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MANIFOLDS. 

Introduction. 

In this paper we develop a complex tensor calculus for K~ihler manifolds and 

apply it to obtain results concerning analytic p-vectors on such manifolds. The 

Stokes and Brouwer operators d and ~ are real operators in the sense that  they send 

real p-vectors into real ones. We define complex analogues of these operators in 

terms of which the classical Laplace-Beltrami operator A for p-forms is split into a 

complex Laplace-Beltrami operator [ ]  and its conjugate [ ] .  In the case of scalars 

on K~hler manifolds and in the case of p-vectors of arbitrary degree p in Euclidean 

space we have [ ] = [ ~ = � 8 9  1 

In Section 4 the complex operators are defined for currents of degree p (in the 

sense of de Rham). In Section 6 a method is given in terms of the complex opera- 

tors for finding the complex-analytic projection of an arbitrary norm-finite p-vector, 

and in Section 7 this method is extended to currents. In Sections 8 and 9 the real 

operator A is investigated on submanifolds of the given manifold. Here the K~hler 

property of the metric is not used; therefore the results of Sections 8 and 9 are valid 

for Riemannian manifolds. In particular, it is established that  every finite submanifold 

possesses a singular kernel gp (x, y) satisfying Az g~ (x, y ) = - t i p  (y, x) where tip is the 

reproducing kernel for harmonic p-forms (the existence of gp (x, y) on compact mani- 

folds has been proved by de Rham). 

1 (Added in proof.) The complex operators as defined below were introduced by the authors 
in a report having the same title as this paper [Technical Report No. 17, Stanford University, Cali- 
fornia (May 21, 1951}]. The same operators, in a different notation, were introduced independently 
by Hodge [Proc. Cambridge Phil. Soc., 47 (July 1951)] who proved the equality of the operators [ ]  

and [] in all cases. Since the present paper was submitted for publication before the appearance 
of Hodge's paper, we have not been able to use this identity to simplify some of the later portions 
of this paper. However, we remark that the identity [ ]  = D follows readily from formula (2.26) 
below and from Ricci's identity. 
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In Section 10 we return to the complex operators in order to establish certain 

relations between harmonic forms and complex-analytic ones. In Section 11 we derive 

propert 'es for the complex Laplace-Beltrami operator []  analogous to those derived 

in the earlier sections for the real operator A. In Section 12 we solve a generalized 

version of the complex boundary value pr(,blem treated in [8] for Euclidean space 

and we show that  this problem has a u n q u e  s, lut:on for every finite submanifold of 

a compact Kiihler manifold. 

In Section 13 we establish the existence of Kodaira's fundamental singularity 

for real harmonic fields on an arbitrary Riemann'an manifold of class C ~0 by a method 

which is different from that  of Kodaira and which seems to us to lie closer to the 

classical method used on Riemann surfaces. In Section 14 we construct the corre- 

sponding singularity for complex harmonic fields, but  here we have to assume that  

the manifold is a subdomain of a compact K~hler manifold. Finally, in Section 15 

we make a remark concerning the Cousin problem for complex harmonic fields on a 

compact K~hler manifold. 

1 .  C o m p l e x  m a n i f o l d s .  

For the sake of completeness, we bring together in this section various known 

properties of complex manifolds. 

A complex manifold M ~ of complex dimension k is a Hausdorff space to each 

point p of which there is associated a neighborhood N (p) which is mapped topologi- 

cally onto a subdomain of the Euclidean space of the complex variables z 1 . . . . .  z k. 

If q E N (p), the coordinates of q will be denoted by z f (q), i =  1, 2 . . . . .  k. Wherever 

two neighborhoods intersect, the coordinates are connected by a pseudo-conformal 

mapping. 

Following [5] we introduce a conjugate manifold M~ which is a homeomorphic 

image of M ~ in which the point p of M k corresponds to the point ~ of M~ and the 

neighborhood N (p) to N (~). Let  Latin indices run from 1 to 2 k, and let 

(1.1) ~= 1 + k  (mod 2k). 

If ~ E N (~), we define 

(1.2) z r (~) = (z * (~))-, 

where (z)- denotes the complex conjugate of the quanti ty z. By means of (1.2) 

the neighborhood _~(~) is mapped onto a domain in the space of the variables 

z r = 5t ( i  = l ,  2 . . . . .  k).  



(1.3) 

Then 

(1.4) 
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Now consider the p roduc t  manifold M k x _ ~ k  whose points  are the  ordered pairs  

(p, ~), and  let 

{z ~(p), i = l ,  2 , . . . , k  

z~ (P ' q )=  z r ( ~ ) = ( z  ~@)- ,  i = k + l  . . . . .  2k.  

z'(p, ~)=(z~(q, ~))-, i =  1, 2, . . . ,  2k.  

The produc t  manifold  M k • ~ k  is covered by  the  coordinates  z ~ (p, q) i = 1, 2, . . . ,  2 k. 

In t roduce  coordinates  x ~ (p, ~) b y  the formulas  

1 + V ~ 1  
(1.5) z ~ x ~ + 

2 

Then 

(1.6) 

1 -  ~ l x~ x' = l - V -  l z, + l + ~ l zr 
2 ' 2 2 ' 

i = 1 , 2  . . . . .  2k.  

z '  (p, q) = (z '  (q, ~ ) ) - ,  i = 1, 2 . . . . .  2 k. 

On the diagonal  manifold D ~ of M ~ •  k where p = q ,  we have  

(1.7) z ~= z' (p, ~) = (zr) - ,  x' = x '  (p, ~) = (x~) -.  

Thus  D ~ is covered either by  the  self-conjugate coordinates  z ~, z ~ = ~,  i = 1, 2, . . . ,  2 k, 

or by  the  real coordinates  x ~. 

We shall be concerned main ly  wi th  the  diagonal  space D k. A tensor  on D ~ whose 

componen t s  are real when they  are expressed in the real coordinates  x ~ will be called 

a real tensor.  A real tensor T when expressed in self-conjugate coordinates  z ~ satisfies 

, . . . m  = ( T r . . . j r " ' ~ ) -  (1.8) T~ . . . ,  . 

Le t  unbar red  Greek indices run f rom 1 to k, and  write 

(1.8') ~ = ~ + k ,  ~=r162 

Then  (1.8) can also be wri t ten  

(1.9) T a ~ . . . ~  . . . .  ~ = ( T ~ . . . ~ " ; .  �9 �9 ~)-. 

The tensors  proper ly  associated with the original manifold  M k are the complex  ana-  

lyt ic  ones whose indices range over  values  f rom 1 to k (Section 6). 

On D ~ there  is a " q u a d r a n t a l  ve r sor"  which is a real tensor  h~ j sa t is fying 

(1.10) h Jhj~ = ! - l ,  i = l  
( O , i # l .  
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In self-conjugate coordinates z ~ this tensor has the components 

(1.11) ht ~ (z)= 

V<I, l<i=i<_k 
- ( - - 1 ,  k+l<_i=i<2k  

O, i # i  

or, in the real coordinates x t, 

( 1 . 1 1 ' )  h, ~ (x) = { - 
1, i= j ,  i_<i_<k 
1, i=j, k + l < i < 2 k  

o, i c f  

The values (1.11), (1.11') are pseudo-conformal invariants. 

Given a vector ~ ,  let 

(1.12) (I ~)~ = qt 

be the identity transformation, and let 

(1.13) (h qg), = h, j ~j 

be rotation through a "quadrant" .  Given real numbers a and b, the operation 

a I + b h applied to vectors corresponds to complex multiplication in which the reality 

of the vector is preserved. We have 

(1.14) (aI +bh) (cI +dh)=(ac-bd)I  +(ad+bc)h. 

In other words, the field obtained from the real vectors by adjoining the operator 

h is isomorphic to the complex number field. 

Now suppose that  D k carries a K~hler metric 9tj. A K~hler metric is a Rie- 

mannian metric which satisfies the following two conditions: 

Here 

(1.15) 

a) O~j=g,,r Phj', 

b) Dp (hJ q~j)=h~J Dpcpj. 

= 0 z p j ~ ~ 

denotes covariant differentiation, / ~ _ _[Jq~/ being the coefficients of affine connection. 

Condition a) states that  the vectors ~t and (h ~)~ have the same length, while b) states 

that  the operators k and D commute: Dh=hD. 
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Le t  

(1.16) htj = gjl ht z. 

283 

we conclude t h a t  

0 has 0 hr~" 
(1.20) Oga~ _ OO~ or = za 

0 z ~ 0 z ~ 0 z ~ 0 

A 1-form ~0 on D k is a differential  form of the  first degree 

= qi d z t, 

where ~0~ are the components  of a covar ian t  vector ,  the s u m m a t i o n  convent ion  being 

used. k iv-form, or exter ior  differential  form of degree i0, p >  1, is a sum of exter ior  

Mult iplying bo th  sides of a) by  hr t and  summing  on j f rom 1 to 2 k, we obta in  

(1.17) hr~ = g~s hr j = g ~  h~ ~ hj ~ hr j = - g~  h~ ~ = - h~. 

Thus  h~s is skew-symmetr ic ,  and  hence b y  (1.16) 

h~j h~, ~ hqS=gjz h~ z hp ~ h~ s= -gsp hq j = - h~p = h~;  
t h a t  is, 

(1.18) h~q = htj h~ ~ hq J 

I n  t e rms  of self-conjugate coordinates  z ~, the  formula  (1.18) shows b y  (1 .11 ) tha t  any  

non-zero componen t  of h ~  is necessarily of the  form ha# or has. I n  o ther  words, 

hp~ = 0  unless iv and  q are indices of opposi te  pa r i ty  with respect  to conjugation.  

Condit ion b) gives 

(1.19) h~,~ {iivi} = h,~' { q j } .  

Taking  q = ~ ,  i = ~  and using self-conjugate coordinates,  we obta in  

{;} ~/- - - i  i = - I / ; - i  i ' i =  l '  9 . . . . .  2 ~. 

Hence  

(1.19') j --- fl = 0 ,  j = l ,  2 . . . .  , 2 k ,  

and  therefore the only non-zero componen t s  of the  coefficients of affine connection 

are those  wi th  all three indices of the  same par i ty .  Since 

0 z ~ 0 z~J ' 
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products of 1-forms. Exterior multiplication, represented by the symbol ^, is associ- 

ative, distributive, and satisfies (see [11]). 

dz'^ d z  j = - dzJ^ dz' ,  dz'^ dz'  = 0 

a^ dz'  = dz '^  a = a d z  ~ 

dz '^  a d z  j = adz ' ^  d z  j, 

where a denotes a scalar. A p-form ~ may be written in the form 

q~=q~(h. . . , ,~dz '~ d z ' ~ . . . ^  dz ' ;  
(1.21) 

= ~. q;,,...,,~ dz"^  d z ' ~ ' " ^  dz 'p ,  
'1 < . �9 �9 < ' p  

where q%...,p is a skew-symmetric covariant tensor of rank p or p-vector in the 

language of E. Cartan, and where the parenthesis indicates that  the indices are or- 

dered according to magnitude. 

Let 

{1.22) F , , . . .  ,p. j , . . .  j~ = 

Then 

(1.23) F , , . . .  ,p j ' '"  'J~ = 

g',Y, . �9 �9 ~tpy, 

ghJ~ �9 " " glrY~, 

~t111 . . .  glp tl 

gt:  j' gtp tp 

is just the Kronecker symbol which is usually denoted by 5~] "' 'jp We depart from �9 �9 ' t p "  

the conventional notation in this instance for reasons of notational symmetry�9 

The differential d q~ of a p-form is the (p+ 1)-form 

(1.24) 

where 

(1 �9 

Here 

d ~ = (d q;)(,~...,p+p d z h ^ ' " ^  d z'v+i, 

( d ~ p ) l x . . . l ~ +  1 = r i x . . . , p + l / ( / l . .  . t ~ ~  ( i l  . . .  J p )  

1 r i l . .  J J " J ~  Ds~ (jl jp). 
p--~ �9 t p +  1 �9 �9 �9 

DJ~J""J r  = ~zj i,-1 J J~, CJPYI'''JI'-IIJI'~+I'''JP' 

and we observe tha t  

�9 ""~{ q }=0 ,  F, . . . .  '~+1"' i i .  
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since { q } j  J~ = { q } J ,  2' " Hence in (1.28) we may replace covariant differentiation Dj by 

ordinary differentiation a/~zj. We have 

(1.26) d e ~ = d (d q~) = 0. 

A form ~ satisfying d ~ - - 0  is said to be closed, and a form ~ = d w  is said to be 

exact. Formula (1.26) therefore state~ that  an exact form is closed. 

