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C H A P T E R  I. 

Concentrated Sets. 

I have arrived at  the definition of concentra ted  sets f rom the following two 

similar problems: 

P rob lem I. What are the linear sets whose measure with respect to any con- 

tinuous monotone function q~ (1) is zero? 

Problem II .  What are the linear sets on which the variation of any con- 

tinuous monotone function is zero? 

Concentra ted  sets are defined as follows: 

A non-enumerable set of points E is said to be concentrated in the neigh- 

bourhood of an enumerable set H i f  any open set containing the set H contains also 

the set E with the exception of at most an enumerable set of points. 

w 1. Measure  wi th  respec t  to a function.  Le t  ~ (l) be a positive increasing 

funct ion sat isfying defined for  1 ~ o and such tha t  q~ (+  o) ~ o and let  E be a 

l inear  set of points. Denote  by I ~  ~l~ any sequence of intervals containing the 

whole of the set E (li denot ing both an in terval  and its length). Denote  by m ~ E 

the lower bound of the sum 

37--33617.  Acta mathematica.  62. Imprim6 le 12 f@vrier 1934. 
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for  all possible sets I ,  for  which the  length  of the la rges t  in terva l  does not  

exceed ~. The l imit  of m~E, as ). tends  to zero, we shall  call the  exter ior  

~0-measure of E ,  or the  exter ior  measure  of E wi th  respect  to ~. 

Obviously the  qg-measure of an enumerab le  set and the  var ia t ion  of a con- 

t inuous mono tone  funct ion  with respect  to an enumerab le  set are both  zero. Now 

we know t h a t  a B-measurab le  set  E e i ther  is enumerab le  or else contains  a per- 

fec t  subset  E'. I n  the  first ease the var ia t ion  of any monotone  cont inuous  func- 

t ion on E is zero. I n  the  second case E '  may be t r ans fo rmed  into an in terva l  

by means  of a mono tone  cont inuous  func t ion  f ( x ) .  The length  of such an inter- 

val is obviously the va r ia t ion  of f ( x )  with respect  to E' ,  and hence the  var ia t ion  

with  respect  to E is positive. Hence  

The only B-measurable se~ whose rariation with respect to any eonli~mous 

function is zero are enumerable sets. 1 

We shall shew t h a t  

In  the general case there are ~wn-enumerable sets whose measure is zero n, ith 

respect to any fu~ction 9~, 

but  the  proof  will be based on the  assumpt ion  t ha t  the power  of  the  conti- 

n u u m  is ~r 

w 2. We shall  first prove some pre l iminary  theorems.  

T h e o r e m  1. A necessary aJ~d sufficient condition for a li~ear set E to be of 

measure zero with respect to any f~l~ctio~ qD (l) is that give~ any decreasing sequence 

of positive numbers 

~i, i~--- 1 , 2 , . . . ,  

however rapidly te~ding to zero, there always exists a seque~we I of intervals 

(x~, x'/), x ' / - -x~  <= li, containing the whole of the set E .  

to 

The condition is necessary. For  let  E be a set of measure  zero wi th  respect  

any  funct ion  and li ( i ~  I ,  2 , . . . )  assume tha t  there  exists any decreasing 

1 L. C. YOUNG. ~Note on the  theory of measure.  Proceedings of the  Cambridge Philosoph- 

ical Society. Vol: X X V I .  Par t  1. 

L. C. Youx 'o  considers variat ion of a function on a given set as measure  of this  set. The 

definition we are us ing  is not  so general and it  is not  obvious tha t  if variation of some funct ions 

on a given set is posit ive then also measure  of the set  with respect to some function is positive. 

We shall  consider in w 3 B-measurable  sets of measure  zero wi th  respect to any function. 
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sequence of positive numbers.  Define an increasing funct ion ~ (1) sat isfying the 

condit ions 
I 

~0 (li) :'=- -. for  i -~ I,  2, . . . 

Obviously 9 ( + o ) - - o ,  and consequently m,p E is defined and by hypothesis  is 

equal to zero. Therefore  there  exists a set I of intervals (x$, x'/), x ~ ' - - x ~ =  l;, 

decreasing in length,  conta ining the whole of the set E and such tha t  

Then  for  any n 

~ ,  ~ (1;) < , .  

