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1. I n t r o d u c t i o n  

Geometric group theory has made remarkable progress in the last decade, producing 

a wealth of striking and deep results which incorporate a wide range of mathematical 

tools. Following the success of the theory in dealing with "large" groups, such as the 

quasi-isometry classification of lattices in semisimple Lie groups (cf. the survey [21]; see 

also [26] and [13]), more attention has been paid recently to "smaller" (e.g. solvable) 

groups, which do not generally enjoy similar richness of geometric structure. Here the 

theory has had some outstanding achievements (aft [22], [23], [24], [46]), although yet 

with a limited scope, and leaving open many fundamental questions (cf. the survey [25]). 

The purpose of the present paper is to introduce new ideas, techniques and results, to 

the geometric group theory of amenable groups, involving representation theory and 

cohomology. Some of the results and notions developed from spectral theory should be 

of independent interest, an aspect elaborated upon after stating the main results. 

Statement and discussion of the main results. The following result, a fundamental 

rigidity theorem in itself, serves as a good motivation for our approach: 

THEOREM 1.1. (Quasi-isometric rigidity of zd.) If  F is a group quasi-isometric 

to Z d, then F has a finite index subgroup isomorphic to Z d. 

See below, or Definition 2.1.1, for the definition of quasi-isometry (abbreviated q.i.). 

Theorem 1.1 is known to hold using Gromov's polynomial growth theorem [30] (which re- 

duces it to the case where F is nilpotent). Yet a natural question raised by several authors 

(e.g. [17], [28], [30], [33]) is whether one could find an elementary argument, particularly, 

avoiding the heavy ingredient related to Montgomery-Zippin's work on Hilbert's fifth 

problem [42], which is involved in Gromov's proof. We shall indeed present such an ar- 

gument, which illustrates the main ideas of our approach with very little effort in terms 

of the spectral theory involved. Considerably more effort in this direction is needed for 

the other, new results obtained below. 

A central notion in the sequel will be that  of Betti numbers. Recall that  for a discrete 

group F and n~0 ,  the nth  Betti and virtual Betti numbers are defined by 

bn(r) =dimRHn(F,R) and vbn(r)=sup{bn(r0)lr0 < r  and [r:r0] <~},  

respectively. 

Note that  bl(F) is also the rank of the abelianization of F (after tensoring with Q). 

To put some of our next results in a better perspective, it is good to keep in mind that  

the virtual Betti numbers are not q.i. invariants, neither in general, nor in the class of 

amenable groups. One example is that  of the wreath product Z~Z, which has infinite vbl, 
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and is q.i. to the group Z ID satisfying Vbl=2, where D is the infinite dihedral group [19]. 

Another one, in the much tamer class of polycyclic groups (which all have finite vbn's), 

is shown in w below. 

THEOREM 1.2. (Quasi-isometry invariance of Betti  numbers for nilpotent groups.) 

If  F and A are (finitely generated) quasi-isometric nilpotent groups, then for all n one 

has b~(F)=bn(A). 

All the previously known q.i. invariants for nilpotent groups follow from Pansu's 

well-known theorem [44], which states that  the graded (real) Lie algebra of the (Mal'tsev 

completion of the) nilpotent group is a q.i. invariant. Following the proof of Theorem 1.2 

in w below, we present an example due to Yves Benoist, showing that  this is not the 

case here. Namely, there exist nilpotent groups (in every dimension ~> 7) which have the 

same asymptotic cone, and hence cannot be q.i. distinguished by Pansu's theorem, but  

are nevertheless not q.i. by Theorem 1.2. 

We continue one step further, to the class of polycyclic groups, whose large-scale 

geometry understanding remains a major challenge. Prior to the result stated next, 

there seems to be no polycyclic group (which is not virtually nilpotent) for which some 

"non-trivial" property (unlike amenability, finite presentability, etc.) is known to hold 

for all groups q.i. to it. 

THEOREM 1.3. (Quasi-isometric to polycyclic implies vbl>0.)  If  F is quasi- 

isometric to a polycyclic group, then F has a finite index subgroup with infinite abelian- 

ization. 

As shown in w no bet ter  bound on vbl in the theorem can be given, other than its 

positivity. We next consider amenable groups which are more "complicated" in at least 

one of two ways: Firstly, non-(virtually) solvable groups, and secondly, groups which are 

not finitely presentable. In the first category we will deal with the same groups recently 

shown to exhibit somewhat surprising non-rigid behavior [19], namely, lamplighter-type 

groups. Concerning the second category, we note that  the same remark mentioned before 

Theorem 1.3 concerning polycyclic groups applies to non-finitely presentable ones equally 

well. Unlike with polycyclicity, however, here there seems to be some inherent difficulty, 

as all the geometric approaches require some "nice model space" for the group, a space 

which automatically implies finiteness properties like finite presentability. For example, 

in the recent q.i. rigidity theorem for nilpotent-by-cyclic groups [46] (generalizing [24]), 

finite presentabil i ty--along with not being polycyclic--is specifically assumed, so here, 

again, our results seem to complement the literature. We next describe one class of 

non-finitely presentable, abelian-by-cyclic groups, to which our methods apply. 
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For any pair n, mCZ of non-zero co-prime integers, let Z[1/nm] be the ring of 

rational numbers generated (as a ring) by 1~rim, and let 

Ell F(n ,m)  = Z ~ ( Z  ~mm 

where Z acts through multiplication by (powers of) m/n.  It is easy to see that  r(n, m) 
is finitely generated. In the case where Iml = 1 or Inl =1,  we merely recover the solvable 

Baumslag-Solitar groups, but otherwise F(n, m) is only a quotient of the (non-solvable) 

Baumslag-Solitar group BS(n, m). The case of a Baumslag-Solitar group is the only one 

where F(n, m) is finitely presented, as follows from [10]. 

We can now state our next result: 

THEOREM 1.4. (Non-finitely presentable amenable groups.) Let F be either a group 

of the form F(n, m) as above, or a lamplighter group L(F) associated with some finite 

group F, i.e. a wreath product 

L(F)=Zz~]~F~,  
iCZ 

where each F{ denotes a copy of F and the semi-direct product is with respect to the shift 

Z-action. If A is a group quasi-isometric to F then vbl (A)=I .  

Furthermore, there exists a family of 2 ~~ 3-step solvable groups F to which the same 

conclusion applies. 

In fact, the same result holds also for the family of lattices F in SOLV. This, together 

with further results proved below, provides some evidence for the generally believed 

conjecture that  the family of all these lattices is q.i. rigid (cf. [25]). Note also the marked 

difference between the case of a lamplighter group L ( F )  with F finite (Theorem 1.4), 

and F infinite (the remark preceding Theorem 1.2 above). 

The "algebraic" setting. It turns out that  our approach admits an algebraic counter- 

part, which gives rise to a different set of results. Here we will actually be able to deal 

with a notion more general than a quasi-isometry, namely, a uniform embedding. We 

now define it in a way which is free of a choice of a generating set, thereby making it (and 

the notion of quasi-isometry with it) meaningful also for non-finitely generated groups. 

Definition. Let A and F be discrete countable groups. 

(i) A map ~:A--+F is called a uniform embedding (abbreviated UE) if for every 

sequence of pairs (ai,/~i) EA • A one has 

O~i-1/~i ---k (20 in A ~ ~(O~i)--I~D(/~i) --+ OC in F 

(where --+oo means eventually leaving every finite subset). 

(ii) A and F are said to be quasi-isometric if there exists a uniform embedding 

~: A--+F and a finite subset CC_F such that  as sets, ~ ( A ) . C = F .  
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The equivalence of (ii) above with the usual notion of quasi-isometry in the case of 

finitely generated groups (see Definition 2.1.1) is a part  of Theorem 2.1.2 below. Even 

though the above definition makes use of the group structure, the notion of uniform 

embedding extends naturally to all metric spaces. It was introduced by Gromov and 

studied in relation to the Baum-Connes conjecture, in the context of a Hilbert space 

target (see e.g. [48] and the references therein). Rather little has been said about it in 

the framework of geometric group theory, partially because it is a much more flexible 

notion than a quasi-isometry (cf. [43] where it is called "uniformly proper embedding" 

or [11] where it is termed "packing", and the references therein). Among prime motivating 

examples to keep in mind, note that  any subgroup inclusion is a UE, and any discrete 

subgroup A of a locally compact group G uniformly embeds in a co-compact discrete 

subgroup F < G  (see w below for more on the "converse" situation). Somewhat more 

counter-intuitively, any nilpotent group uniformly embeds in Z d for d large enough, 

some hyperbolic groups do receive a UE of high-rank abelian groups, and non-abelian 

free groups uniformly embed in all (non-virtually nilpotent) solvable groups (see w167 6.1 

and 6.3 below). In general, the restriction of a quasi-isometry to a subgroup is only a UE; 

hence a study of this notion is valuable even if one is interested in quasi-isometries only. 

We next recall the following fundamental notion: 

Definition. For a group F and a ring R, define the cohomological dimension of F 

over R, cdR F, by 

CdR I ~ ----sup{n I there exists an RF-module V with Hn(F,  V) ~ 0}. 

Note that  the cohomological dimension may be infinite. For the next theorem, recall 

that  a commutative ring R with unit is divisible if every 0 ~ n E Z  is invertible in R. 

THEOREM 1.5. (Uniform embeddings "respect" cohomological dimension.) Let R 

be a commutative divisible ring with unit, and let A and F be any countable groups with 

A amenable. I f  A uniformly embeds in F then cdRA~<cdR F. 

In particular, if A and F are quasi-isometric then cdR A=cdR F. 

In all the applications of Theorem 1.5, it will be enough to consider the ring Q of 

rational numbers. Although cohomological dimension is often regarded over the inte- 

gers Z in the literature, not only that  divisibility of R is necessary for the theorem, but 

it actually seems the natural assumption in the framework of geometric group theory. 

Indeed, when R is not divisible, any group is commensurable to a group with infinite CdR, 

and as remarked by Gersten [27], there are such examples where passing to the virtual 

cohomological dimension does not amend the problem. Another advantage of working 
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over Q rather than Z (for example) is illustrated with the lamplighter group F (defined 

above). One has cdz F = ~  but CdQ F=2;  hence by Theorem 1.5 any amenable group ad- 

mitring a UE into F satisfies the strong restriction CdQ A~<2. Gromov asked in [31, 1.H] 

whether the cohomological dimension is a q.i. invariant. Under the ~ - f in i t eness  as- 

sumption on the groups (see w below), it was shown by Gersten [27] that  q.i. groups 

have the same cohomological dimension, but provided it is a priori assumed to be finite 

for both of them. This condition makes the result more difficult to implement when 

trying to prove q.i. rigidity-type results without making some finiteness assumption on 

the "mystery group". On the other hand, [27] gives information also over the ring R = Z ,  

and although limited to the case of quasi-isometries, it applies to all (not only amenable) 

groups. Obviously, it would be desirable to remove the amenability assumption on A in 

Theorem 1.5; interestingly, this is possible at least for some arithmetic groups, such as 

SLy(Z) (see w 

To state some applications of Theorem 1.5 for solvable groups, recall first the basic 

invariant of such a group F- - i t s  Hirsch number, hF--which is defined by 

hF = ~ dimo ((F(i)/F(i+I)) | Q), 
i)0 

where F (~) denotes the i th term in the derived series of F. 

THEOREM 1.6. (Uniform embeddings of solvable groups.) Let A and F be solvable 

groups. I f  A uniformly embeds in F then: 

(1) hA~<hP+l,  and hA <~ hF if F is of type (FP) (e.g. if  P is polycycIic, see below); 

(2) in particular, if A and F are quasi-isometric then ] h A - h F l ~ l ;  

(3) if  F is of bounded rank and A is torsion free, then A is also of bounded rank. 

Recall that  a group F is of bounded (Priifer) rank, if there is some d=d(F)  such that  

every finitely generated subgroup of F can be generated by at most d elements. 

To sharpen our results we need another result of cohomological type. Recall that  

a group F is said to be of type (FP) over a ring R, if R, as a trivial RF-module, has a 

finite-length projective resolution over RF, with every module being finitely generated. 

THEOREM 1.7. (Type (FP) is a quasi-isometry invariant.) Let R be as in Theo- 

rem 1.5. In the class of amenable groups, being of type (FP) over R is a quasi-isometry 

invariant. 

This implies the following sharpening of Theorem 1.6 (2) for "tame" groups, which 

we actually expect to hold in complete generality (see w 
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THEOREM 1.8. (Quasi-isometry invariance of Hirsch number.) Let F be a solvable 

group of type (FP) over Q. I f  A is any solvable group quasi-isometric to F then hA=hF.  

The same conclusion holds if  we drop the type (FP) assumption on F, but assume instead 

that both F and A are torsion free. 

The first result of this type was established by Bridson and Gersten [14] when both 

F and A are polycyclic, a property which implies being of type (FP) over Q. More 

generally, any group of type (FP) over Z is of type (FP) over Q, and the torsion-free 

solvable groups with the former property admit a concrete algebraic characterization (of 

being "constructible")--see w below. 

As a concrete application of our results for solvable groups, we return to the groups 

F(n, m) defined and discussed earlier. 

THEOREM 1.9. (Solvable groups quasi-isometric to F(n ,m) . )  Let m and n be co- 

prime integers. I f  A is a torsion-free solvable group which is quasi-isometric to F(n, m),  

then there exists some co-prime integers m t and n' so that A has a finite index subgroup 

isomorphic to F(n' ,  m') .  

We remark that  in the case In[, Jml~ l  , it does not seem possible to prove even that  

A has finite Hirsch number without appealing to Theorem 1.5 above. 

The approach. The following three notions will be central to all that  follows: 

Definition. Let F be a discrete group. Say that  F has property HFD, HE o r  HT, 
if for every unitary F-representation ~ with Hi (F ,  ~ )5 0 ,  there is a F-subrepresentation 

acTr which is finite-dimensional, finite or trivial, respectively. 

By a finite representation we mean one factoring through a finite quotient of F. Here 

~1  denotes the first reduced cohomology group, i.e. the quotient Z 1 / B  1, where B 1 is the 

closure of the space of 1-coboundaries in the topology of pointwise convergence on F. 

Before explaining the relevance of these notions to geometric group theory, a few words 

may be in place to put them in some perspective. 

In [50] it was shown that  any compactly generated group F without Kazhdan's prop- 

erty (T) admits some (continuous) irreducible unitary representation 7r with ~1  (F, 7~)~0 

(recall that  if F does have (T) then H i (F ,  7r)--H 1 (F, 7r)=0 for all ~). This result, which 

is completely non-constructive, is shown in [50] to have various applications. Of course, 

it applies to all finitely generated infinite amenable groups, and since the latter ram- 

ily lies in the extreme opposite to the Kazhdan property, one might expect that  for 

amenable F the set of such ~'s is "wild". Non-abelian free groups, for example, satisfy 

H I ~ 0  for "most" unitary representations 7~ (and H 150  for all of them), whereas in the 

well-behaved class of simple Lie groups, the classification of these "cohomological" 7f's 
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needs considerable work. Combined with the well-known fact that  there is no available 

description of the irreducible unitary dual of (non-virtually abelian) discrete groups, one 

may be led to expect that  no classification of such cohomological 7r should be possible 

in the class of amenable groups. However, groups with properties HT, HE or HFD have 

an extremely restricted set of such representations 7r, e.g. the trivial representation alone 

for the sharpest of t hem- -p rope r ty  HT. Keeping this in mind, the highlights of our 

(spectral) approach are: 

(i) From a purely spectral-theoretic point of view, it is actually a rather general, 

interesting phenomenon, that  many amenable groups do satisfy one of these properties; 

(ii) This phenomenon has concrete applications to geometric group theory, such as 

those described in the previous subsection. 

Let us elaborate now on these two issues, starting with the central result connecting 

the harmonic analysis to geometric group theory (proved in Theorem 4.3.3 below): 

THEOREM 1.10. (Quasi-isometry invariance of HFD.) In the class of amenable 

groups, having property HFD is a quasi-isometry invariant. 

Although no longer geometric, the other properties help to sharpen the applications: 

THEOREM 1.11. (Consequences of HFD and HR.) (1) Any finitely generated ame- 

nable group A with property HaD contains a finite index subgroup with infinite abelian- 

ization. In particular, if A is quasi-isometric to a group with property HaD, then the 

same conclusion holds. 

(2) If A is quasi-isometric to an amenable F with property HF, then Vbl(A)~<Vbl(F). 

We now illustrate the use of these notions by describing the proof of q.i. rigidity 

of Z d. For this purpose, we present the first examples of groups with property HT: 

THEOREM 1.12. (Abelian groups.) Every abelian group has property HT. 

Unlike the case for other groups with property HT, this turns out to be elementary. 

Another easy result we shall prove is a simple sufficient and necessary condition for a 

group with property HaD to have the stronger property HF (see Proposition 4.2.3), of 

which a special case is the following result: 

LEMMA. Let F be a finitely generated group with property HFD. If F has subexpo- 

nential growth then F has property HF. 

Proof of Theorem 1.1. Let A be q.i. to Z d. By Theorem 1.12, Z d has in particular 

property HaD; hence by Theorem 1.10, A has it as well. By the lemma above A satisfies 

property HE, so both groups have this property, and from Theorem 1.11 (2) it follows 

that  Vbl (A)=Vbl (Z d) =d.  This shows that  a finite index subgroup of A surjects onto Z d, 
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and because both groups have polynomial growth of the same degree d, the kernel of the 

surjection must be finite, as required. [] 

See Theorem 4.3.6 below for the complete details. The proof of the q.i. invariance 

of Betti  numbers for nilpotent groups uses a result analogous to Theorem 1.11 (2), once 

they are shown to possess a generalized property HT for any cohomology degree (this, 

however, requires considerably more efforts than in the abelian case above). In particular, 

nilpotent groups also have property HT, but this is no longer the case in general (even 

virtually) for polycyclic groups. 

THEOREM 1.13. (Polycyclic groups.) Every polycyclic group has property HFD. 

The starting point of the proof of this result is the (non-trivial) fact that  every poly- 

cyclic group virtually embeds as a co-compact lattice in a connected solvable Lie group. 

This enables one to appeal to a rather involved work of Delorme [16], concerning the 

cohomology of irreducible unitary representations of such groups. It would be intriguing 

(and we believe also rewarding see w below) to find a proof of Theorem 1.13 even 

for some polycyclic (non-nilpotent) groups, without embedding them co-compactly in a 

connected Lie group. While Delorme's work relies heavily on Lie algebra cohomology, 

we develop an alternative, more geometric approach, which enables us to treat  also the 

aforementioned, more "exotic" groups: 

THEOREM 1.14. (Non-finitely presentable groups.) Let F be a group in one of the 

following classes: 

(1) A group F(n, m) as defined before Theorem 1.4 above; 

(2) A lamplighter group L(F) associated with some finite group F. 

Then F has property HT. Furthermore, there exist 2 ~~ non-isomorphic finitely gen- 

erated 3-step solvable groups F with property HT. 

Since all the groups appearing in the theorem satisfy b l = l ,  by Theorem 1.11 any 

group q.i. to them satisfies vbl--1, and hence Theorem 1.4 follows. An interesting aspect 

of the proof of Theorem 1.14 is that  in both (1) and (2) we construct a locally compact 

(non-discrete) group G containing F discretely and co-compactly, and prove first that  

G has property HT (using "Mackey's machinery"). This is then "transferred" to F. 

Another interesting feature of the proof is that  it provides one instance where it is 

actually geometric group theory which is used for spectral theory, and not the other way 

around. This concerns part (2), which we prove directly when F is abelian. We then use 

geometric group theory (through [19]), together with the q.i. invariance of property HFD, 

to deduce the theorem for every finite F. A second application of geometric group theory 

to spectral theory comes in the proof of the following fact, which balances our foregoing 

results: 
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THEOREM 1.15. (Solvable groups without HFD.) The wreath products Z l Z  and 

Z~D, where D is the infinite dihedral group, do not have property HFD. 

Roughly, once geometric group theory tells us that  the two groups are quasi-isomet- 

ric, the fact that  one has finite and the other infinite vbl, together with Theorem 1.11 (2), 

accounts (modulo some details) for this resul t - -see w below. 

