2 + Tg) 

or Tg > ( f l ~ - 4 _ 1 - 0 ) 1  = 0t. 

Therefore,  P(Tff  > 02) ~> P ( T * / >  ~ ,  A* ~< 02) ~> cP(T*/> 2), 

so tha t ,  b y  L 1, we have  the lower es t imate  

f {  * g*~ 
Ill* ['" = IIg II,,, ~ c(02)'P(Tfl > 02) >~ c2"P(T* />  2). 

T*f>I} 

Now we eompute the upper estimate. Le~ b = 2~,sl and ~ =iv[ {n:Tn(~])> b}. Then 
I> ~, for on (~ < o o  }, 

b < T ,  (~1) < zT(~/') < r 2 ( T f  + TIt') <~ ?s (T~I + TI,/) < 2 Zs T' l ,  

or T:t  > ~2, 

which implies t h a t  v ~> r. 

18-- 702901 Acta mathematica. 124. Imprim4 le 29 Mai 1970. 
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Let 7~ = 0. Then, by Theorem 2.2, for all ~ > 0, 

~ff'P(ff* > ~1, T*/ > t) <~ ~ff'P(g* > V) "~ Ila I1.. = 

< 11(~1r *[l~: < cb"P(s(~'t) > o) <-< c2"' P(/~ < ~ ) = ct ~" P(T* I > 2). 

Using the lower and upper estimates just obtained, we may apply Lemma 2.3 to g*: 

P(g* > c;r T ' I>1) >~ cP( T*I > t ). 

Since g* ~<2/*, we have that  
P(T*/>t)  < cP(c/* >i) .  

This completes the proof of (i). 

We now eliminate the assumption that  v* 41. 

(ii) Let ~>~1 and [3>~ 6. Then (4.1) holds/or all / in ~ and 1 > 0  satis/ying (4.2). 

Let  = I v . + 1 1 > i )  

and h =f t .  We now show that  except for one case easily handled separately h satisfies 

(4.2) with g replaced by 2~, // by //o=//~ -2, and ;t by to=~t .  Certainly, the multiplier 

sequence defining h is uniformly bounded by ;t ~<to. Also fie >~4. 

Either P(T*] > ~) ~ 2aP( T*] > ill, v* <. ~) 

or P(T*/>t )  ~< 2~P(v* >i ) .  

Using d* ~<2]* and Lemma 2.5, we have that  P(v* >t)<~cP(c/* >t) ,  so the latter possibility 

implies (4.1). Assume the former. Then, since T*h <<.zT*f <~?T*/, we have that  

P( T*h >t0) ~< P( T*/ > t) ~< 2~P(T*/>fit ,  v* <<.t) = 2~P( T*I >ill, (r= oo) 

<~ 2:r >ill) = 2~P(T*h >/~oAo). 

Therefore, by (i), 

P(T*h >to) < cP(ch* >to) +cP(cA~ >to). 

Here Ao = (Aol, Ao~ ... .  ) is defined by Ao~ ' = T(~-lh~), n 1> 1. Note that  

Ao. = T(.-:F^~) < ~T~(~-:/') < rA. 

since Ta(n-1/n) = 0 on (~<n},  

--A n on (a>~n). 

Hence, A* <yA*. Also, h* ~</*, so we have that  
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P(T*/>2) <~ 2~P(T*h >/~o20) ~<2~r >20) ~< cP(c]* >2) +cP(eA* >2). 

This completes the proof of (ii). 

The proof of Theorem 4.1 may now be completed as follows. Either 

P(T**t>2) < 2~P(~**l >~k, 1" < ~ )  

or P(T**/>2) ~< 2~P(I*= ~).  

In the latter ease, P(/* = ~)  <~P(/* > 2) and the desired inequality holds. Assume the former. 

By Lemma 4.1, proved below, we have that 

P(T*]>2) <-..P(T**]>2) <~2o~P(T**/>fl2,/* < oo) <~ 2o~P(~aT*/>fl2). 

Applying (ii) with a replaced by 2~ and/~ by/~7F8 > r  e, we have that 

P(T**/>2) <~ 2e.P(T*l>fl~-32) <~ 2ocP(T*]>2) <~ cP(c]* >2) +cP(vA* >2), 

the desired inequality. 

L ~ M A  4.1. I] conditions A, ]3, and either L1 or R2/w/d, then, ]or any ] in ~ ,  

T/< r~T*l 
on the set where ]* < r 

Accordingly, T**] <~ST*/on the same set. However, this inequality need not hold on 

the set {1" = c~}. Consider the operator 

TI = l ~  sup ("1)*, le  Y/. 

Then T*]=0,  ]e  ~ ,  

since Tnl =lira sup (m/n)* = 0 
m-qbOCJ 

for all positive integers n. On the other hand, 

~ l = ~  on {1"=~}. 

Therefore, although T satisfies the conditions of the lemma, T/<~ST*] fails to hold on 

{1"= c~}. (Under A1 and A2, there are ] in 7?/satisfying/*= oo almost everywhere. See 

Corollary 5.6.) 

Proo]. Let 2 > 0, 
= inf {n >~0: s,+l(l) >2}, 

and g =]~. Then s(g) <2 and, by the proof of (2.10), we have that 
18"--702901 Ae~a mathemat~ca. 124. Imprim6 le 29 Mai 1970. 
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Since 0>~2, by classical martingale theory, g converges almost everywhere. Therefore, 

2g* ~> (ng). ~ 0 

almost everywhere, and, by the Lebesgue dominated convergence theorem, [[(ng)*ll~-~0 as 

n - ~ ,  for 0<p~<Q. Now let p = g z  or P=P2 depending on whether L1 or 1%2 is satisfied. 

Let  n k be a positive integer such that  

II('~a)% < 4-~, k>~l. 

By L1 or R2,  2-~[P(T("~g) > 2-k)] 1/~ ~<c4 -~, k~> 1, 

implying that  T("kg)--> 0 

almost everywhere as k-~ oo. Therefore, 

Tg = T(g "~ + "~g) <~ y[Tf ~^nk + T("~g)] ~< y2[T~^~/ + T("kg)] ~< y2[T*/ + T("kg)], 

which implies that  Tg <~y2T*]. Consequently, on (v=  ~ ) =  (s(/)<2}, 

T / =  T(g + ~1) <~ y[ Tg + T(~/)] = 7Tg <~ 73T'1. 

Letting ~--> c~, we see that  this inequality holds on the set (s(/) < co }. But, by [72 this set 

is equivalent to (]* < oo). (For another proof of this fact, using part  (ii) of the proof of 

Theorem 4.1, see Corollary 5.6.) This completes the proof of Lemma 4.1. 

THEOREM 4.2. Suppose that conditions A, B, a~td L hold. Let ~9 be as in Theorem 

3.2 and f E ~ .  Then 

The choice o/c  depends only on c~aao ) and the parameters o /A ,  B, and L. This choice may be 

made so that, i / the latter are/ixed, the/unction c(3.1o) ~ e is nondecreasing. 

The proof of Theorem 4.2 is similar to the proof of Theorem 3.2 and is omitted. One 

small change is to take a = k log 2 with k the least positive integer satisfying 2k> y% Then 

e ~(~+1)- 2ke ~t and Theorem 4.1 is applied with f l - 2  k. 

If we assume that  for a specific function (D, 

L(P. f (I)(A*) < cfHr ) 
for a l l /E  ~ ,  then inequality (4.3) may be simplified as follows: 
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THEOREM 4.3. Suppose that conditions A, B , L ,  and L(I) ho/d. Then, /or all ] E ~ ,  

f r r 
The choice o /c  depends only on e(a.10) and the parameters o / A ,  B, L, and L(I). This choice 

may be made so that, i / the latter are fixed, the ]unction c(a.10)~c is nondecreasing. 

In  particular, if conditions A, B, and L hold, and, for some p, 0 < p  < c~, 

IIA*lb<%ll/*ll  (4.4) 

for all /E m, then we have IIT**/Ib < % III% 

as mentioned at the beginning of this section. 

