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1. Introduction
1.

One of the most beautiful theorems in one complex variable is the Riemann mapping
theorem: Any simply connected open set which is a proper subset of C! is biholomor-
phically equivalent to the unit disc. Moreover, the biholomorphism can be determined
either from knowledge of the Green’s function for the Laplacian of the domain (vis-a-vis
the electric potential for a charged plate), or from the complete metric of constant neg-
ative curvature (via the exponential map). This theorem is a beautiful example of the
intimate relationship between the complex analysis, function theory, and the geometry
of invariant metrics.

One of the quests in several complex variables is to determine how this theorem
generalizes. In a ground-breaking paper [L1], Lempert established fundamental results
concerning the Kobayashi metric for strongly convex domains in C™ which again in-
timately connected the complex analytic properties of a domain with canonical maps
from the unit ball to the domain via the exponential map for the Kobayashi metric and
the plurisubharmonic Green’s function. In [BD1], these results were used to describe
and parameterize the moduli space of pointed strongly convex domains up to biholo-
morphic equivalence. (The results mentioned here will be elaborated upon later in the
introduction.)

One new feature which arises in several complex variables is that much of the analysis
for a domain can be reduced to analysis on the boundary of the domain. More precisely,
the complex structure from C" restricts to the boundary of a strongly convex domain
to define a CR structure on the boundary. (Once again, definitions and more complete
descriptions of these ideas will be provided later in the introduction.) Two strongly
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convex domains in C” are biholomorphically equivalent if and only if their boundaries
are CR equivalent. On the other hand, the CR structure can be described as an intrinsic
structure on the boundary. This immediately raises the imbeddability question: Which
(strongly pseudoconvex) CR structures on a (2n+1)-dimensonal manifold M can be
realized as the boundaries of strongly convex domains in C™**. It is well known that if
n>2, then they can all be realized as the boundaries of some open complex manifolds,
while for n=1, that is not the case [N].

Returning to the question of biholomorphic equivalence of domains, the fact that it
can be reduced to a question of the CR equivalence of their boundaries indicates that there
should be appropriate analogues of the Riemann mapping theorem, the plurisubharmonic
Green’s function, and the Kobayashi metric which rely completely upon the intrinsic
geometry of the boundary. Moreover, if these analogues are ‘correct’, then they should
shed light upon the imbeddability question.

One of the purposes of this paper is to indicate a generalization of the Riemann
mapping theorem to the space of abstract CR manifolds which are small perturbations
of the standard CR structure on the unit sphere in C2. The main technique will be
to study the interplay between contact geometry and CR geometry, and to use this
interplay to obtain a normal form for the CR structure on the manifold. The analysis
will effectively intertwine several different objects—the complex analytic structure of the
domain with the CR structure on the boundary, the Kobayashi metric on the domain with
a canonical foliation of the boundary by circles, the plurisubharmonic Green’s function
for the domain with a normalized choice for a contact form on the boundary, a Riemann
mapping theorem with the structure of a complex line bundle over P!, and the moduli
space for convex domains with a normal form for CR structures on the boundary.

All of the results contained in this paper generalize to higher dimensions. Most of
them can be pushed much farther than small perturbations of the standard CR structure
for the sphere. However, the purpose of this paper is to set down as clearly as possible
the approach to the problem, and to indicate how this approach intertwines such varied
objects as described in the previous paragraph. To achieve this purpose, we have for
the most part narrowed our focus to small perturbations of the standard CR structure
on S3. (The three dimensional case has the added interest of addressing the question
of global obstructions to the imbeddability of CR structures.) However, we have tried
to introduce as many of the crucial ideas as possible. In a forthcoming paper, we will
indicate the modifications necessary to extend this approach to higher dimensions.

Organization of the paper. This paper will contain a rather lengthy introduction.
The intent of this introduction is to introduce rather carefully all of the major concepts
and structures required throughout the paper, and to indicate how this solution to the
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equivalence problem for the space of CR structures effectively ties together such varied
objects as described above. It is also our hope to make the relevant sections readable for
those who are expert in one area without requiring knowledge in the remaining areas.
The remainder of the paper will proceed as follows. Chapter II will contain the
necessary preliminary material, setting up the basic notation, introducing the various
operators and recalling the basic facts from the Hodge theory on S3. Chapter III will
then introduce a linear structure on the space of diffeomorphisms of S3, and describe an
‘integrability condition’—the condition that the diffeomorphism corresponds to a contact
diffeomorphism; this integrability condition is a nonlinear PDE which the vector field
parameterizing the diffeomorphism must satisfy. Chapter IV will study the solution
space to this PDE, and show that if an anisotropic Sobolev space structure is placed on
the full group of diffeomorphisms, then the solution space forms a Hilbert submanifold;
that is, the space of contact diffeomorphisms which are sufficiently near the identity
admits an anisotropic Sobolev space structure—one which considers L? estimates only on
those derivatives in directions which are tangent to the contact distribution. Chapter V
considers the action of the contact diffeomorphisms on the CR structure, and shows that
the contact diffeomorphism group can be used to place the CR structure in various normal
forms. These results basically follow from writing down the action at a linearized level,
obtaining the normal form at the linearized level, and concluding that the nonlinear
results holds in a neighbourhood by the implicit function theorem for Banach spaces.
Chapter VI contains the basic imbedding results, and discusses the geometry of the
situation. In this chapter, we discuss a more general situation, and try to indicate
that the basic ingredient which is necessary for the analysis in this paper is a strongly
pseudoconvex CR manifold for which the underlying contact structure admits a S* action.

Acknowledgements. The author would like to express his appreciation to IHES for
their hospitality while he developed the basic ideas contained in this paper, and to Mike
Christ, for several helpful conversations on related topics. He would also like to express
his thanks to Laszlo Lempert for his interest in this work, and to his collaborator Tom
Duchamp, whose constant help and encouragement were vital ingredients for this work
to ever see completion.

2. Outline of the results

A contact structure on S% is a codimension one subbundle of the real tangent space
satisfying a nondegeneracy condition best described as follows. Let 5 be a 1-form dual to
this distribution. Then the hyperplane distribution is a contact distribution if nAdn is a
non-vanishing volume form. Thus, the hyperplane distribution is a contact distribution
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if it is as far from being integrable as possible. The form 7 is said to be a contact form.
Notice that # is only defined up to multiple by a nonvanishing function.

A CR structure on S is an 1-dimensional subbundle H(; gy of the complexified
tangent space such that H(l,O)@H(l,O) is a subbundle of complex codimension one; in
this case, the intersection of this subbundle with the real tangent space to S* is a real
codimension one subbundle. We set H(o,l):=ﬁ(1,o). Let T be a real globally defined
transverse vector field to this distribution. Then the CR structure is said to be non-
degenerate if for any nonzero Z € H(; gy, the bracket [Z, Z)=—i)T (mod Z, Z) for some
nonvanishing function A, and it is said to be strongly pseudoconvez if this function A is
positive.

It follows immediately from the definitions that a CR structure defines in a natural
way a hyperplane distribution of the real tangent space, and that this hyperplane dis-
tribution is a contact distribution (fully nonintegrable) precisely when the CR structure
is nondegenerate. Indeed, let n be a real 1-form dual to the hyperplane distribution
H(1,0)®H(o,1); then the nondegeneracy implies that nAdn is nonvanishing. In this sense,
a strongly pseudoconvex CR structure can be thought of as a contact structure together
with a smoothly varying complex (or conformal) structure on the hyperplane sections.

This is the approach in this paper. Consider a CR structure to be described via a two
step procedure. First, define a hyperplane distribution on M—that is, the codimension
one subbundle of the complexified tangent bundle which consists of the holomorphic
tangent space and its complex conjugate; specifying this distribution is equivalent to
specifying a nonvanishing real one form 7 which is dual to it. (Recall that the strong
pseudoconvexity of the CR structure guarantees that the hyperplane distribution is fully
non-integrable; that is, it is a contact distribution. In terms of the dual one form 7, this
is the condition that nAdn#0.) Second, on each hyperplane in the distribution, specify
the splitting into the holomorphic and the conjugate holomorphic directions.

The main technique in the paper is to use contact geometry and the analysis asso-
ciated to the 0, operator to obtain a normal form for the pair consisting of a contact
structure and a conformal structure on the contact distribution. This is achieved as
follows:

Step 1. A well-known result from contact geometry [G] states that any two nearby
contact structures are equivalent (via a diffeomorphism which may change the contact
form.) Since we are interested in the space of CR structures up to equivalence, we
may as well fix once and for all the underlying contact structure. This relatively simple
normalization has the property that it immediately simplifies much of the remaining
analysis, and repeatedly does so at several different stages.

(a) This normalization immediately reduces the remaining action of the diffeomor-
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phism group to action of the group of contact diffeomorphisms (those which fix the
contact structure). This is not only a much smaller group, it is also much better be-
haved.

(b) Fixing the contact structure, and restricting attention to small deformations of
the standard CR structure which have the same underlying contact structure allows for a
particularly simple representation of the space of CR structures in terms of deformation
tensors. Indeed, let e be a local section of the standard holomorphic tangent space. Then
a local section of the deformed holomorphic tangent space can be taken to be of the form
é=e~¢(e), where g€ Hom(Hq 1y, H(1,0))- (Notice that we have used the conjugate of the
deformation tensor in the defining equation in order to agree with standard deformation
theory—in which case the deformation tensor is considered to be a vector valued (0,1)
form.)

(c) Specifying a contact form fixes a splitting of the tangent space necessary to
make the 8, operator well defined. Since all of the analysis will be done using the initial
structure and its associated 55 operator, the analysis always uses the same contact form
and the same splitting,.

(d) The anisotropic Folland-Stein spaces which are adapted to the 8, analysis are
fully commensurate with the underlying contact structure, and the contact diffeomor-
phisms preserve these Folland-Stein spaces.

Step 11. In order to understand the action of the space of contact diffeomorphisms
on the space of CR structures, we first introduce natural Banach space structures on
the various spaces of objects. The space of CR structures already has a natural linear
structure when it is represented as the space of deformation tensors. The space of contact
diffeomorphisms can be given a natural linear structure in various ways; however, since
we will eventually be using 8, analysis in order to normalize the CR structure, we will
require a Banach space structure on the space of contact diffeomorphisms which uses
the weighted (or anisotropic) Sobolev spaces referred to as Folland—Stein spaces (coming
from the context of J, geometry [FS]). Notice that these spaces are also ‘natural’ in
the context of contact geometry, since they are precisely the spaces which are preserved
under contact diffeomorphisms.

Step III. We show that the space of contact diffeomorphisms can be parameterized
by a single real valued function p on S3. Using this parameterization, the linearization
at the origin of the action of the contact diffeomorphisms on the CR structures defined
by the deformation tensors is given by

¢ ¢+8,%0,p (2.1)



6 J. S. BLAND

where # is the inverse to the operator ¢: H(;,0y— H®1) defined by Z—(Zldn). (Here
H(O1) is defined as in equation (6.1) by the splitting

TE(S?) = Cno HVO($3) o HOV(S53),

where dn is contained in the wedge of the last two factors.) By using an inverse mapping
theorem in Banach spaces, we show that the CR structure can be normalized to lie in
a complementary subspace to the image of the operator 8,#0, applied to a real valued
function.

Normal forms for the CR structure. In order to normalize the CR structure, we
use the fact that the underlying CR structure admits a natural S! action. This is the
circular action induced by the standard imbedding of S? as the unit sphere in C?, and it
is generated by the vector field dual to the standard contact form on S3. This S! action
on S3 induces an action on the function spaces and the full tensor algebra of S3. We use
this action to decompose the tensor algebra according to its Fourier components, and
express the normal forms in terms of the vanishing of certain of the Fourier components.

(Before continuing, we should briefly mention two interpretations of these Fourier
coefficients. Complex analytically, any function—or tensor—can be restricted to the
boundary of any complex line which passes through the origin. This is the boundary of
a unit disc, and the Fourier components restricted to the boundary of this disc are the
standard Fourier components; in particular, any data with no negative coefficients on the
boundary of this disc admits a holomorphic extension to the entire disc. Geometrically,
the sphere can be interpreted as the unit sphere bundle of the tautological line bundle
over P1; the fibres of this bundle correspond to the boundaries of the complex discs
referred to above. In this case, functions restrict to any fibre as a function on a unit circle
in a complex line, and the Fourier decomposition again agrees with the one dimensional
version. Data with no negative Fourier components admits an extension to the entire
unit disc bundle over P'—a complex manifold—in such a way that it is holomorphic in
the fibre directions.)

