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1°. Introduction. Our present object is to develop, on the basis of the
Jormal solutions and without any restrictions on the roots of the corresponding char-

acteristic equation, the analytic theory of a linear differential equation of order n

(A)  La(y)=ap(@)y™ (@) + a, (@)y™(x) + - + an1(@)yWz) + an(2)y (@) =0
[a0(z) = 0;  an(®) == 0]

from the point of view of the asymptotic nature of the solutions. Such a study will
be given for the mneighborhood of a singular point (regular or irregular). This
point will be taken at infinity. The coefficients in (A) will be supposed to be

analytic for |z|= e (|z|) # «), being representable by convergent series of the
form -

g ¥ 1 1 —2
(1) alx)=ayx? + ay1x ? + - +a 2P +a,+agx P +amx P,
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where p(= 1) is an integer. More generally, the coefficients in (A) may be
allowed to be merely asymptotic in certain regions to series of the form (1). In
this case these series may be divergent, and the results of the paper would apply,
of course, to correspondingly restricted neighborhoods of infinity. It will be
assumed that not all the coefficients of the series (1), which correspond to a,(x)
and an(x), are zero.

The development of a theory of an equation (A) is essentially equivalent to
that of a system of order =,

(B) Y0(2) = Y(z) 4(2), Y@)=(yi;(x), Alz)=(a;(x)

(£,7=1,2,...n)

Here matrix notation is used with a; ;(x), for instance, denoting the element of
the matrix A (x)[= (a;;(z))] in the /-th row and j-th column. The determinant
|{(a;,j(x))| = 0. The elements of a row in Y (z) will denote a solution. As in
the case of the coefficients in (A), the coefficients in (B) are either representable
by convergent series of the form (1) or are asymtotic (in certain regions) to such,
possibly divergent, series. In the case when |(a;;))| is merely asymptotic to a
series (1) it will be assumed that not all the coefficients in the series are zero.
An equation (A) or a system (B), of the above kind, will be said to be
stngular. Whenever necessary, it will be said that an equation or system is
singular in a region R. It is evident that the class of singular equations in-
cludes every equation which has at infinity a singular point of (any) rank K.
Of the number of earlier treatments, of the type undertaken here, we shall
mention the two papers most relevant to the present work. There is a paper
by Poincaré' in which an equation of rank one is treated. In a later paper, by
G. D. Birkhoff?, the case of equations of any finite rank is considered. H. Poin-
caré employs Laplace integrals, and G. D. Birkhoff's work is based on certain
generalizations of these integrals. The methods of these two writers, while
applicable to the case of unequal roots of the characteristic equation, lead to
indefinite algebraic complications when the treatment of the truly general case
of unrestricted roots and any rank is attempted. Subsequent to the mentioned
works of these two writers no additionally significant advances have been made

in so far as the asymptotic nature of the solutions is concerned in the general

! H. Poincaré, American Journal of Mathematics, vol. 7 (1885), pp. 203—258. .
® G. D. Brikhoff, Trans. Am. Math. Soc., vol. 10 (1909), pp. 436—470. Cf. alse J. Horn,
Math. Zeit., vol. 21 (1924), pp. 85—95; here many references are given.
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case now under consideration. Several other well known recent works are im-
portant in certain directions different from those pursued in the present paper.

In dealing with the general case under consideration the present author
found it necessary to develop and apply an entirely different method of attack.
The key to this method is developed in section 6 concerning Iterations. Itera--
tions here are of significance analogous to that of (being inspired-by) the im-
portant method of iterations originally developed by G. D. Birkhoff in the field
of difference equations.

The fields” of differential, difference and q-diﬁ'erence' equations are to a
considerable degree analogous. In all three the case of restricted roots of the
corresponding characteristic equation had been treated first. The unrestricted
case of difference equations (from the point of view of asymptotic properties)
has been treated in a joint paper by the present author and G. D. Birkhoff.®
The general case of g-difference equations has been treated by the present author.?
In this sense the present paper is to fill the remaining gap.

1. Preliminary Facts. A singular equation (A) will remain singular after
division by a,(x). Accordingly, without any loss of generality we let a,(z)=1.
Closely associated with the equation (A) is the system (which will be singular)

(D) YW x)=Y (@) D),  Y(x)= (),
0, o, , — ap()
I, 0,..., —aui(x) v
D@y=30, 1,..., ... e = (ds, 5 (2)).
O, vy 1, —a,(x)

Whenever Y (x) = (y; ;(x)) is a matrix solution of (D) it will necessarily follow that
(1) i, 5(@) =y () (G,j=1,2,...n)

Moreover, the elements of the first column will constitute a full set of solutions
of the equation (A). Conversely, if

! G. D. Birkhoff and W. J. Trjitzinsky, Analytic Theory of Singular Difference Equations,
Acta mathematica, vol. 60 (1933), pp. 1—89. '
® W. J. Trjitzinsky, Analytic Theory of Linear q-difference Equations, Acta mathematica,
vol. 61 (1933), pp. 1~—38."
22—33617. Actu mathematica. 62. Imprimé le 6 novembre 1933.
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yi(x) = yi (@) (t=1,2,...7)
form a complete set of solutions of (A),

(2) Y (@) = (s, (@) = (v 7 (=)

will constitute a matrix solution of (D).

The non-homogeneous equation

(3) L, (y) =z ()
will be satisfied by y(x),

( vl = S @) f £ (@) i 2 (@) daz,

where the elements j; j(x) are those of the inverse of the matrix (y/;"(x)); that is,
(4 a) (71,5 (@) = (7 (@)

This holds, of course, only inasmuch as the integrations in (4) remain valid.
A singular equation (A) will always possess a full set of formal series

solutions of the form

r=l;—1 Ii—

(5) si(x) = U xrig; (x), Qilz)= Z ¢ x ki
=0
(5 a) 0:(x) = o} (x) + o} (x)logx + - + o™ (x)log ™ (x),
1 ' 2
(5 b) o¥(x)=oM 0+ g la i+ oz R4
(M=o0,1,...m; 2=1,2,...n),

where l,-,,v my, ki are i‘ntegersv(mi = 0; ki =r;p; integer r; = 1).}

Whenever any of the coefficients in (A) are merely asymptotic to series of
the form (1; § 1°) the formal solutions are those satisfying the modified formal
equation (A’), which is obtained by replacing the coefficients in (A) by the series
(1; § 1°). to- which these coefficients are asymptotic. The existence of a full set
(that is, a linearly independent set) of » formal series solutions of the type (5)

' Except with x and log x, superscripts here do not denote powers.
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is a consequence of the work of Fabry.! These series, in general, do not con-
verge. The formal series can be arranged in groups so that the exponential
factors

eQ(m) ar

I

of the series belonging to a particular group are the same.?* On the other hand,
the elements of such a group can and will be so ordered,

e g Op+1 (m), e g Op+2 (x)a sy e g7 Op+q (a’)),
that mpi1=0, Mmpya=1,...Mpig=¢q — 1. Such groups will be called loga-
rithmaec. :
A series o(x) of the form (5 a), (5 b) will be termed a o-series.

Let 1=I'<mn. If the first I formal series (5) contain only complete
logarithmic groups, the determinant of order I’

(6) ‘ | (s ()| (¢, j=1,2,...1),

when formally computed as a series of the type (5), will contain no logarithms.

In the case of a system (B) we have a formal matrix solution

(7) 8 (@) = (81,5 (x) = (%™ 2™, 5 0:, (%)),
where the o;;(x) (/,j=1,...n) are o-series. For a fixed 7 the numbers
75,5 (J=1,2,...n) may differ only by rational numbers. Facts analogous to

those stated concerning the series (5) will hold for the elements of S(2). Such
a matrix can always.be found so that, formally, the determinant | S(x}| does not
vanish.

2. The ¢, @. and (. Curves and Regions RE. In the sequel it will be
essential to consider branches, extending to infinity, along which ‘

(1) R il6)=o0 @:,5(e) = Qi (e) — @i ()]

for some 7 and j (¢ 5£5). Such a branch will be termed a @ curve®

! E. Fabry, Sur les intégrales des équations différentielles linéaires i coefficients rationnels,
Thése, 1885, Paris.

2 Except, possibly, the values of r, associated with the same group, may differ by rational
fractions. ) :
EYe=a+V —1b, Rec=a.
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We are interested in the properties of a ¢ curve in the neighborhood of
infinity. On writing
y=—1 l—
(2) Q)= D gzt
v=0
lgo=lg. &=t z=re =19 gy=o; 1z1],

it follows that

(3) R Q(z)=§l|q¢|1-t’;cos [&v + (l;v)GJ-

Along the particular curve ¢ under consideration

14 , .

ot B -1 _r . l
4 7 kgﬁQ(Z)ZIQOlcos(QO + éf)) + ZIIQvIT ¥ cos [qy + (71)0] =o.

Thus, along @,

) = ! < — — {—w
(4 a) I 9| cos (!lo + ;0) = Zl lg.|r *cos [q'r + (—k—) 0]-
In (4 a) let r > . Hence, on writing the equation of @ in the form

(5) §=10(r),
it follows that
lim | g, | cos ((}o + %0(7')) =o.

Consequently every @ curve is of the form

(5 a) T 6 =1, + p, (1),

where re is a value such that
(5 b) cos (qo + ;ro) =0

and lim p, (r) =o0. In other words, erery @ curve has a limiting direction 0 =r,

at infinity which s given by (5 b). The various @ curves, satisfying the equa-
tion R Q(2) =0, have their limiting directions all distinct from each other.
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If
o1 =1 _ 1 .
(5 ¢) cos go + 7 70) = cos Gy + o) = =cos o+ 1) =0

it is clear that the ¢ curve will consist of the ray 0 =r,.
Suppose now that

~ 1 _ =1 l—t+1
(6) cos qo-rzro)=cos q1+—~‘7fc-—ro =---=cos [ q— 1+—k 7o) =0
o=t—1<l—1),
while
(6 a) » cos(§t+%l7"o)%o, q: 7 0.

i
On substituting (3 a) we have, corresponding to every power a*f (I=j=!—1t+ 1)
which actually enters in @(z), '

3 J N R Y| .
(7} cos [qj- + ot ;pl(")] = —sin (‘Zj + %"o) sm%pl (r) = gisiny-p ()-

In (7) gj= — 1, whenever

g+ %7'0 = 12‘ +2Am (2, an integer].

In the contrary case g;=I.
Thus, in the case of (6) and (6 a) substitution of (5 a) in (4) will give, in
virtue of (7) and for z on @,

NG | . sin (/i P )) J—I—t+1 (z_) sin (%p,(r))
s (R =lalg— - 2 lailgsr M7=+

Jj=t—1

o~

]___t ]—t a=l—1—t ;
'TthlCOb q + —kvro—l——-kﬁp,(r) + Z |geaelr *-

%=1
- l—t—= Il —t—x
"eos | grn t Ty ry + »nnl =o.

Z

! The members corresponding to terms in ¢ (2} not actually present are to be omitted.
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In particular, (8) will hold in the limit as » — . Accordingly,

w(o) e
[ gl g li.I,n ~pl@—)—ﬁ+ | g¢| cos (_q, + ro) Ii:n 2 =0
so that
 lim TE_ o lalel 1

From (8 a) and in view of (6 a) it follows that the curve @ is of the form

t

(8 b) 0=0()=ry+rr F(1+ &) (1=t=1; r, #0),

where lime(r)=o0 (in the case when it does not consist of the ray 6= r,; that

is, provided (6), (6 a) hold). _

Let the position of any point P on the curve @ be defined by a pair of
numbers, («,v), where v is the distance from P to the ray 6 =r, and u is the
distance from the origin to the foot of the perpendicular from P to the ray.
The convention will be made that v > o when p, (r) > o0 and that v < o whenever
p,(r) <o. It will follow then that

(9) r=u V 1+ (i—)2 =u(1 +&(r) (liin & (r)=o0),

since in view of the relation

(0 a) P TACE DU CE NG (tim & (r) = )
we have
i3 —o
From (o)
(© b) | e TR (4 e 0) (lim e (r) = ).

Thus, on taking account of (9 a) and of the fact that » and » approach
infinity simultaneously, every curve ¢ is seen to be of the form
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(10) v=ryuF (1 + E(u)

(with the rectangular coordinates (u,v) taken with respect to the ray 6 =r,, as
the U axis).

Thus a @ curve is either the ray 6 = r, (whenever (5 ¢} holds) or it is the
ray v =1, 7 0 (whenever k=1¢ and £(u) in (10) is zero). If the curve does not
consist of any of these rays, it will be either asymptotic to the ray & =7,
(whenever 0>%—1¢) or it will be asymptotic to the ray v=17; (whenever
0=k —t) or it will possess no asymptote. The latter will be the case whenever
k— ¢t > o; the curve will then recede indefinitely from the ray 6 = .

¢ curves form a special ease of @, curves. A Q. curve will be defined as
a z-branch extending to infinity along which

(11) R Q) = g[= % Q).

