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Introduction.

In this paper we develop a complex tensor calculus for Kéhler manifolds and
apply it to obtain results concerning analytic p-vectors on such manifolds. The
Stokes and Brouwer operators d and & are real operators in the sense that they send
real p-vectors into real ones. We define complex analogues of these operators in
terms of which the classical Laplace-Beltrami operator A for p-forms is split into a
complex Laplace-Beltrami operator [] and its conjugate ). In the case of scalars
on Kihler manifolds and in the case of p-vectors of arbitrary degree p in Euclidean
space we have [1=[]=}A.

In Section 4 the complex operators are defined for currents of degree p (in the
sense of de Rham). In Section 6 a method is given in terms of the complex opera-
tors for finding the complex-analytic projection of an arbitrary norm-finite p-vector,
and in Section 7 this method is extended to currents. In Sections 8 and 9 the real
operator A is investigated on submanifolds of the given manifold. Here the Kihler
property of the metric is not used; therefore the results of Sections 8 and 9 are valid
for Riemannian manifolds. In particular, it is established that every finite submanifold
possesses a singular kernel g, (z, y) satisfying A. g, (z, y)= — Bp (¥, ) where f, is the
reproducing kernel for harmonic p-forms (the existence of g, (x, ¥) on compact mani-
folds has been proved by de Rham).

! (Added in proof.) The complex operators as defined below were introduced by the authors
in a report having the same title as this paper [Technical Report No. 17, Stanford University, Cali-
fornia (May 21, 1951)]. The same operators, in & different notation, were introduced independently
by Hodge [Proc. Cambridge Phil. Soc., 47 (July 1951)] who proved the equality of the operators []

and [| in all cases. Since the present paper was submitted for publication before the appearance
of Hodge's paper, we have not been able to use this identity to simplify some of the later portions

of this paper. However, we remark that the identity 3 =1 follows readily from formula (2.26)
below and from Ricci’s identity.
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In Section 10 we return to the complex operators in order to establish certain
relations between harmonic forms and complex-analytic ones. In Section 11 we derive
propert.es for the complex Laplace-Beltrami operator [] analogous to those derived
in the earlier sections for the real operator A. In Section 12 we solve a generalized
version of the complex boundary value problem tveated in [8] for Euclidean space
and we show that this problem has a un'que solution for every finite submanifold of
a compact Kihler manifold.

In Section 13 we establish the existence of Kodaira’s fundamental singularity
for real harmonic fields on an arbitrary Riemannian manifold of class C*° by a method
which is different from that of Kodaira and which seems to us to lie closer to the
classical method used on Riemann surfaces. In Section 14 we construct the corre-
sponding singularity for complex harmonic fields, but here we have to assume that
the manifold is a subdomain of a compact Kihler manifold. Finally, in Section 15
we make a remark concerning the Cousin problem for complex harmonic fields on a

compact Kihler manifold.

1. Complex manifolds.

For the sake of completeness, we bring together in this section various known
properties of complex manifolds.

A complex manifold M* of complex dimension k is a Hausdorff space to each
point p of which there is associated a neighborhood N (p) which is mapped topologi-
cally onto a subdomain of the Euclidean space of the complex variables z1, ..., z*.
If g€ N (p), the coordinates of ¢ will be denoted by 2'(g),i=1, 2, ..., k. Wherever
two neighborhoods intersect, the coordinates are connected by a pseudo-conformal
mapping.

Following [5] we introduce a conjugate manifold M* which is a homeomorphic
image of M* in which the point p of M* corresponds to the point 7 of M* and the
neighborhood N (p) to N (p). Let Latin indices run from 1 to 2%, and let

(1.1) t=1+k (mod 2k).

If € N (p), we define

(1.2) 7@ =@,

where (z)~ denotes the complex conjugate of the quantity z. By means of (1.2)

the neighborhood N (p) is mapped onto a domain in the space of the variables
F=741=12,...,k)
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Now consider the product manifold M*x M* whose points are the ordered pairs

(p,g), and let

3 | _)_{z‘(p), i=1,2, ...,k
(1.3) U\ J@=E @), i=k+1,..., 2k
Then
(1.4) 200=0E¢p), =12 ..., 2k
The product manifold M*x M* is covered by the coordinates 2' (p,q) t=1,2, ..., 2k.
Introduce coordinates z'(p, ) by the formulas
1+V-1, 1-V-1, 1-V-1, 1+V=1,
i - ' e S | i_ - { 7
(1.5) 2 7 '+ 5 z, x 3 z + 3 Z,
1=1, 2, , 2k
Then
(1.6) (@, q)=6"@¢.n), =12 ..., 2k

On the diagonal manifold D* of M*x M* where p=gq, we have

(L.7) =2 (9,p)=(F)", 2'=2' (p, P)=(a")".
Thus D* is covered either by the self-conjugate coordinates 2, 2f =2', ¢=1,2,..., 2k,
or by the real coordinates z'.

We shall be concerned mainly with the diagonal space D*. A tensor on D* whose
components are real when they are expressed in the real coordinates z' will be called

a real tensor. A real tensor T when expressed in self-conjugate coordinates 7' satisfies

(1.8) T b m=(Tr. ™).
Let unbarred Greek indices run from 1 to %, and write
(1.8") G=a+k, a=a

Then (1.8) can also be written

(1.9) Tag..., v *=(Tap...;#" %),

The tensors properly associated with the original manifold M* are the complex ana-
lytic ones whose indices range over values from 1 to & (Section 6).
On D* there is a “quadrantal versor” which is a real tensor h’ satisfying

—1,¢=1
1.10 hjk'=j ’
(1.19) YL 0,6
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In self-conjugate coordinates z' this tensor has the components
V=1, 1<i=j<k
(L.11) b (2)=1—-V=T1, k+1<i=j<2k
0, 1#7
or, in the real coordinates z,
1, 1=, i<i<k
(1.11°) b (@)=13-1, i=§, k+1<i<2k
0, T#7.
The values (1.11), (1.11°) are pseudo-conformal invariants.

Given a vector gy, let
(1.12) (I@)=e
be the identity transformation, and let
(1.13) (h@h=h" g

be rotation through a ‘“‘quadrant”. Given real numbers e and b, the operation
al+bh applied to vectors corresponds to complex multiplication in which the reality
of the vector is preserved. We have

(1.14) (@I +bh) (cI+dh)=(ac—bd)I+(ad+bc)h.

In other words, the field obtained from the real vectors by adjoining the operator
h is isomorphic to the complex number field.
Now suppose that D* carries a Kahler metric g;. A Kahler metric is a Rie-

mannian metric which satisfies the following two conditions:

a) gy=goahi’ by,
b) Dy (b’ ¢)=h' D, ¢;.

Here

_y _ { Q}
(1.15) D, = 75 ip Pq

denotes covariant differentiation, {jqp: being the coefficients of affine connection.

Condition a) states that the vectors g¢; and (k@) have the same length, while b) states
that the operators 2 and D commute: Dh=hD.
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Let
(116) h¢j=gnh;;.

Multiplying both sides of a) by k' and summing on j from 1 to 2 k, we obtain
(1-17) b =0 krl =pe h* }qu hr’ = —gpr hP = — hir.
Thus %;; is skew-symmetric, and hence by (1.16)

husho' e’ =g b’ ho' b’ = — g1p by’ = — hap = P
that is,

(118) kpq = k{/ hnt }lq j.
In terms of self-conjugate coordinates 2', the formula (1.18) shows by (1.11) that any
non-zero component of k,, is necessarily of the form A,z or Asz. In other words,

hpe=0 unless » and ¢ are indices of opposite parity with respect to conjugation.

Condition b) gives

(1.19) st {ipa'} ARt

Taking ¢=«, =8 and using self-conjugate coordinates, we obtain

V——l{;j} - VZT{B“}.}, i=1,2,..., 2k
Hence

(1.19") {;},F({;yz})_:o, i=1,9,..., 2k

and therefore the only non-zero components of the coefficients of affine connection
are those with all three indices of the same parity. Since
P _ pq ama aglq agU
o= -
{1, 9} 4 [62’ o7 o9z’
we conclude that

09gap _ O gvp or Ohag _0hyp
0z o7 0z oz

(1.20)

A lform ¢ on D* is a differential form of the first degree
(p = (pg d Z‘,

where ¢, are the components of a covariant vector, the summation convention being
used. A p-form, or exterior differential form of degree p, p>1, is a sum of exterior
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products of 1-forms. Exterior multiplication, represented by the symbol ,, is associ-

ative, distributive, and satisfies (see [11]).

dd,d7 =—d7, d2, d2', d2'=0
ardzd= diy a=ad?

dZ, ad? =ad?,d?,
where a denotes a scalar. A p-form ¢ may be written in the form

P =¢d,.. -i,,)dzh/\ da'sy-p da's
(1.21)
= 2 i @iy, A2 d2y e d2'r,

hi<.o.<dy

where ¢, .. .s  is a skew-symmetric covariant tensor of rank p or p-vector in the

»
language of E. Cartan, and where the parenthesis indicates that the indices are or-

dered according to magnitude.

Let

Giy5, -« G5
(1-22) Fl,...lp.jl...l‘,= ’l P

Giyip oo - Jipiy
Then

1 }

gL,
(1.23) Do jfolo =0 g

L PSR/ M

i1s just the Kronecker symbol which is usually denoted by 6{;132{:. We depart from
the conventional notation in this instance for reasons of notational symmetry.
The differential d¢ of a p-form is the (p+1)-form

(1.24) dop=(d@)y,...1,,pd2Y% -, d2'?+,

where

(1.25) @oh, ...y, =T .. .4p+1m"”"’) Dy (j,..-ip)

1 . .
= —‘Fsl...ipﬂﬂl”'j” Dipl4y ... i)
Here
0@ ... P g
D,q?/l...;p = _Bz, LA ;Zl {j j“}<p;l,../,,_1u#+1.../p,

and we observe that

gyl 44
Fll...1p+1 ! ”{j j”}—Oa
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since {73 } = { ?.qj} . Hence in (1.28) we may replace covariant differentiation 7, by
ordinary Sifferentl,‘iation d/6z. We have
(1.26) deo=d(dg)=0.
A form ¢ satisfying deo=0 is said to be closed, and a form g=dy is said to be
exact. Formula (1.26) therefore states that an exact form is closed.

Let

12...2k
(1.27) 611...12,c=1—‘11...12,c VF12...2k.12...2k’

and after de Rham [11] set

(1.28) X = (X Q). .y , A2y A2,
where
(1.29) (¥ @iy dop p=Cy e Apiy e day DQD“"'J")-
We verify that
(1.30) * xg=(-1)7g,
and for the scalar 1
(1.31) %1 =eg.. . oxdz' -, d2%
"Thus 1 is just the volume element.
The co-differential d¢ of a p-form ¢ is
(1.32) dp=00¢), ..., pdy - d2'» 1,
where:
(1.33) OPhy.oty = —(6d % @) ..oy, =—0"Dygpu,...1y 4.

