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An r-fold point of a m a p / :  X-~ Y is a point x of X such tha t  there exist r - 1  other 

points of X and each has the same image under / as x. All r points must  be "distinct",  

but some may  tie "infinitely close" to others; tha t  is, the infinitely close points determine 

tangent  directions along the fiber/-1/(x). An r-fold-point/ormula is a polynomial expression 

in the invariants of / tha t  gives, under appropriate hypotheses, the number  of r-fold points 

or the class mr of a natural  positive cycle enumerating the r-fold points. One method for 

obtaining an r-fold-point formula is the method of iteration, the subject of this article. 

The setting will be algebraic geometry, but  the method and the formulas have a universal 

character. 

Multiple-point theory had its beginnings around 1850 and has at t racted attention on 

and off ever since. About I973 the field became highly active and has remained so. A survey 

is found in [10] Chapter V; it includes an introduction to the method of iteration, which 

at  the time was beginning to blossom. Another survey, [11], concentrates on the results 

of this article and its sequel, [12]. 

The sequel will present another method for obtaining multiple-point formulas. Based 

on the ttilbert-scheme, it yields a deeper understanding of the theory and more refined 

formulas. The method also lends itself bet ter  to the s tudy of an important  special ease, 

central projections. 

The first general double-point formula was obtained in rational equivalence by Todd 

(1940); he derived it along with a residual-intersection formula, one from the other by  in- 

duction on the dimension, but  his reasoning is specious. Independently,  Whitney {1941) 

gave a double-point formula for an immersion of differentiable manifolds. In  [19] Ronga, 

inspired by  Whitney, obtained the double-point formula in ordinary cohomology for a 

generic map with ramification in both the differential-geometric and complex-analytic 
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cases. Central to Ronga 's  work is a modification R of the set of double points. I f  / is generic 

and if b: B - + X  • X denotes the blowing-up along the diagonal A, then R is equal to the 

closure of the inverse image b - l ( X  • r X -  A), so R is the blowup of X • y X  along A. 

Laksov, [13], made a major breakthrough for the algebro-geometric theory. He realized 

tha t  a residual-intersection formula could be derived on its own and applied to a scheme like 

Ronga's  R. Laksov's  R is defined by  the relation of ideals, 

I ( R ) . I ( E )  = . I (b- lX  • rX),  

where E is the exceptional divisor. Pushing the formula for R down to X, Laksov got the 

double-point formula. 

Because of technical difficulties, Laksov had to assume tha t  no component of R lies 

entirely in E. The difficulties were overcome by Fulton, [4], and the t rea tment  was cleaned 

up further by Fulton and Laksov, [5], using new-begotten advances in intersection theory, 

as tha t  theory entered a period of total  reconstruction with Fulton and MacPherson as 

principal architects. 

A powerful new intersection theory with a great generality and a fresh point of view 

has now been constructed. I t  is a theory of rational-equivalence groups and operators on 

them. The intersection product on a smooth variety now occupies a secondary position; 

indeed, it is defined via pullback along the diagonal map, which is a regular embedding. 

In  this article, the product is completely irrelevant. The new "intersection" theory is out- 

lined in [6] w 9. However, there it is set over a field; only a brief footnote is addressed to the 

generality appropriate to multiple-point theory. Moreover, the theory is presented as one 

of many  bivariant theories; while this point of view certainly has its merits, it leads to nota- 

tion tha t  seems contrived in the simple context of rational equivalence. To highlight the 

differentiae and to fix notation, a resumd of operational rational-equivalence theory in the 

appropriate generality is presented in w 1.6. 

One of the principal topics of this article is residual-intersection theory. Section 2 is 

devoted to general properties of the residual scheme; Section 3, to the setup and derivation 

of a new residual-intersection formula of wide applicability and a corollary. 

The residual scheme R of a closed subscheme W of a scheme Z is defined as the scheme 

P(I)  where I denotes the ideal of W in Z. The blowup of Z along W is canonically embedded 

in R, and the two schemes are equal when their algebras, the Rees algebra and the sym- 

metric algebra on I ,  are equal. The two algebras are equal when W is regularly embedded 

in Z by the theorem announced in [16], 1. (Other cases in which equality holds are discussed 

in [8].) Micali's theorem also brings greater simplicity to the theory of blowups along 

regularly embedded centers (see the proof of Lemma 1.5.1), but it is woefully little known 
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among algebraic geometers. A short direct proof is presented in Proposition 1.4; it is in- 

cluded because of the importance of the result and the interest of this proof. 

Suppose tha t  Z is embedded as a closed subseheme of a scheme A in such a way 

tha t  W is regularly embedded in A. Let b: B-*A  denote the blowing-up along W, and E 

the exceptional divisor. Then (see Proposition 2.3.1) there is a canonical closed embedding 

of R in B, and the ideals of R, E and b-lZ are related by the formula, 

I(R).  I (E)  = I(b-IZ). 

In  particular, therefore, Laksov's  modification R of the set of double-points of a map 

]: X-~ Y is equal to the residual scheme of the diagonal in the fibered product X • rX.  

The residual-intersection theorem (3.6) deals with a diagram, 

R 

X~ Z ~ W 

h 
Y~ H 

in which the square is cartesian, q is a closed embedding, and R is the residual scheme of 

W in Z and in which / and P2P and P'zq are local complete intersections (abbreviation: lci) 

with / and P2P of the same eodimension. The codimensions need not be constant, in which 

case "same" means the one function induces the other. The theorem and a corollary (3.7) 

(of its proof) assert the formulas, 

]* [H = p,(p~p)* + q, c,~(//p2q ) (p~q)*, 

p ,  c~(On(1)) k (p2p)* = - q ,  cn+k(//p2q) (P2q)* for k >~ 1, 

where n denotes the excess in the codimension of / over tha t  of peq (if the codimensions 

are not constant, then n is the appropriate function on W) and where %(//P2q) denotes the 

]th Chern operator of the difference of the virtual normal bundle of ] over tha t  of peq. 

(Thus cn(//p2q) might be termed the Euler operator o] the pair of maps.) 

Additional conditions must  be met  before the terms in these formulas are defined and 

the proofs valid. The pullback operator and the virtual normal bundle are not defined for 

every lci; the map must  also factor through an embedding of the source in a smooth scheme 

P. Usually in practice, P has the form P(E) with E a locally free sheaf of finite rank, and 
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if SO, the map is called strongly quasi-projective (a term used in [1]). I f  the map  is only 

quasi-projective and the target  only noetherian, then the source can be embedded in a 

scheme P(E) but  E need only be coherent. However, if the target  is also divisorial (a mild 

restriction, see w 1.6), then every coherent sheaf is a quotient of a locally free one, and so 

the map is strongly quasi-projective. 

The residual intersection formula is established by  more or less following Laksov's  

original proof. By factoring/ ,  one reduces to the case tha t  / is an embedding and, by  blow- 

ing-up along W, to the case that  W is a divisor and p an embedding. This case is discussed 

in [6] 9.2.3, and will be assumed here. (It  is derived by blowing-up along R and then 

checking the formula against the modern definitions.) While Laksov used Grothendieek's 

"key"  formula, tha t  formula is no longer needed and, indeed, is now a corollary. 

The two formulas are valid, therefore, when in addition to the substantive hypotheses 

made at  the start,  the following technical conditions obtain: ] is strongly quasi-projective 

and H is noetherian and divisorial. The condition on H not only guarantees that  p.,p and 

P2q are strongly quasi-projective but  also tha t  the blowing-ups used in the course of the 

proof are too. Until intersection theory and multiple-point theory become more settled, 

it is best to work in this reasonably great generality while noting where each hypothesis 

is used. 

The generality of the setup of these formulas affords greater simplicity and clarity to 

multiple-point theory. Indeed, the author found the setup (March 1979) while seeking these 

desirables and, in turn, the new generality prompted (in May 1979) the advances in [12]. 

The setup used in the method of iteration (see w 5.1) has ]: X ~  Y for h: H-+ Y and the 

diagonal for W. For convenience, we consider the involution i of R covering the "switch" 

involution of P = X • r X  (it is treated in Proposition 4.2(i), and we set 

]I=P2p, Ck=Ck(Vl), t-~Cl(OR(1)). 

Applying fl.  on the right to the residual-intersection formula and its corollary and identi- 

fying the terms {see Lemma 5.5 for details), we get 

11 .** t ,  = 1"/ ,  - o n  

[1,i.tk[~ = -cn+k for k~>l, 

where n denotes the eodimension of [. The formulas were obtained by the author in March 

1977 by developing ideas in [10] Chapter V, Section D; independently, but  about this 

same way, Roberts  in [18] (6.3.1), (5.6.2), obtained a version of the first and nearly one 

of the second. 
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Applying the first of these formulas to the fundamental  class m 1 of X (see Theorem 

5.6 for details), we get the double-point formula, 

m 2 = [*[ .  m 1 - c ~  m 1, 

where m 2 denotes the pushout under ]1 of the fundamental  class m; of R. 

A triple-point formula for [ can be obtained formally from the double-point formula for 

[1, then a quadruple-point formula for [ from the triple-point formula for/1, etc.; this pro- 

eedure is the method of iteration. The method occurred to Salomonsen, who told the author 

about it (30 Ju ly  1976). The method is based on the observation tha t  a point z of R is an r-fold 

point of/1 if and only if [l(z)  is an (r + 1)-fold point of I. This observation is evident when [ 

is an immersion (that is, unramified), for then R is equal to the complement in X x y X  

of the diagonal A since A is open and closed. When ramification is present, the "observa- 

t ion" becomes more of a definition, but the method still works remarkably well. 

Thus, the cycle mr+1 enumerating the (r + 1)-fold points of ] is just the pushout under 

J1. of the cycle m~ enumerating the r-fold points of [1- So, by  pushing out a formula for 

m~, we will get a formula for mr+l .  On working it out, we find we need to know tha t  i ,  pre- 

serves m~. For r = 1, this fact was needed above but  was evident because m[ is the fundamen- 

tal class. For arbi trary r, the fact is established in w 5.1 on the basis of Proposition 4.2(ii). 

To proceed, we also need to know the virtual normal bundle of [1; so a formula for it 

is obtained in Proposition 4.7. (The formula is a special case of one in Proposition 3.5, 

which obtains in the context of the residual-intersection theorem.) Appropriate eases of 

the formula were obtained before. One was obtained by  the author in March 1977 and, in- 

dependently, by t loberts  [18] Section 5. One is implicit in [19], proof of 2.7, according to 

[17], comment before 3.4. In  each derivation, the procedure is basically the same, involving 

an explicit determination of the virtual normal bundle of a blowing-up along a regularly 

embedded center. The general determination is included in w 1.5, because the available 

literature is inadequate. 