5. The operators S and s 

We now examine some applications of the theorems of Sections 3 and 4. This section 

is devoted to the two operators 

k = l  

and s(]) = [ :~ E(d~ I Ak_~)] ~. 
k = l  

THEORE:M 5.1. Let 0 <p < ~ .  I1 A1 and A2 are satisfied, then 

%4 s(])lt  I1,'* I1,,  :  llS(l)ll  
/or all ] in ~ .  The choice o/cp~ and C,~ depends only on p and ($ and may be made so that,/or 

fixed (~, the ]unctions p--> C~ and p ~ ]/c~ are nondecreasing. 

THEOREM 5.2. Let q) be as in Section 3. I] A1 and A2 are satisfied, then 

cL r for c fo,(s(])) 
/or all ] in "m. The choice o/c and C depends only on c(3.1o) and (~ and may be made so that, ]or 

fixed (~, the/unctions c(3.1o)-+ C and cr 1/c are nondecreasing. 

Theorem 5.1. is a consequence of Theorem 5.2, and both are special cases of Theorems 

3.3 and 4.3. We have shown in Section 2 that the operator S satisfies B, R, and L. Also, the 

operator S satisfies R(I) and LO for eve,~'y d) since d* <~ S(]) and A*= d* ~< 2]*. 
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We now turn to the corresponding theorems for the operator s. Here, though the 

inequalities are similar, there are significant differences. The contrast between S and s, 

under conditions A 1 and A2, may be summarized as follows: (a) The (I)-inequalities are two- 

sided for the operator S (Theorem 5.2), but only the left-hand side holds for s (Theorem 5.4). 

(b) Two-sided L f n o r m  inequalities are valid for S in the interval 0 <P < c~ (Theorem 5.1), 

but for 8, they hold only in the range 0 <p  ~<2 (Theorem 5.3). 

~otice that  in the following theorem, assertions (i) and (ii) hold for all ] in ~ (the natu- 

ral domain of the operator s); we do not assume any part of condition A. 

THEORV, M 5.3. 

(i) Let 2 <1~ < c~. Then,/or all / E ~, 

IIs(/)ll  <%ll/ll - 

The choice o/% depends only on p and may be made so that the/unction p->% is bounded on 

each compact subinterval o/ [2, ~) .  

(ii) Let O<p~<2. Then, ]or a l l /E~ ,  

II/*11  
The choice o/ C~ depends only on p and may be made so that the/unetionp-+C~ is bounded on 

(o, 2]. 

(iii) Let 0 <p <~2. I /A1 and A2 are saris/led, then,/or all/6 ~ ,  

IIs(l)ll  < %,11t*11 . 

The choice of %~ depends only on p and (~ and may be made so that,/or fixed a, the/unction 

p ~ c ~  is bounded on (0, 2]. 

(iv) Let 2 <~p <~. I] condition A holds, then,/or al l /6 ~ ,  

II/*11  < Oll (/)ll . 
The choice o /C depends only on p, a, and caa, and may be made so that,/or lixed a and c~, 

the ]unction p-~C i8 bounded on [2, Q]. 

Part  (iii) of Theorem 5.3 is a special case of the following: 

TH~ORV,~ 5.4. Suppose that conditions A1 and A2 hold. Let dp be as in Section 3. Then 

/or all/e~, 



If  k=(/r ..., kt)EK , let 

Q~YASI-I~NEAR OPERATORS ON MARTINGALES 277 

~ (I)(S(f))~ Cy~ (I)(,*). 

The choice of c depends only on c(3.10) and ~ and may be made so that for fixed ~, the function 

c(a.lo) ~ c  is nondecreasing. 

Condition A2 alone is not  sufficient to imply the conclusions of Theorem 5.4 and par ts  

(iii) and (iv) of Theorem 5.3. See Example 8.2. 

Proof of Theorem 5.3. (i) If  j is a positive integer and / is in ~,: then 

IIs(f) ll~, < i'llS(/)ll~,. (5.1) 

This is eertalniy tr~e if i =  1. Let i >  1 and suppose that IlS(f)ll~,< ~ .  Then, letting v~= 
E(d~ I A~-I), we have that Ilvill, < Ildill, < 118(1)I1~1 < oo, by the n o r m  almlnisking property 

of conditional expectations, and therefore all of the following integrals are finite. Let  n 

be a positive integer and 

K = {1 .. . .  , n} x ... x {1, ..., n} (i factors). 

[ k [ = m a x  (k 1 .. . .  , kl). Then letting 

A,={keK:l~ I-=k,}, 

we have that  K c A 1 U ... U A 1 

= 5 Z d~, U ,~.< 7 d~, YI ~. i-1 keAr m r 1  | - 1  k rnffil 

a . . r [" a -] ( i -  1)11 r e . -I 7,11 

Therefore, we have obtained 

IIs. (1)11~1 < i IIs. (/)11~1. 
and (5.1) follows by the monotone convergence theorem. Combining (2.5) and (5.1), we have 

tha t  
llo(f)ll~, < c ,  ll/lh, (5.2) 

for each positive integer ~. To finish the proof of (i), we apply the Riesz-Thorin interpolation 

theorem in the form given by  Calder6n and Zygmund [2]. 

First we remark that  (5.2) is true for complex martingales provided d~ is replaced by  

]dk [~ in the definition of s(f). This can be seen in two ways: with obvious modifications, 
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all of our results so far carry over to the complex case; or (5.2) for the real case directly 

implies an inequality of the same form for the complex case. 

Now consider the operator T defined on complex L2=L~(~,  .4, P) as follows. If  

1o0 EL2, then Tlo o =8(I ) where 1= (/1, 12, .--) is the complex martingale defined by 

/,, = E(Ioo [.4,,), n>>-l. 
We use the fact that  

IlIIl,, -< Iltooll,,. 1 < p  < co. 

with equality holding if [0o is measurable relative to .400, the smallest ~-field containing 

(J k%l.4k. By the complex version of (5.2), 

II Tlooll,, < ~,, l l l~l l , , .  J= 1, 2, . . . .  
Clearly, T satisfies 

T(Ioo+gao) < Tloo+ Tgoo, /oo, gooEL2 (5.3) 

and the other conditions of the interpolation theorem of CalderSn and Zygmund. There- 

fore, if 2~<p~<2], we have that. 

IITlooll~<<.~,lll~ll~. I ~L , , .  (5.4) 

Cp <~ c~ V c2s. 

In summary, if / is in ~, 2 ~<p < co, II/[Ip < co, and/oo denotes the almost everywhere limit 

of ], then 
II~(l)llp = II ~ l~ l lp  -<< %I l l . l ip  = %ll/llp 

and the function p-+% is bounded on each compact subinterval of [2, co). This completes 

the proof of (i). 

(ii) We may assume in the proof of (ii) that  .400 =.4. Then T, the operator defined in 

the proof of (i), is an isometry in L2, where now it is enough to consider real L 2. Therefore, 

by (5.3), 

2 ( / ~ ,  g = )  = II/= + g= 1192 -II/=11~ -IIg=ll~ 

= I IT( t~  + g~) l l~- I ITtool l~ - I I T g ~  I1~ < 2(TI~, Tg~) 

for all ]oo and go~ in L 2. 

Now let 1 < p  ~< 2 < q, p-1 + q-1 = 1. If/o~ e L~ and B = {g~ e L2: Ilgo~]lq <<- 1}, then 

II/~ lip = snp (/~, g~) < sue (TI.~, Tg~) < sup IIT/~ lip IITg~ II. < c. IITI-IIp, 
gooEB gooeB gooGB 

by (5.4). If  / is in Tl and ]11H3= IIs(/)ll2 < co, then ] converges almost everywhere to a 

function ]o0 in L,. Therefore, using (2.2), we have that  
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I I I %  ~ qll/ll~ = qll/o~ll~ <-qc~ll Tholl,-- q~,ll~(/)ll,. (5.5) 

Now we show that (5.5) h o l ~  without the assumption that I1~(I)II, < oo. T ~ s  win eompl~to 
the proof of (it) since, by  (i), the function p~qcq is bounded on compact subintervals of 

(1, 2] and, by the proof of Lemma 2.2, 

II/*11~ < 4118(/)lift, o < p  < 4/3. 