In contrast with the differential d¢, the co-differential involves the metric structure
of the manifold in an essential way. We have

(1.34) Fe=06(¢)=0.

A form ¢ satisfying =0 is called co-closed; a form =4y is said to be co-exact.
Let

(1.35) w:h((]) dz',\ dzj.

The second condition (1.20) expresses that w is closed:
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(1.36) dow=0.

The condition (1.19), on the other hand, asserts that D, h;=0 and hence
(1.36") dw=0.

Thus the form o 18 both closed and co-closed.

The classical Laplace-Beltrami operator for p-forms is

(1.37) A=A"+A",
where
(1.38) A'=dd, A’'=dds, AN A'=A"A"=0.

A p-form ¢ satisfying A@=0 is said to be harmonic, and one satisfying dp=30¢=0
is said to be a harmonic field. From (1.36) and (1.36’) we see that the 2-form w is
a harmonic field.

We recall that the Riemann curvature tensor

(1.39) R” 1= a'az'f{imz} - éng {zmy} i {ipl} {pmf} - {ipa‘} {pml}

has the symmetries
( Buisi= —Rinji= — Ruuyy

1.40
( ) anmzRunt-

It also satisfies the Bianchi identity
(1.41) Ruijit Rujig+ Rpyyy = 0.

The non-commutativity of covariant differentiation is expressed by the Ricci identity

h
it ety Bl

p
(1.42) (DiDy =Dy D)y, ...t,= 21,1, o bt
p#=1

In terms of geodesic coordinates ',

’ m _i m _ﬁ_ m .
(1.39) e ol - sl

If the metric is Kéhler, then by (1.19)
(1.43) ha"R™ 51 =h" R"my:1.

Thus, in self-conjugate coordinates R™;;, is zero unless m and 7 have the same parity.
In other words, Rui;; =0 unless A, 7 are of different parity and also j, . From (1.41)
if follows that
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(1.44) Rog 5= Rasyp=Rysap.

In other words, indices of the same parity commute. Finally, any non-zero component

of the Ricci tensor
(1.45) Ry=FRii=Ry

has indices of opposite parity.

2. Complex tensors.

The tensors and operators considered in Section 1 are all real; in other words,
the operators send a real tensor into a real tensor. Now we introduce complex ten-
sors and operators.

As in [5] let
(2.1) d=3@’ -V-1h").

The conjugate tensor is

(2.2) J=TI/ =4(a’ +V~=1h).

conjugates always being defined in terms of a real coordinate system. Let o+o=1p,
0>0, 620, and set (compare [5])

(23) Hl,...iph'“Ip=Fll...1pm"”m(’""“"° Hm:l
0.0

1,0

. r 5y, s fyeodd
Hmoognl ! :!).Tlno "P(fl...r‘?)(sl...su)l »,

In self-conjugate coordinates

1, 1<i=j<k
(2.4) T L
1.0 | 0, otherwise.

Therefore, any non-zero component of the tensor
— Uyeeodp)
(E‘P){l...f‘, H'l""ﬁ Py .. I

has precisely ¢ indices between 1 and %t and o indices between k+1 and 2%k 1In
other words,

(25) H(p'_—'fp(ax. cea) (B .ﬁa)dzalA A d 2% dy"lA A dZﬁU.

If o+o=p>2Fk or if either p<0 or 0<0, we define [] to be zero. We plainly have
0.a
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(2.6) > II-T

e+o=p g.0

IT e=¢o=0
(2.7 H H = [ ¢.a

oo lO, otherwise.

Thus (2.6) is an orthogonal decomposition of the identity operator I'. Since

(2.8) b =% hip = —¢'" hpi=—N,
we have
(2.9) Htl...ip./,...fp=(Ell...1p.ll...ip)_=Hjl...lp.ll...1p-

We define next a complex covariant differentiator, namely

(2.10) D=T]'D;.

The corresponding contravariant differentiator is

(2.10') D'=¢"D. =11,/ D=TI/D.
0.1 1.0

The conjugate operators are

(2.11) I_).=J:L’D,,

(2.11") D'=TI,'D.
1.0

In the complex tensor calculus which we propose to use the Hermitian operator
T1 replaces the symmetric identity operator I', and the complex differentiator D

replaces D.
Formulas (1.25) and (1.33) may be written
(2.12) @@ty =Th.ty, /P Dy, i
=Ly iy adye D g2,
Op)y...1, = —I‘ul...fp_l("""") D‘<Pu....1,,>

- _ I (Jyeodp)
= Fu,...ip__l.(j,...;p)D @t »’,

The complex analogues of these operators are

(2.13) @e),.. “pi1 =0+11_[ud =11 f,...t,,Hj G-I Py Py iy

e.a e+l.o

- i e dp)
leg...tﬂl.ﬂ;l.../ﬂ)v @ ’
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(2.13") (d ‘P)ix---’pmx =QH 6H= _Hr”x---’p-1(ll"'i”)vi P oy

-1

_ TR P )
= gu,...t,,_l.ul...jp)v g

The conjugate operators have the forms

(2.14) @@ky...1p,, =9,H1dﬂ = QI,IJ,f"'"D+1"(’1---fp> o gD,
(2.14) B ek, celpy =QH05 H == Hul A e D! o,

The following identities are readily verified:

(2.15) * IT =TI =,
06 k-o,k-¢
(2.16) ®¥d=(~1P*1p %, xb=(—1)"0 %,
(2.17) 2=0, d2=0,
00+00=0
(2.18) o
p0+0b=0
A calculation gives
(2.19) A@)y...1,= —Pt,...«,,"""/")D'thpul...;,,ﬂL
)4
+,,21Ri/‘h Doytygntyg e, 070 @y g+
s Rl Treed
tJZ_le,, F:,...f,‘_lmﬂl...(,,__lu,,“...t,( v e Py dp)e

In view of the properties of the curvature tensor for a Kihler metric, we have

(2.20) A H‘- = ,,I.,I A.
Now we introduce a complex Laplace-Beltrami operator
(2.21) 0=0'+0"
where
(2.22) O'=be, O” =25 O'0"=0"0'=0.
Then
(2.23) AE=D+ﬁ
where i

(2.24) CO=ba+2b.
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The following identities are readily seen to be valid:

[*O=0%, O=(-1P* 0%, O'%=x% 0"

r —_—
(2.25) lec=0 e, b0 =b.

We note the identity

QI_ID=DQH,

which, in contrast with (2.20), is trivial. A calculation gives

(2.26) (O (P == Hil P bi D, Py ip +
+,Z1 ]1_—_([)_1 R Hi; Y T ...tpu'“j”) @i, . ..1,,)+
Hi Hq Ru at.
v=1 1,0

‘ Ht, R PEY T AU T [ I 1,,”‘ N PGy Ip
We define the scalar product of two p-forms ¢ and y over a subdomain B of
D* to be
(2:27) @ v) = [ pax p.
B
By (2.15)
HwA*¢=¢A Il *xyp=g,% g17’=¢A(H'P)_

k-o. k-0

Thus ][ is self-adjoint; that is,

.0

(2.28) ITe.v)=(e I1v).
If p>2 define
(2.29) AQhy..y =0 Qany...1p,
while if p=0 or 1 set A@p=0. Then
(Ao—0A) @h,...,,= ——h;"D‘tptl...ap

It

V-1D" Pyt
—V—=10k...1,

That is,

(2.30) "Ao—-8A=—-V—-1b.
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This is the complex analogue of the well-known formula

(2.30") Ad—dA=kr71 68,
where, in this formula, A is the operator defined by
h{ljl . kipjl
(2.31) R
T by o by,

3. Green’s formulas.

If C* is a p-chain on D* with real coefficients and if ¢ is a (p—1)-form, we
have the well-known Stokes’ formula
(3.1) [do=[o

cP bCP

where bC” denotes the boundary of C?. In particular, if we take p=2% and C*=
=(C%** =B, where B is a subdomain of D¥  then for a p-form ¢ and a (p-+ 1)-form

yp we have
fd(‘PA*'/’ fd‘PA*'/’l Y ppd % p)= fd‘PA*il}_‘PA*ag’):f‘PA*@'
B B B bB
Thus
(3.2) (o, v)— (9, 09)=[ ga % ¥.
bB

By specializing ¢ and y we derive at once from (3.2) the following well-known “real”

Green’s formulas:

(do, dy)— (g, A'y) =be¢A *dy

(4" @, ) - (O, o) =b£6% %y

(3.3) (A'g y)= (9, Ay)= L (pa * dyp—p, %dg)

(A" @, v)— (9, A”w)if(é%*ﬁ—é%*w)
B

(A, w)—(<p,Aw)=be(%*diﬁ—iﬁl\*dwéﬁ*@—é%*w)-
Taking ¢ =T ¢, = I v in (3.2), we obtain its complex analogue:
Q.0 etl,o

(3.4) @, v)- (@ Sw)ﬂw*@-
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From (3.4) we derive immediately the “complex” Green’s formulas:
@9, o)~ (g, O'v) =[x @v)

(D79 p) — bg,dy)= oo, xp

(3.5) | (@909 =[ (e x @v) —vrx29)

(0" @, 9)— (g, 0" y)= f(b%*w (dy)7* )

(D@ v)— (@, O9)=[(@a* @) —ppr* 8@ +dy, % p—~(dy)7 % ¢).

bB
In (3.4) and (3.5) the forms ¢ and v are assumed to satisfy =] ¢, y=T11v.
0,0 0.0

In applying the above Green’s identities we suppose that B is a compact sub-
domain of D* satisfying the following condition. At each boundary point p of B
there is a full neighborhood N (p) of p in D* and real coordinates %, ..., w* which
are functions of the z' (defined by (1.5)) of class C*. We suppose that the w**-
curve is orthogonal to the w'-curves, 1<i¢<2k—1. The intersection N (p)n B is
mapped topologically onto a hemisphere

2k

1-21(,“1)2 <8, ut >0,
the base #**=0 of the hemisphere corresponding to the boundary of B. Thus the
W', 1<i<2k—1, constitute a set of local parameters for the boundary. The coor-
dinates u', % ..., u”* will be called boundary coordinates.

Let @ be a p-form expressed in terms of boundary coordinates uh

(3.6) ¢=(p(l‘.-'.’p)du“'\”‘Adulp:il,_'Z.<ip(p‘l".thu“A'“Aduip'
We define
= ’l
(37) “P l,<...z<:lp<2k(p‘1 "pdu Adup
ng=¢p—ty
Then
(3.8) ¥l=n%, t*=%n.