Such a curve extends from z=2x. The equation (1), with ¢ = 0, will define @
curves.
We shall write

1
(11 a) r =g,

The equation (11) can be expressed in the form

' -1 _
(08 FHRQE —a)= Slaleos |7 + 0| y—0¥ =409 =0.
. 4':0"-

On noting that

, - l
(11 o) £16,0)=lay]eos (2 + 1 6)
it is observed that the equation f;(f,0) = 0 has only real, simple roots. These
values are identical with the limiting directions, obtained before, of the various
@ curves, satisfying the equation i Q(2) =o0. Let 6 =1, be one of these values.
The third member in (11 b) is entire in =0 — 7, and J. Thus,

(II d) fl(a,%)zf("?’%):i Zﬁh"ﬂngw (JB,O:O).

D k=0 =0
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_ l l
S0 =laoleos (ao + 40+ 4 7o),
it follows that
(11 ) ﬁyo———-lAEL—q—“fl#o [hé—sin(bo+]€7'o)=i1]-

On the other hand,
{—1 I
_ ! —
0. 9= = Slaleos [ + (52) 0| v ~a3= 3 s
r=1

r=1

Hence we may write
(i1 8) ﬁ,g=|qa|cos(ag+»’—}c‘—~ro) o=1,...1—1),

(11 g) Joi=—4a, fo1ex=0 (r=1,2,...).

By the theory of implicit functions to the pair of values 5= o0 (that is,

6 =r,), I=o0 there corresponds a solution satisfying (11 b),
(12) 0_7‘0=77=7]13+"7:C\\52+""

The series in the last member of (12) converges in the complex J-plane for
[3]=3,(S > o0). Since the f;,, are real it follows easily that the 5; (i=1,2,...)
are also real. To examine the 7, in greater detail (12) will be substituted in
(11 b). Thus,

® i
(12 a) 2 DS+ I =o0.

n=0 v=0

In view of satisfied conditions of convergence, rearrangement of terms is pos-
sible. We obtain

2 /fm3"=o,
so that ‘ "
(13) Si=from + fo1=0,
(13 a) Sn=fi0mm + bn(ny, 75, . .. Yma1) + Sfo,m =

m=2,3,...).
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Here the functions hn(n,,7ms, ... m—1) are real for 7, 7m,, ... nm—1 real, they
do not involve the constants f;; and hence they are independent of ¢; moreover,
hwm(0,0,...0)=o0.

Consider the case of (6), (6 a). Successive application of (13) and (13 a)
will give

(13 b) N =My = == 1y—1= 0.

From (13 a; m =#¢) it will follow that

— fo,t

13 ¢ =Ll o,

(13 o) ne o #

In view of (11 e), (11 f) and (6 a), this agrees with the corresponding result

obtained before (7, = #). In general, successive application of (13 a), for

m==%,...1— 1, will determine uniquely the constants 7, 7:+1, ... q—1. These
constants will be independent of ¢ since the equations (13), (13a; m=12,3,...1—1)
do not contain ¢. On the other hand, #, 941, ... will involve ¢. In faect,

Juom + hln, ... ) —q=o0
so that

k
d o 0 g = %
13 d) WL (?b Lh| gl O)’

where 77 is independent of gq. ‘
Thus, in the case of (6), (6 a) the . curve, whose limiting direction at infinity
is ry and which satisfies the equation (11), 7s given by the equation

t _(tj 1—1 4

(14) 0=0, =1y + qrr 4+ qpyqr \F ) + --~+'nz_1r—( k ) L (wg + )y E 4
1

Nty Net1, - - - qu—1, 70 endependent of x; z =re —19), the series being convergent
Jor r =1 >o0. In the case of (5 c) in place of (14) we have

12 [
(14 a) O0=0,=r,+ (wqg+q)r ¥+ npr (">+--~ (r=1")

It is observed, then, that @ Q. curve has always the limiting direction of a
corresponding @ curve. On letting ¢ =0 in (14) a @ curve, whose limiting direction

23—-33617. Acta mathematica. 62. Imprimé le 7 novembre 1933.
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is 1, and which does not consist of the ray 6 = ry, vs seen to be expressible in the
Jorm
t i—1

t+1
(14 b) 0=r,+ mr——E-{- Ne+1 ’.—(”k;) + o+ ,,.—( k ) + ,'7?7._

(=1 —19).

o~
,

Let z; =re’ —1% be on the curve Q. given by (14) or (14 a); let 2 =r =10
be on the corresponding ¢ curve. Then

A __(l,i”},)
(14 ¢) 0, —0=1wqr *+pir ‘P 4+

Counsider a function N @ (2) which vanishes along a ¢ curve, whose equation

is 0=10(r). NQ(z) will be positive in some region R, extending to infinity and
lying to one side of ¢. With » tixed (r = o)

(15) RQ(re 1)

will increase monotonically as @ varies from 6 =6 (r) to some value 6 = 0% (r)
@(r) = 0%(r), as the case may bel. The value 6%(r) could be defined as the
root 8 satisfying the equation

P i
15 a TR o) —16)

(15 a) g RO —19)=0

and lying nearest to 6 =6(») (from the side under consideration). A4 Q% curve
will be defined as a branch extending to infinity and satisfying (15 a). According
to the preceding 6 = 6% (r) defines a Q* curve. Now

-1

4 ¥
L Lol =, =i (-
—r PR = | 9| sin (qo + kﬂ) + D *%vqu,-lr * sin (q,. + *'*7;?{0) =o0
r=1

so that the limiting directions of all possible @* curves, satisfying (15 a), are
given by the roots 1 of the equation

(15 b) Sin(q0+7(l;r"):

Thus, the limiting directions of the @ curves, satisfying (15 a), are all
distinet from those of the several Q cwrves satisfying the equation R Q(z) = o. The
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region bounded by a @ curve and by a certain one of the @* curves will have
the property that 9 Q(z) increases monotonically, as 2z describes any circular
arc|z| =r (= o) from the Q curve to the Q* curve. :
Corresponding to those of the functions R @ ;(z) [cf. (1)] which are not
identically zero we have a finite set of ¢ curves. It is conceivable that some
of the @ curves are ‘multiple’; that is, that there exist two (or more) functions
N Q(2) vanishing along precisely the same curve. In view of the preceding it
is clear that for |z|=7 =9 (¢ sufficiently great) the various distinct ¢ curves

have no points in common (for » # ). Accordingly, the complete vicinity of infinity

(16) 0,

IA

O=argx=2xnk-+ 6, (x| =7r= 9, > 0),
is diveded tn a number of suecessively adjacent regionms

(16 a) Rla Rz, .. RN,

separated by @ curves and not containing any Q curves in the interior. We let
Bi 11 (or Biiy,:, as well) denote the @ curve (simple, or multiple) which con-
stitutes the common boundary of R; and R;.,. The region R, will have a
curve, B; y, in common with RBy. The importance of these regions is due to
the fact that within any particular region R, a certain ordering of the values
R Q:(2) is maintained. Consider a particular function N Q(e)[=NQ: ;(2) =
=N Qi) —NQi(2)==0]. We let R(Q) (or R(Q: ;) denote any one of the several
regions extending to infinity', throughout which N Q (2) is non-negative.

Furthermore, any subregion of R (Q) will be denoted by R(Q), provided that
it is bounded on both sides by regular curves® extending to infinity, possessing limit-
ing derections at z'nﬁm'tys, such that along each of these boundaires

(17) 'Z|_(3€§RQ(Z)—>00

(as | 2| — oo for every positive B);

! Speaking of various regions extending to infinity, the shape of the boundary near the
origin is immaterial. We may always consider this part of the boundary as consisting of a eir-
cular are # = g, > o (p, being sufficiently great).

? A curve will be said to be regular if it is representable by an equation of the form

1 2

0=cy+ e *4+egr b+ (k, some integer).

® These directions can be always taken coincident with those of the corresponding ¢} curves.
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(17) will hold, for every positive 8, along every path lying in R () and possessing
a limiting direction.

Let R; denote any particular one of the regions (16 a), whose boundaries
have different limiting directions. Let

(18) Qiz, jz(Z) = Q"x(z) - ij(Z) ($—é07 ¥=1,2, ... l)

constitute the totality of differences (Q;(z) — @;(2)), which have a non-negative
real part in R; and which are such that for some §

(18a) |z|‘,‘eﬂQ"x'fx(z)—*o x==1,2,...4)

along both boundaries of R It may happen that no such functions (18) exist.
Suppose there are some functions of this kind. We let, then, R'; denote a sub-
region of R; with one boundary in common with R; and another boundary, interior E;,
such that along it all the left members of (18 a) increase indefinitely for every 8
(>o0). We let R, denote an analogous subregion of R:, with the other boundary in
common with R;. R; and Ri can be chosen so as to overlap. In particular, R;
can be so chosen that the limiting directions of its boundaries will be corres-

pondingly the same as those of R;; the same can be said of R;.

3. -A Lemma concerning Regions R; (16 a; § 2). The following Definition
will be introduced.

Definition. A region R, bounded by two regular curves, will be said to be
proper if a certain ordering, say

(1) NQule) = N@ule) = =N eul2)
is maintained for z in R and if the following holds. Corresponding to any =,
in R, there exists a regular curve (., situated in R and extending from x to
infinity, such that for every RQ () [= R Q:(z) — R Q;(2)], which is positive interior
R, we have the following satisfied:

10 RNQ(z) is monotone non-decreasing for |z|= z(x) (where z(z) is some
number = |z|), as |z]| > « along C.; or

2°. N Q(z) is monotone decreasing for |z| = z(x) (where z(x) is some num-
ber = |z|), as |2| = « along C., while RQ(2) is bounded in R.

’ ¢
3°. j | de| = [P~
Cy

(¢ and 2 independent of z and b; b sufficiently great).
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4°. Let x=2y, z,, &'y, s, x', ... be any set of consecutive points on C,,
with some of them possibly coincident. The following condition holds

(2) W)= D RQ ) — RQ@) <k
{(h, independent of x and of the choice of the points).

The summation in (2) is only over all those points ., 2, which in absolute value
do not exceed z(z).

With this definition in view the following Lemma, essential for our pur-
poses, will be proved.

Lemma 1. FEvery region R consisting of a region R; (¢f. (16 a); § 2) or of
a subregion of Rs, bounded by two regular curves, vs proper or it consists of a finute
number of proper adjacent or overlapping proper regions. ' '

- Let the boundaries, extending to infinity, of R be B and B’. Suppose that,
if ré'=1¢ is on B and r¢'~1¢ is on B’, we have @ > ¢’ (rr ). For convenience
B and B’ will be termed left and right boundaries of R. The points x in R

will all be such that |z|= ¢, > 0 where g,, so start with, is sufficiently great.

Case A. The boundaries B, B’ have the same limiting direction. Until
stated otherwise, only those Q curves will be considered in the discussion of this
case which have the same limiting direction as B and B'. Let ¢ denote any such
curve to the left of or coincident with B and let ' denote any such curve to
the right of or coincident with' B’. By § 2 it follows that, if N Q(2) corresponds
to a curve ¢, we shall have R @Q(z) increasing monotonically as z moves from B
to B’ so that |z|(= e, remains fixed. A corresponding fact holds for any
function R Q' (2), corresponding to a curve @’. In order that RQ(z) be bounded
in R it is necessary and sufficient that R Q(2) be bounded along B’; similarly,
for boundedness in R of a function M @' (2) it is necessary and sufficient that
R ¢ (2) be bounded along B. The functions under consideration, the R Q(z) and
the N Q' (), are accordingly separated into two groups — those bounded in R,

(3) RO, R Q" (),

and others, not bounded in R,

{4) R Q“(2), R Q).
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Corresponding to an interior point « of R there will exist a group of .

curves, .
(42) Qe

(ef. § 2) associated with the functions (4), respectively. These curves will extend
from x to infinity. Suppose that for no x, interior R, is a curve Q" situated to
the right of a curve Q, sufficiently far from the origin. Let Q: denote omne of
the curves @ which, sufficiently far from the origin, is on or to the right of
all the curves @'. Similarly, let . denote a curve ¢* which sufficiently far

out is on or to the left of all the curves @.". " and @.* are either coincident
or @ is to the left of ¢ % sufficiently far from the origin. Let 2’ (2’| =]|z]

be a point on B'. At 2’ R Q(¢) is greater than at z; hence the curves ¢ and
@Y do not intersect. On the other hand, since M @*(z) increases monotonically
(and _mecessarily to irlﬁnity) along B’ while for z on @ we have R Qr(z) =
=N @*(x’), the curve @' recedes to the left from B’. Therefore ¢! (x interior R)

has no points in common with B’. Similarly, ¢.* (z interior R) will have no

points in common with B. For a curve (., in R, extending to infinity and

lying (sufficiently far out) between ¢* and ();", conditions 1° and 2° of the De-
finition will be satisfied for the functions (4) as well as for the functions (3).
Under the supposition of the italicized statement above such a curve (or curves)
C: could be found for every z interior B. There is no difficulty in seeing that
this will remain true also for every x on B or B'.