Let 

(1.27) eh . . .  ~ek = F h . . .  tek l e ' ' '  2k 1/F12... 2k. 19.... 2k, 

and after de Rham [11] set 

(1.28) ~+ ~ = (~+ ~)Jl...J2~ , dzJl^ '"^  dzJ2k- % 

where 

(1.29) (~*~)sl...Jsk ~=eol...,v)Ji...Jo_k vq ~(h''''p). 

We verify that  

( 1 . 3 0 )  ~ ~ ~ = ( - 1 )  ~ ~, 

and for the scalar 1 

(1.31) ~- 1 = e~2.., z~ dz~^...^ dz  ~ .  

'Thus  ~1 is just the volume element. 

The co-differential ~ of a ~-form ~ is 

(1.32) ~t~= (5~o)o 1...~v ~ )dz~'^'' '^dz~v ~' 

where. 

(1.33) 

In contrast with the differential de ,  the co-differential involves the metric structure 

of the manifold in an essential way. We have 

(1.34)  5 e ~ = ~ (~t ~ )  = 0. 

A form ~0 satisfying 5 ~0 = 0 is called co-closed; a form ~ = ~ v/ is said to be co-exact. 

Let 

(1.35) oJ = h(,j) dz'^ dz  ~. 

The second condition (1.20) expresses that  oJ is closed: 
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(1.36) d eo = 0. 

The condition (1.19), on the other hand, asserts that  Dl h~j=0 and hence 

(1.36') (~ co = O. 

Thus the form ~o is both closed and co-closed. 

The classical Laplace-Beltrami operator for p-forms is 

A = A ' + A " ,  (1.37) 

where 

(1.3s) A ' = 6 d ,  A"=d(~,  A ' A " = A " A ' = 0 .  

A p-form ~ satisfying A ~ =0  is said to be harmonic, and one satisfying d~v = 6 ~ =  0 

is said to be a harmonic field. From (1.36) and (1.36') we see that  the 2-form co is 

a harmonic field. 

We recall that  the Riemann curvature tensor 

m / m  
(1.39) Rmjz=~z~{  i 1 } _  ~ m m 

has the symmetries 

(1.40) [ Rh~jt = - Rt hsz = - Rh~tj 
( Rn,, t= Rj, n,. 

I t  also satisfies the Bianchi identity 

(1.41) Rat jr + Rhjzi + Rnz ~j -= 0. 

The non-commutativity of covariant differentiation is expressed by the Ricci identity 

P 

(1.42) (Dr Dj - D, D,) ~, , . . .  ,p = 2 ~q . . .  ~,, , hi,,+,...,p R~,,,,,. 
,u-1 

In terms of geodesic coordinates y~, 

0{o} 0{o} 
(1.39') R m " ' =  ~ i 1 - 0-y i i i " 

If  the metric is Ki~hler, then by (1.19) 

(1.43) )~m" R m ~j~ = h(" R~mji. 

Thus, in self-conjugate coordinates Rmtjz is zero unless m and i have the same parity. 

In other words, R~j~ = 0  unless h, i are of different parity and also i, 1. From (1.41) 

if follows that  



(1.44) 

In  other  words, indices of the same par i ty  commute .  

of the Ricci tensor  

(1.45) Rtj = Rl~it = Rj, 

has  indices of opposi te  par i ty .  
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R a ~  = R ~  = R ~ o ~ .  

Final ly ,  any  non-zero componen t  

2. Complex tensors. 

The tensors and opera tors  considered in Section 1 are all real; in other  words, 

the  opera tors  send a real tensor  into a real tensor. Now we int roduce complex ten-  

sots and operators.  

As in [5] let 

(2.1) 1 - [ J  = �89 ( g J -  V ~ 1 h,J). 
1 ,0  

The conjugate  tensor is 

(2.2) II , '=  H, '  =�89 (#+ V:--ih,'). 
0.1  1 ,0  

conjugates  a lways being defined in te rms of a real coordinate  system. 

Q>O, a?:O, and set (compare  [5]) 

�9 rn I . . .  m q n  I � 9  n o (2.3) l - I , , . . .  ,,J'" " ,  = F , , . . .  ,, 1-Im[ . . . .  
~).a 1 ,0  

Let  @ + a = p, 

In  self-conjugate coordinates  

(2.4) l-I,'  = J 1, 1 < i = i_< k 
1.o [ 0, o therwise .  

Therefore,  any  non-zero componen t  of the tensor  

. . . .  �9 �9 . t , ~ )  ( I I ~ ) , ,  .,~ = H , ,  . , / '  v , , , . . . ,~)  
Q,O O,a 

has  precisely r indices between 1 and k and  a indices between k + l  and 2k. I n  

o ther  words, 

(2.5) 1-[ ~0 = ~0(a, . . . .  ~) (~,. �9 �9 ~a) dza~ "'" ^ dz% dz2,^ . . .  ^ dz~,,. 
q . a  

I f  Q + a = p > 2 k or if ei ther ~ < 0 or a < O, we define 1-I to be zero. We plainly have  
Q , q  
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(2.6) 

and 
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:E l - I=r  
~ + o - p  q . a  

(2.7) 
[ 0, otherwise. 

Thus (2.6) is an orthogonal decomposition of the ident i ty  operator F. 

(2.8) h / =  gJr h~r = - air h~i = - h j, 

we have 

(2.9) l - I , , . . . %  J,.. .Jp = (1-IJ,...Jp. , , . . . ,~) -  = 1-~J,... J r . , , . . . , r .  
q , a  O.a a , ~  

We define next  a complex covariant differentiator,  namely 

(2.10) ~,  = 1-~* 'Dj .  
1.0 

The corresponding contravar iant  differentiator is 

(2.10') D,= g,Z Ol = l - I / D ~ =  i=IJ 'Dj. 
0,1 1,0 

The conjugate operators are 

(2.11) 

Since 

~, = H , '  D~, 
0,1 

(2.11') ~ '  = 1-IJ' D j �9 
1,0 

In the complex tensor calculus which we propose to use the Hermit*an operator 

1-I replaces the symmetric  identi ty operator r ,  and the complex differentiator ~0 

replaces D. 

Formulas  (1.25) and (1.33) may  be writ ten 

(2.12) (d ~)l , . . .  *p+l = r , , . . .  ,p+~(J~...Jr) Dj ~(j,. . .Jr) 

= r , l . . .  *r +1.  J ( J , . . .  sp) D j ~(J~"" "JP), 

, t , . . .  tp) D' (~ ~) ' , . . .  '~- 1 = - 1 , , , . . .  ,p_  1 ~ (J ,  �9 �9 �9 J~) 

D '  ~(/t �9 �9 �9 IV) --1"~**1...,p_ 1. ( t ~ . . . } p )  ~ 

The complex analogues of these operators are 

} tI 1 . . . Jp )  ~ (2.13) ( 0 ~ ) * , . . . * v +  1 = 1 - I d H  = 1-I , , . . . ,~+,  ~,w,, , . . . ,~,  
Q+l.a  O.a 0 + l , a  

= 1-I h .. �9 *r+l. J(J~" �9 "Jr) Dj ~(h �9 �9 . t r)  
Q+I,I 
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� 9  / n ) ~)~ ( 2 . 1 3 ' )  ( b  ~9),1 . . " p - 1  = ) al--[_l (~ H = - -  H i I I . .  , i n - 1  (11 (P(Jl �9 �9 . / ' p )  
, - Q,O q , a  

= - -  1F"[~ h. . .  in-I, (J~ �9 �9 �9 Jr) Z) i  i p(h . " . Jr). 
q,O' 

The conjugate operators have the forms 

(2.14) (~ ~),, ...,~§ = 0 ~ d H .  ~.o = ~.o+~H ,,.. . ,n+,,(,,.  �9 .J~) Z); r s ' ' ' '~) ,  

(2.14') (b IP),,...,p_~ = 1-I 61-I = - 1-I , , , . . .b_~.m,. . . ,p)~ '@ (r 
Q - l , a  .o,a Q ,a  

The following identities are readily verified: 

(2.15) K- 1-[ = 1-[ ~ ,  
ka, o k - o . k - Q  

(2.16) ~ = ( - 1 )  n+~b~ ,  ~ b =  ( - 1 )  v ~ ,  

(2�9 ~ = 0, b ~ = 0, 

~ + 0 ~  = 0  
(2.18) 

A calculation gives 

(2.19) 

bb+bb=o. 

(A tP)~,.., b = - F ~,... ~p(J'"" "Jp) D ~ D~ t % . . .  in) + 
IP 

R h ...in) +~-~1 t~ r~l..�9149149149 'yl ~P(y~..�9 

v 

+ ~ R  ,h'  ( t , . . . t  n) 
,u,~-' ! I ~ v  l ~ t .  �9 �9 t ~ _ l h t ~ + l  . �9 �9 I~, ..11t~,+1 �9 �9 �9 tn q ) ( l t . . . t l p ) .  

In view of the properties of the curvature tensor for a Kiihler metric, we have 

(2.20) A I I  = 1-I A. 
Q,O Q,O 

Now we introduce a complex Laplace-Beltrami operator 

(2.21) 

where 

(2.22) 

Then 

(2.23) 

where 

(2.24) 

I-I = [~ '+  R " ,  

i~ '=~a ,  [3"=a~ ,  [ 3 ' I ~ " = F 3 " O ' = 0 .  

AI-I= F3 + D .  
Q,r162 

E] = b 0 + a b .  

289 
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The following identities are readily seen to be valid: 

(2.25) { * [ ] = [ ~  ~, [ 3 = ( - 1 ) ~ . ~ * ,  ~ ' . = ~  ~,, 
~[:] [ ] 8 , b [ ~ = [ 3 6 .  

We note the identity 

I I ~ = D  I I ,  
Q,O' ~ ,0"  

which, in contrast with (2.20), is trivial. A calculation gives 

�9 " " ~  D" D ,  ~ ( j , . . .  j ~  + (2.26) ([Z] 9~)*,... ,, = - 1-[,, . . .  , ," '  ' 
e .  O 

P + ~ ~ z h ~j. . . ;~ 
,, Rl 1-1,~ . . .  ,,_za,,+l .. �9 ,p q~o~... J~ + 

,u = I e, a 

P 

+~" 5 II ,2  ~ "  ~ l l q  " t i l t  v " 

l : ,  v = l  1 , 0  1 , 0  

. H I  1 �9 �9 �9 t l : _ l h l l , +  1 �9 �9 �9 t v _ l i t v +  1 �9 �9 �9 | p ( J l  " ' ' ] p )  ~9 ( j  I �9 �9 �9 j p )  �9 
O . a  

We define the scalar product of two p-forms ~ and ~v over a subdomain B of 

D k to be 

(2.27) (~. V) = f q^ ~ ~. 
B 

By (2.15) 

~ ^ *  ~ = % _ ~ _  o * ~ = ~ ^ ~  o.ol-I ~ =~^ (II ~) - . ~ . o  

Thus I-[ is self-adjoint; that  is, 
Q . a  

(2.28) ( I I  ~, ~) = (9, 1-[ VJ)- 
Q,O Q,O' 

If p >_ 2 define 

(2.29) (A ~ o ) h .  . . , ~ , _ 3  = - h ~  q J o m ,  . . . ' p - 2  , 

while if p = 0  or 1 set A ~ = 0 .  

That  is, 

Then 

( ( A  0 - a A)  9 ) ' , . . .  ,p = - hi ,, O ,  ~oq . . .  ,p 

= ~ / -  1 ZY' q ~ q . . .  ,p 

= _ r  1 (b ~ ) , , . . . , ~ , .  