In fact, since the u**-curves are orthogonal to the boundary of B, we have on bB

(3.9) gLa=g"%=041=1,2,...,2k—1,

and (3.8) follows from (1.29). Moreover,
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(3.10) hoi®® = b (u)= ¢ * hoy, 1 = 0.
Therefore, if ¢ is a 1-form,
(3.11) nh@=hy' pi=nhtp.

At a point p of D* let &', ..., £27% r be geodesic coordinates, where the & are
direction parameters of the geodesics issuing from » and r is the geodesic distance
from p. Let B be the geodesic sphere r<r,. Then u'=¢, ¢=1,2,...,2k—1, and
u** =ry—r are boundary coordinates for B. In these coordinates we plainly have

(312) Jok. 2 = 1, gz"'% = 1.

4. Currents.

The carrier of a p-form ¢ is the set of points where ¢ is different from zero.
If @ vanishes identically outside some compact subdomain of the manifold, ¢ is said
to have a compact carrier.

G. de Rham [11] has introduced the concept of current in order to bring dif-
ferential forms and topological chains under a single theory. A current T [¢] is a
linear functional over the space of p-forms ¢ with compact carriers and of class C*;
that is

Tlayprtas@al=a, T p1]+as T (@]

for any constants a,, a,. Moreover, T is assumed to be continuous in the following
sense: Let ¢, be a sequence of forms of the linear space whose carriers are contained
in a compact set lying in the interior of a domain of a self-conjugate coordinate
system 2z, ..., 22 and suppose that the partial derivatives of the coefficients of the
@. Wwith respect to the 2z' tend uniformly to zero as u approaches infinity; then
T {@.]) tends to zero. T is said to be of dimension p and degree 2k —p.

Let « be a form of degree 2k —p whose coefficients are locally integrable. Then

(4.1) (@)= fk %P

defines a current, and this current is said to be equal to the form a.
A p-chain C® defines a current of degree 2k—p and dimension p:

(4.2) C* lg]l=[9p.

This current is said to equal the chain C”.
19— 533805. Acta Mathematica. 89. Imprimé le 31 juillet 1953.
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If w,...i, I8 a p-vector at a point, then

t4
ot ¢ PPN veadp)y
(4.3) V[* @l=vy,...1@" P =00 Py,

defines a currrent.

The currents (4.1), (4.2) and (4.3) were introduced by de Rham on real Rie-
mannian manifolds. For completeness, we summarize briefly the wvarious relevant
definitions relating to real currents; these definitions are essentially those given by
de Rham [11]. Then we indicate briefly the corresponding definitions for complex
currents.

A current is zero in an open set if it vanishes for each form ¢ with compact
carrier contained in the open set. The carrier of a current 7' is the complement of
the largest open set in which 7'=0. For example, the carrier of the current (4.3) is
a single point.

Let T be a current of degree p, ¢ a g-form, and set

(4.4) Toopl=T(p\v), oA T=(-1"T, 9.
Further let
(4.5) [T\p=TIgl.

Dk

If T is of degree p, we define

(4.6) *Tp]=(-1T[*gl=(-1)"(T,9)=(-1)° (¢, T))",
(4.7) dT[g]=(-1)*""T[dg],

(4.7') OT[pl=(~1P°T[d¢), 6T=—%dxT.

Then

(4.8) B2T=62T=0

and

(49) (%71, %@)=(T,9),**xT=(-1°T,(T,do)=(0T,¢), @T,¢)=(T,d¢).
A current is said to be harmonic if AT=0, A=dd+4dd.
In particﬁlar, if T is a chain C?, ¢ a {p—1)-form of the space, we have

dC? [p]= (=1 C?[dol= (-1 [dg=(—1" [o=(—-1)"*1bC" [p].

bCP

That is,
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(4.10) dC?=(—1)*1bC".

In an analogous fashion we introduce complex currents. Let T be of degree

p, ¢+ o=p, and define

(4.11) [ITip]=71, I1 ¢l
By (2.15) and (4.6):
(4.12) (ql._.,[ T, ¢)=(T, H ®)-

Further, in complete analogy with (4.7) and (4.7') we set

(4.13) T [pl=(-1P*"'T[o¢], bT[p]l=(-1)?T[dg], DT=—%oxT.
We have

(4.14) 0T, ¢)=(T,29), @ T, 9)=(T, o).

Finally let

(4.15) AT[p]=T[Ag],

where A is the operator (2.29).

5. The parametrix.

Let z=(z', ..., z®) denote the point with real coordinates 2!, and denote the
geodesic distance from z to y by 7 (z,y). To each compact subdomain K of D* there
corresponds a positive number 7, such that if r(z, y)<7%,, y € K, there is a unique
geodesic from z to y whose length is r(z, ¥).

Let g=p(0) be a function C* of the real variable o which satisfies 0 <p<1,
e=11if 6<} and ¢=0 if 0>1. Moreover, let

(5.1) a= _-'}72 (z’ y)
and define
&a
(5.2) = oy’
y Qi g, "0 By g,
(.) all...lp.il.-ofp— alﬁll"'a'ip/p )

We denote the volume of the unit (2k—1)-sphere by s; and we set
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(5.4) w (Z,y) =0 (,y)=

_elrln)
9 (k —1)s rZ(k—l)a(il ceedp) Uy e

i dzjl/\ A da'v dyle A dyjp

if 2>1. If k=1 we replace r 2% P/2(k—1) by —logr. The expression (5.4) is
called a “‘parametrix”, and it is clearly symmetric:

(5.5) w (2, y) = w (y,x).

Now let B be a finite submanifold of the type described at the end of Sec-
tion 3. If D* is compact, then B=B* may coincide with D*; otherwise B is a
proper submanifold with boundary. In the following all scalar products involve

integration only over B.
After Bidal-de Rham [3] we write

(5.6) Qoe=(pw), o@y)

(5.7) q(z,9)= — B; 0 (2, 9).

Q is self-adjoint:

(5.8) Qo,yp)=(p,Q2y).

Moreover, for x near y the form g (z,y)=0 (") (see [3]). Let
(5.9) Qo=(eW), ¢ v), Qo=(pW®), ¢(y,).

Then if € C' in the closure of B we have

(5.10) Qhp=lp|-Qo+[lpa*do—w, xdp+dp, % 0—dw, * ¢},
B

where {@} is equal to ¢ in B and equal vo zero outside B. Further
(5.11) AQo={gp}-Qo.

For a proof of these formulas see [3], where, however, the boundary integral in
(5.10) is absent because B is assumed to be compact.
For completeness, we sketch here the proof given in [3] that a fundamental

singularity exists if B is “‘small enough’ such that
(5.12) |Q¢| <k max|g],

where 0<k<1. In fact, consider the equation

(5.13) Au=4.
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Taking u=Q§&, we have by (5.11)

(5.14) E-QE=p.
Under the assumption (5.12) this integral equation has a solution
(5.15) E=B+PB.

where P i3 an integral operator with kernel

(5.16) P, y) =@y +Qa@ )+ +Q g y)+
Then

(6.17) u=Q&=(Q+QP)S

is a solution of (5.13), and the kernel y (x,y) of the operator I'=Q+ Q P has essen-
tially the same singularity as w (z,y). We therefore have

(5.18) A (B, y (@ u)=p =)

or, if I' () is the current which i3 equal to y(z,y) in B,

(5.19) AT B=8.

It follows readily that A;y(x,y)=0 for z # y. Let » be the current defined by
(5.20) ur e =dyh L dy'e

at the point y of the manifold. Then (¢, )=¢ and (5.19) may be written
(6.19") ATl =u,

If there is a current I' in B such that (5.19’) is satisfied, we say that B pos-
sesses a fundamental singularity. The above method s}lows that a fundamental sin-
gularity exists over every finite submanifold for which (5.12) holds.

The existence of a local fundamental singularity implies the following theorem
of de Rham [11]:

Theorem 5.1. If AT is equal to a form C* in a domain B, T is also equal
to a form C*® in B. In particular, a harmonic current 1s equal to a harmonic form.

6. Analytic and harmonic p-forms.

We consider pure p-forms ¢ which satisfy

(6.1) <p=]__l(;<p, 0<p<k.
D,
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For suck forms we have the formula

- 0
_ 0@ .. .4
(6.2) Dlwll-..ip‘ L1 i;z’ P,

Thus the covariant derivative of a pure p-vector in a direction 2® coincides with its
ordinary derivative, that is

O Qa,...a
(6.2 D; @o,...a,= T’"

It follows from (2.14) that a pure p-form is complex analytic if
(6.3) d¢=0.

If p=Fk, the condition (6.3) is equivalent to

(6.3) 5(p=0.

If 0<p<k, the condition (6.3') is necessary but not sufficient for complex analyticity.
If k+1<p<2k, then ¢ may be called “complex analytic” if (6.3") is satisfied. It
follows that if ¢ =]] ¢ is analytic, then so is % @ and conversely.

p.0

To prove (6.3') we have only to observe that

_ oo, . .1 L q
DHP(,.A,= E(’—l—ﬂ - 211/ {i,, j LR ICE LIS I

o7 a=1 0.1

«’{.q.: =0
o1 |2 J

If ¢ is a pure p-form, then by (2.13")

where

by (1.19).

(6.4) b¢=01
since I]; = 0. Thus by (2.22) and (2.23)
p.—-

(6.5) Ap=(O+0)p=(0o+2d+28)¢.

If ¢ is analytic, so is d¢. Hence by (6.3) and (6.3') we see that A@p=0. Thus
analytic forms are harmonic with respect to an arbitrary Kihler metric.
Conversely, any pure harmonic p-form on a compact manifold is necessarily

complex analytic. For

0=(Ag,p)=(0do,p)+ (@0, p)=(dp,dg)+ (5, b ¢),
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and therefore ¢ is both closed and co-closed. But a pure closed form is obviously
complex analytic. If the p-form ¢ is harmonic, then by (2.20) so is its pure com-
ponent. Therefore the pure component of any harmonic p-form on a compact mani-
fold is complex analytic.

If ¢ is a scalar, we have as a consequence of (6.2)
(6.6) D;D.g=D:D;p.
It follows that

— — _ 62
De=0'9=d0p=0]Tdp= —D'Dip=—¢"DiDig = —1d" =1 Ag;

02 07
that is
(8.7) Og=0p=149.
Now let P be the space of forms ¢ satisfying (6.1) which have finite norms
over D*:
(6.8) N (9)= (g, ) <oo.

By the Riesz-Fischer theorem the space P is complete.
Let ¥ be the space of p-forms yp,

(6.9) =0y,
where y has a compact carrier and
(6.10) Z=ﬂ7€= x€C™.