Let  / belong to T/ and l<p~<2~<q,  p - l + q - l = l .  To prove (5.5), we may assume 

that  ns(/)Hv< c~; then E(d~l~_i)< c~, ]r 1. Let  m be a positive integer. If 1 <<.k<~m, 
let 

e,,~=d~ on {E(d~]Ak-l)<m}, 

=dJ[E(d~].~_l)] �89 elsewhere; 

if k>m, let emk=0. Then em = (emx, em~ .... ) is a martingale difference sequence relative to 

-~1, A~ ..... and the martingale gz=(ffml, 9m~ .... ) with this difference sequence satisfies 

ll8(gm) ll: < o o .  Therefore, 

11 (am)* II, < q% II~(gm)II, ~< qc, II 8(1)I1,, 
using the fact that  lemk I increases to Id~ I as m ~  oo. Since lim ffm,~=ln, 

]* ~< lira inf (gin)*. 

Therefore, by Fatou's  lemma, 

Ilrll~ ~< lim inf II(gm)*ll~ < qcq 118(/)ll~. 

This completes the proof of (it). 

(iii) This part  of Theorem 5.3 is an immediate corollary of Theorem 5.4 with dP(b) = b p, 

0 </9 ~<2. Here c(a.10)=2 ~-~ and ~a -p "~-<'2-2a, according to the final assertion of Theorem 5.4. 

(iv) This part  follows from Theorem 3.3 applied to the operator 8 and the function 

r  ~, 2~<p~<~. As mentioned in Section 2, 8 satisfies condition B. Condition R1 

is satisfied with P l =  1 by Lemma 2.2; condition R2 holds for p~=2 by (i) of this theorem. 

Now let us assume that  condition A holds in order to check R e  with dp(b)=b ~ for some 

p, 2~<p<~. Then 

,v+ fo ..,or V ,v+ lid*lift < = ~=1~ l v ~ l : E ( l ~ l : l + t ~ - l ) < ~  J . 2 1  

< ~ f ~ ( ~ _ l  ~,)~'~ = ~ 118(/)11~. 

Therefore, R(I) holds with CR~=CAa for every 10, 2 ~<p~<~. Par t  (iv) of Theorem 5.3 now 

follows from Theorem 3.3. 
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Proo/ o/ Theorem 5.g. We assume that  conditions A1 and A2 hold and apply Theorem 

4.3 to the operator s. This operator satisfies B and the measurability condition L3, and, as 

shown in the proof of Theorem 5.3 (iv), condition L2 holds. Therefore, only L1 and L(I) 

must be checked; we show that  L 1 holds with ~1 = 1. 

Define an operator T on the set of all martingales / relative to A1, ~2 .. . .  by  

Then T satisfies conditions (1) and (3) in the definition of class B mappings in [8]: 

T(! +g) < T / +  Tg, IIT/II~ < II~(/)ll~ = II/ll~, 

and I M , - <  II I 1.4,`-,)11, = II U,. 

Since I7] ~<s(/), T satisfies B2, but  not the local condition (2) of class B mappings. However, 

the results of [8] remain valid if condition (2) of class B mappings is replaced by  condition 

B2 of the present paper. In  fact, consider the martingale a = / - f =  ~] as defined on page 

137 of [8]. I t  is clear tha t  I(t = ~ )  <~ I(s(a) = 0) so that  I (Ta  > 2) <~ I( Ta > O) < I(t < r ) for 

any operator tha t  is local according to B2. Therefore, B2 may be used as the local condition 

in place of (2) since we have the required estimate: 

P( Ta > 2) < P(t < oo) <~ clltll,/,~ 

by the definition of the stopping time t. 

In  particular, we conclude that  the operator T defined above satisfies the inequality 

,~{Tt >~) < ell/ll,, 

by the proposition on page 136 of [8]. 

Now consider the operator s. Since A2 holds, s(/) -- [ ~ 1  v~] �89 where, as usual, dk ----- 

v,`~, k~>l. ByA1,  

,~ Iv,`l < IvklE(l~kl I.'4,,-,)= Z(Id, J I ~,~-,), 

so that  ~s(/) ~ T / fo r  all / in ~ .  Therefore, 

so that  L 1 holds with ~1 = 1. :Finally, we note tha t  A* = v* in this case, so that,  by Lemma 

2.5, 
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P(A* >2) < cP(~* >2) <cP(cl* >2), 

which in turn implies Lap for any ap: 

f a  ap(A*)< c f a  ap(/*). 

Therefore, by Theorem 4.3, we obtain 

f a  ap(s(/))~<cfa ap(]*). 

This completes the proof of Theorem 5.4. 

Some applications el S and s. Jus t  a few are mentioned here. The next two sections 

contain others. 

l~andom walk. One interesting special case of Theorem 5.3 is the following. Let x =  

(x 1, x~ .... ) be an independent sequence of random variables, each with expectation zero 

and variance one, and such that  

I1~111 >~>o, k>~l. 
Then, for any stopping time 7, 

where X ~ is the martingale of partial sums Xn = ~ - 1  ~k stopped at 7: 

n 
= Y z(~/> k) ~ .  

k - 1  

The following corollary contains a variation of the Wald equation for the expectation 

of a sum of a random number of random variables: 

COROLLARY 5.1. Suppose that the martingale di/ference sequence x= (x l, x 2 .... ) saffs/ies 

A2 and ynZl=O. I] ~ is a stopping time such that 11§ ~ ,  t a n  

~ ~=o. (5.6) 

Note that, although we have assumed condition A2, we have relaxed the usual requirement 

that  T be integrable. 

Proo I. Let / =  (11,/~ .... ) be defined by  
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f,, = ~ 1(3 t> k) x~. 
k ~ l  

Since 3 is finite almost everywhere, 

l im/~ -- ~ x~. 

/ is a martingale and f ~  f~ = O, n Also, 1. 

By A2, s(/) =T �89 and, by Lemma 2.2, 

o f * < c l l 3 � 8 9  

Therefore, by the Lebesgue dominated convergence theorem, 

k -  1 n--~oo 

the desired result. 

COROLLAaY 5.2. Suppose that x=(xl ,  x2 .... ) satisfies the conditions of Corollary 5.1 

and that 3 is the stopping time defined by 

n 

3=inf(n~> 1 : 5 xk>~ 0}. 
k ~ l  

Then 3 �89 is not integrable. 

Proof. Suppose that  3 t is integrable. Then 

k = l  

is nonnegative almost everywhere and is positive on a set of positive measure (on the set 

(x x >0} and possibly elsewhere). Therefore, 

0 < k~1 xk, 

which contradicts the conclusion of Corollary 5.1. Thus, 3 t is not integrable. 

The following inequality is due to Khintchine [17; Chapter V, 8.5]. If a 1, a 2 .. . .  is a 

sequence of real numbers, and xl, x~, ... is an independent sequence of random variables 

such that  P(x~ = 1) =P(xk = - 1) = �89 then, for every n/> 1, 

I .  \p12 f ~ l ~  I T l ~  ,~12 % ~ 1 a ~  ) < akx k <~C, Ik~a~)  , O < p < c ~ .  (5.7) 
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The next  corollary generalizes Khintchine's  inequality (even for the above random 

variable sequence). I f  x is a random variable, we say tha t  x is symmetrically distributed 

if x and - x  have the same distribution. 

COROLLARY 5.3. Let Xl, x~ .. . .  be an independent sequence o/ symmetrically distributed 

random variables and ~ a/unction as in Section 3. Then,/or every n >~ 1, 

where the choice o/c  and C depends only on the/unction ~.  

Proo/. Note tha t  we do not impose any integrability conditions on xk, k~>l, so tha t  

/ =  (/t,/~ . . . .  ) , /~ = ~ = l x k ,  is not necessarily a martingale. However, by  Remark  8.2, / has 

the same distribution as a martingale transform of an independent sequence of symmetri-  

cally distributed random variables taking the values + 1. Furthermore,  by  L6vy's  inequality 

(see [5], page 106), 
P(I/nI> 2)<-.P((/'~)*> 2)<-.2P(I/,,I> 2), 

so tha t  

This, together with Theorem 5.2, implies the desired result. 

Neither side of the inequality in Corollary 5.3 holds if symmet ry  is replaced by  the 

assumption tha t  each xk has expectation zero. (For a counterexample with r  ~, 

0 < p  < 1, see Example  8.1.) However, we have the following generalization of an inequality 

of Marcinkiewicz and Zygmund [12; Theorem 5]. 

COROLLARY 5.4. Let xl, x 2 .... be an independent sequence o/random variables, each 

with expectation zero, and �9 a/unction as in Section 3. I / r  is also convex, then/or every 

n >~ l,  

where the choice o/c  and C depends only on the/unction ~P. 

