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This is the first of two papers devoted to the study of compact Kghler manifolds of 

nonnegative bisectional curvature (see also [Wu2]). The main result of this paper is the 

following theorem; together with its corollaries below, this theorem shows that  such 

manifolds possess a rigid internal structure. For their statements, recall from [Wul] that  

the Rieei curvature is quasi-positive iff it is everywhere nonnegative and is positive in all 

directions at a point; an equivalent definition is that  the Ricci tensor Ric is everywhere 

positive semi-definite and is positive definite at a point. 

TI- i~oR~r.  Let M be an n-dimensional compact Ki~hler mani]old with nonnegative bi- 

sectional curvature and let the m a x i m u m  rank o~ Ric on M be n - k (0 <~ k <. n). Then: 

(A) The universal covering o] M is holomorphieaUy isometric to a direct product M '  • C ~, 

where M '  is an ( n -  k)-dimensional compact KShler mani]old with quasi-positive Ricei curva- 

ture and C ~ is equipped with the fiat metric. 

(B) M '  is algebraic, possesses no nonzero holomorphic q./orms /or q>~ 1, and is holo- 

morphieaUy isometric to a direct product o/ compact Kiihler mani/olds M 1 • ... • M~, where 

each M ~ has quasi-positive Rieci curvature and satis/ies H2(M t, Z) -~ Z. 

(C) There is a fiat, compact complex mani/old B and a holomorphic, locally isometrically 

trivial/ibration p: M ~ B whose/ibre is M' .  

(D) There exists a compact Kahler mani/old M*, a fiat complex torus T,  and a com- 

mutative diagram: 

M*  , T 

i 1 
M -  , B  
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where the horizontal maps are holomorphic, locally isometrically trivial/ibrations with fibre 

M' ,  and the vertical maps are / in i te  coverings. Furthermore, M* is globally diffeomorphic to 

M ' •  

I n  particular, ~I(M) is either trivial or an infinite crystallographic group. 

C o R 0 L L A R ~ 1. Let M be a compact KShler manifold o/nonnegative bisectional curvature. 

Then the following are equivalent: 

(A) M is simply connected. 

(B) The first Betti number is zero. 

(C) M has quasi-positive Ricci curvature. 

C o R 0 L L A R u 2. A simply connected compact K~hler manifold o/nonnegative bisectional 

curvature is irreducible (in the sense o/ the de Rham decomposition theorem) i/f its second Betti 

number is one. 

A theorem slightly weaker than the one above was first announced without proof by 

the first two authors at the end of fitS] in 1971. Unaware of this result in [HS], but mo- 

tivated by his at tempt to extend the argument of [SY] from positive bisectional curvature 

to nonnegative bisectional curvature, the third author independently arrived at a theorem 

also slightly weaker than the one above. The present paper is roughly patterned after the 

arguments of the third author which rely on the structure theorem of Cheeger-Gromoll 

([CG1], [CG2]) on compact Riemannian manifolds of nonnegative Ricci curvature. 

Section 1 

We summarize the preliminary material in this section. First recall the structure 

theorem of Cheeger-Gromoll ([CG1], [CG2]) specialized to the K/~hlerian case. Let M be 

a compact K/~hler manifold with nonnegative Ricci curvature. Then its universal covering 

manifold is holomorphically isometric to a direct product M'  • (~k, where M'  is a compact 

K~thler manifold and both the flat metric on C k and the product metric on M ' •  C z are 

understood (here the Ki~hlerian deRham decomposition theorem is needed as well; see 

[KN], p. 171). Moreover, there is a finite covering M* of M such that  M* is diffeomorphie 

to M# • T ~, where T ~ is a complex k-dimensional torus and M# is a compact Kghler 

manifold covered by M'. This implies that  ~I(M#) is finite. As a consequence, if the Ricei 

curvature of M is quasi-positive, so is that  of M'  • C k and hence k =0  and zl(M) is itself 

finite (cf. the comments in [Wul] on this fact). 

Next we review the basic Bochner technique needed for the purpose at hand (el. 

[GK] or [L], pp. 3-6). Let ~ be a real (1,])-form on a compact Ki~hler manifold and let 
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R~B, R~BCD be respectively the components of the Rieci and Riemannian curvature tensors 

(sign convention: R ~  is a positive multiple of the sectional curvature). Define 

F($) = 2RAs $AC$~ __ R~CD $A~$CD. 

I f  ~ is harmonic and F(~)>~0, then F (~ )=0  and ~ is parallel. This is the basic observation. 

