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I ~ . In t roduc t ion .  Our present  object  is to develop, on the basis of the 

formal solutions and without any restrictions on the roots of the corresponding char- 

acteristic equation, the analytic  theory of a l inear differential  equat ion of order  n 

(A) Ln(y) = ao(x)y(n)(x)+ al(x)y(n-1)(x) +""  + a,-l(x)y(1)(x) + an(x)y(x) = o 

[a0(x) o; an(x) o] 

f rom the point of view of the asymptotic nature of the solutions. Such a study will 

be given for  the ne ighborhood of a singular p o i n t  (regular or irregular). This  

point  will be taken  at  infinity. The coefficients in (A) will be supposed to be 

analytic for  I x l ~  Q (I x l ) ~  r162 being representable  by convergent  series of the 

form 

M M--1  1 1 2 

(I) a ( x ) = a ~ x P + a ~ - l x  P - ~ . . . + a l x P + a o + a - - l x  P +a--2x P + . . . ,  
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where p(_--> I) is an integer.  More generally,  the coefficients in ( A ) m a y  be 

allowed to be merely asymptot ic  in cer ta in  regions to series of the form (I). In  

this case these series may be divergent,  and the results of the paper  would apply, 

of course, to correspondingly restr icted neighborhoods of infinity. I t  will be 

assumed tha t  not  all the coefficients of the series (l), which correspond to ao(x) 
and an(x), are zero. 

The development  of a theory of an equation (A) is essentially equivalent  to 

t ha t  of a system of order  n,  

(B) Y(1)(x) = Y(x) A(x), Y(x) -= (U,,j(x)), A(x) -~ (a,,j(x)) 

( i , j =  i, 2 , . . .  n). 

Here  matr ix  nota t ion is used with ai, i(x), for  instance, denot ing the element  of 

the  matr ix  A ( x ) [ =  (a~,~(x))] in the i-th row and j - th  column. The de te rminant  

[(a~,j(x))[ 4: o. The elements of a row in :Y(x) will denote  a solution. As in 

the case of the coefficients in (A), the coefficients in (B) are e i ther  representable 

by convergent  series of the form (I) or are asymtotic  (in certain regions) to such, 

possibly divergent,  series. In  the case when [(ai,/))[ is merely asymptot ic  to a 

series (I) it  will be assumed tha t  not  all the  coefficients in the series are zero. 

An equat ion (A) or a system (B), of the above kind, will be said to be 

singular. Whenever  necessary, it  will be said tha t  an equation or system is 

s ingular  in a region B .  I t  is evident  tha t  the class of s ingular  equations in- 

cludes every equat ion which has at  infinity a s ingular  point  of (any) rank  K .  

Of the number  of earl ier  t rea tments ,  of the type under taken  here, we shall 

ment ion  the two papers most  re levant  to the present  work. There  is a paper  

by Poincard 1 in which an equat ion of rank one is t reated.  In  a later  paper, by 

G. D. Birkhoff ~, the case of equations of any finite rank is considered. H. Poin- 

card employs Laplace integrals,  and G. D. Birkhoff 's  work is based on certain 

generalizations of these integrals.  T h e  methods of these two writers, while 

applicable to the case of unequal  roots of the characterist ic  equation, lead to 

indefinite algebraic complications when the t r ea tmen t  of the t ru ly  general  case 

of unres t r ic ted  roots and any "rank is at tempted.  Subsequent  to the ment ioned 

works of these two writers no addit ional ly significant advances have been made 

in so far  as the asymptot ic  na ture  of the solutions is concerned in the general  

1 H. Poincar~, American Journal of Mathematics, vol. 7 (1885), PP. 203--258. 
G. D. Brikhoff, Trans. Am. Math. Soc., vol. IO (I9O9), pp. 435--47 ~ . Cf. also J. Horn, 

Math. Zeit., vol. 21 (I924) , pp. 85--95 ; here many references are given. 
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case now under consideration. Several other well known recent works are im- 

portant in certain directions different from those pursued in the present paper. 

In dealing with the general case under consideration the present author 

~found it necessary to develop and apply an entirely different method of attack. 

The key to this method is developed in section 6 concerning Iterations. I te ra-  

tions here are of significance analogous to that  of (being inspired by) the im- 

portant method of iterations originally developed by G. D. Birkhoff in the field 

of difference equa t ions :  

The fields" of differential, difference and q-difference equations are to a 

considerable degree analogous. In all three the case of restricted roots of the 

corresponding characteristic-equation had been treated first. The unrestricted 

case of difference equations (from the point of view of asymptotic properties) 

has been treated in a joint paper by the present author and G. D. Birkhoff. 1 

The general case of q-difference equations has been treated by the present author, e 

In this sense the present paper is to fill the remaining gap. 

I. Preliminary Facts. A singular equation (A) will remain singular after 

division by ao(X). Accordingly, without any loss of generality we let ao(X)= t. 

Closely associated with the equation (A) is the system (which will be singular) 

(D) ) r(1) (X) : ]~ (X) D (x), Y (x) = (~li, j (x)), 

I, o, . . . ,  an--l(X) [ 

D (x) = o ,  i , .  , |~ = (d~,~(~)). 

O, I, ). 

Whenever Y(x) ~- (yi, i (x)) is a matrix solution of (D) it will necessarily follow that  

(~) y~,j(x)  = y ~ ' )  (x) ( i ,  j = i ,  2 ,  .) 

Moreover, the elements of the first column Will constitute a full set of solutions 

of the equation (A). Conversely, if 

i G. D. Birkhoff and W. J. Trjitzinsky, Analytic Theory of Singular Difference Equations, 
Act a mathematica, vol. 6o (I933), pp. I--89. 

W. J. Trjltzinsky, Analytic Theory of Linear qTdil~erence Equations, Acta mafhematica, 
vol. 6I (I933), PP. 1--38. 

9.2--33617. Acta mathematica. 62. Imprimd le 6 novembro 1933. 
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w(x)  = v , , , (~)  ( i =  I ,  2 , . , .  ~t) 

form a complete set of solutions of (A), 

(~) Y (x) = (v,, J (x)) = (..;. ~,,(~-' (~)) 

will consti tute a matr ix solution of (D). 

The non-homogeneous equation 

(3) L ,  (y) = z (x) 

will be satisfied by y (x), 

" f 
(4) u (~) = Y~ u,..~ (x) ~ (x) ~,.~ (~) dx, 

where the elements fi~,j(x) are those of the inverse of the matr ix  (ylJT~)(x)); tha t  is, 

(4 a) (,),. j (x)) = (~l{v ') (x)) -~ 

This holds, of course, only inasmuch as the integrations in (4) remain valid. 

A singular equation (A) will always possess a full set of formal  series 

solutions of the form 
,'~li--1 li--r 

(~) ~,(~)=~Q,I~/x~,~(~), 0 , ( x ) =  Y, q~'~ ~ ,  
r ~ 0  

(5 a) , m; ( x ) l o g  mi (x) a i (x)  = o ~ (x) + oi (x) l o g  x + + a, 

1 2 

~,0+a~I ,  1 x k i§  k ~ + . . .  (5 b) o;.~f(x) = o~ 

( M = o , I , . . . m ~ ;  i =  I, 2, . . . n), 

where l,, mi, k/ are i n t e g e r s  (mi _--> o ; ki --~ ri p; integer ri ~ I). 1 

Whenever  any of the coefficients in (A) are merely asymptotic to series of 

the form (I; w I ~ the formal solutions are those sat isfying the modified formal  

equation (A'), which is obtained by replacing the coefficients in (A) by the series 

(I; w I~ to which these coefficients are asymptotic. The existence of a full  set. 

(that is, a linearly independent  set) of n formal series solutions of the type (5) 

' Excep t  w i th  x and log x ,  superscr ip t s  here do not  denote  powers.  
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is a consequence  of the work of Fabry.  t These series, in general,  do not  con- 

verge. The formal  series can be a r ranged  in groups so tha t  the exponent ia l  

factors  
eq (~) x ~ , 

of the series belonging ~o a par t icular  group are the same. 2 On the other  hand, 

the elements of such a group can and will be so ordered, 

e~(~) x ~ a~+,  (x) ,  e~(~) x '  a~+~ (~),  . . ,  e~(=)x ~ ~ + ~  (x),  

tha t  mp+l~---o, m p + 2 ~ I , . . ,  m p + q = q . - I .  Such groups will be called loga- 

r i thmic.  

A series a(x)  o f  the f o r m  (5 a), (5 b) wil l  be termed a a-series. 

Let  I ~ F <  ~. I f  the first F formal  series (5) contain only complete 

logari thmic groups, the de te rminant  of order  F 

(6) [(4 j-l) (x)) I ( i , j =  I ,  2 , . . .  F), 

when formally computed  as a series of t h e  type (5), will contain no logari thms.  

In  the case of a system (B) we have a formal  mat r ix  solution 

(7) S(x)  = (<~(~)) (e~,<=)~; Ja, j(x)), 

where the acj(x) ( i , j =  I , . . . n ) a r e  a-series. For  a fixed i the numbers  

r~.j ( j -~  I ,  2 , . . .  n) may" differ only by ra t ional  numbers.  Facts  analogous to 

those stated concerning the series (5) will hold for the elements of S(x ) .  Such 

a matr ix  can a l w a y s b e  found so that ,  formally,  the de te rminant  IS(x)[  does not  

vanish. 

2. The Q, Q~ and C~ Curves  and Regions R.  In  the sequel it  will be 

essential  to consider branches,  extending to infinity, along which 

(i) ~ Qi,~(z) = o [Q~,i (z) = Q, (z) - Qi (z)] 

for  some i and j (i ~ j). Such a branch wi l l  be termed a Q curve. 8 

1 E. Fabry, Sur les intdgrales des 6quations diffdrentielles lin~aires a coefficients rationnels, 
These, 1885, Paris. 

Except, possibly, the values of r, associated with the same group, may differ by  rational 
fractions. 

3 If c = a + V - - l b ,  ~ c = a .  
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We 

infinity. 

(2) 

W. J. Trjitzinsky. 

are interested in the properties of a Q curve in the neighborhood of 

On writing 
r = / - - 1  l - - * '  

v ~ O  

[q,,=[q,[eV::--lq,; z = r e ~ - ~ ~  qo~o;  l ~ I ] ,  

it follows that  

(3) 
,_, ,_, [ 

~ Q ( ~ ) - ~  Iq, l'" k cos ~, + o �9 
v = O  

Along the particular curve Q under consideration 

) ,-, , [ ( 1 - 
(4) r-~q(z)=lqolcos 0 o + ~ 0  + ~ l q ,  lr kcos q , +  0 

v = l  

Thus, along Q, 

(4 a) 10) = ~ I q , ' l r ~ c ~  , ' +  (~ -v - )  O]" I qo I cos (qo + ~ - 

In (4 a) let r--* 00. 

(5) 

it follows that  

Hence, on writing the equation of Q in the form 

o = o (r), 

~ 0 .  

1 0 (r)) ---- o lira I qo I cos qo + ~ 

Consequently every Q curve is of the form 

(5 a) o = ,'o + p, (r), 

where r o is a value such that  

and lira Pl (i-) = o. 

at infinity which 
t ion ~ Q (~)~-~ o, have their l imiting directions all distinct from each other, 

In  other words, erery Q curve has a limiting direction ~-~ ro 

is given by (5 b). The various Q curves, satisfying the equa- 
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I f  

( ) ( ) ( ) (5 c) cos ~ o + / r 0  = c o s  ~ t + ~  ro . . . . .  cos q , - , + F r o  ~ O  1 

it  is clear tha t  the Q curve will consist of the ray 0----r o. 

Suppose now tha t  

(6) COS (~0 § / r0  : COS q l  § ~ 01 . . . . .  COS t - - i  § ]~ r 0 = O 

(0"~_ t - - I  < l - -  I ) ,  

while 

(6 a) l - - t r  ~ cos qt + ]c o] ~ o, qt ~ o. 

.i 

On subst i tut ing (5 ~) we have, corresponding to every power x k ( l ~ ? ' ~  l - -  t + I) 

which actually enters in Q (z), 

[ ] ( ) J .i .i sin ~pl (") = g~ s~n ~p~ (,'). (7) cos ~lJ+-l~ro+~p,(," ) - - - - s i n  q j + ~ r  o 

In  (7) gJ ~ -- i,  whenever  

j z + 2 ~ z  [~, an integer]. ~ +  ~ro = : 

In  the c o n t r a r y  case g j - -  i. 

Thus, in the case of (6) and (6 a) subst i tut ion of (5 a) in (4) will give, in 

vir tue of (7) and for  z on Q, 

( 8 )  I t . sin (~p l ( r ) )  j=l--t+l sin (~p , ( r ) )  
p~(,'--) r -~ '~Q(z ) - - lq~  p,(r~) ~- Z Iql-J[.qJ'-- (z@') pl(r) 

j=l--1 

+ 

t 

r k {  [ 1 - - t  1 - - t  1(~) 1 x=l-l-t 
+p~(7,) Iqtlcos ~ , + ~ - r o + % - - p  " ] +  ~ Iqt+.]'" 

�9 cos t+~ ~- r o + - (1" = o. ' k x 

x 
k. 

1 The  m e m b e r s  cor responding  to t e rms  in (~ (z ~, no t  ac tua l ly  p re sen t  are to  be omit ted .  
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In  particular, (8) will hold in the l imit  as r--* or Accordingly, 

so tha t  

(8 a) 

) sin pl(r) ( 1 -- t_r ~ lira r ~" 
[qo]gtl im- +]qtlcos  q t +  k o] pl(~. ) r p ,  (r) 

�9 r - ~  --[q2[.qtl = L .  
h r m p : ( r ) - - k l q t ] c o s ( ~ t + ~ r o )  I"1 

~ O  

From (8 a) and in view of (6 a) i t  follows tha t  the curve Q is of the form 

t 

(8 b) O--~O(r)-=ro + , ' l , '-k(x + ~(r)) (x~t=<l; r ico) ,  

where lim e(r)-~ o (in the case when it does not  consist of the ray 0 ~ ro; tha t  
r 

is, provided (6), (6 a) hold). 

Let  the position of any point P on the curve Q be defined by a pair of 

numbers, (u,v), where v is the distance from P to the ray 0-~ r o and u is the 

distance from the origin to the foot of the perpendicular from P to the ray. 

The convention will be made tha t  v > o when Pl (r) > o and tha t  v < o whenever 

Pl ( r ) <  o. I t  will follow then tha t  

V (7 (9) r = ~ I -{- = ,~ ( I  -~- $1 (r))  ( l i m  e, (1") = o ) ,  
r 

since in view of the relation 

t 
(9 a) v - -  - -  = t g j 0 1  (I ~) = r l r  k ( I  -'[- e~ (r)) (lim e~ (r) = o) 

U 

we have 

From (9) 

(9 b) 

lim(V)r ----O 

t t 
I " - k  = i t  k ( I  -~- $3 (r))  ( l i m e  n (r) = o ) .  

r 

Thus, on taking account of (9 a) and of the fact  tha t  u and r approach 

infinity simultaneously, every curve Q is seen to be of the form 
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(,o) 
]r 

v = r~ u ~ ( i  + ~ (~)) 

[ k - - t > k  l lim~(u) - -~  I > - - [ r  k ; u 

(with the rectangular  coordinates (u, v) taken with respect to the ray 0 - - % ,  as 

the U axis). 

Thus a Q curve is either the ray 0 - - r  0 (whenever (5 c) holds) or i t  is the 

ray v - - r  1 # o  (whenever k - - t  and ~(u) in (io) is zero). I f  the curve does not  

consist of any of these rays, i t  will be either asymptotic to the ray 0 - - r  o 

(whenever o > k - - t )  or it  will be asymptotic to the ray v - - r ~  (whenever 

o ~ k t) or it will possess no asymptote. The lat ter  will be the case whenever 

k -  t > o: the curve will then recede indefinitely from the ray 0 -  r o. 

Q curves form a special case of Qx curves. A Q~ curve will be defined as 
a z-branch extending to i~finity along which 

(,,) Q (z) - q [ -  ~ Q (x)]. 

Such a curve extends from z - - x .  

curves. 