We denote the closure of the space ¥ (in the sense of the scalar product) by Q.
Thus @ is the closure of the space of complex co-differentials by, y € C*, where x
has a compact carrier. By (2.13') we obviously have

(6.11) v=1Tv.
Let 4 be the subspace of P composed of pure complex analytic p-forms ¢:
(6.12) o=II¢, 8p=0.
We have the decomposition formula
(6.13) P=Q+4,

where the spaces @ and A are clearly orthogonal. We omit a proof of this formula.
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Non-trivial complex analytic p-forms ¢ with finite norms over D* will exist if
and only if @ is a proper subspace of P. Since there are manifolds which fail to
have analytic p-forms for certain values of p, 0<p<k, the question whether @ co-
incides with P or not cannot be decided by general arguments which do not take
into account the particular structure of the manifold under consideration.

Finally let L be the space of all forms which have finite norms over D*, and

let M be the closure of the space of p-forms y,

(6.14) y=Ay,

where y is of class C* and has a compact carrier. Then
(6.15) L=M+H,

where H is the space of harmonic forms « satisfying
(6.16) Aa=0.

For let €L, and let y be the element of M which minimizes N (p —y). Writing
B=9¢—v, we have

(6.17) 8,9)=0, pe M.
In particular, choosing w= Ay, ¥ of class C* with compact carrier, we obtain
(617 (8, Az)=0.

From Theorem 5.1 it follows that 8 is harmonic.

7. Decompeosition of currents.

We define an analytic current T to be a current satisfying

(7.1) T=1_10'T,5T=0, T of degree p, 0<p<k,
».
(1.1) T=k]-[T, 97T=0, T of degree 2k—p, 0<p<k.
k-p
Since
(7.2) ATl =0,
».0

we see from (2.30) that (7.1) implies D T7=0. As in Section 6 we therefore conclude
that an analytic current 7 is harmonic. By Theorem 5.1 a harmonic current is a

harmonic form and therefore an analytic current is an analytic form.
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Given an open covering {U;} of D*, there is a set of functions g, such that

(7.3) 1= g @1

where (1) ¢;€C”, 0<q;<1, the carrier of ¢, is compact and contained in one of the
open sets U;; () every point of D* has a neighborhood which is met by only a
finite number of the carriers of the @;. The formula (5.18) gives a ‘“‘partition of
unity”’.
If peC*” and if @ has a non-compact carrier, we say that 7T [¢] is convergent
and that
Tlel=2T(p:9]

if the series on the right is convergent for each partition (7.3). Then the sum is
absolutely convergent and its value is independent of the partition used to define it.
Let us consider the class C' of currents 7'=]] T such that T [¢] is convergent

».0

for every form ¢ which is of class C*° and has a finite norm. By (6.13) we know

that any @ of the space P has the decomposition
(7.4) p=pt+a

where y€@Q and o is analytic, a € 4. If @ €C®, then since « is analytic it follows
that y € C”. Now define currents E, F by the formulas

(7.5) (B, p)=(T,y), (F,o)=(T,a).
Clearly

(7.6) T-E+F,

where

(F,bx)=@F, x)=0
for any form X=1—1IX of class C! with compact carrier. Hence ¥ is complex analytic,
.

and formula (7.6) gives the orthogonal decomposition of the class C into the space
of analytic forms and an orthogonal space. We call F the analytic projection 4 T of T.
In particular, the current

(77) ’U("”‘p=dall\-~-/\dz"’
is a current of class C whose carrier is the point ¢ of the manifold, and it satisfies

(7.8) (p,v)=90.
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By the orthogonal decomposition we have
(7.9) v=p+a,

where o =w, (2, £) is the reproducing kernel for complex analytic p-forms:
(7.10) ( (2), ap (2, Z‘)) =@ (L), ¢ complex analytic.

More generally, given any current of class C, its projection on the space of analytic
p-forms is given by

(1.11) AT~ (T (2), an (2, 0)).
In particular,
(7.12) ap (2,8)=Av.

We observe that

(7'13) (“17 (Zv E)y ap (2,?}))) =%p (w’ C) = (“p (C: ’t?)))—.

Finally, let B be the class of real currents T such that T [g] is convergent
for every form ¢ which is of class C* and of finite form. Given ¢ € L, we have by
Section 6

(7.14) —

where w€M and f is harmonic. As above, define currents X, Y by the formulas

(7.15) (X, @)= (T, ), (Y,p)=(T,P).
Then

(7.16) T=X+Y,

where

(Y,Ax)=(AY,x=0

for every form y of class C* with compact carrier. Hence Y is harmonic, and
therefore Y is a harmonic form. We ‘call Y the harmonic projection H T of 7. If
u is the current defined by (5.20) we have by (7.16)

(7.17) u=y+ph,,

where B, (z, y) is the reproducing kernel for harmonic p-forms,

(7.18) (B @), B» (x,9)=F (v), f harmonic.
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Since u is a real tensor, we have in place of (7.13) the symmetry

(7.19) Br (2, 4) =B (v, 2).
By the Schwarz inequality applied to (7.18):

(7.20) 1BI<K@VN ), 1B@)]= VB0 B4

where K (y) is a positive number depending on y but not on the particular harmonic
form B. Indeed, the condition (7.20) is necessary and sufficient for the existence of
a reproducing kernel in a Hilbert space. It follows in particular from (7.20) that
convergence in norm implies point-wise convergence. The inequality (7.20) is esta-
blished in a different way in [10].

8. Finite submanifolds which possess a fundamental singularity.

Let B be a finite submanifold with boundary, and suppose that there is a funda-
mental singularity (z, y) =y, (z,¥) which is defined for z and y in some domain
containing B in its interior. If B is sufficiently small, such a y (z,¥) will exist.

Let

(8'1) u (xr y) =Y (z’ y) - (ﬁ (Z, y)$ Y (-'E, Z)),

where the integration in the scalar product is extended over B and where =8, is

the harmonic reproducing kernel for B. By (5.18)

(8.2) Az p(@,y)=—B(xy),c#y,

and

(8.3) Az (9 ), u(x,y) =g (z)- He(x).

We set

(8'4) gp (x’ y) =u (x, y) - (/.t (t’ y)’ ﬂ (t; CB)) ’

and then

(8.5) Asgy (x,9)= —Bo (x,9), (H @), gp(x,9))=0.

In particular, the relations (8.5) define g, (z,y) uniquely.
We write

(8.6) Go=(9 W), 9 (Y);

then

(8.7) AGp=9p—Hep, HGp=0.
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We note the trivial relations

(8.8) (Heo,v)=(p, Hy)
and
(8.9) GH=HG=0.

Let us assume that the form ¢, in addition to being of class C*, also has a
compact carrier with respect to B; that is, ¢ vanishes outside a compact set lying
in the interior of B. Then
(8.10) AHp=HAgp=0,

80

AAGep=Ap—-AHop=Ap, AGAp=Ap-HAp=A¢p, A(AG-GA)p=0.
Therefore (AG—GA)g is harmonic. But HAGe=Hop—H*¢=0 and HG A p=0,
80 (AG—GA)p=0. Thus
(8.11) AGe=GAgp.

At the end of Section 6 we observed that a form ¢ with finite norm over B
can be decomposed into a harmonic component H ¢ and a component which is the
limit in the sense of the norm of elements Ay, y of class C* with compact carrier.
The latter component is here to be identified with AG¢. Let y. be a sequence of
forms with compact carriers such that

NAGp—Ay)

tends to zero. We have
Xu_sz(Az (Xe— X») Y, y))
and therefore N (y.—y.) converges to zero as u, v tend to infinity. Hence there is

a form y, N(y) < oo, such that N (y— x.) tends to zero. On the other hand, if

has a compact carrier, then
Go—2 Ay) =lm (Go—yu, Ay)
=lim (AGp—~Ay,, yp)=0.
Thus Ge—yx is a harmonic current, whence by Theorem 4.1 it is equal to a har-

monic form. Therefore Go=y—Hy.
Now let ¢ and y be any two forms C* with compact carriers; we have

Gy, 9)=(Gy, AGg) =lim (Gy, Ay,) = im (AGy, x,)
=(AGy, Gop)= (v,Go).
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That 1is
(8.12) (G, v)=(p, Gy),

or, in other words,
(@ @) 90 (@, 1)), ¥ (@) = (@ (¥), (¥ @), 9 (@, V)
=(p @), (¥ @), g» (v, 1))
Since @ is an arbitrary form with compact carrier, we conclude that
(% @) g (@, 9)) = (¥ (@), 5 (4, %)),
and then, since y is arbitrary,

(8.13) 9 (%, 9)=9» (¥, 7).

Let
n(@y)=g (@, Y+ By, y@& )+ (B¢ ), y(# ).

Then 7 (z, ¥) =7 (y, z) and
| Az (@, y) =Dy 7 (z,9)=0.
We have therefore defined a symmetric fundamental singularity % (z,y) in B. We
may therefore always suppose that the fundamental singularity is symmetric.

Let ¢ be a p-form which is of class C* in the closure of B and with N (A ¢) < oo,
We seek a harmonic p-form § such that
(8.14) tif—@)=n(f-9)=0
on the boundary of B. If a form B satisfying (7.14) exists, it is unique. For the
difference 4 of two such forms satisfies

tA=ni=0

on the boundary. Hence by Green’s formula

(8.15) N(@A)+N(@a)=0.
That is dA=064=0 and 4 is closed and co-closed. Therefore
(8.16) 0=(d: 2, d;y)+(6: 4, 8z )

=A+[ (A% dey—0: A % A)=12.
bB

The boundary value problem (8.14) can be established on a rigorous basis by
minimizing the expression
N({d: (p—a)+N(6: (p—)
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with respect to all harmonic p-forms «. The proof, which does not differ essentially
from that used in the case k=1 (see [12]) will be omitted.

By subtracting a suitable harmonic p-form from the fundamental singularity
y (x, ), we obtain a Green’s form G, (x, y) which satisfies A; G (z, y)=0, z#y, in B

and on the boundary

(8.17) t(x) Gy (2, y) =n(2) Gy (2, y) =0.

We obtain from Green’s formula in the usual way the symmetry relation

(8.18) Gy (2, y) =G (y, 7).

In terms of Green’s form the solution of the boundary value problem is given by

(8.19) B (y)= —b£ {pa % dz Gy (z, ) — 82 Gy (z, )5 % @} .

9. The existence of a fundamental singularity on an arbitrary submanifold
with boundary.

Let B be a finite submanifold with boundary imbedded in a larger Riemannian
manifold. Then it is not difficult to show that B can be imbedded isometrically in
a compact Riemannian manifold M of class C*,.

Let € be the space of harmonic p-forms on M which vanish identically outside
B, and let &, be the orthogonal complement of €& in the space of all harmonic p-
forms on M. Any linear combination of forms in ‘€, which vanishes identically out-
side B must necessarily vanish throughout B, and we can therefore find a basis {¢:}
for &, which is orthonormal over M — B. Let y be a fixed point of B, set

_[Ze@ ei(y), zeM-B

el(z’y)_lo xEB
and write

El‘P:(‘P (Z), el (y5 x))'
We denote orthogonal projection onto € by E, and we define @ =1 — K — E, where I
is the identity operator at the point y, I ¢p=¢(y). If H is the projection operator
into the space of harmonic p-forms in M, we clearly have HQ=0. Now let G be
de Rham’s Green’s operator for the compact manifold M (see [11]), and define
G,=GQ. Then
AG,=I-E—-E,.

