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1. I n t r o d u c t i o n  

1.1. B a c k g r o u n d :  e l e m e n t a r y  n u m b e r  t h e o r y  

Before stating the problem we recall a few fundamental results from the theory of 

Diophantine approximation. Given a real number x we use the standard notation [[xI[ 

to denote the distance of x to the nearest integer, and throughout I will denote the unit 

interval [0, 1]. The classical result of Dirichlet states: 

DIRICHLET'S THEOREM (1842). For any aEI:=[O, 1], there exist infinitely many 

q E N  such that 

IIq II < q-1 

A consequence of Hurwitz's theorem is that  the right-hand side of the above inequal- 

ity cannot be improved by an arbitrary positive constant s. More precisely, for s < l / x / 5  

there exist real numbers a E I  for which the inequality Ilqall ~<cq -1 has at most a finite 

number of solutions. These a are the badly approximable numbers, and we will denote 

by B a d  the set of all such numbers; that  is, 

B a d : =  { a e I : t h e r e  exist c(a) > 0  so that  IIq~I[ > c ( a ) q - '  for all qGN}.  

We now briefly describe the beautiful connection between B a d  and the theory of 

continued fractions. Let (~=-[al,a2,a3, ...] represent the regular continued fraction ex- 

pansion of a, and as usual let Pn/qn : :  [al, a2, a3, ..., an] denote its nth convergent. It is 
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easy to verify that  
1 1 

a n + l + 2  <<" qnllqnCtll <<" --'an+l (1) 

This instantly gives a proof of Dirichlet's theorem, and together with the fact that  the 

convergents are the best approximates (that is, ][qa[[/> [[q~aN for any q<<.q,~) implies tha t  

E B a d  ** the partial  quotients ai are bounded from above. 

Thus all quadratic irrationals are in B a d  since their continued fraction expansions are 

periodic. In fact, it is conjectured that  these are the only algebraic irrationals in B a d .  

Also notice that  if (~EBad then 

qn 
- -  an + [an- 1, an-2,  ..., al] >~ K ( a )  > 1, (2) 

qn- 1 

where K ( a )  is an absolute constant; tha t  is, the denominators of the convergents form a 

lacunary sequence and 

qn IIq~c~ll ~ 1; (3) 

that  is, the left-hand side is bounded from above and below by constants independent 

of n. We will make use of all these elementary facts later. For further details and proofs 

see [4], [11], [12]. 

It  is clear from the above discussion tha t  B a d  is uncountable. A simple consequence 

of a fundamental  result due to Khintehine is that  B a d  is a set of zero Lebesgue measure. 

KHINTCHINE'S THEOREM (1924). Let ~b be a real positive function and let W(~b):= 

{xE I : Ilqxll <.~(q) for infinitely many qEN}  denote the set of ~-well approximable num- 

bers. I f  q~z(q) is decreasing, then 

0 i f  E q = l  @(q) < OO, 

I W ( e ) l  = 1 i f  E q = l  ~ ( q )  = oo. 

Now let r  Then the sum in Khintchine's theorem diverges and 

I W ( r  which implies that  IY\W(~) I=0 .  Clearly B a d c Z \ W ( e ) ,  and so B a d  is 

a set of Lebesgue measure zero. In terms of dimension, however, the set of badly ap- 

proximable numbers is maximal in that  it has the same dimension as the unit interval. 

A result of Ja rnN (1928) states tha t  dim B a d = l ,  where dim X denotes the Hausdorff 

dimension of the set X (see w 

Notation. To simplify notat ion the symbols << and >> will be used to indicate an 

inequality with an unspecified positive multiplicative constant. If  a<<b and a>>b we write 

axb,  and say that  the quantities a and b are comparable.  
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1.2. T h e  p rob lem:  L i t t l e w o o d ' s  c o n j e c t u r e  

For any pair of real numbers ( a , ~ ) E I ,  there exist infinitely many qEN such that  

Ilqall Ilq~ll<~q -1. This is a simple consequence of Dirichlet's theorem and the trivial 

fact that  Iixll<l for any x. For any arbitrary e>0,  the problem of whether or not the 

statement remains true by replacing the right-hand side of the inequality by eq -1 now 

arises. This is precisely the content of Littlewood's conjecture. 

LITTLEWOOD'S CONJECTURE. For any pair (a, ~) E I ,  

l iminf qllq~lI IIq/311 =0.  q - + ~  

In view of Hurwitz's theorem, the analogous conjecture in the one-dimensional set- 

ting is clearly false. In the simultaneous situation, however, very little seems to be known. 

