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1. Introduction

In this paper we introduce a new method to obtain one-sided and two-sided integral
inequalities for a clags of quasi-linear operators. Some of our assumptions are similar to
those of the Marcinkiewicz interpolation theorem. However, in contrast to the Marcin-
kiewicz theorem, the operators that we study here are local in a certain sense and are
usually most conveniently defined on martingales. In fact, the suitable choice of starting
and stopping times for martingales, together with the systematic use of maximal functions
and maximal operators, is central to our method.

Before describing our results in detail, we consider a few simple applications. We
begin with an application to classical orthogonal series.

Let 24, X5, ... be the complete orthonormal system of Haar functions on the Lebesgue
unit interval. Let D3 a, %, be the Haar-Fourier series of an integrable function f and
S(f) = [5-0(a, 2?1, Then

Cp "S(f)"nS |MID< C, ”S(f)"p’ l<p<oeo. (1.1)

This inequality is due to R. E. A. C. Paley [14], who stated it in an equivalent form for
Walsh series; the Haar series version (1.1) was noted by Marcinkiewicz [11]. Inequality
(1.1) should be compared with the inequality

ol <l <Ml 1<p<eo, (L2)

where f*=sup, [>F_oa,%|, which follows from the maximal inequality of Hardy and

Littlewood [10]. The two inequalities imply that

e IS < 17l < Co ISD)l» (1.3)

for 1 <p <oo. Although it is known that neither (1.1) nor (1.2) hold in general for 0 <p <1,
our results reveal a quite different picture for the last inequality: from the fact that (1.3)
holds for 1 <p < oo, we are able to show that it holds for the entire range 0 <p < co. This
extrapolation effect is typical of our method. Even more is true: the fact that (1.3) holds
for two values of p is enough to imply that (1.3) holds for all p.

The next example has many of the same elements. Suppose that X = {X(t), 0 <t < oo}
is standard Brownian motion (see Section 7) and 7 is a stopping time of X. Let X* be the

process X stopped at 7: X*(f) =X (v At), 0<{< co. Its maximal function is defined by

(X7)*= sup | X"()]-
0<t<oo

Let b be a positive real number and consider the stopping time 7 A b. Then the inequalities
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& @A B, <X Ab), < Cllx A D), (L1)
and e (X0, < | Xz A B)|], < (X "0)*]l,, (1.2

are known to hold for all 1 <p <oo. The first follows from the results of Millar [13], and the
second is a standard martingale maximal inequality (see Doob 5], Chapter VII, Theorem
3.4 and page 354). If we combine these inequalities as before, and use the monotone con-
vergence theorem, we obtain

e et <N &X)*l, < Gy lI2Hl, (13"

for 1 <p < eoo. As in the previous example, it is known that neither (1.1") nor (1.2’) can be
extended to the interval 0 <p<1. However, again the last inequality is different: our
method shows that (1.3') is, in fact, valid for the entire range 0 <p <oo.

Related integral inequalities for stopped random walk and sums of independent ran-
dom variables are given in Section 5.

Both of the above examples may be considered from a common viewpoint. Let
f={fs fs -..) be a martingale on some probability space and d=(d,, d,, ...) its difference

sequence, so that

n
fo=Sd, n>1.
k=1

Let f* denote the maximal function of the sequence f: f* =sup, |f,|. The maximal funetion
is related to the function S(f) = (3.1 d%)} by the inequality

S I8Nl <UL <CoISHll, 1<p<eo. (1.4)

(See Theorem 9 of [1] and Theorem 3.4 of Doob [5], Chapter VII.) We obtain new informa-
tion about this inequality in two directions. For a special class of martingales, our extra-
polation method allows us to extend this inequality to the range 0 <p < oo, In particular,
this extension implies (1.3) and (1.3’). In a second direction, the operator S: f—S(f) may be
replaced by other operators. An interesting class of such operators, which we call operators

of matrix type, is defined as follows. Let (a;) be a matrix of real numbers such that

M8

c<
i

a?kgo, k> ].,

]

1

where ¢ and C are positive real numbers. Define the operator M by

Mf=L20im up | 2 o )T
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Clearly, S is an operator of matrix type with (a,) the identity matrix. Another example

of an operator of matrix type is the ‘“Littlewood-Paley” operator
L= + 3 (he—anli,

where ¢, = f.1/;/k. This operator has been studied and used in connection with martin-
gales by T. Tsuchikura [16] and E. M. Stein [15]. Let » be a positive integer and f” the
martingale f stopped at n:f*=(f;, ..., fa_1, fa> [n, .--)- Define the maximal operator M* by
M*f= sup Mjf".
Ign<ot
Notice, for example, that 8*=S; also f—f* is the maximal operator associated with
f—lim sup, |f, |, which is another example of an operator of matrix type. We show that

for any operator M of matrix type,
Cp “M*f"p < ”/*"p <Cp "M*/"ps I<p<oo,

for all martingales f. For martingales in a special class, our method allows us to extend this
inequality to the entire range 0 <p <oo.
We also obtain similar inequalities for more general operators. An interesting example

of an operator that ig not of matrix type is
() =12 B | A0

This operator is useful in the study of random walk since it often happens that s(f7) =7,
where 7 is a stopping time and /7 is the random walk f stopped at 7.

The L,-norm inequalities described in the above examples are special cases of more
general integral inequalities. Inequality (1.3'), for example, is a consequence of the in-
equality

¢ { O(zh) éf OUXTy*]I< Cf O(tt).
Ja Q 0
Here @ is any nondecreasing absolutely continuous function satisfying a growth condition;
the choice of ¢ and C depend only on the rate of growth of @.

Finally, the assumptions of most of our theorems cannot be substantially weakened.

This is supported by a number of remarks and examples, some of which are contained in

Section 8.
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2. Preliminaries

Notation. Let (Q, 4, P) be a probability space. If B is a sub-g-field of 4 and f is an
integrable or nonnegative 4-measurable function, recall that K(f|B), the conditional

expectation of f given B, is any B-measurable function ¢ satisfying

f-[ v

Such a function g always exists and is unique up to a set of measure zero. We usually do not

distinguish between functions equal almost everywhere.
Let A, Ay, ... be a nondecreasing sequence of sub-g-fields of A, f=(f,, f,, ...) & sequence
of real functions on Q, and d = (d;, d,, ...) the difference sequence of f so that

fn: de, n?l.
k=1

Recall that f is a martingale (velative to 4, A4, ...) if di is 4,-measurable and integrable,
k=1, and
E(dy | Avy) =0, k=2.

The sequence f is a martingale transform (velative to 4, A, ...) if

n
fn': Zldkzkzlvkxks nzl,

where v, is 4, ;-measurable, £>1, and x=(z, ,, ...) is a martingale difference sequence
relative to 4, A,, ....

A martingale transform f is also a martingale if each d, is integrable, in which case,
E(dy| Ax-1) = v E@y | Ak-1) =0, k>2.

A stopping time is a function » from Q into {0, 1, ..., oo} such that the indicator func-
tions /(v <k) are A,-measurable, £ >0. (If A<Q, I{A4) denotes the function on  taking the
value 1 on 4 and the value 0 off 4.) The martingale transform f stopped at v, denoted by
f=(f1,fs,...), is defined by

fao=21v=>k)d,, n=1.
k=1
The martingale transform f started at u, where y is a stopping time, is denoted by #f where
o= 2. Hu<k)dy,, n>1.
k=1

Finally, { started at p and stopped at v is written as #f*,
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n
=2 Hu<k<v)d, n=1l
k=1

Notice that I(»>k) is 4, ,-measurable so that f* is also a martingale transform. The same
is true of #f and £f7. The following relations are easily verified: f=f* 1 7f, (fa)r =frr», 2(*f) =
wvrf and fr—fr=vfe—rf*, where V and A denote the usual max and min operations.
If {u=n}=Q for some n, 0 <n < oo, we write *f* for #f*; then Of»=f» and f°=f.

Throughout the paper H denotes the collection of all martingale transforms relative
to Aq Ay ... Let =(z, x,, ...) be a fixed martingale difference sequence relative to
4, As ...; we denote by M the subcollection of N consisting of all martingale transforms
of x.

Our principal aim is to study certain operators T defined on M or N with values in
the set of nonnegative ,4-measurable functions on . Three important examples of such

operators are
fr=_sup [fa,
lgn<o0

Sh=( 3k,

() = 3. B3| Au-)

We adopt the following notation:
T.f=Tf", 1<n<oo,

Tf=_sup T,f,

1€n<o0

T*f= sup T,f=T*fVTf.

1< ngoo

In some cases, T'=T*=T**; for example, S and s have this property. However, Tf=

lim sup |f,| does not since it can happen that T'f <f* =T*{.
n—>00

We use the notation
1p
= [ [ J1ab] "2 0<p<e,

even if the integral is infinite. Also, it is convenient to let

"f”zz= sup "fn"zz'
lgn<o

If ||f||, is finite, then the sequence f is L, bounded.
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The letter ¢, with or without subscripts, denotes a positive real number, not necessarily

the same from line to line. The letter C is also used for the same purpose.

Assumptions. In this section are collected the conditions we sometimes impose on
martingale transforms and operators. Recall that TN is the set of all transforms of the
martingale difference sequence x=(x, 2, ...). This set is closed under addition: if f and ¢
belong to M, then f+g=(f,+g,, fotgs ...} also belong to FH. Moreover, T has the even
more important property of being closed under starting and stopping; that is, if u and »
are stopping times and f belongs to M, then #f» also belongs to M.

Let 0<d<1 and g >2. We say that condition A holds if, for all £>1,

Al. E( |xk| | A} =9,
A2, E(z® IAk—l) =1,
A3, E(jxmle|Aw) sc.

Note that these conditions are redundant in some cases. If A2 holds and ¢ =2, A3 imposes
no extra restriction and c,3, the ¢ in A3, may be taken to be 1. If A2 and A3 hold with
p>2, then Al holds, which follows from Hoélder’s inequality. For further discussion of
these conditions, see Section 8.

Now consider an operator 7' from M (or M) into the nonnegative ,4-measurable func-

tions, The operator 7' satisfies condition B if, for y 1,

Bl. T is quasi-linear: T(f +9) <y(Tf+ Tg);
B2. T islocal: Tf=0 on the set {s(f)=0};
B3. T is symmetric: T(—f)="Tf}.

Nonnegativity and symmetry are not essential: if 7' does not satisfy these conditions,
it can be replaced, without loss of generality for our results, by Tf= |Tf|v |T(—/)|.

Note that B1 and B3 imply that 7'(f —g) <y(Tf+ Tg). Also, if T satisfies condition B,
then so do T* and T™*.

There is another local condition that is sometimes satisfied: 7f=0 on the set where
f=0. This is more restrictive than B2 since f=0 on the set where s(f) =0 but not always the

other way around: note that d2 =0 almost everywhere on the set 4 = {E(d}|4,-1) =0} since

[ at- | Bzl Ao —o.
A A

The operators f—f*, S, and s are sublinear (y=1) and satisfy condition B.
Let 0<p, <p,<p, where g is the same as in A3. The operator T satisfies condition

R if, for all A>0 and f€EM,
17— 702901 Acta mathematica. 124, Imprimé le 29 Mai 1970.
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RL »P(f*> ) <c|Tfl5:;
R2. A7P(Tf>2) <ol|f*||5:.

Let 0 <z, <g. The operator T satisfies condition L if, for all A1>0 and f€ M,
Ll. AmP(Tf> 2 <el|lfz;

)

L2. Condition R holds;
13. 7T,fis A, measurable, n=>1.(1)

Preliminary lemmas. Here we collect some inequalities, remarks, and lemmas.
If f is a martingale, and A >0, then

PP(PF>0<|fl5, 1<p<oo; (2.1)

Il <llo<qllfll, »7'+¢7'=1, 1<p<oo; (2.2)
2APS(f)> 2 <cllfll,; (2.3)

AP(f> ) <c|8(hll (2.4)

SNl <, <Co Sl L1<p<oe. (2.5)

For (2.1) and (2.2), see Doob [5]; and for (2.3), (2.4), and (2.5), see [1].