We shall write 

(If a) 

The equation (I I), with q -  o, will define Q 

1 

r-~ _~. 

The equation (II) can be expressed in the form 

1 [ 
(II b) r-- k [~ Q (z) --  q] --- ~,  I q, I cos q~ + 0 ~ -  q ~l = f l  (0, ~) 

On not ing tha t  

( I I  c) f ,  (O, o) - -  l qo I cos (io + k 

0 .  

it  is observed tha t  the equation f~ (0, o ) =  o has only real, simple roots. These 

values are identical with the l imiting directions, obtained before, of the various 

Q curves, satisffying the equation ~ Q(z) = o. Le t  0 = % be one of these values. 

The thi rd  member in (II b) is entire in ~2= O - r o  and ~. Thus, 

(II d) f l  (0,~) ~-f(~2, ~) -----~ ~ , f ' , *V"  ~" (fo, o - -  0). 
k~O v=O 
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( f(?],o) = lqo lcos  qo + s + ~"o , 

it follows that  

[ ( ' )  1 ( I ,  e) A,o - -  l h l  q01 # o h - -  - -  sin q0 + lc rO = : ~ I  " 

k 

On the other  hand, 

I-1 ~, __ q ~ l =  ~ fo, f ( o , 3 ) = f , ( , ' o , 3 ) = ~ l q ,  lcos ~, + Y ,'o 
r = l  ' v = l  

Hence we may write 

(II f) 

(Ii g) 

By the 

0-~  to) , ~ = o there corresponds a solution sat isfying (II b), 

, ~,.  

~- -~ - , - ]  ( o =  ~ . z -  ~) fo, o = [ q o ] e o s  [tt,~ + k o] , . .  , 

f 0 , , = - - q ,  j ~ , , + x = o  ( z =  1 , 2 , . . . ) .  

theory of implicit functions to the pair  of values ?] = o (that is, 

(t2) O - - r  o = ? ] = ? ] , c ~  +?] . . .~  + . . . .  

The series in the last member  of (I2) converges in the complex ,~-plane for 

[ -~ I ~ -~o (~o > 0). Since the 3",,, are real it follows easily tha t  the ?]; ( i - -  I, 2 , . . . )  

are also real. To examine t h e  ~]i in gr'eater detail (I2) will be subst i tu ted in 

( lI  b). Thus, 
1 

(I2 a) Z '~ f ' , ' (?]* '~  + V~'~' ~ " ) n 3 " = ~  
?1=0 ~ = 0  

In  view of satisfied 

sible. W e  obtain 

so tha t  

(~3 a) 

conditions of convergence, rearrangement  of terms is pos- 

Zfm~"-o, 
m ~ l  

f l  = f l ,  o?]l + fo,~ -=o ,  

fm = A , o  ?]= + h~ (?],, ?],, . . . ?Ira--l) "~- fo, m = 0 

( m = 2 ,  3 , . - 3 .  
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Here the functions h , ~ ( ~ h , ~ , . . .  ~2~-1) are real for ~71, ~2-2,..-~Tm-~ real, they 

do not  involve the constants f0, i and hence they are independent  of q; moreover, 

hm(o, o , . . .  o ) =  o. 

Consider the case of (6), (6 a). Successive application of (I3) and (I 3 a) 

will give 

(13 b) ~71 = ~]2 . . . . .  / I t - -1  = O .  

From (I3 a; m =  t) it  will follow tha t  

- - f 0 ,  t 
(I3 c) ~ t - -  A,o # ~  

In  view of (II e), (II f) and (6 a), this agrees with the corresponding result  

obtained before (r I = ~ t ) .  In  general, successive application of (I3 a), for 

m =  t , . . .  l - - I ,  will determine uniquely the constants ~Tt, *h+~ , . - .  '2~-1. These 

constants will be independent  of q since the equations (I3), (I3 a; m = 2, 3 , . . .  1--I) 

do not  contain q. On the other hand, V~, V l + l , . . .  will involve q. In fact, 

fl ,  0 Vt + h, (V~, . . . ? ] / - 1 )  - -  q = o 

so tha t  

(13 d) ~ t = w q  + vi' w - l h l q o l ~ o  , 

where ~2~ is independent  of q. 

Thus, in the case of (6), (6 a) the Q~ curve, whose limiting direction at infinity 

is ro and which satisfies the equation (I i), is given by the equation, 

(I4) O = 0 ~ . = r  0 + vtr  
, _(,+1) ( 

+ + + + (wq + k + .  

_(,+,) 
JK ~ l + l r  x k , _}_ . . .  

[~Tt, ~7~' +1, �9 �9 �9 t i t-l ,  ~ independent of x; z = r e 1-1 el, the series being convergent 

for r >= r" > o. [n the ease of(5 c) in place of (I4) we have 

( I4a )  O=Oz-~-ro+(Wq+r]~)r--k  +rit+lr - + . . .  (r>~r') 

I t  is observed, then, tha t  a Q~ curve has always the limiting direction of a 

corresponding Q curve. On let t ing q = o in (I4) a Q curve, whose limiting direction 
2 3 - - 3 3 6 1 7 .  Aeta mathematica. 62. I m p r l m ~  le 7 n o v e m b r o  1933. 
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is r o and which does not consist of  the ray O = ro, is seen to be expressible in the 

form 
, _ ( , ; , )  , 

( I4b )  O=roW~}tr -~-a t -~ t+lr  + . " --~- ~t-1 r -}- ~]~ 7 - ~ ' -  

(~ = ,. e ~ - ,  o).  

Let z~ =rer-~~ be on the curve Q.~ given by (I4)or (I4 a); let z =  re  v -~~ 

be on the corresponding Q curve. Then 

, _ l ~ + l i  

(I4 c) O ~ . - - O ~ w q r  - k  + V'l+lr ~ ~: ! + 

Consider a function ~ Q (z) which vanishes along a Q curve, whose equation 

is 0 = 0(r). .~}~ Q(z) will be positive in some region R,  extending to infinity and 

lying to one side of Q. Wi th  r fixed ( r ~  o) 

(I5) ~ Q(, 'e ' -~~ 

will increase monotonically as 0 varies from 0 = 0(7") to some value 19 ~/9* (7") 

[O(r) ~ 0*(r), as the case may bel. The value O*(r )could  be defined as the 

root /9 sat isfying the equation 

O e , , _  1 ~) = 
(~5 a) oO ~ Q(' - o 

and lying nearest to ~9 = 0(r) (from the side under  consideration). 

will be defined as a branch extending to infinity and satisfying (I5 a). 

to the preceding 0 = 0".': (r) defines a Q* curve. Now 

A Q* curve 

According 

- - r  ~ ~ O ( z ) - - ~ k  Iq0lsin qo + 0 + it- [ q , I , ' -  ~sin q, + ! ~0 = o  

so tha t  the l imiting directions of all possible Q* curves, satisfying (I5 a), are 

'* of the equation given by the roots ~,, 

Thus, the limiting directions of the Q* curves, satisfying (I5 a), are all 

distinct from those of the several Q curves satisfying the equation ~ Q (z)-~ o. The 
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region bounded by a Q curve and by a certain one of the Q* curves will have 

the property tha t  ~ Q(z) increases monotonically,  as z describes any circular 

arc i z ] :  r (:> e) from the Q curve to the Q* curve. 

Corresponding to those of the functions 9~Q~,j(z)[cf. (I)] which are not  

identically zero we have a finite set of Q curves. I t  is conceivable tha t  some 

of the Q curves are 'multiple,; t ha t  is, that '  there exist two (or more) functions 

~}~ Q (z) vanishing along precisely the same curve. In  view of the  preceding i t  

is clear tha t  for I zl = r_--> o (r sufficiently great) the various dist inct  Q curves 

have no points in common (for r ~ ~) .  Accordingly, the complete vicinity of i ~ n i t y  

(I6) 0 o - < 0 = a r g x ~ 2 ~ r k - F  0 o ( Ix l= r - - - ->  (,o > 0), 

is divided in a number of successively adjacent regions 

(I6 a) R1, B2, �9 �9 RN, 

separated by Q curves and not containing any Q curves in the interior. We let 

B,.,~+I (or B~+I,~, as well) denote the Q curve (simple, or multiple) which con- 

stitutes the common boundary of Ri and Ri+~. The region R 1 will have a Q 

curve, BI ,~,  in common with RN. The importance of these regions is due to 

the fact  tha t  within any particular region Ri a certain ordering of the values 

~Qi(z) is maintained.  Consider a particular function 9iQ(z ) [ :9 tQi ,  j ( )  

= ,~ Qi (z) - ~ Qj (z) ~ o]. We let R (Q) (or R (Qi, i)) denote any one of the several 

regions extending to infinity ~, throughout which, ~ Q (z) is non-negative. 

Furthermore,  any subregion of R ( Q) will be denoted by R (Q), provided that 

it is bounded on both sides by regular curves 2 extending to infinity, possessing limit- 

ing directions at infim'ty 3, such that along each of  these boundaires 

(i7) I z pL ~ e ~ Q (z) __~ ar 

(as i z ] -~  ar ; for  every positive fl); 

1 Speaking of various regions extending to infinity, the shape of the boundary  near  the 

origin is immaterial .  We may always consider th is  pa r t  of the boundary  as consist ing of a cir- 

cular arc r = 01 > o (01 being sufficiently great). 

2 A curve will be said to be regular  if it is representable  by an equat ion of the  form 

1 2 
0 = co + c~r kl + c~r  kl + . . .  (k I some integer). 

These directions can be a lways  taken coincident with those of the corresponding Q curves. 
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(I7) will hold, for every positive fl, along every path lying in R (Q) and possessing 

a l imiting direction. 

Let  Rt denote any part icular  one of the regions (I6 a), whose boundaries  

have different l imiting directions. Let  

(~s)  Q;,, j~(z) - Q,~(z) - q ~ ( z )  ( 2 0 ;  , . =  i ,  2, . . . z )  

consti tute the total i ty  of differences (Qi (z ) -  Qi(z)), which have a non-negative 

real part  in Ri and which are such tha t  for some fl 

( i 8  a) Iz l - / e~%,J~ Izl -+ o (x = ~, 2, . . .  z) 

along both boundaries of Ri. I t  may happen that  no such functions (I8) exist. 

Suppose there are some functions of this kind. We let, then, R'i denote a sub- 

region of Ri with one boundary in common with Ri and another boundary, interior Ri, 

such that along it all the left members of (18 a) increase indefinitely for every fl 

( >  o). We let RI: denote an analogous subregion of R~, with the other boundary in 

eornnlon with R~. R'i and J~;' can be chosen so as to overlap. In  particular,  R~ 

can be so chosen tha t  the limiting directions of its boundaries will be corres- 

pondingly the same as those of R~; the same can be said of B~.'. 

3. A Lemma concerning Regions R; (i6 a; w 2). The following Definition 

will be introduced. 

Definition. A region R, bounded by two regular curves, will be said to be 

proper if a certain ordering, say 

( I ) :}t Q, (z) =< '~ Q~ (z) - - -  _--< ,~ ~ (z) 

is maintained for z in R and if the following holds. Corresponding to any x, 

in R, there exists a regular  curve C~, si tuated in R and extending from x to 

infinity, such that  for every ~ Q (z) [ =  ~ Q~ (z) - ~ Qj (z)], which is positive interior 

R, we have the following satisfied: 

I ~ 9{Q(g) is monotone non-decreasing for I~1-----~(x) (where z (x ) i s  some 

number  > I x  I), as I z l - +  ~ along C~; or 

2 ~ ~Q(z) is monotone decreasing for Izl >= z(x) (where z(x) is  some num- 

ber > l x l ) ,  as I zl--*or along C,, while ~Q(z)  is bounded in R. 

f 3 ~ I ~ -~  d ~ I --< i x~__ 
(,~. 

(c and )~ independent  of x and b; b sufficiently great). 
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4 ~ Let x----x'0, x~, x'~, x.,, x'~, . . .  be any set of consecutive points on C~, 

with some of them possibly coincident. The following condition holds 

(2) h(x)  = Q - Q <= h 

(h, independent of x and of the choice of the points). 

The summation in (2) is only over all those points Xn, x'~ which in absolute value 

do not exceed z(x). 

With this definition in view the following Lemma, essential for our pur- 

poses, will be proved. 

Lemma 1. Every region R consisting of a region Ri (eft (I6 a); w 2) or of 

a subregion of t~,  bounded by two regular curves, is proper or it consists o fa f in i te  

number of proper adjacent or overlapping proper regions. 

Let the boundaries, extending to infinity, of R be B and B'. Suppose that, 

if re r-1 ~ is on B and re ~-] ~' is on B', we h a v e a > a ' ( r ~ ) .  For convenience 

B and B' will be termed left and right boundaries of R. The points x in R 

will all be such that  I x l ~  Q~ > o where th, so start with, is sufficiently great. 

Case A. The boundaries B, B'  have the same limiting direction. Until 

stated otherwise, only those Q curves will be considered in the discussion of this 

case which have the same limiting direction as B and B'. Let Q denote any such 

curve to the left of or coincident with B and let Q' denote any such curve to 

the right of or coincident with B'. By w 2 it follows that, if ~ Q(z)corresponds 

to a curve Q, we shall have ~ Q (z) increasing monotonically as z moves from B 

to B'  so that  I z[ (~  Q1) remains fixed. A corresponding fact holds for any 

function ~ Q'(z), corresponding to a curve Q'. In order that  ~Q(z) be bounded 

in R it is necessary and sufficient that  ~ Q (z) be bounded along B'; similarly, 

for boundedness in R of a function ~ Q' (z) it is necessary and sufficient that  

Q(z) be bounded along B. The functions under consideration, the ~ Q(z) and 

the ~ Q' (z), are accordingly separated into two groups - -  those bounded in R, 

(3) (z), 

and others, not bounded in R, 

(4) ~QU(z), ~{ Q'"(z). 
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Corresponding to an interior point  x of / /  there will exist a group of Qx 

curves, 

(4 a) O r, Q,u ~ 3 - '  3- 

(cf. w z) associated with the functions (4), respectively. These curves will extend 

from x to infinity. Suppose that for no x, i~terior R, is a curve Q~ situated to 

the right of a curve Q'~, sufficiently far  from the origin. Let  Q~ denote one of 

the curves Q~ which, sufficiently far from the origin, is on or to the r ight  of 

all the curves Q~. Similarly, let Q'" denote a curve Q'u which sufficiently fai  
37 X 

out is on or to the left  of all the curves Q'" Q~' and Q'~ are either coincident 
3" " 3~ X 

or Q'~ is to the left  of Q'~", sufficiently far  f rom the origin�9 Let  x ' ( l x ' ] =  I x]', 

be a point on B'. At x' ~Q"(z)  is greater  than at x; hence the curves (d~ and 

Q~, do not intersect. On the other  hand, since 9~Q'(z) increases monotonically 

(and necessarily to infinity) along B '  while for z on Q" we have 9{ Q~(z )=  
-~ , Q-~ 

= ,~ Q (x), the curve ~ recedes to the left  from B'. Therefore QI~ (x interior R) 

has no points in common with B' .  Similarly, Q:" (x interior  R) will have no 

points in common with B. For  a curve C~, in R, extending to infinity and 

lying (sufficiently far out) between (t)~ and Q'3~, conditions I ~ and 2 ~ of the De- 

finition will be satisfied for the functions (4) as well as for  the functions (3). 

Under  the supposit ion of the italicized s ta tement  above such a curve (or curves) 

C~ could be found for every x interior R. There is no difficulty in seeing that  

this will remain true also for  every x on B or B'. 