Assume that for some xz=2° in R, a curve QY (of the set (4)) s to the right
of a curve QY (sufficiently far from the origin). We shall have one or more
curves @% and one or more curves @Y such that these @Y, are all to the right
of these curves Q. (for |z| = o(w) = |z, |; o(@,) sufficiently great). Let Q¥ be
a curve, of the mentioned set of curves Q;},‘, which is on or to the right of these

4. Similarly, let (:);‘;, be a curve, of the mentioned set of curves situated on
or to the left of all the curves of this set. It is clear that, for |z] = o (x),

Q.4 is to the left of Q4. Let z (|z]=]2°]) be a point on B. The curves B,

20

Q. @, Q% will be in the order just stated, from the left to the right. This

a0 a0
follows from the fact that along B R ¢ *(z) increases and that % Q'*(2) is greater
at x than at 2° (unless 2 = z°). Thus, B and Qiﬁ, do not intersect for | 2] = o (x,).
For similar reasons B’ and (:)1’1, do not intersect (jz| = o(x,). Accordingly, R

(|z] = e(x,)) is seen to consist of two overlapping regions; one, bounded by B
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and @’;0; another, bounded by @;}{ anAde'. Let R, stand for any particular one
of these two regions. With respect to such a region R, the R @Q(z) and the
R Q' (z) are separated into two groups:

(30 - R Q(e), R Q2 (2) (bounded in R,),
and
(41) N Q4 (2), RN Q. (e) (not bounded in R,).!

The functions (3,) clearly contain all the members of (3). Moreover, in the set
(3,) there are certainly some functions not included in (3). In fact, if R, is the
region bounded by the curves B and @" for instance, the following is noted.

a0

All the R Q(z), corresponding to é;‘o and to those curves @ which (sufficiently
far from the origin) are either coincident with or recede to the right of @ZD,

will be bounded along @;‘0 and, consequently, will be bounded in R,. These
functions, while not included in (3) will be contained in the set (3,). Accordingly,
there will be fewer members in (4,) than in (4). A similar fact will be true for
the other region R,. Consider now a particular region R, and the behaviour,
in R,, of the members of the corresponding set (4,).

Suppose that for no x, in R, {|x|= ¢(x,)), is a curve QY situated to the right
of @ curve Q1¢(|2z] = o(x)).®> By a reasoning of the type utilized for a similar
purpose in the text immediately following (4 a) the following is proved. For
every x, in R,, there exists a curve or curves C, lying in R, and extending to
infinity, such that the conditions 1° and 2° of the Definition will be satisfied for
the members of (3,) and (4,).

For some regions R, the condition of the above italicized statement may
not hold. Consider such a region R; and the sets (3,), (4,) corfesponding to it.
R, will consist of two overlapping regions, each extending to infinity. Such a
pair of regions can be found for every region R, now under consideration. Call
any such region R, and, corresponding to a region R,, let the R Q(z) and the
R (2) be separated into two sets:

(32) RA ),  RQLE) (bounded in R,),

(4) RQu(2), R Q% (2) (not bounded in R,).

! The subscripts, here and in the sequel of this proof, should not be confused with the
subscripts in (1).
* For z on @, RQ2)=NQ,(x).
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The set (4,) will contain fewer members than the set (4,), corresponding to that
one of the regions R, which contains R,. This follows by a reasoning of the
type employed before in proving that a set (4,) contained fewer members than
a set (4).

We apply the same reasoning to the regions B, as had been applied to
the regions B,.. We are thus led to consequtive subdivisions. Corresponding
to the first, second, ... m-th subdivision we get m sets of regions

R, R, ...Rn.

Associated with a particular region R;(s =1, 2, ...m), belonging to the i-th of
the above sets of regions, the R@(z) and the N Q' (2) are divided into two sets:

(3 M (2), R Q. (2) (bounded in R;),
(44) R QL (2), R Q. (2) (not bounded in R;).
A set (4:) G=2,3,...m) will have fewer members than a set (4;—). The regions

R; are obtained by subdividing only those of the regions R, for which a con-
dition of the type stated in italics, following (4 a), does not hold. The R
which are not subdivided are such that 1°, 2° of the Definition will hold for the
corresponding sets of functions (3:-1), (4i—1). Since there is only a finite number
of functions R Q(z), RQ'(2) it is clear that the above process will terminate for
m sufficiently great. It follows, accordingly, that R consists of a finite number of
overlapping regions

(5) RY R ...RY,

each extending to infinity, such that conditions 1°, 2° of the Definition hold for the
Sunctions RQ(2) and RQ'(2), corresponding to curves @, @ with the limiting direc-
tion of B (and B). These conditions will hold, in general for all functions
R Q(z) formed with the aid of the set (1)." The curves C. can be so chosen that
condition 3° of the Definition is also satisfied. Thus, in the Case A, either R
satisfies 1°, 2° 3° or it consists of a number of overlapping regions each satis-
fying conditions 1°, 2°, 3°

Case B. The boundaries B, B' have different limiting directions. Let &(> o)

be a small number and let », and 7’y (1, >1”,) be -the limiting directions of the

' If a function NQ(z) does not vanish along any curve @), possessing the same limiting
direction as B {or B"), it increases indefinitely along every Cz (x and Cy in R), under consideration.
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curves B and B, respectively. Let R. denote the subregion of R bounded by
B and the ray

(6) - ‘arg g =1, — &.
Similarly let R’. denote the subregion of R bounded by the ray
(6 a) arg z2=1"y + ¢ (ro — &>y + &)

The subregion of R bounded by the rays (6) and (6 a) will be denoted by R®.

Suppose now that z is in R.. The curves ., which correspond to the
functions R @ (2) vanishing along curves @, each with the same limiting direction
as B (and hence situated to the left of B), will all have the limiting direction
of B. Along such a curve (), which, sufficiently far from the origin, is on or
to the right of all other of these curves the functions R ¢(z), referred to above,
will be all monotone non-decreasing. Thus, curves (. can be chosen, in R, and
extending from z, along which condition 1° of the Definition holds for these
NQ(z). [C: will be chosen coincident with or suitably receding to the right
from .. Consider the functions % Q(z) which do not vanish along any curves
with the same limiting direction as B. The curves @ along which such a funec-
tion R Q(2) vanishes all have limiting directions distinct from that of any curve
C:, specified above. On the other hand, every such R Q(z) is positive in R.
Hence these functions are all momnotone /increasing along O, (for a suitable
choice of ().

By a similar reasoning we obtain an analogous result for z in R'..

When z is in R*(|z| = o)) every N@Q(z) is seen to be monotonically in-
creasing along a curve Cj, consisting of the ray

(7) arg z = arg .

All conditions of the Definition will be satisfied throughout R:. The (. can be
so chosen that the Definition will be satisfied throughout R. In fact, condition
4° is seen to be satisfied throughout R because along the chosen curves C; all
the functions R (2), RQ'(¢) are monotone beginning from z. In other words,
1° is satisfied with z(x) =|x|. Under these circumstances there is no occasion
to cousider 4°. In the Case B, then, R itself is seen to be proper.

Returning to the Case A we shall now demonstrate that any region, say RF,
of the set (5) can be separated into a finite number of adjacent proper regions
B (j=1,2,...j1). Consider first the functions

24—33617. Acta mathematica. 62. Imprimé le 7 novembre 1933.
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(8) : R Qv (2), N Q. (2) (not bounded in R¥),

each vanishing along a curve ¢ (or ¢') with the limiting direction at infinity of
a boundary of R* For these functions 1° is satisfied in R*. Let R Q(2) be a
function of the set M Q¥(z) (of (9)) and let N Q*(2) be another function of the

same set:

—1 I—v ‘
h) ( Z_>
(0) NQE) =qle.0)= D la|e cos [q,.+ : 7;0] (lao] # o),
r=0
B ey 15—y
(0a) R Q* () =g*(e,6)= Slatle* eos[iﬁ + ﬂ] g717 o).

The totality of curves ., associated with (g), is specified by the equation

(r0) dqle.0) = (;)‘;q(g, O)do + . —2qle 6)d8 = o;

N

while the curves @, corresponding to (9 a), are characterized by the relation

(% q%(0,0)d6 = o.

. 0 .
(roa) dg*(e,0) = .- -q% (0,0)do + P

do

N

Let ¢@*(r, @) denote the angle at which a curve' ¢, intersects a curve
(x =re —1%). From (10) and (10 a) it follows that
9 itratatra—ratral ot (s
. ’b?q (71a)0aQ(’7a) )67'q<),a)(9dq ('1“)
(r1) tge*(ra)=——— — -
q(r,a) 9 q* (r, @) + 12 2 qr a)zq* (r,a)
e B T ar* 7 or ’

With the aid of (9) and (9 a) tg ¢*(r, @) can be expressed in the form

(11 a) tg @* (r, o) = Z-((:”Z; ,

1#—1 5. v o 1—1 . .
I"—v - N A l—v - N
o) e C TV e Tk @ O TV L4 PN Wt S Y
a(r, a) ,é 7 ek cos(qv+ i a)go P la.lr *sin (q4+ 7 a)+
(11 b)

—1 : 1#—1 5u v .
I—v - S S T S AUy L
+ Z,O % lg. |7 % cos ({Ir'r i a) EO i lgs|» *sin (q‘.+ . a),

! We take the unique curves @z, QF possessing the limiting directions of a boundary of RF.
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. _1 _ A o £ .
b(r,a)=2l—kwlqy|r sm(qv-!-l-/sla)z r W|qw|7‘ k Sln(qW'l' L/CVO!) +

v==0 y=0

1y . I—y \"T . oy \
+2-|qw|7 cos(qw —/cwa)wz(l)———"lqvlr cos(q+ 7 a)-

=0

Now

(12) | b0 a) =b(a) + e(r,a),
T A A

(12 a) b(a)=—];‘;|q0qu|sm qo—fv%a sin qo-l-;a .

Here ¢(r, ¢) has the following property. Given any &(> o), independent of r and
a, there exists a number 7. (> 0), independent of 7 and «, such that

(12 b) |e(r,e)| < &

for every z, in R*, for which » =,. This fact is a consequence, in part, of the
following considerations. Given any ¢, (> 0), independent of 7 and «, there exists

a number 7., (> 0), independent of » and @, such that

“+l_ “_l._E
cos t g, klx s cos g, ka

for every z, in R* with r = .. Moreover, in view of (13), it follows that

(13)

. 17* ,
(14) - Eledl—=¢) =18 I—kglqoqol (€ > o),

where ¢ can be made arbitrarily small by taking ¢, sifficiently small. Accordingly,
it is clear that, if R* is defined exclusive of the points for which r <7, (ro, suf-
ficiently great), the function b (r, «) will necessarily maintain its sign throughout R~

If a(r,e)=o0, we shall have ¢*(r,a)=o0 so that every @ (corresponding
to (9)) will be coincident with @, (x in R*). Suppose that a(r,«)# o and con-
sider the carve W¥ defined by the equation

(15) a(r,e)=o

and having at infinity the limiting direction of a boundary of R*. Such a curve
will exist by virtue of the results of the theory of implicit functions and it will
be expressible in the form
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1

(15 a) e=wut +wir *4+lr

i

Consider all possible curves W*,
(16) WT‘ IV’;» CEa Wf’i‘;,

formed for pairs of functions picked from the set R Q*(z) (of (9)), and also
formed for various pairs of functions selected from the set N Q;*(2) (of (9)). These
curves are specified in a way precisely analogous to that of the definition of W*
with the aid of (15). If any of the curves (16) extend to infinity, interior R,
we shall have R* divided in a number of adjacent regions R (j=12,... Ji).
These regions will be separated by certain ones of the curves (16) and interior
‘each one of these regions there will be no curve of the set (16). Consider a
particular region RY. For every x in Rf a certain ordering of the curves @,
corresponding to all the N Q“(z) of the set (8), will be maintained. Similarly, for
every x in R} an ordering of the curves Q.", associated with all the N Q*(2) of (8),
well be maintained. '

Consider a function R Q(z) of the set N @¥(2) (of (8)) and another function
N Q (2) of the set M Qi*(2) (of (8). N @Q(z) will be given by an expression of
the form (9). On the other hand, W @ (¢) will be defined by (g9 a) with @%, ¢%,
%, q° replaced by ¢, ¢, I, ¢’ respectively. We specify a curve W' justas W*
had been previously specified. In connection with this curve all the formulas
from (9) to, and including, (15 a) will be valid (with the indicated change of
notation). To either side of this curve the angle ¢ (r, @) (x = ré’ —1%), defined
as the angle at which ¢, intersects . (at '1:), will maintain its sign. If it were
possible for a curve W’ to separate R* into two regions R'* and R2>* each
extending to infinity, it would follow that for every z, in R%* ¢ (r, ) maintains
one sign; while, in R** ¢(r, ) would maintain the opposite sign. For every x
in one of these regions . would recede to the left of (), while the opposite
would be true for every x in the other region. This is contrary to the proved
properties of R* Hence a curve W’ cannot separate R* in the stated manner.
Thus, in particular, for every x in RJ’” every @, corresponding to the N Q*(e) of the
set (8), will recede to the left of every Q.Y associated with the RQ*(z) of (8).
Exceptionally, a ¢, may be coincident with a @ (z in R}). The above statement
in italics implies that, for any fixed = in Rf (or, more generally, in R*), the
curves ¢ and ¢ do not intersect at any points 2 distinet from z=z. In view

of the two preceding italicized statements, curves C, can be always specified so



Analytic Theory. of Linear Differential Equations. 189

that (in addition to 3°) the condition 1° is satisfied (with z(x)=|z|) for all the
functions of the set (8).' TFor the set (8), then, there will be no occasion to
consider 4°. ' .