By these inequalities, the operator S satisfies condition R with p,=1 and p,=2,
and condition L with 7; =1.

Suppose T satisfies condition B. If 4 and » are stopping times, then
Ip<k<v)<I(u<v), k=1,
implying that s(#f*y < I(u <)s(f)

(as usual, 0- oo =0). Therefore, by the local condition B2,

T#f")y=0 on {u=v}. (2.6)
In turn; (2.6) implies that
T({fr—f)=0 on {u=v} (2.7)
since T(fr—fr) = TCfr—f) < y[TCf#) + T (4]

Recall that T,f=Tf", 1 <n<oo. If T is local, we extend this definition in a consistent

way for n=0 by setting T f=0, since s(f°)=0. Now define T, f for any stopping time 7
as follows:
T:f=T,fon {r=n}, 0<n<oo.

It can happen that T, f=Tf7; however, we do have the following double inequality.

(*) The L1 part of condition L is a temporary assumption only; in Remark 8.3, we show that it is
not needed to obtain the results of this paper and can be eliminated.
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Lemuma 2.1. Let T be an operator satisfying condition B. If T is a stopping time, then
T f ST <yT.f.
Proof. Let 0<<n < oo; on the set {r=n},
Tfe = T(+(f* — ) SYUTF+ T~ )] =y Tof =y Tof.
Here we have used Bl and (2.7). The proof of the left-hand side is omitted since it is similar.

Remark 2.1. Tt can happen that T does not satisfy R1 but T** does. (Consider 7'f=
lim sup, |f,|.) In such a case there would be no loss in replacing T' by T™** provided R2 is
satisfied by 7**. In this connection, the following fact is useful: If T satisfies condition B
and the measurability condition L3, then 7™** satisfies R2 whenever T does. To see this,
let 7(w) =inf {1 <n<oo: (T,f)(w)>2}, @ €Q, where inf @ = co. Then 7 is a stopping time by
L3, and
IP(T* > 3) = 2 P(T > ) < PPyTfe>A) <ol| ()12 <ell )12

LeMma 2.2, Let 0<p<2. If f is a martingale transform in H, then

171> < ollsll-
The choice of c, depends only on p.

See Section 5 for other results about s(f). This one can be obtained directly and is
needed in case the number p, in R2 is less than 2.

Proof. We may assume that ||s(f)]|, < co. If p=2, by (2.2) and the orthogonality of the
difference sequence d of f, we have that ||f*]|, <2||f|l,=2]|S(H]|.=2|s(/)||2- Now let 0 <p <2.
Since

() = (") = [ 3 B(d} | w0l

is A4,_;-measurable,
T=inf {0<n<oo:s,,(f)>4}

is a stopping time. Let g=jf7. Then s(g) =s.(f) <4, s(g) <s(f), and
P(f*>2) < P(s(f) =) + P(f* > 4, s(f) <2).
Since g=f on {7 =o00}={s(f) <A}, the last probability is equal to

P(g*> 2, s(N <A< Pg*> ) <12 |gli =272 (9)?

8
{stH>1}

g f SR <P(s(f)> 1) + A~ f s(fy".
{stH<ay {

s(N<AY
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Therefore, |2 =p f A"“P(f*>l)d}.<2||s(f)”§+pfgs(/)2f g
0 st

=llsthliz 12 + /2 -1 =5 [ls(Pll3-

In Section 5, we improve this upper bound by showing that c; may be chosen to be
bounded on the interval 0 <p <2,

Remark 2.2. If T is an operator on H satisfying condition B such that, for all f€H,
17#e < cfflle
then I1THl> < colishll 0<p=<2,

by an argument similar to the proof of Lemma 2.2.
The underlying idea of the next lemma is well known. See Zygmund [17; Chapter V,
8. 26].

LemmA 2.3. Suppose that g is a nonnegative A-measurable function, «, B, p;, p, are
positive real numbers with p, <p,, A€ A,

f glh} !ZmP(A),
A
and, for all >0, nP(g>n, A)< fP(4).
_ P2
Then, Plg> 0a, 4) > [(1 —67) 3—’2p—3’1 (%) ]”"”* P(4), 0<0<1.
2

Proof. 1t is sufficient to prove this for 4 =Q, p, =1, and p,=p>1.
For any positive real number B,

0 G Bax 0
oc<f g=f P(g>17)d7]<f dn—l—f P(g>0<x)d17+f By ?dy
Q 0 0 0 Ba

1 ?
<0a+BozP(g>0a)+p—_—l—(§) Brit
1 p (B\" 1
- ¥ (¥ -1
Let B_[l— P—l(a)]
1 1 » 1 p—1 ol
Then P(9‘>6a)>§[1—0—p—_—1 (g) '—5_—1]=|:(1 "‘6)——1)—}_9]1, 1.
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The next lemma shows how the variability of f* and, more generally, T'f is controlled
by the variability of s(f).

LEMMA 2.4. Suppose condition A holds. If fEM, A>0, and A€ A, for some m=>0
such that

A< {s,(f) =0, A<s(f) <24}, (2.8)
then P(f* > c, A) 2cP(A), (2.9)
f [P <cA*P(4), 0<p<o. (2.10)

A

If T is any operator satisfying conditions B and R, then
P(Tf>ch, A) = cP(4). (2.11)

The choice of c(.q) depends only on §; that of ¢4 Only on p and cug; and that of ¢y 4,y only
on the parameters of A, B, and R.

Proof. We may assume in the proof that
s(f) =0 off 4. (2.12)
For consider g =™/ with v the stopping time defined by
v=moff 4, - y=c0 on 4.
Then s(g)=00off A, g=fon A,

so that g satisfies not only (2.8) but also (2.12). If g satisfies the conclusions of the lemma,
then so does f. This is clear for the first two, (2.9) and (2.10). For the third, note that y = oo
and s(f™) =0 on the set {Tg>C4, A}, so that

CA<Tg=TIf—f1<yTf + Tf")=yTf <y*T,f=y*T}.
Therefore, letting c=y~2 C, we have that

P(Tf>ch, A)=P(Tg>CA, A)
and we may assume (2.12).

As usual, write

and note that, under condition A2,
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] 2
s(f)=( 2 i)t
k=1

so that s8> 3 ol = 3 ot |l

Therefore, by Al, A2, and (2.8),

Zlf S(H= 3 CAEA Y § 'vi=6f s(f)2= 02 P(A4).
L4 1 4

A k=m+ Ak=m+l

Also, we have that

f sip= S wa=[ 3 u= f s <422P(A).
A A

A k=m+1 Ak=m+l

The conditions of Lemma 2.3 are satisfied by g =8(f), « =2""64, =24, p,=1,p;=2,0 =

271 so that
P(S()>27264, A) >2788* P(4).

Therefore, by (2.12), (2.3), and (2.2),

f,, = ll = Il = cA P(S(1) > cd) > cA P(4),

[ 1p <<tz - el -4 o2 <1024,

Another application of Lemma 2.3 now gives (2.9).
If 2<p<p, then by (2.5), (2.12), and the inequality E(|x.|?| Ax-1) < ¢, which follows
from A 3, we have that

g /2 o0
[1mp<triz<clispiz=cf (£ siat)” <cf sr=s3 stlap
4 =1 A k=1

A \k

et 3 | A< cl”‘ZJ‘ s(f2<cA?P(4).
A

k=m+1J A

If 0 <p<2, then by Lemma 2.2,

[ < <elsipiis=c [ strr <ciepea).

This proves (2.10).
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Using (2.12), B2, R1, and (2.9), we have that
L | TP = ||z > ca PG> ed) > a2 P(A).
By R2, (2.12), and (2.10), for >0,
P> <ol =o |PPm<eipia)

Therefore, (2.11) follows after another application of Lemma 2.3. This completes the proof.
The following two theorems provide upper bounds for stopped martingales.

THEOREM 2.1. Suppose that condition A holds and 0<p<p. If fEM, fr=2k-1%%,
n=), v=(vy, Vs, ...) ts uniformly bounded by a positive real number b, and v is the stopping

time defined by
7 =inf {n: |[f,|>b},

then 1(F)* || < cb[P(s(f) > 0)]VP <cb.
The choice of ¢ depends only on p and the parameters of A.
Condition 4 cannot be substantially weakened. See Example 8.3.

THEOREM 2.2. Suppose that condition A holds and 0 <p <g. Let T be an operator satis-
fying conditions B, R, and L3. If fEM, fo=2D i1, =1, v=(vy, vy, ...) 18 uniformly
bounded by a positive real number b, and v is the stopping time defined by

v =inf {n: T,f>b},
then
I (ff)*”p < e[ P(s(f) > 0)]Y? < cb.

The choice of ¢ depends only on p and the parameters of A, B, and R.

Theorem 2.1 follows immediately from Theorem 2.2: let 7' be the operator defined by
Tf=f*. In this case T,f=(f"* and B, R, and L3 are satisfied with y=1, p,=1, p,=2,

ey =Crg=1.
Proof of Theorem 2.2. Let N be a positive integer. We must show that
lF ¥l < b [P(s() > )T

with ¢ not depending on N.

Let A=29?b/8 where f=c(5 <1. Note that v* <b<A. Define the multiplier se-
quence w:
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wy=1v,, 1<k<N, w,=A(s{)>0), k>N:;

let ¢ be the corresponding transform: g, = >%.;w,ay, n>1. Then g€ M, =g, 1<n< N,
and on the set {s(f)>0},

8,(9) = (2 wi)t > o0
as n—oco. Define a sequence of stopping times. as follows. Let
o =1inf {n>0: s,.,(f)>0}.
This is a stopping time. Note that {u,<oo}={s(f) >0} and s(g")=0. f j=1 and g, ; is a
stopping time, let
w; = inf {n: s("g") > 2}

on the set where y; ;=m, m>0, and let y;=cc on the set where u;_;=oco. Then yu; is a
stopping time satisfying
Pi-1<p;< oo on {s(f)>0},
Ws= oo on {s(f)=0}.

Let k;=(kj, ks, ...) denote the martingale transform #i-1g#, j >1. Since w* <21 and s("g") <

s("g" ")+ |w, |, we have that
A<s(h)<21 on {s(f)>0},
j=1. Also, b} =0 on {s(f)=0}.
Now let o=inf {j: T} g> b},

Uo =00, and y=yu, Note that ¢>1: by Lemma 2.1 and B2, T} g <yT*g# =0 since
s(g")=0. Also, TAN<»: if n<N, then on the set {r=n}, we have that b<Thg=
T*g"=T*fr=Trf and v <n. Therefore

(FF =< (g")* < j;l(a >j) ki,

since on {o =74},

(@) = (g" + g + . PG = (0 + by ... +h)<BE+...+Bf, =1
Consequently, = oyIsrt < > 1o > 4) A3
i=1

for 0<p<oo. From now on assume that 0 <p<p.
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Fix j=1 and let
A, ={m_1=m, Thg<b}, m=>0.

Clearly, {o>],s(f)> 0} ={T7,_ g<b,s(f)>0} = mfjﬂA,,,.

Note that A, {s,(h)=0,A<s(h) <21},

and 4,,€ 4,, by L3. Applying Lemma 2.4 to k,;, we have that
o> Kl= w5, s0> 08 = 3. [ Il
m= m
<eA? ZOP(A,,,) =cA?P(o =74, s(f) > 0).

On the set where 7% g<b and p,< co,
Th,=Tlg" — g1 < y[Tg#i + Tg#-1< YT, 9+ T, 9) <292T} g <2y°b = fA.