(2.30) A ~ - 0 A =  - I / -  l b .  
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This is the complex analogue of the well-known formula 

(2.30') A d - d A = h  -~ 5h, 

where, in this formula, h is the operator defined by 

(2.31) hq . . .%j , . . .~v  . . . .  
hqsp . . .  h~v~ v 

291 

3. Green's formulas. 

If C ~ is a p-chain on D k with real coefficients and if q is a (p -1 ) - fo rm,  we 

have the well-known Stokes' formula 

(3.1) f d ~ =  f ~, 
C p b C p 

where bC p denotes the boundary of C p. In particular, if we take p = 2 k  and C v= 

= C 2 ~ = B ,  where B is a subdomain of D ~, then for a p-form q and a (p+  1)-form 

'e we have 

fd(q~^ ~ ~ ; ) = f  (d~^ ~ ~0 t - ( - 1 ) v q ~ ^ d ~ ' e ) = f ( d q ~ ^ ~ , - ~ v ^ ~ 6 ~ v ) = f r f ^ ~ v / .  
B B fl  b B  

Thus 

(3.2) (d v, "e) - (v, ~ "e) == f ~^ ~- ~. 
b B  

By specializing V and 'e we derive at once from (3.2) the following well-known "real"  

Green's formulas: 

(3.3) 

(d~, d g ) -  (~, A ' 9 ) = f  q~ ̂ ~* d'e 
b B  

(~" ~, "e)- ( ~ ,  ,5"e)=f ~ ^  ~ 
b B  

b B  

( •  ~, "e) - (~o, •  f (~o^ ~ ~ - ~ip^ ~ ~/ 
b B  

(A ~o, , e l -  (~o, A 9 ) = f  (~o^ ~ d ip - ip^ ~ d ~ +  ~o^ ~ ~ - ~ip^ ~ ~ol. 
b B  

(3.4) 

Taking ~ A 1--I ~' 'e= 1--I 9 in (3.2), we obtain its complex analogue: 
Q.a o + l , a  

b B  



292 P. R. Garabedian and D. C. Spencer. 

F rom (3.4) we derive immedia te ly  the " c o m p l e x "  Green 's  formulas:  

(0 ~, 0 ~) - (~, ~ '  ~) = f ~ ^ .  (o ~)- 
b B  

( rs"~,  ~) - (b~, b ~) =.f ~ ~^ * 
b B  

(3.5) ( ~ '  ~, ~) - (~, ~ '  ~1 = f ( ~ ^ .  (0 ~)- - ~ ^ .  o ~) 
b B  

( ~ "  ~, ~,1- (q~, [ ] "  ~) =.f (b-~^. ~ - (b ~,)~ * ,~) 
b B  

( [ ]  ~, ~) - (~, [ ]  ~) = f (q~^ . (o w)-  - (~^ * o q~ + ~ ~^ . ~ - (~ ~1-~ . ~). 
b B  

In  (3.4) and  (3.5) the forms ~o and yJ are assumed to sat isfy ~ = I I  q~, y~ = 1-Iy~. 
Q, 0 Q, a 

In  applying the above Green's identities we suppose that B is a compact sub- 

domain of D k satisfying the following condition. At  each boundary point p of B 

there is a full neighborhood N (p) of p in D ~ and real coordinates  u 1 . . . . .  u ~ which 

are funct ions of the x ~ (defined by  (1.5)) of class C ~. We suppose t h a t  the u 2k- 

curve is or thogonal  to the u~-curves, l<_i~z2]c-1. The intersect ion N(p),q B is 

mapped  topologically onto a hemisphere  

2 k  

(U')2 < ~2, U2k > 0 ,  
| - 1  

the base u 2 k = 0  of the hemisphere  corresponding to the bounda ry  of B. 

u ~, l _ < i _ < 2 k - 1 ,  const i tu te  a set  of local pa rame te r s  for the boundary .  

dinates u 1, u 2 . . . . .  u "k will be called boundary  coordinates.  

Le t  ~ be a p- form expressed in te rms  of bounda ry  coordinates  u~: 

(3.6) ~0 = q~(,~... ~) du'l^...^ du% = ',< .~.. < , ~ , . . .  ,p du"^".^ du%. 

We define 

t qJ = ~% < 2kq~t,... % dur,^ ...^ du% 
(3.7) ~' < "  

n~0 =~0-tq~. 
Then 

Thus  the  

The coor- 

(3.8) ~ t = n ~ ,  t ~ = ~ n .  

I n  fact ,  since the u2k-curves are or thogonal  to the  bounda ry  of B, we have  on bB 

(3.9) gl.~k=gl'~k=O, i = l ,  2, . . . ,  2 k - - l ,  

and (3.8) follows f rom (1.29). Moreover,  
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( 3 . 1 0 )  h2~ 2~ = h2~ 2~ ( u )  = g2~. x h2~.  1 = 0 .  

Therefore, if ~v is a 1-form, 

(3.11) n h  cp = h2k t opt = n h t  cp. 

At a point p of D ~ let ~1, . . . ,  ~2~-1, r be geodesic coordinates, where the ~ are 

direction parameters  of the geodesics is3uing from ~ and r is the geodesic distance 

from p. Let  B be the geodesic sphere r < r  0. Then u ~=~ ,  i = 1 , 2  . . . .  , 2 k - l ,  and 

u Z k = r o - r  are boundary coordinates for B. In  these coordinates we plainly have 

(3.12) g2k. 2~ = 1, g ~ ' ~  = 1. 

4.  Currents. 

The carrier of a p-form ~ is the set of points where ~ is different from zero. 

I f  ~ vanishes identically outside some compact  subdomain of the manifold, ~ is said 

to have a compact  carrier. 

G. de Rham [11] has introduced the concept of current in order to bring dif- 

ferential forms and topological chains under a single theory. A current T [~] is a 

linear functional over the space of p-forms ~ with compact  carriers and of class C~; 

tha t  is 

r [a 1 ~1 + as ~~ = al T [~x] § as T [~2] 

for any constants ax, as. Moreover, T is assumed to be continuous in the following 

sense: Let  ~u be a sequence of forms of the linear space whose carriers are contained 

in a compact  set lying in the interior of a domain of a self-conjugate coordinate 

system z 1 . . . .  , z 2k and suppose tha t  the partial derivatives of the coefficients of the 

~ with respect to the z ~ tend uniformly to zero as /~ approaches infinity; then 

T [~u] tends to zero. T is said to be of dimension ~ and degree 2k-ID.  

Let  ~ be a form of degree 2 k - p  whose coefficients are locally integrable. Then 

(4.1} ~ [~] = f ~^ 
D k 

defines a current, and this current is said to be equal to the form a. 

A ~-chain C p defines a current of degree 2 k - ~  and dimension p: 

(4.2) c ~ [~] = f ~. 

This current is said to equal the chain C p. 

1 9 -  533805. Ac~a Mathematica, 89. Impr im$  le 31 ju i l le t  1953. 
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If v , , . . . t ,  is a p-vector at  a point, then 

v [* ~] = %. . . ,~)  ~(~'"'' ~,) = v ( ' '" "" ' ,)~(,,... ~,) 

(4.1), (4.2) and (4.3) were introduced by de Rham on real Rie- 

mannian manifolds. For completeness, we summarize briefly the various relevant 

definitions relating to real currents; the3e definitions are essentially those given by 

de Rham [11]. Then we indicate briefly the corresponding definitions for complex 

currents. 

A current is zero in an open set if it vanishes for each form ~ with compact 

carrier contained in the open set. The carrier of a current T is the complement of 

the largest open set in which T = 0. For example, the carrier of the current (4.3) is 

a single point. 

Let  T be a current of degree p, ~ a q-form, and set 

T^ ~ [~] = r [~^ ~], ~^ r = ( - If q T^ ~. (4.4) 

Further let 

(4.5) 

If T is of degree p, we define 

(4.6) 

(4.7) 

(4.7') 

Then 

( 4 . 8 )  

and 

f r ^ ~ = r [ ~ ] .  
D k 

. r [~] = ( - I)" r [. ~] = ( - I)" (T, ~) = ( - I)" ((~, r))-, 

d T [~] = ( - 1) "+1 r [d ~], 

~ T [ v ] = ( -  1 ) ' r [ ~ ] ,  d r =  - * d *  T. 

d~ T=52 T=O 

(4.9) (+T, . + ) = ( r , V ) , * * r = ( - 1 ) ' r ,  (T, dq~)=(5r, q~), (dr, q~)=(T, Oef). 

A current is said to be harmonic if A T = 0, A = d ~ + ~t d. 

In particular, if T is a chain C',  r a ( p - 1 ) - f o r m  of the space, we have 

de" [~o] = ( -  1) T M  C" [d~o] = ( -  1) T M  f d ~  = ( - 1) "+' f ~ : ( -  I f  +' b C" [~o]. 
C" bCP 

That  is, 
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(4.10) d C  ~' = ( - 1) T M  b C  ~'. 

In an analogous fashion we introduce complex currents. 

p, Q + a = p, and define 

(4.11) 

By (2.15) and (4.6): 

(4.12) 

Y I r [ ~ ] = r [  YI ~]. 
q.a k - a .  k - q  

( I I  r ,  v) = (T, 1-I ~). 
0.~ @,o' 

Further, in complete analogy with (4.7) and (4.7') we set 

(4.13) 

We have 

(4.14) 

Finally let 

(4.15) A r [~] = r [A ~], 

where A is the operator (2.29). 
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Let T be of degree 

~ T [ ~ ] = ( -  1 ) ~ §  b T [ ~ ] = ( -  I )PT[b~] ,  b T =  - ~ 0 ~  r .  

(b r ,  ~) = (T, 3 r (3 T, ~) = (T, b r 

5. T h e  p a r a m e t r i x .  

Let x =  (x 1 . . . . .  x 2~) denote the point with real coordinates x ', and denote the 

geodesic distance from x to y by r (x, y). To each compact subdomain K of D k there 

corresponds a positive number 7o such that  if r (x, y )<  ~?0, Y E K, there is a unique 

geodesic from x to y whose length is r (x, y). 

Let ~ =~ (a) be a function C ~" of the real variable a which satisfies 0 < ~ <  1, 

=1 if a<�89 and e = 0  if a > l .  Moreover, let 

(5.1) a = - .  �89 ~ (x, y) 

and define 

(5.2) a~j ~ xl ~ yj, 

(5.3) 
0'tl t l  """ at1 tp 

a i  I . . . t p ,  ] l . . . t p  
a lp  Jz """ a tp  tp 

We denote the volume of the unit (2k-1)-sphere  by sk and we set 
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i5.4) ~o (x, y) = eo~ i x, y) = 

e (r/~]o) 
= 2 (k - 1) sk r 2(~--1) a(,,... ~p). (j~... j~) dx~^ ... ^ dx  ~ '  dyJ~ " ' ^  dy  jp 

if k > l .  If ] c= l  we replace r -2(k- i ) /2( ]~- l )  by - l o g r .  The expression (5.4) is 

called a "parametr ix" ,  and it is clearly symmetric: 

(5.5) co (x, y) = eo (y, x). 

Now let B be a finite submanifold of the type described at the end of Sec- 

tion 3. If  D ~ is compact, then B = B  ~ may coincide with D~; otherwise B is a 

proper submanifold with boundary. In the following all scalar products involve 

integration only over B. 

After Bidal-de Rham [3] we write 

(5.6) 

i5.7) 

is self-adjoint: 

(5.8) 

~0 = (~ (y), ~o (x, y)), 

q i x, y) = - A, co (x, y). 

(~ ~, ~) = (% ~ ~). 

Moreover, for x near y t'm form q ( x , y ) = O f  r2('-~)) (see [3]). Let  

(5.9) Q q9 = (~ (y), q (x, y)), Q' ~ = (~ (y), q (y, x)). 

Then if ~ E C  1 in the closure of B we have 

(5.10) ~ A ~ = { q ~ } - Q ' ~ f + f  {q~^ ~ d e o - o ~ ^  ~ e d c f + ~ ^  ~cw-~oJ^  ~ } ,  
b B  

where {~} is equal to ~ in B and equal to zero out~ide B. Further  

(5.11) A D ~ = { ~ } - Q ~ .  

For a proof of these formulas see [3], where, however, the boundary integral in 

(5.10) is absent because B is assumed to be compact. 

For completeness, we sketch here the proof given in [3] tha t  a fundamental 

singularity exists if B is "small enough" such that  

(5.12) {Q~{ < k  max {~{, 

where 0 < k <  1. In fact, consider the equation 

(5.13) A/~ = ft. 
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Taking / ~ = ~ ,  we have by (5.11) 

(5.14) ~ - Q ~ = ft. 

Under the assumption (5.12) this integral equation has a solution 

(5.15) ~ = f l + P f l .  

where P is an integral operator with kernel 

p(x, y)=q(x, y)+Qq(x, y)+. . .  +Qk q(x, y ) + . . . .  (5 .16)  

Then 

(5.17) 
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/~ = ~2 ~ = (~ +s  

is a solution of (5.13), and the kernel 7(x,y)  of the operator F = ~ + ~ P  has essen- 

tially the same singularity as o (x, y). We therefore have 

(5.18) Ax (/~ (Y), r (x, y)) = fl (x) 

7(x,Y) in B, 

y. Let  u be the current defined by 

. . .  d yl~ 

= ~  and (5.19) may be written 

or, if F (x) is the current which i3 equal to  

(5.19) A F fl = 

I t  follows readily that  Ax 7 (x, y ) = 0  for x # 

(5.20) u h " "  ~ = d yl, 

at  the point y of the manifold. Then (% u) 

(5.19') A F = u. 