Assume that for some x--~ x ~ i~ R, a carte Q'~ (0f the set (4))is to the right 

of a curve Q~' (sufficiently far  fi'om the oroin). W e  shall have one or more 

curves Q~o and one or more curves Q','; such tha t  these Q~, are all to the r ight  

of these curves Q'~o' (for I zl ~ 0(x0) ~ IXo l; ,o (x0) sufficiently great). Let  ~'~ be 

a curve, of the ment ioned set of curves Q~', which is on or to the r ight  of these 

Q'~o'. Similarly, let Q~ be a curve, of the ment ioned set of curves s i tuated on 

or to the left  of all the curves of this set. I t  is clear that ,  for ]z I_--> O(x0), 

Q~.o u is to the left  of Q~. Let  x ( l x l = l x  ~ be a point  on B. The curves B, 

(~.~', (2:o", Q~.o will be in the order jus t  stated, from the left  to the right. This 

follows from the fact  tha t  along B ~2'"(z)  increases and that  ~Q'"(z) is  greater  

at  x than at x ~ (unless x = x~ Thus, B and Q~ do not intersect  for ] z ] _  >- e(x0). 

For  similar reasons B '  and (~2o ~ do not  intersect ( ] z ] ~  Q(x0) ). Accordingly, / /  

(]z] _--> e(xo)) is seen to consist  of two overlapping regions; one, bounded by B 
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- i t  �9 - ' ~' B ' .  . and Q~o, another, bounded by Q~o and Let /{1 stand for any particular one 

of these two regions. With respect to 

Q'(z) are separated into two groups: 

(31) 
and 

(4l) 

The 

such a region /{1 the ~ Q (z) and the 

functions (31) clearly contain all the members of (3). 

(31) there are certainly some functions not included in (3). 

(bounded in /{1), 

(not bounded in R1). x 

Moreover, in the set 

In fact, if /{1 is the 

region bounded by the curves B and Q~0, for instance, the following is noted. 

All the ,qt Q(z), corresponding to Q.~o and to those curves Q u which (sufficiently 

far from the origin) are either coincident with or recede to tile right of (~'~ 

will be bounded along Qit and, consequently, will be bounded "in R 1, These xo 

functions, while not included in (3) will b e  contained in the set (31). Accordingly, 

there will be fewer members in (41) than in (4). A similar fact will be true for 

the other region B~. Consider now a particular region R 1 and the behaviour, 

in /{~, of the members of the corresponding set (41). 

Suppose that for no x, in R1 (] x ] > q  (x0)), is a curve Q'* situated to the right 
l i t  of a curve Q~(Iz] > e(x)) .~ By a reasoning of the type utilized for a similar 

purpose in the text immediately following ( 4 a ) t h e  following is proved. F o r  

every x, in R~, there exists a curve or curves C~, lying in R~ and extending to 

infinity, such that the  conditions I ~ and 2 ~ of the Definition will be satisfied for 

the members of (31) and (4~). 

For some regions R~ the condition 6f the above italicized statement may 

not hold.  Consider such a region / t  I and the sets (31), (41) corresponding to it. 

R~ will consist of two overlapping regions, each extending t o  infinity. Such a 

pair of regions can be found for every region R 1 now under consideration. Call 

any such region R 2 and, corresponding to a region R2, let the ~Q(z)  and the 

~Q'(z)  be separated into two sets: 

'b (32) ,~}~ Q~ (z), ~ q~ (z) (bounded in R2) , 

(4_0) ~R Q~ (z), ~ Q'# (z) (not bounded in R2). 

1 T he  subsc r ip t s ,  here  and  in  t he  seque l  of t h i s  proof, s h o u l d  no t  be confused  w i th  t h e  
subsc r i p t s  in  (I). 

For z on q ~  ~ql(z)= ~q,(x). 
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The set (42) will contain fewer members than  the set (41), corresponding to tha t  

one of the regions R 1 which contains R,. This follows by a reasoning of the 

type employed before in proving tha t  a set (41) contained fewer members than  

a set (4). 

We apply the same reasoning to the regions Re as had been applied to 

the regions R 1. We are thus led to consequtive subdivisions. Corresponding 

to the first, second, . . .  m-th subdivision we get m sets of regions 

R1, R~, . . .  R,,. 

Associated with a part icular  region Rr = I, 2 , . . .  m), belonging to the i-th of 

the above sets of regions, the 91Q(z) and the .~l Q' (z) are divided into two sets: 

(3;) ,')t Q~ (z), :)t QI. b (z) (bounded in R;), 

(4:) 9~ (~)~.~ (z), ~r Q:." (z) (not bounded in Ri). 

A set (4i) (i = 2, 3 . . . .  m) will have fewer members than a set (4i-~). The regions 

Ri are obtained by subdividing only those of the regions Ri-I for which a con- 

dit ion of the type stated in italics, foUowing (4a), does not  hold. The Ri-1 

which are not  subdivided are such tha t  I ~ 2 ~ of the Definition will hold for the 

corresponding sets of functions (3i-~), (4i-1). Since there is only a finite number 

of functions ~R Q (z), ~R Q' (z) it  is clear tha t  the above process will te rminate  for 

m sufficiently great. It follows, accordingly, that R con.eist.r of a finite number of 

overlapping re qio,s 

(5) /r R ~ . . . .  /~"-', 

each extending to infinity, such that conditions i ~ 2 ~ of the Definition hold fbr  the 

functions ~ Q (z) and ~ Q' (z), eorrespondi~Tg to cu~wes Q, Q' with the limiting direc- 

tion of B (and B'). These conditions will hold, in general  for all functions 

~.}~Q(z) formed with the aid of the set (I). 1 The curves C~ can be so chosen tha t  

condition 3 ~ of the Definition is also satisfied. Thus, in the Case A, either R 

satisfies i ~ 2 ~ 3 ~ or it  consists of a number  of overlapping regions each satis- 

fying conditions I ~ 2% 3 ~ 

C a s e  B. The boundaries B,  B '  have d(ff'erent limiting directions. Let  ~ (>  o) 

be a small number and let ro and r '  0 (r 0 > r'o) be . the  l imit ing directions of the 

1 If  a function ~Q(z) does not  vanish  a long  any  curve Q, posses s ing  the  same  l imi t ing  
direct ion as B (or B'), i t  increases  indef ini te ly  a long  every  Cx (x and Ct in R), under consideration.  
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curves B and B',  respectively. Le t  R~ denote the subregion of R bounded by 

B and the ray 

(6) a r g  z ~ r o --  ~. 

Similarly let R'~ denote the subregion of R bounded by the ray 

(6a) a r g z - ~ r ' o  + e ( r o - - ~ > r ' 0  + ~). 

The subregion of R bounded by the rays (6) and (6 a) will be denoted by R ~. 

Suppose now tha t  x is in R~. The curves Q~, which correspond to the 

functions ,q~ Q(z) vanishing along curves Q, each with the same l imit ing direction 

as B (and hence si tuated to the left  of B),  will all have the l imit ing direction 

of B. Along such a curve r which, sufficiently far from the origin, is on or 

to the r ight  of all other of these curves the functions .~R Q (z), referred to above, 

will be all monotone non-decreasing. Thus, curves C:~ can be chosen, in / ~  and 

extending from x, along which Condition I ~ of the Definition holds for these 

,91 Q(z). [C~ will be chosen coincident with or suitably receding to the r ight  

from Q~]. Consider the functions ~ Q (z) which do not  vanish along any curves 

with the same l imit ing direction as B. The curves Q along which such a func- 

tion ~ Q (z) vanishes all have l imiting directions dist inct  from tha t  of any curve 

C.~, specified above. On the other hand, every such ~R Q(z) i s  positive in R. 

Hence these functions are all monotone increasing along Cx (for a suitable 

choice of C~). 

By a similar reasoning we obtain an analogous result for x in R'~. 

W h e n  x is in R ~ ([ x[ > Q~) every !}IQ (z) is seen to be monotonically in- 

creasing along a curve C~, consisting of the ray 

(7) arg z = arg x. 

All conditions of the Definition will be satisfied th roughout  R ~. The C~ can be 

so chosen tha t  the Definition will be satisfied throughout  R. In fact, condition 

4 ~ seen to be satisfied throughout  R because along the chosen curves Cx all 

t h e  functions ~RQ(z), ~Q'(z) are monotone beginning from x. In  other words, 

I ~ is satisfied with z ( x ) =  ix] .  Under these circumstances there is no occasion 

to consider 4 ~ In  the Case B, then, R itself is seen to be proper. 

Returning to the Case A we shall now demonsb'ate that any region, say R k, 

of the set (5) can be separated into a finite number of adjacent proper regions 

(j = I, 2 . . . .  jk). Consider first the functions 

24- -33617 .  Actamathemat i ca .  62. Impr im6 le 7 novembre  1933. 
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(8) u z ~'}~ Qi ( ) ,  "~ Q'i" (z) (not bounded  in Rk), 

each vanishing a long a curve (2 (or Q') with the  l imi t ing  direction at  infinity of 

a boundary  of R k. For  these funct ions  To is satisfied in R k. Let  ~ Q(z) be a 

funct ion  of the  set ~ Q~' (z) (of (9)) and let ~ Q*(z) be another  funct ion  of the 
same set: 

(9) ~.}~Q(z)=q(o,O)=~,lq, .Io, ' :  cos q,+I~YO (Iq0l~o), 
r = 0  

(9a) ~ Q* (z) = q* (e, O) - -  ~ l q*, l e ~ cos q~*~- l* -~ -o  ( I q : l # o ) .  
' k 

The total i ty of curves Qx, associated with (9), is specified by the  equat ion 

(IO) dq(o ,O)  ~- 0 Q Q(O'O) d~O + q(o,O) dO= o; 

while the  curves Q*, corresponding to (9 a), are characterized by the relat ion 

(IO a) dq* (Q, O) ~ 00~ q* (o, O) dQ + 0-0 q'" (Q' O) dO ~- O. 

Let  9*(r ,  a) denote  the angle at  which a curve ~ Q:~ intersects a 

(x = rer=i~). F rom (IO) and (Io a) it follows tha t  

(,i) 
o o o o 

, ~  a* (,', a) o~a  (,., d) - ' b;- q (''' '~) ~ a* (,, ~) 
tg  q~* (r, a) . . . .  

o (,.,~) o ~ , ( , . , ~ /+r  ~ o o ~,(,.,~) 

curve Q* 

Wi th  the  aid of (9) and  (9 a) tg  ~p* (r, a) can be expressed in the form 

( I I  a) t g  ~..+. (r, a) ct (r, c~) 

- ~ - -  ~ - - - I q . I  r ~cos q : +  q, l r - ~ s i n  ~.,+ a + 
r = O  1 ' ~ 0  

(II  b) 

+ ~ ' / - - r l q ' l r - ~ ' C ~  q " + - k  a} ~ / :  [ q : l r - ~ s i n  ~,*.+ a , 

We take the unique curves Qa., Q* possessing the limiting directions of a boundary of R k. 
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l l*-- v, . ,  

,v=O 

(Ii c) 
- - -  l - - V  

+Z-ulq, lr ~eos q + + ~ - - =  Z ~ : - l q : l  
'v ' -O 'v=O 

Now 

(I2) b (r, a) --~ b (a) + e (r, a), 

_v ( l * - v  \ 
r ~sin q ~ + - - ~  ~ / +  

r ~ cos q,* + ~ -  ~ .  

(I2a, ( ) (  ) �9 

Here e (r, a) has the following property. Given any ~ (>  o), independent of r and 

a, there exists a number  r~ ( >  o), independent  of r and a, such tha t  

(22 b) I ~ (r,'~)l < 

for every x, in /~k, for which r > r,. This fact  is a consequence, in part,  of the 

following considerations. Given any el ( >  o), independent  of r and a, there exists 

a number  r,, ( >  o), independent  of r and a, such tha t  

Ic=( I=(  o§ 
for every x, in R k, with 1-> r~. Moreover, in view of (I3), it  follows tha t  

l l* ,  
(,4) kv I qo qo* I (, - ~') --< I b +) I < ~ ~* * �9 k~lqoqo I (d > o1, 

where e' can be made arbitrarily small by taking e, sifficiently small. Accordingly, 

it  is clear that ,  if R k is defined exclusive of the points for which r < 1"o (r0, suf- 

ficiently great), the function b (r, a) will necessarily main ta in  its sign th roughout  ~R k. 

I f  a( r ,a)  = o, we shall have 9"  (r, a) ~ o so tha t  every Qx (corresponding 

to (9)) will be coincident with Q'~ (x in Rk). Suppose tha t  a(r, a ) #  o and con- 

sider the  curve W =': defined by the equation 

(I5) a (r, ~ ) =  o 

and having at  infinity the l imit ing direction of a boundary of R k. Such a curve 

will exist by virtue of the results of the theory of implicit functions and it will 

be expressible in the form 
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1 '2 

a = w~ + w,*r-T" + w* r - ~  +. . - .  (I s a) 

Consider all possible curves W*, 

(I6) W*, IV*, . .  . I4r*., 

u Z formed for pairs of functions picked from the set sj~ Q i ( ) ( o f  (9)), and also 

formed for various pairs of functions selected from the set 3~ 0'/' (z) (of (9)). These 

curves are specified in a way precisely analogous to tha t  of the definition of W:': 

with the aid of (I5). I f  any of the curves (I6) extend to infinity, interior R ~', 

we shall have R k divided in a number  of adjacent  regions R~ ( j =  I 2, .jk). 
J ' �9 , 

These regions will be separated by certain ones of the curves (I6) and interior 

each one of these regions Chere will be no curve of the set (x6). Consider a 

part icular  region R3~. For every x in R k. a certai~ ordering of  the curves Q~, 
3 

corresponding to all the ~,}~ Q" (z) of  the set (8), will be maintained. Similarly, for i 

every x in R~. an ordering of  the cur~;es Q'",, associated with all the 9{ Q'~ (z)of(8), 

will be maintained�9 

Consider a funct ion ,~ Q (z) of the set .~R Q~ (z) (of (8)) and another  funct ion 

~ Q'(z) of the set .~)~ : " z  Q, ( )  (of (8)). ,~ Q(z) will be given by an expression of 

the form (9). On the other  hand, ;)~ Q' (z) will be defined by (9 a) with Q*, q*, 

l:':, q:~: replaced by Q', q', l', ~' respectively. W e  specify a curve W'  jus t  as W* 

had been previously specified. In  connect ion with this curve all the formulas 

from (9) to, and including, (15 a) will be valid (with the indicated change of 

notation). To either side of this curve the angle ~'  (r, c~) (x - - re~-~" ) ,  defined 

as the angle at which Q~ intersects Q~. (at x), will maintain its sign. I f  it were 

possible for a curve W'  to separate R ~ into two regions R 1,~ and R 2,k, each 

extending to infinity, it would follow tha t  for every x, in R ~,k, ~ (r, a )main ta ins  

one sign; while, in R 2,k, 9~ (r, a) would maintain the opposite sign. For  every x 

in One of these regions Q~ would recede to the left  of Q'x, while the opposite 

would be true for every x in the other  region. This is contrary to the proved 

properties of _R k. Hence  a curve W' cannot  separate R k in the stated manner. 

�9 u ~ Qi (z) of  the Thus, in particular, for  every x in R k. every Q~, corresponding to the ~ " 

set (8), will recede to the left of every Q';', associated with the ,gtQi.~'(z)of (8). 

Exceptionally,  a Q.~ may be coincident with a Q~. (x in R)'). The above s ta tement  

in italics implies that,  for any fixed x in R~ (or, more generally, in Rk), the  

curves Q~ and Q~ do not  intersect  at  any points z distinct from z = x. In  view 

of the two preceding italicized statements,  curves C~ can be always specified so 
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that  (in addit ion to 3 ~ the condition I ~ is satisfied (with z ( x ) ~  Ix I) for all the 

functions of the set (8). ~ For the set (8), then, there will be no occasion to 

consider 4 ~ . 

We note 

of a funct ion 

t h e  form 

tha t  every Cz is chosen as a regular curve. The values, on C,, 

Q(z) are accordingly representable by a convergent series of 

- ~ c  r 

~ Q ( ~ )  = ~ g ~ .  

Hence ~ Q(z)has a limited number  of maxima and minima, along C~, between 

z = x  and the point z for which I z I = z ( x ) .  I f  ,~Q(z) g M  in R~, then the 

corresponding function h(x), as defined in (2), is less than  h = - u M ,  where V 

depends on the number  of maxima and minima (referred to above) and is inde- 

pendent  of x (x in RJ'). Accordingly, 4 ~ is seen to be satisfied, in By, for all 
!~ Q (z) (and ~ Q' (z)) bounded in t~.. 