Finally, to mention a few words about our basic idea--relat ing the representation 

theory and cohomology of quasi-isometric amenable groups--we recall first the follow- 

ing observation of Gromov [31], which is our departure point: The groups F and A 

are quasi-isometric if and only if there exists a locally compact space X on which both 

groups act properly discontinuously, co-compactly, and in a commuting way (see w 

below). Consequently, one gets a bundle-type structure X-+X/A ,  on which F acts, 

allowing for an induction map from A-modules to F-modules. When unitary representa- 

tions are involved, the amenability is used to get a (a-additive, a-finite) F • A-invariant 

measure on X, giving rise to an L2-unitary induction ~ la Mackey. The boundedness of 

the fundamental domains enables one to define an induction map on the corresponding 

cohomology groups, and show its injectivity. In the algebraic approach, an analogous 

"smooth" induction functor on the category of R-modules is defined, along with a map 

between the cohomology groups. Here, amenability implies the injectivity of this map 

via the existence of a finitely additive R-valued invariant measure, entering the definition 

of an appropriate "transfer operator". Curiously, our proof here makes use of additive 

homomorphisms from R to Q. 

Suggestion to the reader. Readers interested in the first (resp. second) set of results, 

i.e. Theorems 1.1-1.4 (resp. Theorems 1.5-1.9), are recommended to start  reading w 

(resp. w Those interested primarily in the spectral theory aspects, may prefer to look 

first at w 
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2. Prel iminaries  

2.1. Topological  and measurable couplings 

We begin by recalling the standard definition of quasi-isometric groups. 

Definition 2.1.1. Let F and A be groups generated by the finite (symmetric) sets Sr 

and SA, respectively, and let dF and d i  be the corresponding word metrics on F and A. 

Then F and A are called quasi-isometric if there exists a map ~: A-+F and constants 

a~>l and K~>0 such that  for all A1, A2cA, 

~-ldA(/~l, A 2 ) - K  ~ dr(~(A1), ~(A2)) < OzdA(A1, A2) +K,  (1) 

and any element 7EF lies within distance ~<K from ~(A). 

We next establish the framework in which we shall work throughout the paper. 

THEOREM 2.1.2. For countable groups A and F, consider the following statements: 

(i) There exists a uniform embedding ~: A-+F (as defined in the introduction); 

(ii) There exists a locally compact space X on which both A and F act continuously 

and properly, such that the two actions commute, and the F-action is co-compact, i.e. 

there exists a bounded subset X F C X  with F . X F = X ;  

(iii) There exists ~a as in (i) and a finite subset CC_F such that ~(A)-C=F;  

(iv) There exists X as in (ii), but with both actions being co-compact. 

Then (i) is equivalent to (ii), and (iii) is equivalent to (iv). Furthermore, i f  any of 

(i)-(iv) holds, then after replacing F with a direct product F x M for some finite group M,  

a space X can be found with the following three additional properties: 

(1) Both actions on X are free; 

(2) There exist fundamental domains XA and X r  which are both open and closed 

(with XF compact in case (i) r (ii), and both XA and X r  compact in case (iii) r (iv)); 

(3) XrC_XA. 
Finally, let d i  and dr be left A- and F-invariant metrics on A and F, respectively, 

which are proper (all balls are finite). Then for any ~ as in (i) there exist non-decreasing 

unbounded real functions F1, F2: R - + R  such that for all A1, A2cA, 

F1 (dA(A1, A2)) ~< dr(~(A1), ~(A2)) ~< F2(dA(AI, A2)), (2) 

and i f  moreover dA and dr are word metrics on the finitely generated groups A and F, 

respectively, then F2 can be taken as a linear function. Consequently, any ~ as in (iii) 

is a quasi-isometry of A with F, and (iii) or (iv) are equivalent to A and F being quasi- 

isometric in the sense of Definition 2.1.1. 

Everything in the theorem is elementary, and many claims are trivial. We shall 

only elaborate here, for completeness, on those statements which we shall actually make 
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use of, leaving to the reader to complete the missing details (possibly using the reference 

below). 

The point of view of this theorem is the one adopted by Gromov [31, 0.2.C~] in the 

topological characterization of quasi-isometric groups, described at the last paragraph of 

the introduction: The finitely generated groups A and F are q.i. if and only if statement 

(iv) in Theorem 2.1.2 holds. A guided exercise proving this equivalence can be found 

in [33, p. 98], to which we refer for more details. Since we need a space X with the 

additional properties (1)-(3) above, we shall need to go into some detail concerning this 

construction. 

Proof. Assume that  dn and dr are left invariant proper metrics on A and F, re- 

spectively. It is easy to see that  any countable group, not necessarily finitely generated, 

admits such a metric. Let ~: A--+F be a uniform embedding. Defining 

F1 (t) = inf{dr(~(A1), (fl(~2))[ dh(/~l, ~2) ~ t}, 

F2(t) ----sup{dr (~(A1), ~(A2))] dA(A1, A2) ~<t}, 

it is clear by the assumption on ~ that  both functions are finite, non-decreasing, un- 

bounded, and (2) is satisfied. We now proceed to show how the existence of such a 

implies that  a space X satisfying the additional properties (1)-(3) in the theorem exists, 

thereby establishing also the implications (i) ~ (ii) and (iii) ~ (iv). 

By assumption on ~, it is clear that  there is a finite subset QCA such that  if 

~(A1)=p(A2) then A~IA1EQ. Hence, by taking any finite group M of order greater 

than ]QI, and replacing F with F •  we may take ~ to be injective. Let us still denote 

by F1 and F2 modified functions such that  (2) is satisfied for ~. Consider the space X of 

all injective maps Ac--~F, satisfying the same uniform estimates (2) as for F, equipped with 

the pointwise convergence topology. It is easy to verify that  X is locally compact (this 

follows from the right-hand side of (2), and also from the fact that  there is a compact- 

open fundamental domain for the action of the discrete group F- - see  below). The groups 

A and F admit natural commuting actions on X, by pre- and postcomposing maps with 

their self-left actions (being isometric, X is stable under these two actions). The F-action 

on X is obviously free, proper and co-compact. Indeed, the set Xr={r162 is 

a compact-open fundamental domain for its action. As for the A-action on X, the left- 

hand side of (2) implies that  it is proper, and because X is a space of injective maps it is 

also free, although not co-compact in general. However, if there is a finite subset C C F  

such that  ~(A) .C--F ,  and we add the (F • A-invariant and "closed") condition that  all 

maps r in X satisfy the same property, then the compact subset K = {r C Xlr C-1} 
satisfies AK=X, and hence A acts co-compactly (this latter argument establishes the 

implication (iii) ~ (iv) of the theorem). 
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We now wish to show that  one can find a closed and open (abbreviated clopen) 

fundamental domain XA for the A-action, with X r  _CXA (recall that  X r  above is clopen). 

For an element 7 E F define the subsets 

E ~ = { r 1 6 2  ) = 7 }  and K ~ = A - E ~ = { ~ E X l C t a k e s t h e v a l u e T } .  

CLAIM 2.1.3. For any 71,72EF, the set KO rhE~ is open, where c 
72 

Indeed, 

KCnE~I = r~ (AECNE~,)  = N {r I r  5 7 2  and r =71}. 
AEA ),EA 

If r then by the existence of F1, for A far enough we have r162 , and hence 

K C rhea1 is a finite intersection of open subsets. 

Now, enumerate the elements of F as 70=e,  71,72, ... and define 

XA Ee[-J "U C NKeC. = ET~ rh K~i_ 1 r-) ... 
i=1 

In other words, for r  if n is the minimal integer so that  r takes the value Vn, then 

CEXA if and only if r  (note that  if r  then by injectivity there is obviously 

a unique element AEA which translates r back to XA). The claim above implies that  

every subset in the union is open, hence XA is open. Since XA is obviously a fundamental 

domain for the A-action containing Ee=Xr,  and X r  is obviously clopen, we are only left 

with verifying that  XA is closed as well. Indeed, assume that  r  and r By 

passing to a subsequence we may assume that  for all i, r162 for some fixed 

7nEF. If n=0 ,  i.e. 7~=e,  then the claim is clear. Otherwise, we need to show that  r 

does not take any of the values 70, .--,7~-1; but if it did, say r then for all i 

large enough, r would satisfy this as well, contradicting the assumption that  r EXA for 

all i. Notice that  when condition (iii) is satisfied, then as soon as C -1 _c{T0 , 71,--., 7~-1}, 

the i th  set in the union defining XA is empty, and hence XA is indeed compact. 

We have thus shown that  ( i ) ~  (ii) and Off) =* (iv). We shall not need here the 

reverse implications, but since they are easy, we indicate the main idea. Let X r C X  be 

a compact subset such that  X = F X r .  Pick xoEX, and for each AEA let 7EF  be some 

element such that  Ax0 EvXr .  Then the map ~(A)=7 is a uniform embedding of A in F, 

and if A \ X  is compact, there exists a finite subset CC_F such that  ~ ( A ) . C = F  (hint: if 

X r  was a fundamental domain, one could take C -1 as a finite subset such that  C.Xr  

contains X h - - s e e  [33, p. 98] for more details). 

Finally, we are left with the case where dA and dr are word metrics on the finitely 

generated groups A and F, respectively. First of all, if qo as in Off) exists, and one of the 
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groups is finitely generated, then by (iv) and [33, p. 98, I t em 34] the other is as well. 

In the word metric cases, if a<cxD is such that  dA(A1, A2)=1 ~ dr(~(A1), p(A2))<~a, it 

follows from a triangle inequality that  ~ satisfies dF(~(Z~l),~(/~2))~OldA(/~l,/~2). If 

satisfies also the property in (iii), then this can be reversed, with an additive constant 

coming from the diameter  of the finite set C. Hence ~a is a quasi-isometry. [] 

Remark. Notice that  if the groups F and A are bi-Lipschitz equivalent, i.e. if there is 

a ~ as in the theorem which is also a bijection, then the fundamental  domain X r  defined 

in the proof is a mutual  fundamental  domain for both  actions. In fact, the existence 

of such a space X with a mutual  (bounded) fundamental  domain is equivalent to the 

bi-Lipschitz equivalence of the groups. 

Definition 2.1.4. Given two groups A and F, call a locally compact  space X satisfying 

the conditions in Theorem 2.1.2 a topological coupling of A and F. 

In the definition we do not distinguish between the situations where both, or only 

one of the actions is co-compact (the quasi-isometry vs. the uniform embedding case). 

This should always be clear from the context, and is also encoded in the following stand- 

ing notation, which is justified by the commutat iv i ty  of the actions and will be used 

throughout the paper: 

F acts on X via a left action, and A acts (from the right) via a right action. 

Usually, we will use a coupling X satisfying the three additional properties in The- 

orem 2.1.2, in particular, X r  C XA, which is an asymmetr ic  condition as well. Thus, it 

is convenient to think of F as being the "large" group, whose fundamental  domain is 

included in that  of the "smaller" group A (this is consistent with the uniform embedding 

setup, as well as with our later approach to induce representations from the "smaller" to 

the "larger" group). 

In all of our results which apply methods from harmonic analysis, the topological 

structure will be almost (though not entirely) immaterial.  It  is the analogous measurable 

setting which will become central. 

Definition 2.1.5. (Gromov [31]) The discrete countable groups F and A are called 

measure equivalent (ME)  if there exists a a-finite measure space (X, #) on which both  

F and A act (essentially) freely, preserving #, in a commuting way, such that  there exist 

finite-measure fundamental  domains X r C X D X A  for the two actions. The groups are 

called uniformly measure equivalent (UME)  if the following additional property holds: 

For all 7 E F there is a finite subset $7 C_ A such that  

VXA C X A &  
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and, similarly, for all AEA there is a finite subset S~C_F such that  

S~Xr D Xr~. 

Notation 2.1.6. If F, A and (X,#)  are as above, we call X a ME or UME coupling 

of F and h. By X r  and XA we shall always mean fundamental domains in X satisfying 

the conditions in the definition. If the F • A-action on (X, #) (equivalently, the F-action 

on X/A,  or the A-action on F \ X )  is ergodic, we call X an ergodic coupling. 

The use of amenability in the harmonic analysis approach comes via the following 

theorem: 

THEOREM 2.1.7. If amenable groups A and F are quasi-isometric, then for some 

finite group M there is an ergodic UME coupling X of A and F•  with Xr• 

Proof. This is clear by Theorem 2.1.2 and the invariant measure property for actions 

of amenable groups on compact spaces, recalling that  by Krein-Milman's theorem, if 

there is a finite invariant measure, there is also an ergodic one. Taking an ergodic A- 

invariant measure # on F \ X ,  identifying the latter with X r  C_ X, and tessellating # under 

the F-action, defines a a-finite A • F-invariant ergodic measure on X. [] 

2.2. T h e  ac t i ons  a n d  cocyc l e s  a s s o c i a t e d  w i t h  a c o u p l i n g  

Let F and A be discrete groups, and suppose that  X is a topological coupling of them 

(Definition 2.1.4), with both actions on X being free. Then associated with this coupling 

we have a natural F-action (from the left) on X / A  and a A-action (from the right) 

on F \ X .  Let X r  and XA be the fundamental domains associated with the coupling in 

Definition 2.1.4. Then we define the cocycle a: F • XA-+A by the rule 

;. (3) 

Note that  because XA is a fundamental domain for A, a(7,  x) is uniquely defined. Simi- 

larly, we define the cocycle/3: XF • A--+F by 

. :  ;. (4) 

Of course, by commutativity of the actions, the parentheses in the right-hand sides 

of (3) and (4) are redundant; we have put  them here only for clarity. 

We also have the following fact, which will turn out very useful: 

X F C X A  :=:V c~(/3(x,A),x)=/~ for a l l A E A  and x E X r .  (5) 
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This is obvious from the definitions (3) and (4). 

Once we fix the fundamental domains XA and Xr ,  we may identify them with X/A 
and F \ X ,  respectively. With these identifications, the F- and A-natural actions on the 

latter spaces take the forms 

7 ' x  = T x a ( 7  -1 ,x) ,  x E XA (compare with (3)), (6) 

X. ,~-~(X,A)- - lx~ ,  x e X  F (compare with (4)). (7) 

Hereafter we shall keep the dot notation for the actions defined above on the fun- 

damental domains, to distinguish them from the usual actions on X (which we continue 

to denote as before). It is easy to check that  (7, x)-+7.x and (x, A)-+x.A define left and 

right actions of F and A on XA and Xr ,  respectively. 

We can now make our previous statement that  a and ~ are cocycles precise. They 

are in fact cocycles over the F- and A-actions on XA and Xr ,  respectively: 

O~(71"~2 , X) = OL('~I , X) OL(72,711"X) for all 71,72 @ F and x @ XA, (8) 

~(x, A1A2):~(x, A1)~(x./~I,.~2) for all A1,A2EA and xEXp. (9) 

Since the cocycle identities are both crucial in what follows and easy to get confused 

with, let us verify them quickly. To prove (8) notice first that  by (6) one has the identity 

~/11x= (71-1.x) a(71 , x ) - i  and hence 

(~f172)-- lX : 721 ('~11X) ~--- 721 ((711"X) 0l(71, X) -1 ) : (721 (711"X))0~(71, X) -1 

= ( 7 ; "  x) -1 

: ")/2 1 �9 (711-X)(0-/(72, 71  I'X)--IoL(7I, X)-  1). 

Because 7~-l.(711.x)CXA, by (3) it follows that  (8) is satisfied. To prove (9) we first 

notice that  by (7) one has xA=~(x, A)(x.A), and hence 

x(AI 2) = = 

: ~(X, )~1)(~(X')~I, .~2)((X'/~l)")~2)) = ~(X, )~l )~(X'~l ,  )~2)((X'~l)".~2). 

Because (x.A1).A2 E Xr ,  by (4) it follows that  (9) holds. 

2.3. A lgeb ra i c ,  c o n t i n u o u s  a n d  r e d u c e d  c o h o m o l o g y  

We briefly review here the three group cohomology notions, while introducing some 

notation which will be needed later on. The first is the classical one. A comprehensive 

treatment of the last two in the general setting we shall be needing can be found in [32]. 
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Let R be a commutative ring with unit, G be a locally compact second countable 

group, and let RG be the group ring of finitely supported R-valued functions on G. For 

an RG-module V we denote the G-action by (g, v)~+Tr(g)v and define 

Cn(G,V)=(w:Gn--+V]w(ggo,...,gg,~_l)=Tr(g)w(go,...,gn_l)}. (10) 

Let dn : C n (G, V)  --+ C n+ 1 (G, V)  be the standard (homogeneous) differential: 

n 

[d~w] (g0, ..., gn) -- ~ (-1)iT(go, ..., gi, ..., g~). (11) 
i = 0  

Denote then the spaces of n-cocycles, n-coboundaries and n-cohomology by 

Zn(G, V) --Ker dn+l C_ C n+l (G, Y), 

B~(G, V) = I m d ~  C_ cn+I(G, V), 

H~(G, V) = Zn(G, V)/Bn(G,  V), 

respectively. 

We shall often use the following basic property of group cohomology: 

THEOREM 2.3.1. Let G be a discrete group and N<G be a finite normal subgroup. 

Then for every G-module V which is a vector space over the field Q, and every n>~l, 

one has Hn(G, V)~-Hn(G/N, vN),  where V y denotes the space of N-fixed vectors, and 

the isomorphism is induced by the inclusion of V N in V. 

Proof. Use Proposition 3.2 on p. 18, and Proposition 8.1 on p. 47, in [32]. [] 

When V is a topological vector space on which G acts continuously, the continuous 

cohomology H*t(G , V) is defined in a similar manner to algebraic cohomology, only that  

here one insists that  all maps be continuous with respect to the corresponding topologies. 

In all the cases of continuous cohomology we shall be concerned with, V will be a complex 

Hilbert space and the G-action ~ unitary. In this case, Zn(G, V) supports the natural 

topology of uniform convergence on compact subsets, in which it is easily seen to be a 

Fr6chet space. However, B~(G, V) need not be a closed subspace. Denoting by B~(G, V) 

its closure, we define the n th  reduced cohomology group with coefficients in V (or ~) by 

Hg(G,  V) = Z~(G, V) /B~(G,  V). 

Let us assume now that  V is an (always separable) Hilbert space on which the 

locally compact second countable group G acts (continuously and) unitarily via the 

representation ~. A crucial advantage of the reduced cohomology is its disintegration 

property (which does not hold in general for the ordinary continuous cohomology): 
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THEOREM 2.3.2. [32, p. 190, Proposition 2.6] If ~r-- fe~rx d~(x) is a direct integral 

decomposition of the unitary G-representation 7c, and for p-a.e, x one has _~c~ (G, 7rx)=0, 

then H~t (G, 7r)=0. 

2.4. A c lose r  l ook  at t h e  first c o h o m o l o g y  

Assume for this subsection that  G is a locally compact group and (Tr, V) is a unitary 

G-representation. In the previous subsection we have defined cohomology using homo- 

geneous cocycles, but for the first cohomology the inhomogeneous formulation turns out 

to be convenient. We define 

ZI(G, V) = {b: G-+Vlb  is continuous and b(gh) =Tr(g)b(h)+b(g)}, 

BI(G, V) -- {bE ZI(G, V) I b(g ) = rc(g)v-v, v �9 V}, 

Hlct(V, V) = ZI(G, V)/B~(G, V), 

nJ~(G, V) = Z~(G, V) /~ '  (a, Y), 

where ~1 (G, V) denotes the closure of B 1 (G, V) as before. 

In degree one a simple criterion enables us to identify reduced cohomology: 

PROPOSITION 2.4.1. Assume that 7r does not weakly contain the trivial representa- 

tion ( i. e. in the terminology of Definition 2.4.3 below, its linear action on the unit sphere 

of V~ is uniform). Then BI(G,V,~) is closed, and hence Hlt(G, Tr)=H~t(G, lr). 

The result is easy, see for example [50, Proposition 1.6]. In fact it admits a converse 

(due to Guichardet), which is less trivial--cf.  [34, p. 48]. 

An advantage of the first cohomology is that  it admits a useful geometric interpre- 

tation. Indeed, given bEZt(G,~r) one can deform the linear action 7r to a continuous 

affine isometric G-action Q on V, by letting Q(g)v=rc(g)v+b(g). The following result is 

straightforward from the definition: 

LEMMA 2.4.2. With the above notation, bEBI(G, Tr) if and only if the G-action 

admits a fixed point. 