Multiple-point formulas of all orders can now be obtained in a purely mechanical 

fashion. Certain ones are obtained explicitly in Theorems 5.8-5.11. While the expression 

for m a in Theorem 5.9 is general in n, unfortunately no such general expression is available 

for m,. when r~>4. 

The formulas in Theorems 5.9-5.11 each begin with the formula in Theorem 5.8, 

which treats ' the case of an immersion; the remaining terms correct for the presence of 

ramification and vanish when none is present. A version of Theorem 5.8 for a generic 

immersion of differentiable manifolds was obtained by  Herbert ,  [7] Theorem p. 7, as a 

corollary of a more refined formula. Herber t  thus achieved the goals of Lashoff and Smale, 

2-812901 Acta mathematica 147, Imprim6 le 11 D6cembre 1981 
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who in 1959 erred in an a t t empt  to generalize Whitney 's  work on the double-point formula. 

Independent  of Herbert ,  Ronga (using iteration) nearly obtained the unrefined formula; 

an error appears in his preprint  (which finally reached the author 12/79). Ronga chose not 

to publish (but the basic ideas can be found in [17]). Recently, however, Ronga, [20], 

gave a short proof of Herber t ' s  refined formula; it is based on a generalization of a result of 

Quillen (1971), which is a version (with n not constant) of tlle excess-intersection formula,, 

the ease of the residual intersection formula with q an isomorphism and R empty.  

The r-fold-point formula obtained by  the method of iteration is valid when ]: X-~ Y is 

projective and r.generic and Y is noetherian, divisorial and universally eatenary. The 

condition "universally catenary" is a technical requirement of intersection theory, see 

w 1.6. The term "r-generic" means tha t  each of the following r maps is an lci of the same 

eodimension: / itself, the derived m a p / , ,  the map  ]2 derived f rom/1  the way ]1 was from 

] . . . .  the map/ r -1  derived from ]r-2 the way/1  was f rom/ .  The derived maps are the subject 

of Section 4. 

For example , / :  X ~  Y is r-generic if X and Y are smooth over a base S and / is an 

r-/old sell-transverse immersion, see Proposition 4.6. Intuitively, "r-fold self-transverse" 

means tha t  any  r branches are transverse; a precise definition is found in w 4.5. This con- 

dition, in an appropriate form, was used by La.shoff-Smale, Herbert ,  and Ronga. Note, 

however, tha t  / m a y  be an r-generic immersion without being r-fold self-transverse; con- 

sider, for instance, the difference between a tacnode and a simple node. 

Suppose tha t  / is an lci and tha t  X or Y (and so X) is Cohen-Macaulay. Then a neces- 

sary and sufficient condition for ] to be r-generic is tha t  / be dimensionally r-generic, tha t  

is, tha t  each of the derived maps ]1 ... . .  /r-1 simply have the same codimension as ~, see 

Proposition 4.4. (The notion of the codimension of a map is intuitive and convenient; i t  is 

developed in w 1.2 and Proposition 1.3, apparent ly for the first time.) Moreover, obviously, 

R is Cohen-Macaulay if ] is 2-generic. 

If  X and Y are smooth over some base S, then of course ] is an lci, but  it is possible 

tha t  X and Y are smooth and /1  has the same codimension as ] while R is not smooth. 

Thus one is led (as the author was in March 1977) to abandon smooth schemes (and for 

tha t  matter ,  base schemes too) in favor of lei maps. This generalization to singular varieties 

differs from Johnson's,  [9], already when X is a curve in 3-space and / is a general pro- 

jection to a plane, see [12]. However (see [18] (0.1), (0.2) and [10] Chapter V, Section D 

and [12]) if ] is a general central projection of a smooth var iety X over an algebraically 

closed field of characteristic 0, then R is smooth of the appropriate dimension; a similar 

result holds in characteristic p but  first X m a y  have to be reembedded, Moreover ([14] 

Proposition 17) in this setup, m~ has no multiple components if cod (/)>t 1. 
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For  the validity of the r-fold-point formula, the condition tha t  / be r-generic is really 

too strong. So it is weakened a little in w 5.1 to the condition tha t  / be practically r-generic, 

tha t  is, tha t  / be an lei and its restriction over the complement of an appropriately small 

closed subset S of Y be r-generic. Nevertheless, see Proposition 5.2, if ] is practically r- 

generic, if / the codimension n of / is constant in case r ~> 4, and if / has an ~q2-singularity, 

then r and n are limited to the following range: r = 2  or 3 and n arbitrary, r = 4  and n = l ,  

2, 3, and r = 5  or 6 and n = l .  The multiple-point formulas in this range are just the ones 

given in Theorem 5.6, 5.9-5.11. Outside this range of course, the multiple-point formulas 

obtained by  iteration are valid for a practically r-generic map with no S2-singularity, just 

as the Herbert-Ronga formula (5.8) is valid for a practically r-generic immersion, a map 

with no ~ql-singularity. 

A striking feature of the formula for my obtained by iteration is that  the coefficient of 

ms contains the factor, 
( -  1 ) r - l ( r -  1) ( r - 2 )  ... s, 

except for the first t e rm/* / ,  m~_ 1. During the course of the derivation, it is not at  all evident 

that  the coefficient will contain the factor (except for the sign), and so its would-be presence 

serves as a useful check on the computation. 

The presence of the factor is a defect of the method of iteration, however. The defect 

arises because, for each r-fold point, the r - 1  other points with the same image are enu- 

merated with a specific order in each of the ( r -  1)! possible ways. This defect is especially 

serious in differential topology because, as Herbert ,  [7] Remark  p. 9, points out, unless X and 

Y are oriented and n is even, Z2-coefficients are necessary and so m~ vanishes for r ~ 3. Herber t  

overcame the difficulty with a more refined theory. In  algebraic geometry, the author in 

May 1979 found tha t  a version of Herber t ' s  refined formula for an immersion and a cor- 

responding refined triple-point formula could be obtained by  using the Hilbert  scheme for 

H in the residual-intersection theorem; a resuni6 of this work will be found in [11], a de- 

tailed account in [12]. This work raises hope not only of proving the existence of refined 

versions of all the formulas obtainable by  iteration but  also of finding explicit, general 

closed forms. However, at  present the only way of obtaining even in principle an r-fold- 

point formula for r >~ 4 for a map with ramification is the method of iteration. 

1. Assorted preliminaries 

1.1. plci's (pseudo-local complete intersections). A map of schemes, h: S-~T,  will be 

called a plci of codimension at most n, a locally constant function on S, if each point s of S 

has a neighborhood U such tha t  there exists a closed embedding over T of U into a T-scheme 
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P which is smooth of constant dimension, say d, and U is defined in P by  the vanishing of 

m global functions, with m=n(s)+d.  

Thus h is an lci (local complete intersection) of codimension n if, furthermore, for each 

s, the m functions form a regular sequence. (The converse holds by [21] VI I I ,  1.2, p. 466.) 

1.2. The codimension o/ S/T.  Let h: S-+T be a map locally of finite type between 

locally noetherian schemes. ]By the codimension o/ S over T (resp. of h) at a point s of S 

will be mean t  the number  defined below. I t  will be denoted by cod~ (S, T) or cod (S, T) 

(resp. by  cod~ (h) or cod (h)). 

Let  U be a neighborhood of s and ~: U-+P an embedding over T into a flat T-scheme 

P of finite type. Notice that,  since h: S - ,  T is locally of finite type,  s has a neighborhood 

U tha t  is isomorphic to a closed subscheme of an affine space over a neighborhood of 

h(8). Now define the codimension at s by the formula, 

cod~ (S, T) = cod~ (U, P) - re l .d im~ (P, T). 

The value of the right hand side is the same for a second choice V, Q of U, P, as will now 

be shown. 

We may, obviously, replace V, Q by U f~ V, P • rQ and so assume tha t  V is contained 

in U and tha t  there is a flat  map ~: Q-~P compatible with the embeddings of V in Q and 

U in P. Now, let t be a point of S whose closure contains s, and view t as a point of P, as one 

of Q, and as one of the fiber at-it, as well as one of S, and V. Then we have 

dim (Oo. t) = dim (Op, t)+ dim (O~-~t.t) 

because ~ is flat, by  [3] IVp, 6.1.1, p. 135. Note tha t  t is a closed point of ~- l t  because of 

the compatibili ty of the embeddings. Hence we have 

dim ( O,~-lt. t) = rel.dim, (Q, P). 

Since the closure of t contains s, we have 

rel.dimt (Q, P) = rel.dim~ (Q, P). 

Putt ing together the above equations and using the additivity of relative dimension we get 

dim (Or t) -rel .dim~ ((2, T) = dim (Oe. t) -rel .dim~ (P,  T). 

Taking the infimum over t, we get 

cod~ (Y, Q) -rel.dim~ (Q, T) = cod~ (U, P) -rel .dim~ (P, T). 

Thus cod~ (S, T) is well-defined. 
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I t  is evident that ,  if h: S---> T is an embedding, then this not ion of codimension agrees 

with the usual one and that ,  if h: S ~  T is flat, then its codimension is equal to the negative 

of its relative dimension. I t  is also evident t h a t  cod (h) is a locally constant  funct ion on S. 

]:)R OPO SITION 1.3. Let h: S ~  T be a map locally o/ / in i te  type between locally noetherian 

schemes. 

(i) I / h :  S---> T is a plci o/codimension at most n, then (at every point o / S )  we have 

cod (S, T) < n, 

and equality holds i/ h is an lci o/ codimension n. Conversely, i/ equality holds (at every point), 

i / h  is a plci o/codimension at most n, and i/ T is Cohen-Macaulay, then h is an lci o/ codimen- 

sion n and S is Cohen-Macaulay. 

(ii) (additivity) Let g: T-~ U be another map locally o / / i n i t e  type, with U locally no- 

etherian, and let s be a point o/ S. Then we have 

cods (S, T)+codh(s) (T, U) ~ cod~ (S, U), 

with equality i/ either U is universally catenary or i/  g: T-> U is an lci or is fiat. 

(iii) Let s be a closed point o / S  such that h(s) is a closed point o/ T. Then we have 

cod~ (S, T) ~< dimh(~) (T) - d i m  s (S), 

with equality i/ T is universally catenary. 

Proo/. (i) The assertion is obvious, because a scheme t h a t  is smooth over a Cohen- 

)/Iacaulay scheme is Cohen-Macaulay also. 

(ii) Replacing T by  a suitable neighborhood of h(s) and S by  a suitable neighborhood 

of S, we m a y  assume tha t  T is a subscheme of a flat scheme Q over U, say of relative dimen- 

sion e, and t h a t  S is a subscheme of an affine space P over T, say of relative dimension d. 

Let, P '  denote the affine space over Q of dimension d. Then we have a commuta t ive  diagram 

S c _ _ _ .  p c  , p ,  

T c , Q 

U 
in which the square is cartesian. 
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Since P'/Q is flat, it follows tha t  

cod~ (P, P ' )  = codh(s) (T, Q). 