Let {X t ..... X~, J X  1 . . . .  , JX~} be a local frame field tha t  diagonMizes ~, i.e. $, .  ~-$(X~, JX~) 

are the only nonzero components, then 

F(~) = 2 ~. R~,.z.(~,, - ~j~.)~ w h e r e  R. , z .  =- (Rxdx~Xj, JX j ) .  (-~ ) 

Since /~.. j j .  is the bisectional curvature defined by spanR {X.  JX , }  and spanR {Xj, JXj} ,  

we have from ( ~e): 

LEMMA 1. I /  a compact Kdhler maul/old M has nonnegative bisectional curvature, then 

all harmonic/orms o/type (1,1) are parallel. 

From now on assume M is compact K~hler with nonnegative bisectional curvature. 

Let  ~o be the K~hler form of M. I f  ~ is a harmonic (1,1)-form distinct from (o, define a 

tensor field S, one-fold contravariant  and one-fold covariant, by the equation ~(X, Y)=  

(co(X), Y) for all vector fields X and Y. To be more precise, let ~' ~nd G be respectively the 

2-fold covariant Hermit ian tensor fields associated with $ and eo (i.e., G is the Ks 

metric); we then define S by 

~'(x, y)= G(s(x), r), vx, y. 

I t  is clear tha t  S is self-adjoint relative to the K~hler metric G; consequently S defines a 

diagonalizable linear transformation at each tangent  space M~ of M. On the other hand, 

since ~' and G are both parallel tensor fields (Lamina 1), a straightforward reasoning shows 

tha t  S is also parallel. Thus the linear transformation S~: M ~ M  x has the same set of 

eigenvalues {ai .. . . .  ~k} (a~ER, {~} distinct) for all x E M  and moreover, if V~(x) ..... Vk(x) 

are the corresponding eigenspaces at Mx, then the { V~(x)} are mutual ly orthogonal compIcx 

subspaces of Mx and the distribution x~->V~(x) is a parallel distribution on M for each i. 

Since we assume tha t  ~:#(o, k ) 2 .  Thus invoking the del~ham decomposition theorem for 

K~hler manifolds, we have proved: 

LEMM A 2. ,Let M be a simply connected compact K~hler mani/old o/nonnegative bisec- 

tional curvature. I / h  1' I(M) > 1, then M splits holomorphieally and isometrically into a direct 
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product o/compact Kahler mani/olds M 1 • M2, where dim M~ >t 1 ]or i = 1, 2 (we have used 

the standard notation: hP'q(M) ~the dimension of the space o[ harmonic forms o/type (p, q) ). 

Section 2 

We now prove the theorem. Thus suppose M is an n-dimensional compact K~hler 

manifold of nonnegative bisectional curvature such that  the maximum rank of Rie on M 

is (n-/~). Since M has nonnegative Ricci curvature, the theorem of Cheeger-Gromoll states 

that  the universal covering of M is holomorphically isometric to M' • C z, where 0 ~ 1 ~< n 

and M'  is a simply connected compact K~hler manifold of nonnegative bisectional curva- 

ture. We first prove that  l=  k. Let hl ' l (M')=s.  By repeated applications of Lemma 2, M' 

is holomorphically isometric to a direct product of compact K~hler manifolds M~ • • M~, 

where hl'~(Mt) = 1 for each i. We claim that  each M~ must have quasi-positive Ricci curva- 

ture. To prove this claim, we need the following lemmas. 

LEM~A 3. Let M be a compact Kghler mani/old. I / ~  is a positive semi-de/inite /orm o/ 

type (1,1) on 2/i such that its harmonic component H~ is parallel, then the rank o] H~ equals 

the maximum rank of $. 

Proo]. Let o) be the Kithler form of M and let dim M =n.  Then for any k, 

fM~k A co~-k= fM(H~)k A eo~-~. ( ~e ~ ) 

Let r = m a x  rank ~ and let t =rank  HE. The positive semi-definiteness of ~ implies that  the 

left side of (~r ~-) is positive when k = r. Thus (H$)r=~ 0, thereby proving t ~> r. On the other 

hand, since H~ and ~o are both parallel 2-forms, (H~)kA oJ n-k is also parallel and hence 

equals a constant multiple of the volume form of M. Since, by the definition oft, (H~) ~ A ~o n-t 

is nonzero at each point of M, it follows that  the right side of (~- ~-) is nonzero when k=t.  

Thus ~t is not identically zero and t ~<r. Q.E.D. 

LEMM), 4. Let M be a simply connected compact Kdhler mani/old o/ nonnegative bisec- 

tional curvature. I / ~  is its Ricci /orm, then q) has a nonzero harmonic component H T. 