In the same vein, we would like to identify cocycles b c B I ( G ,  7r). For this, we recall 

first the following notion, which will show up frequently in the sequel: 

Definition 2.4.3. A continuous action of a locally compact group G on a metric 

space (X, d) is called uniform, if there exists a compact subset QCG and c > 0  such that  

for every x c X  there is gEQ with d(gx, x)>e .  Otherwise, we say that  the action admits 

almost fixed points. 
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We now leave it to the reader to verify the following lemma as an easy exercise in 

the definitions: 

LEMMA 2.4.4. With the above notation, bEBI(G,~r) if and only if the G-action 
has almost fixed points (or in other words, it is not uniform). 

2.4.5. A remark on cohomology of finite-dimensional representations. When V is 

finite-dimensional (of dimension n), a unitary G-representation (Tr, V) corresponds to a 

continuous homomorphism 7r: G--+U(n) (well defined up to conjugation), and 1-cocycles 

bcZ I(G, 70 correspond to homomorphisms ~ to the group of rigid motions 

~: G ~ U(n)  ~ C n 

whose linear part is ~. Because of Proposition 2.4.1 and the compactness of the unit 

sphere, the reduced and ordinary cohomology are identical for finite-dimensional unitary 

representations, so every such affine action without a global fixed point is in fact uniform. 

3. Induct ion  through  coupl ings  and some  first appl icat ions 

3.1. Induct ion  of  r e p r e s e n t a t i o n s - - t h e  unitary set t ing  

Let F and A be discrete groups and assume that  (X, #) is a ME coupling of them with 

fundamental domains Xr  and XA, respectively (Notation 2.1.6). Given this structure, 

we introduce the following: 

Definition 3.1.1. Let (~, V~) be a unitary A-representation on the Hilbert space V.. 

We define the unitary F-representation Ind A induced from A to F, by first considering 

the representation space 

L2(XA, V~) : { f :XA-+V~ /xAiif(x)i i~d#(x)<oc} 

with the obvious inner product. To define the F-action, recall from w the F-action and 

cocycle defined on XA (see (3) and (6)), and define the F-operation on L2(XA, V,) by 

(T f )  (x) = 7r((~(7, x))f(7-1"x). 

This is easily verified to define a unitary F-representation. In fact, the construc- 

tion extends naturally the well-known unitary induction for locally compact groups k la 

Mackey. Indeed, in the special case where X = F  and A<F,  we obtain the usual unitary 

induction from A to F, and when F and A are subgroups of the locally compact group G, 



138 Y. SHALOM 

and (X, # ) =  (G, Haar measure) with left and right actions of F and A, the above con- 

struction amounts to unitarily inducing from A to G, and then restricting to F. At the 

expense of abusing notation (but gaining simplicity of it), we do not explicitly indicate 

the information on the coupling space X in our notation Ind r for induction, as this 

should always be clear from the context. 

As in Mackay's usual induction, we have an equivalent "equivariant" model of in- 

duction, which has the advantage of being free of a choice of fundamental domain. Here 

we let the representation space of the induced representation be 

L2(X, Y~) A :-- {f:  X -+ V=lf(xA) = ~()~- l ) f (x)}  

with the same L2-condition as above relative to some (hence every) A-fundamental do- 

main, and F acts by ( v f ) ( x ) = f ( v - l x ) .  For later use we also remark here that  in a dual 

way one may induce a representation 7r from F to A, where the induction space consists 

of L2-functions satisfying f(~/x)=~(~/)f(x), and A operates by (A f ) (x )=f (xA)  (this is a 

left A-action; recall that  the A-action on X is a right one). 

The following result will turn out crucial for our harmonic analysis approach to 

geometric group theory: 

THEOREM 3.1.2. Let X be a ME coupling of F and A (Notation 2.1.6), and 7r be 

a unitary A-representation. If  Ind~ 7r contains a finite-dimensional F-subrepresentation 

(~{0}),  then 7c contains a finite-dimensional h-subrepresentation (5{0}).  

Hereafter, denote by l r  the trivial (1-dimensional) representation of a group F. The 

following Frobenius reciprocity-type result, and its proof, highlight the duality in ME 

couplings: 

PROPOSITION 3.1.3. Let X ,  F and A be as above, let a be a unitary F-represen- 

tation, and 7~ be a unitary A-representation. Then l rC_Indr~Ocr  if and only if 1A C -- 

Ind h a| 

Proof of the proposition. We use throughout the proof the second "equivariant" 

model of induction described above. Assume first that  X is an ergodic ME coupling. 

We may identify the representation space of I n d r ~ |  L2(X/A,V~)| with 

L2(X,V~| A, where the A-equivariance condition on f:X--~V~QV~ reads f ( x A ) =  

(Tr (A - 1 ) | id) f (x) (this isomorphism is the linear extension of the map f @ v ~-+ [f | v] (x) = 

f ( x ) O v  on pure tensors). With this identification, the group F acts by ( v f ) ( x ) =  

( i d |  so the F-invariance condition reads f (~/x)=(id|  Notice 

that  by ergodicity of the F • A-action on X,  the norm of any measurable f satisfying the 

equivariance and invariance conditions is essentially constant, hence such an f always 

defines back a F-invariant vector in Ind r ~r| 
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Now, reversing the situation and considering a A-invariant function in Ind A a| 

we arrive at exactly the same conditions on f :  X-+V~| as above, where the original 

A-equivariance condition here becomes A-invariance of f ,  and vice versa for F. (The 

apparent lack of symmetry comes from the fact that  the F-action on X is a left ac- 

tion, while the A-action is a right one--see  the paragraph preceding the statement of 

Theorem 3.1.2.) This proves the proposition in the ergodic case. 

For the general, non-ergodic case, we use the fact that  any ME coupling (X, #) can be 

disintegrated into ergodic couplings # = f P t  dt, realized on the space X. This is achieved 

by a usual ergodic decomposition of the F-action on the finite measure space X / A  (or 

vice versa), and "lifting" the measures back to X. We may now perform induction of 

representations from one group to the other with respect to each of the #t's, although 

this creates a little notational difficulty, as our notation Ind r left behind the information 

on the (coupling space and) measure. To simplify notation, let us drop for the rest of the 

argument the group notation (which will be self-explanatory), and write Ind and Indt 

for inductions in the ME couplings (X, #) and (X, #t), respectively. 

Suppose that  l r C ( I n d  7r)| By the definition of disintegration it is easy to see 

that  we have Ind 7 c ~ f e l n d t  7r dt, hence lrC_ ( f e I n d t  7r dt)| ~r| dt. This 

implies that  for a positive measure set of t's, we have l r  C Indt 7r| and for them by the 

ergodic case, 1A C_ Ind t a  | 7r. Thus 1A C f |  (Indt a |  7r) dt ~- ( f ~  I n d t a  dt) | 7r ~ (Ind a) | 7r, 

as required. By symmetry this completes the proof of the proposition. [] 

For later use we record the following consequence of the proof (for which no origi- 

nality is claimed): 

COROLLARY 3.1.4. Let A be a discrete co-compact subgroup of the locally compact 

group G. Let ~ be a unitary A-representation and a be a unitary G-representation. If  

laGa@IndACTr then 1hCalA| 

Proof. One can use a similar proof, replacing F in the proof of the proposition by G, 

and the coupling space (X, #) by (G, Haar measure). The transitivity of the G-action on 

X (=G)  implies here immediately that  a function f as in the first paragraph is a.e. equal 

to a continuous map whose value at the identity is the required A-invariant vector. We 

leave the details to the reader. [] 

Before proving Theorem 3.1.2 we briefly recall some basic facts in representation 

theory which will be crucial for the proof. These are brought up for the benefit of non- 

specialists, in order to make the proof of the theorem, which is fundamental to all that  

follows, essentially self-contained. 

Let G be a locally compact group and (Tr, V~) be a unitary G-representation. Recall 

that  the eontragredient dual ~ is the unitary G-representation defined as follows: The 
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space of representations for ~, denoted V~, is a (setwise) "copy" of V~ through the 

identification w-+~. The inner product on V~ is defined by (~, f i } y =  (v, U}y~, where in 

the right-hand side we have complex conjugation, the module operations are defined by 

V + ~ = v + u ,  and A~=Av (A--complex conjugation of A). The unitary G-action on V~ is 

then defined by ~(7)~=~r(7)v. 

Next, let (Tr, V~) and (a, V~) be unitary G-representations. The representation 

space V~| may be identified with the space of Hilbert-Schmidt operators T: V~-+V~ 

(tr(T*T) <oo), by extending linearly the natural map ~|174 {w, v}u, defined 

on pure tensors. The G-action on the latter space then takes the form 

(g, T) ~-+ a(g)oTo~(g) -1, 

and thus invariant vectors in # |  correspond to G-equivariant Hilbert-Schmidt oper- 

ators T: V~-+V~. Therefore, if 7r is irreducible then 1GC~| is possible only if 7rC_a, 

and if a is irreducible as well, by Schur's lemma the two must be isomorphic and T be a 

scalar (after identification). However, a (non-zero) scalar operator is Hilbert-Schmidt (if 

and) only if 7r is finite-dimensional. By decomposing a general representation a into a 

direct integral of irreducibles, one can easily conclude that  for an irreducible 7r and any or, 

1 C ~ |  if and only if 7r is finite-dimensional, and is a subrepresentation of a. Finally, 

by fixing a and now taking any (not necessarily irreducible) 7r, decomposing the latter 

into a direct integral of irreducibles and using the above, one can make the following 

conclusion (cf. [6]): 

Let G be a locally compact second countable group, and 7r be a unitary G-representa- 

tion. There exists a unitary G-representation a with 1GCTr| if and only if 7r contains 

a finite-dimensional subrepresentation (i.e. by the usual terminology, 7r is not weakly 

mixing). 

Proof of Theorem 3.1.2. Retain the assumptions and notations of the theorem. By 

the previously quoted result and the assumption, there exists a unitary F-representation a 

such that  lr_CIndr 7r@a, and hence by Proposition 3.1.3, 1ACIndrha| Applying once 

again the preceding result completes the proof. [] 

We end by observing the following additional consequences: 

COROLLARY 3.1.5. (1) Let A < G  be a discrete co-compact subgroup, and let ~ and ~- 

be unitary representations of A and G, respectively, with ~ irreducible and T finite- 

dimensional. If  TC_Ind~ ~ then ~C_TIh. 

(2) Let (X, it) be a ME coupling of the groups A and F. Let 7c and ~- be unitary 

representations of A and F, respectively, with 7r irreducible and 7- finite-dimensional. If  

7-_c Ind r 7r then ~ C_ Indr  h a. 
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Proof. Use Corollary 3.1.4 for (1), and Proposition 3.1.3 for (2), with a=~,  applying 

the result preceding the proof of Theorem 3.1.2 and the fact that taking contragredient 

dual commutes with induction. [] 

3.2. I n d u c t i o n  o f  c o h o m o l o g y - - t h e  u n i t a r y  s e t t i n g  

Let (X, #) be a UME coupling of the discrete groups F and A, with fundamental do- 

mains Xr  and XA, respectively. In this subsection we shall construct for any unitary 

F-representation 7r a map I: Hn(A, 7r)--+Hn(F, Ind r 7r), and our main concern will be its 

injectivity (on the reduced cohomology as well). We begin by defining the map I at the 

level of cocycles. We retain here all the notation of w 

For an element wEC~+I(A, V~) (see (10) above) define 

Iw: F n + l  --+ L2 (XA,  VTr), 
(12) 

s~(70 ,  ..., 7~) (x)  = ~ (~ (70 ,  ~), ~(71,  x) ,  ..., ~(7~,  x)) .  

The fact that  Iw indeed ranges in L 2 follows from the property that  for any given 7, 

a(7,  x) takes essentially finitely many values. Thus the right-hand side of (12) is no more 

than a finite sum over values of w, with weights defined by the 7's, the cocycle c~ and 

the measure #. It is exactly (and only) here that  we make use of the extra finiteness 

property of the UME coupling, compared to an ordinary ME coupling. 

We now claim that  I w c C  n+l (F, Ind r ~), i.e. Iw is F-equivariant for the appropriate 

actions. Indeed, using (8) for the second equality and A-equivariance for the third, we 

have 

s~(z70,  ..., 77n)(X) = ~(~(770,  x),  ..., ~(77~, x))  

= ~(~(7 ,  x)~(70,7-1" x), ..., ~(7, x)~(7~,  7-1" x)) 

= 71(0~ (7 , x))[~d (oL(70,7 -1- x) ,  ..., ot(Tn, 7 -1" x))] 

= 71"(OL(7 , X))[/~d(70, ..., 7n ) (7  -1" X)]. 

The map I is clearly linear. It is also easy to verify that,  denoting the coboundary 

operator d=dn in (11), we have 

I o d = d o I .  (13) 

Therefore dw=O ~ Idw=O =~ dIw=O and w=da  =~ I w = I d a = d I a ,  so I takes cocycles 

to cocycles and coboundaries to coboundaries, i.e. I induces maps (still denoted by I )  

H n (A, 7r)-+H n (F, Ind r ~). We observe also that  I induces a map on the reduced coho- 

mology groups, which follows from the obvious continuity of I on Z n. We now arrive at 

our main goal: 
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THEOREM 3.2.1. Assume that the UME coupling X of F and A satisfies XI'C_XA. 

Then the map I above is injective on both the ordinary and reduced cohomology groups. 

In particular, 

H~(A, Tr)r ~ H~(C, IndrTr) r  and Hn(A, Tr)r ~ Hn(F,  IndrTr) r  

Proof. We shall construct a (so-called) transfer map 

T: c n + l  (F, Ind~ 7r) ~ cn+l  (h, YTr) 

satisfying the properties: 

(i) T is linear and continuous; 

(ii) doT=To& 

(iii) TIw=w for all wECn+I(A, V~). 

This suffices since (i) and (ii) imply that  T defines a linear map between the correspond- 

ing cohomology (and reduced cohomology) groups, and (iii) shows that  I w = 0  in H n 

(resp. ~ n )  implies that  w=TIw=O in H n (resp. H~). 

To define the map T we retain the notation of w particularly that  of the cocycle 

~: Xr  xA-+F.  We define for acC~+I (F ,  Indr  7r), 

T~(ao, ..., ;~,) = f x  ~(9(x, ~o), ..., ~(x, a~))(~) ap(x). (14) 

We first remark that  although a ( - ,  ...,. ) is a map defined o n  XA, we integrate it 

over Xr.  This makes sense as Xr  is a subset of positive measure, which we actually 

assume hereafter to be 1. We further observe that  since for every fixed AcA, /3(.,/~) 

takes p-essentially finitely many values, the set Xr  can be broken into a disjoint union of 

finitely many subsets Ai, on each of which a(/~(x, ~o),..., ~(x, An))=a(3'0, ..., ~/n) for some 

(n+l) - tuple  of 3"s not depending on x. For each such fixed (n+ 1)-tuple, cr is integrable 

as a function on XA, hence it is so over any given subset Ai, and the right-hand side in 

(14) is well defined. 

We first check that  Tar V~), i.e. that  Ta  is A-equivariant. Indeed, using 

(9) we have 

T a( AAo, ..., AAn ) =/Xra(13(x, AAo ), ...,/~(x, A)~n))(x) d#( x ) 

= fxrO(~(x, ~)~(x.A, A0), ..., ~(x, ~)~(x.A, An))(x) dp(~). 
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The F-equivariance of cr reads a(770 , ...,77n)(X)=Tr(a(%x))[a(~/o, ...,Tn)(7--1'X)], and 
hence we get 

Ta(AA0, ..., AAn) = / z S ( a ( 3 ( x ,  A), x))[a(3(x.A, Ao), ...,/3(x. A, An))(3(X, A)--I"x)] dp(x) 

: 71"(~) /xrO'(/~(X. ~,/~0),-..,/~(X',~, ~n)) (]~(X,)~)-l'x) d~t(x). 

For the last equality we have used (5), i.e. the fact that  XrC_XA. Making the (measure- 

preserving) change of variable x~--~x.A -1 on Xr ,  we get further 

Tcr()~o, ...,-~/~n) = 71"(.~)/XrO-(/3(x, ~o), ..., ~(x, .~n))(~(X')~ -1, ~)-1. (X. ~-1)) d].t(x). 

Therefore, to finish the computation it is enough to show that  for #-a.e. xCXr one has 

/~(x.A-1, ~)-1. (x .A-1)=x,  which, replacing x by x.A, is equivalent to/~(x, A)-l.x=x.A. 
Indeed, by (7), then (6), and finally (5), we have 

x.~ = (9(x, ~ ) - l x ) ~  = ((9(x, ~ ) - l ' x ) a ( ~ ( x ,  ~), x)-~)A 

: (~(X, /~)--l"x)(oz(]~(X, ~), x)--l)~) = (~(X,/~)--l"x))~--l/~ = ]~(X, ~)--l 'x, 

as required. Thus T maps equivariant co-chains to equivariant co-chains, and since its 

continuity, linearity and commutativity with the co-boundary operator(s) d are easy to 

verify, we are left with one last computation, which is verifying property (iii). 

Let w: An+I--+V~. Applying (14), then (12), and then (5), yields (recalling the nor- 

malization # (Xr) = 1): 

[T(/o-))] (/~0, ..., An) : /Xr l~  x, ~0), ..., ~(x, ~n))(x) d#(x) 

x ) ,  . . . ,  x ) )  d (x) 

=/xrW(A0, ..., An) d#(x) 

= . . . ,  

This completes the proof of Theorem 3.2.1. [] 

We conclude this subsection by remarking on a special case of the framework treated 

here, namely, that of a discrete co-compact subgroup A in a locally compact group G. 

Strictly speaking, this situation is not covered by our previous analysis, but if we regard 

F = G = X  then all our formulae may be used with little modification. First, the map I 
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defined in (12) remains exactly the same. For the transfer map T we obviously cannot 

integrate over X r = X a ,  which is a "point", so we shall simply integrate (14) over the 

fundamental domain XA. Because G acts transitively, the map then takes the form 

Ta(Ao,...,An) f a(gAog-', - '  = g~lg ,...,gAng-1)(g) dp(g). 
J X  A 

Thus, the proof of Theorem 3.2.1 shows that  the map 

I: Hn(A, 7r) --+ H~(G,  Indha 7r) 

is injective. The surjectivity of this map is well known; in fact, it is known to induce an 

isomorphism at the level of ordinary cohomology--see [32, p. 208, Proposition 4.5] (for 

more on the literature around this subject see [32, p. 213]). Thus, for later use we may 

record the following result: 

THEOREM 3.2.2. For any locally compact second countable group G, a co-compact 

discrete subgroup A<G,  and a unitary A-representation ~r, one has an isomorphism 

H'~(A, ~r) ~ Er~ (a ,  IndA a ~r). 

3.3. I n d u c t i o n  of representations and cohomology--the algebraic s e t t i n g  

We begin by discussing the condition on the ring R over which we shall work. 

LEMMA 3.3.1. For a commutative unital ring R, the following are equivalent: 

(1) The field of rationals Q embeds as a subring of R; 

(2) Hn(G, V ) = 0  for all n>~l, all finite groups G and all RG-modules V; 

(3) R is divisible. 

Proof. (1) ~ (2). This is a special case of Theorem 2.3.1 above. 

(2) ~ (3). As is well known, if CdR G is finite then G has no R-torsion, i.e. the order 

of any element of G must be invertible in R (cf. [9, Proposition 4.11]), namely, R is 

divisible. 

( 3 ) o  (1). For every mCN,  an xmER satisfying m ' x m = l  is unique, because if 

m ' x m = m ' y m = l  then multiplying by Xm and using commutativity yields l 'Xm=l 'ym.  

Thus n/m~+xm'n is clearly a ring embedding of Q in R. [] 

We now arrive at the main purpose of this subsection: 

Proof of Theorem 1.5. Let (Tr, V) be an RA-module with Hn(A,~r)#0 for some 

n>0.  We shall be done by constructing an induced RF-module, Ind~r, satisfying 



G E O M E T R Y  OF A M E N A B L E  G R O U P S  145 

H~(F,  I nd~ )~0 .  This module is the algebraic analogue of the induced module con- 

structed previously in the unitary setting, with a similar strategy of proof, yet with some 

significant changes as well. 

By Theorem 2.3.1 we have for any finite group M, cdn F = c d n ( F  • M).  Hence using 

Theorem 2.1.2 we may assume without loss of generality that  X is a topological coupling 

of A and F satisfying the additional properties (1), (2) and (3) stated in that  theorem. 