Since the carrier of E,; is contained in M — B, we see that AG,=I—F in B and we

have thus proved the following result:
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Theorem 9.1. A finite manifold with boundary possesses a fundamental singu-
larity +f and only +f E=0.

In any case, we always have a Green’s operator G on B which satisfies AGp=

=@ —~H ¢ where H now denotes projection onto the space of harmonic p-forms in B.

10. Relations between harmonic and analytic p-vectors on a finite manifold.

On a compact (closed) Kihler manifold a pure harmonic p-form ¢, ¢=11 ¢, is

00
complex-analytic. Since the operators ][] and A commute, the pure component J] ¢
.0 I

of a harmonic p-form ¢ is harmonic and therefore analytic. Let «, (2, {) and B, (2, £)
be the complex-analytic and harmonic reproducing kernels, respectively, both written
in self-conjugate coordinates. Then

(10.1) o (2,5) = IT (2) IT (€) B» (2, 0).

».0 0.p
Here 0<p<k, but if p=0 the relation (9.1) is trivial since we then have

(10.2 (2, D)= B (5, 0)=

where V denotes the volume of the manifold. Since
(10.3) Xok-p (2, 2) = %2 %1 p (2, 0), Pak—p (2, §)= %2 % By (2,0),
the relation (10.1) for £+ 1 <p =<2k becomes

(10.1') %2y (2 ;"3{_1‘[ (2) I1 (&) a5 (2, ).

k-p -p.p

To prove (10.1) we observe that a,(z, o) is analytic in z and in 5. If ¢ is

complex analytic, we have
ITOe@)=p@, )
=l @¢@, b @)

=(p @), pq 2 By (2, 0))
=(p (2), pq e Il () B (2, L))

0.
Since the kernel g, (2, £) exists on a compact manifold and satisfies

ﬁl’ (Z, C)= —Azgp (Z, C)’

we have
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(10.4) % (2,0) =~ A: /5 (2,0),
where
(10.5) fo(2,8)= [T@II©eweD).

We normalize f, (2, ) by the condition
(10.6) (Ao @), > ) =0,

where A4 ¢ denotes the analytic projection of . Then f, (2, ) is unique. The Her-

mitian symmetry
(10.7) fo (2, 5)=(f» €, B))”

is readily verified by means of Green’s formula.
The relation between harmonic and analytic p-forms on a finite submanifold B

with boundary is more complicated. By (3.5)
(10.8) @9, 09)+ (0@, dp)—(p, O )
=[lpa* @)~ 0¥y % 0.

If p=T1o, »= 11 v, then clearly
».0 p,
(10.9) bp=Dbyp=0
and we have simply
(10.8) @9, 09) =, O¥)=[erx @v).
In the case of scalars (p=0) we have by (6.7)
(10.10) Op=Oe=tAe.
If the space is flat, then by (2.26) for any p, 0<p<k,
(a <P)t,...lp= —H«,...tp(j‘"'/”)5‘174(]7(/,...;,,)
Q.
= =TI, ...,% D' Dygq,...1,)
¢ c

(E| <P)t,...t,,-
Hence by (2.23)

(10.10") Oe=0¢=311A40¢.
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Thus for scalars on an arbitrary Kihler submanifold or for pure p-vectors on a

Euclidean manifold we have the Green’s formula

(10.11) (S%éuﬁ—%W%Av0i£¢A*(5wY-

Hence harmonic scalars on a Kihler space or pure harmonic p-vectors on Euclidean
space satisfy the simple equation

(10.12) @@, 89)=[@ax@y).

bB
Therefore a harmonic scalar ¢ is complex analytic if
(10.13) nop=0
on the boundary. This boundary condition in the case of Euclidean space was in-

vestigated in [7Tb]. If O0<p<k, pure harmonic p-vectors ¢ in Euclidean space are
complex analytic if (9.13) is satisfied or if

(10.14) tp=0

on the boundary. But (10.14) cannot always be realized unless ¢ is zero.

We obtain a finite Kéhler submanifold B by removing a small cell from a com-
pact Kiahler manifold, and any complex analytic function on B is then necessarily
continuable as a complex analytic function throughout the cell and is therefore equal
to a constant. Hence the only complex analytic scalar satisfying the boundary con-
dition (10.13) on such a B is a constant.

In the case of Euclidean manifolds a method based on (10,11) for determining
scalars ¢ with no¢ prescribed on the boundary has been given in [7], and this method
carries over to finite Kihler submanifolds. It involves a modification of the projec-
tion procedure used at the end of Section 6 for determining the harmonic projection
of a given @. Let ¢ be a given scalar of class C* in the closure of B, and let M,
be the closure of the space of scalars Ay where y is of class C* in the closure
of B and

(10.15) noy=0

on the boundary. Let y, minimize N (p —y) among all elements ¢ of M,. Since
M < M,, where M is the closure of the space of scalars Ay, x of class C° with
compact carrier, we see that

(10.16) , *=Q =1

is harmonic.
20 ~ 533805. Acta Mathematica. 89. Imprimé le 3 aott 1963.
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Let local boundary coordinates !, ..., u** be introduced. We have, for a

scalar 2,
. oA oA
(10.17) noA=% (371:27 + V- lhgkia—u,) >

where %3,2*=0 by (3.10). Hence, given ¢4, nd4 can be prescribed arbitrarily. Using
(10.17) and the formula (10.11), it can be established formally that

(10.18) da=0.

In other words, « as defined by (10.16) is complex analytic.
Taking, in particular, ¢ = Ay, where y is of class C* in the closure of B, the

above problem reduces to that of minimizing N (A ¢} with
(10.19) ‘ nooc=ndy

on the boundary. We are thus led to conclude that the solution ¢ of the minimum
problem satisfies (10.19) on the boundary and d A¢=0 in B — that is to say, Ao
is analytic in B. The scalar ¢ is made unique by the requirement that it is ortho-
gonal to all analytic functions in B. We have, of coursé, no assurance that Ao is
not equal to a constant throughout B.

Now let y, be a fundamental singularity defined in some domain containing B
in its interior. We suppose that y=1v(z, ) is expressed in terms of self-conjugate
coordinates and, in analogy with (8.1), we set

(10.20) w2, 5) = (2,8) = (@ (w, 3), ¥ (w, 3),

where o (w,Z) is the reproducing kernel for complex analytic functions in B. Then
(10.21) Doz, §)=—alz,d), 2£L,

and

(10.22) A, B)=9pk)~4p(2).

We define

(10.23) h(z, Q) =p (2, 3) = (uw, ), « (w,2),

and then

(10.24) A:h(z, Q)= —a(zf), (Adp@), ki )=0.

The properties (10.24) uniquely determine %(z, ) up to a harmonic function with
vanishing analytic projection. If we suppose that the boundary-value problem (10.19)
is solvable, then there is a scalar o (z,§) which is harmonic with respect to z and

which satisfies
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(10.25) 10, 0(z,5)=nd. h(z%)

on the boundary.
In fact, let o(z,C) be a scalar such that

(10.26) n(0: 02 8)=n(@:h )

on the boundary and with 8, A, 0(2,)=0, 4.0(2,{)=0 in B. Let
(10.27) Fz0=h(z0)-0(0).

Then f(z, ) is uniquely determined, and it satisfies

(10.28) nd. flz,$)=0

for z on the boundary of B;

(10.29) 0: A:f (2,5)=0
in B;
(10.30) (Ao @,f(z,2)=0.

It is shown in [7b] that an f(z, J) satisfying (10.28)-—(10.30) necessarily satisfies the
two further conditions

(10.31) A:f(z,0)= —alz,9),
(10.32) [ )= &)

The proof turns on the Green’s formula
(10.33) B )=, Ay)=2[lp, x @9) ~ P, x @],
B

which is obtained from (10.11) by interchanging ¢ and v, taking the conjugate of
the resulting equation and subtracting it from the original expression (10.11). Hence
the proof given in [7 b] applies here, and we conclude that f(z, J) satisfies (10.31),
(10.32) on the Kihler submanifold. Comparing with (10.24) we see that o (z, 5) must
be harmonic. As in [7b] we may also show that the solution of the boundary value

problem (10.19) is given by

(10.34) o(@)=[f(z, D *8y(C).

20* - 533805.



312 P. R. Garabedian and D. C. Spencer.

11. The complex Laplace-Beltrami operator on a curved space.

We now investigate the properties of the complex Laplace-Beltrami operator []
defined by (2.21) and (2.22), and we show that the results obtained in the pre-
ceding sections for the real operator A are also valid for the complex operator. If
the space is flat, then by (10.8’) the operator [] coincides essentially with A.

Let w (2, {)=wy (2, {) be the parametrix (5.4) expressed in self-conjugate coordi-

nates, and write (compare Section 5)

l Qo=(p), wz)
¢(z,0)=-0:w(z{)
Qo=(p(), e2z0), o=@, e 2),

11.1)

where the integrations are over the finite submanifold B of M*. If o=]] ¢, o+ 0 =1p,
e. o
we have, in analogy with (5.10),

(11.2) QD¢=¢{¢}—Q'¢+DL{¢A*(aw)‘—-wA*a¢+5%*w—(5w)u*¢}.

To prove (11.2) we remove a small geodesic sphere S about the point { of B

and apply the Green’s formula

(Oe v —(p, Oy)= f{% @9) —Pax0p+op *p—(by) * @

with y=w. Formula (11.2) will follow if

(11.3) f{% Pw)y —w, %@ +dp, % w—(dDw) ) % ¢}—> —3 @ ()

as the radius of S tends to zero. This statement is a purely local one and it is
therefore sufficient to prove (11.3) for the osculating Euclidean space, in which case

D=E]=1rgA.