Since the contact diffeomorphism is parameterized by a real valued function, it is
completely determined by either its negative Fourier coefficients or its positive Fourier
coefficients. (Notice that we are being a little sloppy here in regards to the zeroth—or S*
invariant—coefficient; we have to treat this with special care in the paper.) Furthermore,
the 8,#8, operator respects the Fourier decomposition. Thus we can normalize either
the negative or the positive Fourier components of the CR structure. If we attempt to
normalize the negative coefficients to be zero, we find that there is an infinite dimensional
obstruction; this obstruction corresponds to CR structures which do not bound convex
domains. If these bad negative coefficients vanish, then it is easy to conclude that the
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deformation tensor extends holomorphically to define a complex manifold of which the CR
manifold is the boundary. On the other hand, if we normalize the positive coefficients,
we find that there is no obstruction, and that we can always make the deformation
tensor have only negative Fourier coefficients. In this case, the CR structure extends
holomorphically to the exterior of the unit circles (or, in terms of the dual bundle,
holomorphically to the interior) to define a complex manifold for which the CR structure
is the pseudoconcave boundary.

3. Background results—complex analysis

The Kobayashi metric. The infinitesimal Kobayashi metric at a point p€D assigns a
length to each tangent vector v€T,D as follows:

||v|| := (sup{A| f: A — D is holomorphic; f(0) =p, f'(0) = Iv})™!

where A is the unit disc in C'. The indicatriz for the Kobayashi metric at the point
p€ED is the sublevel set in T, D of the infinitesimal metric corresponding to all vectors of
Kobayashi length less than one. This is a circular domain in the tangent space at p.

In [L1], Lempert showed that for a strongly convex domain D, the infinitesimal
Kobayashi metric defines a Finsler metric on D (that is, it restricts to the tangent space
T,D at any point p€ D as a norm), and that the appropriately renormalized exponential
map at any point p€ D is a homeomorphism from the indicatrix B, onto the domain D,
and a diffeomorphism away from the origin. (Recall that the exponential map for a
metric is a map from the tangent space to the domain which takes straight lines through
the origin to geodesics—distance minimizing curves. The appropriate normalization and
invariant description of this map was due to Patrizio [P].) Furthermore, the restriction of
this map to any complex line through the origin is holomorphic, and an isometry relative
to the Kobayashi metric on the indicatrix (thought of as a circular domain inside the
tangent space'T,,D with its natural complex structure) and the Kobayashi metric on the
domain D. This map is called the circular representation,

¥,:B,—D

between the indicatrix and the domain. This result is a natural generalization of the
Riemann mapping theorem to the class of strongly convex domains in C".

The plurisubharmonic Green’s function. One possible generalization of the harmonic
Green’s function from one complex variable to several variables is known as the plurisub-
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harmonic Green’s function. It is defined as the function u, which satisfies the homoge-
neous Monge-Ampére equation

u is plurisubharmonic in D,
(00u)" =0 in D\{p},
u=0 on 9D,
u(z)=log|z—p|+0(1) asz—p.

In the same paper [L1], Lempert showed that if §,: D—R denotes the Kobayashi
distance from the point p and 7, denotes the real valued function on D defined by the
formula

7p(g) :=tanh?(8,(q)), (3.1)

then the function log(7,) is smooth away from p, and satisfies the homogeneous Monge-
Ampére equation with logarithmic singularity at p. This indicates that the plurisubhar-
monic Green’s function with logarithmic singularity at p is naturally determined by the
Kobayashi distance from p.

Conversely, the behaviour for the Kobayashi metric centred at p (and consequently,
the Riemann map) can be completely determined by the plurisubharmonic Green’s func-
tion up. First, it is clear that the Kobayashi distance from p is determined from wu, by
using the relation (3.1); more is true, though. Since ddu is a closed two form of constant
rank n—1, the two dimensional distribution on the tangent space which is annihilated
by this form is integrable, and the integral submanifolds of this distribution are complex
curves which correspond to the geodesics for the Kobayashi metric. Since there is a
canonical Poincaré metric determined on each of these curves, the Riemann map centred
at p is again completely determined by the function u,.

Finally, we should note that the Riemann map pulls back the Green’s function from
the domain D to the Green’s function for the circular domain Bp; in the case of the
circular domains, the Green’s function is the same as the logarithm of the Kobayashi
norm on T, D.

The moduli space. Since the Kobayashi metric is a biholomorphic invariant of the
domain, the circular representation is a biholomorphic invariant of the pair (D,p) and
can be used to construct moduli for the domain. A pair of pointed domains (D, p) and
(D',p’) are said to be equivalent if there is a biholomorphism f: D— D’ with f(p)=p'.
Because the Kobayashi metric is a biholomorphic invariant, the linear equivalence B, B,
follows and there is a commutative diagram
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Bp“&‘)D

dfp l 1f (3:2)
o

B, —%>D.

Thus, the pointed domains are equivalent if and only if the equivalence factors through
a linear equivalence of their circular representations.

The above observations lead to a natural construction of a moduli space for pointed
domains up to biholomorphic equivalence. First, we use the circular representation to
pull back the complex structure from the domain D, and represent it as a deformation
of the complex structure on the circular domain B,; we refer to the circular domain with
this deformed complex structure as the circular model. Then, two pointed domains will
be biholomorphically equivalent if and only if their circular models are linearly equivalent.
The description of the moduli space is thus reduced to describing the moduli space of
circular models. The power in this approach lies in the fact that the space of circular

models admits a very elegant description, and it can be effectively parameterized. (See
[BD1] for details.)

Restriction to the boundary. If S° is differentiably imbedded as the boundary of a
strongly convex set in C2, then the complex structure from C? restricts to the image of
53 to define a one complex dimensional subbundle of the complexified tangent bundle to
the image—a CR structure. Furthermore, since the image is the boundary of a strongly
convex set (strongly pseudoconvex would be sufficient), the CR. structure thus defined is
strongly pseudoconvex.

When studying such questions as the equivalence of bounded convex domains in C2,
it is sufficient to restrict one’s attention to the equivalence of their boundaries. Indeed, it
was a deep theorem by C. Fefferman [Fe] that any biholomorphic map between strongly
convex domains extends smoothly to a diffeomorphism (and hence, a CR equivalence)
between the boundaries. (The local version of this result is due to Lempert [L1].) On the
other hand, it has long been known that any CR equivalence between the boundaries can
be extended to a biholomorphic map between the interiors. (In one complex variable,
there are conditions on the parameterization of the boundary equivalence; given those
conditions, the extension follows from Cauchy’s integral formula.)

The implication of these observations is that any naturally defined object on the
interior of a convex domain should correspond to some invariant object on the boundary
of the domain; any description of the moduli space for convex domains should have a
corresponding description of a moduli space for CR structures on the boundary of the
domain, The main purpose of this paper is to draw this correlation for the case of small
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perturbations of the standard sphere.

4. Interpretations of the results

Relation to convex domains. The results in this paper arose from an attempt to describe
the Lempert map (and the modular data for convex domains) completely in terms of
analysis on the boundary of the domain. As a natural result, the particular normaliza-
tions which we have chosen lead to a rather precise correspondence between objects on
the boundary and objects on the domain. This correspondence should not be lost in
the analysis in the paper, and we would like to emphasize it here. Before we draw this
correspondence, we should remind the reader that the normalization procedure can be
interpreted as (i) fixing the underlying coordinate system, and finding a normal form for
a CR structure under the action of the diffeomorphism group, or (i} finding a canonical
map from the standard sphere to the CR manifold such that the CR structure pulls back
under this map to one in normal form.

Modular data, normal forms and the Riemann mapping theorem. It will be shown
in this paper that if the CR structure is normalized to have only strictly positive Fourier
coefficients in the deformation tensor, then it naturally corresponds to a point in the
moduli space for strongly convex domains [BD1]. More precisely, if the CR structure
is CR equivalent to that on the boundary of a convex domain D, then the circular
model for the convex domain is obtained as follows: Let pecD be a base point, and
pull back the complex structure from the domain to the indicatrix via the exponential
map for the Kobayashi metric. Write the new complex structure on the indicatrix as a
deformation of the standard one, and restrict it to the boundary. The indicatrix with the
deformed complex structure obtained in this fashion is the circular model for the domain
D, and the boundary of indicatrix with the deformed CR structure is in the normal
form presented in Theorem 14.2. Moreover, the space of circular models described in
[BD1] is equivalent to the space of CR structures presented in the normal form given in
Theorem 14.2 which have no negative {or weight <4, according to the parameterization
given in the statement of the theorem) Fourier coefficients. Since the circular model for
the domain D is obtained from the Riemann mapping, obtaining the normal form for the
CR structure can be viewed as constructing the circular model or the Riemann mapping
completely from the CR structure on the boundary.

Notice that the normal form constructed in this way is only determined up to the
choice of a base point pe D, and a framing at p; this corresponds to the action of a finite
dimensional group on the normal form (i.e.—the ‘normal form’ is only normalized up to
the action of this finite dimensional group), and we will run into this same indeterminancy
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in our normalization procedure in this paper. It follows from these observations that the
effect on the circular model of changing the base point of the domain is equivalent to the
action on the normal form of this finite dimensional group.

It is the agreement of the normal form with the description of the circular models
in the moduli space which leads to the following correspondence.

Kobayashi discs. In [L1], Lempert showed that the singular foliation of the domain
by extremal Kobayashi discs through a base point induced a smooth foliation of the
boundary by circles. In the normalization procedure on the boundary, we start with a
smooth foliation by circles, and the normalization procedure can be considered to be
normalizing this foliation—that is, finding a differentiably equivalent foliation by circles
such that the new circles are the boundaries of extremal discs for the Kobayashi metric.

Plurisubharmonic Green’s function. The normalization of the circle foliation is also
equivalent to the normalization of the choice of a contact form. (Actually, the choice of a
contact form also picks out a natural R! action which is generated by the characteristic
vector field, and in our normalization procedure, we require this to be a free S action;
this is slightly more structure than a differentiable foliation by circles.) On the other
hand, a solution u to the homogeneous Monge-Ampére on the domain D also induces a
natural contact form idu on the boundary, for which the foliation by Kobayashi discs is
the characteristic foliation associated to the restriction of i6u to the boundary. Thus,
the normalized contact form is the ‘gradient’ of the Green’s function on the boundary of
the domain.

Ezxtension results. The basic idea behind the extension results is rather simple-
minded. Start with a contact structure which is invariant under a free S action. Then
the manifold M fibres as a principal S' bundle over a Riemann surface ¥, and the con-
tact structure can be defined by a contact form n which is S equivariant, and restricts
to the fibres as the Maurer—Cartan form—that is, the contact form 7 is a connection
form on the principal bundle. The principal S! bundle imbeds in a complex line bundle
E:=M®g C! over X, and the S! action on M C E imbeds in a C* action on E. Construct
an invariant CR structure on M by choosing any complex structure on X, and defining
the holomorphic tangent space on M to be the horizontal lift (via ) of the holomorphic
tangent space on X. This CR structure can be extended to define a complex structure
on E in such a fashion that the holomorphic tangent vectors to the fibre directions are
holomorphic on E (i.e.—if ¢ is a fibre coordinate, then ¢ 8/9( is holomorphic on F) and
the horizontal lifts of the holomorphic tangent directions on ¥ to C* invariant vector
fields are holomorphic. Using this complex structure, E is a holomorphic line bundle
over X.
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The extendable normal forms, then, are precisely those which can be expressed
relative to the invariant CR structure via a deformation tensor which has no negative
Fourier coefficients relative to the S! action. The trick is that the extension result is
then reduced to a one complex variable result—if, when restricted to any fibre it has
no negative coefficients, then it extends holomorphically to the entire fibre. It is then
sufficient to show that this extension defines a deformation of the complex structure on
the relatively compact component U of (E\ M) which is integrable; by the Newlander—
Nirenberg theorem, U with this deformed complex structure is an open complex manifold
with the original CR manifold M as its boundary.