If there is a current F in B such that  (5.19') is satisfied, we say that  B pos- 

sesses a fundamental singularity. The above method shows that  a fundamental sin- 

gularity exists over every finite submanifold for which (5.12) holds. 

The existence of a local fundamental singularity implies the following theorem 

of de Rham [11]: 

Theorem 5. t .  I/  A T  is equal to a /orm C ~ in a domain B, T is also equal 

to a /orm Coo in B. In particular, a ha~n~onic cu~re~t is equal to a harmonic /orm. 

6. Analytic and harmonic p-forms. 

We consider pure p-forms ~ which satisfy 

(6.1) o_<p<k. 
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For such forms we have the formula 

(6.2) ~b, ~,, . . .  ,~ = l-I,' 8 ~, , . . . ,~  
o.1 a z y 

Thus the covariant derivative of a pure p-vector in a direction z ~ coincides with its 

ordinary derivative, that is 

(6.2') D~ ~ol . . . .  ~ = ~ 

I t  follows from (2.14) that  a pure p-form is complex analytic if 

(6.3) ~ ~ = 0. 

If p = k, the condition (6.3) is equivalent to 

(6.3') b ~ = 0. 

If 0_< ~ < k, the condition (6.3') is necessary but not sufficient for complex analyticity. 

If  k+l<p<2k,  then ~ may be called "complex analytic" if (6.3') is satisfied. I t  

follows that  if ~0 =ply. ~ ~ is analytic, then so is * ~ and conversely. 

To prove (6.3') we have only to observe that  

o.1 Oz  ~ ~-x o.1 i~, j . ~ -x '~ t t ,+1"  

where 

by (1.19). 

q } = 0  l - I /  i .  i 0,I  

If ~ is a pure p-form, then by (2.13') 

(6.4) b ~ = 0, 

since 1-I = 0. Thus by (2.22) and (2.23) 
la0-1 

(6.5) a ~ = ( [ 2  + [ ~ ) ~ =  ( i~  + ~ b  + b~)~ .  

If  ~ is analytic, so is 8~. Hence by (6.3) and (6.3') we see that  A ~ = 0 .  Thus 

analytic forms are harmonic with respect to an arbitrary Kiihler metric. 

Conversely, any pure harmonic p-form on a compact manifold is necessarily 

complex analytic. For 

0 =  (A% ~) = (0d~,  ~) + (d0~,  ~ )=  (d~, d~) + ( t~ ,  t~ ~), 
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and therefore ~ is both closed and co-closed. But a pure closed form is obviously 

complex analytic. If the p-form ~0 is harmonic, then by (2.20) so is its pure com- 

ponent. Therefore the pure component of any harmonic p-form on a compact mani- 

fold is complex analytic. 

If ~ is a scalar, we have as a consequence of (6.2) 

(6.6) ~j  ~ ~ = ~ ~j  of. 

I t  follows that  
_ 8 2 

that  is 

(6.7) [] ~0 = ~ ~ = �89 A ~0. 

Now let P be the space of forms ~ satisfying (6.1) which have finite norms 

over D ~: 

(6 .8 )  N = < 

By the Riesz-Fischer theorem the space P is complete. 

Let }// be the space of p-forms ~, 

(6.9) ~v = b Z, 

where Z has a compact carrier and 

(6.10) Z=rH~ Z, zEC **. 

We denote the closure of the space ~ (in the sense of the scalar product) by Q. 

Thus Q is the closure of the space of complex co-differentials b Z, xEC*~, where Z 

has a compact carrier. By (2.13') we obviously have 

(6.11) V = 1-[ ~p. 
p , O  

Let A be the subspace of P composed of pure complex analytic p-forms q0: 

(6.12) qo = I-[o % ~ = 0 .  

We have the decomposition formula 

(6.13) P=Q+A, 

where the spaces Q and A are clearly orthogortal. We omit a proof of this formula. 
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Non-trivial complex analytic p-forms ~ with finite norms over D k will exist if 

and only if Q is a proper subspace of P.  Since there are manifolds which fail to 

have analytic p-forms for certain values of p, 0 < p_< k, the question whether Q co- 

incides with P or not cannot be decided by general arguments which do not take 

into account the particular structure of the manifold under consideration. 

Finally let L be the space of all forms which have finite norms over D ~, and 

let M be the closure of the space of p-forms y~, 

(6.14) ~ = A ;~, 

where Z is of class C r162 and has a compact carrier. Then 

(6.15) L = M + H, 

where H is the space of harmonic forms cr satisfying 

(6.16) A 0r = 0.  

For let ~ 6 L, and let ~ be the element of M which minimizes N ( r  v2). Writing 

fl = 7~ - ~, we have 

(6.17) (fl, ,p) = 0, ~ 6 M. 

In particular, choosing yJ = A Z, Z of class C = with compact carrier, we obtain 

(6.17') (fl, A Z) = 0. 

From Theorem 5.1 it follows that  fl is harmonic. 

7.  D e c o m p o s i t i o n  o f  c u r r e n t s .  

We define an analytic current T to be a current satisfying 

(7.1) T = I - I T ,  ~ T = 0 ,  T of degree p, 0_<p<k ,  
~.0  

(7.1') 

Since 

T=I-IT,  bT=O, T of degree 2 k - p ,  O<_p_<.lc. 
k o k - p  

(7.2) h I I  = 0, 
P , 0  

we see from (2.30) tha t  (7.1) implies b T = 0 .  As in Section 6 we therefore conclude 

that  an analytic current T is harmonic. By Theorem 5.1 a harmonic current is a 

harmonic form and therefore an analytic current is an analytic form. 



A Complex Tensor Calculus for K~ihler Manifolds. 301 

Given an open covering (U~} of D k, there is a set of functions ~vj such that  

(7.3) 1 = ~ ~vj, 

where (i) ~vj E C ~r 0 _< ~vj _< 1, the carrier of ~vj is compact and contained in one of the 

open sets U~; (ii) every point of D k has a neighborhood which is met by only a 

finite number of the carriers of the ~vt. The formula (5.18) gives a "part i t ion of 

uni ty" .  

If q~ EC ~ and if ~v has a non-compact carrier, we say that  T[q~] is convergent 

and that  

if the series on the right is convergent for each partit ion (7.3). Then the sum is 

absolutely convergent and its value is independent of the partit ion used to define it. 

Let  us consider the class C of currents T= I-I T such that  T [~] is convergent 
p.O 

for every form ~ which is of class C ~ and has a finite norm. By (6.13) we know 

that  any ~ of the space P has the decomposition 

(7.4) ~ = y~ + :r 

where v2E Q and ~ is analytic, ~EA.  If ~ E C  ~, then since :r is analytic it follows 

that  ~E C ~. Now define currents E, F by the formulas 

(7.5) (E, ~) = (T, V), (F, r = (T, a).  

Clearly 

(7.6) T = E + F, 

where 

(F, b x) = (~ F,  x) = o 

for any form )~ = .l~lz of class C 1 with compact carrier. Hence F is complex analytic, 

and formula (7.6) gives the or~hogonal decomposition of the class C into the space 

of analytic forms and an orthogonal space. We call F the analytic projection A T of T. 

In particular, the current 

(7.7) v ~1''" tT = d ~1 ^ . . .  ^ d ~tp 

is a current of class C whose carrier is the point ~ of the manifold, and it  satisfies 

(7.8) (~, v) = ~. 
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By the orthogonal decomposition we have 

(7.9) v = v 2 + ~, 

where ~ = :r (z, ~) is the reproducing kernel for complex analytic p-forms: 

(7.10) (q~ (z), :r (z, ~)) =q~ (~'), T complex analytic. 

More generally, given any current of class C, its projection on the space of analytic 

p-forms is given by 

(7.11) A T = (T (z), ~p (z, ~)). 

In particular, 

(7.12) ~, (z, ~) = A v. 

We observe that  

(7.13) (a~ (z, ~), a~ (z,w)) = :% (w, ~) = ( ~  (~, w))-. 

Finally, let B be the class of real currents T such that  T[~] is convergent 

for every form ~ which is of class C ~162 and of finite form. Given q~EL, we have by 

Section 6 

(7.14) 

where y EM and fl is harmonic. 

(7.15) 

Then 

(7.16) 

where 

As above, define currents X, Y by the formulas 

(X, ~): :  (T, ~), (Y,q~)=(T, fl). 

T = X +  Y, 

(Y, AZ)=(A Y,Z)=0 

for every form Z of class C ~ with compact carrier. Hence Y is harmonic, and 

therefore Y is a harmonic form. We call Y the harmonic projection H T of T. If 

u is the current defined by (5.20) we have by (7.16) 

(7.17) u = ~ + f l ~ ,  

where tip (x, y) is the reproducing kernel for harmonic p-forms, 

(7.18) (fl (x), tip (x, y)) = fl (y), fl harmonic. 
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Since u is a real tensor, we have in place of (7.13) the symmetry  

(7.19) fit (x, y) = fit (Y, x). 

By the Schwarz inequality applied to (7.18): 

(7.20) I fl (Y)[ -< g (y) l/N-(fl), I fl (Y) I = ~/fl",'"'p) -fl(~'"" 'p)' 
where K (y) is a positive number  depending on y but  not  on the particular harmonic 

form ft. Indeed, the condition (7.20) is necessary and sufficient for the existence of 

a reproducing kernel in a Hilbert  space. I t  follows in particular from (7.20) tha t  

convergence in norm implies point-wise convergence. The inequali ty (7.20) is esta- 

blished in a different way in [10]. 

8. Finite submanifolds which possess a fundamental  singularity. 

Let  B be a finite submanifold with boundary,  and suppose tha t  there is a funda- 

mental  singularity y(x,  y )=~, ,  (x, y) which is defined for x and y in some domain 

containing B in its interior. If  B is sufficiently small, such a y (x, y) will exist. 

Let  

(8.1) /~ (x, y) = Y (x, y) - (fl (z, y), Y (x, z)), 

where the integration in the scalar product is extended over B and where fl = tip is 

the harmonic reproducing kernel for B. By (5.18) 

(8.2) Ax ~ (z, y) = - fl (x, y), x ~ y ,  

and 

(8.3) Ax (r (y),/~ (x, y)) = ~ (x) - H q~ (x). 

We set 

(8.4) gp (x, y) = # (x, y) -- (re (t, y), fl (t, x)), 

and then 

(8.5) A, gp (x, y) = - tip (x, y), (H F (x), g~ (x, y)) = 0.  

In particular, the relations (8.5) define gp (x, y) uniquely. 

We write 

(8.6) 

then 

(8.7) 

G r = (~ (y), g~ (x, y)) ; 

A G ~ = q ~ - H ~ ,  HG~=O. 
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We note the trivial relations 

(H T, ~) = (~, H ~p) (8.8) 

and 

(8.9) GH=HG=O. 

Let  us assume tha t  the form ~, in addition to being of class C ~r also has a 

compact  carrier with respect to B;  tha t  is, ~ vanishes outside a compact  set lying 

in the interior of B. Then 

(8.10) AHq~=H Aq~=O, 

so 

AAGq~=Aq~-AHq~=Aq~ , AGA~=A~-HAq~=Aq~,  A ( A G - G A ) ~ = 0 .  

Therefore ( A G - G A ) ~  is harmonic. But  HAGq~=Hq~-H2q~=O and HGAq~=O, 

so (A G -  G A) ~0 = 0. Thus 

(8.11) A G q~=G A q~. 

At the end of Section 6 we observed tha t  a form ~ with finite norm over B 

can be decomposed into a harmonic component  H ~ and a component which is the 

limit in the sense of the norm of elements A Z, % of class C "r with compact  carrier. 

The latter component  is here to be identified with A G ~ .  Let  %, be a sequence of 

forms with compact  carriers such that  

N ( A G ~ - A % , )  
tends to zero. We have 

%. - %. = (Ax  (%. - %.), 7 (x, y) )  

and therefore N (%. -  %.) converges to zero as /~, v tend to infinity. Hence there is 

a form %, N ( % ) <  oo, such tha t  N ( % - Z . )  tends to zero. On the other hand, if ~v 

has a compact  carrier, then 

( G ~ - % ,  A~)  = lim ( G ~ - % , ,  A~)  

= l i m  ( A  G ~ - A %,, ~) = 0. 

Thus G ~ - Z  is a harmonic current, whence by  Theorem 4.1 it i8 equal to a har- 

monic form. Therefore G ~ = g -  H %. 

Now let ~ and v 2 be any two forms C ~ with compact  carriers; we have 

(G % ~) = (G % A G ~) = lim (G v#, A %,) = lim (A G v2, %,) 

= ( a a %  a~) = (v, G~). 