As in Definition 2.1.4 (and thereafter), we continue to denote the F-action on X from the 

left, and that  of A from the right. Thus, we have clopen (closed and open) fundamental 

domains XA and Xr  for the two actions, with X r  compact and XrC_XA. Recall that  to 

these fundamental domains we have associated cocycles a: F • XA--+A and t3: XA • F-~A 

which are defined in (3) and (4). We denote by E the algebra of clopen subsets of X. Call a 

function defined on a clopen subset of X, and ranging in some discrete set, E-measurable, 
if the inverse image of any point is a clopen subset. We now define the induced module 

W = Ind r V = {f: XA --+ V I f is E-measurable}, 

where F operates exactly as in Definition 3.1.1: 

(',/ f)(x) = ~r(a(% x) ) f (~-l.x) 

(7.x is the action of 7 on X / A ~ X A  as defined in (6)). Because the F- and A-actions 

on X, being continuous, preserve E, and both fundamental domains are clopen subsets, 

it follows that  for any fixed 7EF  and )~EA, the sets {x I a(7 ,x)=)~} and {x I/~(x, A)=7} 

are clopen. Thus all the functions and operations which we make hereafter are readily 

seen to be measurable with respect to E (where a target space is always viewed with a 

discrete structure). 

Next, given an element w: An+I-+V, we define Iw: F n + I - + w  by the very same for- 

mula (12), and repeat verbatim the discussion there to show that  I defines a map in 

cohomology (still denoted I ) :  Hn(A, V)-+Hn(F ,  W). We wish to show now that  I is 

injective in cohomology, and for that  purpose we adopt the same strategy as in the proof 

of Theorem 3.2.1, i.e. we construct a transfer map T: C ~+1 (F, W)--+C n + l  (A, V) with the 

properties (i), (ii) and (iii) as in the proof of that  theorem. To define T we use the same 

formal formula appearing in (14), namely, for a E C  n+l (F, W) set 

Ta( Ao, ..., ,~n) =/Xra(fl(x, ~o), ..., fl(x, An)) (x) dp(x). (15) 

Of course, one should explain now how to interpret this formula, and particularly, what 

is the measure # involved in it. 
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Suppose that  # is some R-valued, finitely additive measure, defined on the algebra 

of clopen subsets of X r ,  which is also normalized. Tha t  is, # assigns to each clopen 

subset ACXr an element #(A)ER so tha t  

(i) # ( X r ) = l  (where 1 is the unit element of R); 

(ii) ANB=~ ~ #(AUB)=p(A)+#(B). 
Since every E-measurable function on X is locally constant, and by compactness it 

takes only finitely many values on Xr ,  one can define naturally for any V-valued function 

~: Xr--+V its integration fXr ~(x)d#(x)E V, which is simply a finite linear combination 

of elements in V with coefficients in R (themselves determined by the measures of subsets 

on which ~ takes a given value). If  in addition the measure # is A-invariant, namely, 

(iii) # (A .A)=#(A)  for all AEA and a clopen subset AC_Xr, 
then we have fxr ~(x.A) dp(x)=fx r ~(x) d#(x) for all E-measurable ~, and AeA. 

Returning to the formula (14) for the map T, notice that  given an R-valued mea- 

sure # as above, T is well defined because it is easily verified that  the expression in 

the integrand is a E-measurable V-valued function on Xr .  Thus, to show tha t  T is a 

transfer map, one can appeal to the same exact formal computat ion shown in the proof 

of Theorem 3.2.1, once the R-valued measure p is also A-invariant. 

We are therefore reduced to the question of finding such an invariant measure, and 

it is here that  we use the amenabili ty of A. First, because Q C R  (Proposition 3.3.1), it is 

enough to find such a Q-valued measure. Now, by amenabili ty of A and the compactness 

of X r ,  there exists a (positive) real-valued A-invariant probabili ty measure m, defined on 

all the Borel (in particular clopen) subsets of Xr .  Let r R--+Q be a homomorphism of 

abelian groups with r  1. Then # ( A ) = r  defines a normalized finitely additive 

Q-valued measure, as required. This completes the proof of Theorem 1.5. [] 

Proof of Theorem 1.7. The result follows from two basic facts: one is that  being of 

type (FP) is characterized by having both finite cdR and the property that  H k commutes 

with direct sums, and the other is tha t  the induction operation defined in the proof of 

the previous theorem commutes with direct sums when A and F are quasi-isometric. 

We begin by proving the second fact: if V=(~ielVi then any f:XA---->V which is 

E-measurable takes finitely many  values by compactness of XA (recall that  F and A are 

assumed now to be q . i . - -see  Theorem 2.1.2), and hence f ranges as a function (and not 

just pointwise) in the sum of finitely many  V~'s. This shows that  the natural  embedding 

of (~ ic I  Ind V~ in Ind V is onto in this case, and hence an isomorphism, i.e. induction 

commutes with direct sums. 

The first fact mentioned follows, e.g., from [9, p. 134, Theorem 8.20] (in fact, it is 

enough by Corollary 8.21 there to test the case where each Vi is the group ring itself). 

Now, to prove the theorem assume that  F is of type (FP) over R and that  A is quasi- 
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isometric to F. Because cdRF<C~, it follows from Theorem 1.5 that  cdRA<cc .  We are 

left to show that  the natural map v: (~iex Hk( A, V~)--+Hk(A, ( ~ e I  V~) is an isomorphism 

for all k and all RA-modules V~, where the issue of course is surjectivity. Since F is 

of type (FP) over R, so is F x M for any finite group M (by divisibility of R). Thus, 

applying Theorem 2.1.2 we may retain the framework and notation used in the proof of 

Theorem 1.5. Let V=E[~IVi and let wEHk(A,  V). Then by the previous discussion we 

have a natural isomorphism Iw E H k (F, Ind V ) ~  H k (F, ( ~  Ind V~). Since F is of type (FP) 

over R, we have the natural isomorphism Hk(F,(~iIndVi)~-(~i  Hk(F, IndVi), i.e. we 

may write Iw=al@...| (as cohomology classes), where aiEHk(F, IndVi). Applying 

the transfer operator T (as defined in the proof of Theorem 1.5) to both sides yields 

w = T I w  =Tal  •... | =wl | G wn with wi E H k (A, V~), as required. This completes 

the proof of Theorem 1.7. [] 

We now present a result of a similar type, this time making some regularity assump- 

tion on the group. Recall that  a finitely generated group G is said to be of type ~n if 

it has a K(G, 1)-complex with finite n-skeleton, and it is of type ~ if it is of type ~n 

for all n. Unlike making many finiteness conditions, the advantage of making a type ~ 

assumption is that  it is itself (like each ~ separately) a q.i. invariant, as was observed 

by Gromov [31, 1.C~]. Recall also that  G is said to be a duality group (of dimension n) 

over a ring R, if there is a (right) RG-module D (the so-called "dualizing module") such 

that  one has natural isomorphisms 

Hk(G, V) ~- Hn-k(G, D| 

for all k and all RG-modules V (where G acts diagonally on the tensor product). It can 

be shown that  a dualizing module D as above must be isomorphic to Hn(G, RG), and 

in case the latter is isomorphic to R, we say that  G is moreover a Poincard duality 

group--see  [9] for more details. 

THEOREM 3.3.2. Let F be a finitely generated amenable group of type ~o .  If  F 
is a duality (resp. Poincard duality) group over a divisible ring R, and a group A is 

quasi-isometric to F, then A is also a duality (resp. Poincard duality) group over R. 

Proof. We shall use the following equivalent characterization (cf. [9, Theorem 9.2]): 

G is a duality group (of dimension n) over R if and only if 

(i) G is of type (FP) over R; 

(ii) Hk(G, RG)=O for k~n; 

(iii) H~(G, RG) is flat as an R-module (in the case of Poincar~ duality, this is 

replaced by Hn(G, RG)=R) .  
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Thus, it is enough to show that  properties (i), (ii) and (iii) are q.i. invariant. The 

first follows from Theorem 1.7, whereas (ii) and (iii) follow from a general result of 

Gersten [27]: For groups of type ~ and all rings R, the cohomology groups Hn(G, RG) 

are q.i. invariants. [] 

3.4. Applications of the algebraic approach 

We preface the proofs of our next results with a brief discussion on cohomological aspects 

of solvable groups. The following theorem is a combination of works of several authors: 

Bieri, Gildenhuys-Strebel and Kropholler. We refer to [29, 1.4] and to the review of [37] 

for a comprehensive exposition. 

THEOREM 3.4.1. Let G be a torsion-free countable solvable group, hG be its Hirsch 

number, and let cdR G (resp. hdR G) be its cohomological (resp. homological) dimension 

over R. Then the following are equivalent: 

(1) G is constructible (cf. [29, 1.31); 

(2) G is a duality group (over Z); 

(3) G is of type (FP) (over Z); 

(4) G satisfies hG--cdz G<co;  

(5) hG=cdQG<Oc. 

Recall that  by a result of Stammbach [51], for every solvable G (not necessar- 

ily torsion free) hG=hdQ G, and that  for every countable group G and a ring R one 

has h d R G ~ c d R G ~ h d R G + I  (cf. [9, Theorem 4.6]). Thus, Theorem 3.4.1 may be re- 

formulated by saying that  for every torsion-free countable solvable group G one has 

hG--hdQ G = h d z  G and CdQ G = c d z  G, and these two quantities are equal (or else differ 

by 1) if and only if G satisfies any one of conditions (1), (2) and (3) above. 

Proof of Theorem 1.6. Part  (1) (and hence also (2)) follows now readily from Theo- 

rem 1.5 and the above discussion, since if A uniformly embeds in F, one has hA--hdQ A~ 

c d Q A ~ c d Q F ~ h d Q F + I = h F + I .  In the case where F is of type (FP) over Q, one has 

h d Q F = c d q F  (see [9, Theorem 4.6]), thereby implying the sharper result hA~hF.  For 

the proof of the last statement recall that  by a result of Merzlyakov [39], if a torsion-free 

solvable group G has a bound on the rank of all its finitely generated abelian subgroups, 

then it has bounded rank. Because by "monotonicity" of cohomological dimension all 

such ranks are bounded by the Q-cohomological dimension, it is enough to show that  the 

latter is finite, which in turn would follow from the finiteness of cdQ F by Theorem 1.5. 

The finiteness of cdQF is equivalent to the finiteness of h d Q F = h F ,  and the latter is 

indeed finite by our assumption on F (see [39]). [] 
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Proof of Theorem 1.8. The second statement, where F is assumed to be of type (FP) 

over Q, follows readily from Theorem 1.7 and part (1) in Theorem 1.6. The first now 

follows immediately from this if any of the groups is of type (FP) over Q. Otherwise, 

both are not of type (FP) over Q, hence also not over Z, and from Theorem 3.4.1 (see the 

discussion preceding it) we deduce that  hdQ A=cdQ A -  1 and hdQ F = c d  O F -  1. By The- 

orem 1.5 it follows that  hA=hdQ A=cdQ A - l = c d Q  F - l = h d Q  F = h F ,  which completes 

the proof. [] 

Proof of Theorem 1.9. The result follows immediately from the q.i. invariance of the 

Hirsch number for torsion-free solvable groups, once we observe the lemma below. [] 

LEMMA 3.4.2. Every finitely generated torsion-free solvable group F with hF--2  has 
a finite index subgroup isomorphic to some F(n, m) as in the theorem (here I n l= lm l= l ,  

i.e. F-~Z 2, is also allowed). 

Proof. By finite generation and solvability, there is some finite index subgroup of F 

with infinite abelianization. We keep the notation F for this subgroup and show that  

it is isomorphic to some F(n, m). Indeed, let N be the kernel of an epimorphism of 

F onto Z. Then necessarily hN=l,  and since N is (solvable and) torsion free, it may 

be identified with a subgroup of the additive group of Q. Because Z is free, we have 

a splitting F=Z~<N; let z0EZ denote a generator. A standard argument shows that  

for all rCN we have zo(r)=zo(1).r, where zo(r)=zorzo -1, so that  for some co-prime 

integers n and m we have zo(r)=m/n.r for all rCN. Denote by S ~  the set of primes 

which have unbounded powers appearing in the denominators of elements in N, by S' 
the set of primes which divide some denominator of some element in N, and by S" 

the set of primes which divide all numerators of the elements of N. The set S t' is of 

course finite, and an examination of the situation shows that  by finite generation of F 

the sets S ~ and S ~  must be finite as well, with the latter being equal to the set of primes 

dividing m.n .  These three sets determine completely the group N: For an appropriate 

rational number r (whose numerator and denominator prime divisors come from the sets 

S' and S", respectively), rN=Z[S~], and the map (z, n)~-+(z, rn) is an isomorphism of 

F with some F(n, m). [] 

4. Propert ies  HT, HF, HFD and their applications 

4.1. Quasi- isometry invariance of  Bet t i  numbers for ni lpotent groups 

In this subsection we prove Theorem 1.2 in the introduction. We will actually not yet 

make an explicit use of properties HT, HE and HFD; w e  argue, however, in a way which 
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will enable us to use them in the sequel. The following result is fundamental to our 

approach: 

THEOREM 4.1.1. Let n be a natural number and let F be a finitely generated amena- 

ble group with the following property: Any unitary F-representation ~r with Hn(F, 7r)#0 

contains the trivial representation l r .  Let A be a finitely generated group which is quasi- 

isometric to F, and assume that bn(A) is finite (which is always the case if n= l ) .  Then 

bn(A)<bn(F). 

Proof. By definition, 

b~(A) = dimR Hn(A, R) = dime Hn(A, C) = d i m c  H'~(A, 1), 

where 1 denotes the trivial A-representation. The last equality uses the assumption that 

Hn(A, 1) is finite-dimensional, hence it is automatically reduced. Now, replacing F by 

F • M for a finite group M does not affect the property assumed in the theorem (e.g. by 

Theorem 2.3.1). Hence by Theorem 2.1.7 we may assume that there exists an ergodic 

UME coupling (X, #) of F and A, with XFCXA. An application of Theorem 3.2.1 then 

yields an injection 

I: Hn(A, 1)' ) Hn(F, Ind~ 1) ~ Hn(F, L2(X/A)).  

Because X is an ergodic coupling, i.e. F is ergodic on X/A,  L2(X/A)=C~)L2(X/A) ,  

where C is the subspace of constant functions and the second summand--the sub- 

space of zero-mean functions--does not contain 1p. By our assumption on F we have 

H~(F, L2(X/A))=O, and hence H~(F, L2(X/A))~-n~(F, 1). We conclude that 

bn(A) = dim Hn(A, 1) ~ dim Hn(F, L2(X/A))  = dim Hn(F, 1) ~< dim Hn(F, 1) = bn(F), 

as required. [] 

To verify the property assumed in Theorem 4.1.1, the following result will be useful: 

THEOREM 4.1.2. Let G be locally compact, and F <G be discrete and co-compact. 

(1) If G has the property that H~t(G, Tr)7~O implies 1GC_rr for any (continuous) 

unitary G-representation 7r (where H~ is the continuous cohomology--see w then 

F has this property as well. In particular (the case n = l ) ,  if G has property HT (in its 

obvious modification to locally compact groups), then so does F. 

(2) The group G has the property assumed in (1) if (and only if) Hc~(G, 70=0 for 

every non-trivial irreducible unitary G-representation 7r. 
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Proof. (1) The argument is similar to the one showing that  a lattice in a Kazhdan 

group is itself Kazhdan: Apply the injectivity of Hn(F, 7r) in Hc~(G , Indr  c ~) (see Theo- 

rem 3.2.2), and the easy fact that  1GC_IndrGTr implies lrC_Tr (cf. the proof of [34, p. 33, 

Theorem 4]). 

(2) Apply a direct integral decomposition of ~ into irreducibles and Theorem 2.3.2. [] 

Remark. For the case n = l  we give an example in w below of a co-compact lattice 

F < G  which itself satisfies the conclusion of part (1), and such that  G does not satisfy it 

(even virtually). 

Proof of Theorem 1.2. The proof clearly follows from Theorem 4.1.1 and the follow- 

ing key fact: 

THEOREM 4.1.3. For every n, any finitely generated nilpotent group F satisfies 

the property assumed in Theorem 4.1.1, namely, every unitary F-representation Ir with 

Hn(F, 7c) 50 contains the trivial representation l r .  

Proof. We may assume that  F is torsion free. Indeed, the elements of finite order in F 

form a finite normal subgroup N such that  F/N is torsion free (cf. [38, Corollary 9.18]), 

and by Theorem 2.3.1 it is enough to prove the statement for F/N. We now apply 

Mal'tsev's well-known theorem (cf. [45, Theorem 2.18]) to find a connected nilpotent Lie 

group C in which F is embedded discretely and co-compactly. Our result now follows 

from the two parts of the previous theorem, once we call on the following result of 

Blanc for connected nilpotent Lie groups G (see [32, p. 243, Proposition 8.2]): For any 

irreducible non-trivial unitary G-representation 7r, and any n, one has Hr 7r)=0 (and 

in p a r t i c u l a r / ~  (G, 7r) =0). [] 

Comparison with Pansu's theorem. We end this subsection by showing that  Theo- 

rem 1.2 does not follow from Pansu's theorem [44], or more precisely: There exist two 

finitely generated nilpotent groups which have isomorphic graded Lie algebras, but differ- 

ent b2 's. This example was brought to our attention by Yves Benoist, who kindly verified 

the precise calculations [4]. 

Recall again that  by MaYtsev's theorem every finitely generated torsion-free nil- 

potent group F is a lattice in a unique simply-connected nilpotent Lie group G, and thus 

has associated with it a well-defined (real) Lie algebra 9. As is well known, one has for all 

Betti numbers bn(F)=bn(G) (this can be easily deduced also from Theorems 3.2.2 and 

Blanc's result mentioned at the end of the proof of Theorem 4.1.3 above). The latter is 

equal to bn (g) (see [32, Chapter (ii)] for more on Lie algebra cohomology). Recall also 

that  if a nilpotent real Lie algebra admits a basis for which the structural constants are 

rational, then (and only then) the corresponding simply-connected nilpotent Lie group 
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admits a (co-compact) lattice. To provide the required example, we shall construct a 

nilpotent Lie algebra g defined over Q such that  for the graded Lie algebra g' one has 

b2(9)<b2(9'). We remark in passing that  it can be shown that  for any 9, the Betti 

numbers of the graded 9 are always greater than or equal to the corresponding Betti 

numbers of 9. The point here is to find an example where some Betti number (the 

second in our example) strictly increases. 

The construction comes from a finite-dimensional quotient of the (positive part of 

the) so-called infinite-dimensionM Virasoro Lie algebra. More precisely, fix a positive 

integer n, and consider the n-dimensional Lie algebra 9 (so-called "filiform" or "thread- 

like") generated by el,..., en with 

( j - i ) e i + j ,  i f i + j < ~ n ,  

[e~,ej] = 0, otherwise. 

To compute the corresponding graded Lie algebra 9' denote first Ck(9)=[9, Ck-l(g)] 
I t ,~,  n - -  1 i (C ~ (9) =9), 9k =Ck (9)/Ck+l (9), and finally 9 -- ~l~k=l 0k with the associated "graded" 

Lie brackets. Then 9' is n-dimensional and spanned by e~,..., e ' ,  where 9~ is spanned 

by e~, e~, and every other 9~ (2<~i<~n-1) is 1-dimensional and generated by e~+ 1. Thus, 

as for all i,j>~2 one has that  e~EC~-I(9), ejECJ-~(9) ,  but [e~,ej]EC(~-~)+(J-1)+~(9), 

' ' with the latter bracket vanishes in 9(i-1)+(j-1)- Subsequently, 9' is spanned by e~, ..., e,~ 

[el,en]=0 , i.e. all the the relations [e~,e~]--0 for i,j>~2, [e'l,e~]=(i-1)e~+ 1 ( i<n)  and ' ' �9 

relations in 9 not involving the first vector got annihilated in 9'. A computation [4] 

shows that  for n ~ 7  one has b2(g)=3< [ l ( n + l ) ]  =b2(g'), where [-] denotes the integer 

part. Because both g and 9' are defined over Q and have isomorphic graded Lie algebras, 

for n>~7 the associated finitely generated nilpotent groups cannot be q.i. distinguished 

using Pansu's theorem, although they are indeed not quasi-isometric by Theorem 1.2. 