The remaining functions ~ Q(z), which do not  vanish along any curve 

possessing the l imit ing direction of a boundary of R k, do not  cause any difficulty. 

Thus the t r u t h  of the italicized s ta tement  preceding (8) has been made evident. 

This completes the proof of the Lemma. 

4- Formal  In tegra t ion .  In  view of the purposes at  hand it is essential to 

solve formally the equation 

(i) y(~) (x) = e~(~' x" ~(~), 

where the a-series (cf. w I) x (x) is given by 

( ~ a) ~ (~) __ ~o (~) + ~, (x) log ~ + + ~ (x) log rex, 

1 2 

i + z ~ x  k + ~ x  k + . . .  ~.~ (~) = ~o ( i ~ O ,  I , . . . m )  

and Q(x) is given by [(2); w 2]. I t  will be supposed tha t  not  all the constants 

zo~ (i -- I, 2, . . .  m) are zero. This equation we shall satisfy by a series of the form 

(2) y (x) = e~(~')x"§176 ~(x),  

(2 a) ~ (x) = V~ + 7 l (x) log x + . - .  + ~ + 1  (x) log m+l x, 

1 2 

vi(x)=v~ + v~xk-  + g ~ - k  + ' ( i = o ,  i , . . . m  + ~). 

t 1 One m a y  select  a su i t ab le  Qx or Qx curve  ot $iae set  of curves  assoc ia ted  w i th  (8). 
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Case I. Q ( x ) ~ o .  Write 

l l--1 1 
(3) X Q(I)(X) -~- ( r  -t- ~) = p ( X )  "~-~)lX ~ -~- p l - - l X  ~ - ' t - ' ' "  2i-pl  3~-'Al-po (pl  ~ O; ~ ~ I).  

Substitution of (2) in (I) gives, after division by eQ(z) xr, 

(4) X --a X Z(X) = p (X)  ~] (X) -~- X?] (1) (X), 

On arranging the two members of (4) according to powers of logx  comparison 

of coefficients of log~x will give the relations 

(4a) 
k--1 k--2 1 1 

x-~ [~ x + ~.I x T  + ~ x ~ + - ]  = [ p , x ~ +  + pc] [~ + ~ x  ~ + . . 1  + 

} 
(;t = o, I, 2, . . .  m) 

and 
1 '2 ] 

l __t [ I  ~m+ X k.12 + . . . .  (4b) o = [ p ~ x ~ + - + p o ] [ V ~ + l + v ~ + ~ x  k + .  .]__ [~,1, ~ --k+_2~m+~X--r" 

Since pz r o from (4 b) it follows that  necessarily 

(5) ~ + 1 - ~ - 0  ( i = 0 ,  I ,  2 . . . .  ). 

Consider now (4 a) with k=- m. 

the value of a, 

(5 a) 

Comparison of the highest powers of x gives 

k - - l  
k 

This value is substituted in Pc in (3). Comparison of the coefficients of 

determines uniquely 

with the aid of the equations 

1 l--1 1 
X k, X k X k �9 . 

rh , r]l_X 

(5 b) -= I]o Pt--j  x'n,j V'~Pz + ~fnj_lPl--1 + "'" + " '  

( j = o ,  i , . . . 1 -  i). 
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On the other hand,  comparing the coefficients of x P (~ : o, i , . . . )  we get 

(5 e) m ~m m m kW,v'-'~" [~lTvPl. -~ "'''~- ~ , P O ]  "~- (Tn "~- I) 'P,  m + l  - i v  k?]*'  

(~, = o, ~ , . . . ) .  

These equations determine in succession and uniquely the constants 

( ~ = o , ~ ,  .). ~]l+v " ' 

Next the coefficients of V~"-~ (x) may be determined uniquely by means of 

sets of equations of the type of (5 b) and (5 c), derived by comparison of the 

coefficients of the various powers of x from (4 a; ~ r m - - x ) .  Suppose the 

formal  series 

have been determined (by means of consecutive applications of (4 b) and of 

(4 a; ) , = m ,  m - - I , . . . o +  I). The series ~]a(x) can then  be determined from 
1 1 

(4 a;  ~ = o). In  fact, comparison of the coefficients of x g . . . .  , x ~ will yield the 

equations 

(6) Xj ~ _ _ l P l - - 1  "t- o" l 

( j = o ,  i , . . .  l -  i). 

Equat ing the coefficients of the other powers of x we obtain 

(5 a) 

( ~ = o ,  ~ , . .  3. 

With  the aid of (6) and (6 a) the series V~(x) can be determined (in terms of 

the coefficients of ~]~+l(x)). Thus, in the case under  consideration consequtive 

application of (5), (6) and (6 a) for o = m, m -- I, . . .  I, o will serve to determine 

a formal series solution of the form (2), (2 a) with a . . . . . . .  
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(7) 

Case II. 

W. J. Trjitzinsky. 

Q ( x ) ~ o .  In place of (4) we obtain 

x - o .  ~. (x) = (t- + ~) ~, (x) + x ~( ' ) (x) .  

(7 a) 

Comparison of the coefficients of the various powers of log x will give 

1 1 

X 1-a [~  + ~ X 7- k Or ' ' ' ]  : (r -4- . )  [g]~o "{- ~ X k -~-...i ~- 

9- = o, x, 2, . . .  ,~) 
and 

(7 b) 

~ +  . . . . .  

] o = ( r + , ~ ) [ n , ~ + ~ + n ~ < x - i ~ + - - !  - n ~ + ~ - ~ + k ,  . ~ ~ +  . . . .  

Comparison 

st i tute a = I in (7 a) and (7 b). 

Suppose first tha t  

of the highest  powers of x in (7 a) leads us to take a = i. Sub- 

(s )  ,. + ~ # a. (1, = o ,  ~, 2,  . . . ) .  

From (7 b) it  will follow tha t  

(8a) ( r - ~ - a - - ~ ) ~ m + l = o  (v-~---o, I, 2 . . . .  ); 

tha t  is, ~ ' ~ + l ( x )  will be formally zero. The series I]'(x), , ] ~ - l ( x ) , . . .  T~ will 

be then  determined in succession by means of the sets of equations (6 a) formed 

for a = m , m - - I , . . . , o ;  here we let l = o  and p 0 ~ r +  I. 

I t  remains to consider the case 

s (integer s > o). (9) ," + ~ - ~ = 

The equations (8 a) will leave V~+I undefined but all the other coefficients in 

,2 ~+1 (x) will necessary be all zero. Thus 

(9a) ~,~+1 (x) --  ~ + 1  x t.. - -  o . r  

Let  (6' a) denote the equations (6 a) formed with 1 = o and Po = r +  I.  The set 

of equations (6' a; a = m), 
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( I 0 )  

determines uniquely the constants 7~ "~ (v = o ,  I . . . .  s - - I ,  s + I , . . . ) .  

other  hand, (Io; v----s) 

( I 0  a)  xs m = 0 7  m + (m -~- I ~ m + l  / "/8 

(r  ~ - 0 ,  I ,  . . .) 

On the 

determines uniquely the constant  7~ ~+~ (which hi therto was left  undefined); 

however, equations (Io) will leave 7~ undefined. Suppose now tha t  successive 

use of the sets of equations (6' a) (with a = m, a = m -- I, . . .  a = ) .  + I) enabled 

us to determine uniquely all ~he coefficients in the series 

7 ra+l (X), 7 ~ (X), 7 m-1  (X), . . .  7 2+ |  (X), 

except ~z+1 which is left  undefined. Applicat ion of (6' a; a = ).) will d e t e m i n e  "18 ~ 

uniquely 7~ +' and all the coefficients 7~ (v = o, I . . . .  ), except 7~- Thus (9 a) and 

the sets of equations (6 'a) ,  formed for a = m , m - -  I , . . .  i , o ,  will serve to de- 

termine uniquely the series 

7 7 

except tha t  the coefficient 7~ will be arbitrary.  

Lemma  2. E v e r y  f o r m a l  equation (i), (i a)possesses a fo rmal  solution o f  the 

type (2), (2 a). W h e n  Q ( x ) ~ o ,  so that 

v ~ l - - 1  l--v 

Q = F,  q, x 
~'~0 

in the solution (?), (2 a) we have 

k - - 1  

k 

(q,, # o; l>__ I), 

while  7 m + ~ ( x ) = o  and the series 7 " ~ ( x ) , . .  7~ are determined in succession 

V 
wi th  the aid  o f (6 ) ,  (6a)  ( a = m , m - - i , . .  o). W h e n  Q ( x ) = : o  and r +  I # k 

(v = o, I, 2, . . . )  we have a = I, 7 "~+1 (x) = o, while  the series 7 m (x), 7 "~-' (x), .  . . 7 ~ (x) 

are determined in  succession by the sets (6 a) ( formed f o r  a = m, . . .  o w i th  l = o 

and p o - ~ r  + I). W h e n  Q ( x ) - = o  and for  some integer s ( ~ o ) r +  I = ; ,  we have 

25--33617. Ac ta  mathemat ica.  62. Imprim~ le 7 novembre 1933. 
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a = ~ and ~m+~ (x) wi l l  be o f  the form (9 a). I n  this ease the coefficients in ~"+~ (x), 

~'~ (x), . . .  ~o (x) are all uniquely  determined by (6' a), f o r m e d  fo r  a = m, m - -  I , . . .  o, 

except that ~ wi l l  be arbi trary .  

5. Analy t ic  In tegra t ion .  Let  the funct ion 

(i) H (x) : e.q (~') x r h (x), 

1 

where Q(x) is a polynomial in x k (unless Q(x)  ~-~ o), be analytic in a neighborhood 

R of infinity. We  shall say tha t  H ( x )  is asymptotic in R to  eq(~)x~x(x) [z(x) 

of the form (I a; w 4)], 

(2) H (x) ~ e q (~) x" • (x), 

to w terms provided tha t  

(2 a) h (x) = h ~ (x) + h ~ (x) l o g  x + .  + h ~ (x) l o g  ~ x ,  

where, for i ~ o, I . . . .  m, 

(2 b) h ~ (x) -='~o~ + "x,~ x -  k + --- + ~,,_~ X-- + b~,, (x) x "  k 

(I bi (x) l < bi" x in R) 

I f  the relations (2 b) hold for ever)" positive integer w so tha t  every constant  

b i ( i = o ,  I m; w----I, 2. .) is finite the asymptotic relationship ( 2 ) i s  of 

course in the ordinary sense (that is, to infinity of terms). 

Consider now the analytic equation in y, 

(3) y(~ (x) = e ~(x) x r h (x),  

where the second member is a known function,  analytic in R and sat isfying in 

R the asymptotic relationship (2) to w terms (w suitably great). The region R 

will be specified more definitely as follows. I t  is to consist of the part  of the 

complex plane for which r _--> 01 (0~ suitably great) and it will be bounded by 

two regular curves 

Bl, B~. 

Furthermore,  none of the Q curves sat isfying the equation 

(4) ,~ Q (x) = o 
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will be supposed to be interior R .  Ei ther  one or both curves B t ,  J3~ may be Q 

curves associated with the equation (4). Finally,  it is assumed tha t  for x in R 

(5) ~ Q ( x )  >= o.  

By Lemma 2 (w 4) the formal  equation 

(6) yll/(x) = eQ<=l x" ~. (x), 

corresponding to (3), has a formal  solution 

(6 a) 

of the form (2), (2 a) (w 4). 

(6 b) 

s (x) : e e(z) x ~+~ ~2 (x) 

Let  

t (x) = e ~ (x) x "+ ~ F (x) 

denote s ( x )  with the terms containing powers of x 

omitted. Subst i tu te  in (3) 

(7) 

t-I-~ 

X k 

y (x) = t(=) + z (=). 

The new variable z (x) satisfies the equat ion 

(8) 

( ~ = o ,  i, 2 , . . . ;  t < w )  

Taking account  of the relations satisfied by the constants  involved in the series 

of the last members  in (6) and (6 a) (cf. w 4), arranging the second members  of 

(8) according to powers of log x and arranging the coeff icients .of  these powers 
1 

as power series in x k it is observed that  
F 

(8 a) z<!> (x) = e ~(xl x ~ b r ( x )  x - ~  

Here  F = F ( w )  is an integer  ( <  t) and br(x) is a function,  analytic in R (Ix[ ~ ~) ,  

such tha t  to a few terms 

~(1> (x) = ~'~(=I x r [~.~ + ~, x + . . .  + ~!;_~ 

+ ~ ( x ) x  k]log, x -  e Q ( = > x r + ~  k +  + , ~ , _ l x  ] log' �9 
i = 0  
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(8 b) 

where fir(x) is a 

factors zero. I t  

arbitrarily great, 

w. J. Trjitzinsky. 

br (x) ~ fir (x) (x in R) 

a-series with not all the constant terms in the power series 

is of importance to note that, if it were possible to take w 

F can be so chosen that lim F(w)-~  ~ .  The precise rela- 
q2--- ao 

tionship between I" and w is not 

A. Suppose Q(x) ~ o and R is part of a region R(Q) (cf. w 2). 

essential for the purposes of this paper. 

We take then 

(9) z (x) = e Q (') z r br (z) z -  k dz,  

Xn 

where the path of integration lies in / /  and is from a fixed point x0 (on the 

boundary of R and, say, nearest to x - o ) .  There exists a constant b, depending 

only on  the shape of the region R, such that the length  of the path is < b]x]. 

Since ]e Q(~)] will increase, as I xl--~ ~r in R,  more rapidly than any power of 

Ix[ it follows that, depending on F, there exists a constant Qr such that, for 

I x [ >  qr, the integrand attains its maximum absolute value at x. Thus 

1" 

(9 a) Iz(x)l < blxlle'~(=)xrbr(x)x ~l (Ixl->- er; x in R). 

Now ] br(x)] cannot increase faster than ]log x ]~4,; on the other hand, for Ix] < er, 

(9 b) I z (x)] < c,, (x in R) 

Hence from (9 a) and (9 b) it follows that 

~(~) = e~(~) xr  ~ r ( x )  ~ (IO) 

where 

(Io a) [~r(~)[ =< dr  (x iu R). 

The number dr could be selected as the upper bound of the following two func- 

tions 
1 

blbr(x)x-kl (Ixl-->-- .or; x in ~),  

F - - k - - 1  

~rle--,~(x)~--rx k I (Ixl < ~r; x in ~) .  

On substituting (IO) in (7) it is found that 
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y (x) - s (x) 
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(x in R) 

(ef. (6 a)) to F' : I" (w) terms. I f  it were possible to let w --~ ~ ,  lira F' ( w ) :  r162 
q~ 

B. Let ~ Q (x) ~ o. Suppose that a region ~ (Q) exists such, that one of  the 

two curves B~, Br,  say Br,  is in R ( Q). Suppose that no region R ( Q) exists such 

that the other one of  these curves is in R(Q) .  In this case, then, (I7; w 2) could 

not hold along Bt for every ft. Hence it can be seen without difficulty that  for 

some fl--f l ,  the l e f t  member in (I7; w 2) approaches zero along Bt. We note 

that  with Bt there will be associated a curve Q* (cf. w 2) with a limiting direc- 

tion different from that of Bz. 

We  define z (x) by the integral 

( i2)  z (x) ~- e ~ (~) z" br (z) z -  ~" dz  

The path of integration will be taken in R and will *: extend from infinity along 

B~. When x is in R between (or on) the curves Bt, Q* the path of integration 

in (I2) will be deformed as follows: 

I 2  a )  
j'§ 

cO ~t 

Here the first integral is along B~ from infinity to the point x', on B~, such 

that ] x'] ---- Ix] : r. The second integral is along the circular arc, with its center 

at the origin, extending from x' to  x. Along the first path 

F 

b) I e (O/z- 

attains its maximum at x'. In view of the properties of curves Q*, established 

in w 2, the function 
I '  F 

leQ( )z I (rfixed) 

will increase monotonically as z varies from x' to x along the second path. 