Proo/. First observe that  ~ is not identically zero. Otherwise the bisectional curvature, 

being nonnegative, would be identically zero and hence the curvature tensor is itself 

identically zero. By the assumption of simple connectivity, M would then be isometric to 
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complex euclidean space. This contradicts compactness. I f  n = d i m  M, then ~0 A o) ~-1 

(o) = Ks form of M) is everywhere nonnegative and is positive somewhere. Hence 

O< ~MCp A COn-l= /M(HCf) A qgn-1 , 

thereby proving tha t  H~ is not  zero. Q.E.D. 

We now return to the proof of the theorem. Let  ~ ,  eo~ be respectively the Ricci form 

and K~hler form of M~. Since hl ' l (M~)=1,  the harmonic component of ~ is equal to c~o~ 

for some cER. Since M~ has nonnegative bisectional curvature, Lemma 4 implies c~=0. By 

Lemma 1 and Lemma 3, the maximum rank of ~ equals the rank of co), which is equal to 

dim M~. Thus M~ has quasi-positive Ricci curvature for each i=l  ..... s. I t  follows tha t  

M '  itself has quasi-positive Ricci curvature. Thus n - 1  ( = dim M')  is equal to the max imum 

rank of the Ricci tensor of M' ,  which equals tha t  of M' • C ~ (because C z has the flat metric), 

which in turn equals tha t  of M (because M' • C~-~M is a local isometry); hence n - l  = n - k ,  

i.e., l = It. This proves part  (A) of the theorem. 

To prove par t  (B), the fact tha t  M '  has no holomorphic q-forms for all q >~ 1 follows 

from the quasi-positivity of the Ricci curvature and a simple generalization of the Kodaira  

vanishing theorem (Theorem 6 of [R]; see also Theorem B of [Wu2]). :Now we also know 

tha t  M '  is holomorphically isometric to M 1 • ... • M~, where hl"l(M~)=1 for each i. By  

Kodaira 's  embedding theorem, each M~ is therefore algebraic and hence so is M itself. 

Finally to prove H2(M~, Z) ~ Z, observe tha t  h2'~ ~0 so tha t  H2(M~, R) ~ R .  Since M~ is 

simply connected, the universal coefficient theorem for cohomology now gives H2(M~, Z) ~ Z. 

To prove (C), let ~ be the fundamental  group of M; ~ consists of isometries acting 

freely on M ' x  C ~. Introduce the notation: I(N) denotes the group of isometries of any 

Riemannian manifold N. Consider the natural  projection ~0: I(M')• I(~)~I(Ck). Since 

I(M') is a compact Lie group, the kernel of the restriction of ~0 to ~ is a finite group to be 

denoted by ker ~. The quotient space M' /ker  ~0 is a compact Ki~hler manifold with quasi- 

positive Ricci curvature and hence, by par t  (A) of Theorem B of [Wu2], must  be itself 

simply connected. Thus ker ~0 is trivial, which is equivalent to saying tha t  ~: g -~I (C  k) is 

an isomorphism onto a crystallograph subgroup F ~  I(C k) (cf. [Wo], Chapter 3). Now let 

B = C~/F. Since ~ acts as holomorphic isometries on M'  • C k respecting the product metric, 

it is straightforward to verify that  p: M = M '  x Cz/z-.'B which is defined by  projecting on 

the second factor is a locally isometrically trivial holomorphic fibration with fibre M' .  

This concludes the proof of par t  (C). 

Finally to prove (D), let ~0 be a free abelian subgroup of rank 2k with finite index in 



56  A. HOWARD ET AL. 

the  f u n d a m e n t a l  group ~. Define F ~ ~0(~~ T -  Ck/F ~ and  M *=- M '  • (~k/~0. Then the  com- 

m u t a t i v e  d i ag ram in (D) i m m e d i a t e l y  follows. The  on ly  nont r iv ia l  asser t ion in (D) is t h a t  

concerning M* being g lobal ly  d i f feomorphic  to M ' •  T; th is  involves  a careful  choice of 

~z ~ in ~ and  has  a l r eady  been done in [CG2], p. 440. Q.E.D.  

Bo th  corollaries are  s t ra igh t  forward  consequences of the  theorem except  for the  

impl ica t ion  ( B ) ~ ( A )  in Corol lary  1. To prove  this ,  one invokes  t he  Cheeger -Gromol l  

s t ruc tu re  theorem to  show t h a t  if the  f i rs t  Be t t i  n u m b e r  of M is zero, t hen  g l ( M )  m u s t  be 

f ini te  (see Theorem A of [Wu2]). B y  the  above  theorem,  if z l ( M )  is finite,  i t  is t r iv ia l .  
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