4.2. P r o p e r t i e s  HT~ HF a n d  HFD 

The three properties were defined in the introduction. In this subsection we establish 

some basic properties, and examine the connections between them. Throughout this 

subsection F denotes a finitely generated group. We first characterize the three properties 

in terms of irreducible representations. 

THEOREM 4.2.1. (1) F has property HT if and only if the only irreducible unitary 

F-representation 7r with ~ 1  ( F ,  71")~0 is the trivial representation l r .  

(2) F has property HE if and only if every representation 7r as above is finite. 

(3) F has property HFD if and only if there are at most countably many represen- 

tations 7r as above, and all of them are finite-dimensional. 
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Proof. (1) One direction is obvious. The other is Theorem 4.1.2 (2). 

(2) We prove only the non-trivial direction. Since F has countably many different 

finite index subgroups, and by the ~r-additivity of the measure p in a direct integral 

decomposition zr=fezrx dp(x), Theorem 2.3.2 shows that  one of these subgroups must 

have a non-zero invariant vector in any representation 7r with /~1 (F, 71")~s 

(3) This is the least easy claim of the three. However, since we will not make any 

use of it in the sequel, we will only indicate the idea. In one direction, if there are only 

countably many irreducible representations with non-zero ~ 1  then by Theorem 2.3.2 one 

of them must appear discretely in any 7r with H i # 0 ,  and hence F has property HFD if 

they are all finite-dimensional. In the other direction, the point is of course to show that  

there cannot be uncountably many finite-dimensional irreducible representations with 

H17~0. If this were not the case, then we would find such a collection of representations 

in one fixed dimension, say n. Then one can form a direct integral without atoms over 

these representations which also satisfies H I r  (by suitably integrating the l-cocycles), 

and this representation contradicts the assumed property HFD of I' (see the end of w 

for an explicit construction of this type for the group Z I Z). [] 

LEMMA 4.2.2. If  [F:F0]<oc then F has property HE if and only if F0 has it. 

Proof. Suppose that  F0 has property HE, and let zr be a unitary F-representation 

with Arl(F, 7r)r Then the same holds for the restriction to F0, and by property HE of 

the latter, there is a finite index subgroup F~<F0 fixing a non-zero vector. Since F~<F 

has finite index, this shows that  F has property HE. 

Assume now that  F has property HF, and let 7r be an irreducible unitary F0- 

representation with /~1 (F0, 71") ~0 .  Using Theorem 3.2.2, and Corollary 3.1.5 applied 

to the finite F-representation w guaranteed by property HE of F, we deduce that  zr must 

be finite. By Theorem 4.2.1 (2) this shows that  F0 has property HF. [] 

We now discuss the relations between the three properties, starting with properties 

HFD and [IF. 

PROPOSITION 4.2.3. Let F be a finitely generated amenable group which has prop- 

erty HFD. Then F has property HF if and only if no finite index subgroup F o < F  admits 

a homomorphism 0: F0--+SO(2)~(R2~Slv<C with dense image. In particular, if F has 

property HFD and it is of subezponential growth, then F has property HE. 

Proof. The condition is necessary, because by the previous lemma F0 should also 

have property HE. But denoting by zr: F0-+S 1 the linear part of 0 (which is infinite by 

density), we get a non-zero element in _Hi(F0, zr) (=Hi (F0 ,  7c)) defined by 0 (see w 

while no finite index subgroup of F0 has an invariant vector in zr. 
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To show that  the condition is sufficient, let 7~ be a unitary F-representation with 

~1 (F, 7r)50. Because F has property HFD, 7~ has a finite-dimensional subrepresentation 

with H i # 0  (indeed, if all such subrepresentations had vanishing cohomology, then the 

representation on the complement to their direct sum would contradict property HFD 
by Theorem 2.3.2). Thus, we may assume that  7~ is finite-dimensional, and hence, by 

complete reducibility, that  it is also irreducible. The image ~(F), being an amenable 

linear group, has a finite index solvable subgroup (see [49] for a short proof of this 

consequence of Tits' alternative). The connected component of its closure is a compact 

connected solvable Lie group, hence abelian, so by intersecting it with ~(F) and pulling 

back to F, we may assume that  there exists a finite index normal subgroup F0<F  with 

7r(F0) abelian. Of course, the restriction ~[ro still has non-vanishing ~1. On the other 

hand, 7fir 0 decomposes now as a sum of 1-dimensional subrepresentations ~i, which, by 

normality of F0 and irreducibility of 7~, are all finite or all infinite. We will be done 

by showing that  the second possibility cannot occur. Indeed, since at least one of the 

~i's has non-vanishing H 1, a non-vanishing 1-cocycle would give a homomorphism to 

S 1 ~<C (w whose linear part, ~ri, is infinite, and thereby defining a homomorphism 

0: F0-~ $1~< C with dense image, a contradiction. (The density of o(F0) follows by looking 

at the connected component of its closure, using the fact that  any connected proper 

subgroup of S 1 ~<C is abelian, and hence it is either contained in C, or conjugate to S 1. 

We leave the easy verification to the reader.) 

Finally, if F has subexponential growth, then so does every (finite index) subgroup of 

it, and hence also 0(F0)<SO(2)~<R 2. But again being amenable, Q(F0) is virtually solv- 

able, and then by a result of Milnor and Wolf ([40], [54]) it is virtually nilpotent. Hence 

it cannot be dense in SO(2)D<R 2, and the condition in the first part of the proposition is 

satisfied. [] 

We next analyze the precise relation between properties HF and HT. 

PROPOSITION 4.2.4. Suppose that F has property HR. 

(1) F has property HT if and only if vbl(r)=bl(r). 
(2) A finite index subgroup of F has property HT if and only if Vbl(F)<(x~. 

Proof. By the (simplest version of) the Shapiro lemma (cf. Theorem 3.2.2 above) 

applied to the trivial representation of F0, we have for any finite index subgroup F0<F  

that  H 1 (F,/2(F/F0)) ~ H  1 (F0, 1). By decomposing the left-hand side representation into 

a sum of the constants and the zero-sum functions, we deduce that  

b l ( F ) + d i m H  l(F,10 2( r / r0) )  (16) 

Now, to prove (1) notice that  if F has property HT then by definition and the fact 
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that  has no F-invariant vectors, we have by (16) that  bl(ii`)=bi(i'o) for every fi- 

nite index subgroup I'0, and hence Vbl ( i , )=bl( i ' ) .  In the other direction, assume that  the 

latter equality holds. Then by (16) we have Hi(i,, 10 (i,/r0))=0 for all finite index sub- 

groups. Let 7r be an irreducible I,-representation with _~1(i,, 7r)7~0. By Theorem 4.1.2 (2) 

it is enough to show that  7r is trivial. Indeed, because I, is assumed to have property HE, 

and by irreducibility of 7r, there exists a finite index normal subgroup I '0<i '  such that  

7r factors through the quotient r/to, i.e. it occurs as a subrepresentation of l~(i,/r0). 
If 7r is not trivial then it must be a subrepresentation of 102(i'/i'0), which we now know 

to have vanishing first cohomology. This completes the proof of (1). 

Part  (2) now follows immediately from (1) by considering a finite index sub- 

group I '0<i '  with either bl(i'o)=Vbl(i') for one direction, or with property HT for the 

other. [] 

We conclude this subsection with a stability result: 

THEOREM 4.2.5. All three families of groups with properties HFD, HE or HT are 

closed under taking direct products and central extensions. 

Proof. The assertion follows readily from the following two results proved in [50, 

Theorem 3.1 and Corollary 3.7]: 

(i) For any locally compact, second countable groups G1 and G2, and any unitary 

representation 7c of G=G1 x G2, one has 

~ 1  (G, 71-) ~ x~ 1 (G1,71 "G2 ) (~)~1 (G2, 71G'). 

(ii) For any locally compact, second countable group G, and a closed central sub- 

group C <  Z(G), and for any unitary G-representation 7r with l a %7r, one has 

~ 1  (G, 71") ~ .t~ 1 (G/C,  716). 

(In both statements 7r N denotes the N-invariants of 7r. Actually, part  (i) implies (ii).) 

For an alternative simple proof of the central extension part, which will be used in the 

sequel, see Corollary 5.1.3 below. [] 

Remark. As shown in w below, none of these properties is closed under taking 

semi-direct products. 
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4.3. T h e  r e l a t i o n  t o  bl a n d  to  t h e  g e o m e t r y  of  a m e n a b l e  g r o u p s  

We begin by establishing the first claim in Theorem 1.11 (1): 

THEOREM 4.3.1. Let F be a finitely generated infinite amenable group with prop- 

erty HFD. Then there exists a finite index subgroup F 0 <F  with infinite abelianization. 

Proof. Because F is infinite and amenable, it does not have Kazhdan's property (T). 

Because it is also finitely generated, Theorem 6.1 in [50] implies that  it admits an 

irreducible unitary representation 7r with ~tl(F,  Tr)~0 (cf. the proof of Theorem 0.2 

in [50, p. 30]). By property HFD it follows that  7i is finite-dimensional, hence it defines a 

homomorphism Q: F--+U(n)~< C a ( n =d im  70 with infinite image (see w above). Thus, 

0(F), being infinite, finitely generated, amenable and linear, has a finite index solvable 

subgroup ("Tits '  alternative"). Taking the inverse image under ~ of this subgroup com- 

pletes the proof of the theorem. [] 

Turning to Theorem 1.11 (2) of the introduction, we now show how the stronger 

p roper t i e s / IF  and HT give additional information. 

THEOREM 4.3.2. Assume that the finitely generated amenable group F has prop- 

erty HF. If the group A is quasi-isometric to F, then vbl(A)~vbl(F). If moreover F 

has property HT, then Vbl(F) may be replaced by bl(F). 

Proof. Because we only assume that  A is q.i. to F, it is of course enough to prove 

the result with Vbl(A) replaced by bl(A). The second statement is a special case of 

Theorem 4.1.1 above with n = l .  As for the first, if vbl(F) is infinite then there is nothing 

to prove. If it is finite, then by Proposition 4.2.4 there is a finite index subgroup F 0 < F  

with property HT, SO the claim now follows from the above. [] 

Remark. In w below we describe an example of a polycyclic group F with prop- 

erty HT which is q.i. to a polycyclic group A for which a strict inequality holds: 

1 = Vbl(A) < Vbl (F) (= bl (F)). 

We now turn to Theorem 1.10, which forms a bridge between spectral and geometric 

group theory: 

THEOREM 4.3.3. In the class of amenable groups, property HFD is a q.i. invariant. 

Proof. Assume that  F has property HFD and that  A is q.i. to F. Let 7r be a unitary 

A-representation with ~ I (A ,  7r)50. By Theorem 2.1.7, after replacing F with F • M for 

some finite group M, there exists a UME coupling (X, #) of F and A with the property 

X r C X h  (retaining the notation in Definition 2.1.5). Note that  F • M still has property 
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HFD (by Theorem 4.2.5 or Theorem 2.3.1). Induce 7r from A to F as described in 

w From Theorem 3.2.1 it follows that  H l (F ,  IndrTr)#0.  Because F has property 

HFD it then follows that  Ind r 7r contains a finite-dimensional F-subrepresentation. By 

Theorem 3.1.2 this implies that  7r contains a finite-dimensional A-subrepresentation, as 

required. [] 

Remark. In w below we show an example of a group with property HT which is 

q.i. to a group without property HR. Thus the latter is not a q.i. invariant. 

Theorem 1.11 (1) now follows immediately: 

COROLLARY 4.3.4. Let F be a finitely generated amenable group with property HFD. 

If  A is quasi-isometric to F, then a finite index subgroup of A has infinite abelianization. 

Proof. This follows readily from Theorems 4.3.1 and 4.3.3. [] 

In the following situation, of which we shall see many examples in w our results 

yield sharper information: 

COROLLARY 4.3.5. Let F be an amenable group with property HT which satisfies 

bl(F)--1.  If A is a group which is quasi-isometric to F, then vb l (A)= l .  

Proof. This follows readily from the previous corollary and Theorem 4.3.2. [] 

We now return to the proof of q.i. rigidity of abelian groups, already sketched in the 

introduction, completing some missing details. 

THEOREM 4.3.6. If  A is quasi-isometric to Z d, then a finite index subgroup of A is 

isomorphic to Z d. 

Proof. The first step is showing that  Z d has property HT. This is, for example, a 

special case of Theorem 4.2.5 above (going back to [50]), but in the next section we shall 

bring an alternative self-contained simple proof of this fact. We remark that  while the 

proof presented here (see Theorem 5.1.1 below) applies one non-elementary ingredient--  

the use of a direct integral decomposi t ion-- the proof in [50, Corollary 3.6] is completely 

geometric and elementary (though less transparent),  thereby making elementary the 

whole proof of Theorem 4.3.6. 

Next, because Z d in particular has property HFD, it follows from Theorem 4.3.3 

that  A has it as well. However, being q.i. to a group of polynomial growth, A itself has 

such growth, so Proposition 4.2.3 implies that  A actually has property HR. 

Now, applying Theorem 4.3.2, we get inequalities in both sides and therefore an 

equality vbl (A)=vbl (zd)=d ,  so after passing to a finite index subgroup we may assume 

that  bl(A)=d.  Observe that  this implies that  there exists a surjective homomorphism 
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q~: A ~  Z d. Indeed, if r ..., ~)d a r e  linearly independent elements (over R)  in Horn(A, R),  

consider the homomorphism ko: A--+R d which is defined by 

�9 (a)  = r  ..., Cd(x)) .  

Then ~(A) is a finitely generated abelian subgroup of R d, hence isomorphic to Z m for 

some m. If m<d then kO(A) spans over R a proper subspace, and hence any non-zero 
d vector (al, ..., ad) orthogonal to that  subspace gives an identity ~ = 1  a~r for all 

%cA, contradicting the linear independence of the ~Pi. Thus re)d,  and we conclude that  

A/N '~Z  d for some normal subgroup N. 

We shall be done by showing that  N is finite. Fix a finite generating set S =  

{,~1,-.., ,~k} for A, and let b(n) denote the number of elements in A of S-length ~<n. 

Because A is q.i. to Z d, there is a constant c~ such that  b(n)<~om d. Let a(n) be the 

number of elements in N of S-length ~<n. Let c(n) be the number of elements in 

Z d of length ~<n in the image of the generators %1,-..,%k. Then there is some con- 

stant r such that  ~na<.c(n). Obviously, we must have a(n)c(n)<~b(2n), and hence 

a(n) ~n d <<. a(2n) d = a 2 d n  a. Therefore a(n) <~ c~2d/~, and so N is finite, thereby completing 

the proof of the theorem. [] 

5. A m e n a b l e  g r o u p s  a n d  t h e i r  r e d u c e d  c o h o m o l o g y  

5.1. A b e l i a n ,  n i l p o t e n t  a n d  p o l y c y c l i c  g r o u p s  

The following result in the case G = Z  d is central to the proof of its q.i. rigidity (see 

Theorem 4.3.6 above). 

THEOREM 5.1.1. A locally compact second countable abelian group has property FIT. 

Proof. Because of Theorem 4.1.2 (2), it is enough to prove that  for every irreducible 
non-trivial unitary G-representation ~, one has H i (G ,  ~)=0.  In fact, for any such ~ one 

has H 1 (G, ~)=0.  Indeed, because G is abelian, ~ is l-dimensional, and hence any element 

bE Z 1 (G, ~r) defines a homomorphism 0: G--+ $1~< C whose linear part is ~r (w Being 

abelian, the image o(G) is either contained in C, which means that  7r is trivial, or is 

conjugate to S 1, which means precisely that  the affine action Q has a fixed point, so 

[b] =0  in H I(G, 7r) (see Lemma 2.4.2). [] 

In fact, the previous theorem is a special ease of a more general result concerning 

central extensions, which was already cited in Theorem 4.2.5 above, going back to [50]. 

However, since the central extension theorem will be used in the sequel, we present here 

an alternative short proof: 



GEOMETRY OF AMENABLE GROUPS 159 

PROPOSITION 5.1.2. Let G be a locally compact group, and C<Z(G) be a closed 

and central subgroup. If 7r is an irreducible non-trivial unitary G-representation with 

HI(G, Tr)~O, then C acts trivially in 7r, and HI(G, Tr)=HI(G/C, Tr). 

Proof. Let bcZl(G, lr) and let Q(g)v=Tr(g)v+b(g) be the corresponding affine G- 

action on V~. By Schur's lemma, C acts via some l-dimensional character ;~. If ~( 

is non-trivial, then, as shown in Theorem 5.1.1, the restriction of b to C must be a 

coboundary, so that  C has a fixed point v0 for its action through ~ (Lemma 2.4.2). Now, 

for any gEG, ~(g)vo is also fixed by C, so if Q(g)vo~vo for some gcG then the line 

determined by v0 and Q(g)vo is fixed by C, contradicting the assumption that  X is not 

trivial. Therefore v0 must be fixed by all of G, so t~ has a global fixed point, and [b] 

vanishes in H 1. Thus C acts trivially in 7r. We now show that  as a l-cocycle b must 

vanish identically on C, which proves the proposition. Indeed, assume that  b(c)~O for 

some cEC. Then for all gCG we have b(gc)=b(cg), which by the 1-cocycle identity gives 

7r(g) b(c) +b(g)=Tr(c)b(g)+b(c). Because C acts trivially we deduce that  7r(g)b(c) =b(c), 

so b(c) is a non-zero 7r(G)-invariant vector, and by irreducibility 7r must be trivial, in 

contradiction to the assumption. [] 

COROLLARY 5.1.3. For any unitary G-representation 7r not containing 1G, one has 

H i ( G ,  7r)~-HI(G/C, 7rc), where 7r C denotes the C-invariants in 7r. In particular, all the 

three properties HT, HE and HFD are stable under passing to central extensions, and 

every nilpotent group has property HT. 

Proof. Decompose 7r=aO~-, where a----Tr C is the representation on the subspace of C- 

invariant vectors, and ~- is its orthogonal complement (by centrality of C both are stable 

under G). Decomposing ~- into a direct integral of irreducibles and using Theorem 2.3.2 

with Proposition 5.1.2, it follows that  HI  (G, ~-)=0. Hence one only needs to use the 

same computation as in the last part of the proof of Proposition 5.1.2, to conclude that  

any bE Z 1 ( G ,  o-) vanishes on C, so E 1 (G, 7r) ~ 1  (G/C, (7). [] 

In fact, as seen in Theorem 4.1.3, nilpotent groups share a similar property for all 

degrees. We remark in passing that  Proposition 5.1.2, and the equivalence of property (T) 

with the non-existence of an irreducible unitary representation with H 150  for compactly 

generated groups [50], immediately give an alternative proof of the following result of 

Serre [34, p. 28, Theorem 12]: If G is compactly generated, G/[G,G] is compact, and 

G/C has property (T) for some closed central subgroup C<G, then G has property (T) as 

well (noting that  the assumption on G~ [G, G] implies cohomology vanishing with trivial 

coefficients). 

Remark. One can also show that nilpotent groups have property HT using the fol- 

lowing general result of Vershik and Karpushev [53]: Any irreducible representation with 
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non-vanishing first (ordinary) cohomology is not Hausdorff separated from the trivial 

representation. Indeed, using Schur's lemma applied inductively to the center, it is easy 

to see that  for nilpotent groups the only irreducible representation not separated from (1) 

is (1) itself. This strategy of proof, which shows (as does our previous argument) that  al- 

ready the non-reduced H 1 vanishes for the trivial representation only (among irreducible 

representations), cannot work in the rest of the examples we shall analyze, and we do 

not know any finitely generated non-virtually nilpotent group for which it does. 

Polycyclic groups. Recall that  a solvable group F is called polycyclic if it admits 

a filtration 

{e} = Fk<...<lFl< F0 = F ,  

where each successive quotient is cyclic. As we show in w unlike nilpotent groups, 

these groups need not have property HE, let alone HT. However, we have the following 

result, generalizing Theorem 1.13 of the introduction: 

THEOREM 5.1.4. Every polycyclic group F has property HFD. Moreover, a poly- 

cyclic group F has only finitely many irreducible unitary representations with H I ~ 0 ,  

which are all finite-dimensional. In fact, for a finite index subgroup of F, all such repre- 

sentations are 1-dimensional (and finite in number). 

Proof. The proof relies on the following quite involved result of Delorme [16, Theo- 

rem V.6 and Corollary V.2]. We thank Alain Valette for pointing it out to us. 