Generally speaking, the function (I2 b) will attain its maximum, along the corn- 
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bined path of (i2 a), at x. By a reasoning analogous to that employed in 

deriving (IO) it is again proved that, when z(x) is expressed in the form (IO), 

an inequality similar to (Io a) will hold for x in R between (or on) B~ and Q*; 

in the corresponding region the relation (I I) will also hold. Consider now, if 

there is an occasion to do so, the properties of the integral (12) when x is in 

R between Q* and B~. In this case the integral will be deformed as follows: 

(I]) f~247 
~r x o 

where x 0 is the fixed point in the finite part of the plane common to Q* and 

the boundary of R. The first integral is along BI, while the second integral is 

along a path extending within the closed subregion of R,  bounded by Bl and 

Q*. Now Bl and Q* have different limiting directions at infinity (cf. w 2) and 

along Br]x-,~[e~Q('~)-~ ~ for every f l (> o). Hence, in the case under considera- 

tion, l e Q(x~] increases sufficiently rapidly (as I xl -~ ~r enable precisely the same 

treatment of the first integral (I3) as had been applied to the integral (9). On 

using (7) it will follow that  

(I 3 a) y (x) -- c o ~ s (x) (x between Q* and Br) 

to F " =  I"'(w) terms [lim F " ~  or if can let w--* or where the constant co is 

defined by the first integral (I3). But in view of the behaviour of ~Q(x) in 

the region under consideration it is observed that co ~ o (in the ordinary sense). 

Thus an asymptotic relation of the type of (1I) will continue to remain valid 

throughout R in the case under consideration. 

C Suppose now that ~ Q ( x ) ~  o, while every region t~(Q) contains neither 

B1 nor B~. Assume, moreor~', that Bl a ,d  Br have different limiting directions. 

In this case the integral (12), or an analogous integral with the path of inte- 

gration along B~, can be used. Let Q~ be the curve associated with Bl. Ne- 

cessarily Q~ will lie between Bl and B, ,  its limiting direction being distinct from 

those of Bt and B~ (cf. w 2). For some fl' we shall have 

(14) lim [x-~'[e ~Q(z) = O ,  

I*1 

as [x I--* m along both Bl and B~. Let R ~ denote a subregion of R,  bounded on 

one side by Bl and on the other side by a curve Br with a limiting direction at 
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infinity and lying in a region R (Q).I Similarly, define a region R" with boundaries 

B,  and Bt. The regions /t  I and R will have in common a region bounded by 

/~l and B~ (the latter two curves having different limiting directions). 

I t  is observed that for x in R l the integral (12) can be treated precisely 

as in the preceding case .  Thus, a solution y(x), satisfying an asymptotic rela- 

tion of the type of (~)  (for x in R *) will exist. Call this solution y~(x). Let  

yr(x) denote the analogous solution satisfying the asymptotic relation (II) for 

x in R ~, 

(~ ~) y~(x) = y, (x) + c 

Thus there exists a constant c such that, to F I ( <  w) terms, 

y t  ( x )  - c - s ( x )  

R ~. The constant c cannot be discarded in this asymptotic rela- 

(I5 a) 

for x in 

tionship. 

D. 

have same 

Let it be assumed that ~ Q ( x ) ~ o ;  suppose, moreover, that Br and Bl 

limiting directions at infinity, while no region R(Q) contains either BI. 

or B1. Then, depending on the position of the Q curves along which ~ Q ( x ) ~ - o ,  

~{ Q(x) will be monotonically increasing as x moves along the circular arc 

I~1 = ~ (>= Q0 > o) 

from Bt to Br (or from B~ to Bz, as the case may b e ) .  I t  is clear that integrMs 

of type (I2 a) can be used yielding an asymptotic relation of type (I I), valid for 

x i n  R.  

E. Consider 

of the integral 

( I 6 )  

the remaining case when ~}~ Q (x) o. 

f ( )  r z(x) = eq(~) z~ br z z - ~  dz ,  

Define z(x) by means 

where the path of integration lies in /t and extends from infinity. 

x / "  

f 1 I~(~)1 ~ b:- Iz-~'+~+'dzl 
/1  1 

< b:~l~l, z+~ +'+~ 

(I6 a) 

We have 

(x in R) 

. m  

1 B r  can a lways be chosen, in  R,  w i th  t he  same l imi t ing  direct ion at  inf ini ty  as t ha t  of B r .  
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provided, of course, F is sufficiently great .  A solution y ( x ) =  t ( x ) +  z(x)  will 

evidently exist such tha t  a re la t ion of the type of ( I , )  is satisfied. 

Consider the equat ion (3) with the second member  satisfying, for  x in R,  

the asymptot ic  relat ionship (2) in the ordinary sense. Le t  yo(X) denote  a solu- 

tion, as obta ined before, such tha t  

(I7) yo(X) ~ ,r 

to F(wo) terms; this solution being obtained for  some sufficiently great  value of 

w-~  w 0. Le t  y~(x) denote another  solution, corresponding to a grea ter  value 

o f  ~H7 ~ 'H) 1 ( >  ~/)0)' 

(I 7 a) Yl (X) ~ S(X) (tO F(W,) terms),  

Taking w L sufficiently great ,  F(w,) > F(w); in fact,  lira F ( w ) =  ~ .  Le t  to(X) and 

t 1 (x) be the corresponding funct ions  t(x) (t o < t,). On wri t ing 

(,8) 

it  is seen tha t  

(,8 a) 

fro (x) - u ,  (x) = c o , , ,  

co, 1 = to (x )  - re(X) + H ( ~ )  - -  d ~  o(~)  

--[H(z)-- d~t (z)]] ' 

= lira [t~ ( z ) -  to (z)]. 

In  the case A the limit is taken as z approaches x o. In this case, in 

general,  Co,, # o .  In view of (,8) and in view of the fact  tha t  .~Q(x)---)or (as 

I xl--~ or in R) sufficiently rapidly it is seen tha t  

(19) fro (x) - s (x) (x in R) 

to F(wl) terms. But  w I and hence F(w,) can be made arbi t rar i ly  grea.~. Thus 

( '9) will hold in the ordinary sense. 

In  the case B, with say Bt not  in any region R(Q), the limit in (I8 a) is 

taken as z approaches infinity along B~. Thus, we shall have co. 1 = o '  so tha t  

Yo (x) - -  ?h (x) - s (x) (x in R) 

' Provided that t o (x) has sufficiently many terms, depending on the nature of Bt. 
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to F(w~) terms. Hence  yo(X) is independent  of w ( = w ~ ) a n d  the  asymptot ic  

relat ion is in the ordinary sense. 

Consider the case C. W h e n  x is in B ~, for  instance, in (18 a) z is let to 

approach infinity along Bt. Again Co, 1---~ o and the s i tuat ion is as in the pre- 

ceding case inasmuch as x is restr ic ted to R t. Consider a solution y~(x) which, 

for  x in R ~, is asymptot ic  to s(x) in the ordinary sense. Le t  y~(x) be a solu- 

t ion which has the same asymptot ic  form in B r. W e  have 

y~ (x) = y~ (x) + c. 

Thus 

y, (x) - -  c ~ s (x) (x in ~r).  

An analogous fact  holds t rue for y~(x) when x is in R t. 

In  the case D we obtain an asymptot ic  relat ionship valid in R in the 

ordinary sense. To demonst ra te  this fact  we need only to let  z, in (8 a), approach 

infinity along Bt or B~. W i t h  t o suitably chosen, Co, 1 will then  be seen to 

be zero. 

In  the remaining case when O i Q ( x ) ~ o  the limit in (18 a) is taken as z 

approaches infinity within B .  Here  again co, l =  o and yo(X) is independent  of 

w ( =  wi). The solution yo(X) will be asymptot ic  to s ( x ) i n  the  ordinary sense, 

for  x in B .  

The fol lowing Lemma can now be stated. 

Lemma 3. Let R be a region bounded 

specified above); that is, in R ,  

(20) ~,~ Q (x) > o 

by regular curves BI and Br (as 

1 

( Q (x) a polynomial in xk). 

Consider the equation 

(2 I) y(i) (X) = e q(z) x" h (x), 

where h (x) is analytic i~ R (I x I s  ~ )  a .d  

h (x)  - ~ (~) 

Let 

s (x) = e Q(~) x "+~ ~7 (x) 

(2I a) 

for x in R.  

(2i b) 

be the corresponding formal solution. 
26--33617. Acta  mathemat ica .  

(a a-series) 

62. Imprim6 le 7 novembre 1933. 

07 (x) a a-series) 
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Case I. (21 a) holds to w terms (w sufficiently large). Then there exists a 

solution of  (21), y(x),  analytic in R(]x]  ~ ~ )  and such that 

(22)  y (x) ~ s (x) 

to F(w) (< w) terms [lim (w)=  ~r whenever w can be made to approach infinity]. 

Here (22) holds i~ R except that, whenever ~,}{Q(x)~o while every region R(Q) 

(cf. w 2) contains neither Bt nor B~ (Bt and B~ with different limiting directions), 

there exists a solution such that (22) holds in R l [01" R~, �9 cf. italics of  Case C] ; more- 

over, there exists a constant c such that 

(22 ~) u (x) - e - s (x) 

for  x in R ~ [or R~]. 

Case II. (21 a) holds in the ordinary sense. The results of  Case I will  then 

hold with the asymptotic relations (22), (22 a) valid i~, the ordinary sense. 

Note. Suppose that  interior R we kave ~ Q (x )<  o. This can be treated 

as the  Case E had been treated above. The result would be precicely analogous 
to that obtained in Case E. 

6. Iterations. Let R be a region, of the type of the region so denoted 

in w 5, bounded by curves Bz and B,. Consider a system of order n 

(I) Y") (x) ~- Y (x )  A (x), 

_4 (x) ---- (az, j(x)), Y(x )  = (y,.j (x)) (i, j -= I, . . .  n) 

where the ai,.i(x ) are analytic in R([x[  ~ ~ )  and 

M 1 J 

(~ a) ~ .  ~ (x) ~ ,~. ~ (x) = a!~J x~ + + a~:~ x" + a~ J + a~ i  x ~ + 

(i,j---- 1,2 . . . .  ~; x in R) 

to w (w suitably great) terms; that  is, 

J [  1 . . - -  

(I b) aL.i(x)-----a~JxP §  a~J + ai,_Jx-p + . . . +  a~a(,,._l)X (p-~) 

+ ~ , ) ( x ) x  p( I .~ ; , ; (x ) l_< .~ ; / ;  i , j =  ~, . .  n;  x in  R) .  



Let  

(2) 

(cf. the 

solution. 

(3) 

(4) 
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s (~) = (8~, ~ (~)) - (~ (~1  x'*, J a~, j (x)) 

s ta tement  in connection with (7) in w I) be the corresponding matr ix 

I t  will be assumed that ,  interior R ,  

q~ (x) = ~ q ~  (x) . . . . .  ~ q~(~) < ~ q~+~ (x) =<. . .  =< ~ q .  (x). 

W i t h  a suitable t, let the matrix 

T (~) = (t~, ~ (x)) = (e'~ (~) ~"~, J~'~, ~ (x)) 

consist of elements 

corresponding elements of S(x),of the powers of x ,  

t-i-v 

x ~-, 

Here  # is the lowest  common multiple of ki ( i =  I, 2 , . . .  n). 

By  means Of the t ransformat ion 

(5) Y (x) = Z (x) T (x), Z (x) = (z,:, ," (x)) 

the system (I) will Ko into the matr ix  equation 

z ( ~  (~) = z (x) ~ (x), 

(x) = (z~,j (~)) = ( r ( ~ )  A (x) - -  r ~ ( x ) )  r - '  (~). 

(6) 

(6 ~) 

Now 

(6 b) 

where Fi, j (x) 

(6 c) 

it follows tha t  

obtained by omission, in the power series factors of the 

T - i ( x )  (&~(x)) (e-q~(.~/ ~ = = x *  ~ r ,  j (x)), 

(i, j = I, 2 , . . . .  n) is in the form of a te rminated  a-series. 

b,, j (x) - .~, j (x) ( i , j =  1 , 2 , . . . n ;  x in R)  

(~ = 0 ,  I~ 2 ,  . . . ) .  

On'wri t ing  

B @) = (bi, j (x)), 

to a number  of  terms so tha t  
fir 

(6 d) as, j (x) - -  b~,j (x) = x p ~7,j (x) 

(]e~'y(X)l <= e~,'~; i , j  = I , . .  n; x in R), 
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where a ' = a ' ( w ) - - + o o ,  as w--+ m (whenever it  is possible to let w--+m) .  

vir tue of (6 c) and (6 d) f rom (6 a) it  follows tha t  

In  

(7) ~1 (x) = (e%J (~) h , , j ( x ) x  ~), q,,~(.)=q,(~)-Qj(x), 

(7 a) 

where a = a(w) and 

[[ h,,~ (x)[ = [h[j (x)[  =< h ~ .;.a < h(a); 

i , j = l , 2  . . . .  n; x in B}, 

lira a(w)~-- or 
w 

whenever  w can be indefinitely increased. 

On taking note  of (7), the system (6) will be now solved in par t  by means 

of Product-integrals .  ~ In  wiew of Lem m a  I (w 3) R consists of a finite number  

of proper  regions (Definition of w 3). Corresponding to any fixed x, in R, there  

will be associated a curve C~, as specified in the Definit ion of w 3 and sat isfying 

the condit ions of this  Definition. Le t  x o ( [ x 0 [ > ] x [ )  be some point  on C,. We 

form the matr ix  product  

(s) Z(~) = (z~:i, j) 

= [I  + (~, - Xo) ~ (~,)] [I  + (x,  - x , )  ~ ( . % ) ]  [I  + (x.~ - . m - , ) - 4  (~)], 

where the points x o, x 1, x~, . . .  x,~-l, x,~ = 5,, = x are consecutively ordered,  as 

stated, along C, f rom x o to x.  Moreover,  as m--+ ~ ,  the maximum I x , -  x , - l [  

(v -~ I . . . .  m) approaches zero, and ,~ (~ ---- I , . . .  m --  I) is any point  on the subare 

of C, whose end points are x~-~, x,.. According to the known theory of Product-  

integrals,  the l imit ing mat r ix  

/ (8 a) Zo(x) = (Xo:i,j(x)) ----- lira Z~ = (_4 (x) d x  + I)  
m ~ o o  

:q, 

will represent  a matr ix  solution of (6). The elements in each row will consti- 

tute  a solution. Examine now in grea ter  detail  the mat r ix  Z(m). On le t t ing 

xk - -  xk-1 = vk we have 

Cf., for instance, L. Schlesinger, Vorlesungeaa fiber lineare Differentialgleichungen, I9o8. 
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(8 b) 
~I m 

z(~) = • + 2~ ~,  ~(-%) * ~ *u ~ ~ (~,) ( ~ )  + 
/~=1 k l<  k.a 

+ ~ v ~ , v , , . . ,  v~~ (`3~,)~(`3~,1 . . .  ~ (`3~) - 
kx<: . . .  <:k s 

+ vi v , . . .  ~,~_4 (.3,) ~ ( . % ) . . . . 4  (`3,~) 

= I +  ~ ,L , ;  L , =  (/,:,,j); / = ( & , j ) .  
8 = 1  

Substitution of (7) will result in the following expression for l,:i,~ (i, j =  I , . . .  n) 

(9) 

In (9) 

(I0) 

r " r~ ff 0 

k t <  . . .  <:k s "- 

IQ, . . .  k s 

e ~ . . . . .  2 s - 1 h i , ~ , ( ` 3 k , ) h 2 1 , a , ( ` 3 , ~ ) . . .  h 2 s _ l , j ( ; 3 k s  �9 
! 

