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w Introduction 

For any pseudo-group of homeomorphism of Euclidean space one can define the 

corresponding category of manifolds. The most familiar examples in Topology are the 

full pseudo-group of homeomorphisms, giving rise to the theory of topological mani- 

folds, and the subgroup of smooth differomorphisms giving rise to the theory of C ~ 

manifolds. In this paper, we discuss an intermediate category--quasiconformal homeo- 

morphisms and manifolds. 

Recall that a homeomorphism 9 : D ~ R  n from a domain D in R n to its image 9(D) is 

K quasiconformal if for all x in D 

H~(x) = limsup max{Iq~ [ [y-xl = r} <~ K. 
r~O min{l~v(y)--~v(x)l l iY--X I = r} 

q~ is quasiconformal (QC) if it is K quasiconformal for some K~  > 1. Roughly, a quasicon- 

formal map distorts the relative distances of nearby points by a bounded factor. 

Contrast this with the Lipschitz condition: a homeomorphism q~ is bi-Lipschitz if for 

some C~>I and all x,y in D: 

c- l lx-y l  <~ kv(x)-~v(y)l ~< cIx-yl.  

Both these conditions define pseudo-groups of homeomorphism and hence quasicon- 
formal and Lipschitz n-manifolds; Hausdorff spaces made from domains in R n pieced 

together by, respectively, quasiconformal and Lipschitz homeomorphisms. We also 

have the obvius notions of equivalence in the two categories. 
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For n~:4 it is known that these two categories are both essentially equivalent to 

that of topological manifolds. We have: 

THEOREM (Sullivan [25]). l f  n*4 any topological n manifold admits a quasiconfor- 

real structure. Also, any two quasiconformal structures are equivalent by a homeomor- 

phism isotopic to the identity. 

With a similar statement, also proved in [25], for the Lipschitz case. In this paper-we 

show that neither part of the above theorem can extend to dimension 4. We will prove: 

THEOREM 1. There are topological 4-manifolds which do not admit any quasicon- 

formal structure. 

THEOREM 2. There are quasiconformal (indeed smooth) 4-manifolds which are 

homeomorphic but not quasiconformally equivalent. 

(The corresponding Lipschitz statements are trivial consequences.) 

These theorems illustrate the special nature of manifold theory in four dimensions. 

It is now well known that there is a radical divergence between the theories of smooth 

and topological 4-manifolds. This has been discovered by a combination of the classifi- 

cation theory of Freedman [14] on the topological side and, on smooth manifolds, the 

use of new information coming from Yang-Mills fields. In this paper also we take our 

topological input straight from the results of Freedman and our theorems will follow, 

transferring arguments developed in the smoth theory, if we can lay down the founda- 

tions of Yang-Mills theory over quasiconformal 4-manifolds. This task takes up the 

bulk of the paper. In w we return to give the proofs of Theorems 1 and 2. The whole 

programme is similar in spirit to Taubes work on end periodic manifolds [27]. As there, 

one could hope that once the basic theory is in place one could extend all the results for 

smooth manifolds proved using Yang-Mills theory to the quasiconformal case. We will 

make some detailed remarks on this in w 

It is instructive to isolate more precisely the point at which the general theory for 

n*4 breaks down in four dimensions. Let F be a pseudogroup contained in the 

pseudogroup of quasiconformal homeomorphism of n-space. It is a general fact that 

two properties of F suffice to provide unique F structures on topological n-manifolds. 

(i) n-deformation. C o close F homeomorphisms can be deformed to one another 

through F homeomorphisms (together with a suitable relative version of the statement). 

(ii) n-approximation. Any homeomorphism of a ball B n into R n can be C-approxi- 

mated by a F homeomorphism. 
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Now in [25] the n-deformation property is proved for quasiconformal and Lip- 

schitz homeomorphisms in all dimensions n. So our Theorems 1, 2 show that n- 

approximation fails for these peudogroups when n=4. Thus we have: 

COROLLARY. There is a homeomorphism of  the 4-ball into R 4 which cannot be 

approximated by a quasiconformal homeomorphism. 

We now turn back to the central topics of this paper--the global analysis of Yang- 

Mills theory on quasiconformal manifolds--and review the standard theory in the 

smooth case (see [13] for example). There we start with a smooth, compact, oriented 4- 

manifold Y with Riemannian metric g. Let P---> Y be a principal bundle with compact 

structure group G. One forms the space ~ of L~ connections on Y and the "gauge 

group" eg of L~+ 1 bundle automorphisms. There is a great choice in the possible 

Sobolev spaces L~ to use--the key constraint is that eg should consist of continuous 

automorphisms, i.e. that a Sobolev embedding 

L~+ 1 ~ C  ~ 

should hold. This requires (k+ 1)-n/p>O. In this case ~d is a Banach Lie group acting 

smoothly on ~g. One then constructs slices for the action (away from "reducible 

connections") using the Coulomb gauge condition. For A in ~ there is a coupled 

opererator d/~ acting on bundle valued 1-forms and 

TA, c = {A+a] d~ta = 0, la] <e} 

gives a local transversal for the ~d-orbits. These make the quotient space ~=J/~3 into a 

Banach manifold (except for singularities at reducible connections). Next, for suitably 

chosen Sobolev spaces L~ (e.g. L~, k>l)  the curvature FA lies in L~_ I and defines a 

smooth eg-equivariant map on ~---or section of a Banach bundle over ~.  Using the 

Riemannian metric g we split the curvature into self-dual and anti-self-dual parts: 

F A = F ~ + F  A. 

The anti-self-dual (ASD) moduli space M is the subset of ~ cut out by the zeros of F~. 

Elliptic regularity gives that an anti-self-dual connection (i.e. one with FA=0) is eg 

equivalent to a smooth connection, so the precise Sobolev spaces used are not too 

important. The equation FA=0 is, on ~, a Fredholm equation and the moduli space M 

has a virtual dimension given by the Fredholm index of the linearisation: 

d = index(d~+da). 

12-898286 Acta Mathematica 163. Imprim~ le 20 decembre 1989 
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Under suitable restrictions one achieves a manifold M of this dimension either by an 

abstract perturbation of the set-up ([5], [7], [15]) or by varying the metric g slightly. 

Similarly one arranges that under  smooth change of parameters M changes by a 

cobordism ([8], [9]). These moduli manifolds are then the input for various simple 

topological arguments by which one deduces conclusions about the original 4-mani- 

fold Y. 

Turning now to a quasiconformal base 4-manifold X, the first point is that quasi- 

conformal maps are differentiable almost everywhere.  This allows one to set up some 

differential geometric structures,  in particular, we can choose a measurable conformat 

structure on X. The Yang-Mills equations are conformally invariant so this conformal 

structure defines ASD connections.  Two main changes are needed to take the standard 

theory over to the quasiconformal case. The first concerns the slice condition and the 

d~ operator.  This enters already in the linear set up of  the Hodge theory (signature 

operator) coupled to an auxiliary connection. For  Lipschitz manifolds a theory of 

signature operators has been developed by Teleman [28], [29]. He shows that one can 

define d~ and it has sufficient good properties to mimic the usual linear elliptic analysis. 