THEOREM 5.1.5. Let G be a connected solvable Lie group. Then every irreducible 

unitary G-representation 7r with H i ( G ,  7r)r is 1-dimensional. Furthermore, there exist 

only finitely many such ~r's (which can all be classified explicitly). 

The first statement is the content of Theorem V.6 (p. 323) in [16]. As for the second, 

in Corollary V.2 (p. 333) there, it is observed that  a non-trivial 1-dimensional 7r satisfies 

HI (G,~r )~0  if and only if ~r is a quotient of the adjoint G-representation on [g,~]c. 

Thus, the number of such 7r's is bounded by the dimension dime [g, g]c- We remark 

that  this gives an (in principle) "explicit" way to determine whether, in particular, every 

cohomological 7r is trivial, a property which indeed holds for "many" groups G. 

Returning to the proof of Theorem 5.1.4, observe first that  it is enough to prove the 

very last statement of the theorem. Indeed, if F0 <F  is a finite index subgroup satisfying 

that  claim, and 7h, ..., 7rn are its irreducible representations with non-vanishing ~1, then 

using the injectivity of the restriction of ~1  to a finite index subgroup one can easily 

deduce that  any irreducible F-representation cr with non-vanishing H 1 must be contained 

in one of the (finitely many) Indrro 7ri, which are all finite-dimensional. 
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Now, to find this subgroup F0, recall that  by a well-known theorem of Auslander, 

because F is polycyclic it has a finite index subgroup F0 which is a co-compact lattice 

in a connected solvable Lie group G (cf. [45, Theorem 4.28]). Let 7r be any irreducible 

unitary F0-representation with ~1  (F0, 7r)#0, and consider the induced G-representation 

a=IndrGo 7r. By Theorem 3.2.2 we have _~1 (G, a ) # 0 .  Hence by decomposing a into a di- 

rect integral of irreducibles, applying Theorem 2.3.2, and using Delorme's Theorem 5.1.5, 

we deduce that  for at least one of the finitely many characters, say X, appearing in The- 

orem 5.1.5, one has X_Ca. Corollary 3.1.5 (1) now shows that  7c=Xlro, as required. [] 

Remark. For any polycyclic group which is not virtually nilpotent, the "moreover" 

statement in Theorem 5.1.4 fails when reduced is replaced by non-reduced cohomology: 

it can be shown that  such groups always admit an infinite-dimensional irreducible unitary 

representation with non-vanishing first cohomology. 

An example of a connected solvable Lie group G which has property HT is the 3- 

dimensional simply-connected G = S O L V = R *  x R 2, where R* acts linearly on R 2 through 

a l -parameter  volume-preserving group of hyperbolic transformations. Here it is easy 

to verify directly that  the l-dimensional quotients of the G-adjoint representation on 

[9, 9]c = C 2 are not unitary but have real eigenvalues (coming from the hyperbolic action). 

Therefore Delorme's theorem implies that  G (and hence, by Theorem 4.1.2 (1), its co- 

compact lattices as well) actually has property HT. In the next subsection we present 

another proof of this fact, within a different general approach which can be used to deal 

also with the (considerably more involved) full result of Delorme. Our approach avoids 

Lie algebra cohomology, which is essential in Delorme's proof. 

5.2. T h e  l a m p l i g h t e r  a n d  s o m e  r e l a t e d  g r o u p s  

The lamplighter group L(F) associated with a (finite) group F was defined in Theo- 

rem 1.4. Obviously, it is an amenable group, but it is solvable only when F is. It is 

easy to check that  L(F) is finitely generated, and it is known not to be finitely presented 

unless F is trivial [2]. 

Our aim here is to prove Theorem 1.14 (2) of the introduction: 

THEOREM 5.2.1. For any finite group F, the group L(F) has property HT. 

By Corollary 4.3.5 this implies the following result (already mentioned in the intro- 

duction): 

COROLLARY 5.2.2. If A is q.i. to L(F) for some finite F, then Vbl(A)=l .  

We shall prove Theorem 5.2.1 directly only when F is abelian. The general case 

follows from this, using the fact that  when ]El=IF'I, the groups L(F) and L(F') are 
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quasi-isometric (and even isometric with respect to the natural choices of generating 

sets, as is easy to verify directly see [19] for the origin and first use of this observation). 

Hence, for every finite F the group L(F) has property HFD. To promote it to property 

HT one can, for example, observe first that  by Proposition 4.2.3 it has property HE, 
since every homomorphism of it into GL~(C) has in its kernel a finite index subgroup of 

the normal torsion subgroup (this follows immediately from the fact that  a finite index 

subgroup of the image, being a finitely generated linear group of characteristic 0, is torsion 

free). It then follows that  L(F) actually has property HT by Proposition 4.2.4 (1). For 

this reason, we may actually assume that  F=Z/nZ is a cyclic group, and we do so 

hereafter for convenience. 

An essential step in the proof of Theorem 5.2.1 is the embedding of L(F) as a 
discrete co-compact subgroup of a non-discrete, locally compact group G=G(F). This 

construction may be of interest in its own right, and we first describe it. 

Embedding L ( F )  co-compactly in a locally compact group G(F). Recall that  we 

assume F to be the cyclic group Z /nZ ,  which has also a natural ring structure. We 

first reinterpret the abelian group ~]~jez Fj as follows: Let t be a variable, and denote 

by F[t,t -1] the ring of polynomials over F in t and t -1. Then (aj) j~z~-~j ajt j is a 

natural group isomorphism of ~ j e z  Fj with F[t, t-l]. Next, we want to embed F[t, t -~] 
in a product of two locally compact rings. In the case where F is a finite field these will 

be no more than two completions of Fit, t -1] with respect to the valuations at zero and 

infinity, resulting in local fields of positive characteristic. However, a similar construction 

can be made in our situation as follows. Consider the completion F((t)) of Fit, t -1] 
with respect to the additively invariant metric for which tn--40 when n--+cc. Tha t  is, 

F((t)) = { ~-~o ait~l ai C F and i0 E Z } is the ring of Laurent series, and the metric is 

induced by the valuation v+: ~-~=ioaiti~+io, where i0 is the minimal index with a i # 0  

(so "positive high powers" go to zero). Similarly, define F((t-~)) with the valuation v-, 

where here "negative high powers" go to zero. Notice that  the diagonal embedding of 

F[t,t -1] in F((t))| is discrete and co-compact, with a fundamental domain 

being the compact subring 

K =  {(x, y) C F((t))@F((t-1)) ] v+(x) >~ 0 and v-(y) >~ 1}. 

(Indeed, for (x,y)cF((t))| define pCF[t,t -1] as the polynomial whose part  

of negative powers is identical to that  of x, and whose part of non-negative powers is 

identical to that  of y. Then (x-p,  y-p)  EK, and it is clear that  p satisfying this property 

is unique.) 

Next, notice that  the Z-shift action on ~ j ~ z  Fj translates to a multiplication by 

the corresponding power of t. This action extends naturally to a continuous action on 
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the rings F((t)) and F(( t -1)) ,  and we may define 

G( F) = Z ~< ( F( (t) ) | (t -1))), 

where Z~(tm)mEZ acts as above, via diagonal multiplication by t m. It is now clear that  

G(F) is a locally compact group, containing Z ~< Fit, t -1] ~L(F)  as a discrete co-compact 

subgroup. 

The unitary dual of F((t)). For the proof of Theorem 5.2.1 we shall need a conve- 

nient description of the unitary duals of the rings F((t)) and F(( t-1)) ,  in which the dual 

Z-action is transparent. For brevity, we shall sometimes denote these rings by K=F((t)) 
and K = F ( ( t - 1 ) ) .  

Let F be the dual of the abelian group F. Written additively, we have that  /~= 

{x :F - -+R/Z  ]x(g+h)=x(g)+x(h)}. Then F~F~-Z/nZ  is the cyclic group generated 

by the character X1 sending the generator 1EF  to 1/nER/Z.  
Next, we investigate the dual K = F ~ .  View X1 above as a character: XI: K--+R/Z 

by first projecting to the "zero-coordinate" and then applying X1. Notice that  for every 

kEK, Xk(x)=Xl(kX) is an element of K.  

CLAIM 5.2.3. The assignment ~: K-+ K defined by k~-~ Xk(x) is a topological group 
isomorphism of the locally compact abelian groups K and ~[. 

Proof. Recall that  K is a topological group, as usual, with respect to the topology of 

uniform convergence on compact subsets of K.  It is easy to check that  ~ is a continuous 

homomorphism. It is injective, because if for all xEK, Xl(kX)~-O, writing k=~-]j ajtJ 
and choosing x=t - j  shows that  aj =0. This being so for all j ,  it follows that  k=0  (note 

that  here the fact that  F=Z/nZ,  and not just an abelian group, is used). 

Next, p (K)  is closed in K.  Indeed, since K is locally compact it is enough to check 

that  ki-+oc in K implies that  p(ki)--+cc in K (i.e. p(k~) has no converging subsequence 

in K) ,  which is easy to verify directly. Thus, to complete the proof of the claim, i.e. to 

show that  ~ is onto, it is enough by Pontryagin duality to verify that  the image T(K) 

separates the points of K,  namely, that  for every xEK there is some kEK such that  

X1 (kx)~O. Here one can use a similar argument as for the injectivity. This completes 

the proof of the claim. [] 

Remark 5.2.4. More generally, if F is any finite abelian group and F is its dual, 

then F ~ F ( ( t - 1 ) ) ,  where the action is defined by 

xiti, E aiti = (xi,ai}, x i E F ,  a i E F  
i - -  " 

(the sum in the right-hand side is finite). 
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We can therefore identify K and K through ~. A useful feature of this identification 

is its compatibility with the automorphism action of Z-~<t m) o n  K. Recall that  an 

endomorphism A of the abelian group K defines a dual endomorphism of K by (Ax)(x)= 

x(Ax).  If A is a multiplication by t m and ~(=Xk for some kEK,  we have (Ax) (x )= 

xk(Ax)=xk( tmx)=x(k . tmx)=Xtmk(X) ,  and hence the action on h ' ~ K  is just the usual 

multiplication in the ring K.  Obviously, the whole discussion applies to the "twin" ring 

as well, with the obvious modifications. 

COROLLARY 5.2.5. Consider the multiplication diagonal action of Z~-(t m) on 

K G K ,  and the induced action on the dual 

K |  ~ K G K  TM K G I (  

Then the orbits of the action fall into three types: 

(1) an orbit of an element (X1,~2), with X1,~(2#0, which is closed (call such an 

element, or its orbit, "regular"); 

(2) an orbit of an element (XI,0) or of an element (O, x2), with X1,x2#O, which is 

of the form (kxi,  O) or (0, kx2), and has a unique limit point (0, 0); 

(3) the zero-character (0,0). 

Proof. If m-+oc  then tmk--+O for all k E K  and tm~:--+c<~ for all 0 # k E K .  The con- 

verse holds when m--+-oc.  Using the above identifications of K and -K with their duals, 

this accounts for the three possible options. [] 

We can now prove Theorem 1.14 (2) of the introduction: 

Proof of Theorem 5.2.1. As before, we may assume that  F~-Z/nZ,  and we continue 

to do so henceforth. Because L ( F ) < G ( F )  is discrete and co-compact (see the discussion 

above), it is enough by Theorem 4.1.2 (1) to prove that  G(F) has property HT. By 

part (2) of that  theorem it is enough to show that  for every irreducible non-trivial (con- 

tinuous) unitary representation 7r of G(F),  one has HI (G(F) ,Tr )=0 .  For that  purpose 

we shall need the following lemma: 

LEMMA 5.2.6. (1) Assume that G(F) acts continuously and isometrically on a met- 

ric space (X,d) .  Then any Z-fixed point is fixed by all of G(F).  

(2) Let J=Z~<F((t)), where Z={t  "~) acts as above on F((t))  via multiplication. If  

a continuous isometric J-action on (X, d) has almost fixed points for Z, then it admits 

almost fixed points for all of J (see Definition 2.4.3 for this notion). 

Proof. (1) Let x E X  satisfy tmx=x  for all mEZ.  Let ~EF(( t ) )OF(( t -1 ) )  be of 

the form (a,0)  or (0, a),  and take a sequence of m(--++oc) with t--m~tm--~O. Then 
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d(~x, x)=d(6tmx, tmx)--d(t-m~tmx, x)-~O. Hence x is fixed by F((t)), F( ( t -1 ) )  and Z 

separately, and thus by all of G(F). 
(2) Given c > 0  and a compact subset QCF((t)), we need to find an xEX which is 

~-invariant for both t and Q. By assumption there exists some yEX with d(ty, y)<s. 
Let UCF((t)) be a neighborhood of 0 small enough so that  d(uy, y ) < s  for uEU. Take 

m such that  t-mqtmEu for all qEQ. Then the point x=tmy satisfies both 

d(tx, x) = d(t.tmy, tmy) = d(tmty, t'~y) = d(ty, y) < e 

and 

d(qx, x) = d(qtmy, troy) = d(t-mqtmy, y) < E for all q E Q. [] 

An immediate consequence is the following corollary: 

CoaOLLnaY 5.2.7. Let J=ZD<F((t)), where Z = ( t  m) acts on F((t)) as above. Then 
J has property HT. 

Proof. Let 1r be a unitary J-representation and bE Z 1 (J, 7r). 

Case (i): lz~Trlz.  Because Z is abelian, it has property HT (Theorem 5.1.1), so 

the isometric action defined by b has almost Z-fixed points (see Definition 2.4.3 and 

Lemma 2.4.4). By Lemma 5.2.6 (2) there are almost fixed points for J ,  i.e. bEBl(J, Tr) 
and [b]=0 i n / ~ l t ( J  , 7r). 

Case (ii): lzCTriz. Then by Lemma 5.2.6 (1) we get 1jC_Tc[j, as required. [] 

Continuing the proof of Theorem 5.2.1, let ~r be an irreducible unitary represen- 

tation of G(F). Corollary 5.2.5 shows that  the orbits of the Z-action on the dual of 

F((t))| are locally closed. Hence by Mackey's machinery for representations of 

semi-direct products A~<N (cf. [55, 7.3.1], where it is assumed that  N - ~ R  n only for con- 

venience), we may continue by analyzing the spectral measure describing the restriction 

of 7r to the abelian normal subgroup N=F((t))OF((t-1)), according to the three types 

of orbits in Corollary 5.2.5: 

(1) A regular orbit. Here the restriction of 7r to N has spectral measure supported 

on a regular orbit. In particular, since the orbit does not accumulate at 0, 7tin does 

not have almost invariant vectors. Now, let bEZI(G(F), 7r) and let Q(g)v=Tr(g)v+b(g) 
be the associated isometric action on V~. If N has a fixed point for this action, say v0, 

then by normality Q(tm)vo is also fixed by N for all mEZ.  If Q(t'~)Vo~Vo for some m0, 

then the line between Q(t'~~ and v0 is also preserved by N, i.e. 1NCTrlN, which is 

impossible (since we are dealing with a regular orbit). Therefore Q(tm)vo=vo for all 

mEZ,  so v0 is a global fixed point for Q and bEBI(G(F),Tr) (Lemma 2.4.2). Suppose 
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on the other hand that  N does not have a fixed point for the isometric action, i.e. 

biN ~B I(N, 7tiN ). The fact that  the orbit is regular, and hence does not accumulate at 0, 

shows that  the restriction of rr to N does not have almost invariant vectors, and hence 

by Proposition 2.4.1, BI(N, TrlN)=BI(N, TrtN). It follows that DIN~BI(N,~rlN), and 

because N is abelian, Theorem 5.1.1 implies that  1N C_TrlN, which is again impossible by 

our assumption that  the orbit is regular. We conclude that  necessarily HI(G(F), ~r)=0, 

and in particular H I ( G ( F ) ,  7r)=0, for 7r coming from a regular orbit. 

(2) An orbit of an element (x,O) or (O,x) with X7s By symmetry we may as- 

sume that  we are in the first case. Here F((t-1)) acts trivially in ~r, i.e. the rep- 

resentation 7r factors through a representation of the group J as defined in Corol- 

lary 5.2.7. Consider now bEZI(G(F),Tr) and examine the following two possibilities: 

either blF((t-1)):O (pointwise, not only as a cohomology class), in which case both 7r 

and b factor through the homomorphism to J =  Z ~< F(( t ) ) ,  so by Corollary 5.2.7 it follows 

that  ~ I ( G ( F ) ,  7r)=~1 (j, 7c)=0 (since 7r is not the trivial representation), or blF((t-1))7s 
But the latter case is impossible because blF((t-1)) is then automatically reduced (since 

7r is trivial on F( ( t -1 ) ) ) ,  hence b is reduced on the whole abelian group F((t)| 
and by Theorem 5.1.1 the latter should have an invariant vector in 7r, which is not the 

case here. 

(3) The O-orbit. This means that  7r, being irreducible, factors through a character 

X of Z. Let bCZI(G(F),x) and 0 be the associated isometric action (on C). If X7s 

then by Theorem 5.1.1 and Proposition 2.4.1, b lz E B 1 (Z, X), and hence 01z has a fixed 

point. By Lemma 5.2.6 (1) this point is fixed by all of G(F) ,  so Lemma 2.4.2 shows 

that  b EB 1 (G(F) ,  7r). It follows that  if [b] r  then X= 1, thereby completing the proof of 

Theorem 5.2.1. [] 

We remark that  here (and in the sequel), one could also make use of a s tandard 

spectral sequence for cohomology of group extensions, in the cases where the computation 

of reduced cohomology is reduced to that  of ordinary cohomology. 

The various arguments used in the proof of Theorem 5.2.1 for the ambient group 

G(F) can in fact be used, together with some structure theory, to t reat  the case of a gen- 

eral connected solvable Lie group, as in Delorme's Theorem 5.1.5. The main ingredients 

of this approach are: 

(1) Reduction through direct products and centers (see the proof of Theorem 4.2.5 

above); 

(2) The use of Mackey's machinery through a distinction between orbits of charac- 

ters which respectively contain, or do not contain, the trivial representation (1) in their 

closure; 

(3) In the case when (1) is not in the closure, Proposition 2.4.1 and then Theo- 
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rem 5.1.1 are applicable. 

(4) In the case when (1) is in the closure, one has contracting automorphisms, and 

an argument as in Lemma 5.2.6 can be applied. 

We shall see further illustration of this approach in the next subsection, but mean- 

while remark that  the proof of Theorem 5.2.1 can be applied virtually verbatim in the 

case where K is a local field and G=K*~<K 2, where K* acts on K 2 through a homo- 

morphism (,0) 
t, ~ 0 t -1 ESL2(K) .  

Here K* plays the role of Z, and K 2 replaces K| in Theorem 5.2.1. Thus, G as above 

has property HT, and by Theorem 4.1.2 (1) so do its co-compact lattices. Specializing 

to the case K = R  yields the group SOLV, which was already discussed earlier. Alterna- 

tively, taking K to be of positive characteristic yields other interesting examples when 

considering co-compact lattices (and using Theorem 4.1.2 (2)), such as in the following 

result: 

COROLLARY 5.2.8. Let F be a finite field. Then the group F=Zb<A(F[t]) 2, where 

F[t] is the ring of polynomials over F, and Z acts through multiplication by powers of 

the matrix 
( ,  , - 1 )  

A =  1 1 ' 

is finitely generated and has property HT. Consequently, by Corollary 4.3.5, if A is any 

group quasi-isometric to F then v b l ( F ) = l .  

We remark that  it can be shown that  a group F as above is not finitely presented. 

Finally, as an application of our result for the lamplighter group, we have the fol- 

lowing theorem, establishing the relevant parts of Theorems 1.4 and 1.14: 

THEOREM 5.2.9. There exists a family of 2 ~~ non-isomorphic finitely generated 

3-step solvable groups with property HT, and having b1=1. Consequently, by Corol- 

lary 4.3.5, any group A quasi-isometric to one of these groups satisfies vb l (A)= l .  

Proof. The groups which we construct are all (torsion-)central extensions of one 

given lamplighter group L(F) ,  where F is a, say, cyclic group on p elements. Recall that  

by Theorem 5.2.1 and Corollary 5.1.3 any such group has property tiT, so we only need 

to construct a continuum of those. 