On the other hand, we obviously have 

cod s (S, P)  + cod s (P, P ' )  ~< cods (S, P ') ,  

with equality if P' is catenary. The first two assertions follow directly. 

Suppose now tha t  g is an lci of codimension n. Then T is regularly embedded in Q 

with codimension n + e. Hence P is regularly embedded in P '  with codimension n +e, be- 

cause P'/Q is flat and the square is cartesian. Therefore we have 

cod~ (S, P ' )  = cods (S, P) + (n +e). 

The asserted equality obviously holds now. 

I f  g is flat, then we may  take Q = T and the preceding reasoning simplifies greatly; 

in fact, the asserted equality is clear directly from the definition. 

(iii) Since s and h(s) are closed, we have 

dims (S) = dim (Oz. s) 

dimh(s) (S) = dim (OT.~(8))- 

Replacing T by a neighborhood of h(t) and S by  one of s, we may  assume tha t  S is a closed 

subseheme of an affine space over T, say P of dimension d. Then we have 

cods (S, P) ~< dim (Op.s) - d i m  (Os.s), 

with equality if P is catenary. Moreover, letting F denote the fiber of P over h(s), we have 

dim ( Op,~) = dim ( OT.h(s)) +dim (OF.s) 

because P / T  is flat. Now, s is dosed in S, and S is closed in P; hence, s is closed in N. 

Therefore OF.s has dimension d. Putt ing it all together, we get the assertion. 

P R o r o s I ~ I O ~  1.4 ([16], 1). Zet A be a commutative ring with 1, and let J be an ideal 

o / A .  Assume that J is generated by a sequence o/ elements whose Koszul complex is exact. 

Then the natural map ]rom the symmetric algebra to the Bees algebra, 

S(J)-~ | J~, 
n>~O 

is an isomorphism. 
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P~vo/. We may assume that  we have 

A = Z [ T  I ..... T~] and J = ( T  1 ... . .  T,,), 

where the T's  are indetermia~ates, because the formation of the map in question commutes 

with base change. (The formation of Jn does in view of the hypothesis on J by [21] VII,  

1.2.3(p. 416.) 

The map will be an isomorphism if, given any n-linear symmetric map u on J,  there 

exists a linear map v on jn  satisfying the relation, 

u(P1 ..... Pn) = v(P1 ... Pn), P~ E J.  

I t  suffices by linearity to define v on the monomials M of degree n or more. Given M factor 

it in any way as M =P.P1  ... P~ with deg (P~) >~ 1, and define v(M) as Pu(P 1 ..... P~). Mote 

that  v(M) is independent of the choice of factorization because u is symmetric and linear. 

I t  is obvious that  v is linear and satisfies the required relation. 

1.5. Blowups and di//erentials. Consider a blowup diagram of schemes, 

e 
W '~ , B =BI(W, A) 

I f  ~-A 

and assume that  a is a regular embedding. 

L~MMA 1.5.1. 
morphism, 

(i)(x) The natural map (whose adjoint is the more usual map) is  an iso- 

1 ~ 1 f2Bl~ ~ e,  f~w'lw. 

(ii) The Tl-/unetor o/de/ormation theory vanishes on OB, 

TI (B/A,  OB) = O. 

Proo]. We may check the assertions locally on A and so assume that  A is affine and that  

the ideal J of W in A is generated by a sequence of elements t o ..... t~ whose Koszul complex 

is exact. Let T o ..... T m be indeterminates, V the free A-module they generate, and v: V ~ A  

the map carrying T, to t,. Since the Koszul complex is exact, ker (v) is generated by the 

various differences, t, Tj - tj T,. 

(i) I .  Vainsencher  points  out  t h a t  (i) is t rue  and  easy to prove wi thou t  assuming  a is a regular  

embedding. 
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Proposition 1.4 implies that  B is equal to P(J). Hence v: V ~ A  defines an embedding 

of B in P(V), whose homogeneous ideal is generated by ker (V), and so by the elements 

/ , T j - f j T ~ .  (Note in passing the improvement tha t  Proposition 1.4 brings to the usual 

argument, [21] VII,  1.8(if), p. 425.) Let  I denote the ideal of B. I t  is now straightforward 

to cheek that  the natural map, 
--~" ~'~P(V)/A i l l  ~ 1 IB ' 

is injective and that  the image is equal to the product of the target with J, The first as- 

sertion follows because the map's cokernel is equal to f2~,A and because W' is the fiber of 

P(V) over W. The second assertion follows because the T 1 in question is equal to the map's 

kernel ([15] 3.1.2, p. 53). 

PROPOSITIO~ 1.5.2. Assume that B is embeddable over A in a smooth scheme P. For 

any scheme C, let K(C) denote the Grothendieclc g ro ~  o[ locally finitely presentable sheaves 

with ]inite projective dimensions. 

(i) In K(B), the virtual tangent bundle o[ B /A  is equal to the dual o/ the class o/ the 

direct image o/ the shea] o] di][erentials o] W' /W,  

~,~ = ( e ,  ~,:~)*.  

(if) 1/the conormal bundle _N(W, A) is equal in K(W) to the restriction o] some virtual 

bundle N on A, then in K(B) we have 

~ / A  = 0 ~ (  - 1) - 0 ~ +  (b*~V)*(1) - (b*2V)*. 

Proo]. (i) Let  I denote the ideal of B in P.  There is a 4-term exact sequence, 

TI(B/A,  OB) I/12 ~ 1 -" -" ~v:A [ B ->" ~B:A "-> O, 

and the T 1 vanishes by Lemma 1.5.1(ii). Hence the assertion results from 1.5.1(i). 

(if) Since W' is equal to P(N(W, A)), we have the standard exact sequence, 

o ~  ~ , : ~ - ~  (w'iV(W, A))( - 1)-~Ow,-~ O. 

Since w*N(W, A) is equal in K(W')  to the restriction of b'N, the preceding exact sequence 

yields the following equation in K(B): 

e,  f2~.,/A = (b'N) ( - 1) | e,  O w , - e ,  Ow,. 

Hence (i) and the standard exact sequence ([3] II,  8.1.8.1, p. 156), 

o + O g l )  - -  0 ~ - ,  e ,  O w , - ~  o ,  

yield the asserted formula. 
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1.6. Operational rational equivalence. Let X and Y be noetherian schemes and ]: X ~  Y 

a map of finite type. 

A cycle on X is a formal (finite) linear combination with integer coefficients of the 

closed integral subschemes W. The components of a cycle are those W appearing in it with 

a nonzero coefficient (or mutliplieity or weight). Associated to any closed subscheme Z of 

X is i ts /undamental  cycle [Z], which is the sum of the components of Z weighted by the 

lengths of the stalks at the generic points. Similarly, associated to any (locally principal) 

divisor D on any closed subscheme Z of X is a cycle [D]. A cycle is said to be rationally 

eTdvale~t to 0 if it is a linear combination of cycles associated to rational functions on closed 

integral subschemes. The group of cycles modulo those rationally equivalent to 0 is denoted 

,4. X. The group of cycles is natural ly graded by eodimension and, if X is catenary, then this 

grading passes on to A.X.  

L e t / :  X--~ Y be flat. A pullback operator (preserving degrees) is defined by  sending a 

closed integral subscheme of Y to the fundamental  cycle of its scheme-theoretic inverse 

image. The operator preserves rational equivalence, inducing an operator/*:  A. Y-~A. X. 

If X = V(E) for some locally free sheaf E on Y, then /* is an isomorphism. 

L e t / :  X ~  Y be proper. A pushout operator ] ,  is defined by sending a closed integral 

subscheme to its image weighted by  the degree of the extension of function fields if finite 

and by 0 if not. I f  Y is universally catenary, then the operator preserves rational equiva- 

lence, inducing an operator ],: A . X ~ A .  Y. 

Let  E be a locally free coherent sheaf on a universally cateuary X. Chern operators 

e~(E) on A . X  exist possessing all the standard properties. If  E has rank 1, then cl(E ) 

takes a closed integral subseheme W to the class of any divisor on W associated to the 

restriction E[ W. In  general, e~(E) is defined via c1(O (1)) on A. P(E) ~ la Segre theory. More- 

over, i need be only an integer-valued locally constant function. 

Let  /: X ~  Y be a closed embedding and C its affine normal cone. Then a map  

A. Y-~A. C is defined by  sending a closed integral subscheme V of Y to the fundamental  

class of the cone of l- iV in V. I f  / is a regular embedding, then C is equal to V(Nr) where 

,~V r is the conormal sheaf (the restriction of the ideal), whence A. C is isomorphic to A. Y 

and we get a pullback operator /*: A. Y--~A.X. 

Consider a cartesian square with Y' noetherian and universally eatenary, 

gr 
X~- X'  

i, y S _ ! _  y,  

(1.6a) 
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If  / is an embedding , / '  is too, so there is a map A. Y ' ~ A . C ' ,  where C' is the cone o f / ' .  I f  

/ is a regular embedding, then there is a closed embedding of C' in C • r Y', whence an op- 

erator /*:  A. Y ' -+A.X '  (which often differs from f'* w h e n / ' *  is defined). I f  / is fiat, then 

] '  is too, so again ] defines an operator ]*: A. Y'--+A.X'. Similarly, if / is proper, then / 

defines an o p e r a t o r / . :  A . X ' ~ A .  Y'.  Similarly, a locally free sheaf E on X defines (via 

g'*E and ig') operators c~(E) on A . X ' .  Thus we have extended the meaning of the symbols 

/*, / . ,  c~(E); they now denote operators with a whole family of components, one component 

for each map g: Y'--+ Y in which Y'  is a universally catenary noetherian scheme. There 

is no longer any  need, in general, for Y and X to be noetherian or universally catenary. 

The set (group) of contravariant linear operators with components, A. Y ' ~ A . X ' ,  is 

denoted by  A'], tha t  of covariant linear operators with components, A.X ' -+A.  Y' ,  by A./.  

There are evident restriction maps, A'/--+A'/' and A./--+A./'; the notation /*lY, etc., 

will be used to denote the restriction of/*, etc. Whenever the terms are defined, the follow- 

ing basic compatibili ty (or commutat ivi ty)  relations hold: 

(/*l Y)g* = (g*lx)/*, (g, Ix)(/*l Y') =/*g,, 

l ,(g, Ix) = g,(/,  I Y'), c~(E)cj(E) = cj(E)c~(E), 

(g* IX) c,(E) = (c~(E) IX ' )  (g* IX), g,(c,(E) lX') = c,(E)g', .  

The last relation, when applied to an element of A . X ' ,  looks like a projection formula. 

Suppose t h a t / :  X-+ Y can be factored as a composition hg: X ~ P - +  Y in which g is a 

regular embedding and h is smooth. Then the composition of operators g'h* is the same for 

every choice of g and h. (Is h flat sufficient? I t  is if Y is smooth over S and if either X is 

fiat over S or S is a field or a Dedekind domain.) Set /*  =g'h*. 