We should point out the philosophical correlation with the Bishop extension tech-
niques. In |Bi], Bishop extended complex structures by finding complex discs along which
to extend the structures (see also [HT]). In the current situation, we are essentially doing
the same thing, where we are choosing a canonical family of discs by any of the following
normalization techniques: (i) the solution to the homogeneous Monge-Ampére equation,
(ii) finding the family of Kobayashi discs which all pass through a given point, (iii) using
CR geometry to normalize the choice of a contact form on the boundary.

Direct imbedding methods. In the final section of this article, we indicate how to
obtain a direct imbedding of the CR manifold. The technique is to use the solution
operator for the 8, operator associated to the S! invariant CR structure, and the normal
form of the deformed CR structure, to directly produce CR functions relative to the
deformed CR structure by modifying functions which are CR relative to the S invariant
structure. The main idea behind this technique was implicitly used in [BD1] in the
parameterization of the moduli space. However, this technique has not yet been used to
its potential, and there are some interesting features which are worthwhile to point out:

(i) In general, it is difficult to write down explicit expressions for solution operators
to the 95 equation on CR manifolds; however, in this case, it is possible to do so by
comparing the given CR structure with a second CR structure which is invariant under
a free S' action.

(ii) The expressions for the solution operators rely on two essential pieces of data:
the solution operator relative to the S invariant CR structure, and the solution to
the homogeous Monge-Ampére equation. More precisely, associated to the solution to
the homogeneous Monge~Ampére equation is a canonical volume form on the boundary
(that is, the CR manifold). The CR functions for the deformed CR structure which
are obtained by the above process are equivalent to those obtained by starting with
the CR functions relative to the undeformed CR structure, and adding on a component
which is L? perpendicular relative to the volume form associated to the homogeneous
Monge-Ampére equation.
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(iit) There are very few known examples where the Kobayshi metric can be computed
explicitly. As the value of this metric is becoming increasingly apparent, this is a huge
gap in the theory. In particular, while it is shown in [BD1] that there is a natural corre-
spondence between strongly convex domains and their circular models, explicit examples
of this correspondence are hard to find. This technique makes explicit how examples
of the correspondence can be obtained via the ‘back door’—starting with the circular
model, and finding the CR imbedding functions. In simple examples, these imbedding
functions can be explicitly written down.

(iv) Continuing along the lines of the last comment, the explicit maps from the
circular models to domains in C? define canonical representatives within the class of
strongly convex domains up to biholomorphic equivalence. It would be of interest to study
what properties these canonical representatives possess, and whether the real ellipsoids
are among the list of these representives. (If they are, then these are likely to be the
‘best’ choice of canonical representatives; if not, then there is likely some other procedure
for obtaining the canonical representatives.)

Relation to other results. Epstein has recently extended his work with Burns [BE]
to a study of CR structures on three dimensional circle bundles. In [E], he analyses the
space of three dimensional CR manifolds which admit a free S! action, as well as small
perturbations of such structures. He shows that small perturbations of the S* invariant
CR structure are generically nonimbeddable, but if the perturbation can be written as
a deformation using only positive Fourier coefficients, then any imbedding of the S!
invariant CR structure can be perturbed to an imbedding of the deformed structure.
We believe that a combination of a sharpened version of his ‘generic non-imbeddability’
results and our normal form analysis could lead to a rather simple description of the
imbeddable CR structures in terms of a filtration of the Hilbert space of normal forms.
For example, in the case of small deformations of the sphere, we show in this paper
that there is a Hilbert subspace of the space of normal forms which corresponds to those
which are imbeddable as the boundaries of convex domains; then, using a stability result
obtained by Lempert (see [L3]), it follows that this Hilbert subspace is precisely the
space of imbeddable CR structures. In general, we expect that the set of the imbeddable
normal forms will still form a Hilbert subspace, but that there will be further linear
obstructions on the space of imbeddable normal forms which correspond to obstructions
to imbeddability in a neighbourhood of certain special imbeddings of the S! invariant
CR structure. »

Also, in the paper cited above, Lempert [L3] studied the imbeddability of CR struc-
tures using the notion of Beltrami differentials. These Beltrami diffentials basically corre-
spond to the Lie derivative with respect the circular action of the deformation tensor used
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in this paper; alternatively, they can be related to an anti-holomorphic twist tensor (see
e.g. [BD2] where the anti-holomorphic twist associated to the Monge—Ampére foliation
for strongly convex domains is related to the deformation tensor used in the description
of the moduli space in [BD1]). His notions of inner actions and outer actions correspond
to the deformation tensor having only nonnegative and nonpositive Fourier coefficients
respectively. The result which we referred to in the last paragraph is a stability result for
small perturbations of $°. He established it using the elegant trick of gluing the complex
manifold which the interior normal form bounds (if it does bound) to the complex man-
ifold which the exterior normal form bounds in order to construct a compact complex
manifold which is topologically P? with the origin blown up, and analysing the stability
of the spectrum of 0, on the hypersurface contained in this compact complex manifold.

Finally, Cheng and Lee have also announced that they are able to obtain a trans-
verse slice theorem for the action of the group of contact diffeomorphisms on the space
of CR structures. More precisely, they have shown that given an arbitrary compact 3-
dimensional strongly pseudoconvex CR manifold, there is a smooth local slice for the
action of the contact diffeomorphism group on the space of CR structures in a neigh-
bourhood of the given one. Such a result would give a family of normal forms for nearby
CR structures in terms of deformations of a fixed inital CR structure.

II. Analysis on S3
5. The geometry

Consider S?CC?~R*. We will use coordinates (z',y*,z2,3%) on R*, and the identi-
fication 2¥=z*4iy* for R*2~C2. The complexified tangent space to S® has a natu-
ral framing given by e=228/821 —218/82%, &, T=—21m(218/82' +228/82?), with dual
coframing w=z2dz' —2'dz?, @, n=—Im(dlog|z|?). With this framing, e is a basis for
the holomorphic tangent space H o) to S° (that is, the restriction of the holomorphic
tangent space T¢; gy for C? to the sphere), and the vector field T is the generator of
the circular action (21, 22)(e%2?, % 22) with period 27. The fact that S® is strongly
pseudoconvex implies that the dual form 7 is nondegenerate; in this case, dn=iwAo and
nAdn#0.

The above framing for S3 is also adapted to a natural contact structure on S3.
(Recall that a contact structure is a co-dimension one distribution on the real tangent
space which is fully non-integrable—that is, if the distribution is defined by a dual one-
form, called a contact form, the one-form is non-degenerate; this is the odd-dimensional
analogue of a symplectic structure.) In this case, the natural contact structure is defined
by the real and imaginary parts of the holomorphic tangent vector e, and the associated
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contact form is . The nondegeneracy condition on the contact form is that nAdn=
NA(iwAD)#0. The vector field T is the characteristic vector field for the contact form
7; that is, it is the vector field which is characterized by the conditions

(1) Tin=1,

(2) T1dn=0.

Next, we consider S from the point of view of a principal bundle. The characteristic
vector field T generates a circular action on S3, with quotient space S?; that is, S° admits
the fibration S*—S3— 52, called the Hopf fibration. In this picture, the orbits of the
S action are the intersections of complex lines through the origin in C? with the unit
sphere S%, and the orbit space is the space of complex lines through the origin, P122§2.

An algebraic geometric interpretation of this bundle is as follows. The punctured
complex plane C?\{0} fibres as a punctured complex line bundle over the space of
complex lines through the origin in C2—that is, P1=5?; this fibration is given by a
point pe C%\ {0} mapping to the complex line through the origin which it defines. This
is a holomorphic fibration (the quotient map is holomorphic), and it identifies C2\{0}
with a punctured holomorphic line bundle over P!; for obvious reasons, this is called the
tautological line bundle E over P!, or more precisely, it is the complement of the zero
section of F.

A norm on C? is the square root of a strongly convex function of the form h=ef|z|2,
where H is a function which is constant along the lines through the origin. (In particular,
H respects the above fibration, and defines a function on P!.) The sub-level sets of
the norm are strongly convex circular domains (domains which are invariant under the
circular action), and the sub-level set corresponding to the value 1 is the indicatriz for
the norm. The norm on C? defines a norm on the tautological line bundle E, and the
level set for the value 1 corresponds to the bundle of unitary vectors in the tautological
line bundle.

The imaginary part of the one form

—Im(8logh)=—Im(dlog |2|*+OH) =n—Im(OH)

restricts to the level set h=1 to define a contact form whose characteristic vector field
is again the generator of the circular action. On the tautological line bundle, the form
Ologh is a connection form. (More precisely, the form dlogh is the connection form; a
tangent vector to E is horizontal if it is annihilated by dlogh). This connection form
restricts to the U(1) bundle of unitary frames (the level set h=1) as —in+0H.

The relevance of the above discussion is as follows. When H =0, the level set h=1
corresponds to the unit sphere in C?. In this case we will at various times interpret the
one form i0log h=n as (1) a contact form on the level set h=1 (in order to use contact
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geometry to normalize the CR structure on the boundary), (2) dual to a circular action
(in order to use Fourier analysis in the normalization procedures), (3) a connection form
on the U(1) (or S') bundle of unitary frames over P! (in order to define horizontal lifts
of frames from P!, or S? invariant lifts), and (4) the restriction of a connection form on
E to the bundle of unitary frames (in order to define extensions of CR deformations to
deformations of the complex structure on E). The nondegeneracy of  (where dnp=iwA®)
can be variously interpreted as (1) the strong pseudoconvexity of the CR structure on S3,
(2) the nondegeneracy of the contact form, (3) the negativity of the curvature form of the
line bundle F (and the negativity of the line bundle), and (4) the fact that dn descends
to P! to define a symplectic structure on P! (the curvature form defines a positive
Kahler form on P!). Under these various guises, changing the norm k corresponds
to (1) changing the indicatrix, (2) changing the norm on the tautological line bundle,
(3) changing the connection form on the tautological bundle E (or the splitting into
horizontal and vertical directions), (4) changing the contact structure (notice that the
fibration of C?\ {0} over P! defines a natural identification—or diffeomorphism—between
any two indicatrices, and we may equivalently be considering ourselves to always be
working on the standard $2 and simply changing the contact structure, or the connection
form), and (5) changing the symplectic form on P! (the curvature form).

6. The operators

The vector field T' which generates the circular action induces a natural splitting of the
complexified cotangent bundle

T&(S?) = Cna HYO (53 o HOV(S3). (6.1)

Using this splitting, the boundary Cauchy-Riemann operator acting on forms, denoted
by 8y, becomes well-defined, and on functions, it is defined by the formula

Opu=¢(u)o.

It extends to define the (0, 1) part of a Hermitian connection on the holomorphic tangent
bundle to S%; furthermore, the (1,0) part of the associated Hermitian connection is nat-
urally denoted by 8,, where the metric is the induced metric coming from the imbedding
S$3CC?. The adjoint operator to J, is denoted by d;, which on (0,1) forms is given by
the formula

0; (vw) = —e(v).

For basic facts about these operators, and the operators Db=5§5b+5b5{;, and its
conjugate 0, =878, + 0,0}, one may consult [FS], [BD1].
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There is a real variable analogue of these operators. Define a partial connection by
d =8+,
and the associated sub-Laplacian by
A=drd+dd.

In terms of the framing for S given above, this operator, acting on functions, may be
written

A(f) = —(e+e)(e+e)(f) - J(e+e) I (e+e) /),

where 5 P 5
S el 2 1 1
et+e=zx @-—y b_y—l_x ﬁ'{’y a_y5

and

2 0 , 0 1 0

0
€)\=—1 —e)l= 2_— —— _—
J(et+e)=i(e—€)=z +y 521 % 57 Y 52

oyl

(J is the complex structure tensor for C2.) The operator A may be thought of as

a ‘horizontal’ Laplacian—the associated self-adjoint operator to the horizontal partial
derivative d=8y+8=d (mod 7).

Using this horizontal Laplacian, the operator O, on functions may be expressed as

A+

Op=—ee= iT.

Bl
(1

and its conjugate as

0,=1A-1iT=0,-iT. (6.2)

Let G be the Green’s operator associated to 0. (This operator will be discussed more
fully in the next section.) Then the commutation relations

[T,Al=[G,Al=[G,T)=[G,A)=[G,T]=0 (6.3)

hold, and the fact that
o0 = S AA+LTT (6.4)

is a real operator implies that GG is a real operator.

