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1. I n t r o d u c t i o n  

In this paper we establish a commutator  estimate which allows one to concretely identify 

the product BMO space, BMO(R2+ x R2+), of A. Chang and R. Fefferman, as an operator 

space on L2(R2). The one-parameter analogue of this result is a well-known theorem of 

Nehari [8]. The novelty of this paper is that we discuss a situation governed by a two- 

parameter family of dilations, and so the spaces H 1 and BMO have a more complicated 

structure. 

Here R2+ denotes the upper half-plane and BMO(R2+ • R2+) is defined to be the dual 

of the real-variable Hardy space H 1 on the product domain R2+ x R2+. There are several 

equivalent ways to define this latter space, and the reader is referred to [5] for the various 

characterizations. We will be more interested in the biholomorphic analogue of H 1, which 

can be defined in terms of the boundary values of biholomorphic functions on R 2 • R2+ 

and will be denoted throughout by Hi(R2+ • cf. [10]. 

In one variable, the space L2(R) decomposes as the direct sum H 2 ( R ) |  

where H2(R)  is defined as the boundary values of functions in H2(R2+) and H2(R)  

denotes the space of complex conjugate of functions in H2(R).  The space L2(R2), there- 

fore, decomposes as the direct sum of the four spaces H 2 ( R ) |  H2(R)@H2(R) ,  

H 2 ( R ) |  and H 2 ( R ) |  where the tensor products are the Hilbert space 

tensor products. Let P~-,• denote the orthogonal projection of L2(R 2) onto the holo- 

morphic/anti-holomorphic subspaces, in the first and second variables, respectively, and 

let Hj denote the one-dimensional Hilbert transform in the j t h  variable, j - -1 ,  2. In terms 

of the projections P+,• 

HI=P+,++P+,--P-,+-P-,- and H2=P+,++P-,+-P+,--P_,_. 
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ported by NSF Grant DMS-9706884. 
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Tile nested commutator deternfined by the function b is tile operator  [[Mb, HI],/ /2] 

acting on L2(R2), where, for a function b on the plane, we define Mbf:=bf .  

In terms of the projections P c , e ,  it takes the form 

I[[Mb, H1],H2] =P+,+MbP_,_-P+_MbP-,+-P-+MbP+--t-P-,_MbP+,+. (1.1) 

Ferguson and Sadosky [41 established the inequality II[[Mb, Ht],  H2]IIL~ <~clIblIBMo. 
The main result is the converse inequality. 

THEOREM 1.2. There is a constant c>0  such that IIbIIBMo <~clI[[Mb, H1], H2]IIL~-~L= 
for all functions b in BMO(R 2 xR2+). 

As A. Chang and R. Fefferman have established for us, the structure of the space 

BMO is more complicated in the two-parameter setting, requiring a more subtle approach 

to this theorem, despite the superficial similarity of the results to the one-parameter 

setting. The proof relies on three key ideas. The first is the dyadic characterization of 

the BMO norm given in [1]. The second is a variant of Journ6's lemma, [61, (whose proof 

is included in the appendix). The third idea is that  we have the estimates, the second of 

which was shown in [4], 

JJbllesMO(r,,,,) <~ cJJ[[Mb, a~], H2IIIL~-*L~ ~< e'lJbJJz~MO. 

An unpublished example of L. Carleson shows that  the rectangular BMO norm is not 

comparable to the BMO norm, [3]. We may assume that  the rectangular BMO norm of 

the function b is small. Indeed, this turns out to be an essential aspect of tile argument. 

From Theorem 1.2 we deduce a weak factorization for the (biholomorphic) space 

Hi(R2+ x R 2). The idea is that  if the function b has biholomorphic extension to R2+ x R2+ 

then for fimctions f ,  gE L2(R2), 

• ([[Mr,, H1], H2]f,g} = (b, P_ _fP+,+g}. 4 

So in this case, the operator norm of the nested commutator  limb, H1], H2] is comparable 

to the dual norm 

Ilbll. := sup I(fg, b) l, 

where the supremum above is over all pairs f , g  in the unit ball of H2(R2+xR2). On 

the other hand, since Ilbll ~ M O  and II[[Mb, Hi  l, 82] II L~-~L= are comparable,  the dual norm 

above satisfies 

Ilbll, ~ sup I(h, b)[, 

where the supremum is over all functions h in the unit ball of Hi(R2+ x R2+). 
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C O R O L L A R Y  1.3. Let h be in HI(R2+• with [[h[]l=l. Then there exist functions 

h ~ ~ f (fj),  (gj)C_H2(R2+• such that =~-~-j=x fJgJ and Y~j=I [[ J[[2IIgJl]2 <<- e" 