The case tha t  ] factors as above is important  for another reason, too. Then / possesses 

a virtual normal bundle, which is given by 

~f ~ % -- g*Th, 

where ~ is the normal sheaf (dual to the restriction of the ideal) and ~h is the tangent  sheaf 

(dual to f2~). In  the Grothendieck group, u/is independent of the choice of g and h ([21] 

VI I I ,  S.2, p. 476). Hence, the Chern operators c~(vs) are well-defined; for short, they will 

be denoted by  ci(/). 

If [: X--+ Y is (quasi-) projective, then X is Y-isomorphic to a (locally) closed subscheme 

of a scheme P =P(E)  for some coherent sheaf E on Y. I f  E can be taken locally free, then f 

will be called strongly (quasi-) projective. If ] is a strongly quasi-projective lci, then P is 

smooth and so ([21] VI I I ,  1.2, p. 466) X is regularly embedded in P; thus, / can be fac. 

tored as above. 
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If Y is divisorial (that is, its topology is generated by the complements of its divisors, 

see [21] II ,  2,2, p. 167), then every coherent sheaf is a quotient of a locally free one. Thus, 

if Y is divisorial and / is (quasi-)projective, it is strongly (quasi-)projective. The family of 

divisorial schemes is remarkably large; it  contains the affine schemes, the schemes with an 

ample sheaf, the separated regular schemes, the subschemes of a divisorial scheme, the  

product over any base of two divisorial schemes, and the source of any quasi-projective 

map whose target is divisorial. 

In diagram (1.6a), suppose that  ] and ]' can be factored into a regular embedding fol- 

lowed by a smooth map, for example, that  / and / '  are strongly projective lci's. Then, 

whether or not the diagram is cartesian, set 

c( / ' / / )  = c( l ) /c ( / ' )  ( = c ( ~ s -  ~r,)). 

Thus, for example, the excess-intersection formula ([6] 7.2.1), which holds when the dia- 

gram is cartesian, becomes 

/*1Y'= cn(///')/'*' with n = c o d  ( / ) - c o d  (/'), 

(where, if the codimensions are not constant, cod (/) is to be interpreted as the function 

induced on X'). This lovely formula yields as special cases rather strong versions of the 

self-intersection formula and Grothendieck's "key"  formula ([21] XIV, pp. 676-677). On 

the other hand, the excess-intersection formula is a special case of the residual-intersection 

formula (3.6), the case with q an isomorphism, although additional technical conditions 

are required at present in the proof of the residual-intersection formula because of the use 

of blowups. 

2. The residual scheme 

2.1. Basics. Let  W be a closed subseheme of a scheme Z. Denote the ideal by I(W, Z). 
Then the scheme R=R(W, Z) defined by the formula, 

.R(w, g) = P ( i (w ,  z)), 

will be called the residual scheme of W in Z. The pullback of I(W, Z) has a "tautological" 

invertible quotient, which will be denoted by O~(I) or 0(1). 

Let 1o: 1r denote the structure map. I t  is evident that  p is an isomorphism off W; 

in fact, p is an isomorphism over every point of Z at which I(W, Z) is invertible. I t  is also 

evident that  the fiber over W is 

~o-~W = P(_x(W, z)) 

where N(W, Z) denotes the conormal sheaf of W in Z. 
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I t  is evident tha t  the image p(R) is equal to the support of I (W,  Z), 

p(R) = Supp (I(W, Z)). 

So p(R) is equal to the set of points of Z at  which W is not equal to Z. Suppose tha t  I (W, Z) 

is of finite type. Then, therefore, p(R) is the subset of Z defined by  the annihilator of 

I(W, Z), 
p(R) = V(Ann (I(W, Z))); (2.1a) 

in particular, p(R) is closed. In  fact, p: R ~ Z  is projective, so proper. Moreover, it is not 

hard to see tha t  the two formulas above for p(R) hold scheme-theoretically (that is, 

Supp (I(W, Z)) is the smallest closed subscheme of Z through which p factors). 

The residual scheme in other contexts has been called the "naive blowup" because it is 

associated to the symmetric algebra of I (W,  Z), whereas the blowup B = B ( W ,  Z) is (as 

t I i ronaka has taught  us) the scheme associated to the Rees algebra, the direct sum of the 

(ideal-theoretic) powers of I (W,  Z). 

There is, however, an evident canonical closed embedding, 

B(W, Z) ~ R(W, Z), 

and the tautological sheaf of R(W,  Z) restricts to tha t  of B(W, Z). 

P R 0 P 0 S I T I 0 N 2.2. I /  W is a regularly embedded closed subscheme o] Z, then the blowup 

is equal to the residual scheme, 

B(W,  Z) = R(W,  Z). 

Moreover, the structure map o] R(W,  Z) over Z is an lei (local complete intersection) of co- 

dimension O. 

Proof. The first assertion is a dircct consequence of Proposition 1.4. The second is 

well-known for the blowup B(W,  Z) and is reproved implicitly in the proof of Lemma 1.5.1. 

2.3. Nested ambiant schemes. Let W be a closed subscheme of Z, and let Z be a closed 

subscheme of A, 
W c Z c A .  

Denote the residual scheme of W in Z by R, tha t  of W in A by B. Let b: B ~ A  denote the 

structure map, and p: R-~A the natural  map. 
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P R O t '  0 S I T I O N 2 . 3 . 1  (i) There is a canonical closed embedding, 

R = R(W, Z) c B = R(W, A). 

(ii) The tautological shca/ o/ B reetriets to that o/ R, 

OB(1)IR = OR(l). 

(iii) I1 W is regularly embedded in A ,  then the ideals o/ R, b- lW and b-lZ satis/y the 

relation, 
l (R ,  B).I(b-aW, B) = I(b-lZ, B). 

Proof. There is a canonical exact sequence of ideals, 

I(Z, A) ~ I(W, A) -~ I(W, Z)-~0.  

Hence, (i) and (ii) hold. In fact, R is, clearly, equal to the subseheme of B, whose homo- 

geneous ideal is 
I(Z, A). Sym (I(W, A ) ) [ -  1]. 

On the other hand, by Proposition 1.4 the homogeneous ideal of b- lW is 

I (W,  A). Sym (I(W, A)) = Sym (I(W, A)) [1]. 

Hence, the product of the homogeneous ideal of R and that  of b- lW is that  of b-lZ. There- 

fore, the corresponding weaker inhomogeneous relation holds also. 

PROPOSITIO~ 2.3.2. Assume that W is regularly embedded in A.  

(i) 1] R is regularly embedded in B with codimension m (a locally constant/unction on R), 

then 29: t~-~A is an lci (local com291ete intersection) o/codimension m. 

(ii) Assume also that Z is defined in A,  locally along p(R),  by the vanishing o/ m /unctions 

(m a locally constant/unction on p(R)). Then R is de/ined in B locally by the vanishing o/ m 

/unctions, and R is regularly embedded in B with codimension m i/, in addition, 29: R-~ A is an 

lci o/ codimension m. 

Proo/. (i) The assertion holds because b: B-~A is an lci of codimension 0 by Proposi- 

tion 2.2 and because the composition of lei's of codimensions i, j is one of codimension 

i + j  by [21] VIH, 1.5, p. 471 and VIII ,  1.10, p. 474. 

(ii) Since the matter  is local on R, we may assume that  W, Z and A are a/fine and 

that  Z is defined globally in A by the vanishing of m functions, say/1 ..... /m (m constant). 

Fix a point of R. Replacing W, Z, A by open subschemes if necessary, we may assume 
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tha t  the point lies in an open subscheme B '  of B such tha t  B '  is regularly embedded in 

an affine n-space C over A for some n and such tha t  the exceptional locus (b-lW) fl B '  is 

defined globally in B '  by  the vanishing of a single function, t say. (Note tha t  b: B-+A is 

equal to the blowing-up along W by  Proposition 2.2.) Then Proposition 2.3.1(iii) implies 

tha t  R ~ B '  is defined in B '  by  the vanishing of the m fractions /1/t ..... /m/t, which are 

(global) functions on B'. Thus the first assertion holds. 

The m fractions are the restrictions of m functions on C, say F 1 ..... Fm. Let  G 1 ... . .  Gn 

be functions on C defining B' .  Then the F ' s  and G's together are n § m functions on A 

defining R n B' .  Suppose that  p: R-~A is an lci of eodimension n. Then R N B '  is regularly 

embedded in C with codimension n + m because C is smooth over A with relative dimen- 

sion m. Hence the F ' s  and G's form a regular sequence on A. Therefore, the (//t)'s form a 

regular sequence on B' .  Thus R N B' is regularly embedded in B '  with codimension n. 

P R O P O S I T I O N  2.3.3.  Assume that A is Cohen-Macaulay (noetherian), that W is regu- 

larly embedded in A, and that Z is de/ined in A, locally along p(.R), by the vanishing o / m  

/unctions (m a locally constant/unction on p(R)). Then, at each point o[ p(R), we have 

cod (p(R), A) ~< m. 

Proo/. The assertion will be derived from Corollary 2.2, p. 312, of [2] (cf. their p. 319). 

The corollary is applied, by  way of contradiction, at  a point where the asserted inequality 

is assumed to fail. The point is taken, furthermore, to be the generic point of a component 

of p(R). 

Consider the local ring of A at  the point in question; let M denote its maximal ideal, 

I the ideal of Z, and J the ideal of W. The set p(R) is defined by the ideal Ann (J/I) by 

(2.1 a). Hence, this ideal is pr imary for M. Therefore, for any nonmaximal prime P, the 

]ocalizations Jp and I~ are equal. In  particular, they are equal for any prime P with 

ht  (P) ~<m, because ht  (M) > m  since the asserted inequality fails. Thus hypothesis (ii) of 

the corollary of Art in-Nagata (which is hypothesis (ii) of the theorem before it) is satisfied 

(with Q = J  and s=m). 

The maximal ideal M is associated to I ,  because it is to Ann (J/1). Hence the depth 

modulo I is zero. However, conclusion (a) of the corollary of Art in-Nagata asserts tha t  

this depth is at  least the difference, ht  ( M ) - m .  Thus conclusion (a) stands in contradic- 

tion to the inequality, ht  (M)>  m. 

I t  remains to check one final hypothesis of the corollary of Artin-Nagata, namely, the 

inequality, ht (J) <m.  Now, all the primes P of I ,  except M, are also primes of J ,  because 

Ip  and Jp are equal, as was noted above. So, ht  (J) ~>m implies ht  (I) ~>m. However, 1 is 
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generated by  m elements and the ambient ring is Cohen-Macaulay. Hence ht (I) >~ m implies 

tha t  I is unmixed and ht  (I) =m.  However, M is associated to I and ht  (M) >m.  Thus, 

ht (J)>~m is untenable, and ht ( J ) < m  holds as required. 