Therefore, applying Lemma 2.4 to %, a second time, we obtain

P(o>j+1,5(f)>0) =P(T}g <b,s(f)>0) = > Plp1=m, T},g<b)

m=0
< 3 P(Th,< i, 4,) <(1—F) 3 P(4,) = (1-F) Ple >, () > O)
By induction, for all j=1,
P(o>1,5(f)>0) < (1~ B P(a>1, s(f) > 0) = (1 — B~ P(s(f) > 0).
Accordingly, for 0 <p<1,
Iz < 3 Mo i< 3 ea°(1 =y~ Pls(s)> 0) =2 Pls(h) > 0),
and for 1<p<y,

el 316> Al < 5 [07(1 = B Pls) > OF> =aLP(s(f) > 0)1™

This completes the proof of Theorem 2.2.
Lemwma 2.5. Suppose that conditions Al and A2 hold. Then for all >0 and fEM,
P@*>1) <cPled*>2)
with the choice of ¢ depending only on 8.
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Recall that d is the difference sequence of f and d, =v,x;, £>1; as usual »* and d* are

the maximal functions of the sequences v and d, respectively.

Proof. Let t=inf {k: |v,|>2} and A,={z=k}, k>1. Then A, €A, and, by Al,

f || = 6P(4,);
A

by A2, | —rean;
A
hence by Lemma 2.3, P(|m|> ¢, 4y) = cP(4y).
Therefore, Pw*> )= 3 P(4,)<c D P(|z,|>¢, 4;)
k=1 k=1

0
<e S P(|dy|> ek, A,) <cP(cd*> ).
k=1

LEMMA 2.6. Let p be a nonnegative measurable function on the real line satisfying

f (t) dt < oo
for some real number a. If

B={t:p(t) <ap(t+1)}
for a real number o> 1, then

" (i) d = p(t+1)d
t< ¢ i.
Proof. For each real 4, let

A ={t<i:pt)=ap(t+1)},
B,={t<A:plt)<ap(t+1)}.

2 A+1
Then ocf 1p(t)dt<o:f p(t) dt

—on —00

=<xf ’ll)(t+1)dt+ozf w(t+1)dt<f 'q)(t)dt—i-ozf p(t+1)de. (2.13)
42 B - B

o

If f* . p(t)dt < oo, then

A o
f p(t)dt Sm foJ(t +1) dt.

—00
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Therefore, the desired result holds if j"l,,ozp(t) dt < oo for all real A. If, on the contrary
J* o p(t) dt < co but Al y(t)dt=co for some A (by our assumption, the only other pos-
sibility), inequality (2.13) shows that fzp(t+1)dt= oo, so the desired result holds in

any case.

3. The right-hand side

In this section, we prove that
7]l < l T*fll,, fem, (3.1)

under conditions A, B, and R for 0 <p<co as specified in (3.13). In fact, we prove a
stronger inequality (Theorem 3.3).
If it were true that P(f*>1) <cP(cT*f>A) for all 1>0, then (3.1) would follow easily

from the formula

Il =5 [ 2 e na

However, even in simple examples, there may be no such inequality between distribution
functions over the entire interval 0 <A< oo: consider f,=> r_1;/k where x = (z;, T, ...) is
an independent sequence such that z, = 41 with equal probability. Then S(f) = (> %-11/k?)
and P(cS(f)>1)=0 for all large 1. On the other hand, P(f*>4) >0 for all A>0. In spite of
such examples, it turns out that distribution function inequalities do exist for sufficiently
many values of 4 to allow us to use integral formulas such as the one above. A substitute
for a full strength inequality between distribution functions is provided by the following

theorem. This, in conjunction with Lemma 2.6, leads to integral inequalities such as (3.1).
TaEOREM 3.1. Suppose that conditions A, B, and R hold. Let «>1 and f>1. Then
P(f*>2) < cP(eT* > ) +cP(cd* > 1) (3.2)
for all f in M and 1 >0 satisfying
P(f*> 1) < aP(f* > fA). (3.3}

The choice of ¢ depends only on o, B, and the parameters of A, B, and R. Furthermore, this
choice may be made so that, with B and the other paramelers fized, the function a~>c ts non-

decreasing.

Recall that d is the difference sequence of f. If d* <cT*f, as sometimes happens, then

(3.2) simplifies to
P(f* > 1) < cP(cT*>1).
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Proof. The last assertion is obvious since if 1 <oy < ay < 60, then the set of pairs (f; 4)
satisfying (3.3) for o=, is a subset of the set of pairs (f, 1) satisfying (3.3) for oc=a,.
Therefore, if ¢ is suitable for «= o, it is also suitable for a=«,.

Let 1>0. We first prove (3.2) for all f in M satisfying (3.3) and

v* <A (3.4)
Here d,=v,xy, k>1, as usual.
Let 6=(f—1)/2. Then either
P(f*>2) < 2aP(f* > A, d*<04) (3.5)
or P(f*>1) < 2aP(d*>04), (3.6)

since otherwise, (3.3) would not hold. If (3.6) is satisfied, then (3.2) holds trivially. There-
fore, from now on we suppose that (3.5) is satisfied.

Define stopping times g and » as follows:
p=inf {n: |f,|>2},
v=inf {n: |f,|>pA}.
Then {p<oo}={f*>1}, {p<oo}={f*>pA}, and u<». Let g=#f*. Then g€ M and
P(g*>04) >P(f*>f4, d*<04)
since, on the latter set, y <v<oo, and
g = =1 = |fo| = [fu| > PA—(A+d*) = PA—(A+04) =0A.

Therefore, by (3.5),
P(g*>04) =cP(f*>1).

We now wish to apply Lemma 2.3 to the function Ty on the set 4 = {f*>4}. To do this,
we establish upper and lower estimates as follows. By the local condition B2,
{Tg=0}> {s(g)=0} > {u=oo} = {f*<1}.
Therefore, by R1 and the preceding paragraph,

f | Tl =||Tg||5: = c(B2) P(g* > 04) > cA”*P(f* > A),
(i

so that the lower (p,) estimate holds.
Let b=2pA and 7=inf {n: |(#f),|>b}. Then 7>»: since v>u, we see that 7>» on the

sets {¢ =2} and {r=oco}. Also, 7>v on {u<», T<oc}, since

[tz 1= |fu+ D | = [(#)e | = 1fu| > —pA=BA.

Note that the multiplier sequence defining #f is uniformly bounded by b, using (3.4) and
A<b. '
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Therefore, by Theorem 2.1 with p=gp,,
10l = 16 < 71 < PO > O
S eb[P(u < o0 )] P = cA[P(f* > A)]'/**.

This leads to the upper (p,) estimate: for all #> 0, we have, by R2, that

17 P(Tg >, f*> 3) <q™P(Tg>n) < cllg*||: < 2 P(f*> 3).
Applying Lemma 2.3 to Tg, we obtain

P(Tg>ch, f*>)=cP(f*>1).

Therefore, P(f*>2) <cP(Tg >ch) <cP(cT**f> 1),
using Tg=T(f" — f#) <yLTf + THI<p[T, f+ T fl<2ATHY.

In summary, we have shown that for all f and A such that (3.3) and (3.4) hold, we have
the inequality (3.2) with 7** in place of 7. Fix such an f and Z; there is a positive integer N
such that for all n>N,

P((f*)*>2) <2aP((f*)* > A).

Note that T**f*<T*f. If we now apply what we have already proved to T™*/* with «
replaced by 2«, we obtain

P((f)* > 2) ScP(cT*f* > A) +cP(cd* > A) <cP(cT*f > 1) + cPlcd* > ).

Finally, since the above inequality holds with ¢ independent of n for n>N, we may let
n—oo to obtain (3.2) under assumption (3.4).

We now eliminate assumption (3.4). Consider any f in M satisfying (3.3). Let
o =inf {n>0: [v,,, |>4}.

Since v,,, is A4,-measurable, o is a stopping time and %= jfo belongs to M. Note that kb
satisfies (3.4). Either

P(f*>2) <20P(f*> A, v*<1) 8.7)
or P(f* > 1) < 2aP(v* > 1), (3.8)

since otherwise, f would not satisfy (3.3). If (3.8) is satisfied, then (3.2) holds by Lemma 2.5.
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From now on suppose that (3.7) holds. From this, and the fact that A* < f* with equality on
the set {v* <1}, it follows that

P(h*>) < P(f*> ) < 2aP(f* > A, v* <A) = 2aP(h* > A, v* <A) < 2aP(h*>FA). (3.9)
So # satisfies (3.3) with « replaced by 2a. Therefore, by what we have already proved,
P(h*>1) < cP(cT*h>2A)+cP(cd* > 2).

Here we have used the fact that the difference sequence of & has a maximal function no

greater than d*. By Lemma 2.1 applied to 7™,
T*h <yT; f <yT*f.
Therefore, using part of (3.9), we have that
P(f*>2) < 2aP(k* >B2) < 2aP(h* > 1) < cP(cT*f > A) + cP(cd* > 4).

This completes the proof of Theorem 3.1.

We now turn to integral inequalities. Consider a function ® on [0, co] such that

b
<I)(b)=f g)ydi, 0<b<eoo,

0

for some nonnegative measurable function ¢ on (0, ) satisfying
p(24) <cp(d), A>0. (3.10)

We also assume that ®(1) < co. (This together with (3.10) implies that ®(b) <oo,0<b < co.)
For example, if 0 <p< oo, O(b)=b” defines such a function. Also, many Orlicz spaces may
be determined by such functions; for example, the space L log L is determined by ®(b) =
(6+1)log (b+1). If a is real and positive, let k be the smallest nonnegative integer such
that a<2%; since @ is nondecreasing, we have that

ok

@ (ab) < O(2°D) =f
0

b

" p(A)yda =2t f @(2%2) dA < 25cED(b) (3.11)

0

using @(2%4) <c*@(4), which follows from (3.10). From this it follows, for example, that
fa ©(f*) and [o®(af*) are simultaneously finite or infinite. Also, by Fubini’s theorem,

we have the integral formula

f* )
f (f) = f f o) di = f o) P(f*> 2) di.
Q QJo 0
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TueorEM 3.2. Suppose that conditions A, B, and R hold. Let ® be as above and € M.
Then

f (I)(]‘*)<cf @(T*/)—i—cf O(d*). (3.12)
Q o Q

The choice of ¢ depends only on g4,y and the parameters of A, B, and R. This choice may be
made so that, if the latter are fixed, the function cg .4, — ¢ is nondecreasing.

If, in addition, we assume that for a specific function @,
R®. J‘ d(d*) < cf O(T)
Q Q

for all f€M, the inequality (3.12) may be simplied as follows:

THEOREM 3.3. Suppose that conditions A, B, R, and R® hold. Then, for all €M,

f O(*) <c f o (7).
Q Q

The choice of ¢ depends only on c(g 1) and the parameters of A, B, R, and R®. This choice may

be made so that, if the latter are fixed, the function cg g —>¢ is nondecreasing.
In particular, if conditions A, B, and R hold, and, for some p, 0 <p < oo,
la*ll> <ol 711l (3.13)

for all f€ N, then we have (3.1) as mentioned at the beginning of this section.
Some regularity assumption such as condition A is required in the theorems of this

section and their left-hand analogues in Section 4. See the examples in Section 8.

Proof of Theorem 3.2. In preparation for using Lemma 2.6, we define
P(t) = aep(e) P(f* > ),
B = {t: p{t)y<2¢p(t+1)}.

Here we take a=1log 2 so that *¢*D =2¢%. The assumption of Lemma 2.6 is satisfied by ¢

since
1

0 1
f 1p(t)dt=f ¢(A)P(f*>z)d/1<f p(2) dy =D(1) < oo,

0 0

so that, by Lemma 2.6,
j pH)dt< 2f pE+1)dt (3.14)
B

— oo

Now, note that if £€ B, then 1=e? satisfies
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adp(A) P(f* > 1) < 4adp(20) P(f* > 22) < 4 ¢(3.10)2Ap(A) P(f* > 24).