> ~ ~ (l;) >= ~, ~ (1,'~), 
i = 1  

i. e. 

~t~ < - 
% s  

n 

t 

1,, < 1,, 

and the condit ion is there fore  satisfied. 

The condition is also sufficient. For  suppose a set E satisfies this condit ion:  

then given a funct ion T(1) sat isfying the usual conditions and two positive 

constants  ~, ~ we can always find a sequence of positive numbers  l~ < ~ such tha t  

~ (1;) < 

and then  a sequence I of intervals (x'i, x~'), x~'--x~ ~-l i ,  containing/~' ,  which shews 

tha t  measure of E with respect  to 99 (1) is zero. 

3. We can now solve the problem ment ioned in the footnote  to w 1. 

T h e o r e m  2. The only B-measurable sets of  measure zero with respect to any 

function are enumerable sets. For any perfect set P there exists a function ~ (l) 

with respect to which the measure of  the set is positive. 

On account  of 2 the theorem will be proved if we prove tha t  given any 

perfect  set P there  exists a sequence of positive numbers  l~, n =  I ,  2 , . . .  such 

tha t  no set of intervals of lengths l~, l~ , . . ,  can cover the whole of the set P. 

Obviously the set P cannot  be covered with one in terval  of arbi t rar i ly  small 
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length.  Le t  ).~ be the lower bound of the length of an interval  which covers 

the whole of P (evidently).~ is the  distance between the extreme points of P). 

Take for  ll an a rb i t ra ry  positive number  less than  ~l. 

I t  is also easy to shew tha t  the set E cannot  be covered with one in terval  

of length  l~ and another  in terval  of arbi t rar i ly  small length.  Otherwise let  two 

intervals 

(x,,  x ,  + l~), (y,,, y ,  + 12,,) 

where 4 , , - ~ o ,  as n - ~ o c ,  cover the whole of P for any ~. Le t  (x,y)  b e a l i m i t  

point  of (x, ,yn).  Then for  any ~ the two intervals 

(x --  ~, x + ll + e), ( y - -  e , y + ~) 

cover P .  Consequently the set P is included in the set consist ing of the interval  

( x , x  + l~) and of the point  y. Being a perfect  set, P has no isolated point  and 

thus is conta ined in the interval  (x, x + l~), which is impossible. 

Le t  E.o be the lower bound of the length  of an interval  which toge ther  

with another  interval  of length  l~ covers the whole of the set P .  Denot ing  by 

4 a positive number  less than  ).~ we have tha t  no pair  of intervals  of lengths  

l~, 4 can cover the whole of the set P.  Similarly we can find/3 > o such tha t  no 

three intervals  of lengths 11, [~,l~ can cover the  whole of P,  and so on. Thus 

we arrive at  a sequence of positive numbers  

ll, 4,  �9 �9 �9 

such tha t  no finite set of intervals  whose lengths are represented by different  

numbers  of the sequence, can cover the set P.  Then  by the Heine-Borel  theorem 

no infinite set of intervals  of lengths 

ll, 4 ,  �9 .. 

can cover the set P ,  which proves the theorem. 

w 4. Theo rem 3. I f  the measure o f  a set E is zero wi th  respect to any 

func t ion  q~ (1), then the variation o f  any monotone continuous func t ion  f ( x )  on E is" zero. 

Denote  by 0 ( f ( x ) , l )  the upper  bound of the oscillation of f ( x )  on any 

interval  of length 1. Obviously 

O{f(x),  1) ~ o ,  as l - ~ o .  

Consequently,  given ~ > o we can always find a decreasing sequence of positive 

numbers  l~, i =  I,  2 , . . .  such tha t  
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F, o {f(x), l,} < , .  
i = l  

On the other  hand,  by Theorem I the set E can be included in a set of intervals 

(x~,x'/),x~'--x'~<l~. Then denot ing by Vf.E the var ia t ion of f(x) on the set E 

we have 

V/ E <= ~ { f (x;') - - f (x ; )}  

<= o{f( . ) ,  l,} 

which proves the theorem. 