PROPOSITION 2.4. Let S be a ground scheme, W a closed subscheme of an G-scheme Z. 

Then the/ormation o/the residual scheme R(W,Z)  and its tautological shea/ 0(1) commutes 

with base-change to T/G, 
R ( W  • T , Z  • T) = R ( W , Z )  • T, 

i/ either W/S  or T /S  is fiat. 

Proo/. I f  either is flat, then obviously the formation of I (W,  Z) commutes with the 

base-change. So the assertion is evident from the definition, see w 2.1. 

3. The residual-intersection formula 

3.1. The setup. Fix a diagram of schemes 

X 

y ~  

R = R(W, Z) 

P 
Pl q 

4.  W 

P2 
h 

- H  

in which the square is cartesian and the map q is a closed embedding. 

L E P T A  3.2. In  the setup o/w 3.1, i/ / is quasi-projective and H is noetherian, then p is 

projective, P2P and p~q are quasi-projective, and Z, R and W are noetherian. I / H  is also 

divisorial, then p is strongly projective, P2P and P2q are strongly quasi-projective, and Z, R 

and W are noetherian and divisorial. 

Proo/. Clearly Z is noetherian. So the ideal I (W,  Z) is coherent. Hence p is projective 

by definition. The rest is standard, involving [3] I I ,  5.3.2, 5.3.4, p. 99 and the fact that ,  

on a noetherian and divisorial scheme, every coherent sheaf is a quotient of a locally free 

sheaf of finite rank. 

LEMMA 3.3. In  the setup o /w 3.1 assume that/:  X---> Y is a closed embedding and that 

P2q: W ~ H  (which now is a closed embedding) is a regular embedding. Let b: B-+H denote 

the blowing-up o/ H along W. 
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(i) There is a canonical embedding g: R-~ B, and the/ollowing relations o/compatibility 

are satis/ied: 
g * O ~ ( 1 )  = 0~(1); bg =p~p. 

Moreover, B is equal to the residual scheme o/ W in H. 

(ii) Suppose that X is de/ined in Y locally by the vanishing o/ m /unctions (m a locally 

constant/unction on X).  Then R is de/ined in B locally by the vanishing o/ m /unctions (m 

now also denoting the/unction induced on R). Moreover, t? is regularly embedded in B with 

codimension m i /and  only i/ P2P is an lci o/ codimension m. 

(iii) I] the embeddings [: X ~  Y and g: R--> B are both regular o/ the same (or compatible) 

codimensions, then their normal sheaves are related by the/ormula, 

v~ = [(plp)*vs] (1). 

Proo/. (i) The assertion is a direct consequence of Propositions 2.2, 2.3.1(i)and (ii). 

(ii) If X is defined in Y at a point x by the vanishing of m functions, then their pull- 

backs obviously define Z in H along p ; l x .  Hence the assertion follows h'om Proposition 

2.3.2(i) and (ii). 

(ii]) There is an obvious surjection relating the ideals, 

(hb)* I (X ,  Y) -~ I(b-lZ, B). 

I t  and the expression for I(b-lZ, B) in Proposition 1.4.1(iii) yield a surjection relating the 

eonormal bundles, 
(hb)*Nf~ N~(1). 

This surjection is an isomorphism because, under the hypotheses, the source and target 

are locally free sheaves of the same rank. Taking the dual isomorphism and twisting by 

0(1) yields the asserted formula. 

P~OPOSITIO~ 3.4. In  the setup o/ w 3.1, assume that/: X--> Y is a plci o/codimension 

at most n(see w 1.1) and let n also denote the induced/unctions on Z and R. Assume that P2q: 

W-->H is an lci. 

(i) The maps P2: Z ~ H  and P2q: R-+H are plci's o/ codimension at most n. 

(ii) I / t t  is Cohen-Macaulay, then, at each point o/ p(R),  we have cod (p(/~), H) ~<n. 

(iii) I / H  is Cohen-Macaulay and i/ P2P: t t -~H has codimension n, then PeP is an lci 

o/ codimension n and R is Cohen-Macaulay. 
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Proo/. The matter is local on X. So we may replace all the schemes by suitable open 

subschemes and thus assume that  X is a closed subschcme of a smooth Y-scheme P with a 

constant dimension d and that  X is defined in P by the vanishing of m functions, m = n  +d. 

Set A = P  • rH.  Then Z may be viewed as the closed subscheme of A defined by the 

vanishing of the pullbacks of the m functions defining X in P. Now, A / H  is smooth of rela- 

tive dimension d. Hence Pc: Z ~ H  is a plci of codimension at most n. Moreov:er, W is regu- 

larly embedded in A because Peq: W->H is an lci. 

Consider the residual scheme B of W in Z. The structure map b: B->A is an lci of 

codimension 0 by Proposition 2.2. By Proposition 2.3.10) there is a canonical closed em- 

bedding of R in B and, by Proposition 2.3.2(ii), R is defined in B locally by the vanishing 

of m functions. I t  follows that  PeP: R ~ H  is a plci of codimension at most n. Thus (i) holds. 

Suppose H is Cohen-Macaulay. Then A is Cohen-Macaulay because A / H  is smooth. 

Hence, at each point of p(R),  we have 

cod (p(R), A) ~< m 

by Proposition 2.3.3. Since A / H  is flat of relative dimension d, (i) follows. Finally, (iii) 

follows from (i) and Proposition 1.3(i). 

PROPOSITION 3.5. In  the setup o/w 3.1, assume that / is strongly quasi-projective and 

that H is noetherian and divisorial. Assume that / and PeP and Peq are lci's with / and PaP o/ 

the same codimension and that the virtual normal bundle o/ P.2q is equal to the pullback o / a  

virtual bundle v on H. Then the virtual normal bundles o / / a n d  PeP are related by the/ormula, 

%v. = [(PlP)*VI] (1) + [On - OR( -- 1)] + [(PeP)*~ --((Pep)*v)(1)]. 

Proo/. The virtual normal bundles of P2P and p,q are defined, because these maps are 

not only lci's but also strongly quasi-projective by Lemma 3.2. 

If  / is an embedding, then the assertion follows immediately from Lemma 3.3(i), (ii), 

(iii) and Proposition 1.5.2(ii). 

In general, since / is strongly quasi-projective, X is, by definition, isomorphic to a 

closed subscheme of an open subscheme P of a scheme P(E) for some locally free sheaf E 

on Y of finite rank. Set A = P  • yH. Since P~ Y is quasi-projective and since H is noctherian 

and divisorial, A is noetherian and divisorial. Since P~ Y is smooth, the remaining hypo- 

theses for the case in which Y and H are replaced by P and A clearly follow from their 

counterparts. Since X is embedded and closed in P, the corresponding formula holds; this 

is the case of an embedding, treated above. Since P~ Y is smooth, this formula obviously 

implies the general one. 

3 -  812901 Acta mathematica 147. Imprim6 le 11 D6cembre 1981 
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TI~EOREI~I 3.6 (The residual-intersection theorem). In  the setup o[ w 3.1, assume that [ 

is strongly quasi-projective and that H is noetherian and divisorial. Assume that [ and P2P 

and P.zq are lci's with [ and PzP o[ the same codimension. Let n denote the di[[erence between 

the codimension o[ / and that o/PzP. Then the [oUowing "residual-intersection" [ormula holds 

in A'p~: 
]*1H = P,(P2P)* + q, c~([/p~q) (p~q)*. 

Proof. First note tha t  the questionable terms in the formula are, in fact, defined. By 

Lemma 3.2, p is projective, so p ,  is defined. By Lemma 3.2 again, P2P and P2q are strongly 

quasi-projective. Since they are lci's, (P2P)* and (P2q)* are, therefore, defined. Moreover, 

P2q has, therefore, a well-defined virtual normal bundle; hence, since / has one, the nth  

Chern operator of the difference Cn(//P2q) is defined. 

Since / is strongly quasi-projective, X is isomorphic to a closed subseheme of a smooth 

Y-scheme P. Set A =P • rH.  Since P~ Y is quasi-projective and since H is noetherian and 

divisorial, A is noetherian and divisorial. Since P~ Y is smooth, the remaining hypotheses of 

the theorem for the case in which Y and H are replaced by  P and A obviously follow from 

their counterparts, and the formula in tha t  case obviously implies the stated formula. 

Thus we may  assume tha t  / is a closed embedding. 

Let  b: ,B~H denote the blowing-up of H along W. Set m =cod([). By Proposition 3.3(i) 

and (ii), there is a canonical closed and regular embedding (as H-schemes) of R in B with 

codimension m. Set B' =b- lY  ' and W ' =  b-iW and label the various induced maps as indi- 

cated in the following diagram: 

R 

Pl b' q' 
X~ - Z  . . . .  W 

Y~ H B 

Since H is noetherian, b is projective; hence, B is noetherian and divisorial as H is so 

Moreover, W" is a divisior in B (in fact, the exceptional divisor). Thus the hypotheses of 

the theorem hold when H and W are replaced by B and W', The corresponding formula is 

/*[B = p,(ep')* §  cm_l(//eq')(eq')* in A'e. (3.6a) 

This case of the theorem is t reated in [6], 9.2.3, and will be assumed here. (Note tha t  R 

is the  "residual scheme to W" in B" in the sense used by  Fulton-MacPherson because of 
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the relation of ideals in Proposition 2.3.1(iii).) The desired formula will now be derived 

from this one. 

1Note the relation, b.b* = 1. I t  is t reated in [6], 9.2.2, and holds because b is the blowing- 

up of a divisorial, noetherian scheme along a closed and regularly embedded, nowhere 

dense center. To ensure the center's being nowhere dense, it may  be necessary, back at the 

beginning, to replace P by a larger scheme, for example, P • rP .  

The relation b . b * =  1 and the general commutat iv i ty  of pushout and pullback yield 

/* IH = (]*IH)b.b* =b.( f*I  B)b*. 

On the other hand, we obviously have 

b, p,(ep')* b* = P,(PzP)*. 

Let  w: W'--> W denote the restriction of b. Then we obviously have 

t ! ! I $b$ b ,q ,  cm_l(//eq )(eq ) = q , w ,  cm_l(//eq')w*(p=q)*. 

Finally, the usual sort of reasoning with the projection formula gives 

w ,  c,~_l(//eq') w* = en(//p~q); 
indeed, we have 

w,c(//eq')w*c(p2q) = (c(/) I W)w,c(eq')-~(c(p,~q) [ W')w* 

= (c(/) I W ) w , c ( w % o ~ / O w , ( -  1))w* = c(/)[  w .  

Putt ing together all the above relations, we see tha t  the assumed formula (3.6a) implies 

the desired one. 