However despite some efforts we have not been able to use this operator  to construct  

slices in the non-linear problem, even in the Lipschitz case. The basic difficulty is that 

d~ = -x-da~ 

involves differentiating the * operator  and for our manifolds * is at best bounded,  

measurable; with no control of  its regularity. Thus we use a different approach based 

on the constructing of  a (right) parametrix for the d a operator.  The latter is bet ter  

behaved since 

d A = 1 ( 1  +-x-) d A 

and the measurable * occurs  outside the differentiation. The basic analytical lemma for 

handling this measurable-coefficient operator  we learnt from the book of  Ahlfors ([1] 

Chapter V) who deals with the analogous 2-dimensional problem. This lemma is 

discussed in w and, as the reader will see, underpins the whole theory.  (In Appendix 2 

we should show how this approach can be used to reproduce some of  Teleman's  

results). 

The second main change has to do with choosing a suitable functional-analytic 

framework. The L 4 n o r m  on 1-forms is conformally invariant in 4 dimensions and it is in 

many ways most natural to try to work with connection matrices which are locally in L 4 
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(with curvature in L2). However the natural class of  gauge transformations would then 

be those in L~, and these are not cont inuous-- the  exponent  being the borderline one 

where the Sobolev embedding fails. In the Lipschitz situation one can work (thanks to 

the lemma of  w in L 4+~ for some fixed small e and restore the Sobolev embedding 

theorem but quasi-conformal maps do not preserve the space of  L 4+c 1-forms for e>0.  

We overcome this difficulty by the introducing new function spaces; smaller than 

L 4 but larger than any L 4+e, which are on the one hand preserved by quasi-conformal 

maps and on the other  hand yield continuous gauge transformations. As in the standard 

theory, these function spaces depend on real parameters and the precise choice we 

make is not in the end too important.  Similarly, we have "elliptic regular i ty",  that any 

solution is locally gauge equivalent to a n  L 4+e one (analogous to smooth for us). The 

key here is a theorem of Gehring that a quasiconformal map in n dimensions has 

derivative in fn+~ for some e>0  [16]. We give a new proof  of  this fact (for n=4)  using ~Ioc 

our basic lemma. 

Indeed, in Ahlfors '  book this result is proved (following [4]) for n=2  and our proof  

is the natural generalisation of  that one from 2 to 4 dimensions (in Appendix 2 we 

discuss the general even dimensional situation.) 

w Local theory 

(i) Conformal classes 

Let  E be a 4-dimensional oriented real vector  space. A conformal structure on E is an 

equivalence class [g] of  Euclidean metrics g on E: 

[ g ]  = [ ; t 2 g ] .  

There is, however, a more concrete  description, special to 4 dimensions, using the * 

operators -x-g on 2-forms AE(E*). The operator  -x-g depends only on the conformal class 

of g and gives the familiar splitting: 

A2(E *) = A + ( ~ A  - 

into self-dual and anti-self-dual parts. The eigenspaces A +, A- are respectively, maxi- 

mal positive and negative subspaces for the wedge product  form: 

o n  A2(E*) .  (Of course we need to fix a volume element to define this as an R-valued 

quadratic form). A + is the annihilator of  A- under  the wedge product  so -x-g on A 2 is 
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completely determined by A-.  If we have some fixed reference metric go with positive 

and negative subspaces A~, A o we can represent the negative subspace A-(g) for any 

other metric g as the graph F u of  a linear map: 

�9 - -  + 

(2.1) /a. A 0 --->A 0 . 

The condition that A be negative on Fu goes over the condition: 

(2.2) ~u(~o)l < I ol 

for all non-zero forms w in A o. 

LEMMA 2.3. The map [g]---~A-(g) yields a bijection between the conformal struc- 

tures on E and the space o f  negative 3-planes in A2(E *) 

Proof. Fix a reference metric go and standard g0-orthonormal basis e l, e 2, e 3, e 4, 

for E. If  {ei} is the dual basis then: 

A~ : (EiE2+E3E4, EIE3q'~E4t2 , EIE4+E2E3) 

A o = (elez-e3e 4, ele3-e4e2, ele4-eze3). 

Let  gl be a new metric, diagonal relative to this basis. 

gl(ei, e j ) =  O, i4=j 

gl(ei, ei) = ~ .  

We normalize so that 21222324 = 1. Then A-(g0  is represented by a map:t ,  as above, with: 

(2~2~- 1) 
'u(elez-e3e4) = (2~2~+1) (E1s 

and symmetrically for the other  basis elements. Now the function 

f ( x ) =  ( x - I )  
(x+ 1) 

gives a bijection from (0, ~)  to ( -  1, 1) and for any prescribed values of  Z~2~, Z~2], ).~24 z 

we can solve uniqely for 2i with 212z2324 = 1. So we have a bijection between the er 

diagonal conformal classes and maps/~:A----~A~ with operator  norm lul<l, diagonal 

relative to the given orthonormal  bases. But we know that the A z representation gives a 

double covering: 
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S0(4)~S0(3) x SO(3) 

So, up to a sign, pairs of orthonormal bases in A~, A o correspond precisely to 

orthonormal bases in E. Since any metric is diagonalisable the assertion follows. 

There is a natural metric on the set of conformal structures: 

(2.4) 

In the notation above 

d([g0], [g,])= max log { I~ll 
lelo=l.lo=, \l h/ 

d([g0], [gl]) = log(~.,/J.4) 

if21~>A2~>23~>J.4. On the other hand the operator norm L u] of the associated linear map is: 

~ -  1 
(2.5) - - -  

this is in fact symmetric in go, gJ. We have: 

/I+LuIX 1o [ l+ lp[ \  gk 
1-tpi)"  \ l - - ~ l /  

So the metric and the operator norm define equivalent "distance funct ions" on the 

space of conformal classes. 

We now take these ideas over to manifolds. Let Y be a smooth oriented 4- 

manifold, and fix a smooth Riemannian metric go on Y. We can define a bounded, 

measurable conformal structure on Y to be an equivalence class of measurable sections 

g of SZ(T * Y) with 

sup d([g], [go])rr, < oo. 
y E Y  . 

If Y is compact this notation is plainly independent of our reference metric go. 

Equivalently we can define the structure by a measurable bundle map. 

(2.6) p: Ar--~A ~, 

with 

[Lu[[ = sup Luy[ <1. 
y 
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There is then a measurable field of  subspaces F,, = A-(/~) in Azr. In the smooth case we 

have first order operators. 

1 + d+: f2r--~Q r = F(A~) 

d- :  = r(A ) 

with d=d++d -. Similarly if we compose with the projection from A+(p) to A § the d § 

operator relative to the new conformal structure is represented as: 

+ Qr_-~f~r. (2.7) d~, = d++pd-: 1 + 

(Strictly we should replace f~, here by a space of bounded sections of A~.) Thus d~ is a 

first order operator with bounded measureable coefficients. 

(ii) Elliptic theory and measureable coefficients 
+ 

In this sub-section we prove the basic analytical lemma for the d~ operators. The proof 

is elementary and is a direct translation of an idea due to Boyarskii [4] for the 2- 

dimensional problem discussed by Ahlfors [1]. See also [17] Chapter V. 

Let Y be a smoth compact oriented Riemannian 4-manifold and introduce standard 

differential operators: 

a n ;  

~ ' r ~ d ,  ~'r  d ' ~ Z ~ _  f2 r 

Then d+d=d-d=O and we have a pair of elliptic complexes, whose cohomology can be 

readily identified by Hodge theory. First for a in f2~ the relation between the norm and 

wedge on A 2 gives: 

(2.9) fr,d+ aJ2-,d-a[2 dp = f d a ^ d a =  O. 