We make the following simple observations: 

(i) The conjecture is tr~ue for pairs (a,/3) when either a or /3 lie in a set of full 

Lebesgue measure. This follows at once from Khintchine's theorem. In fact, one has that  

for all a and almost al l /~EI,  

1 
qllq~ll IIq/311 < ~-ogq infinitely often. 

(Gallagher [3] has shown that  for almost all pairs (a,/~) the right-hand side of the above 

inequality can be replaced by 1/(log q)2.) 

(ii) The conjecture is true for pairs (a,/3) when either a or /3 are not in Bad.  

S u p p o s e / ~ B a d  and consider its convergents Pn/qn. It follows from the right-hand side 

of inequality (1) that  qn IiqnaiI [Iq~/3H ~ 1/a~+1 for all n. Since/3 is not badly approximable 

the partial quotients a~ are unbounded, and the conjecture follows. 

In view of (ii) we assume without loss of generality that both a and ~ are in Bad .  

To our knowledge the following is the only known 'deep' result regarding Littlewood. 

CASSELS AND SWINNERTON-DYER (1955). I f  a,/3 are both cubic irrationals in the 

same cubic field then the conjecture is true. 

This result was subsequently sharpened by Peck [8] who showed that  for a , /J  both 

cubic irrationals (in the same cubic field) the inequality q IIqaiI Iiq/3II ~<l/logq is satisfied 

infinitely often. As mentioned in the previous section, it is conjectured that  the only 

algebraic irrationals which are badly approximable are the quadratic irrationals. Of 

course, if this conjecture is true then the Cassels and Swinnerton-Dyer result follows 

immediately. In any case, given our current state of knowledge the result of Cassels and 

Swinnerton-Dyer sheds no light on the following simple and natural question. 
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Question. Given a E B a d ,  are there any independent ~ E B a d  so that  Littlewood's 

conjecture is true for the pair (a, j3)? 

Recall that  two real numbers a and ~ are said to be independent if 1, a,/3 are 

linearly independent over the field of rationals. It is easy to show that  if a and/3  are 

not independent then the inequality q [[qai[ [[q/3[[ ~< 1/q is satisfied infinitely often, and 

in this case Littlewood's conjecture is obviously true. We show that  the answer to the 

above question is 'yes', and moreover that  in terms of dimension the choice of/~ is in fact 

maximal. 

THEOREM 1. Given a E B a d ,  there exists a subset G (a )  of B a d  with dim G ( a ) = l ,  

such that for any 3 E G ( a ) ,  

1 
qiiqa[[ [[q~ll < ~ g q  infinitely often. 

A simple consequence of this is 

COROLLARY 1. For ~EC~(~), the pair (a, ~) satisfy Littlewood's conjecture. 

It is worth pointing out that  the theorem gives rise to pairs (c~, j3) which satisfy the 

conjecture with an explicit 'rate of approximation' or 'error'  function of 1/logq. The 

corollary is of course obvious once the theorem has been established. We have stated it 

separately, however, since there is a short, independent proof which we give towards the 

end of the paper. 

The main strategy behind the proof of the theorem is simple enough. Given aE  

B a d  we consider the sequence qn of denominators arising from its convergents. In view 

of (3), we always have that  qniiqnai[~l. We then show that  there are ~ E B a d  for which 

[[qn3l[ ~<l/log qn for infinitely many n, and that  the set of such 3 is of full dimension. 

As our next result shows, there is a disadvantage with the above strategy. 

THEOREM 2. Given a E B a d  and AE(0, 1), there exists a subset B~(a)  of B a d  with 

d imB~(a )=A,  such that for any ~EB~(a ) ,  

]]qn~]] >~  for all H EN ,  

where ~=~(~, A)>0 is a constant, and qn is the denominator of the n-th convergent of a. 

The upshot of this is that  there is absolutely no hope of proving Littlewood's con- 

jecture by simply looking at the convergents. Apparently, this has been known for some 

time, as M. Dodson has informed us, and the proof of this fact alone is not too difficult. 

Nevertheless, the properties of the convergents turn out to be enough for establishing 

our main result--Theorem I. 
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The proof of Theorem 2 follows from the fact that  the sequence of denominators 

qn associated with a badly approximable number is lacunary (see equation (2)). Given 

any lacunary sequence tn/tn-1/> k > 1 and A E (0, 1), we can find a set B~(k) of dimension 

at least A for which IItn/3[[>5(k,A)>0 for every/~cB~,(k) .  This is proved in [9]. By 

slightly modifying the proof there one can also ensure that  the numbers /~ are badly 

approximable.  This is a straightforward intervals construction and we omit  the details. 

Acknowledgements. We thank Maurice Dodson, Walter Hayman  and Rodney For- 

cade for many useful conversations and for put t ing up with our obsession with Littlewood. 