In particular the above inequality implies that p(4) is positive and finite, so that P(f* >1) <
oP(f* >21) with ax=4¢(; 44 With this choice of «,

2p(t+1) < an(l)
sinee P(f*>22) <P(f*>1A). Therefore, by (3.14), Theorem 3.1, and (3.11),

L(I)(l*)=fw w(t)dt<2f w(t+1)dt<(xf w(t) dt

< aj ae® p(e™) [cP(cT™* f > ™) + cP(cd* > ¢*)] dt
B

<cf @(cT*f)+cJ (I)(cd*)<cf (T —E—cf O(d*).
Q Q Q Q

The assertions about the choice of ¢ are evident, once the above argument is examined.

This completes the proof.

4. The left-hand side

In this section, we prove integral inequalities analogous to those in Section 3. In

particular, if 0 <p< oo, then
17l < cllf* I

for all f€ M, under conditions A, B, L, and (4.4). Our discussion is briefer here because the
proofs have much the same pattern as those of Section 3. The principal changes are as
follows: (a) The function d* is replaced by A*, the maximal function of the sequence A=
(Ag, Ay, ...) defined by A, = T'(*1f"), n=1. (b) Instead of the sequence f,, n>1, the sequence
T,f, n>1, is used to define stopping times.

TrEoREM 4.1. Suppose that conditions A, B, and L hold. Let a1 and f>7°. Then

P(T**f>1) < cP(cf*>A) +cP(cA*> 1)
for all f in ‘M and A >0 satisfying
P(T** > 3) <aP(T** f > pA).

The choice of ¢ depends only on «, B, and the parameters of A, B, and L. Furthermore, this

choice may be made so that, with B and the other parameters fixed, the function o—c is non-

decreasing.
Proof. We proceed in steps, always assuming A, B, and L.

(i) Let «>1 and >y*. Then
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P(T*>1) < cP(cf*>2) +cP(cA*> 1) (4.1)
for all f in M and >0 satisfying v* <A and

P(T*f>1) < aP(T*f > PA). (4.2)
Let 6=(8y—*—1)/2. Either

P(T*f>2) < 2aP(T*f> B2, A*<0)
or P(T* >2) <2aP(A*>6A).
The latter possibility leads directly to (4.1); therefore we assume the former.
Let w=inf {n: T, f>2},
v =iof {n: T',f>p1},
and g =#f». By L3, y and » are stopping times. On the set where u is finite,
T,.f <y(A+A¥).
To see this, let » be a positive integer. Then, on {u=n},
Tuf = Tof = Tf* = T(f*+"") S p(Tpaf+A,) <p(A+AY).
On the set where 7*f>f4 and A* <04, we have that y <v <oco, and
PA<T,f<yTf =yT(fr+g) <yTfr+Tg) <y¥T,f+ Tg) <py4A+0i+Tg)
or Tg>(By4-1-6)A=0A.

Therefore, P(Tg>02) = P(T*>PA, A*<02) = cP(T*f> ),

so that, by L1, we have the lower estimate
[ 1ol =lele s eon Py > o1y > cim > b,
{T*f>1»

Now we compute the upper estimate. Let b=2py°A and z=inf {n:7T,(#f)>b}. Then
T >, for on {r < 0},

b<T. (") <yT(*f Y <Y (T + T <y (Tof + TWf) < 297 TH},

or Trf> BA,

which implies that 7> 7.
18—1702901 Acta mathematica. 124. Tmprimé le 29 Mai 1970,
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Let m, =p. Then, by Theorem 2.2, for all >0,
7 P(g* >, T* > 2) <™ Plg* > ) <|lg*[lz = | (") ]|z
< [(#f )yl < b P(s(#f) > 0) <A™ Pu < 0o ) =cA™ P(T*{ > 3).
Using the lower and upper estimates just obtained, we may apply Lemma 2.3 to ¢*:

P(g*>c, T*>2) = cP(T*>}).

Since g* <2f*, we have that
P(T*>1) < cP(cf*>1).

This completes the proof of (i),

We now eliminate the agssumption that »*<A.
(i) Let a>1 and >8. Then (4.1) kolds for all f in M and 2> 0 satisfying (4.2).
Let o={n=0: v, |>1}

and h=fo. We now show that except for one case easily handled separately % satisfies
(4.2) with « replaced by 2«, 8 by Bo=pfy~2 and 1 by Ag=4yA. Certainly, the multiplier
sequence defining % is uniformly bounded by A<4,. Also §,>9*

Either P(T*f>2) < 2oP{T*f >R, v*<4)
or P(T*f>2) < 20P(v* > 4).

Using d* <2* and Lemma 2.5, we have that P(v* > 1) <cP(cf*>4), so the latter possibility
implies (4.1). Assume the former. Then, since T*h <yTj f <yT*f, we have that

P(T*h>2g) < P(T*{>2) < 2aP(T*f> P, v* <) = 2aP(Trf> B, 6= o)

< 20PyT*h>B2) = 2aP(T*h > By Ay)-
Therefore, by (i),
P(T*h> 1) < cP(ch* > Ag) +cP(cAg > Ay).

Here Ay=(Agp, Ages ) is defined by A, =T("'h"), n>1. Note that
Ags = T(7f0) SyTo("7fY) <ph,
since To(*'f")=0 on {o<n},
=A, on {og>n}.

Hence, A§ <yA*. Also, h*<f*, so we have that
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P(T*f>2) < 2aP(T*h > fohg) <20P(T*h>Ag) < cP(cf* > 1)+ cP(cA* > 4).

This completes the proof of (ii).
The proof of Theorem 4.1 may now be completed as follows. Either

P(T*§>2) < 2aP(T*§>pi, f*< o)
or P(T*f>}) < 2aP(f* = o).

In the latter case, P(f* = oo) <P(f* > 1) and the desired inequality holds. Assume the former.
By Lemma 4.1, proved below, we have that

P(T*f>2) < P(T**f>1) <2aP(T*f>pA, f* <o) < 2aP(y2T*f>fFA).
Applying (ii) with « replaced by 2« and § by fy—2>y%, we have that
P(T¥f>2) < 2aP(T*f>fy—34) < 20P(T*f > 14) < cP(cf* >A) +cP(cA*>1),
the desired inequality.
LemumA 4.1, If conditions A, B, and either L1 or R2 hold, then, for any f in M,

Tf <y3T*
on the set where f* < oo,

Accordingly, T**f<y*T™*f on the same set. However, this inequality need not hold on
the set {f*=oo}. Consider the operator

Tf=ILm sup (*f)*, feM.
n—=>00
Then T*f=0, femM,
since T,.f=lim sup ("f")*=0
m->Q
for all positive integers #. On the other hand,
Tf=co on {ff=co}.

Therefore, although 7' satisfies the conditions of the lemma, 77 <y3T*f fails to hold on
{f*=0cc}. (Under A1l and A2, there are f in M satisfying f*=oco almost everywhere. See
Corollary 5.6.)

Proof. Let >0,
T =inf {n>0: 8,4,(f) >1},

and g=jf7. Then s(g) <A and, by the proof of (2.10), we have that
18% — 702901 Acta mathematica. 124, Imprimé lo 29 Mai 1970,
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llg*l> < o4, 0<p<e.
Since ¢>2, by classical martingale theory, g converges almost everywhere. Therefore,
2* > ('g)* >0

almost everywhere, and, by the Lebesgue dominated convergence theorem, ||("g)*||,->0 as
n—> oo, for 0<<p<p. Now let p=mx, or p=p, depending on whether L1 or R2 is satisfied.
Let n, be a positive integer such that

gl <, > 1.
By L1or R2, 27k [P(T("*g)> 27H)JV? <cd™%, k>1,
implying that T("*g)y—~0
almost everywhere as k— co. Therefore,
Tg="T(g" +"g) <yITf*™ + T ("] <Y Tenn,f + T(*PI< Y T*] + T("9)),
which implies that T'g <y2T*f. Consequently, on {r - oo} ={s(f) <4},
Tf =T+ <y[Tg+T(Hl1=yTg <y*T*f.

Letting 1+ oo, we see that this inequality holds on the set {s(f) <<o}. But, by [7] this set
is equivalent to {f*<eco}. (For another proof of this fact, using part (ii) of the proof of

Theorem 4.1, see Corollary 5.6.) This completes the proof of Lemma 4.1.

THEOREM 4.2. Suppose that conditions A, B, and 1. hold. Let ® be as in Theorem
3.2 and fEM. Then

{ (D(T**f)<cf D(f*) +cf DA, (4.3)
v 2 Q Q
The choice of ¢ depends only on ¢34, and the parameters of A, B, and L. This choice may be
made so that, if the latter are fixed, the function ¢ 444, ¢ is nondecreasing.

The proof of Theorem 4.2 is similar to the proof of Theorem 3.2 and is omitted. One
small change is to take @ =k log 2 with & the least positive integer satisfying 2%>5°. Then
et —2keat gnd Theorem 4.1 is applied with g 2*.

If we assume that for a specific function @,

Lo. f (I)(A*)<cf ()
Q Q

for all f€ M, then inequality (4.3) may be simplified as follows:
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TrEOREM 4.3. Suppose that conditions A, B, L, and L® hold. Then, for all €M,

f O(T*f) <cf ().
Q Q

The choice of ¢ depends only on cg19) and the parameters of A, B, L, and L®. This choice

may be made so that, if the latter are fixed, the function ¢z 19— ¢ is nondecreasing.
In particular, if conditions A, B, and L hold, and, for some p, 0 <p < oo,
HA*l, < e, lIF*1l, (4.4)
for all f€ M, then we have N7 A, <e, I,

as mentioned at the beginning of this section.

5. The operators S and s

We now examine some applications of the theorems of Sections 3 and 4. This section

is devoted to the two operators

S =( 3 byt

and i) = 3 B Av )T

THEOREM 5.1. Let 0 <p <oco. If Al and A2 are satisfied, then

Cﬂalls(f)”p < ”f*”p <0p8||S(f)”p

for all f in M. The choice of c,5 and C,5 depends only on p and & and may be made so that, for

fiwed 8, the functions p—C3s and p—1]chs are nondecreasing.

THEOREM 5.2. Let @ be as in Section 3. If Al and A2 are satisfied, then
Cf D(S(f) <f O(f*) < Cf D(S()
Q Q Q

for all f in M. The choice of c and C depends only on ¢y 19 and & and may be made so that, for

fixed O, the functions ¢ 19— C and ¢ 10y~ 1/c are nondecreasing.

Theorem 5.1. is a consequence of Theorem 5.2, and both are special cases of Theorems
3.3 and 4.3. We have shown in Section 2 that the operator S satisfies B, R, and L. Also, the
operator S satisfies R® and L® for every O since d* < S(f) and A*=d* <2f*.
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We now turn to the corresponding theorems for the operator s. Here, though the
inequalifies are similar, there are significant differences. The contrast between S and s,
under conditions Al and A2, may be summarized as follows: (a) The ®@-inequalities are two-
sided for the operator § (Theorem 5.2), but only the left-hand side holds for s (Theorem 5.4).
(b) Two-sided L,-norm inequalities are valid for § in the interval 0 <p <oo (Theorem 5.1),
but for s, they hold only in the range 0 <p <2 (Theorem 5.3).

Notice that in the following theorem, assertions (i) and (ii) hold for all fin ¥ (the natu.
ral domain of the operator s); we do not assume any part of condition 4.

THEOREM 5.3.

(i) Let 2<p<<oo. Then, for oll fEN,

sl <l

The choice of c, depends only on p and may be made so that the function p->c, is bounded on
each compact subinterval of [2, oo).

(ii) Let 0<p<2. Then, for all fER,

711> < Colls(F)|-

The choice of C, depends only on p and may be made so that the function p~>C3 is bounded on
(0, 2].

(iii) Zet 0<p<2. If Al and A2 are satisfied, then, for all {€ M,

ls(hll> < cpollF*]lo-

The choice of c,s depends only on p and 6 and may be made so that, for fixed 6, the function
p—>chs s bounded on (0, 2].

(iv) Let 2<p<p. If condition A holds, then, for all f€M,

I7*1l> < Clistllo-

The choice of C depends only on p, 8, and c,q, and may be made so that, for fized 6 and c,g,
the function p—C is bounded on [2, o].