COROLLARY 3.7. Under the conditions o/ Theorem 3.6, the/ol lowing/ormula holds in 

A 'p , :  
p ,  cl(O~(1))k (P2P)* = - q,  c~+k(//p2q) (p~ q)* ~or k ~> 1. 

Proo/. The notation of the proof of Theorem 3.6 will be used. Reasoning again as 

there, we see tha t  we may  assume tha t  [ is an embedding and tha t  it suffices to establish 

the following relation: 

p ,  cl( Oa(1) )k (ep')* = - q ,  c,,_l_k(l/e q') (eq')*. (3.7 a) 

This relation will also be derived from (3.6a), which is being asumed. 
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The sheaf OR(l) is, by Lemma 3.30) , equal to the pullback of OB(1) or, what is the 

same, of OB(-  W') .  Hence, using the "projection formula" and then (3.63), we get 

p ,  cl( O~(1))k(ep')  * = ( - 1)%~( OB(W)  I B ' ) k p , ( e p ' )  * 

= ( -- 1 )kca(OB(W)IB ' )e[ ( /*IB)  - -q ,  Cm-l(l/eq~)(eq')*]. (3.7 b) 

Next  we analyze the effect of the term ]* ] B. 

Consider the following diagram: 

q' 
B '~ W' 

B *-----;- W '  
ell 

I t  is obviously cartesian. With it in mind, we compute 

c~( OB( W' )  I B '  ) (/* I B)  = (/* I B)c~( OB( W' )  ) = ([*B) (eq') ,  (eq')* 

= q',(/*[ W')(eq ' )*  = q,(cm(/)t W')(eq')*.  

Here the first and third inequalities hold by general commutativity, and the second and 

fourth equalities are very easily checked from the definitions. Using this computation and 

general commutativity, we get 

cI( O~( W' )  I B ' )  k (/* ] B) = q.(c,n(/) l W')c~(eq') ~- ~ (eq')* (3.7 c) 

because Oz(W')[ W' is equal to v~q,. 

Finally, we obviously have 
rn--I 

cx(OB(W') lB ' )~q ,  cm_~(f/eq') (eq')* = q, ~ ( -- 1)*(Cm_~_~(/)[ W')  cl(eq')*+k(eq') *. 

Since / has codimension m, we obviously have 

r n - 1  

c~_~_k(/leq') = 5 ( -  1)*+k(c~-x-~(t)] W')cl (eq ' )  '+k. 
i = - I  

Putting these two equations together with (3.7b) and (3.7c), we find (3.73). 

4. The derived maps 

4.1. Basics.  Let / :  X-+ Y be a separated map of schemes. Define a sequence of satellite 

separated maps, 
/r: Xr+l ~ X~ for r >I 0, 
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inductively as follows. Define/0: X v - ' X o  to be / :  X - ,  Y. Now, assume/~-1 defined. Consider, 

the fibered product of Xr with itself over X~-I and consider its diagonal subseheme A, 

which is a closed subseheme because/r-1 is separated. Define X~+I to be the corresponding 

residual scheme, see w 2.1, and define /~ to be the composition of the structure map p 

and the second projection P2, 

Xr+l = R(A, X~ x X~) 

P~ q 
X~ " Xr x X~ ' A (4.1 a) 

~ 

X ~ _ I  . X~ /r = P2 P 

The m a p / r  will be called the r-th derived map of / ;  the scheme Xr, the r-th derived scheme 

o/x~ r.  

Note that  for r ~>2 the derived scheme Xr possesses a "tauto]ogieal" invertible sheaf 

0(1) = 0~(1) ,  

because it is a residual scheme (and so a projective bundle), and the fiber over the diagonal 

A is 
~9-1A = P(~ '~) ,  

because the eonormal sheaf of A is equal to the sheaf of differentials. 

The formations of the derived map/~: X~+I~X ~ and for r G'2 of the tautological sheaf 

0(1) commute with arbi trary base-change of Y by Proposition 2.4. 

I t  is evident tha t  the sth derived map of ]~ is equal to ./r+s and tha t  for s ) 1  the two 

corresponding tautological sheaves on Xr+~+l are equal too. 

If  [ is locally of finite type, of finite type, or proper, then so is each derived map it" 

Indeed, suppose/r-1 is so. Then so is the projection P2 in (4.1a). Moreover, he ideal I of 

the diagonal A is locally finitely generated ([3] IV1, 1.4.3.1); hence the structure map p 

in (4.1 a) is projective by  definition. Therefore/r  is locally of finite type, of finite type, or 

proper. 

Suppose / is locally of finite type (resp. of finite type). I t  is evident that,  if Y is locally 

noetherian (resp. noetherian) or universally eatenary, then so is each derived scheme X ,  

I t  is e.lear from Lemma 3.2 that ,  if / is quasi-projective and Y is noetherian and divi- 

sorial, then each derived map [r is strongly projective and each derived scheme X r is no- 

etherian and divisoriM. 
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P R O P O S I T I O n  4.2. Let/: X ~  Y be a separated map o/schemes. 

(i) The "switch" involution o/ X • rX,  which interchanges (x, y) and (y, x), has a natural 

covering, which is an involution i o/the derived scheme X~, 

i :  X 2 -+ X 2. 

The restriction o/ i is equal to the identity on the preimage p- l  A o/the diagonal A, although 

it acts by multiplication by - 1  on the normal bundle, and i preserves the tautological shea/ 

o~ X2, 
i*0(1) = 0(1) .  (4.2a) 

Moreover, there is a basic relation, involving maps o/(4.1 a) with r = l, 

/1 i =PIP. (4.2b) 

(ii) I /  / is proper and Y is noetherian, then,/or any r >~ 3, the image on X so/ the/unda- 

mental cycle [Xr] is preserved by i , ,  

i , ( &  ... l r - 1 ) ,  [Xr]  = (& ... I t - l ) *  [X, ] .  

Proo/. (i) Le t  I denote  the  ideal of A. I t  is easy to check t h a t  the  switch involut ion 

preserves I and  t h a t  i t  induces the  operat ion of mult ipl icat ion b y  - 1 on I / I  s. The assert ion 

follows immedia te ly .  

(ii) Wri te  [Xr]=v§ where w has suppor t  in p - l A  bu t  no component  of v does. 

Since i induces the  ident i ty  on p - t A  by  (i), the  image of w is invar ian t  under  i , .  I t  remains  

to  p rove  t h a t  the  image of v is invar ian t  under  i , .  

Set U s = X s - p - l  A. Set Ur=(/s .../r_l) -1 Us. Let  g: Ur~Us denote the  restr ict ion of 

/s . . . /r-1 and  Js: Us-~ Us the  restr ict ion of i. Final ly  set u = [Ur]. Then v lU r =u and every  

componen t  of v meets  Ur. Hence  it  will suffice to prove  ]2,g,u =g,u.  

There  is an involut ion Jr: Ur -~ Ur such t h a t  Jsg =g]r; i t  will be constructed in a momen t .  

Now, u is a linear combinat ion  of cycles c of the  form c = [C] +jr , [C] ,  where C is an irredu- 

cible componen t  of Ur. Obviously,  jr, c =c. So j~,g,c =g,c. Hence  j ~ ,g ,u=g ,u .  

I t  remains  to const ruct  j~. E a c h  Jr will cover ?r-l, whence J2g =gJr. Suppose Jr and  J~-i 

have  been constructed.  Since ]r covers i t - l ,  the  cartesian produc t  is a well-defined involu- 

t ion (covering ?r-l), 

Since this involut ion preserves the  diagonal,  i t  is covered b y  an involut ion jr+l of Ur+l. 

Obviously,  Jr+l covers Jr. 
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I t  remains to  construct  ?'a. Set U = (X x yX) - A. Consider the following two "d iagonal"  

closed subschemes of X x y U: 
A1 = {(x, ~, y)} 

A~ = {(x, y, x)}. 

Let  11 and Is  denote the respective ideals. Consider the  composition of canonical maps,  

Xa-+ X,.. • xX= ~ (X x yX)  x x (X  • yX)-a- X • z X  • y X  

((x, y), (z, y))~+(x, y, z). 

. I t  is covered by  an  isomorphism, Ua&P(I i l s ) ,  which will be constructed next.  

The canonical m a p  Us-+ U is an  isomorphism, and the canonical isomorphism from 

(X x rX)  x z U onto X x r U identifies A x x U with A 1. Hence the  map  from X~ • xX~ 

into X x r X  x r X  is covered by  an  isomorphism from Ug. • xX~ onto P(I1). This isomorphism 

identifies the restriction of the diagonal of X2 x xX~ with the pullback of A s because the  

intersection A i N A s is empty .  Denote  the  pullback of I s by  J .  Then there is an  induced 

isomorphism, Ua-~P(J) ,  which covers the  map  from X 3 into X x r X  x yX. Since A 1 f) A s 

is empty ,  P(J)  is equal to P(I1 Is)- 

Finally,  consider the involution of X x r X  x r X  tha t  switches the  second two factors. 

I t  switches I 1 and I s. Hence it is covered by  an involution of P ( I i  Is). Transpor t  this invo- 

lution over to  U~. The result is the  desired in- 

4.3. r.generic maps. L e t / :  X-+ Y be a separated map  of schemes. Suppose tha t  [ is a 

plci of codimension a t  mos t  n (see w 1.1). Le t  n also denote the  locally constant  funct ion 

on Xr+i defined inductively as the funct ion induced via PiP{ = / i  i) by  the  funct ion n on 

XT. Then, it is clear f rom (4.1a) and Proposit ion 3.4(i) t h a t  each derived map  1, is a plci 

of codimension at  most  n. Hence, by  Proposit ion 1.3(i) if for some r the  derived scheme 

Xr is Cohen-Macaulay and the  derived m a p / ,  has codimension n, t hen /~  is an lci of co- 

dimension n and XT+ i is Cohen-Macaulay. 

The map  / will be called r-generic of codimension n if, for each s = 0, ..., r - 1 ,  the  s th  

derived m a p / s  is an lci of codimension n. 

PROPOSITIO~  4.4. Let 1: X-+ y be a separated map o/schemes. I1 ] is an lei o/codimen- 

sion n and i] X is Cohen-Macaulay, then a necessary and sul/icient condition /or f to be 

r-generic o/codimension n is that / be dimensionally r.generic, that is, that/or each s = 1, ..., r - 1 

the derived map /8 have codimension n. 

Proo]. The assertion is obvious from w 4.3. 
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4.5. Immersions.  Let f: X-~ Y be a separated map of schemes. Then / will be called 

an immersion if [ is locally of finite type and formally unramified ([3] IV4, 17.1.], p. 56). 

Suppose / is an immersion. Then each derived m a p / r  is an immersion too. In  fact, it 

is evident (from the proof of [3] IV4, 17.4.1 a, p. 63) tha t  the structure map p in (4.1a) is an 

open and closed embedding, whose image is the complement of the diagonal A, and tha t  

]1 is equal to the restriction of the projection p~, 

X,.+I = X,. x X~--A 

f, = P~ I Xr+~. 