We mnote that every C. is chosen as a regular curve. The values, on (i,
of a function R Q(¢) are accordingly representable by a convergent series of
the form

S RQE) = Dg.et.
S

Hence % Q(z) has a limited number of maxima and minima, along C,, between
z=ug and the point z for which |z|=2(x). If RQ(s)=M in R then the
corresponding function h(z), as defined in (2), is less than h =5 M, where ¢
depends on the number of maxima and minima (referred to above) and is inde-
pendent of x (x in Rj‘) Accordingly, 4° is seen to be satisfied, on Rf, for all
N Q(2) (and N Q' (2)) bounded in RE. ,

The remaining functions R Q(z), which do not vanish along any curve
possessing the limiting direction of a boundary of R¥ do not cause any difficulty.
Thus the truth of the italicized statement preceding (8) has been made evident.
This completes the proof of the Lemma.

4. Formal Integration. In view of the purposes at hand it is essential to
solve formally the equation

(1) YW (@) = e4® a7 x(x),
where the o-series (cf. § 1) x(x) is given by

(1a) , % (x) = x%(x) + »"(x) log & + - - + »™(z) log ™x,

1

(@)= + dx F+ux

EANSd

+ (z=o0,1,...m)

and Q(x) is given by [(2); § 2]. It will be supposed that not all the constants

#i (=1, 2,...m) are zero. This equation we shall satisfy by a series of the form
(2) y (@) = et@ arteq(z),
(2 2) (@) = n°@) + 5" (@) log x + - + "7 (x) log"*' 2,

pi(x) =g + n’;x—’}“ + 7 x_[’: + o (t=o0,1,...m+ 1).

! One may select a suitable @z or @, curve of the set of curves associated with (8).
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Case I. @Q(x)=o0. Write

—1 1

1
(3) Q@)+ +a=p@)=pa* +paz*+ - +pFtp (m#o;lz1)
Substitution of (2) in (1) gives, after division by 2@ z",
(4) x ez %(x) = plx) n(x) + 292 ().

On arranging the two members of (4) according to powers of log z comparison
of coefficients of log*z will give the relations

k=1 k—2 7 1
(4 a) g+ b bt k4 =(pat+ ) nh At F ]+

|

1 2
T [P T p] et [P P e P e

A=o0,1,2,...m)
and
l

1 1 2
(4b) oz[plxk_{_ ...+po] [77?+1+ nvln+lx k4 } _ [in:n+lx kg /%77;"-}'1% ko ]
Since p; # 0 from (4 b) it follows that necessarily
(s) nrtl=o0 (t==0,1,2,...).

Consider now (4 a) with A= m. Comparison of the highest powers of x givés
the value of «,

(5 a) @ = Lk—j_

This value is substituted in p, in (3). Comparison of the coefficients of

xk, x* x*
determines uniquely :

0o, My oMy
with the aid of the equations
(5 b) =t N Pt N Py

(j=o0,1,...1—1).
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v

On the other hand, comparing the coefficients of 2 * (v =0, 1,...) we get
v
(50 ”ZL+v:{77;'§.vpl + o grpy) + (m + I)"?TH_/;’?T

(v=o0,1,...).
These equations determine in succession and uniquely the constants
/5 v=o0,1,...).

Next the coefficients of #™'(x) may be determined uniquely by means of
sets of equations of the type of (5 b) and (5 c), derived by comparison of the
coefficients of the various powers of x from (4a; A==m —1). Suppose the
formal series

,,]m+1 (x)’ nm (%.)’ nm-—l (x)’ . na—H (x)

have been determined (by means of consecutive applications of (4 b) and of

(4a; A=m, m—1,...6+ 1). The series 7°(x) can then be determined from
’ 1 1

(4a; A=g0). In fact, comparison of the coefficients of x*, ... x* will yield the
equations ‘
(6) W=t P+ Py

(j=o,1,...1—1).

Equating the coefficients of the other powers of z we obtain

v
(6 a) 2 =, ot o) + (o + Nnrtt — o

4

(v=o,1,...).

With the aid of (6) and (6a) the series 7°(x) can be determined (in terms of
the coefficients of 7°*!(x)). Thus, in the case under consideration consequtive
application of (3), (6) and (6 a) for e=m, m —1,...1, 0 will serve to determine

a formal series solution of the form (2), (2 a) (with a =!C-;—Z)



192 W. J. Trjitzinsky.
Case II. Q(x)=o0. In place of (4) we obtain
(7) sz x(z)=( + a)n(x) + 9" (2).

Comparison of the coefficients of the various powers of log z will give

1
(a) @b+ xia e+ )= + o)t + i

LA

+-] 4+
1 ! 2 )
T R e P Y I P )

(A=o0,1,2,...m)
and

1

) 1 2
D) o=l + @i+ grta e = | L i |

Comparison of the highest powers of x in (7 a) leads us to take ¢ = 1. Sub-
stitute ¢ = 1 in (7 a) and (7 b).
Suppose first that

(8) r+17£z (P=0,1,2,...).

From (7 b) it will follow that
(8a) (7'+a—;~;)n‘l’f‘“:o v=o0,1,2, ...);

that is, #™*!(z) will be formally zero. The series 1™ (x), 5™ (x), ... n°(x) will
be then determined in succession by means of the sets of equations (6 a) formed
for 6=m, m—1, ..., 0; here we let [=o0 and p,=1 + 1.

It remains to consider the case

(9) y 1= ; (integer s = o).

The equations (8 a) will leave #™"'! undefined but all the other coefficients in

7™ (x) will necessary be all zero. Thus

&

(0 a) L () = gt g R,

Let (6" a) denote the equations (6 a) formed with ! =0 and p, =7 + 1. The set
of equations (6"a; o =m)

)
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(10) x;"=(r+1~-%)nf‘+(m+1)n’f“ r=o0,1,...)
determines uniquely the constants 7™ (v=o0,1,...s—1, s+ 1,...). On the

other hand, (10; v = s)

(10 a) ' xm=o0q™ + (m + 1)7"*1,

determines uniquely the constant 7™*! (which hitherto was left undefined);
however, equations (10) will leave ™ undefined. Suppose now that successive

use of the sets of equations (6" a) (with 6 =m,6=m —1,...06=12+ 1) enabled
us to determine uniquely all the coefficients in the series

7 ), (), ), .t (@),

except 7:*!, which is left undefined. Application of (6’ a; 6 =1) will determine
uniquely #*** and all the coefficients n* (v=o0, 1,...), except 5. Thus (9 a) and

the sets of equations (6" a), formed for 6 =m, m — 1, ... 1, 0, will serve to de-
termine uniquely the series

7 (), g (), (),
except that the coefficient 77 will be arbitrary.

Lemma 2. Every formal equation (1), {1 a) possesses a formal solution of the
type (2), (2a). When Q(x)= o0, so that

v=imt
Q)= S guat @70 12 1),
=0
in the solution (2), (2 a) we have
I el
k b
while "' (x) =0 and the series 7™(x), ... n°(x) are determined in succession

with the aid of (6), (6a) (6=m,m—1,...0). When Qx)=o0 and r + 1 7571;

(v=o0,1,2,...) we have « = 1, "' (x) = 0, while the series 1™ (x), 1™ (x), ... 1" (x)
are determined in succession by the sets (6 a) (formed for 6 =m, ... 0 with l=0

and po=1r + 1). When Q(x)=o0 and for some integer s(=o)r + 1 = Z we have

25—33617. Acta mathematica. 62. Tmprimé le 7 novembre 1933,
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«=1 and p*(x) will be of the form (9 a). In this case the coefficients in y"+* (x),
7" (x), ... n°(x) are all unigquely determined by (6" a), formed for s=m, m—1,...0,
except that n; will be arbitrary.

5. Analytic Integration. Let the function
(1) H(x) = ef@) 27 b (2},

1
where @(z) is a polynomial in x* (unless @ (x) = o), be analytic in a neighborhood

R of infinity. We shall say that H(x) is asymptotic in R to e?@ "% (x) [x(x)
of the form (1 a; § 4)],

(2) Hx) ~ Q@ g7 % (x),

to w terms provided that

(2 a) hi{z)=h'(x) + h'(z) log x + - + h"™(z) log ™z,
where, for 7 =0, 1. ... m,

1 w-—1 w
(2 ) W@ = 4ottt o (F) 4 b ()a

(15 ()] < b5; = in R).

w’

If the relations (2b) hold for every positive integer w so that every constant
bi(¢=o0,1,...m; w=1,2,...) is finite the asymptotic relationship (2) is of
course in the ordinary sense (that is, to infinity of terms).

Consider now the analytic equation in y,

(3) YV (@) = @ 2" h (),

where the second member is a known function, analytic in R and satisfying in
R the asymptotic relationship (2) to w terms (w suitably great). The region B
will be specified more definitely as follows. It is to consist of the part of the
complex plane for which r =g, (o, suitably great) and it will be bounded by
two regular curves

By, B,.

Furthermore, none of the @ curves satisfying the equation

(4) RQx)=o0
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will be supposed to be interior R. Either one or both curves B;, B, may be ¢
curves associated with the equation (4). Finally, it is assumed that for x in R

(s) RQ @) = o.

By Lemma 2 (§ 4) the formal equétion
) )= (),
corresponding to (3), has a formal solution
(6 a) s (@) = eQ@ gr¥ep (g)
of the form (z)b, (2a) (§ 4). Let
(6 b) t(x) = @@ gr+e r(z)

denote s(x) with the terms containing powers of

i+
xk r=0,1,2,...; t<w)
omitted. Substitute in (3)
(7) y (@)= t(x) + 2 (z).

The new variable 2 (z) satisfies the equation

m 1

w—1
8) 2W(x)= eQ(”)xTZ 4+ rae B+t x x—(T)

‘w—1
=0

_w d m+1 1 ‘ _ (,___1)
U )5 log'a — (e S g e f k@ ] log'a)-
‘ i=0
Taking account of the relations satisfied by the constants involved in the series
~of the last members in (6) and (6 a) (cf. § 4), arranging the second members of

(8) according to powers of log x and arranging the coefficients of these powers
1
as power series in x *, it is observed that

r
(8 a) 2 () = @@ g pp(x)x *

‘Here I'=I'(w) is an integer (< ¢) and br(x) is a function, analytic in R (jz|# «),
such that to a few terms
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(8 b) br(x) ~ Br{z) (x in R)

where 8r(x) is a o-series with not all the constant terms in the power series
factors zero. It is of importance to note that, if it were possible to take w
arbitrarily great, I' can be so chosen that lim I'(w)= o. The precise rela-

tionship between I' and w is not essential for the purposes of this paper.
A. Suppose Q(x) =0 and R is part of a region R(Q) (cf. § 2). We take then

{9) z(x) = f el e bp(z) 2 Ik'dz,

Lo

where the path of integration lies in R and is from a fixed point z, (on the
boundary of R and, say, nearest to x =o0). There exists a constant b, depending
only on. the shape of the region R, such that the length of the path is < b|x]|.
Since |e?®| will increase, as |z|— » in R, more rapidly than any power of
|z| it follows that, depending on I, there exists a constant ¢, such that, for
|z} = or, the integrand attains its maximum absolute value at x. Thus

,
(9 a) lz(@}l < blzl|e® @2 brlx)z | lz]= er; z in R).

Now | br(x)| cannot increase faster than |log 2|™*!; on the other hand, for |z| <er,
(9 b) , lz(@)| = er (z in R).

Henece from {9 a) and (9 b) it follows that

— (L_l‘:l)
(10) z(x) = eWMW g zp(x) LI
where
(10 a) |er(z)| = dr (z in R).

The number dr could be selected as the upper bound of the following two func-

tions
1

blor(@)z *| x|z or; z in R),

r—k—1
crle @@y k| (x| < or; » in R).

On substituting (10) in (7) it is found that
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(11) y(x) ~ s(x) (x in R)

(cf. (6a) to I"=1I"(w) terms. If it were possible to let w — oo, lim I" ()= 0.
w

B. Let RQ(x)=0. Suppose that a region R(Q) exists such that one of the
two curves By, B., say B., is in R(Q). Suppose that no region R(Q) exists such
that the other one of these curves is in R(Q). In this case, then, (17; § 2) could
not hold along B; for every 8. Hence it can be seen without difficulty that for
some #==f, the left member in (17; § 2) approaches zero along B, We note
that with B; there will be associated a curve Q* (cf. § 2) with a limiting direc-
tion different from that of Bi.