Proo/. Let y be a sequence independent of x and with the same distribution. By the 

convexity of (I) and Jensen 's  inequality for conditional expectations, we have tha t  
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and  fn~([~.xZk]�89 (xe--yk)~]�89 ). 

These inequali t ies m a y  be reversed (up to  a mul t ip l ica t ive  constant )  since, b y  our  assmnp-  

tions, for  all a t> 0 ,  b i> 0, 
~P(a +b) <~ c[r  +(I)(b)]. 

The  result ing double inequali t ies allow us to obta in  the  desired result  for  x f rom Corollary 

5.3 appl ied to  x-y .  

Haar and Waloh series. Le t  (~,  v4, P )  be the  Lebesgue uni t  in te rva l  and  to, rl ,  ... the  

sequence of R a d e m a c h e r  functions: rk (co) = 1 if ~o e [//2 k+l, (] + 1)/2 k+l) for  some even inte- 

ger 1"; rk(o) = - 1 otherwise. Then  x = (x 1, x 2, x a . . . .  ) -- (1, r 0, r x . . . .  ) is a mar t inga le  difference 

sequence relat ive to  A1, A2 . . . . .  where  .'in is the  smallest  a-field wi th  respect  to  which 

xl, ..., xn are measurable .  I t  is no t  difficult to see t h a t  every  mar t inga le  t r ans fo rm rela t ive  

to  v40, v41 . . . .  (necessarily v40 = v41) is a mar t inga le  and  an  e lement  of ~ ,  the  collection cor- 

responding to  the  sequence x; t h a t  is, ~ =  ~ .  Fur the rmore ,  x satisfies condit ion A and,  

in fact ,  since Ix~]= 1, /r I> 1, there  is no dist inction here be tween the  opera tors  S and  8. 

To  p rove  inequal i ty  (1.3), we consider the  Walsh funct ions ~0 o, ~o 1 . . . . .  Recal l  t h a t  if 

0 < e o < l  and  n is a posi t ive integer  sat isfying n = 2 ~ , + . . . + 2  nk wi th  n l > n ~ >  ... > n ~ > 0 ,  

then  ~00(o) ) = 1 and  y~n(co)= r~, (oo) ... rn~(co). I f  bo, b 1 . . . .  is a n y  sequence of real numbers ,  let  

/.+1 = ~ bk~, n~>O. 
k - 0  

Then  the  difference sequence d of )r = (/1, ]2 ... .  ) satisfies d k-= v~xk where vk is ~ _ l - m e a s u r a b l e .  

Fo r  example ,  if/~ >i 1, t hen  

t - 0  

and,  since the  sum is a funct ion of r o, ..., r~_ 1, we have  t h a t  d~+2-=v~+~xk+2 where vk+~ is 

v4~+l-measurable. Therefore,  ] is a mar t inga le  t r ans fo rm of x, and,  b y  Theorem 5.1, we 

have  t h a t  

llm(/)]I  II/*II  < llm(/)II  
for  0 < p  < co. This  is equivalent  to (1.3) b y  the  observa t ion  of Marcinkiewicz [11]. 

I n  [14], R .  E.  A. C. Pa ley  uses the  funct ion S(/) to  s t udy  Wal sh -Four i e r  series in much  

the  same w a y  the  conjugate  funct ion is used for  o rd inary  Four ier  series. F r o m  this view- 

point ,  inequal i ty  (1.1) is the  analogue of the  L,-norm inequal i ty  for  the  conjugate  function,  

due to  M. Riesz. I n  the  same vein,  we men t ion  the  following result  for  S(/), whose analogue 

for  the  conjugate  funct ion is also due to  M. Riesz [17; Chapte r  V I I ,  2.8, 2.10]. 
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COROLLARY 5.5. Let / be a nonnegative ]unction belonging to LI[0, 1) and S(/) its Paley 

]unction as in (1.1). Then S(/) belongs to LI[0, 1) i] and only i] ] belongs to L log L. 

Proo]. By Theorem 2 of [9], the assertion of Corollary 5.5 holds if S(]) is replaced by 

the function/* appearing in inequality (1.3). Since, as we have seen, this inequality holds 

for 1o = 1, the assertion of Corollary 5.5 holds as stated. 

Local convergence o/ martingale trans/orms. 

COROLLARY 5.6. Suppose that conditions A1 and A2 are satisfied. I] ] is in 71~, then 

the ]ollowing sets are equivalent: 

{] converges}, {s(/)<co}, {S(/)<oo}, 

and 

{ / * < c o } ,  

This is a known result. We give new proofs of 

{1. < oo } c {s(/)  < co } 

{sup. l . <  co} ~ {l* < co}, 

{sup.  L < co }. 

(5.8) 

(5.9) 

the inclusion sign to be interpreted as holding up to a set of measure zero. 

The inclusion (5.8) is the main contribution of [7]. Recently, Davis [4] has shown 

that  {supn In < oo } c {8(]) < co). Dvoretzky has another proof [6]. The other inclusions are 

easier; their proofs are omitted. 

For another class of equivalent sets, see Theorem 6,2. 

In order to prove the local results (5.8) and (5.9), it  is enough to prove the correspond- 

ing global results: 
/* < co a.e. implies 8(/) < co a.e., (5.10) 

and supn ]n < co a.e. implies ]* < co a.e. (5.11) 

Let us show, for example, that  if (5.10) holds for all ] in ~ ,  then (5.8) holds for all ] in ~ .  

Let  ]E ~ and ~=inf  {n: I]- [ >4) for some positive 4. Then g=]~ is in ~ and g* < co a.e. 

By (5.10), s(g)< oo a.e.; therefore 

{/* < 4 } c  {7 = oo}~ {s(/)=s(g)} c {s(])< co }, 

and (5.8) follows by letting 4-~ co. 

We now prove (5.10) by applying Theorem 4.1 and Lemma 2.5 to the operator s. 

Assume that  P(s( / )=oo)>0,  and take ~=l]P(s(/)=oo), fl=2. Then, for any4>O, 

P(s(/) >4) ~< 1 = ~PCs(])-- co) ~< aP(s(])>24). 

Therefore, by Theorem 4.1 and Lemma 2.5, 
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0 < P(s(l) = oo) << P(s(]) >2) ~< cP(c/* >).). 

Since this holds for all 2 >0,  we see that  P(/* = oo) >0,  which implies (5.10). 

The following lemma implies (5.11) in a similar way. 

LEMMA 5.1. 

A1, A2, and 
Suppose that the martingale di//erence sequence x=(x l ,  xz .... ) saris/lea 

E(x~ IA0) = 0. 

Then P (s upJ~  > c2P(/* >2)) ~> c[P(/* >2)] 2 (5.12) 

/or all / in ~ and 2 > O. The choice o[ c depends only on ~. 

By (5.12), if P{]*=c~)>O, then P(sup, / ,= ~ ) > 0 .  For  the purpose of proving 

(5.11), the assumption tha t  E(xi]J4o)=0 can be made without loss of generality. 

Proo] o/Lemma 5.1. Using E(xk IA~-~) =0, A1, and A2, we have that,  for all A ~ fl~k--l' 

fAx%= fa(Ix~l+x~)/2=~f lx~l> l~p(A) 

A E Ak-~, k>~ 1, (5.13) 

a n d  fA(X~)2 <~ fAX~=P(A ) 

with x~ = x k V 0. Therefore, by Lemma 2.3, 

P(xk> 2b, A) =P(x~ > 2b, A) >~ b2p(A), 

with b- (~/8. 
Let ] E ~ and 2 > 0. Define stopping times G and v as follows: 

= {n ~> 0 : Iv .+11  > ~) ,  

.~ = {n: I/.  I > x )  
Let /~ = ~ A v, g = lt ,  h =/~ and 

= i n f  {n: Ih, l>2}. 