The second author would also like to take this opportuni ty  to thank Haleh Afshar, Brid- 

get Bennett,  Daniela Bernardelle and Just in Farquhar for their wonderful support  and 

friendship. Finally, we thank the referee for making various useful comments.  

2. Material required for the proof 

The proof of Theorem 1 makes essential, use of particular measures constructed by Kauf- 

man [6] which are supported on natural  Cantor subsets of Bad .  Basically, these measures 

have the property that  their Fourier transforms vanish at infinity. We begin, however, 

with a short section on Hausdorff measure and dimension in order to establish some 

notation. 

2.1. H a u s d o r f f  m e a s u r e  a n d  d i m e n s i o n  

The Hausdorff dimension of a non-empty subset X of k-dimensional Euclidean space R k 

is an aspect of the size of X that  can discriminate between sets of Lebesgue measure 

zero. 

For Q>0, a countable collection {Ci} of Euclidean cubes in R k with sidelength 

l(Ci) ~Q for each i such that  XC [Ji Ci is called a Q-cover for X. Let s be a non-negative 

number and define 

7-l:(X):=inf{El*(C~):{Ci } is a Q-cover of X } ,  
i 

where the infimum is taken over all possible Q-covers of X. The s-dimensional Hausdorff 
measure 7-ls(X) of X is defined by 

7-/s ( X ) =  lim 7-/~(X)= sup 7-/~(X), 
0"+0 ~ Lo>O 

and the Hausdorff dimension dim X of X by 

d i m X  = inf{s : ~ * ( X )  = O} = sup{s:  ~ * ( X )  = oo}. 
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Strictly speaking, in the s tandard definition of Hausdorff measure the 0-cover by 

cubes is replaced by non-empty subsets in R k with diameter  at most 0. It  is easy 

to check that  the resulting measure is comparable to 7-/s defined above, and thus the 

Hausdorff dimension is the same in both eases. Further details and alternative definitions 

of Hausdorff measure and dimension can be found in [2], [7]. 

We will need to calculate lower bounds for the dimension of various subsets of Bad .  

A general and classical method for obtaining a lower bound for the Hausdorff dimension 

of an arbi trary set is the following mass distribution principle which is essentially the 

easy half of Frostman's  lemma [7]. 

LEMMA (mass distribution principle). Let m be a probability measure supported on 

a subset X of R k. Suppose that there are positive constants c, s and lo such that 

re(C) ~ ctS(C), 

for any cube C with sidelength l(C)~lo. If  F is a subset of X with m ( F ) = A > 0  then 

~ ( F) >1 )~ /c. In particular, dim F ~> s. 

Pro@ If {Ci} is a 0-cover of F with 0<~10 then 

A = m ( F )  = rn (U C~) ~< E m(Ci) <c E Is(Ci). 
i i i 

It  follows that  7-t 0 (F)~> )~/c for any 0~< 10. On letting 0--~0, the quantity 7-t o (F) increases, 

and so we obtain the required result. Since ~/S(F)>0,  the last part ,  dimF~>s,  follows 

immediately from the definition of Hausdorff dimension. [] 

We will also work with the Fourier transform of a measure. The Fourier transform 

of a measure m supported on a subset X of R is defined by 

fit(t) := I x  exp(27ritx) dm(x), t ER. 

The decay rate of the transform is related to lower bounds for the dimension of X. We 

will not require the relationship, but for completeness we mention that  if Ifit(t)l <~cltl -~  

for some r]>0 then dimX>~min{1,2r]}. Further details and references can be found 

in [2], [7]. 

2.2. T h e  se t  FN a n d  K a u f m a n ' s  m e a s u r e  

Let FN denote the set of real numbers in the unit interval with partial  quotients bounded 

above by NE N. Thus 

FN := {X E I :  x = [al, a2, ...] with ai ~< N for all i}. 
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By definition, the set FN is a subset of Bad .  Let I (~) denote those numbers in I 

whose first n partial  quotients al ,  ..., as  are bounded above by N. Then FN= N~ I (n). 
Thus FN is a Cantor- type set and it is this structure which is utilized to determine 

the dimension of FN. Let d(N) denote the Hausdorff dimension of FN. The following 

estimates are due to Ja rnN [5]. For N > 8 ,  

4 1 
N l o g 2  ~<d(N)~<l 8 N l o g N "  

A simple consequence of this is that  dim B a d  = 1 since 1 ~> dim B a d  >~ d(N)--+ 1 as N--+ ce. 

The important  point for us is the existence of a probabili ty measure # supported on 

FN with the two key properties: 

(P1) For s<d(N), there exist positive constants c and l0 such that  

v(c) c s(c), 

for all intervals C with length l(C)<<, lo. 
(P2) For N~>3 the Fourier t ransform of # satisfies 

lfs(t)l <~ cltl -v for some r t>0 .  