Part (iii) of Theorem 5.3 is a special case of the following:

THEOREM 5.4. Suppose that conditions Al and A2 hold. Let ® be as in Section 3. Then
for all f€M,
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f L 26 < cfﬂ(l)(f*).

The choice of ¢ depends only on ¢(g.1qy and & and may be made so that for fized 6, the function
Ci3.10)—>C S nondecreasing.

Condition A2 alone is not sufficient to imply the conclusions of Theorem 5.4 and parts
(iii) and (iv) of Theorem 5.3. See Example 8.2.

Proof of Theorem 5.3. (i) If § is a positive integer and f is in H, then

lsthllsy <FISDlas 5.1)

This is certainly true if j=1. Let j>1 and suppose that |[S(f)[|s;< co. Then, letting v} =
F(@ | A1), wo have that [[o}],< 2l < ls(/|}}, < oo, by the norm diminishing property
of conditional expectations, and therefore all of the following integrals are finite. Let n
be a positive integer and

K={1,..,n}x..x{1,..,n} (j factors).
If k=(ky, ..., k)€K, let [k |=max (k, ..., k;). Then letting
A,={keK:|k|=F},
we have that Kc4,U...04;

n i
and f|zv§1:<z » fv?“...v?c
Q k=1 0 1

i=1 k€A;

J i i
-5 fd%invmz s &,
Q mm=1 i=1 JQkeK

=1 ke

)
11 %%,
me=1
me=1 mi

. n -1 n 2 . n 2 G-0fi n 21 1/4
=if S a<i| [0S [ 15 ee]"
Q k=1 k=1 Q k=1 Q k=1
Therefore, we have obtained
lls» HIIE, <7118 (A, -
and (5.1) follows by the monotone convergence theorem. Combining (2.5) and (5.1), we have
that
llstP)les < oz |1l (5.2)

for each positive integer §. To finish the proof of (i), we apply the Riesz—Thorin interpolation
theorem in the form given by Calderén and Zygmund [2].

First we remark that (5.2) is true for complex martingales provided dj is replaced by
|di |? in the definition of s(f). This can be seen in two ways: with obvious modifications,



278 D. L. BURKHOLDER AND R. F. GUNDY

all of our results so far carry over to the complex case; or (5.2) for the real case directly
implies an inequality of the same form for the complex case.

Now consider the operator 7' defined on complex L,=L,(Q, 4, P) as follows. If
foo €Ly, then T'f =s(f) where f=(f,, f;, ...) is the complex martingale defined by

fo=B(f5|As), n=>L

”f"p < "foo”p’ 1<p<oo,

We use the fact that

with equality holding if f,, is measurable relative to A4, the smallest o-field containing

U#-14: By the complex version of (5.2),
| T olles < cosllfeolless 7=1.2, ...

T(fot+9w) < Tfo+T9x fos 9o€Ls (5.3)

Clearly, T satisfies

and the other conditions of the interpolation theorem of Calderén and Zygmund. There-

fore, if 2<p<2j, we have that
ITfolly <o llfesllos foo € Ly (5.4)
€S Gy V ey,

In summary, if fisin 0, 2<p<oo, ||f||, < oo, and f,, denotes the almost everywhere limit

of f, then
stHll> =1 T ol < €ollfoll> = coll Il

and the function p—c, is bounded on each compact subinterval of [2, o). This completes
the proof of (i).

(ii) We may assume in the proof of (ii) that 4, = 4. Then T, the operator defined in
the proof of (i), is an isometry in L,, where now it is enough to consider real L,. Therefore,
by (5.3),

2(faor Goo) = [Ifeo+ GoolIZ = [1FccllZ — llgl2

=170 + Goo) I3 — 1 TFooll3 — 1 TG00 I3 < 2 (Tf oo, T9c0)

for all f,, and g, in L,.
Now let 1<p<2<q,p  +qg '=1. If f, € Ly and B={g,, € L,:[|goc]l,< 1}, then

”foo"p = SUP (foos Joo) < SUP (T'foo, TGe0) < sUp ”Tfeo ”p ”Tgoc "q <S¢ ”TfOO"p9
goo€B goo€B goo€B

by (6.4). If f is in N and ||f||,=||s(f)]|s< oo, then f converges almost everywhere to a
function f,, in L, Therefore, using (2.2), we have that
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Il < allfllo = allfolls <geall Tteollo = geallsthll- (6.5)
Now we show that (5.5) holds without the assumption that ||s(f)||s < co. This will complete
the proof of (ii) since, by (i), the funetion p—gc, is bounded on compact subintervals of
(1, 2] and, by the proof of Lemma 2.2,
Iz < ¢llsthilz. 0 <p<4/3.

Let f belong to M and 1 <p<2<gq, p~'+¢'=1. To prove (5.5), we may assume
that [ls(A)ll, < oo; then BE(d}|A,-1) <o, k>1. Let m be a positive integer. If 1<k<m,

let
em=d, on {E(d} | Ax-1) <m},

=d,/{E(d:| Ar-1)]t elsewhere;
if k>m, let e,,,=0. Then e, = (eny, ey, -..) is a martingale difference sequence relative to
Ay, As, ..., and the martingale g,,=(¢m, Ima> ...) With this difference sequence satisfies

|5(9:)|| 2 < e . Therefore,
1@m*|l> < geallsgm)l]» < gcalls(Hlos

using the fact that le,, | increases to |d, | as m— co. Since lim g,,,=F,,
f*<liminf (g,)*
Therefore, by Fatou’s lemma, i
17, < tim int g1, < gt
This completes the proof of (ii).

(iii) This part of Theorem 5.3 is an immediate corollary of Theorem 5.4 with ®(b) =b?,
0<p<2. Here (349 =271 and c53<c3;, according to the final assertion of Theorem 5.4.

(iv) This part follows from Theorem 3.3 applied to the operator s and the function
®(b)=b", 2<p<p. As mentioned in Section 2, s satisfies condition B. Condition R1
is satisfied with p, =1 by Lemma 2.2; condition R2 holds for p,=2 by (i) of this theorem.
Now let us assume that condition A holds in order to check R® with ®(b)=>5? for some
p, 2<p<p. Then

letz< [ S ol = [ S loPBalk a0 <ct| 3 lap
Qk=1 Qk=1 Qk=1

oo
<cas f (5 o) =y 2.
Q k=1

Therefore, R® holds with cgg =c,5 for every p, 2<p<p. Part (iv) of Theorem 5.3 now
follows from Theorem 3.3.
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Proof of Theorem 5.4. We assume that conditions A1 and A2 hold and apply Theorem
4.3 to the operator s. This operator satisfies B and the measurability condition L3, and, as
shown in the proof of Theorem 5.3 (iv), condition L2 holds. Therefore, only L1 and L®
must be checked; we show that L1 holds with m;=1.

Define an operator 7' on the set of all martingales f relative to A4,, A,, ... by

7f=1 3 B | Au-r)
Then T satisfies conditions (1) and (3) in the definition of class B mappings in [8]:

2(+0) <71+ 79, 171l Isthlla =11l
and Izl <l 3 Bl | Al =1 5 sl

Since Tf<s(f), T satisfies B2, but not the local condition (2) of class B mappings. However,
the results of [8] remain valid if condition (2) of class B mappings is replaced by condition
B2 of the present paper. In fact, consider the martingale a=f—jf'=*f as defined on page
137 of [8]. It is clear that I(f=co)<I(s(a)=0) so that I(Ta>A)<I(Ta>0)<I(t<oo) for
any operator that is local according to B2, Therefore, B2 may be used as the local condition
in place of (2) since we have the required estimate:

P(Ta>2) <P(t<eoo) <cllf[l/A

by the definition of the stopping time 2.
In particular, we conclude that the operator T' defined above satisfies the inequality

AP(Tf>2) < c|f]1

by the proposition on page 136 of [8].
Now consider the operator s. Since A2 holds, s(f) =[> ., v5]}, where, as usual, d, =
%, k=1, By Al,

6]ka < I”kIE(lxk’ [Ax-1) =E(Idk||’4k-1),
so that ds(f) <T'f for all f in . Therefore,
AP(s(f)>2) SAPG1Tf>2) <c||f]l,,

so that L1 holds with 7z; =1. Finally, we note that A*=v¢* in this case, so that, by Lemma
2.5,
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P(A*>2) < cP(cd*>2) <cP(cf*>4),

which in turn implies L@ for any ®:

fﬂ@(A*)<cfn®(f*).

Therefore, by Theorem 4.3, we obtain

[ owm<e[ 0w,

This completes the proof of Theorem 5.4.

Some applications of S and s. Just a few are mentioned here. The next two sections

contain others.

Random walk. One interesting special case of Theorem 5.3 is the following. Let =
(24, %3, ...) be an independent sequence of random variables, each with expectation zero
and variance one, and such that

|#lly=6>0, k=>1.
Then, for any stopping time z,
ol <@ <Ol 0<p<2,

where X7 is the martingale of partial sums X, =>%._; %, stopped at :

X =S Ir=h)z,
k=1

The following corollary contains a variation of the Wald equation for the expectation
of a sum of a random number of random variables:

CoROLLARY 5.1. Suppose that the martingale difference sequence x=(z,, %y, ...) satisfies
A2 and [qm,=0. If T is a stopping time such that ||tt||, < oo, then

i o, =0. (5.6)

Qk=1

Note that, although we have assumed condition A2, we have relaxed the usual requirement
that 7 be integrable.

Proof. Let f=(fy, f5, ...) be defined by
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n
fo= 2 I(x=k) 2.
k=1
Since 7 is finite almost everywhere,

T
lim f,= 2 x,
n->00 k=1

Also, f is a martingale and f fa=0, n>=1.
0

By A2, s(f) =%, and, by Lemma 2.2,

fnf*éc"r*"1<oo.

Therefore, by the Lebesgue dominated convergence theorem,

f S a=tim [ f,=0,
Q k=1 Q

n—>00

the desired result.

COROLLARY 5.2. Suppose that z=(xy, %y, ...) satisfies the conditions of Corollary 5.1
and that T is the stopping time defined by

n
r=inf{n>1: 3 2,>0}.
#=1

Then Tt is not integrable.

Proof. Suppose that 7* is integrable. Then

Ly

_
LM

is nonnegative almost everywhere and is positive on a set of positive measure (on the set
{xy,>0} and possibly elsewhere). Therefore,

T
0 < z Ty,
Q k=1

which contradicts the conclusion of Corollary 5.1. Thus, 7* is not integrable.

The following inequality is due to Khintchine [17; Chapter V, 8.5]. If a,, a,, ... is a
sequence of real numbers, and =,, z,, ... is an independent sequence of random variables
such that P(ay, =1)=P(z;,= —1) =14}, then, for every n=>1,

n ni2
2
k=1 Q

» n /2
<C,,(Za?c) , 0<p<oo. (6.7)

n
2 Wy
k=1 k=1
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The next corollary generalizes Khintchine’s inequality (even for the above random
variable sequence). If z is a random variable, we say that x is symmetrically distributed

if x and —=z have the same distribution.

COROLLARY 5.3. Let x,, &y, ... be an independent sequence of symmetrically distributed

random variables and © a function as in Section 3. Then, for every n=>1,

Lo ([2a])=L.o(25)) <ol ((E])

where the choice of ¢ and C depends only on the function ®.

n
2 %
k=1

Proof. Note that we do not impose any integrability conditions on x,, k>1, so that
F= s fas ooo)s fro=21-1%, is not necessarily a martingale. However, by Remark 8.2, f has
the same distribution as a martingale transform of an independent sequence of symmetri-
cally distributed random variables taking the values +1. Furthermore, by Lévy’s inequality
(see [5], page 106),
P(|fal> D < P((f")*> D < 2 P(|fa| > D),

so that fn®<|fn|)<fﬂ®<|f"|*)<2fn<l><lfnl)-

This, together with Theorem 5.2, implies the desired result.