That  is 

(8.12) 

or, in other words, 
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((~ (y), g~ (x, y)), %o (x)) = (~ (y), (%o (x), gp (x, y))) 

= (~ (y), (vJ (x), g~ (y, x))). 

Since ~ is an arbi t rary form with compact  carrier, we conclude tha t  

(y~ (x), gp (x, y)) = (~o (x), g~ (y, x)), 

and then, since v 2 is arbitrary,  

(8.13) g~ (x, y) = g~ (y, x) .  

Let  
~] ( x, y) = g~ i x, y) + (/~ (t, y), ~, (x, t)) + (/~ (t, x), ~, (y, t)). 

Then ~ (x, y) = ~ (y, x) and 

Ax ~ (x, y) = A~ r/(x, y) = 0.  

We have therefore defined a symmetric  fundamental  singularity ~ (x, y ) i n  B. We 

may  therefore always suppose t ha t  the fundamental  singularity is symmetric.  

Le t  ~ be a p-form which is of class C ~r in the closure of B and with N (A ~) < ~ .  

We seek a harmonic p-form fl such tha t  

(8.14) t (fl - ~0) = n (fl - ~) = 0 

on the boundary of B. If a form fl satisfying (7.14) exists, it is unique. For  the 

difference 2 of two such forms satisfies 

t 2 = n t = O  

on the boundary.  Hence by Green's formula 

(8.15) N (d ~) + N (~ ~) = 0. 

That  is d2=~2=O and t is closed and co-closed. Therefore 

(8.16) 0 = ( d = l ,  d~ ? ) + ( ~ 2 ,  ~}=y) 

= ~-+ J" (a^ + d~ ~ , -  ~= a^ ++ ~)=, l .  
b B  

The boundary  value problem (8.14) can be established on a rigorous basis by 

minimizing the expression 

N (d= (~ - a)) + N ((~ (~ - a)) 
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with respect to all harmonic p-forms ~r The proof, which does not differ essentially 

from that  used in the case k= 1 (see [12]) will be omitted. 

By subtracting a suitable harmonic p-form from the fundamental singularity 

~, (x, y), we obtain a Green's form Gv (x, y) which satisfies A~ Gp (x, y )=  0, x #  y, in B 

and on the boundary 

(8.17) t (x) Gp (x, y ) = n  (x) G~ (x, y )=0 .  

We obtain from Green's formula in the usual way the symmetry relation 

(8.18) G~ (x, y) = G, (y, x). 

In terms of Green's form the solution of the boundary value problem is given by 

(8.19) fl(y) = - f  {of^ ~ d, Gv (x, y ) - & :  G~, (x, y)^ ~ of}. 
b B  

9. The existence of  a fundamental  singularity on an arbitrary submanifold 
with boundary. 

Let B be a finite submanifold with boundary imbedded in a larger Riemannian 

manifold. Then it is not difficult to show that  B can be imbedded isometrically in 

a compact Riemannian manifold M of class C r162 

Let ~ be the space of harmonic p-forms on M which vanish identically outside 

B, and let ~:1 be the orthogonal complement of {~ in the space of all harmonic p- 

forms on M. Any linear combination of forms in '@1 which vanishes identically out- 

side B must necessarily vanish throughout B, and we can therefore find a basis {q~,} 

for @, which is orthonormal over M - B .  Let y be a fixed point of B, set 

f Z q, (x) ~, (y), x E M - B 
el (x, y) = i0 ,  x e B , 

and write 
El ~0 = (~ (x), el (y, x)). 

We denote orthogonal projection onto (~ by E, and we define Q = I - E - E ,  1 where I 

is the identity operator at  the point y, I ~ = q ( y ) .  If H is the projection operator 

into the space of harmonic p-forms in M, we clearly have H Q=O. Now let G be 

de Rham's Green's operator for the compact manifold M (see [11]), and define 

G I=GQ. Then 
A G I = I - E - E 1 .  

Since the carrier of E 1 is contained in M - B ,  we see that  A G1 = I - E  in B and we 

have thus proved the following result: 
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Theorem 9.1. A finite mani]old with boundary possesses a ]undamental singu- 

larity i/ and only i/ E = O. 

In any case, we always have a Green's operator G on B which satisfies A G q = 

= ~ v - H q  where H now denotes projection onto the space of harmonic p-forms in B. 

10. Relations between harmonic and analytic p-vectors  on a finite manifold. 

Oil a compact (closed) Kiihler manifold a pure harmonic p-form 99, q = 1-I q~, is 
Q, O" 

complex-analytic. Since the operators 17[ and A commute, the pure component 1--[ 
Q, O" r t7 

of a harmonic p-form ~ is harmonic and therefore analytic. Let ~p (z, ~)and tip (z, $) 

be the complex-analytic and harmonic reproducing kernels, respectively, both written 

in self-conjugate coordinates. Then 

(10.1) :r (z, ~) = 1-[ (z) 1-I (~) fly (z, ~). 
P , O  O , P  

Here 0__<p<k, but if p = 0  the relation (9.1) is trivial since we then have 

(10.2) ~ (~, ~ ) = ~  (z, r  v '  

where V denotes the volume of the manifold. Since 

(10.3) ~_~_~ (z, ~ ) =  s~ s r  (z, ~), t~2~-~ (~, $)= ~ ~ : t ~  (z, r 

the relation (10.1) for k ~-l < p ~ 2 k  becomes 

(10.1') ~'-'~-r (-', ~) H (z) H (~)fl.,k_~ (z, ~). 
k , k - p  k - p , p  

To prove (10.1) we observe that  ep(z, ~) is analytic in z and in ~. 

complex analytic, we have 

P.O 

= ( l - I  (z) ~ (z}, fit (z, $)) 
P , O  

= (~ (z}, 1 ]  (zl fl~ (z, $)) 
P . 0  

= (~ (z), 1-[ (~) I - [  (~) ~, (z, ; / ) .  
p . 0  0.  p 

If q is 

Since the kernel gp (z, $) exists on a compact manifold and satisfies 

/~ (z, ~) = - Az g~ (z, ~), 
we have 
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(10.4) 

where 

(10.5) 
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~ (~, C)= - A ,  h (~, C), 

/~ (z, C) = 1-I (:) 1-I (c) g, (:, c). 
P, 0 O, P 

We normalize /p (z, ~) by the condition 

(10.6) (A IP (z), ]~, (z, C)) = 0, 

where A ~v denotes the analytic projection of ~. Then /p (z ,  ~) is unique. The Her- 

mitian symmetry 

(10.7) /p (z, C) = (/2, (C', 5))- 

is readily verified by means of Green's formula. 

The relation between harmonic and analytic p-forms on a finite submanifold B 

with boundary is more complicated. By (3.5) 

(10.8) (~ (p, ~ y~) + (b ~, b ~p) - ((p, [~ ~p) 

If @ = r.ol-I ~, v2 = ~ Y~, then clearly 

(10.9) 

and we have simply 

= f [%, ~ (a w)- - (b w)-^ * ~]. 
bB 

b @ = b ~ = 0  

(10.8') (6 ~, a ~) - (~, ~ ~) = f ~^ . (a ~)- .  
b B  

In the case of scalars ( p = O )  we have by (6.7) 

(10.10) [] ~p = [~ ~ = �89 A ~. 

If the space is flat, then by (2.26) for any p, 0_<p_<k. 

.. . .. jp) ~t ]0t ~(h-. Jp) ( [ ]  ~ ) , , . . . , p  = - l - I , , .  ,~(J' 
Q,a 

. . .  " "  J,,) D~ D,  q~(j, .j~,) - -  H I  1 Ip ( j l  , . 
Q, a 

= ( ~  ~ ) , , . . . , ~ .  
Hence by (2.23) 

(lO.10') [] ~= [5~=~I-[ ~ .  
Q ,  a 
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be the closure 

of B and 
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Thus for scalars on an arbitrary Kiihler submanifold or for pure p-vectors on a 

Euclidean manifold we have the Green's formula 

(10.11) (8 q0, ~ y) -- �89 (% A ~v) = f ~^ ~ (~ ~v)-. 
bB 

Hence harmonic scalars on a K~hler space or pure harmonic p-vectors on Euclidean 

space satisfy the simple equation 

(10.12) (~ V, ~ ~v) = f r ~ (~ V)-. 
bB 

Therefore a harmonic scalar ~0 is complex analytic if 

(10.13) nS~0=0 

on the boundary. This boundary condition in the case of Euclidean space was in- 

vestigated in [7 b]. I f  0 < p_< k, pure harmonic p-vectors q0 in Euclidean space are 

complex analytic if (9.13) is satisfied or if 

(10.14) t ~ = 0 

on the boundary. But (10.14) cannot always be realized unless ~ is zero. 

We obtain a finite K~hler submanifold B by removing a small cell from a com- 

pact K~hler manifold, and any complex analytic function on B is then necessarily 

continuable as a complex analytic function throughout the cell and is therefore equal 

to a constant. Hence the only complex analytic scalar satisfying the boundary con- 

dition (10.13) on such a B is a constant. 

In the case of Euclidean manifolds a method based on (10.11) for determining 

scalars ~ with n 0 ~ prescribed on the boundary has been given in [7], and this method 

carries over to finite K~hler submanifolds. I t  involves a modification of the projec- 

tion procedure used at the end of Section 6 for determining the harmonic projection 

Let  ~ be a given scalar of class CO" in the closure of B, and let Mo 

of the space of scalars AZ where g is of class C '~ in the closure 

(10.15) nSg=O 

on the boundary. Let  ~o minimize N (q~-~)) among all elements ~ of M 0. Since 

M _c Mo, where M is the closure of the space of scalars AX, g of class C ~ with 

compact carrier, we see that  

(10.16) ~ -- ~0 - ~o 

is harmonic. 
20 -- 533805. Acl~ Ma~hematica. 89. I m p r i m 6  le 3 aofit 1953. 
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Let  local 

scalar 2, 

(10.17) 

where h2k2*=0 by (3.10). 
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boundary coordinates u 1 . . . . .  u *k be introduced. We have, for a 

~ = � 8 9  ~ -~  + l / ~ h , ~  ~ ,  , 

Hence, given t ;t, n ~ ;t can be prescribed arbitrarily. Using 

(10.17) and the formula (10.11), it can be established formally that  

(lO.18) ~ ~ = o. 

In other words, ~ as defined by (10.16) is complex analytic. 

Taking, in particular, ~ =  A y, where ? is of class C ~ in the closure of B, the 

above problem reduces to that  of minimizing N (A a) with 

(10.19) n ~ a = n ~  

on the boundary. We are thus led to conclude that  the solution a of the minimum 

problem satisfies (10.19) on the boundary and ~ A a = 0  in B - that  is to say, A a  

is analytic in B. The scalar a is made unique by the requirement that  it is ortho- 

gonal to all analytic functions in B. We have, of course, no assurance that  A a is 

not equal to a constant throughout B. 

Now let Yo be a fundamental singularity defined in some domain containing B 

in its interior. We suppose that  ? = ? ( z ,  ~) is expressed in terms of self-conjugate 

coordinates and, in analogy with (8.1), we set 

(10.20) ~ (z, ~) = r (z, ~ ) -  (~ (w, ~), r (w, ~)), 

where a (w, ~) is the reproducing kernel for complex analytic functions in B. Then 

(10.21) ~ ( z ,  ~)= -~ ( z ,  ~), z r  

and 

(10.22) A, (~ (r (r ~)) = T (z) - A ~ (z). 

We define 

(10.23) h (z, ~) = tt (z, ~) - (g (w, ~), a (w, ~)), 

and then 

(10.24) A, h (z, ~) = - a (z, ~), (A ~ (z), h (z, ~)) = 0. 

The properties (10.24) uniquely determine h( z ,~ )  up to a harmonic function with 

vanishing analytic projection. If we suppose that  the boundary-value problem (10.19) 

is solvable, then there is a scalar a (z, ~) which is harmonic with respect to z and 

which satisfies 
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(10.25) n 0z a (z, ~) = n ~z h (z, ~) 

on the boundary. 

In fact, let a (z, ~) be a scalar such that  

(10.26) n (~z a (z, ~)) = n (~  h (z, ~)) 

on the boundary and with ~ A~ a (z, ,~)=0, A~ (~ (z, ~ ) = 0  in B. Let 

(10.27) / (z, ~) = h (z, ~) - a (z, ~). 

Then /(z, ~) is uniquely determined, and it satisfies 

(10.28) n ~ / (~, ~) = 0 

for z on the boundary of B;  

(10.29) Oz A~ / (z, ~) = 0 

in B;  

(10.30) (A ~ (z), / (z, ~)) = 0. 