By making use of the Cantor- type structure of FN, measures with property (P1) are 

relatively easy to construct. The existence of a measure with both properties is due to 

R. Kaufman [6], and in his construction he shows that  one may take U=0.0007. We will 

refer to this measure # as the Kaufman measure. 

Remark. In his paper, Kaufman points out that  it is quite likely tha t  the measure 

p also exists for the set F2. His argument requires, however, tha t  d(N)> 2, which is 

the case if N~>3. For N = 2 ,  it is known that  d (N)=0 .53  to two decimal places, and so 

Kaufman 's  argument fails. 

3. T h e  p r o o f  o f  T h e o r e m  1 

Given a E B a d ,  let qn denote the denominator of its n th  convergent. For N~>3 let 

GN(C~) := {/~EFN: ]]qn/3]l < 1/ logqn for infinitely many n E N } .  

Since q~llq~(~]]~l (see (3)), it follows that  for a n y / 3 e G N ( a ) ,  

1 
q~iiq~(~ll Ilq,~ll <~ - -  infinitely often; 

log q,~ 
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that  is, the pair (a,/3) satisfies Littlewood's conjecture with the rate of approximation 

as stated in the theorem. 

For the moment let us assume that  # ( G g ( a ) ) > 0 ,  where # is the Kaufman measure. 

Then property (P1) of the measure together with the mass distribution principle implies 

that  d imGN(a)~>s for any s<d(N). By continuity, on letting s--+d(N) from below we 

obtain the lower bound result 

dim G N (a )  ~> d(N). 

Trivially, dim GN (a) ~< d(N) since GN (a) C FN. Hence dim GN (a) = d(N). Now let 

G ( a )  := {13EBad : liqn~3ll ~< 1/logq,~ for infinitely many n c N } .  

By JarnN's  estimates for d(N) (see w it follows that  for N > 8 ,  

4 
1 7> dim G ( a )  ~> dim G n ( a )  ~> 1 

N log 2" 

On letting N-+oo  we conclude that  dim G ( a ) = l ,  and this completes the proof of the 

theorem assuming of course that  # ((1N (a)) > 0 - -  this we now prove. 

3.1. P r o o f  o f  t h e  c l a im t t ( G N ( a ) ) > 0  

Let ~ be a real positive decreasing function such that q~(q)-+O as q-+ec. For q CN  let 

q--1 

Eq(r : :  [0,r  U B(p/q,r 11, 
p : l  

where B(c, r) is an interval centered at c with radius r. We now estimate the Kaufman 

measure of Eq(~). The following result shows that  if the interval width determined by 

the function ~ is sufficiently large then the Kaufman measure of Eq(r is essentially equal 

to the Lebesgue measure of Eq(r that  is, to the total length of the disjoint intervals 

defining Eq( ~ ). 

LEMMA 1. For N)3 ,  

#( Eq( r ) ) = 2q~(q) + O(q-'#2). 

Proof. We fix q and for the sake of clarity put & = r  

characteristic function defined by 

1 if Ilxll ~<5, 

X~(x)= 0 if Ilzll>5, 

Let x~:R--+R be the 
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and let X~,e: R--+R be the continuous approximation of Xa given by 

1 

Xs+~(x) = l+(5-]lxl[)/e 

0 

if [[x[[ ~< 5, 

if 6<  [[x]] ~ 5 + r  

if [Ix[[ > 6+e,  

(4) 

where 0<r  The function X + is normally referred to as the 'upper smoothed' charac- 6,~ 
teristic function, and obviously X~,~(x)>~Xa(x) for all x in R. Clearly, X +~,~ is a periodic 

function with period 1. Next consider the function W + defined by 5,r 

w~,~(x) := ( ~  sp/~(x)) * x~i,~(z), (5) 

where as usual * denotes convolution and 5a is the Dirac delta-function. It is easily 

verified that  

and so it follows that  

q--1 

w~,Ax) = F_, x~,~(x-;/q), 
p=O 

S01 #(Eq(~p)) < W~,~(x) d#(x). 