We remark that  the weak factorization above implies the analogous factorization 

for H 1 of the bidisk. Indeed, for all l~<p<oc, the map Up: HP(R2+ • 2) defined 

by 
/ 2i x2/pf 2i x2/p I+A 

( U P f ) ( z ' w ) = T r 2 / p ~ - z )  ~ - w )  f (a(z) ,a(w)) ,  a ( A ) : = i l _ A ,  

is an isometry with isometric inverse 

/ 1 \2/p/ 1 \2/p 

A+i" 

The dual formulation of weak factorization for H I ( D  2) is a Nehari theorem for the 

bidisk. Specifically, if bE H2(D 2) then the little Hankel operator with symbol b is densely 

defined on H2(D 2) by the formula 

rbf  = P_,_ (b f). 

By (1.1), HI~bII = H[[M~, H1], H2][[L2--+L 2 and thus, by Theorem 1.2, HFbH is comparable to 

]]b]]BMO, which, by definition, is just the norm of b acting on Hi(D2).  So the boundedness 

of the Hankel operator Fb implies that  there is a function C E L ~ ( T  2) such that  P+,+r 

Several variations and complements on these themes in the one-parameter setting 

have been obtained by Coifman, Rochberg and Weiss [2]. 

The paper is organized as follows. w gives the one-dimensional preliminaries for 

the proof of Theorem 1.2, and w is devoted to the proof of Theorem 1.2. The appendix 

contains the variant of Journal's lemma that  we use in our proof in w One final remark 

about notation. A < B  means that  there is an absolute constant C for which A<.CB. 

A ~ B  means that  A < B  and B<A.  

We are indebted to the anonymous referee and Andreas Seeger. 

2. R e m a r k s  o n  t h e  o n e - d i m e n s i o n a l  c a s e  

Several factors conspire to make the one-dimensional case easier than the higher- 

dimensional case. Before proceeding with the higher-dimensional case, we make sev- 

eral comments about the one-dimensional case, comments that  extend and will be useful 

in the subsequent section. 

Let H denote the Hilbert transform in one variable, P+ = �89 (I + H) be the projection 

of L2(R) onto the positive frequencies, and P_ is � 89  the projection onto the 

negative frequencies. We shall in particular rely upon the following basic computation: 

�89 [MD, HI [~ = P_ [P_ b[ 2 - P+ [P+b[ 2. (2.1) 
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The frequency distribution of IP_bl 2 is symmetric since it is real-valued. Thus, 

IIbll~ < IIP_lp_b]2-p+lP+bl2112 

<~ II[Mb, Hlll2~211bll2. 

Moreover, if b is supported on an interval I, we see that  

1/2 Ilbl12 ~< 1II1/4 Ilbl14 <~ IZl 1/4 II [Mb, HI 112-,2 IIbll~/2, 

which is the BMO estimate on I. We seek an extension of this estimate in the two- 

parameter setting. 

We use a wavelet proof of Theorem 1.2, and specifically use a wavelet with compact 

frequency support constructed by Y. Meyer [7]. There is a Schwartz function w with 

these properties: 

�9 IIw112=1. 

�9 ~(~) is supported on [2, 8] together with the symmetric interval about 0. 

�9 P+w is a Schwartz function. More particularly, we have 

Iw(x)h IP• ~ ( l + l x l )  -n, n ~  1. 

Let T) denote a collection of dyadic intervals on R.  For any interval I, let c(I) 
denote its center, and define 

l w(X-[_~(I)). 

Set w~ := P+wl. The central facts that we need about the functions {wl : IED}  are these: 

First, that  these functions are an orthonormal basis on L2(N). Second, that  we 

have the Lit t lewood-Paley inequalities, valid on all L p, though p = 4  will be of special 

significance for us. These inequalities are 

[~ '(f'~iS)'211] 1/2 p, l < p < c c .  (2.2) Ilfllp~ 

Third, that the functions wl have good localization properties in the spatial variables. 

That  is, 

Iwl(x)l, Iw/=l=(x)l • 1I]-I/2xI(x) n, n ~  1, (2.3) 

where Xl(X):=( l§  We find the compact localization of the wavelets 

in frequency to be very useful. The price we pay for this utility below is the careful 

accounting of "Schwartz tails" we shall make in the main argument. Fourth, we have the 
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identity below for the commutator  of one wi with a wj.  Observe that  since P+ is one 

half of I + H ,  it suffices to replace H by P+ in the definition of the commutator.  

= P - w I w j  -P+wIw~ = P _ w I w j  -P+w~[w~ 

0 if III ~>41JI, 

= P_Jwfj2-p+]w~[] 2 if I = J ,  

wy w j - w  z+wJ + i f lJ l~>4llI .  