7. Hodge theory

The spaces I'* used in this paper are the weighted (or anisotropic) Sobolev spaces which
we refer to as Folland-Stein spaces. (For basic facts about these spaces, and the properties

2-945201 Acta Mathematica 172. Imprimé le 29 mars 1994
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of the various operators, see [Fo], [FS]. Most of the estimates work equally well for the
weighted LP spaces, and the Holder spaces; however, in the case of the Holder spaces,
the estimates break down when we try to project onto the subspace of functions which
have only positive Fourier coefficients.) The norms are equivariant with respect to the
circular action (2!, 22) (€% 21, €9 2?) on §3C C?, and more generally, under the action of
the unitary group. Under the circular action, the space of L? functions decomposes into
invariant subspaces; the components of a function in these invariant subspaces will be
known as its Fourier components, or Fourier coefficients. Under the action of the unitary
group, the space of L? functions on S® further decomposes into the invariant subspaces
By, n, where m is the ‘holomorphic’ degree, and n the ‘conjugate holomorphic degree’
of the function. (For a full analysis of this decomposition into invariant subspaces in
the present context, one should refer to [Fo].) The projection operators onto the various
invariant subspaces are bounded in the weighted Sobolev norms. The two projections
of particular importance in this paper are the Szegb projection, and the projection onto
the subspace having only positive Fourier components.

The function space norms may be extended to norms on the spaces of sections of
various bundles, such as I'¥( /\(0’1) (8%)), in the standard way. In this case, the norms
on the sections are equivalent to the norms on the coeflicients, when the sections are
expressed relative to the coframing 7,w,» and its dual framing.

At various times, the symbol I'* will contain subscripts; these subscripts will refer to
those elements in the I'* space which have only components which lie in some invariant
subspace. For example, F’j,, Tk, I'* refer to those elements with only strictly positive,
zero, and strictly negative Fourier coefficients respectively, and I'%, will refer to the
mth coefficient or to those elements in the imth eigenspace of the operator T'. (Notice
that T5(S3) corresponds to functions which are invariant under the S* action, and hence
descend to functions on the quotient space P'.) The space I"&Re will refer to the subspace
of real valued functions which are invariant under the circular action—that is, real valued
functions having only zero Fourier coefficients. Finally, I'* will refer to the subspace
which is L2 orthogonal to the CR functions. Similarly, if we subscript a function in an
analogous manner, it will refer to the L? projection of the function onto the corresponding
subspace.

We have the following 8, Hodge theory for S3.

THEOREM 7.1 (Folland-Stein). On S3, there exist integral operators S (Szegé pro-
jection onto the CR functions), G (the canonical solution operator for O0) and Q (the
projection of the space of (0,1) forms onto the kernel of 5{;) with the following properties
(the operator Avgu takes the average value of the function—or is its L? projection onto
the constants):



CONTACT GEOMETRY AND CR STRUCTURES ON §3 19

For a function u,
(1) u=GOyu+Su=0,Gu+Su=(GOpu)_ +(GOpu)o+Avg(u)+(Gpu)+ +(Su)+,
(2) ker G={u|8yu=0},
(3) u=G Opu+Su=0,Gu+Su=(G Tpu)_+(Su)_+(G Tyu)o+Avg(u)+(G Tpu)+,
(4) ker G={u|8u=0},
(5) u=(GG Tp0Opu)+(Su)++(Su)—+Avg(u).
For a (0,1) form ¢,
(1) ¢=0G8¢+Q(9),
(2) Q-9p=0,
(3) Qif@)=iS(f)a.
Furthermore, the operators are bounded operators between the following spaces:
(1) G:TRAPD (%) -TH+2(A)(5%)), ¢=0,1,
(2) 5:T*(8%)—TI*(8?),
(3) Q:THACV(5%)—THACD(5%)).

Proof. The basic estimates for this result are contained in [FS]. In the case of the
Heisenberg group, everything has been worked out quite explicitly in [GS); a similar
approach could be applied to the case of the sphere (see e.g. [Ge]). For more general
imbeddable three dimensional CR manifolds, one can proceed as in [BG]; the basic facts
that are needed in this context are that V—operators of order 0 are bounded on L2, and
that G and S are V—operators of order —2 and 0 respectively (see e.g. [BE]). O

Remark 7.2. The appropriate generalization of this fact to higher dimensions (in
the context of this paper) is that there exists a bounded homotopy operator
p: Fk(A(O,q)(SZnH)) — k1 (A(qu—l)(s2n+1))’ 0<q<n,

such that for peT*(A®9(527+1)) (0<q<n),

¢ =08y Pp+Pbsg.

II1. The diffeomorphism group
8. Diffeomorphisms of S

Our aim in this section is to identify a natural linear structure on the space of diffeomor-
phisms of $2 which are sufficiently close to the identity. We will do this by identifying
small diffeomorphisms with vector fields which are tangent to S3.

Consider S2CC?~R*. Then the linear structure of R* may be used to identify a
diffeomorphism F: $3— $3 given by z+ F(z)=y with the vector Fm tangent to R*



20 J. S. BLAND

and based at z. After adding an appropriate multiple ) of the radial vector field y*8/dy*

based at F(x), the new vector field —Z+ )i, considered as a tangent vector to R* based

at ¥, is tangent to S3. This multiple ) is given by solving the equation (§—Z+ Ay, Z)=0

where (-,-) is the Euclidean inner product. The solution A is given by A=(1/(%,#7))—1.
Conversely, given a small vector field V on S3, we may identify a smooth map

S§3 83 by

4V,
&+ Vel

T r—

If V, is sufficiently small in the C! norm, then this smooth map is a diffeomorphism.

9. The integrability condition

In this section, we would like to study the extra conditions imposed on a vector field by
requiring that it induce a contact diffeomorphism on S3. This will require introducing
new notation in order to write the conditions in a manageable form. For this reason, we
will proceed in this section to first do the calculations, and then summarize the results
at the end of the section in the form of a proposition. The proof of the proposition will
consist of the calculations leading up to it.

Consider the map S%—S3 defined by radially projecting the map S3—R* given by
(z*, y*)—(z* + X*,y* +Y*) onto the sphere. Under this map, which we will refer to as
®, the contact form 7 pulls back to (here u is the Euclidean norm ||(z+X,y+Y)|)):

ko xk kL vk k vk ko xk
‘I’*W=Z(x + )d<y +Y )_(y +Y )d(w + )
s u u u u

= 513{@"+X B d(y* +Y*) = (F +Y*)d(z* + X )}

= ;15(17+(X’“dy’°—ykdx’°)+'(x’°dy’= —y*dX*)+(X*dY* -Y*dXx*))

1
= 1—;(77+d(x’°Y’° —yF X*)+2(XFdy* - Yrdz*)+(X*dYF-YrdXF)).

The map @ is a contact diffeomorphism if and only if ®*(n)=p-n for some nonvanishing
function p. (Notice, in particular, that this implies that ® is a local diffeomorphism.)
Thus the condition that (X,Y) corresponds to a contact diffeomorphism is that ®*n=0
(mod n); we will henceforth refer to this condition as the integrability condition.

At this stage, it is convenient to introduce some formalism. We shall do this twice—
once using the real structure of R* and a second time using the complex structure of CZ.
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Recall that the characteristic vector field T for the contact form 7 is defined by the
conditions

(1) Tdn=1,

(2) Tddn=0.
(We have now restricted to S3, where dn is of rank 2.) For the tangent vector V=
X*9/0z*+Y*8/0y* write

V=XT+Vy where Vyglin=0.

Next, we introduce the partial exterior derivative d by d=d (mod n), where this is
defined relative to the splitting of the cotangent space defined by T. Then the integra-
bility condition on V=X°T+Vy becomes

I(X°, Vy) :=d(X°)+ (Vg dn)+(X*dy* —Y*dXx*) =0. (9.1)

The final term in this last expression can be written in a more elegant fashion by
using the inner product (-, - ) coming from R* as well as the complex structure operator J
defined by J(8/8z*)=08/8y*, J(8/8y*)=—0/6z* and corresponding to the identification
R*=C2. Then

XEdyk—vkdxk = (JV,dv). (9.2)

Since V=X°T+Vy and JT=—v where v is the outward pointing unit normal to 3, we
can use the partial connection V on T(S3) corresponding to d and expand this term to

X, dVy)— Xy, d(X°T))

)_
)= ((X°T), dJ Vi) — X°(v,dVy)— X°(v, d(X°T))

(The last line follows from explicitly writing out both sides of the equation, and using
the observation that dv is the ‘shape operator’ for S3 restricted to the directions tan-
gent to the contact distribution.) Substituting this into equation (9.1), the integrability
condition becomes the vanishing of

I(X°,Vy) = d(X®)+ (Vg ldn)+{(dVy, JVa) — X°(JVy ldn). (9.3)
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Our second expression for the integrability condition will be in terms of the standard
CR structure on S induced by the complex structure of C2. First notice that the contact
form n=—Im(z*dz*)=—Im(8log|z|?) annihilates both the holomorphic and conjugate
holomorphic tangent spaces to §3. Thus, we can write

Vu=2+2Z
in a canonical fashion, where Z is a vector field of type (1, 0). Using the canonical splitting
of the complexified cotangent bundle of S%, which is induced by 7 and its characteristic
vector field T, into
T&S® =CnoHM o HOY,

and the fact that the integrability condition I€ H(:9 @ H(® is a real form, an equivalent
integrability condition is that the projection of I onto the (0, 1) subspace is zero. Taking
note of the facts that JZ=iZ and d=8,+8,, the complexified integrability condition
becomes the vanishing of

IOD(XO, Z):= Gp(X) 4+ Zdn+(J(Z+2),0(Z+ Z)) - X°(J Z_Ldn).
Setting
(X,Y)=XT+Z+Z=X"T+fe+fe,
the complexified integrability condition becomes the vanishing of
TOD(XO, fe) = 8y(XO) +ifw+(i(fe— f&), (Bof)e+(Bpf)E) — XO(ifetiwA®)

= éb(XO)+if@+X0f@+%(féb.f_“fébf)
= 5,,(X°)+ifw+X°fw+—;—i(f&f—f&f)‘

We have established the following proposition.

PROPOSITION 9.4. Let ® denote the diffeomorphism of S° obtained from the vector
field
(X,Y)=XT+Vg =XT+fe+fe

by mapping the point (z,y) to the point (z+X,y+Y) and radially projecting it back to
the sphere. Then

@' = o (1+d(X®) +(Var )+ (J(X, Y ), d(X,Y)))
and if we define the integrability tensor by

I(X°, Vg) = d(X°) +(Va Jdn)+(X*dY* - Y*dXF),
and its complezxified version by

IOD(X®, fe) = By(XO)+if@+ X fo+ o-(Fouf ~ B,

then ® is a contact diffeomorphism if and only if I=0.
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COROLLARY 9.5. If the vector field (X,Y) is invariant under the S action, then

. 1
® 7I=77+;5(I(X°,VH))-

Proof. Since the vector field (X,Y) is invariant under the S® action, it defines a
bundle automorphism; since the fibration is preserved by the map ®, and 7 restricts to
the fibres to have period equal to 27, this property is preserved after pulling it back by
the map ®. This means that ®*n=n (mod w, ), and the result follows. O

IV. Contact diffeomorphisms
10.

In the last chapter, we showed that we could introduce a linear structure on the space
of diffeomorphisms near the identity by identifying diffeomorphisms with vector fields
tangent to S%; we can make this into a weighted Banach space structure by using the
weighted Sobolev space norms on the coefficients of the vector fields. We also showed
that the subset of diffeomorphisms which preserved the contact structure was a non-linear
subset—those which satisfied a non-linear PDE which we referred to as the integrability
condition. In this section, we would like to show that the space of solutions to this PDE
is a Banach submanifold, and hence, that the space of contact diffeomorphisms inherits
a natural weighted Banach space structure. The main theorem will be the following:

THEOREM 10.1. Let S® have the standard contact structure defined by the one
form 1. Then there is a natural weighted Banach space structure on the space of contact
diffeomorphisms close to the identity. In particular, there is a neighbourhood of the origin
in this Banach space which can be parameterized by a single real valued function.