Moreover, it is evident tha t  for r ~> 1 the tautological sheaf is trivial, 

O x , + i ( 1 )  = Ox~+r 

Suppose tha t  X and Y are smooth over a ground scheme S and t h a t / :  X-+ Y is an 

immersion of S-schemes. Then f will be called r-fold self-transverse if, for each geometric 

point y of  Y, say with image geometric point s of S, the tangent spaces of the fiber X(s)  at  

any  r points of the f iber/- l (y) ,  when viewed as subspaees of the tangent  space of the fiber 

Y(s) at  y, are in general position. 

PROPOSITION 4.6. Let X and Y be smooth schemes over a ground scheme S, and let 

/: X-> Y be an r-fold self-transverse immersion. Then / is r-generic o/codimension n, with 

n(x) = rel.dimr(z)(Y, S ) - r e l . d i m  x (X, S), 

and X 2 . . . . .  X~ are smooth over S. 

Pro@ Note tha t  / is an lci of codimension n; indeed, because Y is smooth, the graph of 

/ is a regular embedding by  [3] IVy, ] 7.12.3, p. 87. Hence the assertion will follow by induc- 

tion on r once it is proved tha t  X 2 is smooth over S with relative dimension at  z equal to 

dim/,(~) (X, S ) - n / l i ( z  ) 

and tha t  ]~ is an ( r -1) - fo ld  self-transverse immersion. 

As noted in w 4.5,/1 is an immersion because / is; in fact, X 2 is equal to X • y X - A  

and /1 is equal to the restriction of P2- Hence it suffices to prove that  X 2 is smooth and 

that,  for each geometric point Z = (xl, xe) of X,, say with image geometric points y of Y 

and s of S, the tangent space Of the fiber X2(s ) at  z is equal to the intersection of the tangent 

spaces of the fiber X(s) at  xl and at x 2, when the three spaces are viewed as subspaces of 

the tangent space of the fiber Y(s) at  y. 
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These assertions are easy to prove in a more or less s t raightforward fashion using the 

reasoning of [3] IVa, 17.13.2, p. 90. There is one hitch, however. The basic result used [3] IV4, 

17.12.1, p. 85, asserts tha t  a subscheme of a smooth  scheme is smooth itself if and only if 

the canonical map  from the conormal sheaf into the restriction of the sheaf of differentials 

is left invertible; it is s tated and proved only for an embedded subscheme and not  an 

immersed one. However,  the proofs of this and related results carry over to the case of an 

immersed subscheme with little or no change. 

PROPOSITION 4.7. Let/ :  X ~  Y be a quasi-projective map o/schemes, with Y noetherian 

and divisorial. 1 / / i s  2-generic, then the virtual normal bundles o / / a n d / 5  are related by the 

/ormula, 
~r, = [i*/~f] (1) + [Ox.~ - Ox~( -- 1)]. 

Moreover, in case [ is an immersion, the above/ormula reduces to 

�9 $ $ 

Proofl The first formula holds by  Proposi t ion 3.5 in view of w 4.1, (4.2b) an d w 4.3 

The second formula comes from the first because, when ] is an immersion, the tautological  

sheaf is trivial by  w 4.5. 

4.8. Remark. The second formula of Proposit ion 4.7 can be obtained simply and 

directly, wi thout  appealing to Proposit ion 3.5. I n  fact, because ] a n d / 1  are "regular  im- 

mersions",  their vir tual  normal  bundles are representable by  canonical locally free sheaves 

(because the H~ of their cotangent  complexes vanish, being the sheaves of relative dif- 

ferentials) and the formula comes from a canonical isomorphism of sheaves. 

indeed,  identifying X2 with X • r X - A  and ]~ and ]1i with the restrictions of the 

projections Pe and 1ol (see w 4.5 and (4.2b),) it is not  hard to construct  a canonical surjec- 

tion of conormal sheaves, 

This surjection is an isomorphism because, under  the hypotheses,  the source and target  are 

locally free sheaves of the same rank. 

5. The multiple-point formulas 

5.1. The setup.. Fix a map of schemes, /: X ~  Y. Assume tha t  / is a projective lci of 

codimension n~>l. (Note tha t  n is a locally constant  funct ion on X.) Assume tha t  Y is 

noetherian, divisorial and universally catenary.  Recall f rom w 4.1 tha t  then the derived 
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schemes X l ( = X ) ,  X~, X a ... .  are each noetherian, divisorial and universally catenary and 

tha t  the derived maps /0 (= / ) , / 1 , /~  . . . .  are each strongly projective. 

For r~>l, the pushout to X of the fundamental  cycle of Xr will be denoted by  mr, 

'nl'r = (11 . ' , / r - 1 ) $ [ ' X r ] ,  //~1 = [X]. 

The rational-equivalence class of m, in A . X  will be denoted by m r too. 

The definition of mr did not involve the hypothesis tha t  / is an lci. So it applies to 

[~: X~-->X. The corresponding cycle and its class will both be denoted by m:. Thus we have 

m~ = (/2 .. ./r),[Xr+l], ml = [X~], (5.1a) 

/1, m~ : mr+l, (5.1 b) 
�9 ! t 

�9 , m r =  mr, (5.1 c) 

the first two relations being evident, the third holding by  Proposition 4.2(i) for r = 1 and 

Proposition 4.2(ii) for r>~2. Moreover, if /1 is an lci (for example, if / is r-generic for an 

r>~2), then we have 
/~" m t = m~ (5.1d) 

because, in general, the pullback of the fundamental  class of a target  is the fundamental  

class of the source. 

Several Chern operators will be used often, so they will be abbreviated as follows: 

t = c~(O~(1));  

c,~ = c~( / )  = c ~ ( v , ) ;  

t 
c~ = c d / 1 ) ,  

the lat ter  being defined only when/1 is an lci. 

Recall from w 4.3 that  / is called r-generic (of codimension n) i f / s  for s=O, ..., r - 1  

is an lci of codimension n (where n now is a function on X~+l suitably induced by  the 

original n, the codimension o f / ) .  Recall from Proposition 4.4 that ,  if X (or Y) is Cohen- 

Macaulay, then / is r-generic if and only if fl ..... /r-1 have codimension n. Now, / will be 

called practically r-generic if there is a closed subset S of Y such tha t  the restriction of ], 

( x  - / - ~ s )  ~ ( r -  s ) ,  

is r-generic and such that ,  setting 

nr(X) = max {n(x2) +. . .  4- n(xr) ] x~ ..... x r E/-1/(x)}, (5.1 e) 
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we have, for each x in /--1S, 

Note that  we have 

cod, (1-IS, X) > nr(x). 

n~(z) >~ (r -1)n(x) ,  

with equality if n is constant along/-l l(x).  

PROPOSlTIO~ 5.2. In  the setup o/w 5.1, i / / i s  practically r-generic, i / the codimension 

n o / / i s  constant in case r >~ 4, and i/ the singularity set S2(/) is nonempty, then r and n must lie 

in the /ollowing range: 
r = 1, 2 or 3, n arbitrary; 

r = 4 ,  n = 1 , 2 , 3 ;  

r = 5  or 6, n = l .  

Proo/. By definition, ~q2([) is the subset of X whose geometric points x satisfy the rela- 

tion, 
dimk(x) ~ ( x )  >~ 2. 

Now, since / is an lci of eodimension n, we have 

cod (~q~(/), X) ~< 2(n +2). (5.2a) 

Indeed, embed X in a smooth Y-scheme P (locally on X is enough). Then the conormal 

bundle-cotangent bundle sequence, 

is a presentation of s by locally free sheaves whose ranks differ by n; whence (5.2a) holds. 

I t  is evident from the definitions, see w 4.1, tha t  at  each point x of ~q~(]) the fiber ];l(x) 

has dimension at least 1 and that  therefore the dimension of the fiber ~0-1(x), where ~v = 

/1 .. ./r-!, is at, least r - 1 .  Thus we have 

cod (~v-l(S~(/)), ~2(1)) < - ( l -  1). 

Hence, by additivity Proposition 1.3(ii) (which holds because Y is universally catenary), 

(5.2 a) yields the second inequality in the expression, 

cod (~0) ~< cod (~0-:(~q~(/)), X) ~< 2(n+2) - ( r - l ) ;  (5.2b) 

the fh'st inequality, which holds along 9-1($2(/)), is obviously true. 
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By hypothesis, there is a subset S of Y such tha t  /-1S has codimension at  least 

( r - 1 ) n §  in X and the restriction of / to the complement of /-1S is r-generic. If  /-1S 

contains *~2(]), then (5.2a) yields 

( r -  1)n § 1 ~ 2(n § (5.2c) 

an inequality tha t  is satsified just for the values of r, n listed in the assertion. On the other 

hand, if S does not contain $2(]) and if r ~>4, then, because the restriction of / is r-generic 

of constant codimension n, (5.2b) yields 

( r - -1)n  ~< 2 ( n §  1), 

an inequality that  is satisfied for no more values of r and n than (5.2 c) is. 

P~OPOSITIO~ 5.3. I n  the setup o/ w 5.1, /or each component M o/ the cycle m r and /or  

each r >~ 2, we have 
cod x (M, X )  ~. n(x,z) § ... + n(x~) ~ nr(x ) (5.3a) 

/or suitable points x 2 . . . .  , x r o / the / iber / -1 / (x ) .  Moreover, equality holds in the/irst  relation i/ 

] is practically r-generic o/ codimeusion n. 

Proo/. Let Z be an irreducible component of Xr and z its generic point. Set F =/1 .. ./r-i- 

Since each/~ has codimension at  most n (see w 4.3), by additivity we have 

cod z (Z, X )  < n(z,,) + ... § n(zr) (5.3b) 

for certain points z 2 ..... z~ of the fiber/-1/@(z)). On the other hand, additivity yields 

codz (Z, X) -- cod z (Z, T(Z)) + cod~)(~(Z), X). 

Since, by definition, the components of m~. are the ~v(Z) such tha t  cod (Z, F(Z)) is 0, the first 

inequality of (5.3a) follows. The second inequality holds by the definition (5.1e) of hr. 

Suppose tha t  / is practically r-generic of codimension n; tha t  is, there is a closed subset 

S of Y such that  the restriction of / to the complement of / -1S is r-generic of codimension 

n and the codimension of / -1S in X at  x is more than nr(x). Then, by (5.3a), no component 

of m r can lie in/-1S.  Hence, because the restriction of / is r-generic of codimension n, the 

derivation of (5.3 b) shows tha t  equality holds in it for each Z such tha t  F(Z) is a component 

of mr. The second assertion follows. 