(2.4) 

From this we see a useful point concerning orthogonality. For intervals I,  I ' ,  J and J ' ,  

assume [J[~>8[I], and likewise for I'  and J ' .  Then 

supp(w~,j)Nsupp(w~,j , )  = 0 ,  lYl ~8111. (2.5) 

Indeed, this follows from a direct calculation. The positive frequency support of W I+wJ+ 

is contained in the interval [(3lID -1, 8(31I])-1]. Under the conditions on I and I', the 

frequency supports are disjoint. 

3. P r o o f  o f  t h e  m a i n  t h e o r e m  

BMO(R2+ x R2+) will denote the BMO of two parameters (or product BMO) defined as the 

dual of (real) H 1 (R2+ x R2+). The following characterization of the space BMO(R2+ • R~+) 

is due to A. Chang and R. Fefferman [1]. 

The relevant class of rectangles is ~ - - D •  all rectangles which are products of 

dyadic intervals. These are indexed by R E ~ .  For such a rectangle, write it as a product 

R1 x R2 and then define 

vR(Xl, x2) = wRl(xl ) (x2). 

A function feBMO(R2+• and only if 

[ sup Ig1-1 ~ I(f, vR)l 2 <oc .  
U R C U  

Here, the sum extends over those rectangles RET~, and the supremum is over all open 

sets in the  plane of finite measure. Note that the supremum is taken over a much broader 

class of sets than merely rectangles in the plane. We denote this supremum as IIflIBMO. 
In this definition, if the supremum over U is restricted to just rectangles, this defines 

the "rectangular BMO" space, and we denote this restricted supremum as IJfllBMO(rec). 
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Let us make a further comment  on the BMO condition. Suppose that  for RET~, we 

have non-negative constants aR for which 

RCU 

for all open sets U in the plane of finite measure. Then, we have the John-Nirenberg 

inequality 

R~uIR[-laR1R p~lUI 1/p, l < p < o c .  

See [1]. This, with the Li t t lewood-Paley inequalities, will be used several times below, 

and referred to as the John-Nirenberg inequalities. 

3.1. The principal p o i n t s  in t h e  a r g u m e n t  

We begin the principle line of the argument.  The function b may be taken to be of 

Schwartz class. By multiplying b by a constant, we can assume that  the BMO norm of b 

is one. Set B2-~2 to be the operator  norm of [[Mb, H1], H2]. Our purpose is to provide 

a lower bound for B2-.2. Let U be an open set of finite measure for which we have the 

equality 

I(b, vR)l  2 = IUI. 
RCU 

As b is of Schwartz class, such a set exists. By invariance under dilations by a factor 

of two, we can assume that  � 8 9  In several estimates below, the measure of U 

enters in, a fact which we need not keep track of. 

An essential point is that  we may assume that  the rectangular BMO norm of b is 

at most e. The reason for this is that  we have the est imate ]lbllBMO(rec)SB2-~2. See [4]. 

Therefore, for a small constant c to be chosen below, we can assume that  II b[[ BMO(rec)<~ ~, 
for otherwise we have a lower bound on B2--,2. 

Associated to the set U is a set V which contains U and has the properties specified 

in Lemma A.1. I t  is critical that  the measure of V be only slightly larger than the 

measure of U, or more exactly, [V[<(I+(f)[U[,  for a choice of 0 < 5 < 1  to be specified. 

Define 

#(R):=sup{p:#RcV},  RcU.  

The quantity #(R)  measures how deeply a rectangle R is inside V. This quanti ty enters 

into the essential Journ~'s lemma, see [6] or the variant we prove in the Appendix. 

In the argument below, we will be projecting b onto subspaces spanned by collections 

of wavelets. These wavelets are in turn indexed by collections of rectangles. Thus, for a 
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collection .dC_~, let us denote 

bA := E (b, vR> vR. 
REA 

The relevant collections of rectangles are defined as 

1A := {ReTi  : R c  U}, 

"N = {RET-C-IA : R c  V}, 

W =  ~ - b I - V .  

For functions f and g, we set { f ,g} :=  [[Mf, H1], H2]~. 
We will demonstrate that  for all 6, c>0  there is a constant Ks >0 so that  

(i) II{bV, bU}ll2<s 
(ii) I]{b w, bU}ll2<...Kss 

Furthermore, we will show that  l<[[{bU, bU}[l~. Since b=bU+bV+b w, IlbUll2<l and 

6, r  are arbitrary, a lower bound on B2-+2 will follow from an appropriate choice of 6 

and e. To be specific, one concludes the argument by estimating 

1 ~ [[{bU, bU}[]2 

< [[{bU+b v, bU}ll2 + 6 1 / 4  

[[{bU +bV +b w,bu}[[2+61/4 + Ksr 1/a 

B2--+2 + 61/4 + Ks r 

Implied constants are absolute. Choosing 5 first and then ~ appropriately small supplies 

a lower bound on B2--,2. 