2t , . .  �9 2s__1=1 

kx , . . .  k s 

W ( i ,  j )  - - -  q i ,  11 (`3t:t)  21- Q21,~L,. ( ~ k , )  - ~ -  -{- Q2s----2,  2 s - - 1  ( ~ k s - - 1 )  + Oas-1, J (~ks) 
21, . .  �9 i s - -  i 

= Q,,j(x) + [Qj, i (x) - Qj,,: (̀ 3k8)] + [Q2s__ i ,  i ( `3ks)  - -  Qx,-I,/(`3ks---I)] 

+ "  + [Q4, i (~k.~) - Q2,,i (~k~)] + [Qx,, ~ (`3~).- Q~,,i (~k,)] ,1 

Application of Lemma I ( w  3 )  enables us to assert, in view of the satisfied 

conditions of the Definition (w 3) and in view of (io), that  there exists a constant 

g ( =  log w), independent o f  x ,  x o and C~, such that  we have 

k l ,  �9 . . k s 

(~ x) ~ w (i, j) <= ~ Q,, j (x) + log w 
21, �9 �9 �9 )'s--1 

( i =  i , 2 , . . . F ;  j =  I , 2 , . . . n )  

for all x in R. 
Thus, on using (8 b), (9) and (I I), it is observed that  the  elements in the 

first F rows of Z(m/ Satisfy the inequalities 

* H e r e  Q ~ , s  = Q ~ -  Q*. 
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(12) 

i l l  I l l  o (/ cr 

--<"l"'~"J<=)l 2~ ~ ll(v~,~,.. ,,) (v,, ~,., ,)...(,,~,~,-,-,~)1 
8 = 1  L' l  < ---  < 1 r  

l l  

h ~ l -  T, Ih;,,.,(~,,)h~,,,.,(~D... ~,_l..~(~k,)ij" 
) " t ,  �9 " ) ' s - - 1  = 1 

and, by (7 a), we have with h = n h(a)  

I 2  a )  

i l l  I i i  

I lL - -  

h ~ Ir, , l l~,,I  P 
m o" 

= - ,  + I I ( x  +hlv, 13,-;)<e , = 1  - -  I 

( i =  I ,  . . .  / ' ;  j = I , 2 , . . . n ) .  

Now, with a sufficiently great, 
P 

(~3) 

z ~ x  

lira ~', Iv, l l , ~ , l - p  = < -r  
m ' v = l  z p  

a ~ , Jx, I 
where g and c are independent  of x, x o and a. This inequality is a consequence 

of Lemma I (w 3); by virtue of this Lemma condition 3 ~ of the Definition of 

w 3, is satisfied. Accordingly, from (12 a) and (I3) i t  follows tha t  

(I4) 

h E  

I(z0:,,j(x) ~,,j)e-Q,,~(x)l < e x~ - -  - -  1 

w 

( i = I , . . .  F ;  j =  I , 2 ,  . . .  n). 

The last member above is independent  of x o. Let  x o recede to infinity along C~. 

The limits 

(I4 a) z,.,i (x) = lira z0: i,j (x) ( i =  I . . . .  / ' ;  j = I ,  2 , . . .  n) 

will exist and 
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d (~ 
(I5) ](Zi, j (X)--  dl .i) e %J(x) I < ~---a Ix'l 

(i = I, 2 , . . .  F; j = I, 2 , . . .  n) 

where d(o) is independent of x and C~. Thus the Product-integral (8 a) can be 

extended to infinity in the first I" rows. The limiting elements (I4 a )wi l l  

constitute F solutions of (6). I t  is clear that Product-integration will constitute 

a convergent process, for the elements of  the first F rows, when the path is 

extended along any regular curve situated in R. The choice of C~ was merely 

made in order to secure the inequalities (I5). In view of the above and of the 

properties of these integrals the functions (14 a) will be a,alytic i~ R ( I  x I ~ ~); 

they will be constituent elements of  F solutions, in R ,  of  (6). ~ Moreover, they will 

satisfy ( I5)for  x in R .  

Returning to the system (I), F solutions will be given with the aid of (5) 

and the F solutions, just obtained, of the system (6). Now 

(I5 a) 

Thus 

(~6) 

[loz,,j(x)l < d(a); ( i =  i , . . .  F; j =  1,2, . . . n ) ;  x in R]. 

yi, j (x) = F,  (x) t,,j (x) 

- -  ~ _ ~  

Accordingly, the yi, j(x) ( i =  x, 2, .. F; j---~ I , . . .  n) are seen to be asymptotic, 

in B, to the si, j(x), respectively. The asymptotic relations here will be vMid to 

~2 (w) terms, where lim ~](w) = oo wheneverw (of (I b)) can be made arbitrarily great. 
t v  

Lemma 4. Consider the system specified by (I), (I a), (I b), (2). Let R be a 

region, bounded by two regular curves extending to infinity, in which an ordering (3) 

is maintained. Let T(x) be defined by (4), with t suitably great. Let A (x) be 

1 They will be independent  of the path  of Product,integration, inasmuch as the path extends 
to infinity and convergence conditions are satisfied. 
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defined by (6 a). Consider the functions zo: ~,j(x) (i = I . . . .  I'; j = I, 2 . . . .  n) which 

are defined, for  x in R ,  with the aid of the Product-integral (8 a); Xo being in R .  

The limits 

(I 7) Zi, j (x) = lim zo: ;,.j (x) 
Xo 

( i  = I ,  2 ,  . . .  /1; j --- I, 2, . . .  J~; X in R) 

will exist, as x o approaches infinity along m~y reqular curre extending in B .  The 

functions 

( I 7 a) wyi, j (x) = Z gi.,. (X) t).,j (x) 
) . -1  

( i = I , 2  . . . .  I '; j =  I . . . .  n) 

will represent constituent elements of  F .r of  the system (I) and they will be 

analytic in R ( [ x ]  # ~ ) .  Moreover, 

(I 7 b) ,~yi, j (x) - eQi (~) x'i, j a,, j (x) 

( i =  I, 2 . . . .  ]'; j =  I, 2 . . . .  ~1) 

for  x in R .  Here the asymptotic relations are valid to ~2 (w) terms, where ~ (w)can 

be made arbitrarily great, whenever it is possible to increase w (of (I b)) indefinitely. 

In  the course of proving the Fundamenta l  Existence Theorem (w 7) it will 

be established that,  whenever  w (in (I b)) can be made to approach infinity, the 

functions (I 7 a) are independent  of w so that  (I 7 b) holds in the ordinary sense. 

7. T h e  F u n d a m e n t a l  E x i s t e n c e  T h e o r e m .  The developments of the preceding 

sections enable us to under take  the proof of the main theorem of this paper. 

The Fundamental  Existence Theorem. Consider a singular equation (eft w I~ 

of  order n, 

(A) L~ (y) = o. 

Let  Ri ( i =  i, 2, . . .  N) be the corresponding regions (I6 a; w 2). Consider a particular 

region Ri. I f  there exist n'o functions (18; w 2) such that (I8 a; w 2) holds, or i f  

the boundaries of  Ri have the same limiting directions, there exists a fu l l  set of  

solutions y,  (x) (v = i, 2 , . . .  n), of  (h), such that 

( i ) y ,  (x)  - eQ, (x) x r ,  (x)  = s ,  (x)  

( v =  1 , 2 , . . . n ;  x i n R i ) .  
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I f  there exist functions ( I8 ;  w 2) Such that (I8 a; w 2) holds, while the boundaries 

of B~ have &fferent limiting directions, consider the two subregions B~ and B7 of 

R~ as specified in the italicized statement following (18 a; w 2). In  this case, also, 

there will exist a ful l  set of solutions, satisfying (i), for x in B~, and another set 

of solutions, satisfying (I) in R'~'. In  (I) the asymptotic relations are in the ordinary 

sense and the si(x) are formal solutions. 

In  virtue of the connection between single equations of order n and systems, 

an analogous theorem will hold for singular systems (B; w I~ 

Proof. Let R denote any particular region for which the asymptotic rela- 

tions (I) had been asserted in the formulation of the above theorem. Interior R 

the following ordering will be maintained 

(2) ~ QI (x) -~ ~ Q.~ (x) . . . . .  ~ Qr, (x) < ~ QG+I (x) = ~ qr1+2 (x) . . . . .  ~ Qr~ (x) 

< ,~ Q&+I (x) . . . . .  ~ Qr~ (x) < . . .  < ~ Qr~_ 1+1 (x) = ~ Qr^/_I +2 (x) . . . . . .  ~ Qr.t (x) 

(I ~--~ /~1 < / ' 2 <  "'" < /'7--1 < l : / - - - - -n) .  

(3) 

which corresponds to ~he equation L~,, ( y ) =  o. 

solutions, 

(3 a) ly, (x) = ~y,,1 (x) 

analytic in R (I x I #  ~ )  and such that 

(3 b) lYi  (x)  ~ e Qi'(z) x ri ffi (x) 

(i---- I, 2, . . .  F1; x i n  R) 

Apply now Lemma 4 (w 6) to the system (D; w I), 

.y(1) (X) --- ](~(X).D (x), 

I t  is concluded that there exist/:1 

(i---- ~, 2 , . . .  G), 

to r,  terms. These functions will correspond to a suitable choice of the matrix T(x), 

which is used in the Iteration of Lemma 4. By the same Lemma, the functions 

(3 c) ly,,J (x) = ly~-1 ) (x )  

will be asymptotic, in B, to the formal series 

(3 d) s,, j (x) = 4 ;  -1) (x) 

respectively. 
27--33617. Aeta mathematica. 62. Imprim6 le 8 novembro 1933. 

( i=  I, 2 , . . .  1"~; j = I , 2 , . . . n )  

(to ~l terms), 
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The equation 

lYl(I 'I--1)(X), " ' "  lYl (X)1-1 

I Lr, (lY) ------ . . . . . . . . .  
,,(/'1--1) ~ ,  (x), l y ~ , ( x )  

ly (Fl) (X), ly (F1-1) (X) . . . .  lY (X) 

lYl (I'1) (X), ]yl (Fl-1) (X), . .* IYl(X) 

ly(/,F1 ') (X), ,,(F,--1) 

---- ly(I'I)(X) -~- lal(X)]y(I'j--1)(X ) -~- la2(x) ly( l ' l - -2)(x)~- . . . -~  1 /~Fl(x) ly(X):  0 

will be satisfied by lYi(X) ( i : I ,  2 , . . .  F1). The coefficients i~i(X) ( i ~ I ,  2 . . . .  F1) 

will be analytic in / / ( I x [ ~  or The formal equation 

(4 a) L~.,(,y) --~ ly (r') (x) + ~al (x)ly (r'-~) (x) + ~a~(x) ly(r'-2)(x) + "  + lar,(x)~y(x) --~ o, 

corresponding to (4), is obtained by replacing the functions 

~ylJ) (x) (i - -  ~, 2 , . . .  r~; j - -  o, , , . . .  1"~), 

occurring in (4), by the formal series sl.i)(x), respectively. In view of the remarks 

made in w I, the coefficients in (4 a) are seen to be formal series of the type of 

(I; w I~ Equation (4a) possesses F~ linearly independent formal solutions 

8i (X)  : 18i(X) ( i  : I ,  2 , . . .  FI) .  

asymptotic relations (3 b) satisfied by the functions (3 c) it 

(4 b) 

In virtue of the 

follows that  

(5) 
to a 1 terms. By 

lai(x)-la~(x) ( i :  1,2, . , . /71;  x i n R )  

taking t h sufficiently great (which can be accomplished by 

suitable choice of T(x)) a 1 can be made arbitrarily great. The equation (4) has 

in common with L , ( y ) ~  o a set of 1"1 linearly independent solutions 

(6) ly, (x) = y~(x) (i - -  i~ 2 , . . .  r~) .  

Every solution of (4), being expressible as a linear combination with constant 

coefficients of the functions (6), will necessarily satisfy Ln(y)-~ o. Hence there 

is an analytic factorization 

(7) L~ (IY) ~. Ln-r ,  Lr, (y), 

(7 a) L , - r ,  (lz)---- I~'(n--T't)(X) Jr- lbl(X),Z(n--T"+I)(x) "~ """ Jff i nn - -F , ( x )  1• (X), 

where the lbi(x) ( i =  I, 2, . . . n - -  F1) are analytic in R ( I x  ] ~ ~ ) .  Similarly, 

there is a corresponding formal factorization 



(7b) 

(7 c) 

Analytic Theory of Linear Differential Equations. 

L ~ - - F ,  (iz) ------ i z (n-F ' )  (x) -~ 1~1 (x) 12(n- / ' -1 )  (x) -~- ' �9 ' -~- l~n--/ ' ,  (X) 1 z (X), 

211 

where the formal series 1ill(x) are of the type (I; w I ~ and L*(~y) is a formal 

operator corresponding to Ln(y).  In  connection with this formal reducibility 

(and similar ones to follow) it is essential to note that, if the formal series in 
1 

L~(ly ) are in powers of x ~" (k, integer), the formal series ~fli(x) in L~-r,(xz)will 
1 

be in powers of xp, where p may be an integer different 1 from k. The equation 

(8) L~-r ,  (iz) = o 

will be satisfied by ( n -  F~) linearly independent formal solutions 

( 8 a )  L~,(~a+, (x)) = ~f~,+, (x) = e~a+,(") J~,+,,m~,+, (x) 

( i =  1 , 2 , . . . n - - I ~ ) ,  

the ~r~+i(x) are a-series (cf. w I). This is a consequence of (7 b) and of where 

the fact that, formally, L~ (srl+~(x))= o. I t  is clear that  

(9) lb , (x)  - ~ ,  (x) (i = i ,  2 , . . . ,  - r , ;  x in  R)  

to /11 terms. Here /71 can be made arbitrarily great by a suitable choice of T(x) .  

There exists a systen of order n - - F 1 ,  of type (D; w I), which corresponds 

to the equation Ln-r,  (lz) = o. Application of Lemma 4 to this system is possible. 

Accordingly, it can be asserted that there exist F~- -F1  solutions of the equation 

L, , - r ,  (~z) =- o, analytic in R (] x [ ~ ~ ), such that  

( IO) lZ~ldC' (X) -- eQI~l -$ff'(~) X l f~, - ] - '  ]~/-~i-~ (X) 

(i== 1 , 2 , . . . F  2 - F I ;  x in R) 

to zl terms. By originally defining T(x)  as S(x)  with a suitably great number 

of terms retained, zl can be made arbitrarily great. 

In  addition to the /11 solutions (6) the equation Ln (y)-~ o is seen to possess 

F o --  F1 solutions 

( I I )  oy/',q-i(X) ( d =  I,  2, ; . .  / ' ~ - -  /11) , 

where any particular solution ,yr,+~(x) satisfies the non-homogeneous equation 

(II a) Ln( , y )  = ,zr,+i(x) (I ~ i ~ F~ - -  111). 

In  certain cases, as for instance when the  n formal solutions of L n  (y) = o are given by n 
determinat ions  of the same series, p wil l  cer tainly be different from k. 
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( ly,  ( j - l )  (X)) -1  = (1~i ' j (X)) 

( i , j  = ~, 2 , . . .  r l ) .  

Then, by (4; w I), a solution of (If a) can be given by the formula 

G 

(I  2) 2YP1 +i (X) = Z 1~). (X) t ! ZF1 t i  (X) I~F..,). (X) d x .  
9.=1 ~. ! 

In view of the conditions imposed on a region R (cf. the formulation of the 

Theorem) the integration methods of Lemma 3 (w 5) are applicable. Thus, 2yrl+~(x), 

as defined by (I2) and with the integrals extended according to Lemma 3, is 

analytic in R ([ x [ ~ ~ ) and 

[x in R; 2ar,+i a a-series] 

to '~2 terms. Such a construction can be made and a relation (I2 a ) c a n  be 

obtained for i =- I, 2 , . . .  F~--  I" 1. 

We form now an equation of order 1'3, 

(I3) L&(2y)-= 2y(r'-)(x) -F ~al(x)2y(';-1)(x) + ... + 2ar~(x),_y(x)= o, 

which is satisfied by the 1"3 linearly independent solutions 

(~ 3 a) ,v~ (~) = ~y, (x) (i = ~, : , . . .  ~'~), 

2yFtq-i(X) (i ~--- I ,  2 , . . .  /12 - -  F I ) "  

This e~tuation is formed, on the basis of the 2y~(x) ( i =  ~, 2, . . . / ' 2 )  in a way 

entirely analogous to that  in which the equation (4) was constructed with the 

aid of the ~yi(x) ( i =  ~, 2 . . .  F~). The coefficients 2a~(x) ( i= I , . . .  F2)wil l  be 

analytic in R ( [ x ]  ~ ~) .  To (I3) there will correspond a formal equation 

$ __ .. ( I 4 )  Lr,(2y)  = 2y (/') (x) + 2ffl (x) 2y(I'~-i)(x) -~ " -~ 2gr ' , (x)2y(x)  = o.  

