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1. This note is a continuation of the paper published in Vol. 56, pp.
355—362, of this Journal and the notation is the same as was used at that
time. The moments of inertia for the principal axes of the body at the fixed
point are I,, I,, and I, and the components of the angular velocity along these
axes are w,, w,, wy. The centroid is at (o, o, &), Euler's angles are denoted by
(0, @, ¥), and the weight of the body by w.

2. If the usual notation for a derivative with respect to time is used,
Euler's equations for this case are

I1¢1+(13—I2)w2w3=hWSint‘)cos¢ (1)
I2 (b2 + (Il'—Is)wg W = haw sin 0 sin @ (2)
Lo, + (I,~ 1) 0, 0,= 0. (3)

The values of w,, w,, w; are

wlzécosq)-i-l/) sin 6 sin ¢ (4)
w, = — O sin @ + 1 sin 6 cos @ (s)
wy= @ + P cos 0. (6)

Tn addition there are the two well known integrals

L ol +1, w;+I; w;—T=—2whcos?t (7)
40—33617. Acta mathematica. 62. Tmprimé le 18 avril 1934.
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Liw sinfsing + Liwysinfcos ¢ + Lyw,cos 0 =k (8)
k and 7' being constants of integration.

3. The case which it is desired to study is that in which I, approaches

1 I9
1
are the moments of inertia of the body for its three

I, and I; becomes small in such a way that approaches the value p.

It le?/n Ia:,z,, and Iy
principal planes, the value of p in terms of them is

151

le L 1?/1 21
Ix: % + Il/) %

Hence if we choose the axes so that I, : is greater than [, ., it may be assumed
that p is a positive constant whose value lies between zero and one. Such a
situation can arise in case the body with a fixed point has the shape of a rod.

4. With these restrictions on the values of the moments of inertia, equa-
tions 1, 2, 3, 7, and 8 become

huw

W) W, Wy = 7 sin @ cosg (1)
1
Wy + w0, = —IlIL[/ sin 6 sin g (2")
1
W= P @, Wy (3)
W+ @l —= T—2z};hcosl9 ()
1
. . . k ,
w, sin 6 sin ¢ + w, sin fcos p = — - (8"

I,

The values of w, and w, given in (4) and (5) substituted in (7) and (8') give

92+¢2sin20: —__T—thcggﬁ and @bsingﬂzk-
I, I
Therefore
) k
V= e ©)
and

I*sin®06*=I,sin®0(T — 2 wh cos 6) — &°. (10)
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These equations determine 1 and 6 in terms of the time and show how ¢
and 6 vary in the course of the motion. They need not be discussed as they
are the well known equations of motion for a spherical pendulum.

5. If w;, w,, wg, and 1P are replaced by their values in terms of ¢ and 6,
equation (3") becomes

2 ) j
g d(¢+ kcosﬂ):p( k 0—-02)sin2¢+ pED cos2 ¢

- % I, sin® 0 2\ I? sin® I,siné
I 5\ ‘
_g(m +02)sm2(q)+ &) (11)
1
where
—k

& = arc tan ————.

I,@sin0

6. The integration of equation (11) is a simple matter if  =o0. So far
as the variation in @ and v is concerned, this corresponds to the case of a conical
pendulum. Equation (11) then becomes

2 k2

= JL sin 2 @ = L sin @ cos
? 2 I?sin?6 9 I sin? @ peosg.
From this it follows that
2 p kz .2 -}
9 Ifsingﬁsm ¢+ P

@, being the value of ¢ when ¢ =o.

t= + 19 :
- . B
Vs dhissgents

7. The case h=0. Geometrically, this is a particular case of Poinsot

Finally

motion. Analytically, it is a particular case of the solution given by Euler.
It seems of interest to note the simplifications introduced by the special values
of the moments of inertia. In this case it is no restriction to take the angular

momentum vector along the vertical O Z. This makes 0:72_77’ and from (i0)

F=VILT. From (o)
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Equation (11) becomes

2
_p_ ¥ . _»T
g = 2Ifsin’08m29) o1 sin2 .

This equation differs from the one treated in paragraph six dnly in that sin®@

has been replaced by unity.