The estimate l~<[[{b u, bU}]]2 relies on the John-Nirenberg inequality and the two- 

parameter version of (2.1), namely 

�88 [[Mb, H1], H2] b ---- P+,+ ]P+,+ b[ 2 - P+,_ ]P+,_ bl 2 - P_,+ [P_,+ b[ 2 +P_ ,_ [P_ ,_ b] 2. 

This identity easily follows from the one-variable identities. Here P• denotes the 

projection onto the positive/negative frequencies in the first and second variables. These 

projections are orthogonal and moreover, since [P•177 2 is real-valued we have that 

liP•177 ]p•177 1 [] [p•177 Therefore, [[bU]]2<~[[{b u, bU}[]2. It follows that  

[~u ~1/~_ [~u l<b'vR>l~ 11/211 
1 < []bUN2 = [(b, vn>[ 2] < Inl in]  4 

~< ff~"ll4 < Il{~ ~, b~}ll~/~ 
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The estimate (i) relies on the estimate IVI<(I+6)IUI. Now, if REV, then R c V  
and since b has BMO norm one, it follows that  

IUl+llbVll~ = ~ I(b, vR}12 <~ (l+6)luI �9 
R C U U V  

Hence NbVll2<~ 1/2. Yet the BMO norm of b v can be no more than that  of b, which is to 

say one. Interpolating norms we see that  Ilbv]14 < ~1/4, and so 

II { by, bu } 112 ~< II by 114 II bu 114 < 51/4. 

3.2. Verifying the  es t imate  (ii) 

We now turn to the estimate (ii). Roughly speaking b u and b w live on disjoint sets. But 

in this argument we are trading off precise Fourier support of the wavelets for imprecise 

spatial localization, that is the "Schwartz tails" problem. Accounting for this requires a 

careful analysis, invoking several subcases. 

A property of the commutator  that  we will rely upon is that  it controls the geometry 

of R and R'. Namely, {vR,,vR}~O if and only if writing R = R l x R 2  and likewise for R t, 
we have for both j=  1, 2, [R~jI<~4[Rj [. This follows immediately from our one-dimensional 

calculations, in particular (2.4). We abbreviate this condition on R and R t as Rt<~R and 

restrict our attention to this case. 

Orthogonality also enters into the argument. Observe the following. For rectangles 

Rk, R k, k=l ,2 ,  with Rk<~Rk, and for j = l  or j=2, 

if 81/~Jl ~< InJl and SIR21 < In~l, then (vk, vnl,vh2~-7~R~ ) =0. (3.1) 

This follows from applying (2.5) in the j t h  coordinate. 

Therefore, there are different partial orders on rectangles that  are relevant to our 

argument. They are: 

�9 Rt<R if and only if 81R~I<~IRy] for j = l  and j=2. 
�9 For j = l  or j=2, define Rt<jR if and only if R ' ~ R  and 81R~jI~IRj] but Rt~R.  
�9 R'~-R if and only if �88 for j = l  and j=2. 

These four partial orders divide the collection {(R ~, R ) : R t E W ,  RE/4, Rt~R} into four 

subclasses which require different arguments. 

In each of these four arguments, we have recourse to this definition. Set /4k, for 

k=O, 1, 2, ..., to be those rectangles in /4  with 2 - k - l < # ( R ) ~ 2 k ,  RE/4k. 
Journ6's lemma enters into the considerations. Let/4~C/4k be a collection of rectan- 

gles which are pairwise incomparable with respect to inclusion. For this latter collection, 
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we have the inequality 

Z I R l ~ < K 6 2 k / l ~ 1 7 6  U RI. (3.2) 
RGI~' REI~' 

See Journ4 [6], also see the Appendix. This together with the assumption that b has 

small rectangular BMO norm gives us 

}lbblkllBMO <~ K~2k/m~162 (3.3) 

This interplay between the small rectangular BMO norm and Journ4's lemma is a decisive 

feature of the argument. 

Essentially, the decomposition into the collections L/k is a spatial decomposition of 

the collection U. A corresponding decomposition of I,V enters in. Yet the definition of 

this class differs slightly depending on the partial order we are considering. 

For R'E1/Y and R E l t  the te rm {v a', v R} is a linear combination of 

vR, H2Ht~--~, H2(vR, Ha~-~), (HlVR,)(H2~), H1H2(vR,~--R). 