We now proceed to evaluate the integral by considering the Fourier series expansion 

of W +5,~. For k c Z ,  let ~.~(k), and W~,~(k) denote the kth Fourier coefficient of X~,~ and 

W + respectively. A straightforward calculation shows that  6,~ 

{ 26+a if k = 0 ,  

2~,~(k) = cos(27ckS)-cos(2~rk(cf+r if k # 0 .  
27r2k2r 

(~) 

Since W + is defined via convolution, we have that  6,6 

q-1 

~4,~(k) := Z G/~(k) ~,Ak) 
p=O 

Trivially, 6p/q(k)=exp(-2~ikp/q). Thus it follows from (6) that  for k # 0 ,  

q(cos( 27ckS) -cos(  27ck( 6 + c ) ) ) 

0 if qJ(k, 
(r) 

and for k=0,  
A 

W+~ (0) = 25q+qr (8) 
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A 

Clearly EkeZ  IW~+,a(k)l <o~, and so the Fourier series 

E W~,6(k)exp(27rikx) 
k E Z  

converges uniformly to W~,,~(x) for all x. An immediate consequence of the uniform 

convergence is a version of Parseval's identity for measures: 

~01W~,e(x)d#(x)-~ E W~,~(k)ft(-k)=25q+qE+ E w~,~(k)ft(-k). 
k~z k~z\{0} 

The last equality follows from (8) together with the fact that  /2(0)=1. Now property 

(P2) of the Kaufman measure together with (7) implies that 

Z ~,~(k)~(-k) < - -  
keZ\{0} 

2c ~ 1 c 
~2ql+~ e m2+~ < 3q1+~----~" m=l 

Hence we obtain the upper bound inequality 

L 
1 

#(Eq(r <. W~,e(x ) d#(x) <~ 2 ( ~ q + q e 4 - -  3ql+ne" 
(9) 

To obtain a lower bound estimate we consider the 'lower smoothed' characteristic 

function ?(~,~ given by 

1 if llxll ~<5-c, 

~c2,~(x)= (6-llxll)/e if f-e<llxll<~6, 

0 if Ilxll > 6. 

The function W ~  is defined in the obvious way: 

w~.~(x) := 6 /q(x)  ,xg,~(x). 

It can be readily verified that for k ~ 0 the corresponding Fourier coefficients are 

{ q(cos(2~rk(5-e))-cos(27rkS)) if qlk, 

0 ifq~k, 

and for k=0,  
A 

W~(O) = 26q-qE. 
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The same argument as before now leads to the lower bound 

s #(Eq(r >~ W[,e(x ) d#(x) ~ 25q-q~ 
C 

3qt+~e" 

This together with (9) implies that  

1+~? C ,u(Eq(~b)) = 25q+O(qe+c/q ). (10) 

The lemma now follows on setting e=l/q  1+'7/2. [] 

We now put q=q~ (the denominator of the n th  convergent of c~) and r 

1/q~ log q~. We will often make use of the fact that  

KI <~ qn <~ K2, (11) 
qn-1 

where K 2 > K I > I  are constants. This follows from the fact that  the sequence qn is 

lacunary and that  it satisfies the recurrence qn = an q~-i + q,~-2 for n ~> 2. Also let 

qn 
E n  : =  Eq,~(~(qn)) = [.J U ( p / q n ,  l / q n  10g qn) A I .  

p=0 

By definition, GN(C~) is precisely the set of real numbers in FN which lie in infinitely 

many of the sets En; tha t  is, 

oG 
GN(C~) = F N n l i m s u p E n  :=FNCl ~] U En. 

n-+oo rn=l n=m 

Recall that  our aim is to show that  # ( G N ( a ) ) > 0 .  Note that  since p is supported on FN 
we trivially have that  

# ( G N ( a ) )  = #( l im sup En).  
n---~or 

By Lemma 1, 
1 1 

p ( E n )  ~ log qn -- n 

since K~<.qn~K~--just  i terate (11) n times. Hence 

(12) 

t t ( E n ) x  -- : ~ .  (13) 
n n= l  n = l  

This is a good sign in that  if the above sum was to converge, then a simple consequence 

of the Borel-Cantelli  lemma from probabili ty theory is that  p(GN ( a ) ) =  0. The divergent 

sum alone, however, is not enough to ensure positive measure. We require independence 

of some sort. The following quasi-independence on average turns out to be sufficient. 
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LEMMA 2 (quasi-independence on average). There exists a constant C > I  such that 

for Q sufficiently large, 

E #(EmNE~) ~<C #(E~) . 
m ~ n = l  

We shall prove the lemma in the next subsection. In order to complete the proof of 

the claim, we require the following result ([12, p. 17]), which is a generalization of the 

divergent part of the standard Borel-Cantelli lemma. 

PROPOSITION. Let (X, A, m) be a probability space, and let A~EA be a sequence of 

A measurable sets such that ~-~=1 m( n)=oc. Then 

m(limsupA~)/> lira sup (~-~Q-1 m(A~)) 2 Q 
~ - ~  O-*~ ~,~,~=I m(AmnA~)" 

In our situation, the proposition together with the divergent sum (13) and the quasi- 

independence on average result implies that 

~(GN(~)) ~> i/C > O. 

This completes the proof of the claim assuming of course the quasi-independence on 

average result--this we now prove. 