So lld+allt2 = Jld-allL2. (Notice that the L 2 norm on 2-forms appearing here is conformal- 

ly invariant.) In particular: 

(2.10) Ker d + _ Ker d -  = Hi(y;  R). 
Im d lm d 

On the other hand: 
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_ + (2.11) coker(d +) - H r, coker (d- )  = H r ;  

the + self dual harmonic forms representing maximal positive and negative subspaces 

for the cup product form on HZ(Y; R). In particular, if Y is a homology 4-sphere the only 

cohomology appearing is the constants K e r d c  f2 ~ Under this hypothesis standard 

elliptic theory gives us a Hodge decomposition: 

(2.12) 1 b - 0  QY -- d (Qy)  ~ Ker d* 

where (2o represents the functions of integral zero. There is an inverse 

(2.13) Q: g2~,---~Kerd*c~2~, with d+Q(og)= to. 

All of this is compatible with the usual Sobolev norms, so Q is a bounded operator 

Lp ___~i~ and S = d - o Q :  g2~---~f2{ is bounded on L~_ r In fact, S is a singular integral k -  1 ~ k  

operator (essentially the signature operator) of order zero, of the kind considered in the 

Calderon-Zygmund theory [24]. The identity (2.9) shows that S gives an isometry on L 2- 

spaces�9 It then follows from an interpolation argument (see [1], pp. 113-115 or [24] p. 

22) that we have: 

(2.14) [[S(w)llL p ~< G [It~ with G--+I as p---~2. 

Now let ~t be a bounded conformal structure as above with 

c = I1~11 = s u p  ~l  < 1. 

For p in (0, ~)  we can consider d~ as a bounded operator on the Sobolev spaces: 

(2.15) + + -. p 1 ~ L P ( f ~ . ) .  d ,  = d  +/~d .Ll(f2'r) 

LEMMA 2.16. There is an r/>0 (depending only on c) such that for  ]p-2 l<r / there  is 

a bounded inverse: 

�9 P + p ] + Q~.L (Qrl--*LI(ff2 r) for  d , ,  

mapping to Kerd*cf2~.  

Proof. Consider: 

(1 +kt o S) = (d + +Bd-)  o Q: Q~--~flr. 
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This is bounded on L p and the LP-operator norm o f p o S  is at most c.Cp. Since Cp----, 1 as 

p---~2 and c < l  we can chose r /such that f o r p  in the given range [[poS[[<l. Then l + p S  

is invertible with inverse 

Now put 

(1 +/~S)- 1 = 1 - /zS+ (/~S) 2 - . . .  

Qu = Qo(1 +/~S) -~. 

The stated properties of Qu follow from those of Q. (Notice that the LP'---~L~ operator 

norm of Qu is bounded on any closed subinterval in (2-r/ ,  2+17) and the bound depends 

only on c.) 

We have then a version of  the usual elliptic theory for d~ in the given range of 

function spaces. Notice that the operator d* we have used to define our inverse Q~, is 

essentially an auxiliary tool--we do not use a metric in the given bounded conformal 

class to define it. While we have carded out this argument on a compact manifold Y our 

main application will be in local setting, for a d~ operator over a bounded domain 

D = R  4. We take y=S4=R 413 {oo} and transfer our forms to S 4 using a cut off function fl, 

supported in D and equal to 1 on some subdomain D ' ~ c D .  We then extend/~ to S 4 and 

deduce from the above result: 

COROLLARY 2.17. There are constants rl(c,D,D'), A(c ,D,D')  such that i f  bt is a 

bounded conformal structure over D with ILull<e then for  ho-21-<r/: 
p + 

(i) For any form to E LP(Q~) there is an a = Qu(to) in Ll(f2 o) with 

d~ a + =to on D'. 

IlalIL ,o< AIItolIL. 

(ii) For any a in L~(f~o) there is a u in L~(f~ ~ such that 

a--dulILr  A(IId alIL, D + Ilallv l>)- 

(Notice that in (ii) we can also choose u to have control of [lullL~.) 

(iii) Quasi-conformal maps 

In the introduction we gave the most geometric definition 

Hr 
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of the K-quasiconformality of  a homeomorphism q~ :D-->R 4. There are many other 

difinitions which turn out to be equivalent, see [32]. Let  us note first that a point x 

where q9 is differentiable He(x) 2 is the ratio of  the maximum and minimum eigenvalues 

of the matrix (Vtp)*(Vtp) x. In the notation above: H,(x)E=exp(d(qg*(go), go)) where g0*(g 0) 

is the pull back of  the Euclidean metric go. Now quasiconformal maps are certainly not 

everywhere differentiable but they have the following main regularity properties: 

PROPOSITION 2.18 ([32]. / f  qg:D--)R 4 is a quasiconformal map then: 

(i) cp is differentiable almost everywhere; 

(ii) q9 preserves Lebesgue null sets: 

/~(A) = o = ~  ~(/~(A)) = o .  

(iii) The derivative Vq~ is locally in L 4. 

(iv) V~ is a weak derivative: 

f: . Oq) = 

8X i 8X  i 

~f .tp 

~ 2 ~ 2 ~ 2 ~ ] 2  Now if ,~j~,~2~.-,,3~-,,4 are the eigenvalues of  (Vq))*(Vq))/ at a point of differenti- 

ability x: 

We could take these properties (i)-(iv) as the defining properties for quasi confor- 

mality together with the key condition that 

d([g0], [qg*(g0)]) ~< e K. 

Properties (ii) and (iii) are related. The Radon-Nikodym theorem, together with (i) 

and (ii), implies that the usual integration-by-substitution formula is valid: 

(2.19) fr g(y) d/~y = ff(w(x)), [(J~)xl d?tx 

where J r  det (Vq~), defined almost everywhere).  The meaning here is that if g is in 

LI(q~(D)) then (gocp)J~ is in LI(D) and the two integrals agree. In particular if we 

restrict the domain so that q~(D) has finite measure and take g--1 we have: 

y lJd d/~ = :t(q~(D)) < co. 

for smooth compactly supported test functions f on D. 
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I1 1 = 2, ,~2 ~.3 24 

while Iv~l 2 = E kff. If 21/24 ~< K we have 

IVq~l 2 ~< 4K3/21J~l�91 

SO 

fol v~14 d/~x <~ 16K3r < ~.  

As we shall see in w below, the derivative Vq~ is in fact locally in L 4+~ for some 

q>0.  In the proof  we give we will make use of  a rather obvious variant of  the argument 

above. Let  o be any postive function on the cone of  positive matrices which is 

homogenous of  degree d. Then there is a constant CK, o such that for any K quasiconfor- 

mal map q~: 

Ivcfl ~< c x ,  o o((vq~)* (vc:)) TM. 

This follows from the fact that the er-ball about go in the space of  conformal structures 

is compact.  

(iv) Differential forms 

For n= 1,2,3,4, the L 4In n o r m  on n-forms o n  R 4 is conformally invariant. L e t  ~:D--)R 4 

be a K quasiconformal map and write I4/"r n ~ for the Banach space on n-forms on 

q~(D) with L 4In coefficients. We define the integral 

:L  (f~(D))---,R 

in the obvius way and also the pull back forms 

c;*(o) 

on D using the usual formula and the (almost everywhere defined) derivative of cp. We 

assume that D is connected.  Then we can define the orientation o~=__ 1 of  c~ by, say, 

the action on cohomology with compact  support. This agrees with sign J~ at points of 

differentiability. The verification of the following is straightforward. 