Neither side of the inequality in Corollary 5.3 holds if symmetry is replaced by the
assumption that each x, has expectation zero. (For a counterexample with ®(b)=0b?,
0 <p <1, see Example 8.1.) However, we have the following generalization of an inequality
of Marcinkiewicz and Zygmund [12; Theorem 5].

COROLLARY 5.4. Let x;, x,, ... be an independent sequence of random variables, each

with expectation zero, and @ a function as in Section 3. If @ s also convex, then for every

T e8] Lo 3 <o Lo (5]

where the choice of ¢ and C depends only on the function @.

n
2. Ty

k=1

Proof. Let y be a sequence independent of z and with the same distribution. By the

convexity of ® and Jensen’s inequality for conditional expectations, we have that

Joo(|£2) <o (| £nenl)

n

2

k=1

i (T — Y)
k=1
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Lo((50)<Lo((3xT):

These inequalities may be reversed (up to a multiplicative constant) since, by our assump-
tions, for all =0, 6>0,

D(a+b) < c[D(a)+P(b)].
The resulting double inequalities allow us to obtain the desired result for  from Corollary
5.3 applied to z—y.

Haar and Walsh series. Let (Q, A, P) be the Lebesgue unit interval and 7, 74, ... the
sequence of Rademacher functions: r,(w)=1 if w €[j/2¥*, (j+1)/2%*!) for some even inte-
ger §; 7,(w) = — 1 otherwise. Then = = (2, &5, %3, ...) = (1, rg, 1y, ...) is a martingale difference
sequence relative to 4, As, ..., where 4, is the smallest o-field with respect to which
%y, -y &, are measurable. It is not difficult to see that every martingale transform relative
to Ay, Ay, --- (necessarily 4, = A4,) is a martingale and an element of 1, the collection cor-
responding to the sequence z; that is, M= H. Furthermore, = satisfies condition A and,
in faet, since ka l =1, k>1, there is no distinction here between the operators S and s.

To prove inequality (1.3), we consider the Walsh functions y,, 9, .... Recall that if
0<w<1 and » is a positive integer satisfying n=2"-...42" with n,>n,> ... >#,2>0,
then yo(w) =1 and p,(w) =1y, (@) ... 7, (@). If by, by, ... is any sequence of real numbers, let

2”1

foi1= kZo by, n20.

Then the difference sequence d of f= (f,, f,, ...) satisfies d; = v, 2, where v, is /4;,_,-measurable.

For example, if k=1, then
2f_1
diie=friz —fer1=1% 120 a2k Py,

and, since the sum is a function of 7, ..., 7,4, we have that dy ,=v; 2., Where v, is
Ayii-measurable. Therefore, f is a martingale transform of z, and, by Theorem 5.1, we

have that
e I8l <17l < Co 1Sl

for 0 <p < oo, This is equivalent to (1.3) by the observation of Marcinkiewicz [11].

In [14], R. E. A. C. Paley uses the function S(f) to study Walsh-Fourier series in much
the same way the conjugate function is used for ordinary Fourier series. From this view-
point, inequality (1.1) is the analogue of the L,-norm inequality for the conjugate function,
due to M. Riesz. In the same vein, we mention the following result for S(f), whose analogue
for the conjugate function is also due to M. Riesz [17; Chapter VII, 2.8, 2.10].
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CoROLLARY 5.5. Let f be a nonnegative function belonging to L,[0, 1) and S(f) its Paley
function as in (1.1). Then S(f) belongs to L[0, 1) if and only if f belongs to L log L.

Proof. By Theorem 2 of [9], the assertion of Corollary 5.5 holds if S(f) is replaced by
the function f* appearing in inequality (1.3). Since, as we have seen, this inequality holds
for p=1, the assertion of Corollary 5.5 holds as stated.

Local convergence of martingale transforms.

COROLLARY 5.6. Suppose that conditions Al and A2 are satisfied. If f is in ‘M, then

the following sets are equivalent:
{f converges}, {s(f)<eo}, {8(f)<eo}, {f*<oo}, {sup,fr<oo}.
This is a known result. We give new proofs of
{ff<oo}={s(f)<oo} (5.8)
and {supa fo <0} < {f*< 0}, (5.9)

the inclusion sign to be interpreted as holding up to a set of measure zero.

The inclusion (5.8) is the main contribution of [7]. Recently, Davis [4] has shown
that {sup, f, <oco}< {s(f) <oo}. Dvoretzky has another proof [6]. The other inclusions are
easier; their proofs are omitted.

For another class of equivalent sets, see Theorem 6.2.

In order to prove the local results (5.8) and (5.9), it is enough to prove the correspond-
ing global results:

ff<oo a.e. implies s(f) <oco a.e., (6.10)
and sup, f,<oo a.e. implies f*<co a.e. (6.11)

Let us show, for example, that if (5.10) holds for all f in 1, then (5.8) holds for all f in M.
Let f€ M and z=inf {n: |f,|>A} for some positive 1. Then g={7 isin M and g* <o a.e.
By (5.10), s(g) <oo a.e.; therefore

{fr<tjcfr=oo}={s(f)=s(g)}={s(f) <oo},
and (5.8) follows by letting A —+ oo,

We now prove (5.10) by applying Theorem 4.1 and Lemma 2.5 to the operator s.
Assume that P(s(f)=c0)>0, and take a=1/P(s(f)=co), f=2. Then, for any 1>0,

P(s(f) >2A) <1 = o«P(s(f) = o0) < aP(s(f) > 24).

Therefore, by Theorem 4.1 and Lemma 2.5,
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0 < P(s(f)=o00) < P(s(f) > 4) < cP(cf*>2).
Since this holds for all 1 >0, we see that P(f*= o) >0, which implies (5.10).

The following lemma implies (5.11) in a similar way.

LEMMA 5.1. Suppose that the martingale difference sequence x=(x,, %y, ...) satisfies
Al, A2, and
E(zy | Ag) =0.

Then P(sup,f, > cAP(f* > 1)) = c[P(f* > 1)]? (6.12)
for all f in M and 2>0. The choice of ¢ depends only on 4.

By (5.12), if P(f* = oc0)>0, then P(sup,f,=cc)>0. For the purpose of proving
(5.11), the assumption that E(z,| A,) =0 can be made without loss of generality.

Proof of Lemma 6.1. Using E(z, |A4,_,)=0, A1, and A2, we have that, for all 4 € 4;_;,

[ 5= [ dad+aoiz=4 [ sl 1opa)
A A A

and f ()? <f wi =P(4)
4 4

with «f =,V 0. Therefore, by Lemma 2.3,
P(x,;> 2b, A) = P(x{ > 2b, A) > b®P(4), A€ A1, k=1, (5.13)
with b-=§/8.
Let f€ M and 1> 0. Define stopping times ¢ and » as follows:

o= {n?() l’l]n+1 l >l}’
v={n:|f,|>4}.
7 =inf {n: |h,| >4}

Let u=cAv, g=f#, h=f" and

Then y <o Av. This is clearly true on the set {oc <t} and, on its complement, v=v. The
multiplier sequence defining 4 is uniformly bounded by A. Therefore, by Theorem 2.1
applied to A,

llgllz = M < 7"y lle = N A7)*p < e,

with the choice of ¢ depending only on . Accordingly, g converges almost everywhere
t0 ¢o, and
llgellz < flg*llo < 2. (5.14)

We now obtain a lower estimate. Let z = P(f* > 1); then, since b <1, we have that

either
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P(fu|>0A p<0)=in (5.15)

or P(lful <b2, |9p11]> A u< o) >} 7. (5.16)
(i) Suppose (5.15) holds. By the Lebesgue dominated convergence theorem,

f g =lim | ¢,=0.
Q o

n—-cQ

b b
Therefore, lgeelle =2 llgeell: > 5 Plga0]>82) =5 P((ful >4, < o)

=

% = cnA.

wfél

Using this inequality, (5.14), and Lemma 2.3, we have that

en® < P(gl, > cnl) < P(sup f,> cnd),

the desired inequality.
(ily Suppose (5.16) holds. Then either
z<P(lfﬂ|<bl, Vus1> A < o)
or %<P(|fﬂ]<b1,vﬂ+1<~l,‘u<°0).

Suppose the former, the other case being similar. Let
4,= {fk =z —bhve1>Apu= k}
Then, by (5.13),

TS PUA)SHE S P> 26, 4,)
k=0

k=0

N

b2 P(fy+ g1 @is1> —bA+2bA, u=k)<b 2P(sup f,> bA).
k=0 n

Since <1, we get (5.12) in this case also.

This completes the proof of Lemma 5.1.

6. Operators of matrix type

In this section, we introduce a class of operators and illustrate further the range of

application of the theorems in the preceding sections.
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An operator M is said to be of matrix type if it has the following properties:

(a) Tt is defined on H, the set of all martingale transforms relative to 4y, Ay, ...

(b) It can be written in the form
M=% (m | 2 on bl YT

where d=(d,, ds, ...) is the difference sequence of f and (a;; =1, k>1) is a matrix that satis-
fies the following conditions. Each entry a is a real A4;_,-measurable function and, for all
k=1,

c< D ap <C. (6.1)

Here are a few examples of operators of matrix type:
f-lim sup [f,;
f=8(h);

f> L = 1R+ 3 (1~ owT,

where 6, =211 f,/k.
To obtain S, take (@) to be the identity matrix. The choice of the matrix is equally

obvious for the first example. Clearly,

L) =[a3+ 353 (b= 1) a7

k=1
and so, for the third example,
ap=1 if j=1,k=1,
=i¥Ek—-1) if 2<k<j,
=0  otherwise,

and elementary calculations show that (6.1) is satisfied.
If 0=17,<7,<... is & sequence of stopping times, then

i~13 (3 Iey o <k<z) d
i=1 k=1

is another example of an operator of matrix type.
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TarEOREM 6.1.

(i) Let M be an operator of matriz type and 1 <p<oo. Then
oy |, <1< B, sup |, (6.2)

for all martingale transforms f in N, with o =CgY,, f=csky, and the choice of ¢, and C,
depending only on p.

(ii) Suppose that f is in N and

sup |[37,f], < co. (6.3)
1< n<eo

Then f converges almost everywhere. Furthermore, if N is any operator of matriz type (N may
equal M), then the sequence {N,f, A,, n>1} is a submartingale converging almost everywhere
to Nt (so that N**f = N*f), and

AP(N*f>2) < ¢ sup, || M, f||, (6.4)

for all 2,>0. The choice of ¢ depends only on ¢g.q) and C\q1, and the corresponding parameters
for N.

COROLLARY 6.1. Let 1 <p<oco. An element f€ N is L, bounded if and only if

sup || M, fll, < oo (6.5)
l€n<co

for some operator M of matriz type. If (6.5) holds, then the submartingale {M,f, n>1} con-

verges in L, to Mf and
o |, < 1l < Cll 4f|,

This corollary follows immediately from Theorem 6.1 and standard facts about sub-
martingales.

The first assertion of Corollary 6.1 is not true for p=1. Also, condition (6.5) cannot
be replaced by the simpler one, || Mf||,<oo, in the second assertion of Corollary 6.1 or
in Theorem 6.1 (i). In fact, if Mf=lim sup |f,|, then it can happen that Mf=0 but
sup, || Mo fll,=oc0, 1<p<eco.

THEOREM 6.2. Let M be an operator of matriz type. If Al and A2 are satisfied, then the
two sets {M*f< oo} and {f* < oo} are equivalent for all f belonging to M.

This theorem adds another local convergence criterion to those of Corollary 5.6:
the sequence f converges almost everywhere on a set 4 if and only if, for some operator
M of matrix type, M*f is finite almost everywhere on 4.
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Note that {Mf < co} need not be equivalent to the set where f converges. In fact, under

conditions A1 and A2, it can happen that almost everywhere Mf=0 but M*f=co.
THEOREM 6.3. Let @ be as in Section 3, and M an operator of matrix type. If Al and
A2 are satisfied, then for all f in M, M**f=M*f and

cf CD(M*f)Sf (I)(f*‘)<0J~ O(M*f).
o o} Q

The choice of ¢ and C depends only on c1q), Cg.1)» Cie.n) @nd 8, and may be made so that,

with the other paramelers fixzed, the functions cyq9— C and ci19~>1/c are nondecreasing.