I t  is shown in [7 b] that  an /(z, ~) satisfying (10.28)--(10.30) necessarily satisfies the 

two further conditions 

(10.31) ~z / (z, '.2) = - ~ (z, ~), 

(10.32) / (z, ~) = (/($, z))-. 

The proof turns on the Green's formula 

(10.33) (A ~, ~v) - (~, A y;) = 2 f [~^ ~ (0 yJ)- - ~^ ~ (8 ~)], 
b B  

which is obtained from (10.11) by interchanging ~ and yJ, taking the conjugate of 

the resulting equation and subtracting it from the original expression (10.11). Hence 

the proof given in [7 b] applies here, and we conclude that  /(z, ~) satisfies (10.31), 

(10.32) on the Ks submanifold. Comparing with (10.24) we see that  a(z, ~)must 
be harmonic. As in [7 b] we may also show that  the solution of the boundary value 

problem (10.19) is given by 

(10.34) ~ (~) = f I (z, ~)^ ~ ~ r (r 
b B  

2 0 *  --  5 3 3 8 0 5 .  
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11. T h e  c o m p l e x  L a p l a c e - B e l t r a m i  o p e r a t o r  o n  a c u r v e d  s p a c e .  

We now investigate the properties of the complex Laplace-Beltrami operator [] 

defined by (2.21) and (2.22), and we show that  the results obtained in the pre- 

ceding sections for the real Operator A are also valid for the complex operator. If 

the space is flat, then by (10.8') the operator [] coincides essentially with A. 

Let co (z, ~')=co~, (z, r be the parametrix (5.4) expressed in self-conjugate coordi- 

nates, and write (compare Section 5) 

~ ~ = (~ (~), o~ (z, ~)) 

(11.1) q (z, ~) = - [:]~ o~ (z, ~) 

I Q ~ = (~ (r q (z, r Q' ~ = (~ (~), q (r z)), 

where the integrations are over the finite submanifold B of M ~. If ~ = 1-[ ~0, ~ + a = p, 

we have, in analogy with (5.10), 

(11.2) a ~ v = � 8 9  
O B  

To prove (11.2) we remove a small geodesic sphere S about the point ~ of B 

and apply the Green's formula 

([] ~, ~) - (~, [ ]  ~)  = f {~^ ~ (8 ~ ) -  - ~^ ~ ~ ~ + ~ ~^ ~ ~ - (~ ~)-^ ~ 
b B  

with ~0 = co. 

(11.3) 

Formula (11.2) will follow if 

f { ~ ^  ~ ( o . , ) -  -~ . , ,  ~ o,p-~- ~ ~^ ~ ~ -  (-b ~o)-,, ~ ~}.--, - �89 ~(r 
bB 

as the radius of S tends to zero. This statement is a purely local one and it is 

therefore sufficient to prove (11.3) for the osculating Euclidean space, in which case 

[] = [] = ~ H A 
Q, et 

Let 7,=~p (z, $) be the Euclidean fundamental singularity for A: 

1 r,(~=r~F(i,...~).ct,...j~)dzq ^ ^dz~p.d~j ,^ . . .^d~j~.  7, (z, ~) = 2 (k - 1)s~ . . . . .  

If the radius of S is sufficiently small and if z and ~ are points in a sufficiently 

small neighborhood N of S, we have for Euclidean space the relation co =~.  Hence 

f~  in S 
(11.4) [] (~o, t~189 o.1"-[o A (~o, ? ) =  i 0q~in N - S .  
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In Euclidean space we have also 

(11.5) 0, Tr (z,$)=bcT~+~(z,~), 0 ,=  I-[ d l - I ,  be = r i 0  I I  �9 
o + l , a  {~,a a.q a , o + l  

In fact 

1 
r 7, (z, $) = 2 ( k -  1)s~ r ~(~-') ~.l-[(,,...,,). ( ,x . . . , , )dz"^. . .^  dz ' , .  dr  ^ d e ' ,  

= ( I L  r ,  (z, r  = 1 -L  r ,  (~, ; ) .  
q . a  a.  0 

Hence 

Since 

(a, 7~(z,~)), * b+,.~," "~ = 1- i , , . . .b+, .~  .~ ]0~{ 1 } 
. . . .  q + l . "  "" 2 ( k  - -  1 )  S~ r ~ ( ~ - ' )  ' 

(be 7~+1 (Z, ~ ) ) h . . . ' p + , . t , . . . t p  = - -  ~+I.,~H i t . . . , p + i . ] ] l . . . , i p  7~:  -t 2 ( k  - 1 )  8 k r "2-(k- l )  " 

we obtain (11.5). 

(II.5') 

Thus 

12(k ,, 
Formula (11.5) may also be written 

~ r~ (z, ~) = (b:r~+,  (~, ;))-, b: = I I  ~ H �9 
Q,a  r  

[] (~, o~)s = [] (~, r)s = (b ~ + ~ b) (% r)~ 

= ~ (~, b r~+,)~ + ~ (~, ~ r~ - , )~  

b8 bS  

+ b (a~, 7~+~ls 

b$ b8  

as the radius of S tends to zero, and this proves (11.3). 

Next, in analogy with (5.11), 

( I 1.6) ~] i-I ~ = �89 ({~} - Q q~). 

In fact, if ~ has a compact carrier with respect to B, then 

and therefore 
(~ [] ~, ~) = (~, [] ~ ~) ,  

(�89 ~ - Q, ~, ~) = (�89 ~, ~) - (�89 ~, Q ~) = �89 (~,  ~ - Q ~)  = (~, [ ]  ~ ~).  

Since this formula holds for arbitrary ~ with compact carrier, we have (11.6). 
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If B is sufficiently small in the sense that  

(11.7) [Q~ol-<k max I~[,  0 < k < l ,  

we can repeat the reasoning of Section 6 and we see that  the operator []  has a local 

fundamental singularity 0 (z, '~) (with the same asymptotic behavior at  ~ as y (z, ~)). 

In particular, 

(11.8) [:], (fi ($), 0 (~, ~))=�89 (z). 

The proof given by de Rham [II] for Theorem 5.1 can now be applied to obtain 

a similar theorem for El, namely: 

T h e o r e m  t t . t .  I] [] T is equal to a /orm C ~ in a domain B, then T is equal 

to a [orm Coo in B. 

In fact, the proof depends only on the existence of a local fundamental sin- 

gularity with the proper singula.rity at  z = ~. 

Using Theorem 11.1 we can show by the same reasoning as before that  if 

O ~= 1-IO ~ has a finite norm over B, then 

(11.9) ~ = V + ~, 

where ~ belongs to the closure of the space of elements [ ]  X, ~ of class C ~ with 

compact carrier, and where []  ~ = 0 .  We write ~=Cq~, where C is the projection 

operator onto the space of complex-harmonic forms fl satisfying []  f i=0 .  If T is a 

current, T = I I  T, which satisfies the condition that  (T, ~) is convergent for every 
Q .a  

form ~ = 1-I ~ of class C ~0 with finite norm, we define two new currents X and Y 
Q . a  

by the formulas 

(11.10) (X, o~)= (T, v2) , ( Y, q~)= (T, C O~). 

Then, in analogy with (7.16), 

(11.11) T =  X + Y ,  

where Y is a complex-harmonic form, Y = C T, and X is orthogonal to all complex- 

harmonic forms 00 = C ~. Now let 

f t  �9 �9 fp �9 �9 �9 A (11.12) uh ' ' "P= l -~ (h . . . j p )  " d~h^ d~ j~ 
Q.G' 

at  the point ~ of the manifold. Then Cu is the kernel of the projection operator C, 

that  is, Cu = up (z, ~), where up is the reproducing kernel for complex-harmonic forms 
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(11.13) (~ (z), up (z, ~)) = ~ (~), zr (z, ~) = (up (~, 5))-. 

Once in possession of the reproducing kernel, it follows that 

(11.14) I q ~ (~)l < S (~) ] / ~ ) ,  

where K (~) is a positive quantity depending only on the point $. 

If the domain B possesses a fundamental singularity 0 for the operator D,  we 

can repeat the reasoning of Section 8 and show that 

(11.15) 0 (z, ~) = (0 ($, :))- 

and that there exists an operator F satisfying 

(II.16) [] F~ = �89 (q~ - Cq~), 

The kernel /p (z, ~) of F has the property that  

(11.17) 

Moreover, 

(11.18) 

CFqJ=O. 

[]= /p (~, ~) = _ �89 ~p  (~, ~,) . 

tp (~, ~) = I L  1-L/p (z, ~); 
Q,O' a ,O  

/~ (z, ~) = (/~ (~, e))-, ~= ~ / ~  (z, ~) = (t~_~ (z, ~))-. 

Let ~ (E, a) be the space obtained from {~ by applying the operator H to each 
Q, a 

of its elements. The following result is then an immediate consequence of Theorem 9.1: 

T h e o r e m  11.2. A /inite Kdhler mani/old with boundary possesses a/undamental 
singularity /or [] i/ and only i/ E (Q, a )=  0. 

If [Z]~=0,  tq~=nq~=O on bB, then by (3.5) 

(a% a~)+ (~ ,  ~ ) =  0 

so a q = b ~ 0 = 0 .  We remark that, even if B is a cell, we do not know that  0 q = 0  

in B implies q = 0 v /  (complex analogue of de Rham's theorem). But, what is more 

significant, if []  ~ = 0 ,  tq~=nq~=O on bB, then by (11.2) 

�89 

in B. I t  follows that ~ is of class C 1 over the whole manifold M , ~ 0 = 0  in M - B ,  

a q~=~)q~=O in M. If ~=k (in Which case c~0=0 automatically), the condition 

~ = 0 implies that  ~0 is complex-analytic and, since ~ vanishes identically outside B, 

we conclude that it vanishes everywhere. Thus if ~ = k, 0 < a_< k, we always have 

the desired uniqueness property. 
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Analogous 
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statements are valid for the conjugate operator [ ] .  If Q=p,  a = 0  

hence such forms (that is, if the forms are pure), we have formula (10.8') and 

satisfying 

(11.19) E ] ~ = O ,  n ~ = O  on bB, 

are complex-analytic. On a compact manifold, forms ~ = 1-I ~ satisfying ~ r = 0 must 
P,O 

also satisfy $ q = 0: pure forms q, E] q = 0, on a compact Space are complex-analytic. 

If there are no complex-harmonic forms q = 1-I r  []  ~ = 0, on a domain B, then 
q ,O  

by (11.17) 

O z 1~ (z, ~) = 0 .  

In this case /~ (z, ~)= 0p (z, ~) is a fundamental singularity for El. We note, however, 

tha t  if B is compact, we cannot conclude that  b/p = 0. For (b/~, b/~) does not exist 

because of the singularity of /~. 

We remark finally that  for complex fields ~ satisfying ~ r = b ~ = 0 (or a ~ = b ~ = 0) 

we have a Cauchy's formula. A Cauchy's formula expresses the value of the field 

at an interior point of a domain in terms of an integral of its values on the bound- 

ary, and the formula should satisfy the following two requirements: (i) only the 

values of the field on the boundary are involved and not the values of any deriva- 

tives of the field; (if) the Cauchy kernel is independent of the domain. 

If B is an arbitrary subdomain of a submanifold B 1 which possesses a funda- 

mental singularity 0 (z, ~) for the operator [~, then we have (using (11.3)) 

(11.20) �89 {r = -f[r162162162 
b B  

where {(~)} is r if ~ is in B and is equal to zero if ~ is outside B. If ~ =  

= b ~ = 0, we have simply 

(11.21) �89 (~  ($)} = - f [V^ * ($ 0)- - (b 0)-^ * V]. 
bs 

This is Cauchy's formula for complex fields ~, ~ q = b ~ = 0, and it clearly satisfies the 

the conditions (i) and (if). 

In the ordinary case k =  1, p = 0, of Euclidean space we have 

1 1 
0 = ~ log -'r 

We observe that  
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. . .  
0 = - ~  *(~0)- i dz , 

hence (11.21) in this case is the classical formula 

if {~ (~)} = ~  ~(z)z_ ~ 
b B  
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12. A complex boundary-value problem for submanifolds of a compact 
Kiihler space. 

In [8] essentially the following boundary-value problem for forms ~ =I-~ ~ on 

Euclidean submanifolds B was investigated: 

(12.1) ~D'~=baqo=o, ~=b~v in B 
~t r prescribed on b B. 

i t  was there shown that the equations (12.1)have a unique solution r We now 

show that the same result is valid for forms ~ =.1~ k r r k = p, on arbitrary finite 

submanifolds of a given compact Kiihler space. The method of proof parallels [8] 

once a suitable singularity has been defined. 

The boundary-value problem dual to (12.1) is 

(12.2) ~ [ - ] " 9 = 0 b ~ = 0 ,  9 = 0 v  2 in B, ~=qI-~ 
In ~ prescribed on b B. 