4/n n ~g 14/n(O n "1 ~f*(Oa) lies in L (Qo) and  gives  a PROPOSITION 2.20. (i) F o r  e) in ~ ,"r 

bounded  m a p  b e t w e e n  these  B a n a c h  spaces .  
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(ii) The wedge product 

L4/n(c)n ~ ( ~ I 4 / n ' ( o  n' "~.....)T4/n+n't(")n+n"l 

is defined and cf*(a ̂ fl)=cf*(a) ̂  cf*(fl). 
1 4 (iii) For to in L (Qr 

focf*(to) = % f,(o)to" 

We now define an exterior derivative d. If to E L41"(•o)" and OEL41"+I(Q'D+I) (n>0) 

we say dto=O if 

(2.21) ( O ^ a = ( - l ) ' + l (  coAda 
JD JD 

for all smooth compactly supported test forms a. Another definition is to say dto=O if 

there are smooth toi converging to to in L 4In with dto i converging to 0 in L4+~---the 

equivalence of the two approaches follows from a regularisation ([18] Theorem 7.4). 

Similarly when n=0  we define a derivative d on the functions on D and if D has, say, a 

smooth boundary the Sobolev embedding theorems imply that a func t ionfwi th  dfin L 4 

lies in L U ( ~ )  for any N > 0  ([18], Chapter 7). 

LEMMA 2.22. I f  q~:D---)q~(D)~R 4 is a quasi conformal homeomorphism, n>~l and 
to EL4/n(Q~) with dto=O then 

d(go*(to)) = cf*(O). 

Similarly when n=0,  if dfEL 4 then d(focfl)=cf*(df) is also in L 4. 

Proof. Consider first the case n=0;  then the assertion is just the chain rule for 

distributional derivatives: 

4 To establish this we use the properties that cf is both in Ll,~o c and continuous. We 

suppose first that f:q~(D)---)R is smooth and with compact support and choose an 

approximating s e q u e n c e  ~0(i)'--')~9 in L~,loc [7 C 0. Then 
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in L 4, and focp(~ cp in C O so d(fo q0)=q0*(df) by our  second definition. To extend 

to general f w e  note that the equation d(fo q~)=tp*(df) is local and we can approximate 

a function in the neighbourhood of  a point in q0(D) by smooth functions of compact  

support. 

For  larger values of  n the naturality of  d, when tp is smooth,  expresses the 

symmetry of  partial derivatives: 

82 q~ ~ 82 cp ~ 

ax~axy axrax~ 

For our situation we formulate a weak version of this: 

(2.23) 0, 
ax~ ax~ ax~ / 

for smooth test functions a over D. This holds for our q~ by the definition of  the weak 
/-4/3 derivative.  In turn it holds for any cr in 14/3" the closure of  C~(D) in the ~ norm. ~1,0" 

For  simplicity of  notation we treat the case n= 1. To begin with suppose tu=p(y)dyx 
with p smooth. Then 

oy~ 

Let  r be a test form on D of  the shape: 

r = t(x) d.q dx 2. 

We have: 

TA~*(d(.o) = t(X) ~ aX 3 ~X4 ~X 4 a X 3 ]  ] 

Now apply our  chain rule to poq3=/) to write this as: 

fo ( 8~ 8%' O~ a~;') t(x) ~x 3 8x4 8x 4 ax3 . 

Now put tKx)=t(x)~(x) so 0 is" 4 4/3 in Ll,oCLl,o and by the Leibnitz rule for weak derivatives 

this integral is: 

ax4 ax4 ax3 JD \ ax3 ax4 ax4 ax3 " 
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The first integral vanishes by (2.23) and the second term yields 

odr ̂  rp*(to) 

as required. Now the formula extends to any r by linearity and finally to any to by an 

approximation argument. 

The distribution definition (2.23) gives immediately that d2=0 so if we put: 

n 4/n 4n+ I {to E f~ol to ELloc, n >/1 n dto E Lto r }, 
(2.24) BD= L4 

L 1,1oc , n = 0  

we have a quasiconformally invariant chain complex: 

0 d 1 d 2 d 3 d 4 
(2.25) BD---~ BD---> BD---~ BD---~ B o. 

One verifies readily enough that if a 6 B~, fl 6 fl~ for n, ms- > 1 then a Aft 6 B~o +'~ and 

(2.26) d(a ^fl)  = da ^ fl + ( -  1)na A dfl. 

However it is not true that multiplication takes 0 m m BD• D to B o This is one of the 

difficulties associated with the failure of the Sobolev embedding theorem at the critical, 

conformally invariant, exponent: 

LLo  ,-/-, c ~ . 

For example the function 

f (x)  = log I log Ixll 

is in L41oc but is not bounded around x=0. We could get around this by replacing 

B ~ by B ~ N C ~ but that would do damage to the following Poincar6 lemma: 

LEMMA 2.27. Suppose n ~ 2  and flEB~o +l with dfl=0. Then each point in D has a 

neighbourhood 15 on which we can f ind  a ~ B ~  such that da=fl. 

Proof. We transfer the problem to the compact manifold S 4, as in Corollary 2.17, 

using cut-offs. Then choose the Hodge solution to da=f l  with d ' a = 0 .  Elliptic theory 

gives, for 4/n+ 1>1: 

IlallL ,o+, II IIL,, +, 
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and 

IlallL,,o z IlallL,-+, 

by the Sobolev embedding theorem. (Here, and throughout the paper, we use the 

notation < to denote "bounded by a constant multiple of" when the dependence on 

parameters is clear.) 

The Poincar6 lemma for the B-forms fails in the top dimension. There are forms a 

in Lloc(~ 4) which are not d of an LIo c-4/3 3-form. This can easily be deduced, using the open 

mapping theorem, from the failure of the Sobolev embedding theorem mentioned 

above. This breakdown in the conformally invariant theory, which becomes more acute 

when one goes to the non-linear problems involved in gauge theory, motivates the 

search for alternative quasiconformally invariant spaces of forms. 

(v) Gehring's theorem 

Let ~c:d---~q0(D)~R 4 be a K quasiconformal map between bounded domains D, cp(D). We 

know already that Vcp is in L 4. Gehring showed that one could do a little more. 

THEOREM 2.28 [16]. There is a 6=6(K)>0 such that i f  xo is a point in D there is a 

neighbourhood D'  c D  o f  xo with 

f~ IV~14+~ d/~< ~ �9 

(Note.  Gehring's theorem is valid in any dimension n--a quasiconformal map has 

derivatives in rn+~ ~Ioc  "1 

We can deduce this result from our fundamental Corollary 2.17. Let a be a 1-form on 

R 4 with d+a=0 but da=~o nowhere zero---for example: 

ct= y ldyz -y zdy l  - Y 3 d Y 4  + Y 4 d Y 3  . 

Pull back the standard flat conformal structure on ~c(D) by ~ to obtain a bounded 

structure representing by/~ on D, with ~u[~<c<l. Then 

satisfies 

on D. 

a ' =  ~*(a) 

d.u+o~ t --- 0 
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So on an interior domain D ' ~ c D  we have by Corollary 2.17 (ii) that there exists U with 

Ila'-dullL~,o, ~< al la ' l lLo < ~ 

for p ~<2+r/, some :7>0. So da' = d ( a ' - d u )  is in L z+~ on D '  and we have: 

We now apply the observation in (iii) above. At each point x the function 

(v~)---,l~0*(o~)xl is homogenous of  degree 2, so for K quasiconformal maps: 

Hence 

as required. 