In particular, if 0 <p < oo, Theorem 6.3 implies that under conditions Al and A2,
|| Ml <\, <C|| M*f||, for all fin M.

Remark 6.1. Let f belong to 0. From Theorems 6.1 (ii) and Theorem 6.3, we have
M**f=M*f, under either of the following conditions:

(a) For some operator N of matrix type, sup, || N,f[[; <eo.
{b) The sequence f belongs to M and conditions A1 and A2 hold.

However, there are operators M of matrix type such that M**f > M*f on a set of positive

measure for some f in H.

Proof of Theorem 6.1. In the proof of (i) we may assume that

j_zlafk=1, kE>1. (6.6)

To see that (6.1) may be replaced by this stronger condition, let

L8

— 21—

bk - [ ajk] !‘1
J

Gige = Qe bys

and J be the operator of matrix type corresponding to (d;). If f has difference sequence
d, let { have difference sequence d satisfying d, =b;'dy. Then dy, dp=ayd, and (4,)
satisfies (6.6). If, for example, the left-hand side of (6.2) holds for b4 , then, by (2.5),

12z fl, = 132 fll, <l fell, < H(élbfd%)* llo < ca™* Sl < ca™ [I*]]»

implying that the left-hand side of (6.2) holds for M.
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The proof rests on the two-sided inequality (2.5) for the operator § and Khintchine’s
inequality (5.7). Let 7, 75, ... be an independent sequence of functions defined on the Le-
besgue unit interval such that r, = + 1 with equal probability. Recall that, if >3, at < oo,

then the series 2 7.1 a7 () converges for almost all ¢ in the unit interval.
Let e (b, w) = jgl’"j () @ (w)

if the series converges, and zero otherwise. For each ¢, u(f,-) is 4;_;-measurable. By
(6.6) and Fubini’s theorem, the series converges for almost all @, for almost all {. Let »
be a positive integer. Then, by Khintchine’s inequality

1 P 1
Jol Eoma = |
0 0

Therefore, by (2.5),

n
UGy
k=1

,gl’"’(t) (é:laﬂc dk)

» 0 n 27 p/2
dt <c ; (;Zla”‘d")] =c(M,f)*. (6.7)

e[ |3

D 1 n /2
det>cf ‘f [Z u%di] dPdt.
0 JQ Lk=1

n
If p <2, then, on the set where > dz >0,
k=1

1 n pf2 1 n 2_1 n f2
f [z uidi] dt > f ( dz)2 s (u?c) didt
0 Lk=1 0 \k=1 k=1
n 2_1 n 1
~(2a) S e lubars s, (6.8)
k=1 k=1 o
since, by Khintchine’s inequality,

1 ® /2
f [uk[”dt>c[z a,zk] =c.
0 i=1

If 2<p< oo, then

irn /2 1an /2 n 1 /2
f [ u‘;dz] dt>[ zuzdzdt] =[z d,%f u?,dt] SeS (. (6.9)
k=1 k=1 0

0 0 k=1

Therefore, in either case,
1> e 8,07 =l iz iz

implying the right-hand side of (6.2).
19 — 702901 Acta mathematica. 124, Imprimé le 29 Mai 1970.
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To prove the left-hand side, we may suppose that ||f*|, < co. Then

lim Ay dy
n—>00 k=1

exists almost everywhere and is finite, j > 1. This follows from (6.6) and Theorem 1 of [1]:
A transform of an L, bounded martingale converges almost everywhere on the set where
its multiplier sequence is bounded. Accordingly, we have that

Mf= [42:1 (lglaﬂc dk)z]*:
and, by Fatou’s lemma,
Mfi<liminf M, f< M*f,

so that M**f= M*f. Hence
1
|3+ lz = f sup (M, <e f sup f
Qlgn<oo Qlgn<oo JO

1 ? 1 0 p/2
<cf f sup det<cf f [Z uid%] dP dt
0JQ1lgn<coo 0JQlk=1 '

from the inequality in the opposite direction to (6.7), (2.2), and the right-hand side of
(2.5). If 2<p < oo, the inequality signs in (6.8) can be reversed. If p <2, the inequality signs
in (6.9) can be reversed. Therefore

n ¥4
S wdy| dtdP
k=1

Z w, dy

k=1

1T o0 /2
f [zum] dt < eS(f)?

0

and oz <e [ sup=ellslz=elpl.
This completes the proof of (i).(1)
(ii) We prove first a special case of (6.4):

AP(S(fy>A) <c sup || M, fll,, A>0. (6.10)

Using (6.7) with p =1 and (2.3), we have that
1 n

e[ [ | 3 e
o Jalisa

1 n 3
=clf JI([Z u?cd,zc] >Z)dth.
eJo \[¥<1

(*) For the special case Mf=L(f), consult Tsuchikura [16] and Stein [15]. We are indebted to
P. W. Millar for the reference [16].

1 n 3
det>cf Z.P([Z uidi] >l) dt
0

k=1
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By (6.8) and the inequality in the opposite direction to (6.9), we have that

1/ n 3
f ( 3 ud) dt> S, (),

0

f ' (f uid,%) dt<eS, ()2

0

Therefore, by Lemma 2.3, if 1<} ¢S, (f), then
1 n 3
f 1([2 uzdz] >z) dt>e,
0 k=1

| 211l > clfﬂl(csn(f) > A) =cAP(c8,(f)>4) .

which implies that

Clearly, (6.10) follows by maximizing with respect to n.
Note that M) =2, (@nda)) =|du| (2, afa)?.
i=1 i=1

Therefore, by (6.1) and the sublinearity of M,
|da| <eM(7 ) <o(Musf + M, f),

and, by (6.3), d, is integrable. Since
Nuf< 2 N ) <c 2 |di,
k=1 k=1

this implies that &N, f is integrable. Certainly, N, f is 4,-measurable, and the submartingale
Inequality
E(Noiyf|A) 2 Nof, n=1,
follows from Jensen’s inequality for conditional expectations and the fact that N, ,f
is a convex function of d,,;. In particular {M,f, n>1} is an L, bounded submartingale.
(Note that {N,f, n=>1} need not be L, bounded: consider Mf=lim sup |f, |, Nf=S8(f), and
the example on page 1502 of [1].)
Let 2>0. There exist martingales X, Y, and Z, in ¥ such that

=X+Y+Z,

X1z < e sup (| M, Al (6.11)
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||,§1|yk|lll<c sup [ M, 1]l (6.12)
P(Z*>0)<c sup || M, f||,/A. (6.13)

(This is similar but not identical to the decompositidn of f exhibited in [8] for the case
M.,f= |f,|. For the case Mf=3S(f), see [3].) Here z, y, and z are the corresponding dif-

ference sequences defined by
ay, = dp Iz > k) — E(d I(x > k) | Ary),
Y= A I(v=F) - B(d, I(t=k) | Aey) + B(dy | Ar )
2= d I(T<k),

where 7=y Av and the stopping times y and » are defined by

w=1inf {n: M,f>41},

v =inf {n: S,(f)>1}.
(Note that the third term in the expression for y, vanishes for k>2.) Clearly, f=X+Y +Z
and X, Y, and Z are martingales in H. Also, (6.13) holds since

P(Z*>0) < P(t<oo) S P(u<oo)+ Py <o)
= P(M*f>2) +P(8(f)>2) < ¢ sup, | M, f||./A. (6.14)

Here we have used (6.10) and inequality (2.1), which also holds for submartingales. Since

22 <2dil(v>k)+2E(d: I(z> k)|,4k_1),
we have that

IIan|§=f S <t §d§1(1>k)<4f 8, 1(f)?
Qk=1 Q k=1 Q

A

= SJ NP (S,_1(f) > n)dy SCJ\

0 0

sup [ fll,dn =cd sup | M, 1]

Here we have used (6.10) and the fact that P(S,_1(f) >n) =0 for # > A. Finally, using the
inequality M,_,f< A, we have that

lIZkall|1<2f Eldkll<r=k>+j|d1|<cf (M1-1f+Mrf)+6f M,
k=1 Qk=1 Q {r<oc} Q

<eAP(r< w)-&-csupf }M,Mf+cJ-QM1f<csup | 32, f1l;.

n
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Since g=X 4 Y is an L, bounded martingale, any transform of g under a uniformly
bounded multiplier sequence converges almost everywhere. Since f=g on the set {Z =0},
any such transform of f converges almost everywhere on the same set, which, for large 4,
has small probability by (6.14). Therefore, any such transform of f converges almost every-

where on Q. In particular, f converges almost everywhere. Furthermore, each “row” of N,
n
{kzlb,kdk, n=1}

converges almost everywhere where (b;) denotes the matrix corresponding to the operator
N. Accordingly, just as in (i) for M, we have Nf < N*f= N**{.

Using our decomposition of f and inequality (2.1) applied to the submartingale {N,f,
n=>1}, we have that

P(N*{>34)<P(N*X>2)+P(N*Y>A) + P(N*Z> })
<sup ||V, X||3/4% + | N*Y||,/A + P(N*Z > 0)

<csup 1 XAl13/22 + °”k§1| Yilll/2 + P(Z*>0)
<csup || M,fll,/2- (6.4")

This implies that (6.4) holds.

To show that {N,f, n>1} converges almost everywhere to Nf, we need to show only
that {N,g, n=>1} converges almost everywhere to Ng, where g—X 4 Y, since N,f=N,g
and Nf=Ng on the set {Z=0}. Since g* is integrable and g converges almost everywhere,
we have that [|("9)*[|,—~0 as m—oco by the Lebesgue dominated convergence theorem.

‘We now use the following special case of (6.4'):
nP(N*g>n) <c|gll,, 5>0.
This implies that N**g < oo so that, for m <n,
|Nag—Ng [ < N("g) = N("g —"g") < N("g) +Ny("g) < 2N**("g).
Accordingly,

P(sup |N,g —Ng |>n) < PEN**("9)>1) < c||"g|ls/n < c]|("9)*[l/n >0 as m—co
This implies the desired convergence and completes the proof of the theorem.

Proof of Theorem 6.2. The argument follows the pattern of the proof of (5.10). In
brief, we apply Theorems 3.1 and 4.1 to M* and use the inequalities
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P(d*>1) < P(cM*f>A) (6.15)
and P(A*> ) < P(cf*> ), (6.16)

which hold for all >0, to prove a global result that implies the assertion of Theorem 6.2.
Inequality (6.15) holds since

|d,| < el S ()1t =M ) < o[ Mo f + Moo f] < cM*F;
je1

inequality (6.16) also holds since
(A = M*("Y") <c|d, | < cf*.

Proof of Theorem 6.3. Under Al and A2, M**f=M*f for all f in M: this follows on
the set {f*<oo} by Lemma 4.1 and on the set {f*=co} by Theorem 6.2. We now apply
Theorems 3.3 and 4.3. The operator M* satisfies condition B with y =1; conditions R and L
are satisfied with p, =3/2, p,=2 and n; =3/2 by Theorem 6.1 (i). Finally, both R® and L®
are satisfied for every ® by (6.15) and (6.16). Therefore Theorems 3.3 and 4.3 are applicable.
This concludes the proof.

7. Application to Brownian meotion

To illustrate how our theorems can be useful in the study of continuous parameter
martingales, we apply them to obtain new results for Brownian motion. Other applications
are possible, for example, to the theory of stochastic integration (see [13]).

Let X = {X(t), 0 <t <oo} be standard Brownian motion: if » >2 and 0 <#,<... <#;, then

X(ty) — X(t), --s X(ts) — X(tna)

are independent random variables and X(¢,) — X(t,_;) is normally distributed with expec-

tation Zero and varia,nce
1 X() — Xt D3 =t —ti-1, 1 <Ek<n.