Let y =y, (2, {) be the Euclidean fundamental singularity for A:

1
7o (2,0) = (k 1)sx P ol .. ,).(/l.../,,)dz"A...AdZ“’-dcl‘,\...;\dé""-

If the radius of S is sufficiently small and if z and { are points in a sufficiently
small neighborhood N of 8, we have for Euclidean space the relation w=7y. Hence

[to inS

(11.4) D('P»w)s=1}};[A(%}’)=lO in N—S
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In Euclidean space we have also

(1L.5) 0: 70 (2, 0) =t ¥pu1 (2, ), 8= IT dII, e =110 II

e+l, 0 ¢.0 6.¢ o6.0o+1

In fact
1

]g:!::z Yo (Z, é-) (k 1 2(k 1) H(i <iph Uy ...ip)dzil/\.../\dzlp -dch/\.../\

Hc ¥ (2, 0))” Hc s (2

Hence
1
0=y (2, C))il...tp+l./l...jp=0Hail...lp+l.j/.../p D.’ {m
1
Oevo1 (2 Oyt g tyen iy = T AL D,’ {W
Since

1 _17}= _ /{____1—__}
Dz {2 (k—l)skrz(k_l) DC 2(k_1)8k72(k—1) )

we obtain (11.5). Formula (11.5) may also be written

(11.5) &:¥p (2,8) = (Bevoi1 (2, ) b‘_Haw..,
Thus
O (g, w)s=0 (@, 7)s=(02 +2D) (¢, p)s
=0(p, D¥p1)s+2(, 2yp-1)s
=0 vo-aa Xy =0 g% 1501 +2 (09, 751)
+0 (09, ypa)s
=[ 0y x oL g @ys)+o()
as the radius of S tends to zero, and this proves (11.3).
Next, in analogy with (5.11),

(11.6) DQe=1({p}-Q9).

In fact, if @ has a compact carrier with respect to B, then

QO v)=(p, OQy),
and therefore Y

Ge-Q o, v)=0G9, w)—(w,Qw)'=&(¢,w—0w)=(¢, OQy).

|

dt's

2(k l)}

Since this formula holds for arbitrary ¢ with compact carrier, we have (11.6).

313
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If B is sufficiently small in the sense that
(11.7) |Q@|<k max |p|, 0<k<l,

we can repeat the reasoning of Section 6 and we see that the operator [] has a local
fundamental singularity 0 (z, C) (with the same asymptotic behavior at ¢ as y (2, 0)).

In particular,
(11.8) O:(B(0), 0, 2)=4p(2).

The proof given by de Rham [11] for Theorem 5.1 can now be applied to obtain
a similar theorem for ], namely:

Theorem 11.1. If [ T is equal to a form C* in a domain B, then T is equal
to a form C* in B.

In fact, the proof depends only on the existence of a local fundamental sin-
gularity with the proper singularity at z={_.
Using Theorem 11.1 we can show by the same reasoning as before that if

@=1I ¢ has a finite norm over B, then
¢.0

(11.9) p=yp+p,

where y belongs to the closure of the space of elements [y, x of class C* with
compact carrier, and where []8=0. We write §=C ¢, where C is the projection
operator onto the space of complex-harmonic forms f satisfying [(J$=0. If T is a
current, T=]] T, which satisfies the condition that (T, ¢) is convergent for every

R
form ¢=1] ¢ of class C* with finite norm, we define two new currents X and Y
e

by the formulas

(11.10) (X, 9)=(T,y), (Y,9)=(T,Co).
Then, in analogy with (7.16),

(11.11) T=X+Y7,

where Y is a complex-harmonic form, Y=C7T, and X is orthogonal to all complex-

harmonic forms ¢=C¢. Now let

(11.12) whee =}Tau,...;,,)"""ﬂ dgi, .. \dl

at the point { of the manifold. Then Cwu is the kernel of the projection operator C,
that is, Cu=1x, (z,{), where x, is the reproducing kernel for complex-harmonic forms

p=Cop:
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(11.13) (@ @) %5 (2, 5) =@ (L), #p (2, 5) = (5 (£, B)".
Once in possession of the reproducing kernel, it follows that
(11.14) le@)| < KQ)VN (9),

where K ({) is a positive quantity depending only on the point (.
If the domain B possesses a fundamental singularity 0 for the operator ], we

can repeat the reasoning of Section 8 and show that

(11.15) 0(,0)=(0,2)"

and that there exists an operator F satisfying

(11.16) OFp=3(@—-Cep), CFp=0.
The kernel f,(z, &) of F has the property that

(11.17) Oefo (5 0= —4%(2).
Moreover,

(11.18) f» (2, :)=Ez Hcfp (2 2);

fo (5, 5) = (£, 2)7, %2 %[5 (2,5)=(far-p (2, D)™
Let € (o, 0) be the space obtained from € by applying the operator [] to each
of its elements. The following result is then an immediate consequence of T}:(;)rem 9.1:
Theorem 11.2. 4 finite Kihler manifold with boundary possesses a fundamental
singularity for [ if and only of E (p, 0)=0.
If J¢=0, tg=ne@=0 on bB, then by (3.5)
@9, 29)+ (0P dg)=0

s0 8¢ =0p=0. We remark that, even if B is a cell, we do not know that 2¢p=0
in B implies ¢ =8y (complex analogue of de Rham’s theorem). But, what is more
significant, if [(J¢=0, tog=n@=0 on bB, then by (11.2)

t{p}=Qo
in B. It follows that ¢ is of class C' over the whole manifold M, ¢=0 in M — B,
dgp=bp=0 in M. If o=k (in which case d¢p=0 automatically), the condition

Y_)<p=0 implies that ¢ is complex-analytic and, since ¢ vanishes identically outside B,
we conclude that it vanishes everywhere. Thus if o=k, 0<o<k, we always have

the desired uniqueness property.
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Analogous statements are valid for the conjugate operator EI If p=p,06=0
(that is, if the forms are pure), we have formula (10.8') and hence such forms

satisfying

(11.19) Cg=0, ndep=0 on bB,

are complex-analytic. On a compact manifold, forms ¢ =[] @ satisfying O @ =0 must
2.0

also satisfy 0p=0: pure forms ¢, E] =0, on a compact space are complex-analytic.
If there are no complex-harmonic forms ¢=]] ¢, (D ¢=0, on a domain B, then
0.0

by (11.17) )
DZIP (Z, C)=O

In this case f, (z,{)=0,(z,{) is a fundamental singularity for []. We note, however,

that if B is compact, we cannot conclude that df,=0. For (d/,, d/,) does not exist
because of the singularity of f,.

We remark finally that for complex fields ¢ satisfying dp=0¢ =0 (or 8¢ =0 =0)
we have a Cauchy’s formula. A Cauchy’s formula expresses the value of the field
at an interior point of a domain in terms of an integral of its values on the bound-
ary, and the formula should satisfy the following two requirements: (i) only the
values of the field on the boundary are involved and not the values of any deriva-
tives of the field; (ii) the Cauchy kernel is independent of the domain.

If B is an arbitrary subdomain of a submanifold B, which possesses a funda-

mental singularity 6 (z, ) for the operator E], then we have (using (11.3))

(1120)  4{p@)=~[lpa* @O ~(06) s x =B, xGp+bp, x 6]

where {({)} is @ (&) if ¢ is in B and is equal to zero if { is outside B. If 6(=
=9¢=0, we have simply

(11.21) 1 {e@)}= —be [a % (26)”— (b6)~, * @].

This is Cauchy’s formula for complex fields ¢, dp=0¢ =0, and it clearly satisfies the
the conditions (i) and (ii).
In the ordinary case k=1, p=0, of Euclidean space we have

R

1
0—2—5 log

We observe that
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hence (11.21) in this case is the classical formula

L @ (2) de .

2n1 2—¢
4B

{p(O)}=

12. A complex boundary-value problem for submanifolds of a compact

Kihler space.

In [8] essentially the following boundary-value problem for forms ¢=]] ¢ on
ok

Euclidean submanifolds B was investigated :

[[j’tp=56tp=0, <p=5w in B

(12.1) i
lt(p prescribed on bB.

It was there shown that the equations (12.1) have a unique solution ¢. We now
show that the same result is valid for forms ¢ =[] ¢, ¢+ %=p, on arbitrary finite
ek

submanifolds of a given compact Kihler space. The method of proof parallels [8]
once a suitable singularity has been defined.
The boundary-value problem dual to (12.1) is

(12.2) [0 p=0bp=0, g=2y in B, p=ITg
lntp prescribed on b B.

A similar treatment shows that the equations (12.2) have a unique solution.
We remark that if o=k in (12.1), then ¢ is identically zero. For dby=T] by,
ek

where 0<p<k—1, by (2.14'). The vanishing of ¢ when g==£ is obviously necessary;
otherwise ¢ would be complex-analytic and this would lead to contradictions.

Let B be a finite submanifold with boundary of a given compact Kihler mani-
fold M =M*, and let f,(z,C) be the kernel for M. Then

(12.3) 0z fo (2, §) =0¢ fp41 (2, §);
o= ILaIL. e=1I 4 II,

In other words, the relation (11.5) is valid for /. In fact,

(12.4) Fo=aF.
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For ~
g0 =0bvo=00a;

hence, applying the operator & to both sides of the equation
(12.5) OFg=¢-Cop, CFp=0,
we have, since 9C p=0,
43 3F(P=8D F(p=8(p,
On the other hand,
Cop=0,

since @ ¢ is orthogonal to complex-harmonic forms. Therefore, replacing ¢ by d¢ in

(12.5), we obtain
OFop=0¢p.
Thus
O@F-Fo)e=0.

But since C F=C2=0, we conclude that 8 F— Fo==0. Similarly

(12.4') Fb=bF.
If ¢ is a (p+1)-form, we have by (12.4")

. (Sz @, /D (2, ‘:))M= (‘P, bC /D+l (Z, :))M-
Since

(0. @, 12 D)= (@, 0: 1 (2, D)u,

the relation (12.3) follows.
We observe that

SC (fo41 (2, :))_ =0¢/p+1(C, 2),
for1(2, :) = ]._.[z I_L: fos1 (2, :)

e+l.o 0.0

is a fundamental singularity for the operator ’=b2. In fact,

¢ 0 fos1 (£, 2) =0 Ot fra1 (6, ) =0.

Now let scalar products be extended over B, where B is the given submanifold
with boundary. By (11.6) (with @ replaced by f,)

(12.6) 0@, 1o (2,0)= —3(p, % (2, O)) + } {9},

where #, (2, &)= — (. f» (2, 5) is the kernel for M. Since (g, %, (2, {)) is clearly conti-
nuous across the boundary of B, we conclude that the left side of (12.6) diminishes
by % ¢ as the boundary of B is crossed from the interior to the exterior.
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On the other hand (compare Section 11),

D1 (@ o (2, D) =D (@, [5) T 2D (@, £5) =D (@, D fp1) + @ (@, & fpn) =
=abL (fo-1)"a % <p—§£ P (% fo11) "+ (0@, fp-1) +D @@, frs1).