We define z(z) by the integral

(12) z(x)———*feQ(z)z"bp(z)z_%dz

=4

(% > 8,, sufficiently great)-

The path of integration will be taken in R and will extend from infinity along
B;. When z is in R between (or on) the curves B;, @* the path of integration
in (12) will be deformed as follows:

(12 a) f%—f |

Here the first integral is along B; from infinity to the point a’, on B, such
that |2"|=|]xz]=17. The second integral is along the circular arc, with its center
at the origin, extending from z to xz. Along the first path

_r
{12b) JeRW 2 k]

attains its maximum at . In view of the properties of curves Q*, established
in § 2, the function
' ' _ror
|efBz k| =4 k|| (1 fixed)

will increase monotonically as #z varies from 2’ to z along the second path.
Generally speaking, the function (12 b) will attain its maximum, along the com-
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bined path of (12a), at z. By a reasoning analogous to that employed in
deriving (10) it is again proved that, when z(z) is expressed in the form (10),
an inequality similar to (10 a) will hold for x in R between (or on) B; and @%;
in the corresponding region the relation (11) will also hold. Consider now, if
there is an occasion to do so, the properties of the integral (12) when z is in
R between @* and B,. In this case the integral will be deformed as follows:

(13) f+f

where x, is the fixed point in the finite part of the plane common to @* and
the boundary of R. The first integral is along B;, while the second integral is
along a path extending within the closed subregion of R, bounded by B; and
Q*. Now B, and @* bave different limiting directions at infinity (cf. § 2) and
along B,|z=?|??) — o for every (> 0). Hence, in the case under considera-
tion, | e?®'| increases sufficiently rapidly (as |x|— ) to enable precisely the same
treatment of the first integral (13) as had been applied to the .integra,l (9). On
using (7) it will follow that

(13 a) y(x) — ¢y~ s(x) (x between Q* and B))

to I'"=TI"(w) terms [lim I'" = o, if can let w — ], where the constant ¢, is
w

defined by the first integral (13). But in view of the behaviour of R Q(x) in
the region under considerationlit- is observed that ¢, ~ o (in the ordinary sense).
Thus an asymptotic relation of the type of (11) will continue to remain valid
throughout R in the case under consideration.

C  Suppose now that RQ(x) =0, while every region R(Q) contains neither
B, nor B.. Assume, moreover, that B; and B, have different limiting directions.
In this case the integral (12), or an analogous integral with the path of inte-
gration along B,, can be used. Let ¢ be the curve associated with B;. Ne-
cessarily ¢ will lie between B; and B,, its limiting direction being distinct from
those of B; and B, (cf. § 2). For some 8 we shall have
(14) lim |- e = o,

1z]

as |z]— o along both B; and B.. Lef R' denote a subregion of R, bounded on
one side by B, and on the other side by a curve E, with a limiting direction at
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1

infinity and lying in a region R(Q).'  Similarly, define a region E™ with boundaries
B, and B,. The regions R' and R will have in common a region bounded by
B, and B, (the latter two curves having different limiting directions).

It is observed that for z in R' the integral (12) can be treated precisely
as in the preceding case. Thus, a solution y(z), satisfying an asymptotic rela-
tion of the type of (11) (for  in R’) will exist. Call this solution g;(x). Let
y-(x) denote the analogous solution satisfying the asymptotic relation (11) for
z in R,

(15) Y (x) = yr (x) + c.
Thus there exists a constant ¢ such that, to I'y(< w) terms,
(15 a) ylw) —o~s()

for x in R". The constant ¢ cannot be discarded in this asymptotic rela-
tionship.

D. Let it be assumed that R (x) = o; suppose, moreover, that B, and B
have same limiting directions at infintty, while no region E(Q) contains either B,
or B;. Then, depending on the position of the @ curves along which R Q(x)=o,

R Q(x) will be monotonically increasing as = moves along the circular are
lel=¢ (=g >0)

from B; to B: (or from B, to B, as the case may be). = It is clear that integrals
of type (12 a) can be used yielding an asymptotic relation of type (11), valid for
x in R. ’

BE. Consider the remaining case when RQ(x)=o0. Define z(x) by means
of the integral

r
(16) Z(x)=feQ(z)Zrbp(z)z_Edz,
where the path of integration lies in B and extends from infinity. We have
Sooroa,
(16 a) |z(x>|§b;~f|a R de|
® r 1
< br|x]. BT (x in R)

' Br can always be chosen, in R, with the same limiting direction at infinity as that of Br.
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provided, of course, I' is sufficiently great. A solution y(zx)=t(z) + 2z () will
evidently exist such that a relation of the type of (11) is satisfied.

Consider the equation (3) with the second member satisfying, for = in R,
the asymptotic relationship (2) in the ordinary sense. Let y,(x) denote a solu-
tion, as obtained before, such that

(17) Yo(@) ~ s (@)

to I'(w,) terms; this solution being obtained for some sufficiently great value of
w=w,. Let y,(x) denote another solution, corresponding to a greater value
of 0 =1w, (> w,),

(17 a) 1 (@) ~ s(x) (to I'(e;) terms),
Taking w, sufficiently great, I'(w,) > I'(w); in fact, lim I"(2w) = . Let ¢,(x) and

w

t,(z) be the corresponding functions f(x) ({, < f,). On writing

(18) Yol@) — wy () = ¢o,1,

it is seen that

(18 a) (ro,lzto(x)——tl(x)+f{[H(z)~d%to(z)]
| — [H(z) g;t] (z)]} dz

= lim [t, (2) — £, (2)].

In the case A the limit is taken as z approaches «,. In this case, in
general, co 17 0. In view of (18) and in view of the fact that RQ(x) — = (as

|z]| — o in R) sufficiently rapidly it is seen that
(19) Yo (@) ~ s (@) (x in R)

to I'(w,) terms. But w, and hence I'(w,) can be made arbitrarily great. Thus
(19) will hold in the ordinary sense.

In the case B, with say B; not in any region R(@), the limit in (18 a) is
taken as z approaches infinity along B;. Thus, we shall have ¢, 1 =0"' so that

Yolx) =y () ~ s (@) (x in R)

! Provided that ¢, (r) has sufficiently many terms, depending on the nature of Br.
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to I'(w,) terms. Hence y,(x) is independent of w(=w,) and the asymptotic
relation is in the ordinary sense.

Consider the case C. When « is in R! for instance, in (18 a) ¢ is let to
approach infinity along B;. Again ¢ 1==0 and the situation is as in the pre-
ceding case inasmuch as z is restricted to R'. Consider a solution y(x) which,
for x in R', is asymptotic to s(z) in the ordinary sense. Let y,(x) be a solu-
tion which has the same asymptotic form in R". We have

yi(x) =y, (@) + c.
Thus

yi(x) — ¢ ~ 5 () (x in RY).

An analogous fact holds true for y,(x) when z is in R'.

In the case D we obtain an asymptotic relationship valid in R in the
ordinary sense. To demonstrate this fact we need only to let 2, in (8 a), approach
infinity along B; or B.,. With ¢, suitably chosen, co,1 will then be seen to
be zero. _

In the remaining case when R Q(x)=o the limit in (18 a) is taken as #
approaches infinity within R. Here again ¢ 1 =0 and y,(z) is independent of
w(=w,). The solution y,(x) will be asymptotic to s(x) in the ordinary sense,
for z in R. -

The following Lemma can now be stated.

Lemma 3. Let R be a region bounded by regular curves B and B, (as
specified above); that is, in R,

(20) ' MRQ(x)=o (Q (%) a polynomial in x*¥).

Consider the equation

(21) ' Y () = 2@ 2" h (x),

where h(x) is analytic in R (x| ») and

(21 a) ' , hiz) ~ % () (« o-series)
Jor x in R. Let

(21 b) | s(x) = Q@ grte g (x) (n(x) a o-series)

be the corresponding formal solution.’
26—33617. Aclta mathematica. 62. Imprimé le 7 novembre 1933.
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Case I. (21 a) holds to w terms (w sufficiently large). Then there exists a
solution of (21), y(x), analytic in R(|x|## ©) and such that

(22) y (@)~ s(x)

to I'(w) (< w) terms [lim () = «, whenever w can be made to approach infinity).

u

Here (22) holds in R except that, whenever RQ(x) = o while every region R(Q)
(cf. § 2) contains neither B, nor B, (B, and B, with different limiting directions),
there exists a solution such that (22) holds in R' [or R’; cf. italics of Case CJ; more-

over, there exists a comstant ¢ such that
(22 a) y(@)--c~s(x)
Jor x in R™ [or RY.

Case II. (21 a) holds in the ordinary sense. The results of Case I will then
hold with the asymptotic relations (22), (22 a) valid in the ordinary sense.

Note. Suppose that interior R we kave RQ(x) < o. This can be treated
as the Case E had been treated above. The result would be precicely analogous
to that obtained in Case E.

6. Iterations. Let R be a region, of the type of the region so denoted
in § 5, bounded by curves B; and B,. Consider a system of order »

(1) YW ({x) =Y (») 4 (x),
A A4 (m) = (ai:j(x))v Y(x) = (:’/i.j(x)) (7’1 J =1,... n)

where the a; ;(x) are analytic in R(jx]> «) and

M 1 ]
(1 a) wj(®) ~ @) =alfx? + -+ abiaP + i) + abix P+

(¢,j=1,2,...n; x in R)

to w (w suitably great) terms; that is,

M 1 w—1
(1b) aj(@)=affa? + 4 abi+adax 7+ + ad, % ( 7 )

u
+ ai(@)x Pllaii(x)| =iy 4,5=1,...n; x in R).

w ?
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Let

(2) : 8 (@) = (51,5 () = (% a7i.5 0;,5 ()

(cf. the statement in connection with (7) in § 1) be the corresponding matrix
solution. It will be assumed that, interior R,

(3) RQ @) =R (@)= =RQr(¥) < RQrr1(z) = = Reu(2).
With a suitable ¢, let the matrix
(@ Tw) = (t, () = (€% a0 1 ()

consist of elements obtained by omission, in the power series factors of the

corresponding elements of S(x),of the powers of z,

t+
x (v=o0,1,2,...).
Here % is the lowest common multiple of k; (1 =1, 2, ... n).
By means of the transformation
(s) Y(x)=Z(z) T(x), Z@)=(e;(x)

the system (1) will go into the matrix equation

(6) 70 (@) = Z (x) 4 (z),
(6 a) A (@) = (b, (@) = (T (x) A () — TV () T (2).
Now
(6 b) T (@) = (5 (#) = (%W 25,5 Ty 5 (),
where I3y ;(x) (¢,7=1, 2, ...n)is in the form of a terminated o-series. On‘writing
(6 c) TW(x) = T'(z) B(x), B (z) = (bs,5 (),
it follows that

bi,j(x)~ai,j(ac) (’{:,j:I,Z,...%; x in R)
to a number of terms so that

0/
(6 d) ai,j(x) — bi,j(ac)-: x P cgj(x)
(e ()| = c;.’"j; 5,j=1,...n; x in R),
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where ¢ =0 (w)— ©, as w— % (whenever it is possible to let w— ). In
virtue of (6 ¢) and (6 d) from (6 a) it follows that

7

(7) | A (x) = (%@ hy j(x)x P), Qi (@) = Qi(x)— Qi(x),

(7 a) (b, i ()| = [ g ;@) | = B ; < ko)
4, j=1,2,...n; z in Rl,
where ¢ = o(w) and

lim g(w) = oo,

w

whenever « can be indefinitely increased.

On taking note of (7), the system (6) will be now solved in part by means
of Product-integrals.! In wiew of Lemma 1 (§ 3) R consists of a finite number
of proper regions (Definition of § 3). Corresponding to any fixed z, in R, there
will be associated a curve C., as specified in the Definition of § 3 and satisfying
the conditions of this Definition. Let x, (2| > |x|) be some point on C,. We

form the matrix product

(8) Zim) = (2m.1,5)

= [I + (@, — @) A (I I + (2, — x) A3 I ';' (@m — ®m—1) A (Im)],

where the points z,, ;, Zs, . . . Zm—1, Tm = Im = & are consecutively ordered, as
stated, along C; from xz, to #. Moreover, as m — %, the maximum |z, — Toi |
(v=1, ... m) approaches zero, and J, (v =1, ... m — 1) is any point on the subare
of C, whose end points are x,—1, x». According to the known theory of Product-

integrals, the limiting matrix

(8 a) Zy(x) = (x0.: j () = lim Zp = | (4(x)dx + I)

will represent a matrix solution of (6). The elements in each row will consti-
tute a solution. Examine now in greater detail the matrix Z.,). On letting

Iy — Xp—1 = U We have

' Cf., for instance, L. Schlesinger, Vorlesungen iiber lineare Differentialgleichungen, 1908.
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Bb) Zm=I+ 2 v A4S+ 2, Vi, v, A (J) A (Sp) + -

k=1 Iy <k,

m

+ Z Vb, Uty + -+ Uty A (S A (Sk) -+ - A (D) -

k<< ... <kg

+ v vy ...va(%l)A(SQ)...A(Ssm)

=71+ ZLS’ Ly = (ls.5,3); I=1(:).