Consider the last term. As we are to est imate an L2-norm, the leading operators  H1H2 
can be ignored. Moreover, the essential properties of wavelets used below still hold for the 

conjugates and Hilbert transforms of the same. These properties are Fourier localization 

and spatial localization. Similar comments  apply to the other three terms, and so the 

arguments below applies to each type of term above. 

3.2.1. The partial order ' < ' .  We consider the case of R'<R for R'61A2 and REb/.  

The sums we consider are related to the following definition. Set 

UA. . =  
btr , , , , (x  ) . s u p  <b, vR>VR(X)  �9 

1,~ I R 6 b / k  

R'<R 

Note that  we consider the maximal truncation of the sum over all choices of dimensions 

of the rectangles in the sum. Thus, this sum is closely related to the strong maximal 

function M applied to b uk, so that  in particular we have the est imate below, which relies 

upon (3.3): 
b uk < -2 k/l~176 1 < p < co. 
trun P ~ ~- 

(By a suitable definition of the strong maximal  function M, one can deduce this inequality 

from the LP-bounds for M.)  We apply this inequality far away from the set U. For the 

set W;~=R 2-  UReuk AR, A> 1, we have the inequality 

Hb~kunHLp(W) ~ r -1~176 1 < p < oo. (3.4) 
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We shall need a refined decomposition of the collection l/Y, the motivation for which 

is the following calculation. Let 1/Y'CYV. For n = ( n l ,  n2)E Z 2, set 

In addition, let 

w ' ( ~ )  := {R'E W': IR~I = 2 ~ ,  j = 1, 2}. 

R'EW'(n) REUk 
R/< R 

And set B(W')=~-~,,.EZ~ B(W',  n). 
Then, in view of (3.1), we see that  B(I/Y', n) and B(I/F', n ' )  are orthogonal if n and n' 

differ by at least three in either coordinate. Thus, 

:.<3 Z 
"t n C Z  2 

The rectangles R 'EW(n)  are all translates of one another. Thus, taking advantage 

of the rapid spatial decay of the wavelets, we can estimate 

]]B(W"n)II2< Z / ]  I(b'vR'>l(Xw*lR')btur'k'',2dx" 
R ' E W ( 'n ) ]V/-~I 

In this display, we let X(xl ,x2)=(l+x~+x2) -n' and for rectangles R, XR(xl,x2)= 
x(xlIRli-l ,x2iR2I-1). Note that  XR depends only oil the dimensions of R and not 

its location. 

Continuing, note the trivial inequality f ( x R * f ) 2 g dx < J" ] f l 2 x R * g dx. We. can esti- 

mate 

E ,, 
n ' e w '  (3.5) 

<~1 t2 R'I sup avg(n') .  
R ' E W '  R ' E W '  

Here we take avg(R ' ) :=  IR']-'fR, M(ib~k,,,,l'2). 
The terms avg(R') are essentially of the order of magnitude r times the scaled 

distance between R' and the open set U. To make this precise requires a decomposition 

of the collection 1/Y. 

For integers l > k and m~>0, set l/Y(/, m) to be those R'E I/Y which satisfy these three 

conditions: 

�9 First, avg(R')~<~'22 -4/ if m = 0  and e22 -41+ ..... l<avg(R')~<~22-4/+m if m >0 .  

�9 Second, there is an RE/Ak with R'<R and R'C2Z+IR. 

�9 Third, for every RE/,tk with R '<  R, we have R'r 21+lR. Certainly, this collection 

of rectangles is empty if l ~< k. 
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We see that 

I U R'[<~min(221p, 2-mp/2), 1 < p <  oc. 
R'E I'V(/,m) 

The first estimate follows since the rectangles R~EW(I, rn) are contained in the set 

{M1u~>2-2~-t}. The second estimate follows from (3.4). 
But then from (3.5) we see that  for m > 0 ,  

lIB(W(/, m))1122 % ~2 2-4/+m min(22zp, 2-rap/2) < e2 2-(m+/)/10. 

In the case that  m=0 ,  we have the bound 2 21p. This is obtained by taking the minimum 

to be 2 21p for p - g  and 0 < m <  For m~> take the minimum to be 2 -mp/2 with 

p=4 .  

This last estimate is summable over 0 < k < l  and 0 < m  to at most <e ,  and so com- 

pletes this case. 

3.2.2. The partial orders ' < j ' ,  j - - l , 2 .  We treat  the case of R~<IR, while the case 

of R~<2R is the same by symmetry. The structure of this partial order provides some 

orthogonality in the first variable, leaving none in the second variable. Bounds for the 

expressions from the second variable are derived from a cognate of a Carleson measure 

estimate. 