I t  is satisfied by F 2 linearly independent formal solutions 

(I  4 a)  28i(x) = 1.9i (x) ( i m  1, 2 . . . .  / '1 ) ,  

The 2ai(x) will be 

now have 

of the type of (I; w I~ 

( i =  ~ , . . .  G - - G ) .  

Similar to the relations (5) we 

( i = I , 2 , . . . I " 2 ;  x i n R )  
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to a:, terms, where a~ may be made as large as desired. 1 I n  place of (7) the 

following analytic factorization will hold 

(I 6) L~ (~y) -~ L~_~ Lr~ (~y), 

(16a) Ln-r.~(~z)~z("-r~)(x) + ~bl (x)2z('~-r~-l)(x)+ .-. + ~b,~-r~(x)~z(x). 

The ~b~ (x) will be analytic in R ([ x[ ~ ~ ). There will be a corresponding formal 

factorizution 
L .  (~u) --= L* ~ 

and 

( i6b)  

The formal 

dent  series 

(17) 

~b, (x) ~ ,~, (x) 

Ix in R;  _~fl~(x) of type (I; w i~ i = i, 2 , . . . ?$  - -  /'~]. 

equation L* - -  . ~-ro(+z) - o  will be satisfied by n No linearly indepen- 

to z2 terms. 

W e  solve now 

( i s  a) L ~  (~y) = ~, , .+~(x) (i _-< i _-< ~'~ - i~ ) ,  

obtaining I ~ -  1~2 solutions of L~ ( y ) =  o 

r2 f (19) ~yr~+i (x) = Z ,y~(x) ~zr~+i (X) ~)r~,z (X) dx  
2=1 

( i  ~ -  I ,  2 , . . .  / '3  - -  I '+) ,  

wher0 
(2Y~ j- l)  (x)) - 1  = (2Yi, J (x)) (i,j = I , . . .  1"~). 

! However,  for the present~ i t  cannot  be asser ted tha t  the  ~ai(x) are independent  of g~. 

L}~ (sr~+i (x)) = ~fr~+i (x) = e%+i (~') ~fr~+i e~r.,+i (x) 

[l~0r~+i(x) a a-series; i =  I, 2 , . . .  n --  I'~]. 

To the system of order (n --  F~), corresponding to the equation L~-r~(~z)= o, 

be applied. Thus, there exist F ~ -  F~ solutions, analytic in 

~z~,~+~ (x) ~ e%+~ (~) x,J~+~ ~ + ~  (x) 

[ i =  1,2 . . . .  Fa--.U~; x in R] 

L~--I~ (2 Z) ~ 2 ~('t-/~'2) (x) ~- 2{~1 (x )2z  {?~-/~-1) (x) Ac . . .  -~ 2{~rt -i~ (x) 2z (x ) ,  

Lemma 4 can 

R ( [ x [ ~  ~ )  such tha t  

( i s )  
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In  view of the known asymptotic forms of the involved elements application of 

Lemma 3 will result in the relations 

(20) ~y~,+, (x) ~ ,s~,+, (x) = eQr,+,(~/~, ~r ,+ ,  (x) 

(sar,+i a a series; i = I, 2 , . . . / ' s  -- /'2), 

valid in R to 7~ terms. 

The process specified above will  render, after 7 -  I factorizations, a f u l l  set o f  

solutions o f  nn (y) = o, say, yi (x) (i = I, 2 , . . .  n), analytic in R (] x J # oo ) and such that 

(2 I) y, (x) ~ e Q, (') x "  W' (x) 

(~ai(x) a a-series; i =  1 , 2 , . . . n ;  x in R) 

to V terms. For the present these functions are to be considered as possibly 

dependent on 7. However, 7 may be made as great  as desired by suitably 

choosing T(x)  at the beginning of the construction of solutions. 

Let  ~,-(x) ( i - -  I, 2 . . . .  n) be another  set of solutions for which the asymptotic  

relations (2I) are vMid in R to ~] (>  7) terms. We have 

(22) (v~J -1) (x)) = (c,, j)(~?-~)(x)) (i, j = ~ , . . .  ~), 

where (ct, j) is a matr ix of constants. Now 

(Vi, j) = (~j--i)  (X)) (~j--i)(X))-- 1 = y~j--i) (X)) (~i, j (X)) 

c,,~ = ~ yc~-~) (~) ~ , j  (~) (i, ~ = ~, 2, ~). 
, ~ . l , i  " ' "  

) . = 1  

In  view of the asymptotic forms of the two sets of solutions it follows f r o m  

(22 b) tha t  

[Q,,3" (x) = Q, (x) - Q~ (x); (d,,j) - -  I ;  i, j = I, 2 , . . .  n] 

where 17~' j (x) l ~ 7, (x in R), z is some positive number  and ri,, --  o (i : I, 2 , . . .  n). 

Le t  x recede  to infinity within R.  I t  will follow tha t  

(23a) ci, j = l im eQ,,j(Z) xri, j (~i, j q- 7-)'x'J:x)) , 

(22 a) 

and 

(22 b) 
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whenever the latter limit exists. In  particular, 

(23b) c~,, ~ lira (I + --7~'J~x) / = I  ( i =  1,2, . . .  n). 

�9 x k ] 

By (2) 
.~ Q~,~ (x) _-< o (i < i) .  

Hence, by (2 3 a), 

(2 3 C) ei, j ~-- O ( i  < j =  I ,  . . . n )  

provided that z is sufficiently great. This, however, can and will be supposed 

to be secured by  suitable choice of the set of solutions ~i(x) ( i =  I, 2 , . . .  n). 1 

Accordingly, 
i--1 

(24) y, (x) = ~ (x) + y ,  e,.~. ~ ( x )  (i = 1, 2 , . . .  n). 

Consider the above relations for i < F 1. N o w ,  in virtue of (2), 

[ V,J(x) , , 7~'J(x) 
ci,). [ [ = l i m  em%z (~) x~_ri, z[ = lim - - - -  = o  

D~= 1 , 2  . . . .  i - - i ;  i =  1 , 2 , . . . F I ]  
so that  

(25) y, lx) = ~, (x)  (i = i ,  2 , . .  I i ) .  

But the funetions (25) were obtained by iterations; that  is, by the processes of 

Lemma 4. The results of that Lemma can therefore be completed as follows. 

Let the asymptotic relations satisfied by the coefficients in L .  (y)= o be .in the 
ordinary sense, The Iteration process of Lemma 4 (w 6) will then yield results 
independent of the choice of T (x). Accordingly, in this case, the asymptotic relations, 
resulting fi'om the application of that Lemma, will be valid in the ordinary sense 
(that is, to infinity of terms). 

With the above fact in view, we repeat the reasoning made from the 

beginning of this section. The asymptotic relations obtained in each consequtive 

step will be all in the ordinary sense, provided that integrations are suitably 

defined. This, however, is possible by virtue of the hypotheses made concerning 

B and by virtue of Lemma 3. Hence there will exist a full set of solutions of 

L~(y) = o such that  the relations (2I) are satisfied in the ordinary sense. 

Thus, the proof of the Theorem has been completed. 

1 Such a choice will give a suitably great value of ~. 
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8. Extension of the Regions of Validity of the asymptotic Relations. 

Consider the Fundamental Existence Theorem of w 7 as referring to a system (B) 

of w I ~ possessing a formal matrix solution (7; w I). In particular, the results 

of this section would apply to a single equation (A)(w I~ in fact, we need 

only to note that  with such an equation (A) there is associated a system (D) (w I). 

Consider a pair of adjacent regions 

(i) Ro, I~a+1 (~ = i,  2 , . . .  N;  ( ; ~ . + ~  - t t l )  

of the set of regions ( I6a;  w 2). Let the region.~ of the latter set be ordered in 

the counter clockwise direction. The boundaries bounding R, ,  R~+I will be in 

succession B~-I, a, B~, o-1, Bo+~, ~ (B,v, x+1 = B,v, 1 = Bl. ~,; cf. w 2 following (I6 a)). 

Corresponding to R~ there exists a matrix solution Y"(x)=(y~,j(x)) such 

that the asymptotic relations (with respect to the power series in the a-series 

factors of the formal solutions) 

(2) r ~  (x) - s (x) = (e~  (~) xr;, J ~, ~ (X)) 

hold either in Ra or in a subregion R~, of Ro, possessing B~,~+~ as one boundary 

and /To' i,o (with the limiting direction of Bo-~,o) as another boundary (cf. the 

Theorem of w 7)- Similarly, there exists a matrix solution Y~ 

such that 

(2 a) r ~  (~) ~ s (~) 

either in Ro+~ or in R~+~; the region R~+I (if there is an occasion to consider 

such a region) has B~,.+I for one boundary and it has B'~+I, a+.~ (with the limiting 

direction of Ba+1, a+2) for another boundary. 

Let Ro,~+I be a combined region (containing Ba.~+l in its interior) over 

which the relations (2) and (2 a) are asserted in aecordance with the Fundamental 

Existence Theorem. The right and left boundaries of R~,~+l can be taken as 

regular curves with the limiting direction of B~-~,~ and B~+La+2, respectively. 

Suppose that in Ro there is an ordering (2; w 7). 

The regions in which (2) and (2 a) holds have the curve Ba, o+l in com- 

mon. Now 

(3) Y~(~) = c ~ Y~+~ (x); c a = (c~.j). 

The matrix of constants C a will be investigated by means of the asymptotic 

relations (2), (2 a) which, for x on Ba, a+a, yield the following: 

(4) c a = ] ' ( x )  y~+l -~  (z) - (e~,~ (~) x~',,J ~ , j ) ,  
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where Qt, j ( x ) =  Q , ( x ) -  Qj(x), r;,~ = o (i,j  = I , . . .  n), (3~,j) is the identity matrix 

and t h e  asymptotic relations are with respect to the 3~,j. Letting x - ~  ~ along 

Br we find the  following. 

The e~,j = I ( i  = I ,  2 , . . .  n ) .  A constant c~,~ (i # j) may be distinct fi'om zero 

i f  and only i f  ~Qi, j(x) approaches positive infinity along B~,o+l. In  particular, 

then, a constant c~, i (i r j) will be zero when i < j ,  or when i and j are subscripts 

of the same logarithmic group, or when ~Qi,  i(x) is bounded on B~,~+I. 

Thus, from (3) it would follow that 

�9 i - -1  ) 

(5) (yL ( ~ ) ) -  ~ ~,~ , Y, e~Y~,j (~) 
).--1 

On writing 

(5 a) (X a + l  (X  = (e Qi(x) ~ r. �9 cr+l (X)) (y~,j(~)) = (e~(~)x~',~VT,~(x)), (y,,~ )) x ',~V,,j , 

where for x within certain regions 

(v~  (x)) ~ (~,,~ (~)), (~7,~ ~ (x)) ~ (~,:,~ (~)), (5 b) 

it is noted that 

(6.) 

Here 

= _~+l~x)  ~ ( ~ ) ] )  (y~,j(x)) (e~(~/[x%j,~,j ~ + , 

i_1 ) 
( 6 a )  ( ~ i , j  (X)) - - -  C. ~ eq).,i (x) xr)~,J ~ ] a + l ( x )  

In view of the italicized statement following (4) the Q~.~ (x) which actually 

enter in the second members of (6 a) have their real parts approaching negative 

infinity along Ba,~+I. Now B~,.+I is a regular curve; hence the above ~RQi, i(x), 

just referred to, approaeh negative infinity along B.,o+x essentially as --clx'~ I 

(c ~ o, 7 > o). None of the functions ~Q~.,~(x) vanish interior R~,~+~. I t  is seen 

without difficulty that either the exponents, displayed in (6 a), sat isfy the rela- 

tions 

(7) I eQ~,,(~)I ~ o 

throughout the part of R~, ~+1 bounded by B~, ~+1 and the left boundary of Ro, ~+1, 

or they satisfy these relations in the part of R~.~+~ bounded by B~,.+I and 

bounded by a regular curve with the limiting direction of the left boundary of 

R ~ + l .  Denote this part of R ~ + l  on and to the left of B~.+I  by R ~ , , , ~, (s+l  " 

' ) 8 - - 3 3 6 1 7 .  Acta mathematica. 62. I m p r i m 6  le 8 n o v o m b r o  1933. 
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Since the V ~ ; . j  

follows that 

(7 a) 
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cannot approach infinity faster than a power of ]log x], it 

O~o+l X ( ) ) -  (o) l (x in R ,  ~+1)' 

By virtue of (6), then, it becomes ~na~fest that 

(8) yo (x) - S (x) 

not only in tl~ (Or R'~'. as the case may be ~) b~lt also i~ a subregio~ R l (as �9 ~, a ~  1 

specified above) of R~+I, extendi~g to the left of Ro and possessi~g a left bou~dary 

with the limiting direction o.f the left bou~dary of R~+a. The combined region of 

validity of (8) will be de~wted by Go; Go will contaiJ~ Bo,~+l in the interior. The 

above result holds for a : I, 2 , . . .  N. Similarly, if in the above the words left 

and right are interchanged, it is seen that  there exists a region aG~, containing 

B~.~+I in the interior, such that a matrix solution ~I~(x)satisfies the asymptotic 

matrix relation 

(8 a) 1 Y~ (x) - S (x) ,  

for x in 1Go (a= I, 2 , . . .  X). 

Now a regio~z G~ will certainly possess in commo~ with G~+I a region Go, o+1, 

bounded by regular curves; this being true for 0 : I, 2, . . .  N. In the case when 

the curves Bo, o+j, B~+I,~§ have different limiting directions the truth of the 

above statement follows from the fact that  the left boundary of G~ and the 

right boundary of Go+~ have the limiting directions of Bo+I,~+.~ and Bo.o+a, 

respectively. In this case the boundaries of Go, o+1 have different limiting direc- 

tions. On the other hand, when the curves B~,o+a, B~+~.~+~. have the same 

limiting directions at infinity, the following is noted. The part of the region 

G~+a which lies to the right of B~+~,o+2 consists, in virtue of the Fundamental 

Existence Theorem, of the region bounded by B~, r and B~+l,o+2, that  is, this 

part consists of R~. in  this case, then, Go, o+~ will consist of the part of Ro 

bounded on the left by the left boundary of Go; the two regular curves bounding 

G~, ~+1 will certainly be distinct. 

Consider two matrix solutions 

(9) Yr Y~ 

Here R ' ~ ,  if used, has Ba, a + l  for its left  boundary.  
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of the type referred to in the italicized statement made in connection with (8). 1 

We have Y~(x)-~ C~ Y~+~(x)[Co= (c~:~,j)]. Some information concerning the con- 

stants c~:i,j ( i , j ~  I , . . . n ) c a n  be obtained ~ by noting that, in view of the 

asymptotic relations satisfied by the matrices (9) in  the regions G,, G,+I, re- 

spectively, we have 

(9 a) (J~ = (ea:i,j) = ra(x)  Y O + l - l ( x ) ~  (e(~i'J(z) xr'i'J~Ji, j) 

for X in G,,o+I. Now G,,~+I is a subregion of Ro+I; the ordering (2; w 7) of 

the ~Qi(x) is assumed 8 in R~+I. By a reasoning of the type which has been 

applied to C" it is presently established that c~:~,r i ( i =  I , . . .  ~). Moreover, 

a cons taut c,:i,j (i ~ j ) m a y  be distinct from zero i f  and only i f ~  Q~,j(x)approaches 

positive infinity along every regular curve in G,,~+I. For, if ~Q~,j(x) did not 

approach positive infinity along some regular curve C, in Go, o+1, it would follow 

that le ~,j(~)] is bounded on C; this, however, would imply, in view of (9a), that 

co:i,j=o. In particular, c~:i,j (i ~ j ) =  o when i < j or when i a n d j  are subscripts 

of the same logarithmic group. 

9. Converse Problems. Consider a system (B) (w I ~ and assume for de- 

finiteness that the ordering of the ~ Qi(x) (i ~ I, 2, . . .  n), as specified by (2;w 7), 

is maintained in the region R~ (I6 a; w 2). Throughout this section it will be 

supposed that the Q~(x) in the consecutive rows of the formal matrix S(x) occur 

in the same order as in (2; w 7). In view of w 8 and of the Fundamental 

Existence Theorem the following can be asserted. 