Af ter  these prel iminary theorems have been proved we can pass to the main 

problem of this note, i .e. ,  ~o the proof  of the existence of non-enumerable  

sets of measure zero with respect  to any funct ion 9(l) .  I t  can be easily shewn 

tha t  concentra ted  sets, if t h e y  exist, are of measure zero with respect  to any 

funct ion  9(1). For  let E be a set concent ra ted  in the neighbourhood of a set 

~ (n==I 2 .) and {ln} an arb i t rary  sequence of positive numbers.  By ~. X n I  ~ , �9 �9 

I I 1,2,~)contains all points of E the definition the set of intervals (xn- -2  l~,  x,~ + 2 

except at  most an enumerable  set of them, which can be included in intervals 

of length l~ , l~ , . . .  Consequently by Theorem I the set E is of measure zero 

with respect  to an 3 ' function.  

Thus our problem reduces to the proof  of the existence of concent ra ted  sets. 

w 5. This proof  will be based on the existence of a transfinite sequence 

{~i) of positive decreasing funct ions which will be called a fundamenta l  sequence. 

We say t ha t  a funct ion f (n )  is ultimately greater than (greater than or equal 
to) another function g (n), and we write 

f ( n )  ~- g (n) 

(f(n).= g (n)), 

if  there  exists a number  % such tha t  
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f(u)  > g (n) 

(f(n) >_- g (.)) 
for  n > no. 

Definition. A sequence ~ qDi (n)i, where i takes all values less than %, % being 

the first transfinite number of  power ~r is called a fundamental sequence i f  any :positive 

function f (n)  ultimately greater tha~, all ~i(n) except at most an enumerable set 

of  them. 

The existence of such a sequence can be established in the fol lowing way. 

W e  first order  the set of all positive decreasing funct ions into a sequence off (n) 

i tak ing  all values less t han  to 1. 

We then define 

~, (n) -~-fl (n) 

q~, (n) = min {qg~ (n),f~ (n)} 

9% (n) ~-- m i n '  , q~_. (n ) , fa  (n)} 
and so on. 

For  any transfini te number  i + I of the f irs t  class we put  

~0i+ 1 (1~) = m i n  (r ( , , ) , f l + l  (1~)). 

For  any transfini te  number  i of the second class we first define a sequence 

kt (1 < ~Oo, co o being the first transfinite number  of power too) 

of increasing transfinite numbers  such tha t  

lim kt = i. 

Then  we define ~i(1) for  any l by the equat ion 

~i (l) ---- min {%. (l), ~kl (/), �9 �9 ~'~ (/)}. 

In  this way the sequence 

is defined, where i 'takes all values less than  r The sequence possesses the 

fol lowing propert ies:  

(i) For any i < ~o 1 

f ,  (.) > (.) 

(ii) Any  9Di (u) is a decreasing function. 
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(iii) I f  i < k, then 
q,,(,,) *_- ~k (,,). 

The propert ies (i), (ii) are obvious. In  order to prove (iii) we observe that  

~, (n) *= 9~ (n) *__ ~ ( n ) . . .  

Suppose tha t  these inequalities have been proved for  all indices less than  i. 

Then if i is a transfinite number  of the first class, we have 

by the definition of ~( , , ) .  I f  i is of the second class, then 

i = lira kl 

and again from the definition of 9~/(n) we conclude that  

for all l, and consequently 

for a n y j < i .  

(iv) To any transfinite number  i < % corresponds an i ' >  i and less than 

to1, such that  

For, all decreasing functions having been enumerated we have 

~2 r  (') = ~ '  (n) 

where i' must  be greater  than i since ~i (n) >-f/' (n) . 

~, (~) ~ ~,, (,). 

Let  now g (n.)be any positive function. 