There is a basic calculation that we perform for a subset 142'C142. For an integer 

n 'EZ  define 1/Y'(n'):={R'EI/Y': [R~[=2 n'} and 

B(1,V', n ' )  := Z ~ <b, vR,>(b, vR>vR,~-~. 
R'EI, V'(n') RElgk 

RJ< 1R 

Recalling (3.1), if n'  and n" differ by more than 3, then B(W',n') and B(IA]',n") are 

orthogonal. 

Observe that  for R' and R as in the sum defining B(1,V', n), we have the estimate 

IvR,(x)~-'~(x)l <~ (JR I [R'l)-l/2dist(R ', R)IOOOxR,*IR,(X), z e R  2. (3.6) 

In this display, we are using the same notation as before, X(xl,x2)=(l+x2+x~) -1~ 
and for rectangles R, XR(Xl,X2)=~((xl[RI] -1, x2[R2[-1). In addition, dist(R', R) :=  

M1R(c(R')), with c(R') being the center of R'. (This "distance" is more properly the 

inverse of a distance that  takes into account the scale of the rectangle R.) 

Now define 
~(R')  := ~ [R1-1/2 [(b, vR>[dist(R', R) 1000. (3.7) 

REU 
R'<IR 
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The main point of these observations and definitions is this. For the function B(Id; ~) := 

~n'SZ B(14;', nl), we have 

IIB(W')II2 2 ~ ~ IIB(W',n')II~ 
n~EZ 

E /R 2 [ E I(b'VR')I/3(R')IR'I-1/2XR'*IR'I 2dx 
n~EZ R'E I, V'(n' ) 

~ E /R~ [ ~,  I(b,v~'}II3(R')IR'I-~/21R'] 2dz" 
n'eZ R E~Y (n ) 

At this point, it occurs to one to appeal to the Carleson measure property associated to 

the coefficients lib, vR,)I ]R~1-1/2. This necessitates that  one proves that  the coefficients 

~(R ~) satisfy a similar condition, which doesn't  seem to be true in general. A slightly 

weaker condition is however true. 

To get around this difficulty, we make a further diagonalization of the terms ~(R ~) 

above. For integers u>~uo, #~>1 and a rectangle R~EW, consider rectangles REUk such 

that 

R'<IR, 2-"<~dist(R',R)<~2 -v+l, 2~'IR'I=IRI �9 

(The quantity v0 depends upon the particular subcollection 14;' we are considering.) We 

denote one of these rectangles as ~(R') .  

An important  geometrical fact is this. We have 7r(R')C2V+'+mR~x2v+l~ And 

in particular, this last rectangle has measure <22''+t~ IR'I . 
Therefore, there are at most 0(22v) possible choices for ~(R') .  (Small integral 

powers of 2 v are completely harmless because of the large power of dist(R ~, R) that  

appears in (3.7).) 

Our purpose is to bound this next expression by a term which includes a power of e, 

a small power of 2 ~ and a power of 2 - " .  Define 

n~EZ/R [ i(b, VR,)(b,V~(R,)) I ]2 S(W',v,#) := E v/IR, IIr(R,) . XR'*IR' dx 2 R'E14)'(n') 

n~Z/R [ 'lb'VR')(b'v~(R')}'lR'12dx 
Z v/]R'l I (R')I 2 R'CW'(n') 

= E E I(b'vR')(b'v'(R'))l ~ / IR"I I(b, v.,,)(b, v.(.,,))l. 
n'EZ R'E1A]'(n') CiRri "ff(Rt)l RHE~'~(n')V ~ 

RH C R ~ 
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The innermost sum can be bounded this way. First ]]biiBMO(rec)~e, SO that  

I<b, vR"/12 < ~21R'I. 
R " C  R ~ 

Second, by our geometrical observation about  7r(R'), 

Z I~(n")l lib'v'('")>l~<~22~VlR'l' 
R ' C  R '  

In particular, the factor 2 ~ does not enter into this estimate. 

This means that  

/,R,i 
R t E W  ~ 

L R ' E W '  R E U k  

The point of these computat ions is that  a further trivial application of the Cauchy-  

Schwarz inequality proves that  

I IB(W')I I2<E2-1~176 U R'I '/4, 
R'EYV ~ 

where Vo is the largest integer such that  for all R'E14; ~ and REL/k, we have dist(R t, R ) ~  
- t / ~ ] .  

We shall complete this section by decomposing/4;  into subcollections for which this 

last estimate is summable to s2 -k. Indeed, take 1/Yv to be those RtE)4; with R ' ~  2"R for 

all REI4k with R'<IR. And there is an REbla with Rtc2V+IR and R'<I R. Certainly, 

we need only consider v~k. 
It  is clear that  this decomposition of )d; will conclude the t rea tment  of this partial 

order. 