We should point out the interest in this theorem. It is well known that contact
diffeomorphisms can be parameterized by a single real valued function, called the gener-
ating function; moreover, one can parameterize them in such a fashion that the generating
function is in some Sobolev space if and only if the diffeomorphism is in the Sobolev space
with one less derivative. Theorem 10.1 asserts that one can replace the ordinary Sobolev
spaces by weighted (or anisotropic) Sobolev spaces—those which involve L? estimates
on derivatives only in those directions which are tangential to the contact distribution.
In one sense, these weighted spaces are perhaps the most natural spaces in which to be
working, since contact diffeomorphisms preserve the weighted spaces; on the other hand,
in this instance it is absolutely essential. We will be solving the 0, equation later in the
paper, and we would like to do so without losing derivatives. These weighted spaces (in



24 J. S. BLAND

this context, they are referred to as the Folland-Stein spaces) are precisely the spaces
for which one can solve the 8, equation without losing derivatives.

The existence of the weighted Banach space structures on the space of contact dif-
feomorphisms of S3 with its standard contact structure is really a theorem in contact
geometry. Its proof could be given without reference to CR geometry by using a Hodge
theory for the partial exterior derivative d. However, we have used the analysis associ-
ated to the 8, operator in the proof because this is the ‘existing technology straight off
the shelf’ with which we are most familiar.

11. Description of the map L

In the last chapter, we expressed the condition that the vector field (X°T + fe+ fe)
corresponds to a contact diffeomorphism as the vanishing of the (0,1) form (we will
henceforth refer to this expression simply as I):

I=10D(XO, fe) =51,(X0)+7:f‘47+x0f‘:’+2li(f5bf‘fgbf )-

We would now like to parameterize the set of all vector fields which satisfy this integra-
bility condition.

Let (X°T+ fe+ f&) be a vector field. Then the (1,0) component can be expressed
as it is as fe, or, alternatively, after raising an index via the natural two form associated
to the contact form, we can express it as a (0,1) form. That is,

feddn= fediwnow=ifw.
On the other hand, for any (0,1) form, we have the Hodge decomposition
ifo=8G8; (if@)+Q(ifw), (11.1)

where the operator G is the canonical solution operator associated to Oy, and the operator
@ can be taken to be defined by the equation above. (Thus, it is the orthogonal projection
onto the kernel of the operator 5;‘; see Theorem 7.1.) Define

p=Ga8; (ifw) (11.2)

and
iHo=Q(if@) (11.3)
so that
ifw=0yp+iHw; (11.4)
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then p is orthogonal to the CR functions, and H is conjugate CR. Throughout the
remainder of this section, the functions f, p, H will be related as above. This will lead
to a considerable simplification in the calculations.

We now introduce a mapping L which is admittedly somewhat complicated. The
purpose of this non-linear mapping is to construct a local Banach space diffeomorphism—
the domain of which is the space of I'* vector fields (or diffeomorphisms), and the image of
which will lie in a certain linear subspace of the range if and only if the diffecomorphism is
a contact diffeomorphism. Thus, the map will induce a weighted Banach space structure
on the space of contact diffeomorphisms.

Roughly speaking, the idea behind the map L is as follows. One would like to
construct an isomorphism (X0, fe)— (I, g), where g is a real valued function. Then the
inverse image of (0, g) would be the contact diffeomorphisms, and the function g would
parameterize them. Unfortunately, if the data (X?, fe) have k derivatives, then I has
only (k—1) derivatives.

This issue is circumvented by breaking I into components. By Hodge theory,

1=58,G8:1+Q(I).

We will show that the only component which loses too many derivatives is 8, of the real
part of G} 1. (The other components all have k derivatives.) Thus, we break I into its
components, and when we invert the map, we set X °=G5,: I; then the inverse map gains
back one derivative on this component. We also gain one derivative in the mapping L by
choosing the real valued function g to be roughly the real part of G&; (if@). The addi-
tional complications in the mapping L arise from incorporating the reality condition—it
is necessary to further decompose the spaces according to their negative and positive
Fourier components, and to replace the operator 5;;‘5(, by the closely related real opera-
tor ﬁbDb.

We now define the mapping. Using f, p, H as in equation (11.4), define the mapping
L by:

L(X?, fe)=((GB;I)-,Re(G; I)o, Avg(X"),
(GO; (if@))-, Re(GB; (if@))o, (GG Im(TG; 1)),
(GG Im(T8; 1))+, QD)) (11.5)
= (GG 1), Re(GO; T)o, Ave(X°),
p-, Re(po), (GG Im(T50; 1))o,
(GG Im(T,8;1))+, Q(I)) (11.6)

where Avg(X?) is the L? projection of the function X° onto the constants.
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PROPOSITION 11.7. The vector field X°T+ fe+ f& corresponds to a contact diffeo-
morphism if and only if

L(X°, fe) = (0,0, Avg(X°), (GO; (if@)) -, Re(G8; (i ©))o, 0, 0, 0)
= (0,0, Avg(X°),p_,Re(p),0,0,0).
Proof. Tt is clear that if I=0, then L(X?, fe) has the above form. It suffices to

establish the converse. The integrability condition is that I=0. On the other hand, by
the Hodge decomposition given in Theorem 7.1, the (0,1) form I can be written as

I=8,GEI+Q(I).

Clearly, if the image of L is as stated in the proposition, then @Q(/)=0. It suffices to
show that GO} I=0. The vanishing of the first two components in the image show that
(G8;I)-=0 and Re(G8; I)o=0. Next,

(GG Im(Tp8; 1))+ =0.
Apply 0,0, to both sides to obtain:
(Im(@sB 1))+ = (h)+
for some CR function h (see Theorem 7.1). Expanding the left hand side of this equation,
(@633 1)+ = o= (ChB3 ) TG 1)) =hs-

By the previous calculations, G(8;I)- =0, so 0,G(8; I)- =(8;I)_ =0. Substituting this
observation into the above equation, one concludes that

1 ™ a*
E(Dbab I)+ == h+.

Since G O, is the identity on the space of functions with only positive Fourier coefficients
(see Theorem 7.1), applying G to both sides of the above equation yields

(33 1)+=Gh.

Finally, since the operator G is defined to be zero when restricted to the CR functions
(Theorem 7.1), and since the operators G and G commute (see equation (6.4)), the above
equation becomes
Go;I, =GGhy=GGh, =0.
A similar (but substantially simpler) argument using the vanishing of the third to
last factor shows that the imaginary part of the zeroth Fourier coefficient of G8; I also
vanishes. a
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PROPOSITION 11.8. The map L is a C! mapping

L:T§,(5%) x I1k(1tlr(1,0)(5'3)) —T*($%)x F’ﬁe,o,_\_('s:;) xRe xI*+1(83)
xTEEL | (S®)xTERL | (57)

X F’-c:i(s3) XFk((coker 5b)nH(0’1)(S3)).

Proof. The components of the mapping L are all given by compositions of relatively
well understood operators. Thus, the main point to check in the proof will be the
definition of the map—that is, that the image of the map L lies in the appropriate
spaces.

To this end, a routine calculation shows that I maps from I'g_(S%) xT*(H(1,0)(5%))—
r5~1(H(%1)($3)). This fact, plus routine calculations, show that all factors of the image
of L lie in the appropriate spaces except possibly the last three. For each of these
components, we will have to check that the operators do not lose too many derivatives.

To check that the second and third to last factors of L lie in the appropriate spaces,
it is sufficient to show that the map

(X°, fe) > Im Tpb; 1

is a mapping from I'%,(5%) xT*(H(1,0)(5%)) > T*~3(53). (We point out that the crucial
observation here is that we are restricting to the imaginary part of the map [0;0; I; the
real part of this map actually does lose too many derivatives. In fact, the map L is as
complicated as it is precisely in order to finesse this point.)

We now calculate as follows (modulo terms in I'*~3—that is, terms which do not
lose too many derivatives):

_ _ 1 _ _
Im(G,5:1) = Im(m,,u,,x")+1m(m,,ag S (F0f—100F ))+T+°
= O 1 == a7 -
=1m (58 5 (F86f - £86F)) +T*
i
(since 00,0, X° is a real operator applied to a real valued function)
1 5 = F k-3
=T (- (F D0~ 006 ) + T4
i
Taking note of the fact that the first term in the last line is zero (it is the imaginary part

of a real valued function— notice that Ty, =0,0;), we find that Im(3,8;I) is in TF3
as required.
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To check the regularity of the last factor of the mapping L, is sufficient to show that
E1QoI:TE, (8% xT¥(H(1,0)(S?)) ~ T*(S3).

On the other hand, since the image of Q is the space of one-forms in the kernel of 8, the
image of £1Q is the space of conjugate CR functions. Also, the operator Gl restricts
to the space of conjugate CR functions as an isomorphism. Hence, it is also sufficient to
show that

Opog QoI Tk (S%) xT*(H(1,0)(S?)) = T*¥~3(S3).

To this end, calculating modulo terms in T*(H (1) (S3)):

Q1=Q(ifa+X°fa+ (78S - 1567))
Q(5(F0f~1B1)) +T* =Q(5;(Fes - sef)a) +T*
5(5;(Fer-fef))a+T*

by Theorem 7.1, and
/71 = —
éJQoI:S(—Z—i(féf—féf)) 4T,

Furthermore, calculating modulo terms in T'*~2(S53):

Upog QoI = D,,os( (Fef- fef)) L
= @ +iT)e5 (5 (ef - fe)) +T*

=iTo8(5-(Fef - fef)) +T*2
S(T(fef- fef))+r*?
S(feT(f)~feT(f))+T*?

@E(FT(f)- FT(F))-35EFT(f)—efT(f))+I*?
(e(fT(f) FT(F)))+T*2

S
S

1
2
1
2
=1
=2
- 1
2
=r*

where the last line uses the fact that for any function u
Se(u)=e_(Se(u)-0) =2 1Q(E(u)-0) = 1Q(du) =0,

by Theorem 7.1. The proposition follows. a
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12. The linearized map DL
The linearization of L at the origin is
DL(X®, fe) = ((G; DI)—,Re(G; DI)o, Avg(X®),(G8; (if)) -, Re(G; (if@))o,
(GG Im(T,8; DI))o, (GG Im(Tsd; DI))+, Q(DI))
=((G8; DI)-,Re(G; DI)o, Ave(X®),p—, Re(po),
(GG Im(T,8; DI))o, (GG Im(0,8; DI))+, Q(DI)).
Substituting DI(XO, fe)=0,X°+ifw=08,X°+yp+iHw, then 8; DI=00,(X"+p), and
DL(X®, fe) = ((GOp(X°+p))—, Re(GOp(X° +p))o, Avg(X°), p—, Re(po),
(GG Tm(Tp04(X°+p)))o, (GG Im(TpTp (X +p))) +, 1 HD)
=(X° +p_,Re(GTp X +p)o, Avg(X°), p_, Re(mo), (GG T,Ts Im(p) o,
(GG Tp0s Im(p)) 4, iH),

where we have used the facts that X© is real and (J,[J, is a real operator. Continuing
the calculation (and using Theorem 7.1 again):

DL(X®, fe)= (X% +p_, X3 — Avg(X°)+Re(p)o, Avg(X"),
p—,Re(p)o, (GG 005 Im(p))o, (GG Tp 0y Im(p)) +, i H®)
= (X2 +p_, X3 — Avg(X°)+Re(p)o, Avg(X°),
-, Re(p)o, Im(p)o, (Im(p))+ — S(Im(p))+, i H®).

This map is clearly invertible. Components 4, 5, 6 and 7 uniquely determine the function
p. (Recall that p is defined to be orthogonal to the CR functions.) The last component
then uniquely determines f by if&=0,p+iH&. Finally, once p is known, X is uniquely
determined by the first three components of the map. (Recall that X is real.) We have
proved the following theorem.

THEOREM 12.1. There is a neighbourhood of the identity in the space of I'* contact
diffeomorphisms which is parameterized by o neighbourhood of zero in the space I‘ﬁtl(S:*)
of real valued functions on S3. The parameterization is as follows:

p— L71(0,0, — Avg(p), p—, po—Avg(p),0,0,0). (12.2)
COROLLARY 12.3. The linearization of this parameterization is
p—(X°, fe)=(-p, (Bp)*) (124)

where #:(igi)— ge is the operator that maps (0,1) forms to their associated (1,0) Hamil-
tonian vector field.