Let us now suppose that <p=I];<p, fo (2, ;-')=I12 I[cfp (z, 2).
Q. e Ce 0
Then f,_1= [I. Il:¢/»o-1, and hence 6;(fp-1)" =d; (f»-1)". It follows that
o-1,k k.e-1

tabJB, (fp—l)—/\ * ¢P=tde; (fp—l)_/\ * @

is continuous across b B and therefore

tSf‘PA (% fp41)”
bB
must jump by —3te(0).
Now let 7=]] v be a form defined in a complete neighborhood of the boundary
0.k

of B which is of class C* and non-vanishing there. A form t with these properties
is readily constructed. On dividing = by its “length”
|T| =V%12...k‘512"'k

we obtain a form 7 which satisfies the additional requirement that | z|=1 throughout
the neighborhood of the boundary. We observe that ¥ r=]] =.
0.k
If y=T] v, we note the following two identities:
@0
(12.7) Oyat)=d(par)=dy,t+(—1)Cy,dr,
(12.8) ;A* (Wam)=>*yp.
If =11 v, the same identities are valid with 7 replaced by %=’H 7. Moreover, of
0,0 .0

Y =E'P, then *1p=ol__[ow and (12.8) gives

(12.9) T % (%9, D)= (= 1Py, p=k+o.

We have
Ty % b,’, @a(* fp) = (=1 7,0 % f(pA (% fp41)” =
bB bB

= (1P [ gy (¢ o) = (=17 ([0 % [a (% fraa) ] -

_d;/\ *b_'; ‘p/\(*fpﬂ)_}-
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Thus
! {* (bbL‘pA (% fos1)7)A ?}

is continuous across bB, and it follows that
t{% @[ (fo-1)"s * @) 7}
bB

must jump by the amount

3% @, 7).

Writing
(12.10) = Sf A (¥ foar)7, 77p+1=26f (fo) ™A * @1

o'B
where

q’p:]._.[‘l’n: Pr+1= H Po+1 s

ok e+1.k

we have

Lemma 12.1. The expressions t Ap and t (% np.1 , T) decrease by amounts t ¢, and
t (% @ps1,T) as the boundary of B is crossed from the interior of B to the exterior.

On the boundary of B itself we therefore conclude by the usual reasoning that
(12.11) thp=—2Ptd [ @op (¥ fos1)” + 100,
bB
(12.12) £(% Nps1aT) =2 Pt *6f (fo) ™ % Poat)a T} + 3L (* Prain T),

where the letter P indicates that the principal values of the integrals are understood

We observe that

(12.13) 0e(@o a % (fos1) )= %02 fo (C, ) .

Consider now the integral equation

(12.14) thp =05, 6;;=£Ikﬂp,
with singular kernel

(12.15) =21t %, 0 fp (L, 2)
We have

(12.16) oi‘; O p % (gpsa)” =(— 1o+t Pbif (2%, 8’:8,( f5 (8, Da X e {@par () —

— 3 % (@o41 (D)) Tz a ¥ (¥ @p A"'—")}
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Therefore

(12.17) [65 4 % (gp41)"=0
bB

for every solution @,.; of the equation
(12.18) E(% fpr1 aT) =0

in which the boundary is that of the complementary region B=M-B. The comp-
lement is not necessarily connected, but this does not matter. It may be shown on
the basis of the singular Fredholm theory that (12.14) is solvable if and only if the
orthogonality condition (12.17) holds for every solution of (12.18).

The remainder of the proof parallels [8]. We observe that f, is not complex—
harmonic but satisfies ‘

Oefo=—%p.

Thus the kernel x, will appear in certain formulas where it does not occur in [8].
However, where it appears, it will be found to cancel.

The same methods apply to the following modified version of the boundary-
value problem (12.1): there exists a form ¢p=}_0[zp on B satisfying

O ¢=08¢=0, p=dypin B

12,7
( ) { ¢t (pa T) prescribed on b B.

Finally, on the basis of the boundary-value problems (12.1°) and (12.2) we can,
as in [8], define Green’s and Neumann’s forms G,(z,) and N,(z,) in B. The
Green’s form is characterized by the properties
Gy (2,8)= — 29, {f.1(z, {) + regular terms},

(1219) D; GD (zl C)=O) 3#5,
t: (¥2,Gp (2,5)=0 on bB,

while the Neumann’s form is characterized by
Ny (2,8)=20; {fpr_1 (2,) + regular terms},

(12.20) O Ny (2,0)=0, z#¢,
n: Ny (2,§)=0 on bB.

Let

(12.21) Ky(2,0)=0:Gp1(2,8) = 0: Npi1 (2, D).
Then

21 — 533805, Acta Mathematica. 89. Imprimé le 1 Aot 1953.
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(12.22) 2: K, =5, K,=0.

If a,=]] o, satisfies do, =D, =0 in B, we have
r.0

(ap, Kp)=(xp, @ Gp_1)— (2p, SNZHI)

=ap + f{(Gn—l)_A ® oyt oy, ¥ (Npur) =otp.
bB

Here we use the fact that (Gp-1)"4 % oy = (Gp-1, T) "4 % (¢ o T) has a vanishing tan-

gential component on the boundary of B. Thus

(12.23) (%p, Kp)=ap

and K, is the reproducing kernel for forms o«,= [ «, satisfying day=Do,=0. We
?.0

observe that

(12.24) K, (2,0)=(Ky (£, %)

Finally, by the definition of &,, there exists a I',,, such that
Ty (2 ) =1p1 (2 5) + regular terms,

(12.25) D= =0Ty (z2),

I(I‘, L 2p1)=0 if D=0,

and similarly, by the definition of N, ;, there is a 6, such that

O, (2, 2)=1» (2, 5) + regular terms,
(12.26) Ny (20)=2:0, (2,0,
l(O,,, 20)=0 if 0x,=0.

The forms I',,; and 0, are uniquely determined by these conditions.

As in [8] we

then find that the solutions of the boundary-value problems (12.1) and (12.2) are

given respectively by

(12.27) 19 —qu»” f (@ aTa % Do, 7)"

bB
(12.28) 3@51=0 [ (% @11)a(65)
b
As in [8] we also have the symmetry laws

(12.29) b Gy (2, 5)=b. (Ga (£, 2)7,
(12.30) e Ny (2, ) =2: (N5 (£, )"
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We observe that the boundary-value problem conjugate to (12.2) is

v[[fl"<p=3b<p=0, @=0vyin B, <p=:[_9[(p

12.31
( ) ln @ prescribed on bB.

Let y=11v, ¢=11¢. Then
0.0 0.1 . _
a0'y=00y=0,

80 D—w is complex analytic in B and ndy has prescribed values on the boundary.
This is the boundary-value problem considered in Section 10. Here again we have

no assurance that the form [] v is non-trivial.
Finally, we note one or two special cases. Forms

<p=<p,,=H¢p satisfying 0p=Dg@=0
have a reproducing kernel K, which satisfies (compare (12.21))
(12.18") Ky (2,8)=8:Gp1(2,0)=0.Npi1 (z,9).
In the particular case »p=0 this formula becomes
(12.32) Koy(z,5)=—0.N,(2,0)=—0: 0, (2, 5).

If p=0,dp=0 automatically and the condition & ¢ =0 implies that ¢ is complex-
analytic. Thus K, is the reproducing kernel for complex-analytic scalars.
If p=k, <p=;!_"[(p, (12.21) becomes
.0

(12.33) Ki(2,8)=2.6,_1(2,0)= - 0:Tu (2, §).

In this case @ p =0 automatically and the condition S(p-—-O implies that @ is complex-
analytic. Thus K, (z,§) is the kernel for complex-analytic k-forms g, (p=1_[(p (com-
,0

plex-analytic densities).

13. The fundamental singularity for real harmonic fields.

On an arbitrary real orientable Riemannian manifold M, Kodaira [10] has proved
that there exists a fundamental singularity e,.: (2, ) for harmonic fields ¢ =g,.1,
de=38¢=0, This singularity satisfies d,e,,;=0;:€,,1 =0 except at y where

(13.1) ep.1 (, y) =d; dy yp (z, y) +regular term,
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y» being a local fundamental singularity for A valid in a neighborhood N of the

point y. Moreover,
(13.2) (€p+1, €p+1) M—n < OO

for an arbitrary neighborhood N of y and, if 4 is a (p+1)-form of class C*, dy =0,
n=0 in N, (5, ) < oo, then

(13.3) (ep+1.9)1=0.

Kodaira has established the existence of e,,; under the assumption that M is real
analytic, but his proof is easily extended to the case where M is C*. The condi-
tions (13.1)—(13.3) determine e,.; uniquely.

We now prove the existence of e,,; by a method which is different from that
of Kodaira and which seems to us to lie closer to the classical method used for

Riemann surfaces.
Every finite submanifold B of the Riemann manifold can be imbedded in a

compact (closed) Riemann manifold #=F (B). Hence on any finite submanifold B

we have a kernel ¢, (z, y) satisfying

(13.4) Bz gy (z,9)= — B (%, 9)

where B, is the reproducing kernel for harmonic p-forms on the closed F (B). The

kernel g, satisfies

(13.5) dz gy (%, ¥) =90y 9o 1 (2, ¥)

and therefore

(13.6) dedy gy (%, 4)= —8: 840542 (2, Y) — Po+1 (2, 9)
where B,.1 is the kernel for harmonic (p+1)-forms on F. In fact,

0=d, (dy Jp —6; gv+1) =d, du I» ~d; 0; gp+1 =d, dv gy +0:d; gb+l+ﬂp+’1
=d:dy gy +06:0y gpr2t Prs1.

Since F is.closed, we have d; fy.1=0:fp+1=0. Hence for 0 <p<n-—2, n the dimen-
sion of M, the singularity — 8.6, gy.2 defines a singular harmonic field satisfying
(13.1) and (13.2) on B. If B is closed, this field also satisfies (13.3) and is the
desired singularity.

To obtan a singularity satisfying (13.3) when B 18 not closed, let g bea (p+2)-
form satisfying dd@=0, ¢=dyp in B, with
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(13.7) Nz @ =Nz Oy Gp+2
on the boundary of B, and write

(13.8) ep+1 (T, ¥)= —0: (8y gos2 (z, ¥) — @ (2)).
Then d; e,,1=0:€5,1=0 and e, satisfies (13.1) and (13.2). Let 5 =7%,,; be of class

C” in B, dn=0, N5 (n) < oo, and suppose that 7 vanishes identically in a neigh-
borhood N of y. Then

(eps1,9)B= —(0: (Oy gp+2 (x, ¥) — @ @), n)=— (0y gpr2— @, d n)
+ j 7—7/\ * (6ygp+2_90)=0-

bB-bN

Thus ep+1 satisfies (13.3), and it therefore agrees with the Kodaira singularity for B.