Going in the opposite direction to the proof  above we can now deduce that 

quasiconformal maps act on spaces of  forms a little beyond the conformally invariant 

exponents.  

LEMMA 2.29. Let  q):D----~q)(D)~R 4 be a quasiconformal map between bounded 

.. c r(4/,)+~tc~, ~ (n= 1 2, 3,4) then q)*(a) E L(4/n)+e'(~'2nD) domains w i t h  fIV(pl4+d< ~ .  I f  ~,- ,~ t~ , 

where 

(}E ~p n _ _  

4+d - - + t ?  
n 

and II~,(a)llt,4/.,+r ~ c ~  IlallL,,,.,§ The constant  C~ can be taken independent  o f  e in a 

range e E [0, E]. 

Proof. Our hypotheses  are: 

1 = folV~ol4+'~ < o~ 

t "  
j =/iV(~o]4 A(4/n)+~: < oo t~ 

Jo 
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and we wish to bound: 

fo,~*(oj)l(4/")+~' <~ folvq~,4+"c .,~4/")+c o,)lq~(x) �9 

Let  f (x )=  lTq0lx, g(x)= Iwlr then HOlder's inequality gives: 

ff4+n~'g4/n+E' / I" \ lip / I" , \ J/q I J f  ap) IJ(fbg4/n+e)q) 

with a+b=4+ne' and l/p+ 1/q= I. 
We want to choose indices so that: 

ap = 4+6 

bq = 4 

then the expression on the right is lJ/PJl/q<~. The five linear equations in p-J ,  q-J,  a, 

b, t '  have a unique solution, and the required e' is 

6e 
4 +6  
- - - ' 1 -  C 

n 

We can now define quasiconformally invariant spaces of forms: 

= t~/ ' (4/n)+e At,~ ~ j(4/n+J)+ e for some t > 0}. (2.30) B~'" {w E U~I ~o ~ ~,oc . . . . .  ,or 

The definition of the exter ior  derivative goes over to this setting to yield a graded 

differential algebra (B +' * .d) .  B +'~ consists of continuous functions so we avoid the 

difficulties associated to the failure of the Sobolev embedding at the critical exponent  

(for example a full Poincar~ lemma is valid). However these B + forms are not very 

convenient for analysis since Up >4/.L p is not a Banach space. So in the next section we 

introduce new function spaces lying between the B" and the B +'" and which enjoy the 

good properties of  both. 

w Modified Banach spaces 

(i) General definitions 

Let  (S, ~u) be a measure space with p ( S ) < ~ :  then we can regard the function spaces 

LP(S) (l>~p~>~) as being ordered by inclusion: 
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LP(S)cLq(S) if p~q.  

Fix an exponent p and additional real parameters E, ~ with 0<r ,  Q<I.  Eventually we 

shall require Q<E. Define a space of functions s (depending on e, 0) as follows. A 

function f is in s if it can be written as an LP-convergent sum: 

(3.1) f = E f  with f,.EL p+e and ~Q-/llf~ll2+,<~. 
1 1 

We define a norm on s by: 

/ ao \112 
- i  2 (3.2, IIfllLp = i n f / ~  Q IlfillL,+ ) 

where the infimum is taken over all possible such decompositions f = E f - .  

PROPOSITION 3.3. s is a reflexive Banach under II Both s and its dual space 

are separable. There are bounded inclusions Lr c s  p i f  r>p. 

Proof. Consider the space 

Z = 12(@LP+") 

consisting of  infinite sequences (f/) with the weighted norm 

II(Y,.)II  = 

It is a standard fact that Z is a Banach space. If ( f )  E Z 

i/2 / \ i/2 
2 t - i  

NOW ( E ~ ) i ) <  OO SO 

IIf ll . -< II(f )ll  

and there is a bounded sum map: 

o: Z-~ L p, 

13-898286 Acta Mathematica 163. Imprim~ le 20 decembre 1989 
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s is, by definition, the image of o and the norm is the usual quotient norm on Z/Kero. 

Thus s is a Banach space. 

The dual space Z* is well known to be: 

( (ai)'-ai~tqi' E Ila,ll2~,# ~ ~} 

where qi is defined by: 

I 1 
f - - - 1 .  

qi P +ei 

Moreover, Z is reflexive. By the Hahn-Banach theorem s is also reflexive and 

(s is the space of functions a such that ctEL q for all q<p and E Ilal12~,#< ~.  It 

follows that the bounded functions, and a fo r t io r i  L p+~, are dense in L p and the 

separability of s follows from that of L p+l. Similarly for (s 

We will use a simple lemma many times in our argument below. Let c>0 and define a 

space L p' ~ to consist of functions f which can be written f = E f  with 

~IITII2L~+ 10i< ~o. 

Let ]l Ilp, c be the obvious norm on this space. 

LEMMA 3.4. LP'r163 p and the two norms 11 []p,c and l[ [1s are equivalent. 

Proof. Suppose c > l .  Then LP+~icLP+~' and we obviously have II(f)llL~<llfll~.c. 
Conversely, choose k such that e%<l. Then i f f = E f  i, f .E L p+`  ̀put: 

f i=~fi-k,  i>~k+l 
(0,  i<~k. 

So f=Ef,-  and f/E L p+ce. Also 

/ \ 

IIf/llL..,0 -< IIf, ll + ,kQ  IIf, II + ,Q 

and the two norms are equivalent. The proof when c<  1 is exactly parallel. 

LEMMA 3.5. If 1/p+l/q=l/r, f E [ P  and g E L  q then f g E s  r. 

= (:?. r + 6  
Proof. If  f = E f ,  f / E L  p§ t h e n f g  E f g  and f g _ L  ', 
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IIf~ gilt+o, ~llf, llL.+~, Ilgllmo 

where  

1 1 1 
rWf~ i p-t-c, i q 

That  is: 

q2ei , q2 
6 i -  >ce' where  c -  . (q+p+e i) (q+p) (q+p+ 1) 2 

N o w  apply L e m m a  3.4. Similarly we have a mult ipl ication theorem for  the dual spaces .  

Recall  that  the dual (s is: 

(3.6) { a t a E L " f o r a l l n <  p and ~llallZL~,Oi<~} 
p - 1  

where  

1 1 - - +  - 1 .  
qi P+e i 

LEMMA 3.7. Let 1/q+l/s=l/r and 1/q+l/p=l. Then if  f E ( s 1 6 3  s we have 
f g E L  r. 

Proof. Let  f E  (s so Z 2 i IlfllLq, o < o~ (1/qi= 1/(p+ei)). For  any  c > 0  we can,  by  

L e m m a  3.4 write g E s  s as Z g~ with 

Z 
g 2 , - i <  

i LS+Ce Q oo. 

Then if fgi = hi: 

IlhillL,+~, ~ IlfllLq, lie ILL.., 

where  

1 1 ce i e i 

rWf~ i - r s(s+ce i) -t p ( p + c i  ).  

We can choose  c large enough  so that  6/>0.  Then  fg=Ehi whith 
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--- ~ IlgillL.., IlfllLq, 

IXll ,lt:.,o ') 

Now suppose that/t is Lebesgue measure on a convex bounded domain D~R 4. We 

extend the s spaces to differential forms in the obvious way. 

Let x0 be a point in D. 

LF.MMA 3.8 (Sobolev embedding theorem). Suppose o<e 3/4, then there is a con- 
stant A=A(D,xo) such that 

If(x0)l ~< alldf]l~, 

for all smooth compactly supported functions f on D. 