3.2.3. The partial order '"- ' .  We now consider the case of R'~_R, which is less 

subtle as there is no orthogonality to exploit and the Carleson measure estimates are 

more directly applicable. We prove the bound 

F_, F_, <b,v~,><b, vR>v~,~ <~ K ~  1/~ 
R'EW RELI 

R'~_R 
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The diagonalization in space takes two different forms. For A~>2 k and REbtk set 

a(A,R) to be a choice of R~E}4; with R~'~R and R~c2AR. (The definition is vacu- 

ous for A<2k.) It  is clear that  we need only consider ---A 2 choices of these functions 

a(A,.):Uk-+14;.  There is an Ll-es t imate  which allows one to take advantage of the 

spatial separation between R and a(A, R): 

E (b'v~ 1 ~ /~-100 E lib, v~(:,,R))(b, vR)l 
REblk REblk 

. oo[ z z 
LREL(~ REL/k 

~< K~EA -9~ 

This estimate uses (3.3) and is a very small estimate.  

To complete this case we need to provide an est imate in L 4. Here, we can be quite 

inefficient. By Cauchy-Schwarz and the Li t t lewood-Paley inequalities, 

4 

11/211 
5 "REI.4 [ E  I(b'v~ 4 ~ [E  4 A. 

This follows directly from the BMO assumption on b. Our proof is complete. 

A p p e n d i x :  A r e m a r k  o n  J o u r n ~ ' s  l e m m a  

Let U be an open set of finite measure in the plane. Let ~ ( U )  be all dyadic rectangles 

in T~ that  are contained in U. For each RET~(U) and open set VDU, set 

#(V; R) = s u p { # > 0 : # R C V } .  

The form of Jou rns  lemma we need is 

LEMMA A.1. For each 0 < 5 < 1  and open set U of finite measure in the plane, there 

is a set VDU for which IVI<(I+5)IU I, and for all 0 < e < l ,  there is a constant Ks,~ 

so that for any subset T~PCT~(U) such that R~_R I for any two rectangles Rr ~, we 

have the inequality 

E #(V;R)-~IRI<<'K~,~I U nI-  (A.2) 
RET~/ RET~ t 
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Journ~'s lemma is the central tool in verifying the Carleson measure condition, and 

points to the central problem in two dimensions: that there can be many rectangles close 

to the boundary of an open set. 

Among the references we could find in the literature [6], [9], the form of Journ~'s 

lemma cited and proved take the set V to be {M1u > �89 }, which only satisfies IVI < / r  

Proof of Lernma A.1. There are two stages of the proof, with the first stage being 

the specification of the set V. This must be done with some care, and in a manner that  

depends upon 5>0. Let us illustrate the difficulty. 

At first guess, one would take V:= {M 1u > 1 -  d }, with M being the strong maximal 

function. But the problem is that the strong maximal function is not bounded o n  L 1 (R2), 

so it can't  possibly satisfy the desired inequality on its measure. 

It is then tempting to define V as some variant of the one-dimensional maximal 

function. While this maximal function is bounded on L i (R) ,  as a map into L I ' ~ ( R ) ,  

the norm is known to exceed one. 

The dyadic maximal function, however, maps L t into L 1'~ with norm one. This 

well known fact we shall utilize in a slightly more general form. Define a grid to be 

a collection 1: of intervals in the real line for which for all I, FEZ,  IN I 'E {~, I, F }. For 

a collection of intervals Z, not necessarily a grid, set 

MZf(x) := sup li(x) lll-X f f(y) dy. 
IEZ  Jl 

Then, for any grid Z, M z maps L 1 (R) into L I ' ~ ( R )  with norm one. This is in particular 

true for the dyadic grid D. 

Now, let us take 0 < 6 < 1, and in particular take 5 = (2'1+ 1)- 1 for integer d. We define 

shifted dyadic grids, modifying an observation due to M. Christ. For integers O<~b<d, 
and c~E{+(2d+l ) - t} ,  let 

Z)~,l,,,~ := {2k't+b((0, 1)+j+(--1)k(~):  kEZ,  j E Z } .  

One checks that this is a grid. Indeed, it suffices to assume a = ( 2 d + l )  -1, and that  b=0. 