Then ~ < 6 A T .  This is clearly true on the set {a~<v} and, on its complement, ~=v.  The 

multiplier sequence defining h is uniformly bounded by  ~t. Therefore, by Theorem 2.1 

applied to h, 

IIg*lk = II (1")% < II (/~)*11~ = II (h')*ll~ < e~, 

with the choice of c depending only on (~. Accordingly, g converges almost everywhere 

to gr162 and 
IIq~ll~ < IIg*lk < c2. (5.14) 

We now obtain a lower estimate. Let  ~ = P ( / * >  2); then, since b < l ,  we have tha t  

either 
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P(l/t,l > b]t, # < oo ) >~ ~ zr 

(i) Suppose (5.15) holds. By the Lebesgue dominated convergence theorem, 

f ag~ = lim f a g" = 

1 >1 b2 b2 Therefore, ]]g~]]x=~HgocH~ ~ P(]g~c[>b,~) >~ y P(][t ,[>b]t ,#< oo) 

b2 ~r >/~. ~ = cn~.  

Using this inequality, (5.14), and Lemma 2.3, we have tha t  

c~ ~ < P(g+ > c~r2) < P(sup /~  > czr2), 
n 

the desired inequality. 

(ii) Suppose (5.16) holds. Then either 

~ ~p(IJl~l <b,~, V,+l> ~,lz < co) 
4 

or ~ <~ P( l/,,,] < b,~, v~,+l < - ]t, ~u < oo). 

Suppose the former, the other case being similar. Let  

A~ = (/k ~> - b2, vk+l > ), # =/c). 
Then, by  (5.13), 

:7/: oo 
i<~k~=o p(Ak) <~ b-2k=O ~ P ( X k + l >  2b,  Ak) 

<~ b-~ ~ P(/k + V~+l xk+l > -- b2 + 2 b2, # = b) < b-~P(sup/~ > b2). 
k=0 n 

Since ~r~ 1, we get (5.12) in this ease also. 

This completes the proof of Lemma 5.1. 
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(5.15) 

(5.16) 

6. Operators of matrix type 

In  this section, we introduce a class of operators and illustrate further the range of 

application of the theorems in the preceding sections. 
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An operator M is said to be of matrix type if it has the following properties: 

(a) I t  is defined on ~, the set of all martingale transforms relative to •0, A1 . . . . .  

(b) I t  can be written in the form 

MI = (r~ sup [ 2 a~ d~[ )~? , 
- n - ->oo  k - 1  

where d = (dl, d~ ... .  ) is the difference sequence of / and (aik; j >/1, k ~ 1) is a matrix that  satis- 

fies the following conditions. Each entry a~ is a real ~_l-measurable function and, for all 

c• ~ a~k < C. (6.1) 
t=1  

:Here are a few examples of operators of matrix type: 

l--,~m sup l/~l; 
R,,-.>OO 

l~S(l); 

I - ,L( / )  = E/1 ~ + ~ (tk - ak)2/k] t, 
k = l  

where o',~-- ~-1/s /k .  

To obtain S, take (at~) to be the identity matrix. The choice of the matrix is equally 

obvious for the first example. Clearly, 

L(I) = [d~ + ~ i-~( ~ (~- 1) 4)~? 
1-2 k = l  

and so, for the third example, 

a m = l  if j =  1,/r 1, 

=i-~(k-1)  if 2 < ~ < i ,  

= 0 otherwise, 

and elementary calculations show that  (6.1) is satisfied. 

If  0 =~0 <vl  <... is a sequence of stopping times, then 

t - 1  k = l  

is another example of an operator of matrix type, 
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T~EORV.~ 6.1. 

(i) Let M be an operator o/matrix type and 1 <p < r Then 

~e~ IIM**/II,,-<< li/*lh, <.8c,, sup IIM./iI,, (6.2) 
l ~ n < ~  

/or all martingale trans/orms / in ~,  with ~ = C~.x), fl = c~.a), and the Jwlce o] % and G2, 

depending only on p. 

(ii) Suppose that / is in ~ and 

sup I IM./I I~< ~o. (6.3) 

Then / converges almost everywhere..Furthermore, i / N  is any operator o] matrix type (N may 

equal M), then the sequence {Nn], An, n >~ 1) is a submartingale converging almost everywhere 

to N/(so that N**] =N'l), and 

xp(N*l >a) < c sup. IIM.tlI, (6.4) 

/or all ~ > O. The choice o/e depends only on c(aa) and C(e.1 ~ and the corresponding parameters 

[or N. 

COROLLARY 6.1. Let 1 < p < ~ . An  element/E ~ is L~, bounded i /and  only i/ 

sup I I M . t l I ,  < ~ (6.5) 
l~<n<r 

/or some operator M o/matrix  type. I / (6 .5)  holds, then the submartingale (M, / ,  n >~ l } con- 

verges in L~ to M / a n d  
ellM/ll, < II/11, < ClIMIII, .  

This corollary follows immediately from Theorem 6.1 and standard facts about sub- 

martingales. 

The first assertion of Corollary 6.1 is not true for p--1.  Also, condition (6.5) cannot 

be replaced by the simpler one, HM/I[~<~, in the second assertion of Corollary 6.1 or 

in Theorem 6.1 (i). In fact, if M / = l i m s u p  [/,[, then it can happen that  M/=O but 

sup. I I M ,  I I I ,  = oo, l < p  < oo. 

TttEOREM 6.2. Let M be an operator o/matrix type. I / A 1  and A2 are satisfied, then the 

two sets (M*/ < ~ } and ~/* < oo } are equivalent/or all / belonging to ~ .  

This theorem adds another local convergence criterion to those  of Corollary 5.6: 

the sequence )r converges almost everywhere on a set A if and only if, for some operator 

M of matrix type, M*/is finite almost everywhere on A. 
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Note that  {M/< ~ } need not be equivalent to the set where / converges. In fact, under 

conditions A 1 and A2, it can happen that  almost everywhere 11I/= 0 but M*/= ~ .  

T~EOR~M 6.3. Let ~ be as in Section 3, and M an operator o/matrix type. I / A 1  and 

A2 are satisfied, then/or all / in ~ ,  M**/= M*/ and 

c for fo,(/*)<o for 
The choice o/ c and C depends only on c(a.10), c(sa~, C(e.1) and (3, and may be made so that, 

with the other parameters /ixed, the /unctions c(a.~o)~ C and c(a.lo)-->l/c are nondecreasing. 

In particular, if 0 < p <  ~ ,  Theorem 6.3 implies that  under conditions A1 and A2, 

cHM*/l[p<~ H/*Hp<~OHM*II[p for all f in ~ .  

Remark 6.1. Let / belong to ~. From Theorems 6.1 (ii) and Theorem 6.3, we have 

M**]=M*/, under either of the following conditions: 

(a/ For some operator N of matrix type, sup. IIN./II1 < ~ .  

(b) The sequence / belongs to ~ and conditions A1 and A2 hold. 

However, there are operators M of matrix type such that  M**] > M*/on a set of positive 

measure for some / in ~. 

Proo/ o/ Theorem 6.1. In the proof of (i) we may assume that  

~ a ~ = l ,  k>~l. (6.6) 
1-1 

To see that  (6.1) may be replaced by this stronger condition, let 

b~ = [ Z a ~ ] -  ~, 

and 2~/ be the operator of matrix type corresponding to (djk). If  / has difference sequence 

d, let ] have difference sequence ~ satisfying c~k=b~idk. Then dm~k=amd k and (dj~) 

satisfies (6.6). If, for example, the left-hand side of (6.2) holds for iII, then, by (2.5), 

IIM**/II,, = II--~**/11,, < ~11711,,< c I I ( ~ b ~  ~d~)~ll,, < e'~ -~ IIs(/)II~ < e~- '  II.t*lh,, 

implying that  the left-hand side of (6.2) holds for M. 
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The proof rests on the two-sided inequality (2.5) for the operator S and Khintchine 's  

inequality (5.7). Let  rl, r~ . . . .  be an independent sequence of functions defined on the Le- 

besgue unit interval such tha t  rk = _ 1 with equal probability. Recall that ,  if ~ = 1  a~ < oo, 
oo t then the series ~k~l akr~ ( ) converges for almost all t in the unit  interval. 

oo 

Let uk(t, oa) = ~ rl(t ) aj~(eo) 
t=1  

if the series converges, and zero otherwise. For each t, uk(t, ") is •k_l-measurable. By  

(6.6) and Fubini 's  theorem, the series converges for almost all co, for almost all t. Let  n 

be a positive integer. Then, by  Khintehine 's  inequality 

1l  n p 1 r n 

~lukdk dt= L ~=r,(t)(~la, kd~)l 'dt~c~l(~a,~dk)~] '12=c(M,/)  ". (6.7) 

Therefore, by  (2.5), 

I f  p 4 2, then, on the set where ~ d~ > 0, 
k = l  

n l p 1 2  Cl1 n \~P--1 n / \ p ] 2  

/ n \ s  n /-1 

' Z / : J .  

since, by  Khintchine 's  inequality, 

r o0 1 p12 

I f  2 ~<p ~< oo, then 

(6.9) 

Therefore, in either case, 

IIM,,/II~/> ~fJ. (/)~ =c  I I&  (/)11~ ~> ~ II(P)*II;, 

implying the right-hand side of (6.2). 