Proof. We can take xo=O and work in "polar"  co-ordinates r,O with 0 E S 3. Then: 

VoiiS 3) 3r 

_ 1 f f~SfLr3drdO 
V~ S3) JJ0  Or r j 

VoI(S 3) Dr r 3 

So 

Now suppose df= Ea~ with 

Then 

If(O)l~ l~  fotdJq-~d~. Vol (S 3) 

E 2 -i C 2 I la , l lL,~, ,0  = < ~ .  

fo ~ 4+ei lail d/u<~lll/r311Lq, ltaillL,. ,, where q i  = 2+el. 
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But, since D is bounded, 
3+e i 

/ FI - . \ l /qi. .~. / 3 + E i X ~ + e ~  ~ 

H 1/r3llql <~ I Jo r30 q)dr) \ e-----i-- I 

So 
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If(0)l IlaillL,+: -3/4' 

and if ~<e 3/4 this sum is bounded by a multiple of C. 

In fact the same integral formula used in Lemma 3.8 here shows that ([18] Lemma 

7.16): 

(3.9) If(x)-f(y)l<~C.g(lx-yl) where C---lid/lie and g(S)= E Sd/4ei~, -3i/4. 

g is a monotone function and g(S)--+O as S ~ 0 .  So we have by the Ascoli-Arzela 

theorem: 

COROLLARY 3.10. The space of functions f in Co(D) with Ildflle<c is precompact 
in C~ 

We can now define the analogous of the usual Sobolev spaces 

s  = closure of C~ in norm Ildjql;, 

s = functions f on D with df locally in s 

Both of these consist of  continuous functions and Corollary 3. l0 gives that there is a 

compact embedding. 

(3. l 1) s C~ 

Moreover we have a composition rule: 

^4 PROPOSITION 3.12. / f  F : R - - R  is a smooth function then for all f in Ll , lo  c the 
4 composite Fo f also lies in Ll,lo c 

An n 
The proof is straightforward. We define BD, ~occBo to be those forms (/) ~r Llocr~4/n with 

^4  d~o :- :4/n+l (n~>l) and to be LLlor when n=0.  Then: 111 L,  Io c 

^ .  d 1 d ^2 d ~ d ^4 
B B ---~B ---~B -+B (3.13) o, loc o, Io~ o, lo~ D, loc D, toe 

is a graded differential algebra. 
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LEMMA 3.14. Le t  q):D--->rp(D)cR 4 be a quas iconformal  map  be tween bounded  

If  ,- fJ/n,f~, " then tf*(w) E s and  domains  as in L e m m a  2.29. to r t ,p(D)) 

Ilcf*(O))llt;4,, ~< Cr f o r  some  cons tan t  (~r 

Proof.  Let  o)=E wi where w i E L  4/'+'', then cf*(w)=grp*(wi) and by Lemma 2.29 we 

can suppose: 

IJr <- GII 

where 

(~ ,S i 

~i-- 4 + 0  {_•i 

n 

So r <~ cg  for some c and 

Z IIfD*(O)i)ll2L4, ' .... i o i ~  Z nO)il[2L4,n-~io-i" 

Now the result follows from (3.4). 

To sum up we have for any e, O with 0<e ,  O< 1, O<e 3/4 a quasi-conformally invariant 

differential graded algebra "* (Btoc, d). 
Let  D ' c c D  be a bounded domain in R 4 and ~t represent a bounded conformal 

structure on D, as in Corollary 2.17. We consider: 

(3.15) +" ~̂ ~2 + d;, .BD----~L (QD). 

with 

PROPOSITION 3.16. (i) There is a bounded  map  

, . ~ 2  + ~i Q,,.L (f~o)--,BD 

d t:Q!t to = to on D ' .  

^0 (ii) For  any a in B~D we can f i n d  u in Bo., such that  

]la--dU[lBl(D, ) ~a l ]  d,T al]L:(D,+IIa]IC.(D). 

Proof .  (i) Let  ~o--Z wiE s with mi f .L  2+~. By Corollary 2.17 



QUASICONFORMAL 4-MANIFOLDS 205 

+ o) = a ;  Q.(,) 

on D',  where: 

< I1 o@ ,. 

So by the Sobolev embedding theorem, IIQ~(%)[IF, <<- [[egillL>~ where l-4/(2+ei)=-4/ri 
i.e. ri=4(2+ei)/(2-ei)>4+4ei. So 

as required. Part (ii) is similar. 
^1 Now suppose y is in B o. Wedge product followed by projection to ~ gives a map 

Mr: s163 

LEMMA 3.17. For I~, Q~ as above the maps 

L (Qo)-+L (f2o) (i) M y o Q . :  "2 + "2 + 

( io Q,, o 

are compact. 

Proof. (i) Let Yi be bounded with Yi-*Y in/~4. Then M r o Q~--~M r o Q~ in operator 

norm, so it suffices to consider the case when y is bounded. If q0 ~ is a sequence 

bounded in s Q~(o2 (j)) is bounded in s so taking a subsequence we can suppose 

Q~(q9 ~>) is convergent in L q for any q<4, In particular Q,(q0 ~j)) converges in/2 2 and so 

also does M r Q~(cp~ 

(ii) is similar. 

So our elliptic theory for the d~ operators behaves very well on the/~ spaces. In the 

same way we have a full Poincar6 lemma. 

r and dfl=O then each point in D has a LEiVlMA 3.18. Suppose 9<e. I f  f l ~ o ~ ,  o 
^n neighbourhood f) on which we can find a 6 B~oc, o such that da=fl. 

Proof. Once again we use cut-offs to transfer to a compact manifold and apply the 

usual elliptic estimates and Sobolev embedding theorem. The interesting case is when 

n=3. The operator norm of the map 

S: LP(ff24)---~LP(~ 3) 

solving dSfi=fi, d*Sfl=O, blows up as p---~l. In fact by ([24] p. 22) 
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as p--->I. So i f f l=Ef l i  with f l i f iL  l+e 

I+e .lr4(l+fl)/(3 d) S(fl i) ELi  -- '~ - 

and 

Ils(fll)llL,,§ , <~Ar 

It follows that S is a bounded map s if •<e. 

w 4 Global theory 

(i) Quasiconformal manifolds and conformal structures 

Definition 4.1. (i) A quasiconformal 4-manifold X is a topological 4-manifold equipped 

with a maximal atlas of  charts 

~p~: U a ~ X  

such that the overlap maps ~p~-i ~p# are quasiconformal mappings on their domains of 

definition in R 4. 

(ii) The quasiconformal 4-manifolds (X,{~p~}),(X',{v2~}) are quasiconformally 

equivalent if there is a homeomorphismf:  X--->X' such that the 0p~)-lf~pa are quasicon- 

formal maps on their domains of  definition. 

Thus a smooth manifold, for example, has a quasiconformal structure. We will 

assume our manifolds are oriented, Hausdorff  and paracompact--most  often we will be 

concerned with compact manifolds. Using the results in w167 2, 3 we can now develop 

some global analysis on quasiconformal 4-manifolds quite parallel to the standard 

theory in the smooth case. 