A similar treatment shows that the equations (12.2) have a unique solution. 

We remark that if Q=k in (12.1), then 9 is identically zero. For b v / = I - I b v ,  
o . k  

where 0 _ < e < k - 1 ,  by (2.14'). The vanishing of ~ when e = k  is obviously necessary; 

otherwise 9 would be complex-analytic and this would lead to contradictions. 

Let B be a finite submanifold with boundary of a given compact K~ihler mani- 

fold M = M k, and let /~ (z, ~) be the kernel for M. Then 

(12.~) a,t, (z, ~)= br (z, ~); 

Q+I.o Q.O a, 0 o.Q+I 

In other words, the relation (11.5) is valid for /. In fact, 

(12.4) F~f~F .  
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For 
aV7 = a b a =  [~ a; 

hence, applying the operator a to both sides of the equation 

(12.5) []F~=~-C~, C F ~ = 0 ,  

we have, since a C ~ = 0, 

[~ a F ~ = a ~  F ~ = a ~ .  

On the other hand, 
C a ~ = 0 ,  

since a ~ is orthogonal to complex-harmonic forms. 

(12.5), we obtain 

Thus 

[] (O F - F a ) ~ = O .  

But since C F = C a = 0, we conclude that  a F - F a = 0. 

(12.4') Fb=b  F. 

If ~ is a (p+l)-form,  we have by (12.4') 

( ~ ,  tp (z, .~))~ = (~, ~)~ lp+~  (z, ~1)~. 
Since 

(~ ~, b (z, ~))~ = (~, a, h (z, ~))~, 

the relation (12.3) follows. 

We observe that  

Therefore, replacing q by a ~0 in 

Similarly 

bc ( t~ .  (z, ~1)- = bc t.+~ (~, ~), 

Q+I .~  o ,~+I  

is a fundamental singularity for the operator [~ '=~)a.  In fact, 

[]~b~/p+l (r ~) =be [~r (r ~) = 0. 

Now let scalar products be extended over B, where B is the given submanifold 

with boundary. By (11.6) (with co replaced by /p) 

(12.6) [] (~, lp (z, ~)) = - �89 (~, up (z, ~)) + | {~}, 

where ~p (z, ~ ) = -  Wl~/p (z, ~) is the kernel for M. Since (~, up (z, ~)) is dearly conti- 

nuous across the boundary of B, we conclude that  the left side of (12.6) diminishes 

by �89 r as the boundary of B is crossed from the interior to the exterior. 



A Complex Tensor Calculus for K/ihler Manifolds. 319 

On the other hand (compare Section 11), 

[]  (~, t~ (z, ~)) = ~ ~ (~, t~) + e b (~, 1~) = ~ (~, ~ 1~+,) + a (~o, a 1~_,) = 

= a f ( h - , ) - ^  * ~ - t; f ,p^ ( .  t , ,+,)- + a (b ~, t,,-~) + ~(a ~, 1,,+,). 
bB b B  

Let us n o w  suppOse that  ~ = 1-[ ~, /p (z, ~) = 1-I~ 1-I~/p (z, ~). 
O . k  o , k  k . O  

Then /~-1= 1-L 1-Ir and hence ~:(/~_~)-=d:(/p_l)- .  I t  follows that  
p - l , k  k . O - I  

taf ( / p - l ) -  A -)(" ~v=tdf ( / P - l ) - - ^  -X" (~ 
b B  b B  

is continuous across b B and therefore 

tb f cf̂  (* /~+l)- bB 
must jump by -- �89 t q (~). 

Now let ~ =1- [  ~ be a form defined ill a complete neighborhood of the boundary 
Uotf. 

of B which is of class C ~r and non-vanishing there. A form ~ with these properties 

is readily constructed. On dividing ~ by its " length" 

�9 T 1 2 " ' ' k  

we obtain a form ~ which satisfies the additional requirement that  { 3{= 1 throughout 

the neighborhood of the boundary. We observe that  * ~---1-I 3. 
0. k 

If ~0 = 1"-[ % we note the following two identities: 
O.0 

(12.7) a (~p  ̂v) = d (v2  ̂3) = d ~v̂  v + ( - 1) ~ ~v̂  d v, 

(12.8) u  (~o^ ,) = .  ~o. 

If W= o.l~q, yJ, the same identities are valid with v replaced by :r = k.O ~ 3. Moreover, of 

~P = l'-[o.~ % then * ~o.]~_oyJ and (12.8) gives 

(12.9) 3^ * (*  ~p^~)=( -  1)PW, p=k+Q. 

We have 

u * b f  cp^ (-x- t r + , ) -  = ( -  1) T M  :r^a * fg~^ ( . / v + , ) -  = 
b B  b B  

= ( - 1) p+' ~^ d * f ~^ (*/p+~)- = ( - 1) ~+~ {d  [~^ * f ~o  ̂(*/,+~)-] - 
b B  b B  

b B  
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Thus 

b B  

is continuous across b B, and it follows that 

must jump by the amount 

Writing 

(12.10) 

where 

we have 

Lemma 12.1. 

t { ~  (r f ( tp-, ) -^ -)e q))^ ~} 
b B  

�89 (~r q)^ 3). 

~= -2bfq~,^ (')(- fp+l)-- ,  ~ p + l = 2 ~ f  ( / p ) - ^  *)(- ~0P+I 
b B  OB 

"r3F "1--1" 
~P ~ 1~.  (PP~ ~gP+l ~ H (~p+l ~ 

, Q+l,k 

The expressions t ~ p and t ( ~ ~+1 ^ 3) decrease by amounts t q~p and 

t (~ q~v+l ̂  3) as the boundary o/ B is crossed /rom the interior o~ B to th6 exterior. 

On the boundary of B itself we therefore conclude by the usual reasoning that 

(12.11) 

(12.12) 

OB 

t (~ ~]p+a^ ~) = 2 P t  { (~ 0 f (I~)-^ ~ q~,+~)^ § + �89 t ( .  q~.+,^ ~), 
b B  

where the letter P indicates that the principal values of the integrals are understood 

We observe that 

(12.13) br (~o~ ̂ .  (1~+,)-) = .  e~ 1~ ($, ~)^ ~ , .  

Consider now the integral equation 

(12.14) 

with singular kernel 

(12.15) 

t,~p=Op, Op=~. Op, 

- 2  t. t: . . ~ .  1,, (r ~). 

We have 

(I2.16) f o,  ^ * ( ~ + , ) -  = ( -  1) ~§247 m ( f  (2 . ~  ~ f 1~ (r ~)^ ~ :  ( ~ + ,  (0) -  - 
b B  b B  b B  
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(12.17) 

A Complex Tensor Calculus for Ki~hler Manifolds. 

f 0n ^ ~ (~on+l)- = 0 
bB 
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(12.20) 

Let 

(12.21) 

Then 

Kn (z, ~)=~: Gp_, (z, ~ ) -  b: Nn+l (z, ~). 

21 - 5 3 3 8 0 5 .  Acta Mathematica. 89. I m p r i m 6  le 1 Aofl t  1953. 

for every solution ~p§ of the equation 

(12.18) t (~ ~]v+l ̂  3) = 0 

in which the boundary is that of the complementary region /~ = M - B .  The comp- 

lement is not necessarily connected, but this does not matter. It may be shown on 

the basis of the singular Fredholm theory that (12.14) is solvable if and only if the 

orthogonality condition (12.17) holds for every solution of (12.18). 

The remainder of the proof parallels [8]. We observe that ]~ is not complex-- 

harmonic but satisfies 

Thus the kernel uv will appear in certain formulas where it does not occur in [8]. 

However, where it appears, it will be found to cancel. 

The same methods apply to the following modified version of the boundary- 

value problem (12.1): there exists a form r  q.l~ ~ ~ on B satisfying 

(12.1') { [ : ] ' ~ = b o r  ~--bv2 in B 
t (~^ r) prescribed on b B. 

Finally, on the basis of the boundary-value problems (12.1') and (12.2) we can, 

as in [8], define Green's and Neumann's forms Gp(z,~) and N r ( z , ~ ) i n  B. The 

Green's form is characterized by the properties 

Gp (z, ~) = - 2 bz {In +, (z, ~) + regular terms}, 

(12.19) [~; Gp (z,~)=0, z # ~ ,  

t,(r~^Gp(z,~)=O on bB, 

while the Neumann's form is characterized by 

Nn (z, ~) = 2 0~ {/n-1 (z, ~) + regular terms}, 

E]'~' Np(z,~)=O, z#~, 
n~Nn(z,~)=O on bB. 
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(12.22) ~z Kv = b~ Kv = 0. 

If ~p= H a v  satisfies 0 % = b ~ v = 0  in B, we have 
P00 

( ~ ,  K~)= ( ~ ,  ~ G~_I) - ( ~ ,  b N ~ , )  

= % +  f {(Gv_O-^ ~ %  +~p^ ~ ( N p ~ O - } = % .  
b B  

Here we use the fact that  (Gv-1)-^ -)(- % = (Gp_l ^ v)-^ * (% ^ v) has a vanishing tan- 

gential component on the boundary of B. Thus 

(12.23) (%, Kv) = ~p 

and Kr is the reproducing kernel for forms ~p = l-I ap satisfying 0~p = b ~p = 0. We 
P , 0  

observe that  

(12.24) Kp (z, ~) = (Kp (~, 5))-. 

Finally, by the definition of Gv, there exists a Fp,1 such that 

/ Fp~  (z, ~) = ]p~, (z, ~) + regular terms, 

(12.25) I a~ (z, ~) = - iiz r~ , ,  (~, ~), 

[ ( r . ~ , ,  x~,)=o if i ) x . .=o ,  

and' similarly, by the definition of Np~l, there is a Op such that 

! O~, (z, ~)=/p (z, ~)+ regular terms, 

(12.26) Np ~, (z, ~)=0~ Op (z, ~), 

(0 . ,Z . )=0  if OZp=0. 

The forms Fp~a and 0~ are uniquely deterndned by these conditions. As in [8] we 

then find that the solutions of the boundary-value problems (12.1') and (12.2) are 

given respectively by 

(12.27) � 8 9  - ~f ~.^ ~ ( r . , , ) -  = ~f (v. ^ ~)^ s ( r . , ,  ^~)- 
b B  b B  

(12.28) �89 = o f  (~ q~, ,)^ (O,,)- 
b P  

As in [8] we also have the symmetry laws 

(12.29) br Gp (z, ~) = -b~ (G,~ (~, ~))-, 

(12.30) 0r (z, ~)=~,  (N~ (~, 2))-. 
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We observe that  the boundary-value problem conjugate to (12.2) is 

(12.31) { f - l " ~ = ~ b ~ = O ,  ~ = ~ o i n B ,  ~ =  o,IJf 
n ~ prescribed on b B .  

so [~ ~v is complex analytic in B and n ~ ~v has prescribed values on the boundary. 

This is the boundary-value problem considered in Section 10. Here again we have 

no assurance that  the form [~ ~p is non-trivial. 

Finally, we note one or two special cases. Forms 

= qp = 1-I ~ satisfying ~ ~ = b q = 0 
0, P 

have a reproducing kernel Kp which satisfies (compare (12.21)) 

(12.18') Kp (z, ~)=0~ G~_, (z, ~)= b~ N~, ,, (z, ~). 

In the particular case p = 0 this formula becomes 

(12.32) Ko (z, ~) = - b~ N~ (z, ~) = - [-1~ Oo (z, ~) . 

If p = 0, b q = 0 automatically and the condition ~ q = 0 implies that  q is complex- 

analytic. Thus Ko is the reproducing kernel for complex-analytic scalars. 

If p = k, q~ = ~.o q~' (12.21) becomes 

(12.33) K~ (z, ~)=~,  Gp_, (z, ~)= - O ,  F~ (z, :~). 

In this case 8 ~ = 0 automatically and the condition b ~ = 0 implies that  ~ is complex- 

analytic. Thus Kk (z, ~) is the kernel for complex-analytic k-forms ~, ~= .~o  ~ (com- 

plex-analytic densities). 

13. The fundamental singularity for real harmonic fields. 

On an arbitrary real orientable Riemannian manifold M, Kodaira [10] has proved 

that  there exists a fundamental singularity ev+~ ( x , y ) f o r  harmonic fields q=q~+~,  

d q = ~ = 0 .  This singularity satisfies d~ep+l=~xe~,+~=O except at y Where 

(13.1) ep+~ (x, y) = d~ d~, ~,~, (x, y) + regular term, 
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~p being a local fundamental singularity for A valid in a neighborhood N of the 

point y. Moreover, 

(13.2) (ep+l, ev+l) M-N < cx~ 

for an arbitrary neighborhood N of y and, if r/ is a (p + l ) - fo rm of class C *r d r / = 0 ,  

r /=  0 in N, (r/, r/) < 0% then 

(13.3) (ev+,.,)M = O. 