Define f(n) by the condit ion 

f(,~) = rain g (,n) 

f(n) is a decreasing funct ion and consequently 

f (n)  = j ~  (,,), ; < o,, 
and thus 

f(n) ~- q~, (n) 

and as there exists i ' >  i such t h a t  ~(n)~-T~,  (n) we have that  

a s  .~, (,,) ~ ~,, (,,) we have 

fo r  I ~ m = - < ~ .  
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f ( n )  > ~0j (n) for  all j ~ i '  

i. e., for  all j except  an enumerable  set of values. Thus the sequence 

(~ , (n) )  
is fundamental .  

w 6. Lemma.  Let  ~x~*j, (~ < COo), be a set of  poi~ts everywhere dense, ~ yn 

any enumerable set of  points and f ( n )  any positi~:e Ju~etion. There always exists a 

poi~t a &:brerent from all y~ and such that the inequality 

[ a - -  x .  [ < f ( , , )  

is satisfied jbr  infiMtely ma~y values of  n. 

Take an arb i t rary  positive in teger  ~h and the interval  (x ,~- -~ t ,x , ,  + ~),  

where ~a <f(n~)  and is so small t ha t  the in terval  does not  contain any of the 

numbers  Yl, Y ~ , . . . , Y , ,  different  f rom x, , .  Take now an in teger  ~ > J q  and a 

positive number  ).e < f ( n e )  such tha t  the interval  ( x , . - ) .~ ,  x~: + ).~) is contained 

in the interval  (x , , - - ) . l ,  x,~ +)-l) and does not  contain any of the nmnbers  

y~, y,_, . . . . .  yn: different f rom xn~, and so on. 

In  th i s  way we arrive at  a sequence of intervals 

(x, i -  Xi, x,, i + ).i) i -= I, z ,  . . .  < ~o o 

each of them being in ter ior  to the preceding one. Any point  a inter ior  to all 

these intervals (if ~i--~ o there  is only one such point) is different  f rom all y,~ 

and satisfies the conditions 

I -x,,I < z; 

< f (n i )  f o r  i = I ,  2 , . . .  

which proves the lemma. 

w 7. W e  shall now 

Let  ~i (n), (i < oq), be 

const ruct  a concentra ted set of points of power ~1. 

a 

everywhere dense set of points. 

such tha t  the  inequal i ty  

fundamenta l  sequence of funct ions and ~ x,~ j an 

Take a point  cq different  f rom all points x,~ and 

161 - I < ( ' )  

is satisfied for  infinitely many values of ~. Then choose a point  a.~ different  

f rom all xn and f rom a I and such tha t  the inequal i ty  

I ",  - x~ I < (") 
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is satisfied for infinitely many values of n. W h e n  ak has been defined for  all 

k < i  we define a~ to be different f rom all x,~ and from all ak, k < i ,  and to 

satisfy the inequal i ty  l a~--x~[ < 9~(n) for  infinitely many values of n. Thus we 

arrive at  a se~ of points t~ai~, (i < Wl). 

Le t  now {ln} be an a rb i t ra ry  sequence of positive numbers.  Take the set 

of intervals  (x~--l~,xn+ln),  n = I , 2 , . . ,  and write f ( n ) = l n .  Le~ i 0 be the 

least transfinite number  such tha t  

f(n) (n). 

Take now any i > i  0. We  know th a t  

< r  

for  infinitely many values of n and thus 

[ a,  - -  x~ I < f ( n )  

for  infinitely many  values of n. Thus among all the in te rva l s  (x~--l~, x,,+ l,) 

there  are infinitely many ones conta ining a~ for  any i > i  o. The se~ of points 

a ~ , . . ,  a,. o being enumerable  we conclude tha t  the set of points ai, ( i <  eo~), is 

concent ra ted  in the ne ighbourhood of the set {xn} and thus  our problem is solved. 

C H A P T E R  I I .  

Rarified Sets. 

I have arr ived at  the definit ion of rarified sets f rom the fol lowing:  

Problem.  Has every plane set of infinite linear measure a subset of finite 

measure ? 

This seems obvious and yet  it  is not  the case. 

We shall construct  a linearly measurable plane set of infinite measure, every 

subset of which is either of infinite measure or of measure zero. 

The solution will be given by rarified sets. They are defined as follows: 

A non-enumerable plane set is said to be rarified i f  any subset of this 

set, of plane measure zero, consists of at most an euumerable set of points. 