Consider the group F generated by an infinite set {Xn,Zm,t}, where n c Z  and 

1-~<mEZ, with the following relations: [xi ,x j ]=z~-j  for all i>j; tx i t - l=xi+l  for all i; 

xiP=ziP=l for all i; and all the z,~'s are central. The group G is generated by t and x0 
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(say), so it is actually finitely generated. Also, it is easy to see that  G is a "Heisenberg- 

like" central extension of the lamplighter group L(F), with center C generated by the z's, 

i.e. isomorphic to the infinite direct sum of cyclic p-groups. Therefore C admits a con- 

t inuum of different subgroups, Ca, all central. An easy classical argument due to Hall 

(cf. [33, p. 69, I tem III.42]), making use only of the finite generation of F, then shows 

that  any given group can be isomorphic to G/Ca for only countably many c~'s. Hence 

the family of quotients of the form G/Ca must contain a continuum of non-isomorphic 

groups (all central extensions of L(F)). This completes the proof of the theorem. [] 

5.3. Other abelian-by-cyclic groups 

Recall that  the groups F(n, m) were defined in the introduction (we assume throughout 

that  In.ml >1). As we shall see, the F(n ,m) ' s  are the "(S-arithmetic) characteristic-0" 

analogues of the "positive characteristic" lamplighter groups (discussed in the previous 

section). Their treatment will rely on a very similar approach, with some additional 

technicalities. 

The following result completes the proof of Theorems 1.4 and 1.14 in the introduc- 

tion: 

THEOREM 5.3.1. The groups F(n ,m)  have property HT. Consequently, by Corol- 
lary 4.3.5, /f A is a group which is quasi-isometric to r(n, m), then Vbl(A)=l .  

As in the case of the lamplighter groups, we preface the proof by constructing a 

locally compact group G(n, m) in which F(n, m) embeds discretely and co-compactly. 

For any prime p, we denote by Qp the field of p-adic numbers, and follow the notation 

Q ~ = R .  We fix hereafter n and m with (n ,m)--1 ,  denote by S the set of primes 

dividing n.m, and let S--SU{c~}. It is easy to verify that  the diagonal embedding of 

Z[1/nm] =Z(S)  in ~pcS Qp is discrete and co-compact. We set G(n, m)=Z ~( ((~pes Qp), 

where Z acts through multiplication by (powers of) m/n diagonally on each one of the 

summands. We then have a natural embedding of F(n, m) in G(n, m), which is easily 

seen to be discrete and co-compact. 

Proof (of Theorem 5.3.1). By Theorem 4.1.2 (1) it is enough to prove that  G(n, m) 
has property HT, and by (2) of that  theorem it suffices to see that  if ~ is any non- 

trivial irreducible unitary representation of G(n,m), then one has Hl(G(n,m),70=O. 
Let bcZl(G(n,m),~) be a 1-cocycle, and let S'C_S be the minimal subset for which 

both b and 7r factor through the natural quotient map from G(n, m) to Z~( (~pe  s, Qp), 

i.e. S - S  ~ is the set of all primes p for which both b=0 and ~r--1 on Qp. We shall see that  

if IbiS0 in HI (G(n ,  m), 7~) then S' is empty, so ~r and b factor through a representation 



G E O M E T R Y  O F  A M E N A B L E  G R O U P S  169 

of the acting Z, thereby implying that  ~r is trivial (as Z has property HT). 
Assume by contradiction that  S' is not empty and set G=Z~< (~]~peS' QB)" 

Let ]. [p denote the usual absolute value in the field Qp (including the case p=oo). 
]Notice that  Im/nlp~:l for all pES. We distinguish between two cases: 

(i) Either Im/nlp>l for all peS ' ,  or ]m/nlp<l for all peS ' ;  

(ii) There are p, qCS' with Im/nlp>l and [m/nlq< 1. 

Suppose that  (i) holds. This means that  high powers (of appropriate sign) of m/n 
contract all of ~]~peS, Qp to the identity. Then a proof identical to that  of Lemma 5.2.6 

and Corollary 5.2.7 shows that  G has property HT, hence ~r (being irreducible) must be 

trivial, and b factors through the acting Z (=G/[G, G]), so S' is empty. 

Suppose that  (ii) holds. For every p the dual Qp is isomorphic to Qp, and 

p c S '  p E S  ~ 

an isomorphism respecting the action of Z = (m/n) (this follows, e.g., as in the analogous 

discussion in the proof of Theorem 5.2.1). We make this identification henceforth. It is 

easy to check that  every orbit of the latter Z-action is locally closed (in fact, we classify 

them below), so we may continue by Mackey's machinery, as in the lamplighter group 

case, to examine the possibilities for the Z-orbit corresponding to the spectral measure 

of the restriction of iv to ~)pes' Qp" Let X=(Xpl,..., )~pk)E~peS  ' Qp (k: lSt[ )  be a point 

in that  orbit, and consider the following possibilities: 

(1))~ is "regular", i.e. XB~r for all i. In this case the orbit Z)~ is closed, in particular, 

does not accumulate at 0 (this is exactly where the assumption in (fi) is used). Then 

a discussion completely analogous to the one in the corresponding part of the proof of 

Theorem 5.2.1 shows that  H 1 (G, 7r)=0 in this case, contradicting the assumption on the 

1-cocycle b. 

(2) ~ r  but Xp~=O for some i. Then by normality of Qp~, ~r is trivial on it. By 

minimality of S', we must then have bIQp~r Hence bIQp~ is not in ~l(Qp~, 7r]qp~), and 
the same must hold for b when restricted to all of ~)peS' Qp" Being abelian, Theorem 5.1.1 

then implies that  the latter group admits an invariant vector in 7r. Hence by normality 

and irreducibility it acts trivially, which is impossible in our case ~r  

(3) ~--0, i.e. ~r factors through a 1-dimensional character X of Z. Then, if X is not 

trivial, it follows from Theorem 5.1.1 and Proposition 2.4.1 that  b]z is a 1-coboundary. 

Hence the isometric G-action it defines has a Z-fixed point (Lemma 2.4.2). By an obvious 

modification of Lemma 5.2.6 (1) to our case, it follows that  this Z-fixed point is actually 

fixed by all of G. Hence bEB 1 (G, 7r) (Lemma 2.4.2), in contradiction to our assumption. 

We are thus left with the remaining case 7 r = x = l c ,  as claimed. [] 
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5.4. So lvab le  g r o u p s  w i t h o u t  p r o p e r t y  HFD 

There are many known infinite, finitely generated amenable groups which do not admit 

a finite index subgroup with infinite abelianization, such as torsion groups (e.g. the 

Grigorchuk groups). By Theorem 4.3.1 it follows that  they cannot have property HFD. 
Of course, this line of argument cannot work for solvable groups. This, together with 

the various examples shown in the previous sections, may give a wrong impression, as 

we now make the following observation: 

THEOREM 5.4.1. Let G be a discrete group. Then every unitary representation lr of 

the wreath product F = G ~ Z  factoring through a representation of G satisfies H i (F ,  7r)~0. 

In particular, if G is infinite then F does not have property HFD. 

Thus, taking G in the theorem to be solvable yields a solvable group without prop- 

erty HFD. In fact, whenever G is not virtually abelian, Theorem 5.4.1 gives a continuum 

of infinite-dimensional irreducible unitary representations with H 150. The particularly 

interesting case of Z ~ Z is discussed further below. 

Notation. Hereafter we use the notation Z G for the direct sum of G copies of Z, 

namely, the finitely supported functions from G to Z. The set of functions supported on 

one fixed element goEG is denoted by Z 9~ 

Proof. Pick any non-zero vector v in the representation space V., and define a homo- 

morphism f :  Zc---~V~ as follows: On the "copy" Z r of Z, define f ( m ) = m v  (scalar mul- 

tiplication of v by mEZ) .  For an arbitrary gEG define f on the "g-copy" Z g of Z by 

f(m)=z~(g)(mv)=mlr(g)v. Then f extends uniquely to a homomorphism f :  ZC-+V. 

Denoting elements of Z c by ~ ,  it is easy to see that  (ffz, g)v=Tr(g)v+f(ff~) defines an 

isometric uniform action of F on V~ whose linear part is z~. This gives a non-zero element 

be/~1 (F, 7r), namely, b(~,  g) = f ( ~ ) .  [] 

Notice that  if Z is replaced by any group H which has Z as a quotient, then the group 

F = G~H satisfies the same conclusion of the theorem, by repeating the same construction, 

this time letting the homomorphism f factor through the quotient. However, when H 

does not have infinite abelianization, the strategy of the proof of Theorem 5.4.1 breaks 

down. The simplest case to examine in this regard is that  of F = Z l D ,  where D is the 

infinite dihedral group. Note that  this group is not virtually torsion free. Let us see 

how it can be approached using geometric group theory. In contrast to the previous 

construction, this establishes the existence of cohomological (irreducible) representations 

of wreath products which do not factor through a representation of the acting subgroup. 

Note that  the proof below is completely non-constructive, and relies almost entirely on 

the relation developed earlier with geometric group theory. 
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THEOREM 5.4.2. The group F = Z  ~D admits an irreducible infinite-dimensional uni- 
tary representation ~ with HI(F,  Tc)r 

Proof. We first claim that  for any non-trivial finite-dimensional irreducible F-repre- 

sentation 7c, one has H I(F, 7c)=0. (Recall that  for finite-dimensional representations the 

first reduced and ordinary cohomology coincide--see w above.) Indeed, suppose by 

contradiction that  05  [b] EH 1 (F, ~), and consider the restriction of b to D z. We examine 

two possibilities: 

(1) b inz=0 in sl(nZ,~iDZ); 
(2) bIDz~O in Hi(DZ, TcIDZ). 
If case (1) holds, the affine isometric F-action defined by b has a fixed point for D z 

(Lemma 2.4.2). By normality, the set of its fixed points is F-invariant (affine subspace), 

and hence by irreducibility of 7c it is either one point, or the whole space. The first is 

impossible because then this point would be fixed by all of F, contradicting Lemma 2.4.2 

and our assumption on the 1-cocycle. The second implies that  the DZ-isometric action 

is trivial, so both the representation and the cocycle factor through Z, and 7r must be 

trivial by property HT of Z. 

Suppose that  (2) holds, and let ~:Dz-+U(n) (n=dimTr) be the homomorphism 

corresponding to bIDz (see w above). Since ~ is non-trivial, there is at least one copy 

of D in D z, denoted D1, on which the restriction of ~) remains non-trivial. Denoting the 

"complement" of D1 in D z by D2, we then deduce from Theorem 4.2.5 (passing to the 

reduced cohomology using w that  there is a non-zero vector v on which the D z- 

linear action factors through an action of D1. By irreducibility and finite-dimensionality 

of 7r, finitely many G-translations of v span the whole space, and hence all but finitely 

many of the Z-copies of D in D z act trivially in ~. But then all the Z-conjugates of 

one of these copies act trivially as well, and they generate all of D z. Thus D z acts 

trivially in 7r, and bIDz is just a homomorphism into C n, which must vanish as D has 

finite abelianization. This contradicts the assumption on b, and completes the proof of 

the claim. 

Returning to the proof of Theorem 5.4.2, suppose by contradiction that  F does not 

admit an infinite-dimensional irreducible representation 7r with ~1 (F, 7r)~0. Then this, 

the above claim and Theorem 4.1.2 (2) imply together that  F must have property HT. 
However, recall now that  since D is bi-Lipschitz equivalent to Z, by [19] F is q.i. to Z ~Z, 

which has infinite Vbl. This contradicts Theorem 4.3.2 and completes the proof of the 

theorem. [] 

In fact, examining the proof more carefully shows that  it works equally well for 

wreath products G~H if H is bi-Lipschitz equivalent to a group with infinite abelianiza- 



172 v. SHALOM 

tion, and G is residually finite. These assumptions can be weakened further, but  at any 

rate we expect a much more general phenomenon (see w below). 

Notice that  using Theorem 4.3.3, Theorem 5.4.2 also shows that the group Z ~Z 

does not have property HFD, without making any computations. Thus Theorem 5.4.2 

proves Theorem 1.15 of the introduction. Unfortunately, it does not shed light on the in- 

triguing question of whether or not this group admits an infinite-dimensional irreducible 

representation with H I ~ 0 .  We conclude this subsection by discussing this group a little 

further, making some explicit computations. 

The proof of Theorem 5.4.1 shows that  for every 1-dimensional unitary character 

X of F=Z~Z ,  factoring through a character of the acting Z, one has d i m H l ( F , x ) = l .  

Explicitly, given any such X, to define a homomorphism Q: F--+SI~< C with linear part X, 

one chooses the (C-)value of the generator of the Z-copy in the, say, 0-copy, and this 

extends uniquely to a homomorphism as in the proof of Theorem 5.4.1 above. Now, 

integrating this representation (and 1-cocycles) with respect to any non-atomic measure # 

on S 1 gives rise to a weakly mixing unitary representation with ~ 1 5 0  . More concretely, 

take any such measure # on S 1 whose points X are identified with the characters of Z, 

and consider the Hilbert space Vu=L2(S 1, It) with the usual scalar product. Writing the 

wreath product elements as (h, z), where h: Z--+Z is finitely supported and zEZ acts as 

usual by translations, we have a unitary F-action 7~ and a (reduced) 1-cocycle b ranging 

in Vu, defined by 

(7r(h, z) (F)) (X ) = X(z)F(x), b((h, z))(X) = E h(n)x(n). 
nGZ 

We do not know if this construction accounts for all the first reduced cohomology 

of the unitary representations of F. The possibility that  the only irreducible unitary 

F-representations with non-vanishing H 1 are 1-dimensional is equivalent to the fact that  

a representation as above occurs discretely in any 7r with H I ( F , ~ ) ~ 0 .  An equivalent 

characterization of this phenomenon would be a "relative property HT"- type situation: 

For every unitary ~r with H i (F ,  ~)~0 ,  there exists a non-zero vector which is invariant 

under the normal subgroup Z z. 

5.5. A n  e x a m p l e  of  q u a s i - i s o m e t r i c  p o l y c y c l i c  g r o u p s  

The purpose of this section is to prove the following result: 

THEOREM 5.5.1. There exist polycyclic groups F and A which are co-compact lat- 

tices in the same Lie group, such that F satisfies bl (F)=vbl (F)=3 and has property HT, 

while A satisfies bl(A)=vbl(A)=l and does not have property HT or HF (but only HFD). 

Moreover, such examples exist with F's having arbitrarily large bl. 
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As F and A are in particular quasi-isometric, this highlights the following phenomena, 

complementing various results proved earlier for the class of amenable groups: 

(1) Unlike property HFD, property H E is not a q.i. invariant; 

(2) Even among groups with finite vbl, this quanti ty is not a q.i. invariant (compare 

with the remark preceding Theorem 1.2 in the case of infinite vbl); 

(3) Even if the group F has (the strongest) property HT and large bl (as one wishes), 

no bet ter  lower est imate on vbl of groups q.i. to it may be obtained in general, other 

than  its positivity; 

(4) Unlike nilpotent groups, there exist polycyclic groups without property HR. 

We begin the discussion by describing a general method to construct polycyclic 

groups without proper ty  HF, which will then be used in our concrete examples. 

Consider a ring of integers O of a number  field K,  and a field embedding T: K--+C. 

Assume that  there exists an element pE50 which satisfies [T(#)l =1,  and is not a root of 1. 

We have 50---Z d as an abelian additive group, and define A=ZD<O, where a generator 

of Z acts on 50 via multiplication by #. Then A is a polycyclic group, and T defines a 

natural  homomorphism of it into $1~< C with an infinite character X as its linear part .  

This gives a non-zero class in H I(A, X) (w so A does not have property HR. 

We therefore proceed to find such 50 and p. It  is easy to see tha t  in extension 

degrees 2 and 3, any algebraic integer # of absolute value 1 has to be a root of 1. It  is 

in degree 4 that  we will find (and in fact classify) our examples. Suppose that  f ( x ) =  

x 4 -  ax 3 +bx 2 -  cx+d is the minimal polynomial of p over Q, having integral coefficients 

(recall tha t  # is an algebraic integer, not a root of 1, with [#l--1). Because ~=p--1  is also 

a root of f ,  # is a root of x4f(x-1) ,  which (using minimality of f )  must then be equal 

to f .  Hence we can write f ( x ) = x 4 - a x 3 + b x 2 - a x + l .  As the product  of all roots is 1, 

if the other two roots of f are not real then they are complex conjugates whose product  

is 1, so all roots would have modulus 1. However, as is well known, an algebraic unit all 

of whose Galois conjugates have modulus 1 must be a root of 1. Therefore the other two 

roots of f must be real. Conversely, if we find an irreducible polynomial f of the above 

form, then its roots come as two reciprocal pairs. If  furthermore it has exactly two real 

and two complex roots, then the reciprocal of one complex root is its complex conjugate, 

hence it is of modulus 1, and the fact that  the other two are real ensures that  it is not a 

root of 1, as required. 

We are thus reduced to finding an integral polynomial of the form f ( x ) = x  4-ax3~ - 

bx 2 -  ax § 1 which is irreducible and has two real and two complex roots. For this purpose, 

observe tha t  if x is a root of f as above, then y = x + x  -1 is a root of h(y)=y 2 - a y + b - 2 .  

It  is easy to see tha t  the fact tha t  h has one real root with ly11>2, and another with 

]y2[< 2, is equivalent to the requirement that  f above has two real and two complex roots 
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(if all four roots were real (resp. non-real) then we would have lyil>2 (resp. lyyl<2) for 

both yj). Furthermore, once we have f of the above form with two real and two complex 

roots, it fails to be irreducible only if it has a quadratic factor whose roots are the two 

complex roots of f ,  and therefore they are roots of 1. In that  case a root y of h must be 

an integer, which together with the condition lYl <2 leaves only the possibilities y=0 ,  • 

Consequently, adding the condition on h of non-vanishing at these three values to the 

previous one gives a set of conditions on the coefficients a and b in f which forms a 

complete description of all the degree-4 polynomials satisfying the properties required 

for our construction. 

To write explicit examples, we note that  as it will turn out shortly, we shall need 

the real roots of f to be positive. This is guaranteed by the conditions a > 0  and b - 2 > 0  

(which imply that  h has positive roots). In this case, the condition on the two roots 

Yl and Y2 of h lying at different sides of 2 is equivalent to the condition h(2)<0,  i.e. 

(i) b < 2 a - 2 .  For the irreducibility of f it only remains to verify that  h(1) r  i.e. 

(ii) a~b-1. Subsequently, these two latter conditions, together with the third condi- 

tion (iii) a > 0  and b - 2 > 0 ,  force the polynomial f(x)=x4-ax3+bx2-ax+l to satisfy 

all the required properties. For instance, taking any integers a = b > 2  guarantees all of 

(i), (ii) and (iii), so f(x)=x4-ax3+ax2-ax+l (a>2)  has a root # as required. 

Continuing the proof of Theorem 5.5.1, fix once and for all a polynomial f as above, 

and denote its complex roots by # and p - i ,  and its real (positive) roots by a and a -1. 

Denote by A = Z x (9 the corresponding group which we know not to possess property HF,  

as explained in the first paragraph of the proof. Let BESL4(Z) be a matrix whose 

characteristic polynomial is f .  Then A ~ Z x Z  4, where Z acts through multiplication 

by powers of B. We may embed A naturally as a co-compact lattice in the connected 

polycyclic Lie group H=AtxR 4, where At is a 1-parameter subgroup such that  At=l 
is conjugate to B. Indeed, we may take At so that  At=i is a block matrix having the 

diagonal matrix with (~ and a - i  in its upper left 2x2-corner ,  and a rotation matrix 

whose eigenvalues are # and p-1  in the lower right 2 x 2-corner. 

To construct the second group F we climb one dimension higher, to a 6-dimensional 

(unimodular) Lie group G in which H is embedded co-compactly. Thus A will also be 

co-compact in G. The group G is a semi-direct product ( S i x  R ) K R  4 (S l ~ R / z ) ,  where 

S l x R  acts through a homomorphism r S lxR--+SL4(R)  defined by letting R act as 

in the group H above through At, and S 1 act through the (commuting!) 4•  

matrices which are the identity in the upper left 2 x 2-corner, and rotation in the lower 

right 2x2-corner  (in fact, G is isomorphic to SOLVxSO(2)xR2) .  Now, in G we can 

find another 5-dimensional co-compact subgroup H '  isomorphic to R x R  4, where this 

time R acts through multiplication by the positive diagonal matrices in SL4 (R) having 
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1 in the third and fourth diagonal entries. In fact, H ~ S O L V •  2, and if F is the 

product of some co-compact lattice in SOLV with Z 2, then F has property HT (e.g. by 

using Corollary 5.1.3 and the fact that  the lattices of SOLV have this proper ty- -see  the 

discussion preceding Corollary 5.2.8). Thus both F and A are co-compact lattices in G, 

and an easy computation of the abelianizations verifies the properties claimed at the first 

part of the theorem. 