3.2. P r o o f  o f  L e m m a  2: quas i - independence  on average  

In view of (12) and (13), it is sufficient to prove that for Q sufficiently large, 

E #(EmnEn)<<(l~ 
l ~ m < n ~ Q  

We begin by proving the easier analogous inequality for Lebesgue measure A. 

LEMMA 3. There exists a constant C> 1 such that for Q sufficiently large, 

E A(EmNE~) ~< C(log Q) 2. 
l ~ m < n ~ Q  

(14) 

Proof. Recall that E m is a disjoint union of intervals within I : =  [0, 1], centered at 

rationals with denominator qm and radius ~b(qm):= 1/qm logqm. Thus, for any m<n, 

qm qm 

A(EmNE~) = E A(B(p/qm,r <. E E A(B(a/q~,~(qn))), 
p=0 p=0 aCA(p,n)  
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where A(p, n):= {0~<a~<qn : B(p/qm, r N B(a/q,~, r # O}. The trivial fact that  

the distance between any two consecutive rationals with denominator q is 1/q implies 

that  the cardinality of A(p,n) is at most qn)~(B(p/qm,r So, for any m<n we 

obtain the upper bound 

A(EmNE~) ~ \qmlogq,~ 
+ 2 )  2 (q,~+ 1) = 8 8qm 

qn log q~ log qm log qn § q~ log q~" 

In particular, if q~ > qm log qm then 

16 1 
. (15) l(EmnEn) ~ logqm log q,~ rnn 

Suppose for the moment that  m is fixed, and choose t to be the unique integer such 

that  qm+t--l~qmlogqm<qm+t. On iterating backwards t times the fact that  K I ~  

qm+t/qm+t_l~K2 (this is just (11)), one finds that  t x l o g r n .  This implies that  there is 

a constant c such that  if n>m+clogm then q~>qm logqm, and so (15) holds. For n in 

the range m<n<~rn+clogm we make use of the trivial estimate that  

2 1 
A(EmNE~)<A(E~)--logqn n 

It now follows that  

Q m+clogra 1 Q Q 1 

l~ra<n~Q m = l  n = r a  m = l  n = l  

- -  << (log Q)e ,  

as required. [] 

Remark. We will apply the lemma to sets ten obtained via scaling En by a positive 

factor t; that  is, ten := U q'~ o B (P/qn, t/q~ log qn)n I. The above lemma is easily seen to p =  

hold for the 'scaled' sets ten. The constant C will of course depend on t. 

Before proceeding with the proof of (14) we introduce some further notation. For 

n E N ,  let (~n : =  1/qn log qn and write 

W~n := W ; n l ~  n ' 

where W + is given by (5); that  is, we put  5=c=hn in the general definition of W + 6n,6~ 5,~ 

and of course q=qn. In view of (7) and (8) we have that  for k r  

{ qu(cos(27rkhn)-COS(27rk(25n))) 
Wh~(k) = 2~2k25n if qn [k, 

0 if qn~k, 
(16) 
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and for k=0,  
A 3 (17) Wh.(O) = 35nqn -- log qn. 

By definition, for any pair of natural numbers m, n we have that 

/o #(EmV~En) ~ W6m(x)Wh.(x) d#(x). (18) 

Set W6m;hn(x):= Whm(x)W6,(x). Our aim is to obtain a sufficiently strong upper bound 

for the above integral. This we do by considering the Fourier series expansion of the 

function W6m;6n. It is easily verified that for any kEZ, 

W6m;6n(k) := W6m(x) W6.(x) exp(-27rikx) dx = E W6.~(J) W6n(k-J), (19) 
j E Z  

and moreover that the Fourier series ~kEZ W6m;6.(k) exp(27rikx) converges uniformly to 

W6..;6n(x) for all x. Thus, by Parseval's identity, 

~0 1Whm(x) W6,.(x) dp(x) = E Whm;~n(k)]~(-~) 

k ~ z  (20) 

Z 
k~z\{o} 

We consider the two terms of (20) separately. By definition, 

fo 1 Whm;5,,(O) := Whm(x) Wh~(x) dx ~ ~(2EmA 2 E n )  , 

where A is Lebesgue measure. Hence, by Lemma 3 (if necessary, see the remark straight 

after its proof) we have that 

E W6m;6,~(0) << (logO) 2- (21) 
l~m<n~Q 

Regarding the second term of (20), it follows from (16), (17) and (19) that  

E W6m;6n(k)#(-k) = E W6m(Sqm)W6~(tqn)ft(-(Sqm+tqn)) 
kEZ\{0} ~,tEZ 

sqm+tqn~O 

=35mqm E W6~(tq,~)[~(-tq~) 
tez\{0} (22) 

+35nqn E W6m(sqm)ft(-sqm) 
~ez\{0} 

+ E Wh.,(sqm)W6~(tqn)ft(-(sqm§ 
~,tcz\{o} 

sqm+tqn~O 
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Now let Amn, Bran and C m n  denote the first, second and third terms of (22) respectively. 