The construct ion of most  rarified sets will be based on the assumption tha t  

the power of the cont inuum is ~r 

Denote  by E any set of plane measure zero which can be represented by 

the product  

38- -33617 .  Acta mathematica. 62. Imprim~ ]e 18 avrl l  1934. 
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E =  l ~ A i  
1 

where each A~ is an open set. As any open set is defined by an enumerable 

set of points (for instance by the points with rat ional  coordinates belonging to 

the set), then  so is any set E.  

Now the aggregate of all enumerable sets of points on a plane is known 

to have the power of the continuum. Hence the aggregate of  all the sets E has 

power of' continmlm. 

Let  now two transfinite sequences El, Pi, i running  th rough  all values of 

power less than  ~ ,  represent all the sets E and all perfect sets of positive plane 

measure, belonging to the square (o =< x =< I, o_--< y < 1). 

Denote by 21I 1 an arbi trary point of the set 

P,  - E,  P , ,  

by M~ an arbi trary point of the set 

P ~ - ( E ~  + E~) P_~ 

different from ~1I~, by ~]I~ an arbi trary point of 

different from 31~ and 3[~, and so on. Af ter  we have defined 21'[i for all i < i0, 

21/:.,0 will be defined as an arbi trary point of 

P;o - (E, + E~ + 

different from all the points Mi for i < io. 

For, the set 

�9 :, + E~ + .  

�9 + E , o )  Pio 

Such a point exists for any i o < w 1. 

+E,.o 

is of plane measure zero, since it is the sum of an enumerable set of sets, each 

of plane measure zero. On the other hand /9,.o is of positive plane measure and 

consequently so is the set 

P , o - - ( E 1  + ~ + ' + E,,,) P,o 

and thus it contains more than  an enumerable set of points. Hence it must  

contain points different from an enumerable set of points Mi, (i < i0). 

Denote by G the set of all the points Mi. 
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(i) The exterior plane measure of G is I. 

For  by construct ion the complementary  set of G in the square (o G x ~ I ,  

o _--< y G I) does not  contain any perfect  subset of positive plane measure. 

Corol lary .  The exterior linear measure of G is i~finite. 

(ii) The intersection of G with any set Eio is an enumerable set. 

For  the points of G conta ined in Eio are all among the points Mi 

(i 1 , 2 , . . . < i 0 ) .  

(iii) Any subset oJ G of plane measure zero is an enumerable set. 

For,  any such set is contained in a set El. 

Corol la ry  1. G is a rarified set. 

CoroUary  9.. The set G is linearly measurable. 

For  let  H be any set of finite positive exter ior  l inear  measure t t * H ,  a 

fortiori of plane measure z e r o .  

The set G .  H being enumerable  we have 

and thus 

~ * ( H - -  G �9 H ) :  ~ * H  

t t * G . H = o  

~ * H  = t** ( H - -  G �9 H) + #* G .  H 

which proves the corollary. 

Theorem. The set G has no subset of finite positive exterior linear measure. 

For  let H be a subset of G of finite exter ior  l inear  measure.  Then  by 

(iii) G~ H is an enumerable  set and so is H ,  since G .  H =  H .  

Thus the set G gives a solution of the problem of this chapter .  

Note  some other  propert ies  of the set G. 

(iv) The set G being itself measurable has no non-measurable subset. 

(v) The set G is not measurable with respect to plane measure. 

For  if it  were measurable its measure would be equal to its exter ior  measure, 

i .e . ,  to I. Then  by the Fubini  theorem its intersection with allmost all lines 

of the square, parallel to the sides of the square, will be sets of l inear  measure 

I, which is impossible by (iii). 

Thus G gives an example of a set which is measurable with respect to linear 

measure and non-measurable with respect to plane measure. 
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The  converse phenomenon  is, of course, very t r ivial  since any set lying on 

a s t r a igh t  line is of plane measure  zero but  need not  be l inear ly measurable .  

R e m a r k .  W e  can remove the  above anomalous  possibil i t ies by in t roduc ing  

a new definit ion of measurab le  sets. 

Definit ion.  A set H is said to be linearly measurable ~f it ea~ be represented 

by the difference of the product of a fi~ite or enttmerably i~2fi~,ite set of open sets 

and of a set of linear measure zero. 