8=1
Substitution of (7) will result in the following expression for ls.;; (7, j=1, ... n)
) lsas = 2 {(U’G Sty 2)(00,Sk &) - - . (0r, Sk, 7)
k1<“._<ks
ki, kg |
z W (@5
Z e ik, (S by, 1(Se) - - ey, j(Sks)}'
Ay, ..ls_l—_—1
In (9)
kly.--..ks
(10) W (G,4) =Qun(S)+ Qﬂ,, (\skg) T Qi () + Qs (S)
1 hgq

= Q@) + (@ () — @, (?Sks)] + [Qa,_y, (S )‘ Qiy, (Skey)]
+ Q1 (Sk) — @y, ¢ ([n)) + [y, 4 (Se) — Qa4 (Fw )

Application of Lemma 1 (§ 3) enables us to assert, in view of the satisfied
conditions of the Definition (§ 3) and in view of (10), that there exists a constant
g(= log w), ¢ndependent of x, z, and C, such that we have

Fi oo kg
(11) RW (1',{) =RQ:;(x) + log w

§—1

for all z in R.
Thus, on using (8b), (g) and (11), it is observed that the elements in the
first I rows of Z) satisfy the inequalities

! Here Qo,s = Qo — Qs.




206 W. J. Trjitzinsky.

m
(12) |Zm:f,j—3f,j|=|21s:z‘,j|
s=1

m m ‘ (); _ q _ ‘3—-
swlewia]| 3 D ll (0,3t P) ok, Sk 2) - (o, Dk, )]
=1 ky<--<kg=1

n

D ki Q) hay, (S - ay_ g, 5(3,) |} ;

by Ae_q =1

and, by (7 a), we have with h = »nh(o)

m m
n ke . ko
(12 a) ;bjl(Zm;z’,j—61',j)e'“"i.j(’)| <Z Z @}; hvf’z - :
s=1 ky<--<hky C\USL-}; Sk;p @kspf
m _9o
m JES Y8 PN [EN I
=—1+][1 +2|w:|S ) <e =? -1
»=1
f=1,...T; j=1,2,...%)
Now, with ; sufficiently great,
=X
m [
. — dz dz c
(13) lim 3 o [[%] p:f L] PP L e
m = < I,
=1 Pty zP c 2P lxp I

where A and ¢ are independent of z, x, and ¢. This inequality is a consequence
of Lemma 1 (§ 3); by virtue of this Lemma condition 3°, of the Definition of
§ 3, is satisfied. Accordingly, from (12 a) and (13) it follows that

(14) % [(20.4, (@) — 0: ;) %W | < e
¢=1,...T; j=1,2,...n).
The last member above is independent of x,. Let x, recede to infinity along C..

The limits

(14 a) 2i,j(x) = lim 2o.4,; () f=1,...T; j=1,2,...n)

g=x

will exist and
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dlo)

(15) (25,5 (@) — d:.5) e 43| <

g -
~—13

axP

(t=1,2,...T; j=1,2,...7%)

where d (o) is independent of x and C,. Thus the Product-integral (8a) ecan be
extended to infinity in the first I' rows. The limiting elements (14 a) will
constitute I" solutions of (6). It is clear that Product-integration will constitute
a convergent procesé, for the elements of the first I' rows, when the path is
extended along any regular curve situated in E. The choice of C. was merely
made in order to secure the inequalities (15). In view of the above and of the
properties of these integrals the functions (14 a) will be analytic in R (|x] «);
they will be constituent elements of I' solutions, in R, of (6).1 Moreover, they will
satisfy (15) for x in R. :

Returning to the system (1), I solutions'will be given with the aid of (5)
and the I' solutions, just obtained, of the system (6) Now

(15 a) z,-,} () = 0s,; + €%.5%@ sz ;(x) x (5_1)

(o2, ;(x)| < d(o); (¢=1,...T;j=1,2,...n); =z in R].
Thus

(16 wisla)= S 200 (@) trs (o)

n . g .
—_ Z [61.,'” _'_ eQi,'v(x) O‘Zi,’v (x) x (p A)] qu; (x) xrv’j T/v,j (x)

r=1
_(z_ ;) »
= %@ [x’i,j Lijlw) +a 2 7 D amviozye (@) I (x)] .
py==1

Accordingly, the y;;(®) (¢=1,2,...T'; j=1,...n) are seen to be asymptotic,

in R, to the s;;(z), respectively. The asymptotic relations here will be valid to

7 (w) terms, where lim 7(w) =, whenever w (of (1 b)) can be made arbitrarily great.
w

Lemma 4. Consider the system specified by (1), (1 ka), {1b), (2). Let R be a
region, bounded by two regular curves extending to infinity, in which an ordering (3)
és maintained. Let T(x) be defined by (4), with t suitably great. Let A(x) be

! They will be independent of the path of Product-integration, inasmuch as the path extends
to infinity and convergence conditions are satisfied.
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defined by (6a). Consider the functions zo.;;(x) =1,...1"; j=1,2....n) which
are defined, for x in R, with the aid of the Product-integral (8 a); x, being in R.
The limzts

(17) ' 2,(%) = lim 20,4, (x)

o

(d=1,2,...T', j=1,2,...n; xrin R)

will exist, as x, approaches infinity along any regular curve extending in R. The
JSunctions

(17 a) a3 (@) = 3 202 (@) (@)

will represent constituent elements of I’ solutions of the system (1) and they will be
analytic in R(|x| # »). Moreover, '

(17 b) i, j (@) ~ €% W arij gy, ()

(t=1,2,...15 J=1,2,...n)

Jor x in R. Here the asymptotic relations are valid to n(w) terms, where n(w) can
be made arbitrarily great, whenever it is possible to increase w (of (1 b)) indefinitely.

In the course of proving the Fundamental Existence Theorem (§ 7) it will
be established that, whenever w (in (1 b)) can be made to approach infinity, the
functions (17 a) are independent of w so that (17 b) holds in the ordinary sense.

7. The Fundamental Existence Theorem. The developments of the preceding
sections enable us to undertake the proof of the main theorem of this paper.

The Fundamental Existence Theorem. Consider a singular equation (cf. § 1°),
of order n,

Let R; (t=1,2,...N) be the corresponding regions (16 a; § 2). Consider a particular
region R,. If there exist no functions (18; § 2) such that (18 a; § 2) holds, or if
the boundaries of R; have the same limiting dz'rectz"ons, there extsts a full set of
soluttons y,(x) w=1,2,...%), of (A), such that

(1) Yy (@) ~ e% @ v 0, () = 50 (2)

v=1,2,...n; xin Ry).
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If there exist funmctions (18; § 2) such that (18 a; § 2) holds, while the boundaries
of R, have different limiting directions, consider the two subregions Ri and Ri of
R; as specified in the italicized statement following (18 a; §2). In this case, also,
there will exist a full set of solutions, satisfying (1), for = in Ri, and another set
of solutions, satisfying (1) in Ri. In (1) the asymptotic relations are in the ordinary
sense and the s;(x) are formal solutions.

In virtue of the connection between single equations of order » and systems,
an analogous theorem will hold for singular systems (B; § 1°).

Proof. Let R denote any particular region for which the asymptotic rela-
tions (1) had been asserted in the formulation of the above theorem. Interior R

the following ordering will be maintained

(2) RQE@E)=RQ@="=RQn@®) <R+ (@) =RQrt2(x) == RQr, ()
<RQ@ = =RQn(@) < <RQ_,+1(@) =Rr,_,+200) = =RQr, (@)

IEMN<h,< << Iy=n).

Apply now Lemma 4 (§ 6) to the system (D; § 1),

(3) YW (z) = ¥ (x) D (z),

which corresponds to the equation L,(y) =o0. It is concluded that there exist I'y
solutions,

(3 a) Wi (@) = 93,1 () ((=1,2,... 1),

analytic in R(|z|# «) and such that
(3b) Wi () ~ e4W xi g ()

({=1,2,...T;; zin R)

to 7, terms. These functions will correspond to a suitable choice of the matrix 7' (),

which is used in the Iteration of Lemma 4. By the same Lemma, the functions
(3 C) lyly](m):lyijhl)(x) (7’.21727'-'1‘1;.7.:]72""71)
will be asymptotic, in R, to the formal series

(34) : 81,5 () = V=V (z) (to n, terms),

respectively.
27—33617. Actu mathematica. 62. Imprimé le 8 novembre 1933.
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The equation

. (rl) X N (rl—-l) X s e x)
VA U(x), ... (@) | Y (), 1 ( ) ]y(

(4) L]' (1.’?) — . e .. 1?/1(1") (x), 1?/1(1"—1) (x), e 1?/1(1')
ly([{'x—l) (1‘). . 1y[,l(x) e

1

1%{') (), 1%{;‘—1) (@), ... wnl)

= 9% (@) + 1a.(@) w0 @) + e (@) gV @) + o+ an(E)wle) = o
will be satisfied by ,:(z) (¢=1,2,...T}). The coefficients ,a:(z) (¢=1,2,... 1))
will be analytic in K (x| ). The formal equation
(48) Li(y) = o™ (@) + 10,(@) 9" (@) + (@) 9" (@) + - + anle) (@) = o,
corresponding to (4), is obtained by replacing the functions
90 (2) (=12, Iyj=or1,.. 1),

oceurring in (4), by the formal series s\ (x), respectively. In view of the remarks
made in § 1, the coefficients in (4 a) are seen to be formal series of the type of
(1; § 1°). Equation (4a) possesses I', linearly independent formal solutions

(4 b) si(x) = 18:(x) . (t=1,2,...1).

In virtue of the asymptotic relations (3 b) satisfied by the functions (3 ¢) it
follows that '

(5) ‘ () ~ o (@) (i=1,2,...T,; zin R)
to @, terms. By taking p, sufficiently great (which can be accomplished by

suitable choice of T (x)) e, can be made arbifrarily great. The equation (4) has
in common with L,(y) =0 a set of I} linearly independent solutions

(6) Wi (@) = yi (@) (¢==1,2,... I}).

Every solution of (4), being expressible as a linear combination with constant
coefficients of the functions (6), will necessarily satisfy L.(y)=o. Hence there
is an analytic factorization

(7) Lﬂ (ly) E L"_FI Lrl (?/)~
(7 a) Lﬂ—l‘l(tz) = 2 =1(g) + 1by () 200 () + o 1bn—F1(5C) 2 (),
where the ,b;() ((=1,2,...n— I) are analytic in R(Jz|# ). Similarly,

there is a corresponding formal factorization
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{7 D) L ()= La—r, L1, (,y),
(7 ¢) La—r (&) = 210 () + 8, (x) 2" 50 (@) + - + 1fn—r, () 2 (),

where the formal series ,8:(x) are of the type (1; § 1°) and L; (%) is a formal
operator corresponding to Ln(y). In connection with this formal reducibility

(and similar ones to follow) it is essential to note that, if the formal series in
1

Ly (y) are in powers of «* (k, integer), the formal series .8 (z) in Li_ 1, (,2) will
° .

be in powers of a? , where p may be an integer different’ from %. The equation
(8) Li-r(#) =0

will be satisfied by (» — I',) linearly independent formal solutions

(8a) L} (sry+6 (@) = 1 fry+i () = e¥n+i® pinti pr 44 (x)

(t=1,2,...0— 1),

where the ,@r.+4:(x) are o-series (cf. § 1). This is a consequence of (7 b) and of
the fact that, formally, L; (sr+:(x))=0. 1t is clear that

(0) i () ~ 1B: () (¢6=1,2,...0—1TIy; xin R)

to 8, terms. Here B, can be made arbitrarily great by a suitable choice of T'(x).

There exists a systen of order n — I'y, of type (D; § 1), which corresponds
to the equation Ln_r (;2) =o0. Application of Lemma 4 to this system is possible.
Accordingly, it can be asserted that there exist Iy — I solutions of the equation
Lu—r,(2) = 0, analytic in R(|x|# «), such that

(10) @i (x) ~ e+l Lt g L ()

(¢==1,2,...Ty,— TIy;; xin R)
2 1

to 2z, terms. By originally defining 7 (x) as S(x) with a suitably great number
of terms retained, 2z, can be made arbitrarily great.

In addition to the I', solutions (6) the equation L, (y) =0 is seen to possess
I, — I'; solutions
(1) oyr+i (@) ((=1,2,... [, — I,

" where any particular solution syr,+:(z) satisfies the non-homogeneous equation

(11 a) Ly, (s9) = \2r+: (@) (1=i=T,—T)).

' In certain cases, as for instance when the n formal solutions of Ln (3) = o are given by n
determinations of the same series, p will certainly be different from k.



212 W. J. Trjitzinsky.
Write ' .
() = (371, 5 ()
(2,j=1,2,...17).
Then, by (4; § 1), 2 solution of (11 a) can be given by the formula

I

G2) i@ = i) /'lzp,ﬂ.(x) Jr i) de.

i=1 o

In view of the conditions imposed on a region R (cf. the formulation of the
Theorem) the integration methods of Lemma 3 (§ 5) are applicable. Thus, syr,+:(x),
as defined by (12) and with the integrals extended according to Lemma 3, is
analytic in R(|z|# %) and
(12 a) syYri+i (@) ~ gr4:(x) = € +i® 271 yor, 14 ()

[z in R; ,0r+: a o-series]
to 75, terms. Such a construction can be made and a relation (12 a) can be
obtained for ¢=1,2,... Iy — I.

We form now an equation of order I,
(13) Lr, () = 9" (x) + sa, (@) "= () + - + san (@) (@) = 0,

which is satisfied by the I', linearly independent solutions

(13 a) o (@) = i (%) (=1,2,... 1Y),
2.’/1‘|+i($) (7‘:1,2,...T2_Fl)-
This equation is formed, on the basis of the ,9:(x) ({=1,2,...I}) in a way

entirely analogous to that in which the equation (4) was constructed with the

aid of the () (¢=1,2...I). The coefficients ,a;(x) ( =1,...T,) will be

analytic in R(]z|# ). To (13) there will correspond a formal equation

(14) LE, (o) = oy (%) + 50, (@) sy ™V (@) + - + san,(z) (@) = 0.