5.4. The double-point set. In  the setup of w 5.1, the inmge D =/1(X2) deserves the name, 

the double-point set o / / .  Indeed, it is evident from the definitions tha t  the geometric points 
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of D are of these two types:  (1) the strict double points, those for which there is a second 

geometric point  of X, distinct f rom first bu t  with the same image under  /, and (2) the 

cuspidal or ramification points, those a t  which ~ is nonzero, i t  is evident t ha t  D is st, rati- 

fied by the  singularity sets ~q~(/), whose geometric points x are those where ~ ( x )  has di- 

mension at  least i. I t  is evident t ha t  D, in fact, ~ql(/) contains the closed set F of points at  

which the fibers of / are positive dimensional. I t  is not  hard to prove tha t  the complement  

of D is just  the  open set on which / is an isomorphism. (None of these observations require 

/ to be an lci or Y to be divisorial or universally catenary.)  

Suppose tha t  ] is practically 2-generic. Le t  M be an irreducible component  of D and 

x the generic point  of M. The proof of Proposit ion 5.3 shows tha t  we have 

cod~ (M, X) < n(x~) 

for every point  x2 of the  fiber ]-l/(x), except possibly for x 2 = x in the case tha t  x is no t  

ramification point, and tha t  equali ty holds for some x 2 if and only if M is a component  of 

the cycle me. Moreover, it is clear that ,  if M is a component  of ms, then x r and some 

x,~ F.  

Suppose tha t  Y is Cohen-Macaulay and t h a t / - 1 / ( F )  is nowhere dense in D. Then we 

have 
cod~ (D, X) < n(x~) (5.4a) 

for every point  x2~F of the fiber/-1/(x),  except possibly for x 2 = x  in the case tha t  x is no t  

a ramification point, because by  Proposit ion 3.4 we have 

eod(~. ~)(P2 lP(X2)) ~ n(x2). 

Suppose in addit ion tha t  $2(]) is nowhere dense in D and tha t  equali ty holds in (5.4a) 

for every x and x2 (except possibly for x 2 = x  in the case tha t  x is not  a ramification point).  

Then it is no t  hard  to prove t h a t  me has no embedded components,  t ha t  the support  of mz 

is all of D, and tha t  / is practically 2-generic, with S being the union of the images of the 

components  Z of x 2 such tha t  the / I (Z)  are no t  components  of m2. 

L]S~IMA 5.5. In  the setup o/ w 5.1, i~ / is 2-generic o/ codimension n, then 

/1 , i , /~  =/*/ , -~ ,  
(5.5a) 

l l . i , t~/~ = - c~+~ /or ~ >~ 1 .  

Proo/. The residual-intersection theorem (3.6) and its corollary (3.7) applied in the  

setup of (4.1 a) with r = 1 yield 

1" I z : p ,  1~ + q,  ~(l/p,~ q) (p~ q)* 

P,tk(p2P) * = - q ,  c~+k(//P~q) (P2q)*, 
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because P.zq has codimension 0, being an isomorphism. Applying Pl* to both sides of these 

formulas yields the desired ones as follows. 

The commutativity of pushout and pullback yields 

Next,  (4.2b) yields 
p~,(/*l X )  = 1"/,. 

Pl*P,  = h , i , .  

Finally, Plq and P2q are isomorphisms; hence 

pl  , q , c(/ /pg_ q) (p,, q)* = c(/). 

Putt ing it altogether, we get the desired formula. 

THEOREM 5.6 (the double-point theorem). In  the setup o/ w 5.1, i[ / is practically 

2-generic of eodimension n, then the/oUowing "double-point"/ormula holds in A . X :  

~ 2  = / * / ,  m l  -- en ml .  

Proo]. We may assume that  ] is 2-generic of codimension n. Indeed, by hypothesis, 

there is a closed subset S of Y such t h a t / - 1 S  has codimension in X at  x more than n2(x ) 

and the restriction of / to the complement of [-18 is 2-generic. Each term of the double- 

point formula has degree at most n2(x ) (in the grading by codimension) by Proposition 5.3 

and general properties of the operators involved. Each term's formation clearly commutes 

with restriction to the complement o f / - iS .  Hence the formula will hold for / if it holds for 

its restriction, which is 2-generic. 

If  / is 2-generic, the double-point formula comes from applying (5.5a) to m 1 and using 

(5.1d), (5.1c) and (5.1b). 

LE~)~A 5.7. In  the setup o/w 5.1, i /]  is 2-generic ol codimension n, then ]or any k we have 

[1, i ,c ,k=ek[1, i ,  + ~ n j cj/1,i,t~_ ( 
t~0 LI=O 

Moreover, i/  /1 is an immersion, then the second term on the right vanishes. 

Proo/. I f / 1  is an immersion, the 0(1) is trivial (see w 4.5), so t is 0 and the second 

term vanishes. 

In  the general case, Proposition 4.7 yields the relation, 

c(h ) = c( ( i*]~ v/ ) (1) (1 --t) -1. 
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Now, the total Chern operator of the product of a virtual bundle N of rank n and a line 

bundle L is given by the following formula: 

e(1V| = ~ c~(N)(1 +el(L))~% 
i 

(This well-known formula is easy to verify using the splitting principle because both sides 

are additive in N.) Hence a little computation yields the relation, 

C('i) = ~j C,(i'/~7)I) ~k (l=~o (nl]) ) tk" 

Applying ]1, i , ,  using the projection formula, and rearranging the sums yields the desired 

relation. 

THEOREM 5.8 (the Herbert-Ronga formula). I n  the setup o] w 5.1, i] / is practically 

(r § l )-generic o/eodimension n (/or any r ~ 1) and i / / i s  an immersion, then the/ollowing 

]ormula holds in A .  X :  
mr+ 1 ~ / * f ,  mr - rc n mr. 

Proo]. ]?or r = l ,  the assertion is a special case of the double-point theorem (5.6). 

Reasoning as in the proof of that  theorem, we may assume that  / is r-generic of eodimen- 

sion n. Proceeding by induction on r, we may assume the following formula: 

t ~ t t t 
mr = ]1 ]1,m~_1 -- (r - 1) Cnmr-~. 

Applying ]1, i ,  and using (5.1 e), (5.1 b), (5.5 a) and Lemma 5.7, we get the desired formula. 

Tt~nOR~M5.9 (the triple-point theorem). I n  the setup of w 5.1, i/ / is practieally 3-ge- 

neric o/ codimension n, then the ]ollowing "triple-point" /ormula holds in A . X :  

n--1 
m a = / * / , m 2 - 2 c ~ m 2 §  ( ~ 2n-Jcje2,_j)ml. 

l = 0  

Proo/. Reasoning as in the proof of the double-point theorem (5.6), we may assume 

that  ] is 3-generic of codimension n. Then that  theorem applies to /1  and yields 

e $ p e ! 
m~ =/1  h ,  ml -c~ml.  

Applying f l ,  i ,  and using (5.1c), (5.1b), (5.5a) and Lemma 5.7, we get 

Finally, (5.1d) and {5.5b) yield the desired formula. 
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TI~IEOREI~I 5.10 (the quadrup le -po in t  theorem for n = l ,  2, 3). In  the setup o/ w 5.1, i/ 

/ is practically 4-generic o/ codiraension n /or n = I ,  2 or 3, then the /ollowing "quadruple- 

point"/ormul~s hold in A.  X:  

n - l ,  m 4 - / * / ,  m~ - 3c l m  3 + 6c 2 m~ - 6(c 1 c~ + 2c3) m 1. 

n = 2, ~'4 = /*/ ,m3-3c2m3 +6(clca + 2ca)m2-6(cle2ea + 2e~Q + Sclcs + 3%ca +12c6 +c])ml. 

n = 3 ,  m4=/*/,m3-3%ma+6(c2c4+2clcs+4%)m2-6(c2c3c4+2c~cs+lOclcec~ 

+ 26c~ c7 + 3c lc  a c~ + 12c~ c7 + 60cl Cs + 9c~ C6 + 72% + 9c 4 c 5) m 1. 

Proo/. Reasoning  as in the  proof  of Theorem 5.6, we m a y  assume t h a t  / is 4-generic 

of codimension n. Then  a p p l y i n g / 1 , i ,  to the  t r ip le -po in t  fo rmula  fo r /1  and  using (5.1 e), 

(5.1b) and  (5.5a), we ge t  
n - - 1  

- t , n - )  �9 t ! , 

m4 =/*/,n~3--cnm 3 --2/1,~,cnm2 -~ ~. 2 /1,~.,c I c2n-lml. 
~=o 

This expression presents  some minor  new features.  

To fac i l i ta te  the  computa t ion ,  the  work  m a y  be organized as follows. F i r s t ,  work  ou t  

the  expression fo r /~ ,  i ,  c~ for ] = 1 . . . . .  2n from L e m m a  5.7 (n m a y  be fixed).  Next ,  using this  

expression and  (5.1b), (5.1c), (5.1d) a n d  (5.5b), work  out  an  expression for 

. t Jc ! ~,~,c~t m~, Ic>~O, ? '=1 . . . . .  2n; 

there  are  bas ica l ly  only  two different  cases, k = 0  and  k >0 ,  and  t h e y  differ only  a t  the  f i rs t  
�9 n ! te rm.  Next ,  work  out  an  expression f o r / 1 , ~ , t  me for k > 0  by  using the  double -po in t  for- 

mula  for /~ and  then  (5.1b) and  (5.5b) and  the  expression for /~ , i ,c ' J~m'~;  the  l a t t e r  m a y  be 

used because 
k ~ ~ t k  t c~ =c~ 

as a n y  two Chern opera to rs  commute .  F ina l ly ,  the  te rms 

/1,i,c'~m'~ and  /1,i,c~c'2~,jm'l 

appear ing  in the  expression above  for m4 can be conven ien t ly  worked ou t  b y  using the  

expression f o r / 1 ,  i,c~ and  then  the  required,  b u t  ava i lab le  expressions.  

TI~EOanM 5.11 (qu in tup le -po in t  (resp. sex tuple -poin t )  theorem for n -  1). In  the setup 

o/ w 5.1, i/ / is practically 5-generic (resp. 6-generic) o] codimension 1, then the /ollowing 

"quintuple-point" (resp. "sextuple-point") /ormula holds in A . X :  

m 5 = / * / ,  m 4 - 4c 1 m 4 + 12co m 3 - 24(c 1 c 2 + 2e3) m 2 + 24(c~ c e + 5c lc  3 + 6c 4 + c~) m 1 

(resp. ra6 = / * / ,  m 5 - 5c 1 m 5 + 20c 2 m a - 60(c 1 c 2 -.~ 2c3) m a + 120(c~ e 2 + 5e 1 c a + 6c 4 + c~) m? 

- 120(c~ c,, + 9c~% + 26clc 4 + 3clc~ + 8c~c3 + 24c5) ml). 
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Proo]. The proof is similar in spirit to that  of the quadruple-point theorem (5.10). 

There are no new features. However, the computation is more involved, with fewer fresh 

starts.  
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