Proof. This follows from a straightforward calculation. O
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COROLLARY 12.5. Under the parameterization in the above theorem, the linear sub-
space of the parameter space given by S invariant functions corresponds to the contact
diffeomorphisms which are S equivariant—that is, the lift of symplectic diffeomorphisms
of the quotient space S3/S1=S? relative to the symplectic form dn.

Proof. The proof follows from a careful check of the steps in the proof of the above
theorem. If we restrict at the outset to diffeomorphisms which are equivariant with
respect to the S action, then all of the maps involved restrict to the subspaces where
the data is invariant under the S! action. (In fact, the only nonlinear map involved is
the tensor for the integrability condition, I, and it is easy to check that [ is invariant
under the S action if the diffeomorphism is equivariant.) It follows from the proof, then,
that the space of S! equivariant contact diffeomorphisms are parameterized (in the same
fashion) by the real-valued S! invariant functions p. Notice in this case that p descends
to a real valued function on S2%, the S! equivariant contact diffeomorphisms descend to
diffeomorphisms on S? which preserve the symplectic form dn, and we are parameterizing
the space of symplectomorphisms of S2. (]

Remark 12.6. Notice that S? invariant data roughly corresponds to the lift of ob-
jects from S2. In this vein, S! invariant CR structures correspond to the lift of complex
structures on S2, and §! equivariant contact diffeomorphisms correspond to symplec-
tomorphisms on S2. The action of the S! equivariant contact diffeomorphisms on S?!
invariant CR structures corresponds to the action of symplectomorphisms on the com-
plex structure, and a normal form for S! invariant CR structures will correspond to a
normal form for the complex structure on $2. (We are considering the coordinate sys-
tem on S? to be fixed, here.) Finally, if we consider the full space of S equivariant
diffeomorphisms, these will include diffeomorphisms of S? which change the symplectic
form on S%, and their lifts will change the contact form to a new S? invariant contact
form. Since all complex structures on S? are equivalent (via some diffeomorphism), we
immediately obtain that all S invariant CR structures can be normalized to be the lift
of the standard complex structure on P!=$? via an S! invariant contact form, although
the contact forms may be different. The choice of the contact form to use for the lifting
corresponds to the choice of a norm on C? (or the tautological line bundle over P1), and
the lift of the complex structure via the contact form # to an S? invariant CR structure
is CR equivalent to the CR structure obtained by restricting the complex structure on
C? to the circular domain defined by the norm associated to the form 7. Thus, there is
a natural correspondence between the following objects: (i) circular domains in C?2, (ii)
norms on C2, (iii) norms on the tautological line bundle over P!, (iv) curvature forms
(or symplectic forms) on P1=S52, (v) connection forms (or S? invariant contact forms
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normalized to have period 27 on the fibres) on $%, and (vi) S? invariant CR structures
on S3.

V. Normal forms
13. The action of contact diffeomorphisms on the CR structure

We now determine how contact diffeomorphisms act on the space of the CR structures.

LEMMA 13.1. If ® is the diffeomorphism associated to the vector field X°T + fe+ fe,
then

* 1 , _ .
*w= ;ﬁ(d(f(l‘HXo))—f2w+(1+2X°)2w)-
Proof. The vector field

- 5. 0 7, 0
0 - 301, ¢ 3 50,2 ¢ 1
X°T+fe+ e_2Re((zX 2 +fz )azl +(EX%2*—fz 6z2)

corresponds to the contact diffeomorphism
1.2 1 1 1,2 2
®(2", 2 )=E(z +Z%, 2+ 2%)
where u=(|z'+2'[?+|2?+ 2%|)"/2 and

(2, 2%) = ((iX 2+ £22), (iIXO22 — f21)).

()= (z22z2) d((z1+Z1)) _(z'+2Y d((z2+Z2))

u u u
= uiz((z2+22)d(z1+Zl)—(z1+zl)d(z2+zz))
= %(d((zl‘le), (2*+2%), (2 +2%), - (2 + 2Y)))
= %(d((l +iX0)(21, 22)+ £ (22, —21)), (1+iX0)(2%, ~21)+ f (21, 22)))
= %(fd(l +iX0)+(1+iXO)df + (1+iX°)%(2%d2' —2'd2?)

— f(2Pdet - 21 d2?) + (14+iX°)(f)(21d2* +22dz2 + 22d2 + 21 daT))
= ;%(d(f(HiX ) — 2o+ (1+iX%)%w),

which is the statement in the lemma. O
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THEOREM 13.2. If the vector field X°T+ fe+ f& corresponds to the contact diffeo-
morphism associated to the generating function p, then the pullback CR structure

*(w+uw) is defined by the 1-form
_ oy EF4iX0) — 24 p(1—iX°)+ pe(F(1-iX))
T (X)) — T+ (T+iXO) + pe(F(1—iX0))

The action of contact diffeomorphisms on CR structures is

((X°, fe), )+ o
where ji s defined by O=w+ 1.
Proof. Using the result in Lemma 13.1,
1 .
B (w+pw) = E(d(f(1+iX°))—f2w+(1+zX°)2w
+pd(f(1-iX°) - pfw+p(1-iX°)’w)
1 = . 5 .
= 5 (e(f(1+iX") — pf? +(1+iX")" + pe(f(1-iX°))w
1 = R _
+ 5 (E(f(1+iX%) = 2 +p(1—iX")* +pe(f(1-iX°)))@  (mod n).
It follows that the new CR structure is defined by the function ji:

e(f(14+iX%) - f2+p(1-iX°)* +pe(f(1-1X°))

A= e(f(1+iX0)—pf2+(1+iX°)2 +pe(f(1-iX0))’

(13.3)

O

COROLLARY 13.4. The linearization of the action of contact diffeomorphisms on
CR structures at the origin is

(X9, fe), i) S bp=2(f)+i = —igep+.

Proof. Let p, X°, f be small—O(t)—and compute & modulo terms O(t?).
. {e(f)+p-2}

WYt )+ 1+2iX0)

=w+(&(f)+p-®)a+0(t?)
=w+(e(f)+u)@+0(t?),

@+0(?)

and the first variation at (X°, fe)=(0,0), p=0 is

6((X°, fe), i) =&(f)+4u. (13.5)
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Remark 13.6. The description of the linearization of the action of contact diffeo-
morphisms on the CR structures is actually more satisfying when expressed in terms of
deformation tensors. In this invariant formulation, the CR structure corresponding to f
is given by the deformation tensor

~

¢=po®e (13.7)

and the linearization of the action becomes

¢ =¢+s(fe) (13.8)
= ¢+ 55" Byp. (13.9)

(See equation (2.1) for the definition of the operator #.) This formulation has the added
advantage that it preserves the homogeneity of the Fourier decomposition. If the function
p is S! invariant, then so is the associated deformation tensor; however, the coefficient
function fi is not S invariant because it is expressed relative to a framing which is not
S invariant.

14. Normal forms

In this section, we present various normal forms for the deformation tensor; before stating
the results, we will discuss the main ideas in the procedure. At the linearized level, we see
in Corollary 13.4 that we are free to modify the form of coefficient f of the deformation
tensor by terms of the form —ieép, for some real valued function p. Since p is real valued,
we are free to choose the negative Fourier coefficients of p in such a fashion as to normalize
certain coeflicients of the function f to be zero, and allow the positive coefficients of p
to be completely determined by the negative coefficients and the condition that p is real.
This results in the natural normalization that the coefficients of i be perpendicular to
the image of —i€e(p_), at least at the linear level; the nonlinear version then follows from
the inverse mapping theorem in Banach spaces (for some neighbourhood of the origin).
Similarly, we could use the positive coeflicients of p to determine the normal form for f.

There are two points which will become readily apparent in this normalization pro-
cedure:

(1) The zeroth (or S! invariant) Fourier coefficient of p plays a special role. On
the formal level, we are trying to normalize a complex valued function by the action of
a real-valued function. While it is true that the formal result of this procedure can be
written down, the answer is not as satisfying as for the other coefficients. On the other
hand, since this coefficient corresponds to the S! equivariant contact diffeomorphisms
(or bundle automorphisms which preserve the connection form 7), it is natural to treat

3945201 Acta Mathematica 172. Imprimé le 29 mars 1994
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this coeflicient separately, and allow arbitrary S* equivariant diffeomorphisms in order to
normalize the CR structure. This will result in a change in the contact form to a new S*
invariant one, but it will enable us to normalize the corresponding complex valued Fourier
coefficient of fi to be zero. (We will see later that this coefficient of i will correspond to
the S? invariant component of the CR structure, and thus descends in a natural way to
define a complex structure on §2%; normalizing it to vanish is equivalent to normalizing
the corresponding complex structure on S22P? to be the standard one.)

(2) Since we are normalizing the coefficient /i of the deformation tensor relative to
the framing (e, &, T') which is not S* invariant, the degree of homogeneity of the Fourier
coefficients will be thrown off; thus, the zeroth Fourier coefficient of p will actually be
normalizing the fourth Fourier coefficient of ji. This change in the homogeneity could
have been avoided by referring to the deformation tensor as a whole, or choosing a better
framing. However, we have chosen this approach in this paper for two basic reasons.
The first is that in a paper which is already in preparation, we will deal with the higher
dimensional case, and we will be forced into presenting the invariant approach there.
The second reason is that we feel it is also worthwhile to present this approach. Since
S? is parallelizable, we can do (and have presented much of it as such) all of the analysis
relative to a fixed parallel framing for S, thus obviating the need to refer to tensorial
analysis. From an analytic point of view, this eliminates much of the machinery which
seems to be inherent in this problem——at least in higher dimensions.

THEOREM 14.1. Let ucT*~1(S3) define a sufficiently small deformation of the stan-
dard CR structure of S® which is compatible with the standard contact structure. Then
there is a contact diffeomorphism ®, parameterized by pGF’f{tl(Ss) such that u can be
placed in the normal form i€ (coker(€)’NED,, s T O (D54 [hy 1) Furthermore, the

contact diffeomorphism is unique up to an S equivariant contact diffeomorphism plus a
preliminary automorphism of the standard CR structure.

Proof. Consider the map
e ((coker@n@ T o (D Th)) — T (5*) @ (TER(S)
m<4 m24

defined by
(p, 1) = (251, o)

where @ is the contact diffeomorphism corresponding to p, and py is the zeroth Fourier
coefficient of p. The linearization of this map at the origin is

(p, ) — (u—1i€ep, po)-
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The linearized map is surjective, with kernel {(p, u)| u=po=0, €€p_=0}. It is clear that
the kernel of this linearized map is the set of infinitesimal contact diffeomorphisms which
preserve the standard CR structure of S3 (and which are not S' equivariant—these are
included in the last factor of the map). More directly, p is in the kernel of the linearized
map if and only if p is the restriction of the real part of a linear holomorphic function
on C2. O

THEOREM 14.2. Let ueI'*~1(S?) define a sufficiently small deformation of the stan-
dard CR structure of S® which is compatible with the standard contact structure. Then
there is a diffeomorphism of S% and a new S' invariant contact structure defined by an
S invariant contact form 7 such that the CR structure can be placed in the normal form
f1€ (coker(e)’NI* 1) (D, T 1), where ji defines a deformation of the CR structure
defined by 7, and the T*~1 spaces are defined relative to the contact structure defined
by . Furthermore, the diffeomorphism is unique up to composition with a preliminary
automorphism of the standard CR structure.

Remark 14.3. (1) We should first say a word of explanation about the terminology
in this and the previous theorem. There is actually a finite dimensional family of nor-
malizing diffeomorphisms (and their corresponding normal forms) parameterized by the
projection of (p+iq) onto the kernel of the linearized map. Elements in the kernel of
the linearized map correspond to automorphisms of the standard CR structure on S3;
thus, we may consider the normalizing diffeomorphism to be uniquely determined up to
a preliminary automorphism of the standard CR structure on S°.