It is satisfied by I, linearly independent formal solutions

(14 ) 51 (2) = 151 () =121,
251y +1 () (z= 1,...01,—I).

The ,ai(x) will be of the type of (1; § 1°). Similar to the relations (3) we

now have
(15) 2 () ~ 404 () (¢=1,2,...1y; zin R)
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to @, terms, where e, may be made as large as desired.! In place of (7) the
following analytic factorization will hold

(I 6) Ln (2?/) = L"—Fz sz (2?/) 3
(16 a) Ln—r, (23) = 279 () + 3by (@) 2T (@) + -+ gbu—n (x) o2 ().

The .b;(x) will be analytic in R(|z|# ). There will be a corresponding formal
factorization

LTL (27_/) = L:—Fg L;Z (2y)a

n-1y(92) = 92" (@) + o (2) 2" (&) - 4 B () 52 (@),
and

(16 b) 2b: () ~ oB: (%)
[z in R; ,8:(x) of type (1; §1°); ¢=1,2,...1n— Iy.
The formal equation L;_r5,(,2) =0 will be satisfied by % — I'; linearly indepen-
dent series
(rt7) Lt (st (@) = ofnts (@) = e¥n+i® alnsiypr, 14 ()

L@r+i(x) a oseries; 7=1,2,...n— I}.

To the system of order (n — I'), corresponding to the equation Ly—r,(32) =0,
Lemma 4 can be applied. Thus, there exist I';y — I, solutions, analytic in
R(|z|# ) such that

(18) _ ory+i (@) ~ e+ i@ aalnvi gy (%)

i=1,2,...I'y—1T,;, xin R
to 2z, terms.

We solve now

(18 a) . .L['2 (3?/) = 9ZIy+i (.Z‘) (I = ) = 1~3 bt 1‘2),
obtaining I’y — I', solutions of L,(y)=o0

I

(19) Wrri@) = (@) f i (@) iny 1 (@) dae

1=1
(t=1,2,... [, — Ty,
where
(2y£j_1) (x))_l = (2?1',.7'(1")) (17] =1,... 1‘2)'

! However, for the present, it cannot be asserted that the 24 (x) are independent of e;.
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In view of the known asymptotic forms of the involved elements application of
Lemma 3 will result in the relations

(20) ¥re+i(®) ~ g81,41 (@) = et il s o1 4 ()
(s0r,+¢ a gseries; 1=1,2,... [, — I3),
valid in R to 5, terms.

~ The process specified above will render, after y — 1 factorizations, a full set of
solutions of La(y)=o0, say, yi(x) (i=1, 2, ...n), analytic in R (| x|+ =) and such that

(21) yi(x) ~ %@ 21" g, (2)

(yo:(x) a o-series; t=1,2,...n; x in R)
to n terms. For the present these functions are to be considered as possibly
dependent on 7. However, n may be made as great as desired by suitably
choosing T'(z) at the beginning of the construction of solutions.

Let #:(x) (¢==1,2,...n) be another set of solutions for which the asymptotic
relations (21) are valid in R to 7( > 1) terms. We have

(22) . (0 (@) = (ex,5) (7 () (6d=1,...m),

where (c;,;) is a matrix of constants. Now

(229) _ (6s,9) = (= (@) 1 (@)1 = = (@) (§i, 5 ()
and
(22D) i ;= éyﬁ*—l) (@) 92 () (¢,7=1,2,...0).

In view of the asymptotic forms of the two sets of solutions it follows from -
(22 b) that

b7 (x)
(23) Ci,j = e, 5@ ori, 5 (di,j + )

»®

mk

(Q(@) = Qi(x) — @i@); B )=1T; 5,j=1,2,...9

where |y (x)| < y.(z in R), x is some positive number and r; ;=0 (=1, 2, ... n).
Let x recede to infinity within R. It will follow that

2 (@)
(23 a’) ¢, ; =lim €%, i@ 75, 0 ; + s
. z o
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whenever the latter limit exists. In particular,

(23 ) - lim(l N 71"'%(9”)) . (=12, ...0).
By (2) o
R jx)=o (¢<j).

Hence, by (23 a),
(23 ¢) ¢i,j =0 G<ji=1,...n)

provided that x is sufficiently great. This, however, can and will be supposed
to be secured by. suitable choice of the set of solutions §:(x) (¢=1,2,...n).
Accordingly, '

(24) | yi () = 9 (x) + Zci,zﬁz(x) (t=1,2,...n).

Consider the above relations for ¢ < I',. Now, in virtue of (2),

% J X i, J x)
| ;2] = lim e®@;,al) T”V(ﬁ) T : { _
’ RN S P
[A:I,Z, l—], 1:2112’ F]]
so that
(25) yilx) = 7 (x) f=1,2,...1I7).

But the functions (25) were obtained by iterations; that is, by the processes of
Lemma 4. The results of that Lemma can therefore be completed as follows.

Let the asymptotic relations satisfied by the coefficients in Ln(y) = o be in the
ordinary sense. The Iteration process of Lemma 4 (§ 6) will then yield results
independent of the choice of T (x). Accordingly, in this case, the asymptotic relations,
resulting from the application of that Lemma, will be valid in the ordinary sense
(that s, to infinity of terms).

With the above fact in view, we repeat the reasoning made from the
beginning of this section. The asymptotic relations obtained in each consequtive
step will be all in the ordinary sense, provided that integrations are suitably
defined. This, however, is possible by virtue of the hypotheses made concerning
R and by virtue of Lemma 3. Hence there will exist a full set of solutions of
Ly (y) = 0 such that the relations (21) are satistied in the ordinary sense.

Thus, the proof of the Theorem has been completed.

! Such a choice will give a suitably great value of 7.
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8. Extension of the Regions of Validity of the asymptotic Relations.
Consider the Fundamental Existence Theorem of § 7 as referring to a system (B)
of § 1°, possessing a formal matrix solution (7; § 1). In particular, the results
of this section would apply to a single equation (A) (§ 1°); in fact, we need
only to note that with such an equation (A) there is associated a system (D) (§ 1).
Consider a pair of adjacent regions

(I) Rg, Rg’+1 (O': I,2,... N; GN+1 :Rl)

of the set of regions (16a; § 2). Let the regions of the latter set be ordered in
the counter clockwise direction. The boundaries bounding R,, R,+1 will be in
succession By—; 4, By, o+1, Bo+1,6+2 (By, x+1=Bx, 1= By, 5; cf. § 2 following (16 a)).

Corresponding to R, there exists a matrix solution Y°(x)= (y¢,(z)) such
that the asymptotic relations (with respect to the power series in the o¢-series
factors of the formal solutions)

(2) Yo (@) ~ S(a) = (¢4 aris o 5 ()

hold either in R, or in a subregion R, of R, possessing By, s+1 as one boundary
and B, ;, (with the limiting direction of B,_i ;) as another boundary (cf. the
Theorem of § 7). Similarly, there exists a matrix solution Y**!(z)= (y7% (x))
such that

(2a) Yot+i(x) ~ S (x)

either in R,y or in R;.,; the region R;., (if there is an occasion to consider
such a region) has B, ,+: for one boundary and it has By 1,542 (With the limiting
direction of Byii s+2) for another boundary.

Let Rss4+1 be a combined region (containing B, .+1 in its interior) over
which the relations (2) and (2 a) are asserted in accordance with the Fundamental
Existence Theorem. The right and left boundaries of R, ;41 can be taken as
regular curves with the limiting direction of B, , and B,y o+2, respectively.
Suppose that in R, there is an ordering (2; § 7).

The regions in which (2) and (za) holds have the curve By s.1 in com-
mon. Now
(3) Yo(x)= C° Yo+ (x); C7=(c])).

The matrix of constants C° will be investigated by means of the asymptotic
relations (2), (2 a) which, for x on By s+1, yield the following:

(4) C° = Y°(x) Yo () ~ (%5 a"'s.5 3, ),
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where @y, ;(x) = Q:i(x) — Q;(x), ri,;=0 ({,j=1,...n), (d;) is the identity matrix
and the asymptotic relations are with respect to the d;,;. Letting x— « along
B; s+1, we find the following.

The ¢ ;=1 (¢=1,2,...n). A constant ¢, (i = j) may be distinct from zero
if and only if RQs;(x) approaches positive mﬁmty along By s+1. In particular,
then, a constant ¢ ; (¢ # j) will be zero when ¢ < j, or when ¢ and j are subscripts
of the same 1ogar1thmlc group, or when N @;,;(x) is bounded on By s41.

Thus, from (3) it would follow that

(s) (yzj(»-—(m +§ ¢ )
On writing
(58) (o0, ) = (@ g, (), (1 () = (@ s (),

where for x within certain regions

(5 b) (ng ;@) ~ (01,5 (@), (73" (@) ~ (04,5 (),
it is noted that

@ (2 0) — (e i )+ 33 ).
Here

i—1
(62) (05 () = ( S 7, o9 27 g (w>) :
2=1 :

In view of the italicized statement following (4) the @ :(x) which actually
enter in the second members of (6a) have their real parts approaching negative
infinity along B, o+1. Now By 11 is a regular curve; hence the above R @y (x),
just referred to, approach negative infinity along By .41 essentially as — c|z?|
(¢>o0, y>0). None of the functions R ;(x) vanish interior Ry s+1. It is seen
without difficulty that either the exponents, displayed in (6 a), satisfy the rela-
tions

(7) | @@ | ~ o

throughout the part of R, ;41 bounded by By s4+1 and the left boundary of Es o441,
or they satisfy these relations in the part of B, .11 bounded by By ,+1 and
bounded by a regular curve with the limiting direction of the left boundary of
Ry o+1. Denote this part of R, sr1 on and to the left of By 41 by R

28—33617. Acta mathematica. 62. Imprimé le 8 novembre 1933.

o,6+1"
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Since the |77*1(z)| cannot approach infinity faster than a power of [logz|, it
follows that

(7 a) (373 () ~ (o) (zin R, ).

ij ‘6, 0+1
By virtue of (6), then, it becomes manifest that
(8) Yo(x) ~ S(x)

not only in Rs (or R, as the case may be') but also in a subregion R. . (as

specified above) of Ry, extending to the left of R, and possessing a left boundary
with the limiting divection of the left boundary of Rev1. The combined region of
validity of (8) will be denovted by Go; (75 will contain Bs 11 tn the interior. The
above result holds for o= 1,2,... N. Similarly, if in the above the words left
and right are interchanged, it is seen that there exists a region Gy, containing
Bs.s+1 in the interior, such that a matrix solution ,Y?(z) satisfies the asymptotic
matrix relation

(8 a) 1 Yo (@) ~ S(),

for z in G5 (6=1,2,...N).

Now a region Qs will certainly possess in common with Gey1 a region Go o141,
bounded by regular curves; this being true for 6 =1, 2,... N. In the case when
the curves B, o+1, Bs+1,0+2 have different limiting directions the truth of the
- above statement follows from the fact that the left boundary of G, and the
right boundary of Gyi+: have the limiting directions of Bst1 s+2 and By, o4,
respectively. In this case the boundaries of G, ,+1 have different limiting direc-
tions. On the other hand, when the curves B, s+1, Bot1,0+2 have the same
limiting directions at infinity, the following is noted. The part of the region
Gs+1 which lies to the right of Bgt1 s+2 consists, in virtue of the Fundamental
Existence Theorem, of the region bounded by By o+1 and Bosi), o+2, that is, this
part consists of R,. In this case, then, Gy o11 will consist of the part of R,
bounded on the left by the left boundary of G; the two regular curves bounding
Gy, o+1 will certainly be distinet.

Consider two matrix solutions

(9) Yo(2), Y+ (2)

! Here R’

o, if used, has Bog,o+1 for its left boundary.
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of the type referred to in the italictzed statement made in connection with (8).!
We have Y°(x) = Cy Y+ (z)[Cys = (¢s.5,j)]. Some information concerning the con-
stants ¢g.s,; (¢,J=1,...7n) can be obtained® by noting that, in view of the
asymptotic relations satisfied by the matrices (9) in the regions Gy, Goi1, Te-
spectively, we have

(9a) Co= (0a5,5) = Yl) Yor1 7" () ~ (%49 27038, )

for z in G, 541. Now Gy s+1 is a subregion of B,.i; the ordering (2; § 7) of
the RQi(x) is assumed® in Rsyi. By a reasoning of the type which has been
applied to C° it is presently established that ¢,; ;=1 (@=1,...n). Moreover,
a constant Co.1,5 (¢ # J) may be distinct from zero if and only if N Qs (x) approaches
positive infinity along every regular cwrve in Gy g41. For, if RQ: ;(x) did not
approach positive infinity along some regular curve C, in Gy, 441, it would follow
that ]eQi’j(x)l is bounded on C; this, however, would imply, in view of (9 a), that
Coi,; = 0. In particular, €si; (¢ # j) =0 when 7 <j or when ¢ and j are subscripts
of the same logarithmic group.