Proper ty  (P2) of the Kaufman measure together with (11) and (16) give rise to the 

estimates 

c log qn n c log qm m 
log qmq~ << m(K~) ~ '  IBm,~l <~ log qnq~ << n(K~) ---------~' 

where K1 > 1, and 

[Cmn[ << E m n [Sqm+tqnl_ L (23) 
s2 t 2 

~,t~z\{o} 
s q ~ + t q n ~ O  

Notice that  in the above estimates the difference of the cosines in (16) are being est imated 

trivially. Hence, 

E [Amnl<<logO, and E [Bmn[<<logO,. (24) 
l ~ r n < n ~ Q  l <~ m <n<~Q 

We now deal with C ..... Suppose for the moment  tha t  in (23) we only sum over s 

and t with the same sign. Then [sqm+tqn[ >>-2(Sqmtqn) 1/2, and the corresponding sum 

over l < r n < n ~ < Q  is easily seen to be bounded above by a constant. The upshot of this 

is tha t  we now only need to consider the sum 

s2 t2 [sqm--tqnt-". 
s , t E N  

s%~-- tqn T~ O 

Fix 0 < r  and write the above sum as 

m Tt m rt. y" [Sqm-tqn[-~+ Isqm-tqnl (25) 
s , t E N : s t < ( m n )  2+~ s , t C N : s t > . ( m n )  ~+~ 

Sqrn-- tqn T~O Sqm-- tqn =fiO 

The latter sum is est imated as 

E r n n  1 
s ~ t 2 Isq'~-tqnl-~ <<" mn E ( s t ) - l - ~  << ( r n n ) - l '  

s , t E N  : st>~(mn)2+ ~ s , t E N  
sqm-- tqn ~s O 

since trivially 

[Sqm-tqnl" >~ 1 > (mn)2+e(st) -1. 

Thus the second sum in (25) when summed over l<<,m<n<<,Q is bounded above by 

(logQ) 2. We now deal with the first sum in (25), which we denote by Dr~n. Then 

(mn) ~+~ (mn)2+V~ 

s = l  t = l  
Sqm-- tqn 76 0 
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Since we will eventually be summing over l<.m<n<.Q we may as well assume that  m<n.  
In addition, assume for the moment that  q~>~n6qm. Then under the conditions of the 

double sum above we have that  [Sqm--tq~[>~�89 Using the same type of argument 

as in the proof of Lemma 3, we find that  there is a positive constant c such that  if 

n > m + c log m then the inequality qn ~/n6qm is satisfied. Hence 

n 2 
E Dmn<< E (K~J)n <<1' 

l ~ m < n ~ Q :  l ~ m < n ~ Q  
n > m + c  log m 

and in view of the above discussion we have that  

E ]Cmnl << (log Q) 2. 
l<~m<n<~Q: 

n>rnTc  log m 

This together with (18), (20), (21), (22) and (24) implies that  

E # ( E m n E ~ )  ~< (log Q)2. 
l <~ m<n<~Q: 

n > m + c  log m 

For n in the range m<n<.m+clog m we use the trivial estimate that  

1 
#(EmNEn) <#(En) x - .  

n 

Thus, 
Q m + c l o g m  1 

E #(EmNEn)  ~< E E n << (l~ 
l ( r a < n ~ Q :  m : l  n : m  

n <m+c  log ra 

which together with (26) gives (14), and so completes the proof of Lemma 2. 

(26) 

[] 

3.3. A few c o m m e n t s :  f u r t h e r  d e v e l o p m e n t s  

There are numerous ways in which aspects of this paper could be developed and refined. 

Here, we mention just two. Let r be any real positive decreasing function such that  

qr as q-+co, and consider the set 

(~N(OL, ~ ) ) : :  { /~E  F N :  [[qnt3[[ ~< qn~) (qn )  for infinitely many n E N } .  

So with r  1/q log q, this is precisely the set G N (a) considered above. It is almost cer- 

tain that  a more careful analysis during the proof of Lemma 2 would lead to a Khintchine- 

type theorem for the set GN(a ,  ~) with respect to the Kaufman measure # supported 

on FN. More precisely, let Eq.(~b):=Uq:o B(p/qn,~b(qn))nI. Then 

GN (a, ~p) = FN N lira sup Eq.(r 
7 l - - + ( I )  
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We claim that  one should be able to prove a strong enough independence on average 

result for the sets Eqn(r which would lead to the following zero-one law: 

0 if Enc~=l it(Eqn(l/2)) < oo, 

it(GN(~162 = 1 if  E n ~ l  it(Eqn(~))) : ( ~ "  

As usual the convergence case follows immediately. The argument used in this paper 

only yields positive measure in the divergence case. 