(2) The fact that the normal form is only determined up to a finite dimensional family
has an interesting interpretation. Elements in the kernel of the linearized map correspond
to automorphisms of the standard CR structure on $3, or equivalently, the restriction to
the boundary of biholomorphic automorphisms of the standard unit ball in C2. In [BD1],
we showed that for a bounded strongly convex domain in C", there was a unique normal
form for the CR structure on the boundary of the domain associated to any choice of
marking for the domain—that is, for any choice of base point and holomorphic framing
at that point; thus, the normalizing diffeomorphisms (or the associated normal forms)
were parameterized by the choice of marking for the domain. Similarly, the biholomorphic
automorphisms of the standard ball are parameterized by the markings of the ball. Thus,
we may naturally consider our normal form to be normalized up to the choice of a
marking of the domain which it ‘bounds’ (although different markings may result in
the same normal form—as in the case of the standard CR structure). Alternatively, we
could completely pin down the normal form for the CR structure by marking the CR
manifold—choosing a base point on 53, and specifying certain components of the second



36 J. S. BLAND

order framing at that point.

Remark 14.4. Before beginning the proof, we should draw attention to a subtlety
that is present. Theorem 14.1 normalizes the form up to an S! equivariant diffeomor-
phism. Thus, the proof of Theorem 14.2 is totally concerned with the action of S*
equivariant diffeomorphisms. These have additional properties which will be utilized in
the procedure.

(1) S* equivariant diffeomorphisms are bundle automorphisms, and they preserve
the homogeneity of the coefficients. Thus, we may restrict our attention to its action on
the S! equivariant part of the CR structure. (Notice that this may also be considered as
the lift of a complex structure from S? via the connection form.)

(2) For S! equivariant data, the weighted Sobolev spaces agree with the unweighted
Sobolev spaces; in particular, they do not depend upon the choice of S equivariant
contact form which is used to define the weighted spaces.

(3) We will allow the use of general S* equivariant diffeomorphisms to normalize the
data. Thus, we will be changing the contact structure, but the new contact structure will
still be invariant under the S! action, and it will be defined by a new contact form which
is still dual to the flow of the action. Changing the contact structure is tantamount
to changing the splitting of the tangent bundle to S2 into its horizontal and vertical
components.

(4) Finally, and herein lies the subtlety, we will be considering the action of the
diffeomorphism on the coefficient x4 which defines the deformation. If we have changed
the splitting along the way (or the contact form), we will simply consider the coefficient
p to be defining the deformation relative to the new splitting. As a result, there will
be many inequivalent CR structures having the same coefficient function u, but having
different contact forms; in particular, in the case that the coefficient u of the deformation
tensor is identically zero, we will be recovering strongly convex circular domains, and the
contact form can be used to define a norm on the tautological line bundle over P! (or a
norm on C?) for which the set of all points of norm less than one is the corresponding
circular domain.

Proof. We start with the normal form given in the previous theorem. Since we are
only considering diffeomorphisms which are invariant under the S* action, it follows that
its action on the CR deformations will preserve the homogeneity (or Fourier weighting)
of the various coeflicients. Thus, it is sufficient to understand the action on the zeroth
Fourier coefficient. At this level, the weighted spaces are the same as the unweighted
spaces. (This observation is important, and somewhat subtle; the coefficient determining
the normal form for the deformation tensor will still be in the weighted Sobolev spaces,
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but where the weighting is defined by the new contact structure.)

We now consider the action of the S invariant diffeomorphism ®;40®,, where &,
is the contact diffeomorphism induced by the real valued function p, and ®;4 is the
diffeomorphism induced by the vector field 2 Re(8,iq)# = fe+ f&. Since the second factor
in this diffeomorphism is not a contact diffeomorphism, we must consider its action on
both the contact structure and the CR structure.

To this end, Corollary 9.5 shows that

* 1 5 . 1 5 .
;n=—5(1+1(0,2Re(dyi)*)) = = (1+2Re I*(0, (Brig)*)).
Similarly, Lemma 13.1 shows that
. 1 _
i w= F(w+df—f2w).

Thus, under the action of the diffeomorphism ®,,, the contact structure defined by n and
the CR structure defined by w+ u& are pulled back to those defined by the new forms

7= (n+2Re IV(0, (Brig)*))
and

@ = (w+df — f2@) +(uo®)(@+df - fw).
The linearization of these actions at the origin is given by
nn+2Re(Gpiq)* I (iwAD) =142 Re dyig
and
ws w+po+0p f

or
wowt(ptef)o=w+pw.
Consider now the map
(T5+1) @ (coker(2)2NT* 1)@ (@ rk-l) — (coker(2)2NT* 1)@ (@ rk-l)
m>4 m>4
defined by
(po+igo, ) — (Pio®ppt)

where p defines the CR structure in conjunction with the new contact structure defined
by 7. The linearization of this action at the origin is

(Po+iqo, i) — (L—i€&(po+ige))-
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Since the linearized map is surjective, the normal form for i follows. Furthermore, since
the kernel of the linearized map is given by holomorphic automorphisms of $?, with
its standard compiex structure, the normalizing diffeomorphism is determined up to a
holomorphic automorphism of S2.

We now consider the remainder of the S equivariant diffeomorphism group. Since
the full group is parameterized by three real valued functions (the coefficients of the vector
field), and since we have already considered vector fields with arbitrary parameters in
the contact directions, it suffices to consider the diffeomorphisms corresponding to vector
fields of the form X=XO0T. (Notice that these correspond to diffeomorphisms which
simply ‘rotate the fibres’—that is, they cover the identity map on S2.) While it is true
that it would have been just as simple to consider the full diffeomorphism group at once,
we felt that it was more interesting to treat it in stages in order to see the effects of the
various subgroups on the normalization procedure.

Consider a diffeomorphism corresponding to a vector field of the form X=XOT;
denote the diffeomorphism by ®xo. Then again by Corollaries 9.5 and 13.1,

®%on=n+dX°

1
dyow= —u—2(1+iX0)2w.

In particular, ®%, preserves the normal form for the deformation tensor; thus, it suffices
to choose X° in such a fashion as to normalize the contact form.
To this end, we consider

B0 Bl B3 (n) = Bixoo @, (1)

iq
and its linearized action on the contact form

N n+d(X°)+2 Re(Byig) = — Im 8(log | 2|>+2¢) +2 Re §(X°)
= —Im J(log €??|2|?) + 2 Re 5(X°)

where we have extended the definitions of the S! invariant functions ¢, X° to C* invariant
functions on C?\0, and used the 8 operator from C2. Thus, X is completely determined
(up to a constant) by the requirement that the contact form 7 be the restriction to S3
of minus the imaginary part of 8logu for some norm u on C2. Such contact forms are
completely determined either by their curvature form, or by the norm (up to scale) which
they induce on C2.

Finally, notice that the linearized map is surjective onto the space of Hermitian
connection forms described above. Thus, the normalized data for a CR. structure consists
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of a norm (up to scale) on the tautological line bundle E (or equivalently, its connection
form or its indicatrix in C2?), and a deformation tensor in normal form which describes a
deformation relative to the associated contact form; conversely, any such data is the data
for some CR structure. Finally, any CR structure admits only a finite dimensional set
of possible ‘normal forms’, which differ by a preliminary automorphism of the standard
CR structure. O

Remark 14.5. The normalization for the contact form in the above theorem could
also have been expressed in terms of the Hodge theory for S2. First, any S' invariant
contact form 7 which is dual to the S? action differs from the standard contact form #
by the pullback of a real valued form @ from $%. Using the complex structure tensor J
on S2, we can use Hodge theory to express  uniquely as

0=du+Jdv

where u, v are real valued functions, and Jdv is co-closed. The normalization in the
previous theorem is that the difference between the two contact forms is of the form
@=Jdv; such contact forms are completely determined by their curvature forms.

Remark 14.6. Before stating the next theorem, we will have to introduce the full
harmonic decomposition for the sphere. Let B, , denote the invariant L2 subspaces
under the SU(2) action, where m represents the holomorphic degree of the subspace,
and n the conjugate holomorphic degree.

We include some basic facts about the various operators on these spaces. First,

Bm——l,n+1’ m> 11

e:Bpn—
0, m =0,

Bm+1,n-—1a n 2 11

&Bun—
0, n=0.

Consider the operator e: By n—Bm—_1,n+1~Bmn, m21.

ker(ée) =0 = ée is invertible on By, n, m>1

=> € is surjective onto By, ,, m>0.
It follows that the operator

. iso
€e: By — Bpyon-2, n>1,
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satisfies the following:

ker(22) = By 0®Bm,1 C ( @ I‘k),
k>—1

coker(e%) = Bon®B1,n C (@ I"k)
k<1
and

&%: T, = Tiia,
e (@Fk) — (@Fk).
k<0 k<4
THEOREM 14.7. Let u€T*~1(S?) define a sufficiently small deformation of the stan-

dard CR structure of S® which is compatible with the standard contact structure. Then
there is a contact diffeomorphism of S® such that the CR structure can be placed in the
normal form i€ @,S 4 I‘f‘l. Furthermore, if we additionally require that the components
of p in By n® B3 ,, are specified to be zero, then the contact diffeomorphism is unique up
to an S! equivariant contact diffeomorphism plus an automorphism of the standard CR
structure.

Proof. Consider the map
Tkt x (DT ) \(BaynUBs,a)) »T*(S°) x D Ra(S7)
<4
defined by
(p, 1) = (254, Po)
where @} is the contact diffeomorphism corresponding to p. The linearization of this
action at the origin is
(p, ) — (k—1i€ep, po).

The linearized map is surjective, with kernel {(p, p)| p=po=0, éep_=0}. It is clear that
the kernel of this linearized map is the set of infinitesimal contact diffeomorphisms which
preserve the standard CR on S® (and which are not S! equivariant—these are included
in the last factor of the map). More directly, p is in the kernel of the linearized map if
and only if p is the restriction of the real part of a linear holomorphic function on C2. O

V1. Imbedding results
15. Extension results—S3

In this section, we will prove imbedding results for CR structures in their normal form.
We will show that in general, any small perturbation of the standard CR structure on
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S3 is the strongly pseudoconcave boundary of a domain in a complex manifold. (This
is a special case of a result due to Kiremidjian [K].) Our proof will use the normal form
given in Theorem 14.7, and this normal form can be thought of as the exterior normal
form. (In the proof, we will show that the deformation extends to a deformation of the
complex structure on the exterior of the unit ball in P2.) On the other hand, if in the
normal form given in Theorem 14.1, there are no negative Fourier coefficients, then the
CR manifold bounds a convex domain in C?; this normal form can be thought of as the
interior normal form, since the deformation extends to a deformation of the complex
structure on the interior of the unit ball. The method of proof in both cases will be to
explicitly write down the deformation of the complex structure on the associated complex
manifold. In the latter case, the normal form will be identified with the circular model for
convex domains [BD1], and we will obtain the corollary that if there exist any negative
coefficients in the normal form, then the CR structure does not bound a convex domain.

THEOREM 15.1. Let ucIT'*~1(S®) define a sufficiently small deformation of the stan-
dard CR structure of S3. Then the CR structure imbeds as the boundary of a convex
domain if and only if it can be placed in the normal form pe ®m> 4 k=1, Purthermore,
after composition with an S' equivariant diffeomorphism, the normal form agrees with
the data corresponding to a point in the moduli space for marked conver domains.

Remark 15.2. In the above theorem, the meaning of the various normalizations
becomes clear. First, recall that the modular data for a convex domain is given by
data on the tautological line bundle over P! consisting of a norm on the line bundle
(the indicatrix) and a deformation of the complex structure which is horizontal and
holomorphic in the fibre directions. On the other hand, the preliminary normal form
for the CR structure on the boundary of D (considered as a CR structure on S3 via a
diffeomorphism) corresponds to one which extends to define a deformation of the complex
structure on the unit disc bundle in the tautological line bundle, but for which the
extension does not necessarily restrict to the zero section to agree with the standard
complex structure on P!. The secondary normalization corresponds to composing with
a diffeomorphism of P! so that the deformed complex structure on the zero section agrees
with the standard one on P!, at the possible cost of changing the norm on the complex
line bundle—the indicatrix. That is, the normal form for the CR structure consists
of an S! invariant contact form, and a deformation tensor with only strictly positive
Fourier coefficients. This corresponds to a point in the moduli space [BD1]. Finally,
the diffeomorphism which places the data for the boundary of the convex domain D in
normal form is unique up to the choice of a base point for the Kobayashi metric on D
and the choice of framing at that point.
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Proof. The proof of the theorem lies in expressing the normal form for the CR
structure as a deformation of the standard CR structure on the sphere. Then, we can
either extend the CR structure directly to produce a complex manifold for which it is
the strongly pseudoconvex boundary, or we can appeal to the moduli space constructed
in [BD1].