19 - 7 0 2 9 0 1  Acta mathematica. 124.  I m p r i m ~  le 29 Ma i  1970 .  
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To prove the left-hand side, we m a y  suppose tha t  II1"11,, < oo. Then 

lim ~. a~kdk 
n-->r k = l  

exists almost  everywhere  and is finite, j ~> 1. This follows from (6.6) and Theorem 1 of [1]: 

A t ransform of an  L 1 bounded mart ingale converges almost  everywhere on the  set where 

its multiplier sequence is bounded.  Accordingly, we have tha t  

and, by  Fa tou ' s  lemma, 

MI=[~  (~ajkdk)2] �89 
t = 1  k = l  

so t h a t  M * * / = M * / .  Hence 

M/<. lim inf M,/<~ M*/, 
n---> ~ 

r l l  n p 

IIM*'/H p~ f~.~l~U~<oo(Mn/,P ~cf~.~ l~uPoo Jo Ik~l ukdk d, dP 
; L  " I" LL ro. 

f rom the inequal i ty  in the  opposite direction to (6.7), (2.2), and the r ight -hand side of 

(2.5). I f  2 ~<p < ~ ,  the inequal i ty  signs in (6.8) can be reversed. I f  p ~< 2, the inequali ty signs 

in (6.9) can be reversed. Therefore 

1 r or -I p/'~ 
I Z ut d~ I dt <~ cS(l)" 
L~ = i  _I 

/ ,  

a n d  IIM**ll lf l  < cJ E~(IY' = ~ lls(l)ll~ < c I11"11~. 

This completes the proof of (i).(1) 

(ii) We prove first a special case of (6.4): 

2P(S(I) > ,I.) < c sup IIMdlh, n > 0. (6.10) 

Using (6.7) with p = 1 and (2.3), we have t h a t  

" 

(1) For the special case M]=L(/), consult Tsuchikura [16] and Stein [15]. We are indebted to 
P. W. Millar for the reference [16]. 
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:By (6.8) and the inequality in the opposite direction to (6.9), we have that  

f 
1 ~ n ) �89  

. .  x cs,,(f), 
J 0 \ k  = 1 

1 n 

dO \ k = l  / 

Therefore, by Lemma 2.3, if ~t < �89 cSn (/), then 

which implies that  

Mn/I~ >1 c'~J" aI(cSn (/) > 2) = c).P(cSn (1) > 2). II 

Clearly, (6.10) follows by maximizing with respect to n. 

Note that  M(n- ' / ' )  = [ ~ (ajn dn)a] �89 = [dn]( ~ a~n) �89 
i=1 i=1 

Therefore, by (6.1) and the sublinearity of M, 

]d,[ <~ cM("-~l ") <<. c(M,_,I  + M,,I), 

and, by (6.3), dn is integrable. Since 

,k=l k = l  

this implies that  N,~ l is integrable. Certainly, Nnl is ~dn-measurable, and the submartingale 

inequality 
E(Nn+~/IAn) >Nnl,  n > l ,  

follows from Jensen's inequality for conditional expectations and the fact that  Nn+af 
is a convex function of dn+ 1. In particular {Mn/, n>~l} is an L 1 bounded submartingale. 

(Note that  {Nn/, n >1-1} need not be i 1 bounded: consider M l = lim sup ]l~ I, N] = S(]), and 

the example on page 1502 of [1].) 

Let ~t > 0. There exist martingales X, Y, and Z, in ~ such that  

I=x+ :Y+z, 

[[xlJ~<ca sup JIM.Ill,, (6.11) 
n 
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IIZoll y,,lll, ~<~ supn I IMntll,, (6.12) 

P(Z* > o) <. ~ sup IIM~1111/2. (6.13) 
n 

(This is similar but  not identical to the decomposition of / exhibited in [8] for the case 

M,~/= I/nl" For the case M / = S ( / ) ,  see [3].) Here x, y, and z are the corresponding dif- 

ference sequences defined by  

xk = dk I (v  > k) - E ( d k I ( v  > ]c) lAb-l), 

Yk = dk I (3  = k) -- E(dk I(-~ = k) lAb-l )  + E(dk I Ak-1), 

zk = dk I(3 < k), 

where ~ =/~ h v and the stopping times/~ and v are defined by  

# = i n f  {n: M J > 2 } ,  

= inf {n: Sn(/) >2).  

(Note tha t  the third term in the expression for Yk vanishes for k ~> 2.) Clearly, / =  X + Y + Z  

and X, Y, and Z are martingales in ~ .  Also, (6.13) holds since 

P(Z* > O) <~ P(~ < oo) <~ P(IU < oo ) + p ( v  < oo ) 

= P ( M * / > 2 )  + P ( S ( / )  >2) ~< c SUpn IlMdll,/2. (6.14) 

:Here we have used (6.10) and inequality (2.1), which also holds for submartingales. Since 

2 ~  2 xk --~ 2 dk I('~ > k) + 2 E(d~ 1(3 > k) I A~-I),  
we have tha t  

fA  .fo fo IIxoll~= ~ d~Z(~:>~)<4 s,_1(1) ~ k=l 

fo r' = 8  vP(S,_l(l)>~)d~<~c supllMdlhdv=~2supllMdlh. 
dO n n 

Here we have used (6.10) and the fact tha~ P(S,-1 (]) > ~1) = 0 for ~//> 2. Finally, using the 

inequality M,_~ ] ~< 2, we have tha t  

lljxlYkllll "~ 2fi ~lldk[/("~" =k)JF f Idll ~/f{~.<.) (My_l/-FM, I)'Jr 6flMl, 

< c,L,r'(v < ~ ) + c  sup f_.<~,}.M.,,,,J.,,< +cIM, l . , , ~  <~supn 11 M,."II,. 
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Since g = X + Y is an L 1 bounded martingale, any  transform of g under a uniformly 

bounded multiplier sequence converges almost everywhere. Since / = g  on the set (Z = 0}, 

any  such transform of / converges almost everywhere on the same set, which, for large 2, 

has small probabili ty by  (6.14). Therefore, any such transform of / converges almost every- 

where on ~2. In  particular, / converges almost everywhere. Furthermore, each "row" of hr, 

{~bjkdk, n ~  l} 
k = l  

converges almost everywhere where (bjk) denotes the matr ix  corresponding to the operator 

h r. Accordingly, just as in (i) for M, we have hr/~< hr*/= hr**/. 

Using our decomposition of / and inequality (2.1) applied to the submartingale {hrn/, 
n ~> 1}, we have that  

P(N** / > 3 2) <~ P(N*X > 2) + P(N* Y > 2) + P(hr* Z > 2) 

< sup Ilhr  xll /Z + Ilhr* :YIh/2 + P(hr*Z > O) 
n 

~ c s u p  IlXnl192//). z -~-c H ~ I ykl]li/,~ q- P(Z* > 0) 
n k = l  

< c sup  IliJIh/ . (6.4') 
n 

This implies tha t  (6.4) holds. 

To show tha t  {hrn/, n>~l} converges almost everywhere to N/, we need to show only 

tha t  (hr~g, n>~l} converges almost everywhere to Ng, where g = X +  Y, since Nn/=hrn~ 

and h r /=  Ng on the set {Z = 0}. Since g* is iutegrable and g converges almost everywhere, 

we have tha t  II(mg).lll-~0 as m - ~  by the Lebesgue dominated convergence theorem. 

We now use the following special case of (6.4'): 

<cllglll, 
This implies tha t  hr**g < oo so that,  for m < n, 

Ihrng - hrg I <'< N(ng) = N("g _mgn) < N(mg) q_ Nn(mg) <. 2N**(mg). 