Depending on the Q~(x) (i-~ I , . . .  ~), only, the complete vicinity of infinity 

is divided into /Y adjacent regions 

( ) ' ,) I R ~ ,  R ~ ,  . . .  R ~  ( R . u  R ,  , 

separated by regular curves 

(ia) .BI• 
r r 

2, B2,  3, - �9 - B~---1, N t , B '  (B~',  N-?I ~ J~N1 ~ 1, z~)* 

! ! p 

A curve B~, ~+1 separates Rq from R~+l. This curve is sometimes coincident 

with Bu, ~+1 (cf. w 2). In the case when B'~, o+1 is distinct from B~, o+1 it extends 

1 Thus,  Ya+l(x) is to denote  now a mat r ix  poss ibly  d is t inc t  from the  ma t r ix  for which  (2 a) 
had  been  asserted.  

2 Compare wi th  (4) and the  sequel.  
This  is a ma t t e r  of notat ion.  
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to the lef t  of  B~,,+~ ( that  is, i t  is in the  counter  clockwise direct ion ~ f rom 

B~,o+I), i t  lies then  in ter ior  R~+~; but  in every case it  has  the l imi t ing  direc- 

t ion of B~,a+~. Associa ted with  the  region R~ there  exists a ma t r ix  solut ion 

Ya(X) = (y~j(X)) such tha t  

(2) ~ S(x),  (x in 

Such a ma t r ix  can be const ructed for  a - =  l, 2, . .  N. 

I f  we s ta r t  in R'~ with a cer ta in  de te rmina t ion  of the  e lements  of S(x), 

and if x describes a closed circuit  con ta in ing  the origin and  ex tend ing  across 

the  regions R~ (o = I, 2 , . . .  N + I), we arr ive  to a new de te rmina t ion  ~ which 

will be associated wi th  the  region B:~.+~. Here  

(3) S'(x) = LS(x), L -~ (l~,i), 

where the li, j are cer tain constants  3 essential ly character ized by the r~, 1 ( i =  I, 2, ... n) 

and  by the  logar i thmic  groups.  I n  view of these facts  it  is na tu ra l  to define 

Y~'+l(x), a ma t r ix  solution associated with R'.~-+~, as 

(a) Y'~+l(x) = L Y'(x). 

"The fol lowing definit ion will be now introduced.  

Definition. Consider a singular sy.~tem (B) of w I ~ The coefficients of the 

various powers of x in the Qi(x) (i ~- I, z , . . .  n), involved in the corresponding 

formal matrix solution S(x), as well as the constants of the matrix L, involved in 

(3), will be termed characteristic constants belonging to the singular point of the 

system. 

The above definit ion and  the  cons idera t ion  of character is t ic  constants ,  to 

fo l low,  is suggested by Birkhoff ' s  t r e a t m e n t  of problems of the R i e m a n n  type,  

which he gave for  the case when the  roots of the character is t ic  equat ion  are 

all dist inct.  4 Now, the characteristic constants specify not only the regions ( I ) ,  

I n  t h i s  sec t ion  we con t i nue  to a s s u m e  t h a t  the  reg ions  ( I 6 a ;  w 2) are ordered in t he  

coun te r  c lockwise direct ion.  

T he  va l ue s  Qi(x) will be t he  same  in t he  co r r e spond ing  e l emen t s  of  S(x) and  S'(x). 

3 In  t h e  case when  t he  roots  of the  charac te r i s t ic  equa t ion  are all  u n e q u a l  L is of t he  form 

(5i, j .  exp  (2 ~ r i V - -  1)). 

4 G. D. Birkhoff,  The Generalized Riemann Problem for  Linear Differential Equations and 
the Allied Problems for  Linear Difference and q-Difference Equations, Proc. Am.  Acad. Ar t s  and  

Sciences, vol. 49 (t913), PP. 5 2 I - - 5 5 8 .  T h i s  paper  will  be referred to as (B). In  u s i n g  or q u o t i n g  

t he  r e su l t s  of (B) t h e  no t a t i on  will be used  con fo rming  w i th  t h a t  of t he  p r e sen t  paper ,  
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within which (2) holds, 
constants 

(5) c~ = (e~:,,j) 
involved in the relations 

(5 a) r ~ ( ~ ) -  c~ Y~+i(x) 

here the matrices Y ' ( x ) i . . .  YN+l(x) are those occurr ing in (2) and (4). 

in view of relat ions (2) and (4) it  follows tha t  

221 

but they also essentially specify the nature of matrices of 

((~ = I . . . .  N) ,  

( a =  i ,  2 , . . .  N);  

In  fact,  

( 6 )  C a  = ~(~6(X) y a w  1 - 1  ( x )  ~ (e Qi !z)-- Qj (x) xr'i, j ~ij) 

t 
[ x o n  Bo, o+I; a =  I, 2, . . .  N; r~' ~ = 0 ;  i ~ -  I, 2, . . .  n]. 

We  note  tha t  the Q~(x)- Qj(x) and the r;,j depend only on the character is t ic  

constants.  

In terms of the characteristic constants it is also possible to define a matrix 

(7) T(x) = (xQ~(~)~,~(x)) 

possessing the fol lowing property.  As the variable describes a closed circuit, 

conta in ing  the origin and extending in the counter  clockwise direct ion f rom a 

point  in / ~  to R~+I,  the new determinat ion T'(x) of T(x) will be such tha t  

(7 a) T'(x) : LT(x).  

We do not  need to know T(x) in detail. I t  will be noted  tha t  in the case 

t rea ted  in (8) 1 T ( x ) =  (6i, jxrixQ~(~)); T(x) of (7) is an obvious generalizat ion of the 

la t te r  matrix.  Fur thermore ,  if the formal  series 7i,3"(x) are in negat ive in tegra l  
1 

powers of x k- (k a suitable integer) ~ the  formal  matr ix  

(7 b) TCx)(7r j(x)) : S(X) 

will be of the type of a formal  'matr ix  solution of a system of the type 

(B) (w i~ ~ 
The fol lowing Theorem relat ing to a simple converse problem will be proved. 

. . . . .  i . . . . . . . . . . . . . . . .  
' (B; p. 548). 

With the determinant of constant terms distinct from zero. 
a That is, the elements of s--l(x)S(1)(x) are formal series of the type (I; w I~ In the 

ease treated in (B) we would have T(x)(Ti, j(x))~-(Ti, j(x)x ri , exp Qi(x)). 
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T heo rem I. Suppose that S(x) is a formal matrix of the type which could 

possibly occur as a formal matrix solution associated with a system of type (B) 

(w x~ Let the regions (I) and the curves (I a) be specified by the polynomials 

Q,(x) ( a =  I, 2 . . . .  N) occurring in S(x). Suppose there exist matrices Y~(x) 

(~ ~-- I, 2 . . . .  2~ of analytic functions, satisfying the asymptotic relations (2). Assume 

moreover, that on writing (4) and (5 a) the elements in the matrices C,(a-~ I, 2 . . . .  2V) 

are constants. I t  follows then that there exists a singular system (B) which is 

satisfied by the matrix solutions Ya(x) (a ~- I, 2 , . . .  N). 

In  fact, on le t t ing  

r o ( " ( x )  = (o = 2 , . .  

it  follows, in view of the assymptot ic  relat ions (2), t ha t  

(s)  AO(x) = r o - ' ( x )  Yo<'>(x) ~ 

(x in R~,; a =  l, 2 . . . .  iV); 

here the  a~.j(x) are formal  series of the type (I; ~ I~ Now by virtue of (5 a) 

Aa(x)= ya+l-l(x) C~-lCaya+l(1)(x)= ~a+I--I(x)~Ta+I(1)(X)= Aa+l(x). 

-Accordingly,  A~(x) is independen t  of a and we may write Aa(x)=A(x) .  The 

matr ix  equat ion YI~)(x)= Y(x)A(x) is of type (B) (w I ~ and const i tu tes  the  

required system. 

A deeper  lying result ,  which is of the R iemann  type, is embodied in the 

fol lowing Theorem.  x 

T heo rem II.  Let a set of characteristic constants be preas.,'igned 2 {('f. Defi- 

nition). These eon~,'tants define regions (x) ahd curves (i a). Let matrices of constants 

Co be associated with the curces B'o, a+l (a = I, 2 , . . .  N), respectively. A matrix 

Co will be assumed to sati.r a condition, depending on the characteristic constants, 

(9) ~ x" ,J 
r p 

[X On Ba, a+l; ( 7 ~  I ,  2, . . .  N ;  ri, i ~ 0 ;  i - ~  I . . . .  n] .  

I t  follows then that there exist matrices of fanctionv Y(~)(x) such that. (5 a) holds, while 

This theorem const i tutes  an extension to the unrestr ic ted case of a theorem in (B; pp. 

548--550). 
2 Tha t  is, we have a set  of COnstants of the  type of a set  of characterist ic cons tants  of a 

sys tem (B) 
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Y~ s(x)  = (eQ'(%%,.  (x)) 

(x in R'~; a = I, 2 , . . .  N + I), 

where S(x) is of the type of a formal matrix solution of a system of type (B)(w I~ 

Before proceeding with the proof  it  will be of interest  to note  that ,  in 

view of Theorem I, this theorem implies tha t  a given set of characteristic constants 

determines a singular d~erentiai system (B). 

Use will be made of the following theorem proved in (B) t, which will be 

s ta ted with some slight change in notat ion.  

'Let  K~, . . .  K~v be N simple closed analyt ic  curves in the extended complex 

plane. Le t  A l ( x ) , . . .  A~(x) be matrices of funct ions  defined and indefinitely 

differentiable along K1, . . .  K~- of de te rminan t  not  zero. I f  fu r the rmore  at  any 

point  of intersect ion of K~, K~ the matr ices A~(~), Aft(x) are such tha t  formal  

derivatives of all orders of the mat r ix  

A ~ (x) Aft (x) - Aft (x) A o (x) 

vanish, there  exists a matr ix  O(x) with the fol lowing propert ies:  

(I) each element  of @(x) is analyt ic  except  along K 1 . . . .  K~, and at  an 

a rb i t ra ry  point  x = % where the elements may become infinite t o  finite order;  

I@1 nowhere  vanishes save possibly at  x ~---%; 

(2) the elements of @(x) are cont inuous and indefinitely differentiable along 

each curve Ks: f rom ei ther  side, analyt ic  f rom ei ther  side save a~ the points of 

intersect ion of these curves, or at  those points where an element  of (x--a)lAi(x) 

[or x-ZA~(x) if a0 = ~ ]  is indefinitely differentiable for  a suitable 1. 

(3) i f  a + a n d  - -  side of each curve K~ is chosen, then 

( I I )  ~O(X:) : Ao(xa)(D(X-o) ( a =  I, . . .  ~ ,  

+ is x~ when considered on the + side of K~, and x~- is where xo is on K~, x~ 

x~ when considered on the left  side Ko.' 

Le t  Q be a suitably great  positive number.  K~ will be defined as a simple 

curve with a cont inuously tu rn ing  tangent ,  extending to infinity in two direc- 

tions, and, outside of the circle Ix I----- Q, consist ing of /~,o+1 and of ano ther  

regular  curve B~, o+1. Such a construct ion can be effected for  a = I, 2 . . . .  2Y in 

such a manner  tha t  the curves K 1 . . . .  KN intersect  only at x = o and at x ~ ~ ;  

(B; pp. 533--534). 
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moreover, they can be so specified I that  the above theorem is applicable even 

though the curves, just  constructed, have been subjected to conditions slightly 

weaker than those of the quoted theorem; however, the results of that  theorem 

will continue to apply for [ x [ >  (~, at least. 

Matrices A~(x) will be defined as follows: 

(~2) A.(x) = r--'(x)C.T(x) (x on ~ ,  ~+,), 

(i2 a) A.(x) = I (x on /7~, .+1). 

Here T(x) depends on the characteristic constants only and is given by (7). In 

the part of K~ interior the circle ] x [ : Q  A,(x) is defined to satisfy the condi- 

tions of the quoted theorem (for a =  I, 2 , . . .  N). ~ The point x----a 0 may be 

taken, for instance, at the origin. At infinity A,(x) will satisfy the conditions 

of the theorem. In fact, by (7) and (9), on writing 

and noting that 

we have 

T - ' ( x )  = (~-'e(')V:, j(x)) 

C .  = (eQ'(')--QJ'~) x"~,J(a,,~ + o~,~(x))), 

(O,.j(X)) ~ (0) (X on B'., o+,), 

A~,(x) : B,(x) + Ca(x), 

(I,3 a) 

~,, R,(X)X ~" R. o~,, ~o(~),;,.,,~(x) ~ ( 0 )  

\R~, 7.~ 

Thus, along B~.,+I, 

(I4) A,,(x)-  [. 

)(A ) \21, Re 

(~ o n  Bta, o+1). 

There is no difficulty in showing that 
L . . . .  

1 If b a is the l imit ing direction of ]Ta, ~+1 we shall take ba + .~ for the l imit ing direction 

of B~ 

For the  purposes at  hand analytici ty of the elements of Aa(x) along the par t  of Ka in- 
terior the  circle ] x ] ~ . o  (points of the circle included) is not  necessary. At  the point's of the 
circle (and interior, as well) indefinite differentiability is sufficient. 
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(14 a) lim A~n)(x) = (0) (m ---- I, 2, ...)1 

when Ix] approaches infinity along" B2, ~+1. 

There will exist a matrix q ) ( x ) =  (gi,~(x)) with elements analytic for Ix ] > q 

exeep~ along B',, o,+1 ( a =  i, 2 , . . .  N) and except at  x - ~  ~ ;  moreover,  ] ( P ( x ) ] # o  

(Ix[ > ,o). Along B~,,+~ the !p,,j(x) will be analytic from either side (Ix] > q; 

x r ~) .  Furthermore,  on let t ing the right side of B~,,+I (as viewed from the 

origin) be the + side, by virtue of (II) and (I2) it will follow that  

(i  5) = CaT(zo)*( ) 
t 

(x~ on B,,o+l; a =  I, 2, . . . N ) .  

We  have of course T ( x , ) :  T(x +) = T(x~-). 

Let  

(I 6) r~(x) = T(x) ~(x) (x in R',; a ~  I, 2, . . .  N +  I). 

In  view of (I5) the matrices Y"(x), as defined in (I6), will be  connected by the 

relations (5 a). Now, from the t rea tment  of the Riemann problems in ( B ) i t  

follows that  

(I7) (qDi,.i(x)) - (ri, j(x)) (x in R'a; a---- I , . . .  N) 

where  the formal  series 7i,.i(x) are of the type of those in (7 b); as a consequence 

of (I4) and (I5) these formal series are independent  o f  a. On taking account  

of the Statement made in connection with (7 b), it follows by virtue of (I6) and 

(I7) that  the assymptotic relations (IO) are satisfied. This completes the proof 

o f  our theorem. 

On the basis of Theorem I I  it is possible  to solve the 'Generalized Rie- 

m a n n  Problem' :  

To construct a differential system with prescribed singular points xl, x~ , . . ,  xq; 

the system to be of singular type (cf w I ~ in the neighborhood of each of the above 

points. Moreover, the system is to possess a given monodromic group, the charac- 

teristic constants being prescribed at each singular point. 

A problem of this type had been formulated and solved in (B) ~ under  the 

assumption that  the characterist ic constants are of the type which may occur 

in a differential system, the roots of whose characterist ic equation are all dist inct  

J T he  supersc r ip t  in ( I4  a) denotes  t he  m- th  der iva t ive .  

-~ (B; pp.  551--553).  

-99--33617. Acta mathematica. 62. Imprim6 le 20 december 1933. 
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(this being true for each singular point). I~ the present formulation no such 

restriction is implied: 

On the basis of the preceding the problem can be solved, without any 

additional difficulty, following the lines of the corresponding proof in (B). The 

possibility of th i s  problem rests intrinsically on the Fundamental Existence 

Theorem of w 7. 