First, the quasiconformal invariance of differential forms allows us to define the 

following spaces of  n-forms on a quasiconformal manifold X: 

L4/n t o n  ~ i4/n+ (~'~nX) ' ~4/n (~"~nX) 
IOC ~,~XI, X'qOC ~Ioc 

tl n , ' [ -  ^t/ 
Bloc.X, Bloc,X, Oloc,X" 

The definitions are local so we have the obvious associated sheaves. I f X  is compact we 

write: 
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L 4 / n  t o n  ~ _ 4 / n  n loc,..x, - L (f2,) 

tl _ n 

Bloc, x - B x etc. 

and the L4/"(fl,~), s B~,/~], are Banach spaces. The norms can be defined using a 

/ ~  partition of unity and are unique up to equivalence. For n=0 the space /~o of 

functions with derivatives in s consists of continuous functions, and the inclusion 

/~x~C~ is compact. 
+ , n  An 

The BLo c , Bio c spaces yield chain complexes with the differential d and the Poincar6 

lemmas of w 3 combined with the usual sheaf theory argument give: 

P~OPOSlTION 4.2. The de Rh a m  cohomoiogy groups o f  ^* ^+'* (BLoc, d), (BLo c , d) are 

naturally isomorphic to the singular coholomogy groups o f  X.  

Moreover if X is compact the fundamental class in /-/4 is represented by the 

integration of forms over X. 

Definition 4.3. A bounded conformal structure on a quasiconformal 4-manifold X is 

given by bounded structures [g~] (or /~)  on each chart U a c R  4 (in the sense of w 2(i)) 

compatible under the (a.e. defined) derivatives of ~0~ -~ ~p,. 

Just as in w 2(i) we have a distance function d([gl], [g2]) ELloc. x defined for every 

pair of such conformal structures. If  X is compact we put a metric on the set of 

structures: 

e s s  s u p  
X 

PROPOSITION 4.4. I f  X is a compact  quasiconformal 4-manifold there exist bound- 

ed conformal structures on X and any two can be joined by a continuous path (in the 

abooe sup norm topology). 

Proof. For any two Euclidean metrics gl, g2 on R4: 

d([gl +g2]), [gl]) ~< d[g2], [gl]). 

So if ~ is a partition of unity subordinate to a locally finite cover of X by coordinate 

charts ~0~, and we let [g~] on Us be: 
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(where go is the standard Euclidean metric) the [ga] are bounded and compatible under  

the overlap maps. Similarly if [ga], [g~] represent bounded structures in a system of 

charts, and we normalise so that det g~ =de t  g" then [tg,+ (1-  t)g'~] gives a path between 

the two structures. 

Now if (X, [g]) is a quasiconformal 4-manifold with bounded conformal structure 

we have a * operator  on 

L2(s 

and so self-dual and anti-self-dual forms. As usual the L2-metric is 

}lallL-, = + f  a^a 

for a 6 fl}.  Similarly we have A2 + 2 + § L (ff2x), L (f2 x) etc., and an operator: 

A| ~2 + +,  1 d+:Bx--->L (ff2x) (or from B x to L2+(ff2x)). 

Locally, in coordinate charts these are of  course represented by 

d + +p~ d-  

where we identify g~-self-dual forms with the Euclidean ones by the graph construction 

of w 2(i). 

(ii) Bundles and connect ions  

Here the usual definitions in the smooth category go over wholesale in both the/~ and 

B § frameworks on a quasiconformal 4-manifold. Abstractly, if U is a subsheaf of  the 

sheaf of continuous functions over a topological manifold X, closed under the usual 

algebraic operations (including inversion of non-vanishing functions); we can define a 

category of U vector bundles. If  E is a U vector bundle its local sections form a sheaf of  

%modules.  Suppose (U*, d) is a graded differential algebra with U ~ U; we then form 

UP(E) = UP| 

( " E  valued forms") .  A U connection on E can then be defined to be a linear map 

da:U~ UI(E) 

such that da(fs)=fdas+dfs. In the familiar way we have a curvature Fa in UZ(EndE) 
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such that d2=FA . The gauge transformations or bundle automorphisms (modelled on 

c4~ act on the affine space M of connections. 

In our case we take the sheaves/~, B + with the corresponding complexes of forms, 

to get two classes of bundles, connections, curvatures and gauge transformations over 

our quasiconformal 4-manifold X. For brevity we will stick to the/~ set-up. 

We can work with bundles having different structure groups G and the Chern-Weil 

theory applies so that for an appropriate constant c(G): 

c(G) ( Tr(F A ̂  FA) (4.5) 6 Z 
3 

represents a topological characteristic number. (To see this one can either develop/~ 

classifying maps X---~BG or reduce to the case where E is trivial on X \ p o i n t  cf. w 5.) 

The space M of/3 connections is an affine space modelled on the Banach space 

BI(gE). (Here gEcEndE represents the Lie algebra of G.) If q3 is the/~0 gauge group 

acting on M we have: 

PROPOSITION 4.6. c~ is a Banach Lie group modelled on BO(,qe) and the action 

~ •  is a smooth. 

This is a simple consequence of the composition property in Proposition 3.12 

applied to the exponential map--the proof is exactly as in [13] Appendix A. 

Finally, suppose X has a bounded conformal structure [g] and define 

d]:/~'(ge)-+L2(f2+(gE)) 

by pointwise projection to the self dual forms. Similarly for da. We decompose the 

curvature into 

FA = FJ+FS , 

and 

FLo= a+{a^a} + 

PROPOSITION 4.7. The map sending A to FA is a smooth ~ invariant map from M to 

s with derivative d +. 

Proof(see  [13] Appendix A). A~--~FA is smooth from M to/~2 and the projection 

/~2_+s is bounded linear. 
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(iii) Linear analysis; the parametrix 

Let A be a/~ connection on a bundle E over a compact quasiconformal 4-manifold X 

with a conformal structure [g]. From now on we shall suppose that the structure group 

G is compact and E has an A-invariant metric. 

Define HZac/~2(gE)nLZ(f~+(GE) ) to be the space of coupled self-dual harmonic 

forms; self-dual 2-forms ~o with dA~o=O. In this subsection we abbreviate HI to H. Let 

H•163 be the annihilator of H under the standard L 2 inner product 

< a,f  > = -fxTr(a A f t )  

on Q+(gE) (using the metric on E). 

THEOREM 4.8. (i) H is finite dimensional, so s • 

(ii) The image o f  da:B~(gE)---~s is H • 

(iii) There is a bounded right inverse 

with 

Qa: H• 

d]QA= I m.  

Proof. We begin by constructing a right parametrix 

P: s E) 

for d~ by the familiar patching procedure. Choose a finite set of co-ordinate charts 

~Pa: U a ~ X  such that ~Pa(U~) cover X for U'accU~. 

Fix trivialisations of ~p*(E) over the U~, then the d~ operator is represented in the 

U~ by: 

df, +A + = d+ +pd- +A + 

where/~=/~, A + 6 s and d~ is as in w 2(ii). Let Q~ be the inversion operator for d~ given 

by Corollary 2.17: 

d~ Qa(O) = 0 on U'. 

Choose a/~0 partition of unity {~,a} subordinate to the cover and set 
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(Here we have made an obvious simplification in notation.) Then: 

a~, P(O) = ~ 7~d A Q~(cI, Iu, o) 
a 

a 

= Z o*I ;+Z Ko(*) 
a a 

= ~ + Z K,~(~) 

where K,~(aP)=(TaA++VTa) Qa(~luo). 

The coefficient 7~A++77,~ is in s so, by Lemma 3.17, each Ks is compact and 

< e =  I+K 

with K compact. Thus 

Imd a D Im(1 +K) 

is of finite codimension (hence closed) and we have proved part (i). 