Furthermore, for all »€Q, the map t— X(t, w) is continuous and X (0, w)=0.
Let B(f) be the smallest o-field relative to which X(a) is measurable for all 0 <a <t.

A stopping time 7 of X is a function from ( into [0, oo] such that
{t<t}€B(), 0<t<oo,

Let X7 be the process X stopped at 7: X*(t) =X (r At), 0<{ <oco. Its maximal function

is defined b
Y (X7)* = sup |X°()].
)

Lt<oo
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THEOREM 7.1. Let 0 <p < oo. If 1 is a stopping time of X, then
epllztll <X, < Coll=H- (7.1)

The choice of ¢, and C, depends only on p and may be made so that the functions p—C}5 and

p—>1/c} are nondecreasing.

This is an immediate consequence of the following theorem.

TurorREM 7.2. Let ® be as in Section 3. If T is a stopping time of X, then

cf Orh) < f PX?)*]<C f D(zh). (7.2)
Q Q Q

The choice of ¢ and C depends only on ¢ .44y and may be made so that the functions ¢ 19—~ C

and ¢ 19— 1/c are nondecreasing.

Proof of Theorem 7.2. We may assume in the proof that 7 <b for some positive integer
b. Otherwise, replace T by the stopping time v A b and note that if 7 A b satisfies (7.2) for
all positive integers b, then 7 also satisfies (7.2) by the monotone convergence theorem.

For each positive integer j, let

v;=inf {t>v:t=k/2’ for some k=1,2,...}

k kE—1\12
and wo= 2 [X (;,) - X(T)] :

Then, T<r,<t+27<b+1. (7.3)
If t is a dyadically rational number in [0, b + 1], then

lim @,;(t) =t

j->o0

almost everywhere by a theorem of Lévy [5; Theorem 2.3 of Chapter VIII]. Therefore,
since the limit function is continuous on [0, b +1] and each @, is nondecreasing, we have that
almost everywhere lim;Q);(t) =¢ uniformly for ¢ in [0, b +1]. Accordingly, by (7.3),

lim Q,(z)) =7 (7.4)
j=>00
almost everywhere. Furthermore,
f TP Q(zy)}] <oo. (7.5)

This holds for ®(a)=a? since sup,@,(t;) <sup,@,(b+1) and
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(X(b+1)% @b +1), @b +1), ...)

is a reversed martingale so that
lIsup @6+ 1)ll, < g|XG+1?, <o, p+g7=1, 1<p<co.

But this implies that (7.5) holds for general @ by the inequality
D(a) <ca™, a=1, (7.6)

where p,=10g; ¢5.10+1 and ¢ g =27 ®(1). Inequality (7.6) is an immediate consequence
of (3.11).

We are now almost ready to apply Theorem 5.2. Let j be a positive integer, A4, =
B(k/2%), k>0, and x,=2"2[X(k/2')— X([k—1]/2")], k>=1. Then x;=(z;;, Z;s, ...) is & mar-
tingale difference sequence satisfying conditions Al and A2 with é=(2/n)t. Since 2%,

has its values in {0, 1, ..., oo} and
{297, <k} = {r<k[2}€Au, k>0,
27, is a stopping time relative to 4;y, 4;, .... Therefore,
vy = (27, > k)21

is 4, ,_,-measurable and f,=(f;, fs, ...) defined by f;,=>%_1v42; is a martingale trans-
form relative to A, A;, .... Note that S(f,)=@,(z;)} and, by uniform continuity,

(X7)* < lim inf f}.
j>o00

Therefore, by Fatou’s lemma, Theorem 5.2, and the Lebesgue dominated convergence

theorem,

f O[(X7)*] <lim inff ®(f*) <c lim inf f D[S(f,)]
Q j—>00 Q j—>c0 Q

=c lim inf <I>[Q, )t = cJ‘ ®(7h).

joo0

In particular, for the constant stopping time b +1,
f O[(X**)*] < eD[(b +1)¥] < co.
Q

Agé,in, by uniform continuity,

(Xb+1)* > (X1+2_’)*__) (Xr)*
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almost everywhere as j—oco. Therefore, by Theorem 5.2 and the Lebesgue dominated

convergence theorem,

f@(ﬁ)znm D[Q, (1) <clim | (f¥)<clim f O[(X*2 )] =¢ f D[(X7)*].
Q Q j Q j>o0J (2 Q

j>o0 J—>o0
This completes the proof of Theorem 7.2,

Remark 7.1. Part of Theorem 7.1 follows immediately from Lemma 2.2. Let 0 <p <2
and note that f;, defined above, satisfies s(f,) =t}. Therefore, by Lemma 2.2,

lX7)*|l, < lim inf |||, <c lim inf ||z}||, <e¢ lim inf (Jz}]}, + 2772) <c|z?],.
j>o0 j->c0 J—>o0

CorROLLARY 7.1. If 7 is a stopping time of X such that ©* is integrable, then

f X()=0.
Q

The proof is omitted since it is similar to the proof of Corollary 5.1.

8. Further remarks and examples

This section contains remarks and counterexamples that give additional information

about the significance and precision of our assumptions.

Remark 8.1. If f is a martingale transform such that E(d} | 4, ;) <oo,k>1, then there
is a martingale transform f defined on (possibly) another probability space such that
fn =>7 10,4, n=>1, where £ satisfies A2, and the distribution of f is the same as the distri-
bution of f.

It is sufficient to construct f in the following special case. There is an independent
sequence 7= (74, 3, ...), independent of 4., such that r, takes only the values +1 with

equal probability. In this case, let

p ={dk/[E(d%: | Ac-)]F on {B(d}| Ac_1)>0},
*ln on {B(@] A =0},

&= [E(dl?: I Ak—l)]éa
and ,Zk be the o-field generated by A, and (r,, ..., 7). This gives a martingale transform
f with £ satisfying A2 and f=F.

Remark 8.2. Let x, x,, ... be an independent sequence of symmetrically distributed
random variables and f=(f,, fp, -..); fa=22-1%, n>1. There is a martingale transform f,
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fo=>2_ 18, %, n>1, defined on (possibly) another probability space, such that f has the
same distribution as f. Furthermore, the sequence £ has the property |, |=1, £>1, and so
satisfies condition A.

As in Remark 8.1, it is sufficient to construct f for the special case in which a sequence

r exists with the same properties as in the above example. In this case, let

£ z /x|  on {z,+0},
* Ty on {x, =0},

ﬁk=]xk|.

and ;4\,6_1 be the ¢-field generated by (zy, ..., %,_y, |2, ]) and (ry, ..., r,_;). The above assertion
is easily checked.

Example 8.1. Without condition A, Theorems 3.3 and 4.3 do not hold. Consider the
operator S and the function ®(b)=>", 0 <p<1. Neither ¢, nor C, exists such that the in-

equality
cp”S(f)"p <[l <G8l (8.1)

holds for all martingale transforms f.

The following example of Marcinkiewicz and Zygmund [12] shows that the right-hand
side of (8.1) fails. Let § be a positive integer and d; = (d;,, d;s, ...) an independent sequence
such that

Pdy=1)=1-(G+1)7,
P(d=—j)=G+1™

Let f;=(f;1, f;3> ...) be the martingale defined by f,,= > ¢-1d,. By an elementary calcula-

tion, we have that
it |7l /S = .

This shows that, for 0 <p <1, there is no C, such that the right-hand side holds for all
martingale transforms f.

Also, the left-hand side of (8.1) fails for 0 <p<1: consider the transform of each f,
by the multiplier sequence v=(1, —1, 1, —1, ...).

Example 8.2. If we assume only condition A2, then the double inequality

llshllo<lf*lo<CollsthHll» 7€M,

holds for p=2 but fails for any p +2. The right-hand side fails, in general, for p>2 since
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it can happen that s(f) = ||z, [|s=1 but ||f*||, = ||,||; = oo. The left-hand side fails for 0 <p <2:
Consider the sequences d; defined in Example 8.1. Let x;=(x;;, &5, ...) be defined by

T = dylj;
then each sequence z, satisfies condition A2. Define stopping times 7, by
v;=1nf {k: 2, = —j},

and martingale transforms f,=(f;, fis, ...) by

Note that s(f*)=(r;Am)*, and, by an elementary calculation,
i tim [t 7 = o

This shows that, for 0 <p <2, there is no ¢, such that the left-hand side holds.

Example 8.3. If, in Theorem 2.1, condition A is replaced by the weaker condition

E(|w | | Aey) = ¢, B(|m|e]|Ary) <OC, (8.2)

for some g, 1 <p <2, then the conclusion of that theorem no longer follows. To see this let

T =Y +2z, k=1,
where ¥y, ¥, ..., 21, %5, ... are independent random variables satisfying

Py, =k 90 =1—(k+ 1),
Py~ — k") =(k+1)7,
P(z,=1)=Plz,= —1)=1.

Let A4,={D, 2} and 4, be the ¢-field generated by x,, ..., #;, k>1. Then = (2, x,, ...) is a
martingale difference sequence satisfying condition (8.2). However, for this « the conclusion
of Theorem 2.1 does not hold. Let

= (= 1%k k=1,
with &> 0 satisfying (1 /@) —¢g> 1, so that > 2,02 < co. Now choose 1> 1 satisfying

ai, < %2,

18

k
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and let b=21. Let f=g+ h be the transform of = defined by

n n n
fo= 2 0= 2 Oty + 2 ety =g+ by, n=1,
k=1 k=1 k=1

with

0 if 1<k<m,
D, =
* a, if k>m,

where m is a positive integer such that m®>2b+ 1. Note that v*<1. Let 4 ={A*<1}.

Since =
Pr*>0< 2 apfit<i,
k=m+1
we have that P(4)> }. Now consider the stopping times
z=inf {n:|f,|>b},
v=inf {k>m:y,= —k"}.

By the Borel-Cantelli lemma, » < co almost everywhere. Moreover, 7 < » since, on the set

{v=k},

|de| =|ve 2| = @yl — | 2| = —1>m* —1>2b, k>m.

On the set 4, 7> since, if w€ 4 and % < »(w), then

@) <lga @)+ ha@)] =] > (~1HB]+] 3 aym(o) <1+A<2i=0.

-m+

Therefore, if 0 <p < p, then
up
2”(’1)*"112 I:f Id,|p] > (mf —1)2°V7.
4

Accordingly, [|(f)*|l,/b is large for large m; for the above z, the conclusion of Theorem
2.1 does not hold.

Remark 8.3. By the proof of Theorem 5.4, we know that if conditions Al and A2
are satisfied, then, for all f€ M and 1>0, -

AP(s(f)>2) < ¢||f[].

From this follows a more general inequality: if A holds and T is an operator satisfying
B and R2 with p,>1, then
AP(T>2) <¢|fll. (8.3)



QUASI-LINEAR OPERATORS ON MARTINGALES 303

for all f€M and A>0. To see this, let A>0, t=inf {n>0: s,,,(f)>4}, and f=f+7f=
g+h. Then s(g) <4, s{g) <s{f), and, by Theorem 5.3,

A A
Io*13: < het@lzz= o | 7Pl > man <o 2 Wldn = 2 ]

Also, P(s(h)>0) < P(r <o) = P(s(f) >2) <cl|f[|1/A,
sothat  P(Tf>2yl) <P(Tg>2)+P(Th>2) < cl|g*||5 /4 + P(s(h) > 0) < o||f||/A-

Therefore, to obtain the results of Section 4, we do not have to assume condition
L1 explicitly and the L1 part of condition L can be eliminated: if T is an operator satisfying
R2 with p,<p, then L1 is satisfied with 7z, =p,; if A holds and T is an operator satisfying
B and R2 with p, =g, then, by (8.3), L1 is satisfied with 7z, =1.

A companion result to (8.3) is the following. Let 0 <p <p,. If A holds and T is an
operator satisfying B and R2, then

17l < ell 7l

for all f€ M, with the choice of ¢ depending only on p and the parameters of A, B, and R2.
The proof is similar to that of Lemma 2.2 and is omitted.
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