Checking the grid structure can be done by induction. And it suffices to check that. the 

intervals in 7)a,0,,~ of length one are a union of intervals in Da,o,,~ of length 2 -a. One 

need only check this for the interval (0, 1 )+a .  But certainly 

i 2~ i (o, I)+ - H ( 0 , 2 - d ) + j 2  -d 
2a+ I j : a  2d(2d+ 1) 

2 a (  1 1 ) j 
= ~J 2d(2~+1) ' +~--~" j = l  24+1 
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d - 1  
What is more important concerns the collections ~D d : :  Ua Ub=o :Dd,b, o~" For each 

dyadic interval IE:D, I+6II I ET)d. (The problem we are avoiding here is that  the dyadic 

grid distinguishes dyadic rational points. At the point 0, for instance, observe that  for 

all integers k, (1 + 6) (0, 1) ~ (0, 2k), regardless of how big k is.) Moreover, the maximal 

function M ~ maps L 1 into L 1'~ with norm at most 2d"-'log6. 
We may define V. For a collection of intervals Z and j= l ,  2, set M f  to be the 

maximal function associated to Z, computed in the coordinate j .  Initially, we use only 

the dyadic grids, setting 

Vo = ~J { M ~ I { M j l u  > 1-6}  > 1-6} .  
iCj 

It is clear that  IV0] < (1 + K6) ]U I. Invoking the collections :Dd, set 

V= U{M•'I{M?•Ivo> I -6}  > I -6} .  

Then {VI<( I+K6 log6-1)[U{, and we will work with this choice of V. 

The additional important property that  V has can be formulated this way. For all 

dyadic rectangles R=R1 • R2 C Vo, the four rectangles 

(RI• [) • (R2::k6IR2I) C V. (A.3) 

This follows immediately from the construction of the shifted dyadic grids. The first 

stage of the proof is complete. 

In the second stage, we verify (A.2). A typical proof of Journ~'s lemma shows that  

the rectangles in 74' have logarithmic overlap, measured in terms of logp(V; U). We 

adopt that  method of proof. Fix a subset 74JC74(U) satisfying the incomparability con- 

dition of the lemma, and fix #~>1. Set S to be those rectangles in 741 with #~#(R)~<2#. 

It suffices to show that  

[R] <~ ( l+log#)2[  U R[. 
R E $  R E S  

For then this estimate is summed over #E {2k:kE Z}. 

In showing this estimate, we can further assume for all R, R'E 8, writing R=R1 • R2 
and likewise for R', that  if for j=l ,2 ,  [Rj]>IR~[ then [Ry[>16p6-1]R~j[. This is done 

by restricting log 2 ]Ry[ to be in an arithmetic progression of difference -"~log#6 -1. This 

necessitates the division of all rectangles into <~(l+log#6-1)  2 subclasses, and so we 

prove the bound above without the logarithmic term. 

We define a "bad" class of rectangles B=B($) as follows. For j=l ,  2, let Bj($) be 

those rectangles R for which there are rectangles 

R 1, R 2, ..., RKes- - {R} ,  
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so that for each l<~k4K, IRk[>[Rj[ and 

K 
[Rca k.J Rk[ > (1- @-o5) IRI. 

k = l  

Thus RE Bj if it is nearly completely covered by dyadic rectangles in the j t h  direction of 

the plane. Set B(S)=B~(S)UB2($) .  It follows that if R~B(S) ,  it is not covered in both 

the vertical and horizontal directions, hence 

5 2 

I RN ~ (R') c ] ) 100 IR------ ~ .  n,~s-(n} 

And so 

E [R[ ~ 1006-2]RUsR [. 

Thus, it remains to consider the set of rectangles BI(S) and B2(S). Observe that 

for any collection S', B j (SI )CN ~, as follows immediately from the definition. Hence 

BI(B2(BI(S)))cBI(BI(S)). And we argue that this last set is empty. As our definition 

of V and #(V; R) is symmetric with respect to the coordinate axes, this is enough to 

finish the proof. 

We argue that BI(BI(S)) is empty by contradiction. Assume that R is in this collec- 

tion. Consider those rectangles R' in BI(S) for which (i) [R~I>IRI[ and (ii) R'NRr 
Then 

I R n  U R ' I / > ( 1 - ~ 5 ) I R I .  
R'EBI(S)  

Fix one of these rectangles R I with [R~[ being minimal. We then claim that 8 # R ' c  V, 

which contradicts the assumption that /z(V;  R')  is no more than 2#. 

Indeed, all the rectangles in Bl(S) are themselves covered by dyadic rectangles in the 

first coordinate axis. We see that the the set {M2 ~ 1u > 1 - 6  } contains the dyadic rectan- 

gle R~'x R2, in which R2 is the second coordinate interval for the rectangle R and R~' is 

the dyadic interval that contains R i and has measure 8 , 5 -  l [ R i  [ ~< I R~, I < 16 ,5-1  [R i I. 

That  is, R'I'XR2 is contained in Vo. And the dimensions of this rectangle are very 

much bigger than those of R. Applying (A.3), the rectangles (R'{ + [R~ ~[) x R2 +5  [R2[ are 

contained in V. And since 8#R'  is contained in one of these last four rectangles, we have 

contradicted the assumption that #(V; R')<2#. [] 
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