Accordingly, 

P(sup IN~g " hrg l >~?) <-~ P(2hr**(mg) >rl) <~ cHmg]]l/~ I < Cll(mg)*lll/rl--~ O as m - ~  
m < n  

This implies the desired convergence and completes the proof of the theorem. 

Proo/ o/ Theorem 6.2. The argument  follows the pat tern  of the proof of (5.10). In  

brief, we apply Theorems 3.1 and 4.1 to M* and use the inequalities 



296 D. L.  B U R K H O L D E R  AND R. F.  G U N D Y  

P(d* >)t) ~< P(cM*/>2) (6.15) 

and P(A* >2) ~< P(c/* >2), (6.16) 

which hold for all 2 >0,  to prove a global result that  implies the assertion of Theorem 6.2. 

Inequali ty (6.15) holds since 

Idnl < c[ Y (ajndn)~] �89 = cM(n-l /n)  <~ c[Mn/-}- Mn- l l ]  < cM*/; 
J=l  

inequality (6.16) also holds since 

JAn ]=  M*(n-~] n) <~ c Ida l <~ c/*. 

Proo I o/ Theorem 6.3. Under A1 and A2, M**]=M*] for all ] in ~l: this follows on 

the set {[* < oo} by  Lemma 4.1 and on the set {]*= ~ }  by  Theorem 6.2. We now apply 

Theorems 3.3 and 4.3. The operator M* satisfies condition B with $ = 1; eonditions 1~ and L 

are satisfied with Pl = 3/2, P2 = 2 and zq = 3/2 by Theorem 6.1 (i). Finally, both RdP and Ldp 

are satisfied for every dp by  (6.15) and (6.16). Therefore Theorems 3.3 and 4.3 are applicable. 

This eoneludes the proof. 

7. Appl icat ion  to B r o w n l a n  m o t i o n  

To illustrate how our theorems can be useful in the study of continuous parameter  

martingales, we apply them to obtain new results for Brownian motion. Other applications 

are possible, for example, to the theory of stochastic integration (see [13]). 

Let  X = {X(t), 0 ~< t < ~ } be standard Brownian motion: if n >~ 2 and 0 ~< t o < ... < t;, then 

x ( h )  - X(to), ..., x( tn)  - X(tn_l) 

are independent random variables and X(tk)-  X(tk_l) is normally distributed with expec- 

tat ion zero and variance 

I Ix ( t~ )  - x < t ~ _ l ) l l $  = t ~ -  t ~ _ l ,  1 ~< k ~< n. 

Furthermore, for all r E f~, the map t~X( t ,  o~) is continuous and X(0, ~o)= 0. 

Let  ~g(t) be the smallest a-field relative to whieh X(a) is measurable for all 0 <~a<~t. 

A stopping t ime T of X is a function from ~ into [0, c~] sueh tha t  

{r<t}EB(t), 0 ~ < t < ~ .  

Let  X ~ be the process X stopped at 3: X~(t)=X(~ A t), 0 ~<t < er I t s  maximal function 

is defined by  
(x~)*= sup [x~(t)[. 

0~<t<zr 
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THEOREM 7.1. Let 0 < p < ~ .  I] ~ is a stopping time o] X ,  then 

< II G IIT�89 (7.1) 

The choice o/ % and C~ depends only on p and may be made so that the/unctions p ~ C~ and 

p-+l/c~ are nondecreasing. 

This is an  immedia te  consequence of the  following theorem.  

THEOREM 7.2. Let ~P be as in Section 3. I f  v is a stopping time of X,  then 

C f (TP(v�89 <,. f (TP[(XT)*]<~ C f  ~(V�89 (7.2) 

The choice o] c and C depends only on c(a.10) and may be made so that the/unctions c(a.lo~ ~ C 

and c(3.1o~--> 1/c are nondecreasing. 

Proo/ o/ Theorem 7.2. We m a y  assume in the  proof t h a t  T ~<b for some posit ive integer  

b. Otherwise, replace ~ by  the  s topping t ime v A b and  note  t h a t  if v A b satisfies (7.2) for  

all posi t ive integers b, then  ~ aIso satisfies (7.2) b y  the  monotone  convergence theorem. 

For  each posit ive integer  j, let 

~i = inf {t > v : t = k/2 j for  some k = 1, 2 . . . .  } 

Then,  ~ < ~j ~< v + 2 -j  < b + 1. (7.3) 

I f  t is a dyadical ly  ra t ional  n u m b e r  in [0, b + 1], t hen  

l im Qj (t) = t 

a lmost  everywhere  b y  a theorem of Ldvy  [5; Theorem 2.3 of Chapter  VI I I ] .  Therefore,  

since the  l imit  funct ion is cont inuous on [0, b + 1] and  each Q~ is nondecreasing,  we have  t h a t  

a lmost  everywhere  l imjQj( t )= t  uni formly  for t in [0, b + 1]. Accordingly, b y  (7.3), 

lira Qj (v~) = v (7.4) 
J...>~ 

a lmost  everywhere .  Fu r the rmore ,  

f (I)[sup Qj(~s) �89 < (7.5) o o .  
t 

This  holds for (I)(a) = a T since sup~Qj(v~) ~< supjQj(b + 1) and  
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(X(b+l)  2, Ql(b +1), Q2(b +1) .. . .  ) 

is a reversed martingale so that  

][sup Qj(b~-l)][~,<~q]]i(b+l)2[[p< oo, p - i + q - l = l ,  l < p < o o .  
J 

But this implies that  (7.5) holds for general (I) by the inequality 

(I)(a) ~< ca v', a >~ 1, (7.6) 

where P0 =l~ c(3ao)+ 1 and c(~.s)=2 v~ (I)(1). Inequality (7.6) is an immediate consequence 

of (3.11). 

We are now almost ready to apply Theorem 5.2. Let j be a positive integer, Am = 

B(k/2~), k~>0, and xsk=2J/2[X(k/2J)-X([k-1]/2J)], k>l. Then xj=(xjl, xj2 .... ) is a mar- 

tingale difference sequence satisfying conditions A1 and A2 with (~=(2/~r)�89 Since 2J~j 

has its values in {0, 1 ..... oo } and 

{2J~j<k}={~<k/2J}eAj~, k>0, 

2J~j is a stopping time relative to Me0, An . . . . .  Therefore, 

vek = 1(2r162 > k)/2 j/2 

is Ar and /r (/r162 .... ) defined by/r162 is a martingale trans- 

form relative to Me0, An .... Note that  S(/j)=Qj(zj)~ and, by uniform continuity, 

(X~) * < lim inf/~.  

Therefore, by Fatou's lemma, Theorem 5.2, and the Lebesgue dominated convergence 

theorem, 

fa O[(X*)*]<~liminff,-~ d nCI)(/~) ~< c hm inf f , _ ~ .  j nO[S(/')] 

= e  liaiyf 
In particular, for the constant stopping time b + 1, 

fa~P[(Xb+l)*]<cr + 1) �89 < o o ,  

Again, by uniform continuity, 

(Xb+~) * > (X'+2-J)*-+ (X')* 
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almost everywhere as ~-~ c~. Therefore, by Theorem 5.2 and the Lebesgue dominated 

convergence theorem, 

f *(~�89 ~[Q,(~,�89 ,~o j ~ r  = c f~  *[ (x~)*]  

This completes the proof of Theorem 7.2. 

Remark 7.1. Par t  of Theorem 7.1 follows immediately from Lemma 2.2. Let  0 < p  ~< 2 

and note t ha t / j ,  defined above, satisfies s(/j) = ~ .  Therefore, by Lemma 2.2, 

][(X~)*llv <~ lim inf 11/711  < c lim inf II~,% < c lim inf (l[~�89 + 2 -,12) ~< c [[v�89 

COROLLARY 7.1. I f  T is a stopping time of X such that ~�89 is integrable, then 

ax(~)  = 0. 

The proof is omitted since it is similar to the proof of Corollary 5.1. 

8. Further remarks and examples 

This section contains remarks and counterexamples that  give additional information 

about the significance and precision of our assumptions. 

Remark 8.1. If ] is a martingale transform such that  E(d 2 ]Ak-1) < ~ ,  k >~ 1, then there 

is a martingale transform f defined on (possibly) another probability space such that  

f~ = ~ l ~ k ~ k ,  n >~ 1, where & satisfies A2, and the distribution of f is the same as the distri- 

bution o f / .  