The relation (13.3) is a minimum condition of a type familiar in the theory of
Riemann surfaces. In fact, let S be a small geodesic sphere of radius ¢ and center
at the point y, and set

I — 08y gpi2 (@, y)t@(x) in 8

(13.9) Op+2 (T, ¥) = lO in B—S

where @ satisfies dd¢p=0, p=dy, in S with n.p=n,06,¢g,,2 on the boundary of S.
Then o,.2 is just the generalization to Riemannian manifolds of H. Weyl’s familiar
local singularity used in establishing Dirichlet’s Principle for a Riemann surface. Let
V be the closure of the space of (p+1)-forms A satisfying

(1) A+06;0p,2 i1s C® except at y;
(i) dA=0 in S and also in B—S;
(iif) Njp(4) < o0,

We consider the problem of minimizing Ng (1), A¢V. The form

(13.10) 2= {em —0: 054210 8

€p+1 in B—S,

where e;,; is the fundamental singularity for B, clearly satisfies the conditions (i)—(iii).
Let n vanish in a neighborhood of y, n€C® and d%=0 in B. Since

(92 0p+2, n)= (6: 042, "])s =0,
we see that

(13.11) (A0, )= (20, 7)5=0.
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Since 4, is regular at y, (13.11) is valid even if % does not vanish in a neighborhoood
of y and it follows that A, solves the minimum problem. For A, differs from an
arbitrary form satisfying (i)—(iil) by a form # which is C* and closed in B. There-

fore, if eV, we have

(13.12) A=ty

where 7 belongs to the closure of the space of closed forms of class C*. Thus
N @Q)=N (2)+2 (A, n)+ N (n) =N (A) + N (1) > N (%)

unless » vanishes almost everywhere.

Let
(13.13) d=d (B)=N (4,).

We observe that there are forms satisfying (i)—(iii) when B is replaced by the
whole manifold M. For in a finite submanifold B containing S in its interior we

have the form

_ Idz dy 9y (%, 4)— 02 0pi2 In S

13.14 A=
( ) ldzduGD(xyy) in B—§

where g, is the kernel satisfying (13.6). If @, is a scalar of class C* with compact
carrier which is equal to 1 in a neighborhood of S, we replace d, g, (z,y) in (13.14)
by @, (z)dy g» (z,y) and thus obtain a form A on M satisfying (i)—(iii). Hence, in
particular, the greatest lower bound D of N (1) over M is finite.

Now let {B,} be a sequence of finite submanifolds of M, B.< B,,,, where B,

tends to M as p becomes infinite, and write
(13.15) d.=d (B,).
Then clearly

(13.16) d.<d,.1<D

and hence the d, converge to a limit d, d< D < oo,
Let norms and scalar products over B, be distinguished by a subscript u, and
let 4, be the solution of the minimum problem for B,, N, (&) =d,. If 4 <» we have

0<N, (l,‘—l,,)=N,‘ (lu)"2 (Am A)u+ Ny ()
where

(Aus A)u= M;t y Aut Ay — A))u= ()'# ’ An)u =N, (%)
since (A,, A,—A,).=0. Thus
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0<N.(4—24)=N.(4)—N.(4)<N.,(4,) - N, (4)=d,—d.,
and it follows that
(13.17) N,(2e—=21)—0

as u, v approach infinity, g <». In particular, if B is any fixed finite submanifold
of M, we have

(13.18) lim Ns(A—4,)=0.

H, v —>00

Since A,—4, is harmonic, A(4,—4,)=0, we can apply inequality (7.20) and we see
that 4, converges uniformly over any compact subdomain B of M to a limit A
satisfying conditions (i) and (ii) for M. But

Np(A)=1lim Np(4) < lim N, (A4)= limd,=d < D.
Letting B tend to M, we conclude that N (1) < D < oo and therefore N (1)=D.
Hence 4 solves the minimum problem for M, and
epi1=A10; 0ps2
is the desired fundamental singularity for harmonic fields on M. The singularity
epy1 18 symmetric: e, .1 (X, ¥) =¢€p1 (¥, ).

Kodaira [10] shows that, if there are forms ¢, v such that ¢=d =201, then in
terms of e, the field ¢ has the representation

(13.19) p)~ — [{oa*eptep, %1}

Here y is an interior point of the finite submanifold B.
The singularity e, is used by Kodaira to establish the existence of harmonic
fields of the second and third kinds on the Riemannian manifold.

14. The fundamental singularity for complex harmonic fields.

We now construct the fundamental singularity c,., (2, Z) for complex harmonic
fields g=]] ¢ on an arbitrary finite submanifold of a. compact Kéhler manifold,
.0

¢ = i—)tp =0. This singularity satisfies 0, ¢;,; = 0. ¢p1 =0 except at { where
(14.1) Cpr1(2,0)=0:8; 0, (2, J) + regular terms,

617=H2 HCBP)
».0 0, p
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0, being a local fundamental singularity for the operator [ which is valid in a
neighborhood N of the point {. For an arbitrary neighborhood N of ¢ we have

(14.2) (Cp+15 Cor1)u_n <o

and, if n is a (p-+1)-form of class C*, 5= 11_[ n, 87=0, 7=0 in a neighborhood
etl.o
of C; (7]’ 77) < 0o, then

(14.3) (ep+1, ) =0.

Since it is not always true that a submanifold B of an arbitrary Kéahler mani-
fold can be imbedded in a compact Kihler manifold, we are forced to assume that
B is a subdomain of a compact manifold M= MF.

Let f, (2, {) be the kernel for the compact Kahler manifold M satisfying

(14.4) Ot (2, 8)= =3 %5 (2, )

where x, is the reproducing kernel for complex-harmonic forms on M satisfying
[0 ¢=0. Applying (12.3) we have

0=2. (5c fs _Sz fp+1) =0. 5c fo—0. Sz fre1=20; 5c f» '*‘Sa 0: fps1 +xpi=

=0, 5c fo+ Sz bc forzt 3 %p41;
that is,

(14.5) 2:0¢ fp= =02 0; fosa— 4 #p1.

Since M is closed, &, %y, =D, %p+1=0, and the singularity — b, fr+2 18 & complex-
harmonic field satisfying (14.1) and (14.2) on B. If B is closed, in which case it

coincides with M, the desired singularity is — b, b fp+2. If B is not closed, let ¢ be
a (p+2)-form satisfying 35q)=0, ¢=38y in B, with

(14.6) Ny =1z ¢ fr12
on bB, and set
(14.7) Cpa1 (2, §)= =0 (¢ frr2 (2, D) — @ (2)).

Then c¢,,, satisfies (14.1), (14.2), and (14.3).
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15. Remark on the Cousin problem for a compact Kihler manifold.

Let the Kihler manifold be compact, and let E be a closed set of points. To
each point ¢ of the manifold let there be a neighborhood N (¢) and a current 7' in
N (g) of degree p such that:

ETq:Td
(15.1) 0 T,=0 in N (q)-E;

O T¢~T:)=0 in N(g) NN (r).

The Cousin problem in this case is to find a current 7' such that T — T, is complex-
harmonic for every gq.

This problem is solved in a manner like that applied in [11] to the real operator A.
We set Z=[1T,; then Z is a well-determined current and the required current T,
if it exists, is a solution of the equation

(15.2) Or=2.

This equation is solvable if and only if CZ=0, and if CZ=0, the solution is given
by T=2F2Z.
Next, suppose that instead of (15.1) we have

gTa':Tq;
(15.3) 8T, =0T.=0 in N(¢q)-E;

a(Tq—T)=0(T,—T,)=0 in N(g) N N (r).

A current T is to be found such that 8(T —T¢)=0 (T —T,)=0 for every ¢. In a

manner analogous to that of [11], we set Z,=2T,, Z,=bT,. The required current
T, if it exists, is a solution of the equations

oT=2,, bT=2,.
The conditions of solvability are that CZ,=CZ,=0 or, what is the same thing, that

Z,=2U,, Z,= bU,, where U, and U, are currents. If these conditions are satisfied,
a solution is given by

(15.4) T=2(FoZ,+FbZ,).

Replacing in (15.3) the operators @ and b by their conjugates & and b and taking
¢=p,0=0,0<p<k, we have
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HTQ=T0§
2.0
(15.5) dT,=0 in N(q)—E;

8(Te—T,)=0 in N(@)n N (r).

Here b T, =0 automatically; therefore this condition is omitted. The problem is to
find a current 7' such that 7'— T, is regular-analytic for every ¢: this is the Cousin
problem for complex-analytic currents. We set

(15.6) Z=0T,, Z=HZ.
If CZ=0, a solution is given by

(15.7) T=2FbZ.
The condition C Z=0 may be written

(15.8) (Z, %p41)=0

where x,,, is the reproducing kernel for forms ¢ = [ ¢ satisfying 8 ¢ =b ¢ =0 on the
».1

manifold.

References.

[1]. S. Bereman, Uber die Kernfunktion eines Bereiches und ihr Verhalten am Rande,
Journ. fiir die reine u. angew. Math., 169 (1933), 1—42 and 172 (1934),
89128,

[2]. S. BereMaN and M. ScHIFFER, Kernel functions ana conformal maps, Compositio
Math., 8 (1950).

(3]. P. BipaL and G. px RuHaM, Les formes différentielles harmoniques, Comm. Math.
Helvetici, 19 (1946), 1—49.

[4]. S. BoceNERr, (a) On compact Kéhler manifolds, Journ. Ind. Math. Soc., XI (1947),
Nos. 1 and 2.

(b) Functions of several complex variables, Mimeographed Lectures, Princeton Uni-

versity (1950).

(6]. E. Cavamr and D. C. SPENCER, Completely integrable almost complex manifolds, Annals
of Math. (to appear).

[6]. G. F. D. DurF and D. C. SpENCER, Harmonic tensors on Riemannian manifolds with
boundary, Annals of Math. (2) 56 (1952), 128—156.

[7]. P. R. GARABEDIAN, (a) A new formalism for f[unctions of several complex variables,
Journal d’Analyse Mathématique 1 (1951), 59-—80.

(b) A4 Green’s function in the theory of functions of several complex variables, Annals

of Math. (2) 55 (1952), 19—33.

[8]. P.R. Garanepian and D. C. SPENCER, Complex boundary value problems, Technical
Report No. 16, Stanford University, California (April 27, 1951).



A Complex Tensor Calculus for Kihler Manifolds. 331

[9]. W. V. D. HobgE, (a) Harmonic tntegrals, Cambridge Univ. Press (1941).
(b) A Dirichlet’s problem for harmonic functionals, with applications to analytic

varieties, Proc. London Math. Soc. (2), 36 (1934), 257—303.

[10]. K. Kopaira, Harmonic fields in Riemannian manifolds (generalized potential theory),
Annals of Math., 50 (1949), 587—664.

[11]. G. pe Rram and K. Koparra, Harmonic integrals, Mimeographed Lectures, Institute
for Advanced Study (1950).

[12]. M. Scuirrer and D. C. SPENCER, Functionals of finile Riemann surfaces, Princeton
Mathematical Series, vol. 16.

[13]. A. WEiL, Sur la théorie des formes différentielles attachées d une variélé analylique
complexe, Comment. Math. Helvetici, 20 (1947), 110—116.

[14]. H. WEeyL, Orthogonal projection in potential theory, Duke Math. Journal (1940),
411—444.