9. Converse Problems. Consider a system (B) (§ 1°) and assume for de-
finiteness that the ordering of the R @i(x) (¢==1, 2, ... n), as specified by (2; § 7),
is maintained in the region R; (16a; § 2). Throughout this section it will be
supposed that the Q;(z) in the consecutive rows of the formal matrix S(x) occur
in the same order as in (2; § 7). In view of § 8 and of the Fundamental
Existence Theorem the following can be asserted.

Depending on the Qix) (i =1, ...n), only, the complete vicinity of infinity
is divided into N adjacent regions

(I) R,la R’2* o RE\' . (R,N-i-l': R,l)y
separated by regular curves

(I a) Bll, 2, B,2, 3y - BE\'—L N (BE\T, A’+1=B/N, 1=B,1, N)-

A curve B, ,:1 separates R, from R,.;. This curve is sometimes coincident
with By, o+1 (cf. § 2). In the case when By .+ is distinet from By, 541 it extends

' Thus, YU+1(9L') is to denote now a matrix possibly distinct from the matrix for which (2 a)
had been asserted.

2 Compare with (4) and the sequel.

® This i3 a matter of notation,
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to the left of By ,+: (that is, it is in the counter clockwise direction' from
By +1), it lies then interior Ry4+:; but in every case it has the limiting direc-
tion of B, s+1. Associated with the region R, there exists a matrix solution
Y°(x) = (y7 ;(x)) such that

(2) Yo(z) ~ S(z), Y°"(x)~ SW(z) (z in R)).

Such a matrix can be constructed for o=1, 2, ... N.

If we start in R; with a certain determination of the elements of S(x),
and if z describes a closed circuit containing the origin and extending across
the regions R; (6=1,2,... N+ 1), we arrive to a new determination® which
will be associated with the region Rx:. Here

(3) §(@) = LS(x). L={)),

where the [; ; are certain constants® essentially characterized by the ;1 (7=1,2,...%)
and by the logarithmic groups. In view of these facts it is natural to define
Y¥*+1(x), a matrix solution associated with Rx.,, as

(4) YAl (z) = L1 (x).

*The following definition will be now introduced.

Definition. Consider a singular system (B) of § 1°. The coefficients of the
various powers of x in the Qix) (i =1, 2,...n), involved in the corresponding
formal matriz solution S(x), as well as the constants of the matrixz L, involved in
(3), will be termed chavacteristic constants belonging to the singular point of the
system.

The above definition and the consideration of characteristic constants, to
follow, is suggested by Birkhoff's treatment of problems of the Riemann type,
which he gave for the case when the roots of the characteristic equation are
all distinct.* Now, the characteristic constants specify not only the regions (1),

! In this section we continue to assume that the regions {16a; § 2) are ordered in the
counter clockwise direction. 4

* The values.§),{x) will be the same in the corresponding elements of S{x) and S’{x).

® In the case when the roots of the characteristic equation are all unequal L is of the form
(di’ j-eXp (2mr, V=1

* G. D. Birkhoff, The Generalized Riemann Problem for Linear Differential Equations and
the Allied Problems for Linear Difference and g¢-Difference Equations, Proc. Am. Acad. Arts and
Sciences, vol. 49 (1913), pp. 521—568. This paper will be referred to as (B). In using or quoting
the results of (B) the notation will be used conforming with that of the present paper,
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within which (2) holds, but they also essentially specify the nature of matrices of

constants

(5) Oa———(ca:i,j) (O'=I,...N),
tnvolved in the relations

(5a) Yo(x) = C, Yot (x) (6=1,2,...N);

here the matrices Y'(x); ... Y¥+1(z) are those occurring in (2) and (4). In fact,

in view of relations (2) and (4) it follows that

(6) Oy = Yo(2) Y7+ (@) ~ (€%~ 570 35,)

[.on By g41; 60=1,2,...N; ri;=0;i=1,2,...1].

We note that the @:(x) — @;(x) and the 7;; depend only on the characteristic
constants.

In terms of the characteristic constants ¢t 2s also possible to define a matrix
(7) T(x) = (%, ()

possessing the following property. As the variable describes a closed circuit,
containing the origin and extending in the counter clockwise direction from a
point in R} to Ry.1, the new determination 7”(x) of T(x) will be such that

(7 a) | T'(2) = LT(x).

We do not need to know 7(x) in detail. It will be noted that in the case
treated in (B)* T(x) = (0; ja"tx%®); T(x) of (7) is an obvious generalization of the
latter matrix. Furthermore, if the formal series y; j(x) are in mnegative integral

1
powers of z* (k a suitable integer)’ the formal matrix

(7 b) T(x)(ys, () = S(x)

will be of the type of a formal matrix solution of a system of the type
(B) (§ 1°).* '

The following Theorem relating to a_simple converse problem will be proved.

' (B; p. 548).
? With the determinant of constant terms distinct from zero.
? That is, the elements of S_l(ac)S(l)(m) are formal series of the type (1; § 1°). In the
case treated in (B) we would have T(ac)(yi’ j(oc)) = j(w)x"i . exp Q@)
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Theorem I. Suppose that S(x) 2s a formal matriz of the type which could
possibly occur as a formal matric solution associated with a system of type (B)
(§ 1°). Let the regions (1) and the curves (1a) be specified by the polynomials
Qi(x) (6=1,2,...N) occurring in S(x). Suppose there exist matrices Y°(x)
(6=1, 2, ... N) of analytic functions, satisfying the asymptotic relations (2). Assume
moreover, that on writing (4) and (5 a) the elements in the matrices Cs(c =1, 2, ... N)
are constants. It follows then that there exists a singular system (B) which s
satisfied by the matrixz solutions Y°(x) {c=1,2,... N).

In fact, on letting

Yo' (z) = Y°(x)A°(z) (o=1,2,...N)

it follows, in view of the assymptotic relations (2), that
@ A°(z) = YN x) Y (&) ~ (o] ;(x))

(xin B;; o=1,2,...N);

here the af

7;(z) are formal series of the type (1; § 1°). Now by virtue of (5 a)

A%(z) = Yzﬂ-l_l(x) 10, Y"'”m(:c) = Yo+17! (x) Y"“m(x) = A7H(z).

-Accordingly, A°(x) is independent of o and we may write A%(x)= A(z). The
matrix equation YW(z) = Y(x)d4(x) is of type (B) (§ 1°) and constitutes the
required system.

A deeper lying result, which is of the Riemann type, is embodied in the
following Theorem.! '

Theorem II. Let a set of characteristic constants be preassigned® (cf. Defi-
nition). These constants define regions (1) and curves (1 a). Let matrices of constants
C, be assoctated with the curves By o1 (0=1,2,... N), respectrvely. A matrix
C; will be assumed to satisfy a condition, depending on the characteristic constants,

(9) C, ~ (GQi(r)_Qj(x)xr’i’jd[, j)
[x on By 441; 6=1,2,...N; r,i=0; 1=1,...7|.

It follows then that there exist matrices of functions Y9 (x) such that (5 a) holds, while

! This theorem constitutes an extension to the unrestricted case of a theorem in (B; pp.
548—550).

? That is, we have a set of constants of the type of a set of characteristic constants of a
system (B)
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(10) Yo(a) ~ S{a) — (%10 ()
(x ¢n By; o=1,2,... N+ 1),

where S(x) s of the type of a formal matriz solution of a system of type (B) (§ 1°).

Before proceeding with the proof it will be of interest to note that, in
view of Theorem I, this theorem implies that a geven set of characteristic constants
determines a singular differential system (B).

Use will be made of the following theorem proved in (B)!, which will be
stated with some slight change in notation.

‘Let Ky, ... Ky be N simple closed analytic curves in the extended complex
plane. Let A (z),... An{z) be matrices of functions defined and indefinitely
differentiable along K., ... Ky of determinant not zero. If furthermore at any
point of intersection of K,, Kj the matrices Aa(x), Ag(x) are such that formal
derivatives of all orders of the matrix

Ao(w) Aglar) — Ag(a) Aal)

vanish, there exists a matrix @(x) with the following properties:

(1) each element of ®@(x) is analytic except along K, ... Ky and at an
arbitrary point « =, where the elements may become infinite to finite order;
| @] nowhere vanishes save possibly at = = «;

(2) the elements of @(z) are continuous and indefinitely differentiable along
each curve K; from either side, analytic from either side save at the points of
interse,ction of these curves, or at those points where an element of (x — c) 4:(z)
lor 7 4,(x) if ¢, = ] is indefinitely differentiable for a suitable I.

(3) if a + and — side of each curve K, is chosen, then

(11) D(x}) = Aolxs) @(x7) (6=1,...N),

g

where xz, is on K,, =}

+ is x, when considered on the + side of K,, and z is

%; when considered on the left side K.’

Let ¢ be a suitably great positive number. K, will be defined as a simple
curve with a continuously turning tangent, extending to infinity in two diree-
tions, and, outside of the circle |x|= g, consisting of Bj ,+1 and of another
regular curve 1_9;, os+1- Such a construction can be effected foro=1,2,... Nin

such a manner that the curves K,, ... Ky intersect only at z =0 and at x = o=;

' (B; pp. 533—534).
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moreover, they can be so specified' that the above theorem is applicable even
though the curves, just constructed, have been subjected to conditions slightly
weaker than those of the quoted theorem; however, the results of that theorem
will continue to apply for |z| > ¢, at least.

Matrices Aq(z) will be defined as follows:

(12) Aq(z) = TV (x) Cs T(x) (x on Bj s41),
(12 a) A,(x)=1 (@ on By 11

Here 7'(x) depends on the characteristic constants only and is given by (7). In
the part of K, interior the circle |z| =9 A.(z) is defined to satisfy the condi-
tions of the quoted theorem (for =1, 2,... N).? The point x =, may be
taken, for instance, at the origin. At infinity A.(x) will satisfy the conditions
of the theorem. In fact, by (7) and (g9), on writing

T o) = (4@, ()
and noting that

C, = (eQi(I)—Qj 'fI)x"i,j(di,j -+ Oi,j(x))) ,

(Oi,j(x)) ~ (o) (x on BZ,, o1,
we have

(13) As(x) = B,(x) + Ca(z),

(13a)  Bs(z)= (2_7%, wl@a ks, zmze,j(x)) = (Znﬁi, 1) m,j(x)) =1,

A=1

(13 b) Color) = ( i ala)a % 05, 1) m.z,j(w)) ~() (2 on By ).

T da
Thus, along Bj 441,
(14) As(x) ~ 1.

There is no difficulty in showing that

' If b, is the limiting direction of B, ., we shall take b, + 7 for the limiting direction
of B’

0, 041"
* For the purposes at hand analyticity of the elements of Aq(x) along the part of Ko in-
terior the circle |x|= o (points of the circle included) is not necessary. At the points of the

circle (and interior, as well: indefinite differentiability is sufficient.
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(14 a)_ llmi Al (x) = (o) m=r1,2,...)
when |z| approaches infinity along B/ ,41.

There will exist a matrix @(x)= (¢; ;(z)) with elements analytic for {z|> o
except along Bj 411 (6=1, 2,... N) and except at x = oo; moreover, | @(z)| o0
(lzf>0). Along B ,+1 the ¢;;(x) will be analytic from either side (|| > o;
x # %). Furthermore, on letting the right side of B, ,+1 (as viewed from the
origin) be the + side, by virtue of (11) and (12) it will follow that

(13) Ox}) = T (2s) C; T(ao) @)

(xs on By 441, 6=1,2,...N).

We have of course T(x,) = T(x}) = T(x,).
Let
(16) Yo r)=Tx)®(x) (x in R,; 6=1,2,... N+1).

In view of (15) the matrices Y”(x), as defined in (16), will be connected by the
relations (5a). Now, from the treatment of the Riemann problems in (B) it
follows that

(17) (pi,3(®) ~ (1,5(®) (@ in Ry o=1,...N)

‘where the formal series y; ;(x) are of the type of those in (7 b); as a consequence
of (14) and (15) these formal series are independent of ¢. On taking account
of the statement made in connection with (7 b), it follows by virtue of (16) and
(17) that the assymptotic relations (10) are satisfied. This completes the proof
of our theorem. '

On the basis of Theorem II it is possible to solve the ‘Generalized Rie-
mann Problem’:

To construct a differential system with prescribed singular points xy, x,, ... Zq;
the system to be of singular type (¢f. § 1°) in the neighborhood of each of the above
points.  Moreover, the system s to possess a given monodromic group, the charac-
teristic constants being prescribed at each singular point.

A problem of this type had been formulated and solved in (B)? under the
assumption that the characteristic constants are of the type which may occur

in a differential system, the roots of whose characteristic equation are all distinet

! The superseript in (14 a) denotes the m-th derivative.
* (B; pp. 551—553).
29—33617. Acta mathematica. 62. Imprimé le 20 december 1933.
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(this being true for each singular point). In the present formulation no such
restriction is emplied.

On the basis of the preceding the problem can be solved, without any
additional difficulty, following the lines of the corresponding proof in (B). The
possibility of this’ problem rests intrinsically on the Fundamental Existence
Theorem of § 7.