Kodaira has established the existence of ev+l under the assumption that  M is real 

analytic, but  his proof is easily extended to the case where M is C a. The condi- 

tions (13.1)--(13.3) determine e~+l uniquely. 

We now prove the existence of ep+l by a method which is different from that  

of Kodaira and which seems to us to lie closer to the classical method used for 

Riemann surfaces. 

Every finite submanifold B of the Riemann manifold can be imbedded in a 

compact (closed) Riemann manifold F =  F (B). Hence on any finite submanifold B 

we have a kernel g~ (x, y) satisfying 

(13.4) Ax 9p (x, y )=  -/~p (x, y) 

where fir is the reproducing kernel for harmonic p-forms on the closed F (B). The 

kernel gp satisfies 

(13.5) dx 9p (z, y) = d}~ gp+l (x, y) 

and therefore 

(13.6) dx d~ gp (x, y) = - dix 8~ gv42 (x, y) - tip +1 (x, y) 

where ~p+t is the kernel for harmonic (p+  1)-forms on F.  In fact~ 

0 = d~ (d~ gp - d}~ gp + 1) = d~ d~ gp - d~ ~x 9~ + ~ = dx d~ gp + d)~ dx 9~ + 1 + tip +1 

Since F is closed, we have d~flp§247 Hence f o r 0 < p _ < n - 2 ,  n the dimen- 

sion of M, the singularity -Ox ~ g~+2 defines a singular harmonic field satisfying 

(13.1) ~nd (13.2) oa B. If B is closed, this field also satisfies (13 .3)and is the 

desired singularity. 

To obtain a singularity satisfying (13.3) when B zs not closed, le t  9~ be a (p+2) -  

form satisfying d ~ ~0 = 0, ~0 = d ~ in B, with 
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(13.7) n~ ~ = n~ r gp+2 

on the boundary of B, and write 

(13.8) ev+l (x, y) = - ~x (by gp+s (x, y) - ~ (x)). 

Then dxep+l=(~xev+l=O and ep+l satisfies (13.1) and (13.2). Let  r/=r/p§ be of class 

C OO in B, d~l=O, NB (r/) < 0% and suppose that  r/ vanishes identically in a neigh- 

borhood N of y. Then 

( e v §  = - -  ((~x ((~y gp+2 (X, y) -- (p (X)), r/) = -- ((~ g~+2-- ~, dr/) 

+J" * 
b B - b N  

Thus ep+l satisfies (13.3), and it therefore agrees with the Kodaira singularity for B. 

The relation (13.3) is a minimum condition of a type  familiar in the theory of 

Riemann surfaces. In fact, let S be a small geodesic sphere of radius a and center 

at  the point y, and set 

(13.9) a.§ { 0  o~Ov+2(x'y)+q~(x)in B - S ,  
in S 

where ~ satisfies dOq~=O, ~=d~, in S with n~0=n~5~gp+s on the boundary of S. 

Then ap§ is just the generalization to Riemannian manifolds of H. Weyl's familiar 

local singularity used in establishing Dirichlet's Principle for a Riemann surface. Let  

g be the closure of the space of (p + 1)-forms ~t satisfying 

(i) ;t+6~a~+2 is Coo except at  y ;  

(ii) d ;t = 0 in S and also in B - S ;  

(iii) NB (;t) < oo. 

We consider the problem of minimizing NB (;t), ;t e g. The form 

~ep+l - 6x a~+2 in S 
(13.10) ;to= / 

(et+l  in B - S ,  

where ev§ is the fundamental singularity for B, clearly satisfies the conditions (i)--(iii). 

Let  ~ vanish in a neighborhood of y, r~ E C ~ and d r/= 0 in B. Since 

(~x a~+2, r/) = ((~ a~§ ~)s  = 0 ,  
we see that  

(13.11) (;to, r/)= (;to, r/)~ = 0 .  
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Since 2 o is regular at y, (13.11) is valid even if ~] does not vanish in a neighborhoood 

of y and it follows that  2o solves the minimum problem. For 2o differs from an 

arbitrary form satisfying (i)--(iii) by a form 7] which is C ~ and closed in B. There- 

fore, if 2e V, we have 

(13.12) ~, = 20 + r/ 

where ~ belongs to the closure of the space of closed forms of class C ~. Thus 

N (2) = N (2o) + 2 (20, ~) + N (~) = N (4~ + N (~) > N (4~ 

unless ~1 vanishes almost everywhere. 

Let  

(13.13) d = d (B) = N (20). 

We observe that  there are forms satisfying (i)--(iii) when B is replaced by the 

whole manifold M. For in a finite submanifold B containing S in its interior we 

have the form 

;t = !dz dr gp (x, y ) -  5z ap42 in S 
(13.14) 

L dz dr gp (x, y) in B - S 

where gp is the kernel satisfying (13.6). If qo is a scalar of class C ~ with compact 

carrier which is equal to 1 in a neighborhood of S, we replace dr gp (x, y) in (13.14) 

by qo (x)dr gp (x, y) and thus obtain a form 2 on M satisfying (i)--(iii). Hence, in 

particular, tim greatest lower bound D of N (2) over M is finite. 

Now let {B,,} be a sequence of finite submanifolds of M, B,  c B , + I ,  where B,  

tends to M as # becomes infinite, and write 

(13.15) d,, = d (B~). 

Then clearly 

(13.16) d,, <_ d~,+x <_D 

and hence the d. converge to a limit d, d <  D < oo. 

Let  norms and scalar products over B~, be distinguished by a subscript ~, and 

let 2. be the solution of the minimum problem for B . ,  N .  (2.) = d r . If /x < v we have 

where 
0 < N .  (4 .  - 2~) = N .  (4.)  - 2 (~.,  2 . ) .  + N .  (2.) 

( 2 . ,  ~ ) .  = ( 2 . ,  2 .  + (L  - 2 . ) ) .  = ( 2 . ,  4 . ) .  = N .  (2.)  

since (2., 2 . -  2.)~ = 0. Thus 
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0 < N~, (2~, - 2,)  = N t, (]t,) - N~, (2,)  <_ N~ (2~) - N~, (2,,) = d,  - d, , ,  

and it follows that  

(13.17) N~, (2 t, - ~t~) -~ 0 

as /~, v approach infinity, # < v. In particular, if B is any fixed finite submanifold 

of M, we have 

(13.18) lira NB (~t~-~t,)=0. 
,/G , - - > ' ~  

Since ~t I, - ) ~  is harmonic, A (~t~,-~t~) = 0, we can apply  inequality (7.20) and we see 

that  ~t~ converges uniformly over any compact subdomain B of M to a limit ~t 

satisfying conditions (i) and (ii) for M.  But 

NB (;t)= lim N~ (~t~,) < lim N~, (2,,)= lim d r, = d <_ D .  

Letting B tend to M, we conclude that  N(~t)_< D < c~ and therefore N ( 2 ) = D .  

Hence ;t solves the minimum problem for M, and 

e~, 1 = ). I- ~x ap ~ 2 

is the desired fundamental singularity for harmonic fields on M. The singularity 

ep ~t is symmetric: e, ~1 (x, y) = ep ~1 (y, x). 

Kodaira [10] shows that,  if there are forms a, v such that  q ~ = d a = S v ,  then in 

terms of e~ the field ~p has the representation 

(13.19) ~ (y)~ - f { a ^ *  ep +e ,  ^ * v}. 
OB 

Here y is an interior point of the finite submanifold B. 

The singularity ep is used by Kodaira to establish the existence of harmonic 

fields of the second and third kinds on the Riemannian manifold. 

14. The fundamental singt.l, larity for complex harmonic fields. 

We now construct, the fundamental singularity cp~l (z, ~) for complex harmonic 

fields ~ = l - I ~  on an arbitrary finite submanifold of a compact Kiihler manifold, 
P . 0  

q = b q =0.  This singularity satisfies a~ cp~l = b~ cp~l = 0  except at  ~ where 

(14.1) cp+1 (z, ~) =~.. ~: 0p (z, ~) + regular terms, 

o =IL 
p , O  O, P 
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0~ being a local fundamental singularity for the operator []  which is valid in a 

neighborhood N of the point ~. For an arbitrary neighborhood N of ~ we have 

(14.2) (c,,+1, Cp+'I)M-N < ~ 

and, if 7 is a (p+ l ) - fo rm of class C ~162 7=Q*,l~I- 7, . . .v a T = 0 '  7 - 0  in a neighborhood 

of ~, (7, 7) < c~, then 

(14.3) (cr+,, 7)M = 0. 

Since it is not always true that  a submanifold B of an arbitrary K~ihler mani- 

fold can be imbedded in a compact K~ihler manifold, we are forced to assume that 

B is a subdomain of a compact manifold M=Mk. 
Let ]p (z, ~) be the kernel for the compact K~ihler manifold M satisfying 

(14.4) [~s/p (z, ~) = - �89 up (z, ~) 

where up is the reproducing kernel for complex-harmonic forms on M satisfying 

[]  r  Applying (12.3) we have 

o = as (~  t ,  - bs t ,+,)  = az ~ l ,  - as ~s 1~+, = as 0c t ,  + bs as t ,+,  + �89 ~,+~ = 

that  is, 

(14.5)  as br IJ, = - bs bc tp+~ - �89 u p + , .  

Since M is closed, a, up+,=~)sxp+,=O, and the singularity -b , / p+2  is a complex- 

harmonic field satisfying (14.1) and (14.2) on B. If B is closed, in which case it 

coincides with M, the desired singularity is - b s  bc/p+~. If B is not closed, let ~ be 

a (p + 2)-form satisfying a b r = 0, ~ = a v 2 in B, with 

(14.6) 

o n  b B, and  set 

(14.7) c~+1 (z, ~)= -bs  (be f~+2 (z, ~ ) - ~  (z)). 

Then cp+l satisfies (14.1), (14.2), and (14.3). 
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15. Remark on the Cousin problem for a compact K~hler manifo ld .  

Let the K~ihler manifold be compact, and let E be a closed set of points. To 

each point q of the manifold let there be a neighborhood N (q) and a current Ta in 

N (q) of degree ~ such that:  

I 
~ r , = r . ;  

(15.1) [] T~ =0 in N (q ) -E ;  

[ ] ( T r  inN(q)  NN(r).  

The Cousin problem in this case is to find a current T such that T - T r  is complex- 

harmonic for every q. 

This problem is solved in a manner like that applied in [11] to the real operator A. 

We set Z = [] Tq; then Z is a well-determined current and the required current T 

if it exists, is a solution of the equation 

(15.2) [] T =  Z. 

This equation is solvable if and only if C Z = 0, and if C Z = 0, the solution is given 

by T = 2 F Z .  

Next, suppose that instead of (15.1) we have 

i l-[ T~ = T~ ; Q.O 

(15.3) ~T~ =bTq=O in N ( q ) - E ;  

( ~(Tq-  T,) f f ib(Tq- Tr)=O in N (q) N N (r). 

A current T is to be found such that 0 ( T - T ~ ) f b ( T - T q ) - - 0  for every q. In a 

manner analogous to that of [11], we set Z l f O T q ,  Z2=bTq. The required current 

T, if it exists, is a solution of the equations 

T--Z1, bT=Z2. 

The conditions of solvability are that CZI=CZ~=O or, what is the same thing, that 

Z1 = ~ U1, Z~ = b U~, where Us and Uz are currents. If these conditions are satisfied, 

a solution is given by 

(15.4) T= 2 (F O Z2 + Fb  Z~). 

Replacing in (15.3) the operators ~ and b by their conjugates 0 and b and taking 

= ~ , a f 0 , 0 _ < ~ < k ,  we have 
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:v .0 

(15.5) T~ = 0  in N (q) - E ;  

(T. - Tr) ~ 0 in N (q) a N (r). 

Here b T . = 0  automatically; therefore this condition is omitted. The problem is to 

find a current T such that  T - T o  is regular-analytie for every q; this is the Cousin 

problem for complex-analytic currents. We set 

(15.6) Z = ~ r~,  Z = I-[ z .  
p ,1  

If 0 Z =  0, a solution is given by 

(15.7) r = 2 F b Z .  

The condition O Z=O may be written 

(15.8) (Z, ~p+,) = 0 

where ~p+l is the reproducing kernel for forms ~ = I-[ q~ satisfying ~ q~ = b V = 0 on the 
P , I  

manifold. 
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