Assuming that  one is able to establish the above-mentioned Khintchine-type result 

then it is likely that  one can also obtain the following quantitative refinement. For/~EFN 

and ME N let 

R(Z,M)  := :/r <~ M : IlqnNI < qnr }. 

E Suppose that  2~=1 it( q~(r Then for p-almost all ~EFN, 

M 

R(~, M) ~ E it(Eq~(r 
n = l  

Given c~EBad, such a result would imply that  for it-almost all ~EFN, 

#{q ~< M:  q Ilqc~ll IIqNI ~< 1/log q} >> log log M; (27) 

or in the language of Theorem 1, there exists a subset G(a)  of B a d  with dim G ( a ) = l  

such that  for any /~EG(a) inequality (27) is satisfied. We intend to pursue these and 

related problems in a forthcoming article. 

4. A n  i n d e p e n d e n t  p r o o f  of  C o r o l l a r y  1 

COROLLARY 1. Given a E B a d ,  there exists a subset G(~) of B a d  with d i m G ( w ) = l ,  

such that for any/3eG(a),  

l iminf qilqall IIq~[[ =0 .  q--+~ 

In this section we give a short, simple proof of the above corollary by applying the 

following well-known result in the theory of uniform distribution (see [10]). Given a real 

number x we write {x} for the fractional part of x. 

THEOREM (Davenport, Erdhs and LeVeque). Let It be a probability measure sup- 

ported on a subset X of I. If  

1 N 
 (h(sm-Sn)) < (2S) 

N=I  rn,n=l 

for all integers h~O, then the sequence {snx} is uniformly distributed for it-almost 
all xEX .  
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To prove the corollary we apply the Davenport-ErdSs-LeVeque theorem to the Kauf- 

man measure p supported on FN, and take for our sequence s,~ the sequence q~ of de- 

nominators associated with the convergents of c~. Then provided (28) holds for every 

integer h # 0  we have that  {qnX} is uniformly distributed for p-almost  all XEFN. But for 

such x, a simple consequence of uniform distribution is that  l i m i n f n ~  llqnxll=O. Now 

let 

(~N(OI) :-'~ {13GFN: lira inf IIq~ll = 0}. ;q. ---) OC 

Then the above argument  shows that  

p ( ( . ~ N ( C ~ ) )  ~-~ 1, 

and clearly for any 13EGN(a) one has tha t  liminfn_~or qn IIq~ll IlqnNI =0" Recall that  

in proving Theorem 1, the main part  was in showing that  # ( G N ( a ) )  is strictly positive. 

Here, this turns out to be a simple consequence of the Davenport -ErdSs LeVeque theo- 

rem. The corollary now follows on using exactly the same arguments as in the proof of 

the theorem. It  remains to verify that  (28) holds for every integer h # 0 .  

By property (P2) of the Kaufman measure, for every integer h # 0 ,  

N N 

E ~(h(qm-qn)):=N+ E p(h(qm-qn)) 
r n , n = I  m , n = l  

N 

<. N +c E ]h(qm-qn)l-v 

N m - -  1 

<~ N + 2c E E Iqm-qn]-'. 
r n = 2  n = l  

Since the sequence q,~ of denominators is a lacunary sequence, for m>n>~ 1, 

qm--qn>~qm-qm-l=qm(1-qm-1/qm)>~Clqm, c1>0.  

Another simple consequence of lacunary growth is the existence of a positive constant 

K > 1 such that  qm ~> K m -  1 Thus 

N N r n -  1 

E ft(h(qm-q~))<~Y+2CC-l'~ E E qa" 
r n , n = l  m = 2  n = l  

N - - 1  

<~ N+2CCl~g E (Km)-v < c2g. 
r n =  l 
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Hence, 

N 
~< c2-gTr , 

1 
--~ E f t ( h (qm-q . ) )  1 2 

N=I r n , n = l  

and this shows that  (28) holds for every integer h ~ 0 .  [] 

Remark. Notice that  in the course of proving the corollary the only fact that  we 

use regarding the sequence q~ is that  it is lacunary. We do not require the fact that  

the 'denominators'  q~ of a badly approximable number also satisfy the upper bound 

inequality qn/q,~-i <~K2 where/(2  > 1 is a cons tan t - -see  (11). This latter fact is, however, 

necessary in proving the stronger result (Theorem 1); namely to ensure that  ~':~#(En) 

diverges--see (13). 
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