To see that  one can have similar constructions with F having arbitrary large bl 

and A having vbl=l, one can use the same technique, but letting G=(S 1 •  (R4) n 

for any n, where S i x  R acts through the homomorphism ~: $1• R-+SL4n(R),  which is 

taken as the previous r on each one of the n copies of SL4(R) along the main diagonal. 

Here we get 51(A) =vbl (A) = 1 and 51 (F) =Vbl (F) =2n+ 1. [] 

6. Some further results,  remarks and related questions 

6.1. U E s  and lattices in semis imple  groups 

It is natural to expect that  Theorem 1.5 should hold for all (not necessarily amenable) 

finitely generated groups. Some supporting evidence is supplied by the fact (interesting 

in itself) that  it does hold for every arithmetic Chevalley group, such as SLn(Z); more 

precisely, for every group commensurable to G(Z) ,  where G is a simple algebraic group 

defined and split over Q. This follows immediately from Theorem 1.5 and the fact that  

these groups contain nilpotent (and hence amenable) subgroups of equal cohomological 

dimension. The latter, in turn, follows from a result of Borel and Serre [12]: For any G as 

above (but without any assumption on its Q-rank), CdQ (G(Z))  differs from the dimension 

of the symmetric space associated with G = G ( R )  by the Q-rank of G. Calculating 

dimensions in the Iwasawa decomposition G=KAN, it is now easy to see that  in our 

case CdQ(G(Z) )=d imN,  so it only remains to use the fact that  one can choose N that  

intersects G(Z)  with a co-compact lattice of N. In a similar spirit, one can deduce from 

Theorem 1.5 other related results which are not special to the amenable setting, e.g., if 

a product of n infinite groups uniformly embeds in a group F, then CdQ F ) n .  

In fact, the framework of non-uniform lattices suggests further intriguing questions: 

Given a simple Lie group G and two lattices F and A<G,  when does F uniformly embed 

in A? If one of the lattices, say F, is uniform, then a complete answer is available: Every 

discrete subgroup of G uniformly embeds in F, and the only discrete subgroups of G 

in which F uniformly embeds are themselves uniform lattices (in which case a UE must 

be a quasi-isometry--see w below). We believe that  the hierarchy for non-uniform 

lattices should be determined according to their Q-rank: If F uniformly embeds in A 

then Q-rank F ) Q - r a n k  A, with equality only when they are commensurable. It would 
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be especially interesting to show the converse, namely, that  a UE does exist when there is 

a strict inequality between the Q-ranks (in the right direction). The first, yet challenging, 

case to understand here is when G=SL2(C)  (for these purposes, in the rank-1 case regard 

all non-uniform lattices as having Q-rank 1). 

Finally, for a discrete group F, call the maximal integer n such that  Z n uniformly 

embeds in F the Euclidean degree of F, denoted d(F). By Theorem 1.5, if F has finite 

Q-cohomological dimension, then d(F)<ec .  (Is the converse true?) Notice that,  unlike 

with quasi-isometric embeddings, this invariant is interesting also for hyperbolic groups. 

For example, if F is the fundamental group of a closed hyperbolic n-manifold, then 

d(F)=n-1 (d(F)<~n-1 because a uniform embedding of Z '~ into F must be a quasi- 

isometry using w below, and d(F)>~n-1 using horosphere embeddings in the universal 

covering). Similarly, the Euclidean degree of non-uniform lattices in SO(n, 1) is n - 1  

(note that  here the general upper bound cdQ is attained). What  about lattices in the 

other rank-1 Lie groups? What  can be said about the Euclidean degree of other sym- 

metric spaces (and, what may turn out to be closely related, of nilpotent groups)? 

6.2. U E  equivalence and U E  rigidity 

One can weaken the notion of q.i. of groups F and A, by calling them UE equivalent if each 

one uniformly embeds in the other. Equivalently, every group which uniformly embeds 

in one, does so in the other. What  properties are UE equivalence invariants? From 

some point of view UE equivalence seems rather weak; for example, if each of the groups 

embeds as a subgroup of the other, then the groups are UE equivalent, an information 

which does not seem too strong geometrically. However, for many classes of groups it 

is as rigid as the usual notion of quasi-isometry: Whenever any self-UE of F is a quasi- 

isometry, in which case we call F UE rigid, any group UE equivalent to F is q.i. to it. Any 

group F which admits a continuous proper co-compact action on R n is UE rigid. More 

generally, if A and F admit proper co-compact actions on R m and R n, respectively, and 

A uniformly embeds in F, then m~n, and in case of equality the uniform embedding must 

be a q.i. This can easily be seen by extending the uniform embedding to a continuous 

proper map of the Euclidean spaces, and using the following well-known application of the 

Borsuk-Ulam theorem: Any continuous proper map of R n into itself is onto (cf. [11] and 

the recent [35] for further related results, using heavier technology). Thus, polycyclic (in 

particular nilpotent) groups on one hand, and uniform lattices in semisimple Lie groups 

on the other, are UE rigid, and this also shows that  if one of these groups F admits a UE 

into some discrete subgroup A of the same ambient Lie group where it is embedded 

co-compactly, then A must also be such a lattice and ~ a quasi-isometry. Thus, being 
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virtually abelian or virtually nilpotent is a UE equivalence invariant. Are non-uniform 

lattices (excluding free groups) also UE rigid? (Can the recent [7] and [8] be relevant 

for such questions?) What  about uniform lattices in semisimple algebraic groups over 

p-adic fields? To avoid hasty conjectures notice that  in the positive characteristic case, 

uniform lattices are not UE rigid (even in higher rank), as they admit a self-embedding 

with infinite index image, induced by the local field embedding F((t2))-+F((t)). It is 

not clear, however, if there is a group UE equivalent to such a lattice which is not q.i. 

to it. 

6.3. U n i f o r m  e m b e d d i n g s  and growth of  g roups  

It is easy to see that  if A uniformly embeds in F then the growth of F dominates that  of A. 

Thus, every group which uniformly embeds in Z d (equivalently, in a finite-dimensional 

Euclidean space) must have polynomial growth. It is a highly non-trivial fact that  the 

converse is also true, a result which follows from Assouad's "doubling theorem" [1] (we 

thank Mario Bonk and Bruce Kleiner for the information concerning Assouad's result). 

Although just knowing that  the growth is polynomial is not a priori enough to deduce 

that  a space is doubling (while bounding it between s o m e  c1 nd and c2 nd is enough), 

a modification of Assouad's theorem, together with passing to a "regular" subsequence 

of balls in the Cayley graph, shows that one can deduce in this way directly from Theo- 

rem 1.5 that  groups with polynomial growth have finite Q-cohomological dimension (at 

any rate, everything follows of course from Gromov's theorem). 

Just like admitting a uniform embedding in Z d characterizes polynomial growth, we 

conjecture that  in the other extreme, a group has exponential growth if and only if a 

non-abelian free group uniformly embeds in it (as before, one direction is obvious). That  

non-amenable groups always receive a uniform embedding of a free group follows easily 

from the main result of [3], so the issue here is the case of amenable groups. In fact, 

every group containing a free subsemigroup receives a UE of a non-abelian free group, 

and hence by [15] the conjecture holds in the class of all elementary amenable groups. 

Besides being natural in its own right, our interest in this question is motivated by the 

following result: 

THEOREM 6.3.1. For a discrete group G, consider the following properties: 

(1) G has subexponential growth (locally, if G is not finitely generated). 

(2) G has the following translation property: For every non-negative, non-zero, 

bounded real function 04 f: G-+R, for all n and elements gl,..., gn C G, if the real linear 

combination of translations of f ,  ~ i n l  ai(fogi), is a non-negative function on G, then 

necessarily Einl  ai ~ O. 
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(3) For every continuous G-action on a locally compact space X admitting some 

compact subset K C X with X = G . K ,  there is a a-finite G-invariant (Radon) measure 

on X .  

(4) There is no uniform embedding of a non-abelian free group in G. 

Then (1) ~ (2) ~ (3) ~ (4). 

The implication (1) ~ (2) follows from [47]. We we will not prove here the other 

two, but only remark that all the four conditions imply amenability of G. Notice that  

(3) is obviously a strengthening of the invariant measure property for amenable group 

actions on compact spaces, as one can take K = X  when X is compact; the ax+b group 

(or any dense subgroup of it) acting on the line is an example where it is not satisfied. We 

do not know how to reverse any of the implications above, but the remaining (4) =* (1), 

conjectured above, would close the circle (1) (4). 

6.4. S o m e  n a t u r a l  e x t e n s i o n s  

We believe that  Theorem 1.5 should hold also for homological dimension instead of 

cohomological dimension. This would improve, for example, Theorem 1.6 to the expected 

inequality hA<.hF in all cases, and remove the assumptions on F in Theorem 1.8. It 

would also give significant information concerning groups q.i. to the lamplighter group, 

as the latter has Q-homological dimension 1. Since we proved that  any group q.i. to 

the lamplighter group has a finite index subgroup which surjects onto Z, together with 

a homological dimension argument one might be able to show that  the kernel of this 

surjection must be a locally finite group (these are exactly the groups of Q-homological 

dimension 0), which we conjecture to be the case. The homological dimension argument 

predicts that  there is no uniform embedding of Z 2 into the lamplighter group, a result 

which was indeed verified by Benjamini and Schramm (private communication), via a 

study of the following notion, interesting in itself, which weakens that  of a uniform 

embedding: A map f :  A-+F between finitely generated groups is a quasimonomorphism 

if it is a Lipschitz map, and it satisfies # { f - 1  (~/)} < C  for some global C < o c  and all 0'EF. 

Benjamini and Schramm showed that  Z 2 does not admit a quasimonomorphism into the 

lamplighter group, nor to a tree. Do quasimonomorphisms also "respect" cohomological 

dimension as in Theorem 1.5? 

Finally, since uniform embeddings are defined equally well for non-finitely generated 

groups, and enable one to define a quasi-isometry in this case as well, it may be of interest 

to look more closely at some examples. Are two infinite direct sums of finite cyclic p- 

groups q.i. exactly when they are commensurable? This may be helpful in deciding for 

which finite groups F and F ~ the lamplighter groups L ( F )  and L ( F  ~) are quasi-isometric 
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(compare with [33, IV, Item 44]). Note that  when IF l<oc  and ]F']=oc the two groups 

are not q.i. by Theorem 1.5 (this follows also from recent results of Erschler [20]). 

6.5. M o r e  on  p r o p e r t i e s  HT~ HF a n d  HFD 

We believe that  Theorem 4.2.1 (3) should be strengthened to characterizing property 

HFD by having only finitely many irreducible unitary representations with H I ~ 0  (all 

being finite-dimensional). Similarly, we conjecture that  the condition on the virtual first 

Betti  number in Proposition 4.2.4 (2) is redundant,  namely, that  any finitely generated 

amenable group with property HE should contain a finite index subgroup with prop- 

erty HT. Both results would follow from the following plausible dichotomy: A finitely 

generated group has either finitely many, or uncountably many, irreducible unitary rep- 

resentations with _~150 . It is natural also to ask whether property HFD may be charac- 

terized by the non-existence of an irreducible infinite-dimensional unitary representation 

with Hi%0.  A possible counterexample would be the group Z~Z (which does not have 

HgD--see w Proving that  this group has no such representation is of independent 

interest, and would seem to require fundamentally new techniques. 

Although we mostly concentrated on first cohomology, one may define and study 

properties analogous to HT, HF and HFD for any cohomology degree (as was done in 

w for nilpotent groups). A proof similar to that  of Theorem 1.10 shows that  the 

latter is again a q.i. invariant in the class of amenable groups, so a further study of 

these generalized properties would also be applicable to geometric group theory. In fact, 

one need not insist on reduced cohomology, and define in a similar way "spectral" q.i. 

invariants based on ordinary cohomology, such as the vanishing or non-vanishing of H n 

with coefficients in some weakly mixing, mixing (see below) or the regular representation 

(in the case of measure equivalence, this approach leads to new results when bounded 

cohomology is used [41]). Another intriguing question is to find an amenable group F 

having a mixing representation 7r (i.e. all matrix coefficients decay to 0 at infinity), with 

_~n(F, 7r)~0. The existence of such a representation can be shown to be a q.i. invariant 

in the class of amenable groups (for any fixed value of n separately), and in the case 

n = l  it stands in sharp contrast to property HFD. As an application to geometric group 

theory, one can show that  if an amenable group F admits such a representation lr (for 

some n), then any group q.i. to it must have finite center. 

Finally, in contrast to the amenable case, non-amenable groups satisfying property 

HFD seem to be quite rare. However, groups with property (T) do have, by definition, 

property HFD. It is well known by now that  property (T) is not a q.i. invariant. Is it 

possible that  one can extend Theorem 1.10 to all (not only amenable) groups, so that  it is 
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the weaker property HFD which is respected by the geometry of groups? Interestingly, the 

known non-Kazhdan groups which are q.i. to Kazhdan groups do satisfy property HFD. 

Even knowing whether this latter fact holds in general would seem to require some new 

insight. Finding examples of non-amenable groups having property HFD , which are not 

based on property (T), would also be of interest. 

6.6. Property HFD and solvable groups 

Various families of solvable groups having, and not having property HFD w e r e  shown. 

The following conjecture would provide a uniform explanation: 

CONJECTURE. A finitely generated solvable group has property HFD if and only if 

it has finite Hirsch number. 

The more interesting part in terms of applications to geometric group theory 

(through Theorem 1.11), i.e. the "if" part, seems particularly difficult at this level of 

generality. Even for polycyclic groups, we know how to establish property HFD using 

only the (non-trivial) fact that  they virtually embed as lattices in connected solvable Lie 

groups (and from there a long way is still to go). Providing a proof without using this 

fact would be a challenge worth taking, which could be a first step to an understanding of 

the general phenomenon. In fact, the above conjecture can be seen as a special case of a 

significantly more far-reaching speculation: Is it true that  a finitely generated amenable 

group has property HFD if and only if it has finite Q-cohomological dimension? As two 

initial concrete test cases which should be more tractable, one may try to prove that  if F 

is locally finite by Z then F has property HT (generalizing the lamplighter group in The- 

orem 5.2.1), and that  for any two infinite finitely generated amenable groups G and H,  

the wreath product G~H never has property HFD (compare with Theorem 5.4.1 above). 

Another concrete related question is to decide whether for a finite group F,  the wreath 

product Z2~F has property HT. Such groups seem considerably more complicated than 

Z~F  in their algebraic structure. 

6.7. P r o p e r t y  HFD a n d  G r o m o v ' s  polynomial growth theorem 

In this last subsection we suggest a new strategy to proving one of the outstanding results 

of geometric group theory Gromov's polynomial growth theorem [30]. This approach 

has the advantage of avoiding completely the solution to Hilbert 's fifth problem [42], and 

is based on the ideas developed here; more precisely, on the following two results: 

THEOREM 6.7.1. A finitely generated group of polynomial growth has property HFD. 
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THEOREM 6.7.2. The above theorem implies Gromov's polynomial growth theorem. 

Proof of Theorem 6.7.2. The proof goes by induction on the degree d of the poly- 

nomial growth (using an idea of Tits in his note [52] appended to Gromov's paper). The 

point is that  in order to prove Gromov's theorem by induction, it is enough to show that  

every group G of polynomial growth has a finite index subgroup with infinite abelian- 

ization. By subexponential growth the kernel of the abelianization can be shown to be 

finitely generated ([40]), thus of polynomial growth degree ~<d-1. Hence one can argue 

by induction to show that  every such G is virtually polycyclic. Wolf's classical theo- 

rem [54], together with polynomial growth, then finish the proof. The key ingredient of 

the argument, being that  G indeed virtually has infinite abelianization, follows from its 

amenability and property HFD as in Theorem 1.11. To put  matters  in perspective, we 

only remark that  the point of property HFD here is that  an a priori infinite-dimensional 

cohomological unitary representation, which exists for any finitely generated group G 

without Kazhdan's property by [50], must be finite-dimensional in this case, leading to 

the required abelianization. It may be worth noting also that  the proof of the latter 

existence result in [50] involves a rescaling-limiting construction for isometric actions, 

which appears also as a crucial ingredient in Gromov's approach. We also remark that  

very recently we were informed, first by Alain Valette, that  for discrete groups a similar 

and completely independent construction of this type appeared also in [36]. In [50], the 

fact that  the spaces are Hilbert enables one to use negative definite functions to produce 

a rather elegant construction. [] 

We are therefore left with the proof of Theorem 6.7.1, observing first that  this result 

follows from Gromov's theorem, since we established it for (virtually) nilpotent groups 

(see Corollary 5.1.3 and Lemma 4.2.2). Thus, if one could prove Theorem 6.7.1 without 
appealing to Gromov's result, we would be done. Our purpose henceforth is to show that  

there is reasonable hope and a natural approach to doing so, which reduces to a certain 

conjectural mean ergodic theorem (for groups of polynomial growth). In the case G - Z ,  

this is no more than von Neumann's classical mean ergodic theorem. 

Let G be of polynomial growth. To establish property HFD o n e  needs, by Defi- 

nition 2.4.3 and Lemma 2.4.4, to study affine isometric G-actions without almost fixed 

points. For amenable G, given a G-action on a Hilbert space V, there is a natural "candi- 

date" for a sequence of almost fixed points, namely, the sequence obtained by averaging 

over Folner subsets. However, this is too naive in general, as the action is only aifine 

and not necessarily linear. Thus, if we normalize things so that  a generating set SCG 
translates a base point voEV up to a maximum distance 1, then elements in the sphere 

of radius n of G (denoted S~) may shift v0 up to distance n (this is exactly the case for 
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the natural zd-translation action on the Euclidean space R d, which indeed has no almost 

fixed points). 

Yet, for groups of polynomial growth, (at least some of) the balls, denoted Bn, are 

much "better" Folner sets: 

LEMMA 6.7.3. For G of polynomial growth there exists a constant C, and an infinite 

sequence of integers ni--+oa, so that [Sn~l/[Bn~[<~C/ni. 

Indeed, an elementary argument shows that  otherwise we get for every C and all m 

large enough, IBm ]~> 1-Into 1 (1 ~-C/n) ~ m C - 1 ,  contradicting polynomial growth. 

Now, given an isometric G-action on V, fix for convenience the origin vo=oEV as 

a base point, and define 

1 vn-IBnl ~ gvo. (17) 
gc B,~ 

CONJECTURE. If the linear part zr of the isometric action does not contain a finite- 

dimensional invariant subspace (namely, it is weakly mixing), then, after passing to a 

subsequence, v,~ is a sequence of almost fixed points: ]]gvn-v,~l]-+O for all gcS .  

As the conjecture clearly implies Theorem 6.7.1 above, we next concentrate on it. 

For a general amenable group, it is not even true that  I]gv~-vn]] should be bounded 

over n when g ES. A first positive indication in our case comes from the fact that  

]]gvn~--Vn~ ][ <.C for all gcS,  which can be deduced directly from Lemma 6.7.3. To bet ter  

appreciate the nature of this conjecture, it is illuminating to first analyze the case G = Z ,  

with the standard generators S=:E1. If the generator 1 acts through the affine operator 

gu=Tou+w, with To unitary and wEV, then substituting in (17) gives 

1 
g V n - - V  n --  ( T ~ w - - ~ - . . . - ~ T o w ~ - w - ~ T o l w ~ - . . . ~ - T O n w ) .  (18) 

2 n + l  

By von Neumann's mean ergodic theorem, the norm of the expression in (18) goes to zero, 

unless To has a non-zero invariant vector. Therefore, we have just re-proved that  Z has 

property HT! For general G, applying the l-cocycle identity (w again transforms the 

expression ]]gvn-v~]l, similarly to (18), into an average over the balls Bn of the unitary 

part 7r, and Lemma 6.7.3 shows that  the number of summands in this expression is of 

the "right magnitude" O([Bn D" One is left to show that  under a weak mixing hypothesis 

on 7r, this average goes to 0. Note that  it is a common phenomenon in ergodic theory 

that  weak mixing implies good averaging properties, typically by guaranteeing that  the 

product (representation or) action be ergodic as well (eft [5] for one example). 
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