To this end, we consider the sphere as the unit circle bundle sitting inside the
tautological line bundle over P!. Let w be a local complex coordinate for P!, and let ¢
be a holomorphic fibre coordinate. Choose a horizontal lift € of the holomorphic vector
field 8/0w (using the contact form 7 as the connection form on the unit circle bundle).
Then the new CR structure can be written as a deformation tensor

¢ € Hom(H 0,1y, Hp1,0))

where
¢=pndo®e.

A straightforward calculation shows that dw, €, ji are related to @,e, u by

Notice that when the deformation is expressed relative to this S! invariant framing,
then the weight 4 terms of pu correspond to weight 0 terms of ji. It follows that if the
deformation data 4 is in the normal form given in the theorem, then the coefficient ji in
the deformation tensor has no negative Fourier components (they start at weight zero),
and it may be extended as a tensor to the entire unit disc bundle over P! by analytic
extension, disc by disc. Although it is originally interpreted as a deformation tensor ¢¢€
Hom(H(g,1), H(1,0)), it may be naturally identified as an element ¢€Hom(T 0,1y, T{1,0))s
or as a deformation of the full complex structure of the unit disc bundle. It is easy
to check that the deformed complex structure satisfies the integrability conditions (see
[BD1]), and that it extends smoothly to the zero section P. (The zero Fourier coefficients
correspond to a deformation of the complex structure on P1.) Thus, the deformed CR
structure bounds a complex manifold. It is clear that it is a strongly pseudoconvex
boundary.

Now act on the deformation tensor by an S! equivariant diffeomorphism which puts
the deformation tensor in the normal form described in Theorem 14.2. Then the data
for the normal form consists of an S! invariant contact form (which is equivalent to
prescribing a norm on the tautological line bundle E over P!, or an indicatrix for the
norm in C?) and a deformation tensor describing the CR structure relative to the lift
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of the standard complex structure on P! to an S? invariant CR structure. This normal
form corresponds to a circular model (or a point in the moduli space) precisely when the
deformation tensor has only strictly positive Fourier coefficients.

Finally, notice that if in fact the CR structure is equivalent to one on the boundary of
a convex domain in C2, then the circular model shows that the CR structure is equivalent
to one in the normal form given in the statement of Theorem 14.2 with only strictly
positive Fourier coefficients in the deformation tensor; this property is preserved under
the action of the finite dimensional group which is not normalized by this procedure. This
shows that for CR manifolds which are sufficiently small perturbations of the sphere, the
CR manifold imbeds as the boundary of a domain in C? if and only if the normal form
has only strictly positive Fourier coefficients. ]

Our next theorem is a special case of a theorem due to Kiremidjian [K}; we include
it as an application of our normal form analysis.

THEOREM 15.3 (Kiremidjian). Let u€I'*~1(S3) define a sufficiently small defor-
mation of the standard CR structure of S3. Then there is a complex manifold for which
this CR manifold is the strongly pseudoconcave boundary.

Proof. The proof follows from direct construction of the manifold. The original
sphere can be considered to be imbedded in P?; as such, it is the strongly pseudoconcave
boundary of the complement of the unit ball.

Alternatively, we may proceed as follows. Consider the tautological line bundle E
over S2. By taking the one point compactification of the leaves, this sits inside a P!
bundle over S%. The total space of this bundle is again P? with the origin blown up—
denoted P2; the blow up of the origin is the original S2. In this interpretation, the
complement of the unit ball in P2 is the exterior of the unit disc bundle in the P! bundle
over 2. It also naturally fibres as a unit disc bundle over the hyperplane at infinity
in P2. These considerations show that this bundle is naturally identified with the dual
of the unit disc bundle associated to the tautological line bundle over S2.

As in the previous theorem, the deformed CR structure can be expressed as

¢ € Hom(H o,1), H(1,0)
where
¢=pdioRE.
By the normal form in Theorem 14.7, there is a contact diffeomorphism which will nor-

malize the coefficient i in the deformation tensor to have no positive Fourier coefficients.
This implies that the tensor can be extended to the exterior of the unit disc bundle inside
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the P! bundle. As before, the tensor defines a deformation of the full complex struc-
ture of the unit disc bundle over the hyperplane at infinity, which is integrable. Thus,
the CR hypersurface bounds this complex manifold, and it is clear that it is a strongly
pseudoconcave boundary.

Alternatively, if we dualize the bundle (or consider the S* bundle as an S bundle
over the hyperplane at infinity, and hence as the unit circle bundle in the dual to the
tautological line bundle over the hyperplane at infinity), then the negative coefficients
become positive coefficients, and the deformation tensor can be analytically extended as
a tensor on the full unit disc bundle (by holomorphically extending it along the discs),
and viewed as a deformation of the full complex structure of the unit disc bundle. Again,
the deformed complex structure is integrable. It follows that the CR manifold bounds
this complex manifold, and it is clear that it is strongly pseudoconcave. O

16. General extension results

The results in the previous section can be easily generalized to the case where the under-
lying contact manifold admits a free transverse S® action. In this case, the natural re-
quirements for the extension of the CR structure to a complex structure on an associated
manifold is a normal form in which the CR structure can be written as a deformation
of an S! invariant CR structure, where the deformation tensor has no negative Fourier
coefficients (or alternatively, no positive ones). Finding the normal form can be viewed
as finding the boundaries of a natural family of discs along which to do a Bishop type
extension of the complex structure.

THEOREM 16.1. Let M be a compact three dimensional CR manifold such that
the underlying contact manifold admits a free transverse S action. Suppose, further,
that the CR structure admits a normal form relative to this S action which has no
negative Fourier coefficients. (More precisely, the given CR structure can be ezpressed
as a deformation of an S! invariant CR structure with no negative Fourier components
in the deformation tensor.) Then M is the strongly pseudoconvex boundary of a complex
manifold.

Proof. First, since S acts freely on M, the quotient space & of M by the S action
is a smooth compact surface, and M fibres as a principal S bundle over £. Choose an
S! invariant contact form 5 on M, normalized such that the periods of the fibres of the
map are 27.

Choose a complex structure for ¥, and let w be a local holomorphic coordinate
on ¥. The complex structure on ¥ can be lifted to an S! invariant CR structure on M
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by defining the horizontal lift e of 8/0w—via the connection form 7—to be a basis for
the holomorphic tangent space on M. (Alternatively, e is dual to the invariant forms
0, dw, dw.)

Consider the prescribed CR structure on M to be a deformation of the S? invariant
CR structure just constructed. Let € be a holomorphic vector field for the deformed
complex structure. Since it has the same underlying contact structure, it can be written
as

é =ae—fe.

(The reason for taking the complex conjugates of the coefficients and for the minus sign
will become apparent below.) The strong pseudoconvexity condition implies that

[é,é] = [ae—BE, ag—Pe] = (|a|*—|B]*)e,€] (mod e, &)

is non-vanishing on M. Thus, the term |a|?—|3|? is nowhere zero, and either |a|>|3| or
|B|>|a|. We may assume that |a|>|8|. (Otherwise, by starting with the conjugate of
the complex structure on T, we can change between the two cases above.) Since this is
a global condition on the coefficients, and a basis for the holomorphic tangent space is
only determined up to multiplication by a non-vanishing function, we will normalize our
choice of € by requiring that a=1.

Associated to the ST principal bundle M over ¥ is a complex line bundle E over X
defined by

E.=C®u M.

The S? action on M naturally extends to an S* action on E, and is canonically imbedded
in a C* action on E. Choose a local fibre coordinate ¢; the vector field (8/9¢ is a
generator of the C* action on E. Extend the S! invariant vector field e on M CE to a
C* invariant vector field on E. Define a C* invariant complex structure on E by choosing
the pair 8/8¢, e to be a basis for the the holomorphic tangent space. Using this complex
structure, E becomes a holomorphic line bundle over X, and M is the unit sphere bundle
in E associated to some Hermitian metric on the holomorphic line bundle E. The form
1 extends to E as a connection form for this metric.

The coordinates (w,() are local holomorphic coordinates for the holomorphic line
bundle, and the surface 3 may be considered as the zero section of this holomorphic line
bundle. Extend the basis é=e— & for the given CR structure on M CE to a vector field
on the unit disc bundle U of E (that is, the connected component of the complement of
M which contains the zero section of E) by extending the coefficients harmonically along
the fibres. Extend the CR structure from the unit sphere bundie M CFE to an almost
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complex structure on U by defining

. 2
é& ¢ 3_C
to be a basis for the almost complex structure. (Notice that when 3=0, this recovers
the holomorphic structure of the complex line bundle.) This almost complex structure
is integrable as long as the coefficient 3 is conjugate holomorphic in the fibre directions;
that is, § has no negative Fourier coefficients.

In terms of the dual coframing for the CR structures, the S! invariant coframing
dual to the holomorphic tangent space for the S! invariant CR structure on M is given
by 1, dw,d@, and a coframing for the given CR structure is given by n,d,d where

@ =dw+Bdw.

In a more invariant formulation, the given CR structure can be expressed as a deformation
¢€Hom(H g 1y, H1,0)) of the S! invariant CR structure by

é=e—¢(e)

where
¢=pdu®e.

The deformation tensor ¢ extends to define a deformation of the complex structure on
the unit disc bundle U if the coefficients of ¢ relative to an invariant framing have no
negative Fourier coefficients. O

Remark 16.2. The zeroth Fourier components in the deformation tensor correspond
t0 a deformation of the complex structure on . In particular, they can be eliminated
by appropriately choosing the original complex structure on ¥, or the $? invariant CR
structure.

17. Direct imbedding results

The last section characterizes those deformations of the CR structure which arise from
deforming the complex structure on a holomorphic line bundle. It follows from basic
results on complex manifolds that the ring of CR functions for these deformed structures
is a small perturbation of the ring of holomorphic functions for the S! invariant complex
structure. However, it is instructive to also give a direct construction of this perturbation
argument, using only the solution for the [, operator of the S! invariant CR structure.
(Notice also that it can be expressed in terms of solutions for the 8 operator on tensor
powers of a holomorphic line bundle over the Riemann surface %.)
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THEOREM 17.1. Let M be a principal S* bundle over a complez surface T with
connection form 1. Suppose that n defines a contact structure on M. Suppose, in addi-
tion, that M admits an S invariant CR structure for which the cohomology for O, lies
completely in the negative Fourier components. Let ¢ define a deformation of this CR
structure which has only strictly positive Fourier components. Then, if ¢ is sufficiently
small, M with the CR structure defined by ¢ is imbeddable as the strongly pseudoconvez
boundary of a domain in a complex manifold.

Proof. We begin by referring to the basic facts about the O, operator which we will
be using—namely, that the Green’s operator produces the canonical solution for the J,
equation with estimates, and it solves the equation whenever the one form is orthogonal
to the kernel of 8;. We will perturb the CR functions relative to the S invariant CR
structure to obtain CR functions for the given CR structure by an iterative procedure
which involves iteratively solving for a correction term using the solution operator to the
0, equation in the S! invariant CR structure.

The iterative procedure is as follows. Let A be a CR function for the S! invariant CR
structure, and let u=Y g, ux be such that h=h+u is the corresponding CR function
for the given CR structure. Then we can solve iteratively as follows:

Oyur = po8b(h),
Bvur = ¢poBp(ur—1), k>1.
Notice that at each stage, the solution exists as long as the kernel of 8; is orthogonal

to the positive weight Fourier components. Furthermore, we could write down the full
iterative solution to this procedure as follows:

h=h+u=> (5;Gp-)*h
k=0
=h+85G D ($°0,0;G)* ¢=0,(h).
k=0

This sum converges as long as the operator sup-norm of 5;;G¢oa,, is less than one. Fur-
thermore,

(Bo—¢°00)h=0sG Y (00,5, G)*¢o84(h) =D _($°0:5;G)*$°84(h)
k=0

k=0

oo
=(0sG—1) > _ (¢80, G)* poBy(h).
k=0
In the case that 0,G=I on the space of positive Fourier coefficients, then the right
hand side vanishes, and the iteratively defined function h is CR relative to the given CR
structure. O
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