I t  is sufficient to construct f in the following special case. There is an independent 

sequence r= (rl, r 2 .... ), independent of Ao0, such that  r k takes only the values • 1 with 

equal probability. In this case, let 

[dk/[E(d~I..-4k_l)] �89 on {E(d~lAk_l ) > 0}, 

x k = t r  on (E(d~]A~_I)=O}, 
A 

~k = [E(d 2 ] A~-I)] �89 

and -~k be the a-field generated by Ak and (r I ..... rk). This gives a martingale transform 

f with & satisfying A2 and ]=/. 

Remark 8.2. Let  Xl, x 2 .. . .  be an independent sequence of symmetrically distributed 

random variables a n d / =  (h,/2 . . . .  ), /n=~c=lgk, n~> 1. There is a martingale transform f, 
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In = ~ l ~ k  xk, n >/1, defined on (possibly) another probability space, such that  ] has the 

same distribution as/ ,  Furthermore, the sequence & has the property [xk I = 1,/c ~> 1, and so 

satisfies condition A. 

As in Remark 8.1, it is sufficient to construct f for the special case in which a sequence 

r exists with the same properties as in the above example. In  this case, let 

on 
trk on (xk =0},  

and Ak-1 be the a-field generated by (x~ ..... Xk_l, Ixk ]) and (r I ..... r~_l). The above assertion 

is easily checked. 

Example 8.1. Without condition A, Theorems 3.3 and 4.3 do not hold. Consider the 

operator S and the function (I)(b)= b p, 0 < p  < 1. Neither % nor Cp exists such that  the in- 

equality 

%llS(l)llp Ill*lip  <cpll (l)llp (8.1) 

holds for all martingale transforms I. 

The following example of Marcinkiewicz and Zygmund [12] shows that  the right-hand 

side of (8.1) fails. Let  j be a positive integer and d s = (dn, ds~ .... ) an independent sequence 

such that  
P(djk= 1) = 1 - - ( j +  1) -1 , 

P(djk= -j) = ( j +  1) -1. 

L e t / j  = (/jl, Is2 . . . .  ) be the martingale defined by  lsn = ~ = 1  djk. By an elementary calcula- 

tion, we have that  
lim lim 11/?ll,/lls(/P)llp= ~ 

m -->r J - ~  

This shows that ,  for 0 < p  < 1, there is no Cp such that  the right-hand side holds for all 

martingale t ransforms/ .  

Also, the left-hand side of (8.1) fails for 0 < p < l :  consider the transform of each ]s 

by the multiplier sequence v=  (1, - 1 ,  1, - 1  .. . .  ). 

Example 8.2. If  we assume only condition A2, then the double inequality 

holds for p ~ 2  but  fails for any p ~:2. The right-hand side fails, in general, for p >2 since 
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i t  can h a p p e n  t h a t  s(/) = ]]x1112 = 1 b u t  II/*llp = IIxlllv = co. The  le f t -hand  side fails for 0 < p  < 2 :  

Consider  the  sequences dj def ined in E x a m p l e  8.1. Le t  x j =  (Xjl, xj2 . . . .  ) be def ined b y  

xjk = d j d P ;  

t hen  each sequence xj satisfies condi t ion  A2.  Define s topp ing  t imes  v~ b y  

~j = inf {k: xjk = - j~} ,  

and  mar t inga le  t r ans fo rms  / j =  (/n,/r . . . .  ) b y  

n 

k = l  

Note  t h a t  s(/ '~) = (~j A m)�89 and,  b y  an  e l e me n ta ry  calculat ion,  

lira l ira ]l(~jAm)il]p/]l( / '~)*]lp=oo. 
m--~oo j - ~ o o  

This  shows tha t ,  for 0 < p  <2 ,  there  is no % such t h a t  the  l e f t -hand  side holds.  

E x a m p l e  8.3. If ,  in Theorem 2.1, condi t ion  A is rep laced  b y  the  weaker  condi t ion  

E( Ix,  I IAk_l)/> E( Ixk I IA,,-1) c, (8.2) 

for some ~, 1 <~  <2 ,  t hen  the  conclusion of t h a t  theorem no longer  follows. To see th is  le t  

x~ = yk + zk, k >~ l ,  

where Yl, Y2 . . . . .  Zl, z 2 . . . .  are  i n d e p e n d e n t  r a n d o m  var iables  sa t i s fy ing 

P(Yk  = k(1-~ = 1 - (k + 1)-1,  

P (y~  = - k i/0) = (k + 1 ) -1 ,  

P ( z  k = 1) = P ( z k  = - 1) = 1. 

Le t  A0 = {O, ~ }  and  Ag be the  (r-field genera ted  b y  x I . . . . .  xk, k/> 1. Then  x = (x 1, x 2 . . . .  ) is a 

mar t inga le  difference sequence sa t is fying condi t ion  (8.2). However ,  for th is  x the  conclusion 

of Theorem 2.1 does no t  hold.  Le t  

a k = ( - 1)k/k(1/~ k >1 1, 

~k=l  ak < oo. N o w  choose ~L > 1 sa t i s fy ing  wi th  e > 0 sa t i s fy ing (1/~) - e > �89 so t h a t  o~ 2 

a~ < 22/2, 
k ~ l  
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and let b = 2 2. Le t  / = g + h be the  t ransform of x defined by  

with v~ = 
k if k > m ,  

where m is a positive integer such t h a t  m r > 2 b + 1. Note  tha t  v* ~ 1. Le t  A = (h* ~< 2}. 

Since 
P(h*>2)< ~ al/Z<�89 

k ~ m + l  

we have tha t  P(A) > ~. Now consider the stopping times 

= i n f  {n:  I/~l > b}, 

v = inf {k > m : Yk = - k1/~} �9 

B y  the Borel-Cantelli  lemma, v < ~ almost  everywhere.  Moreover, ~ ~< v since, on the set 

(~=k}, 
]d~[=]V~Xk]>~]akyk]--[akzk]>~--l>m~--l>2b, k>m. 

On the set A, T >/v since, if mE A and n < v(w), then 

]/n(o))l~<lgn(eo)]+]h,(eo)[= I ~ ( - 1 ) ~ / k l - ' l + l  ~ akzk(eo)]<.l+2<22=b. 
k - m + l  k - - m + l  

Therefore, if 0 < p  ~ ~, then  

[L ]"" 211(/')*11,~> Id, l" >1 ( ~ ' -  1)2 -~'. 

Accordingly, H(/~)*H,/b is large for large m;  for the  above x, the conclusion of Theorem 

2.1 does no t  hold. 

Remark 8.3. B y  the proof of Theorem 5.4, we know tha t  if conditions A1 and A2 

are satisfied, then,  for all / e  ~ and 2 > 0, 

~P(~(/) >2) < ~ll/ll,. 

From this follows a more general inequali ty:  if A holds and T is an operator  satisfying 

B and R 2  with p2 > 1, then  

~P(T/>~) < ~11/11, (8.3) 
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for all / E ~  and ~>0 .  To see this, let ~ > 0 ,  T=in f  {n~>0:s~+1(/)>2 }, a n d / = ] ~ + ~ / =  

g+h .  Then s(g) <~, s(g) 4s( / ) ,  and, by Theorem 5.3, 

IIg*lI : c IIs(g)ll, - c > c 7 ' ' -2  II/li d  = c ~ p ' - I  II/lll 

Also, P(s(h) > O) < P(v  < oo ) = P(s(/) >~) ~< cH/[[ i /~  , 

so that  P ( T / > 2 y ~ )  < ~ P ( T g > 2 ) + P ( T h > 2 )  <~cHg*][~:/~P'+P(s(h)>O) <~c]]/]]1/~. 

Therefore, to obtain the results of Section 4, we do not have to assume condition 

L 1 explicitly and the L 1 part of condition L can be eliminated: if T is an operator satisfying 

R2 with p~ <~, then L 1 is satisfied with xl =P~; if A holds and T is an operator satisfying 

B and R2  with p~=Q, then, by (8.3), L1 is satisfied with x l =  1. 

A companion result to (8.3) is the following. Let 0 < p  <P2. If  A holds and T is an 

operator satisfying B and R 2, then 

II T/II, <  II/*II  

for al l /E ~ ,  with the choice of c depending only on p and the parameters of A, B, and R2. 

The proof is similar to that of Lemma 2.2 and is omitted. 
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