To prove (ii) begin by observing that Im da=Ann(H') where H'c(s is 

the set of functionals vanishing on Im dJ. Now, proceeding from the local situation of 

w 3, we can identify this dual space with self-dual 2-forms having (s coefficients in 

coordinate charts. We claim that if such a form co annihilates Im d a then w in fact lies in 

H (hence in s163 This is a mild version of elliptic regularity. The condition that w 

vanishes on Im d~ is equivalent locally in a U~ to 

d a o = ( d + A )  o9 = 0 

in the distributional sense. But A E s  4 so our multiplication property (3.7) gives 

dco E Z 4/3. Then by a Sobolev version of the Hodge theory, as in w 2(ii) we can find g in 

Q~ such that over U ' c c U , ~ :  

(.O-J-~/~ ~ r 4 / 3  r 2  
L I C L  . 
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But now d f z  fi L 2 (since to is self dual) and by Corollary 2.17 we can suppose d Z, and 

hence to is in L 2. Now repeat  the argument using Lemma 3.5: 

t o 6 L Z , A 6 s  4 =~ Ato6s  2 

to deduce that to fi s Then since dAto =0 it follows that dto s s and to 6/~2 n s +). So 

H ' = H  and Im dA=H • as asserted. 

For  (iii) we consider the operator  j to  d+oP: H• • where ~r is projection to H • 

This differs from the identity by a compact  operator  so its kernel and cokernel have the 

same dimension d. 

Let  col . . . . .  toa; dAal ..... daa d be a basis for the kernel and cokernel and set 

T= ( l id  A P)  + Z ( to/ , )  (d~ ai). Then T: H I--*H A is an isomorphism, and 

gives a map from H i to/~1(GE) with a a QA=I. 

(iv) Index theory 

Let  A be a B connection on a bundle over a quasiconformal 4-manifold X with bounded 

conformal structure. In the smooth situation one introduces an elliptic operator:  

(4.9) d,~ +dA : f2~(E)---,g2~ (E). 

This is defined for any smooth connection;  if A is anti-self-dual the index of this 

operator is minus the Euler  characteristic of  the elliptic complex: 

d A dA 
(4.10) Q~ 

We will now develop a different approach for the quasiconformal situation--avoiding 

the d* operator.  

Extending the operator  QA of Theorem 4.8 to if(flU(E)) by projection we have: 

(4.11) B~ B' (E) ~-~ s 
Qa 

with d a QA the projection to H -L. Let: 
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(4.12) OA=dA--QA F]: B~ 

so d~ bA=O. Then we have a complex: 

(4.13) B~ (E)--->LZ(Q+(E)). 
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(This depends of course on the choice of QA.) Let HA, Q be the cohomology groups of 

this complex. 

PROPOSITION 4 . t l .  The image o f  b A is closed in BI(E) and the cohomology groups 

t-FA, Q are finite dimensional. 

2 _  2 Proof. First notice that we have proved H-HA-HA, Q is finite dimensional in 

Theorem 4.8. To see that H~ a = K e r b  a has finite dimension, consider a sequence u~ in 

/~a,e with tluill~0=l. Then: 

dau  = QA Fa(u) 

is bounded in s and, by the compact embedding/~4 ~--)C~ w e  can suppose u~ convergent 

in C o to u=. Then da ui---~Qa F~ u= in /~4 and it follows that u~ lies in /~0 and Ker 6 a. 

Moreover u; converges to u= in/~0. Thus/aOa, a is finite dimensional. 

Next, choose a closed complementary subspace T in/~0 to Kerba,  so 

baiT: T--*BI(E) 

is an injection. We claim that [16A tll>~c]lt[[ for some c>0 and all t in T. For, if not, there 

would be a sequence ti in T with 1[bat~lla,--*0, Iltilla0=l and, arguing just as above, we 

would find a non-zero limit t= in T with bal~=O giving a contradiction. Thus 

b A T=Imba is complete and so also closed in/~J. 

Finally, we prove that H~,Q is finite dimensional. Suppose q~i is a sequence in 

KerdAC/~(E) and t]~ilfa~=l. Choose a cover of X by coordinate patches (U~, ~p~) and 

functions fla supported in ~p~ Us with Efl2~= 1. Then if q0i, ~ = fl~.~pi we have, in local 

coordinates 

d~ qgi, a= (-flaA + + Vfla) q~i. 

According to Proposition 3.16 we can find ui, ~ such that if cp;, a=~oi, a+dui, a 

lf i, o11 , lid; 9, o11 2 



214 S. K. D O N A L D S O N  AND D. P. SULLIVAN 

and by our compactness results (3.17) we can suppose the cpi',a converge in s Similarly 

we way suppose that the ui, a converge in C ~ 

Now put 

Then 

~ i =  ~ i +  E ~ a d u i  a + E t~aaaUi  a + (Vt~a) ui, a + a a  
ct ~x 

and the last three terms converge in s But 

dui, a = ~ i ' , a - f la  ~ i  and E/52~ = 1, 

SO 

a 

+ I + -- + r~ converges in s hence also the q0[. Finally d A 9i=dA 9i--0 SO, locally, d~ qPi--A+qgi 
converges in s and 9[ converge in B~. This proves that H l, Q is finite dimensional. 

Let us now consider an abstract set up---a family of chain complexes: 

Dt D t 
(,,.12) Vo--, v,--, v: 

parametrised by a connected space T, with the following properties: 

(i) D~=0 for all t in T. 

(ii) Dt(Vo) is closed in V~ and the cohomology groups H~ are finite dimensional. 

(iii) The Dt vary continuously (in the operator norm topology) with t. 

(iv) For each t there is a bounded right inverse Q,: D,Vi~V~. 
In this context we can define an index of the family of complexes in KO(T)--for- 

mally equal to the "Euler characteristic" 

(This is a special instance of a theory developed by Segal [20].) This index can be 

defined as follows: for any compact subset T'=T we "stabilise" the complex by 

choosing: 
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and 

91 = VI@R" 

'r = V o , a "  

D t = Dt@~t: VV--~V 2 

D, = Dt@X,: f'o-->91 

in such a way that t he / ) t  complex has no cohomology in dimension 1 or 2, for t in T'. 

Then Ker / ) t c l ?  0 yield a vector bundle over T' and the index is defined to b e :  

ind(D t) = { K e r / ) t } - R " + R ' .  

This is independent (as an element of KO(T')) of the choices made in the stabilisation. 

Simple linear algebra gives: 

�9 0 �9 1 �9 2 &m H t - & m  H t +&m H t = dim(ind Dr) 

so in particular this Euler characteristic is independent of the point t in T. 

In our application we define the integer: 

(4.13) i(E) = dim Hi ,  Q-dim H~ Q-dim H 2, ~. 

This depends, a priori, on the conformal structure of X, the connection A and E and the 

choice of right inverse QA; but we can prove that it is in fact independent of these 

choices by appealing to the theory above. First, if Q0 and QI are two choices for the 

inverse the linear family 

Qs =sQl+(1-s)Qo, sE[0,1]  

interpolates between them and the family dA--Qs F~ is continuous in operator norms. 

To handle variations in A we introduce a stabilisation in the manner above. If A0, A I are 

two connections, joined by a path As we choose 

~s: R~---~/~z(f~ +(E)) 

such that 

is surjective for every s. We can then find a continuous family of right inverses Qs with: 

+ 
(d As@lff s) O Os = 1. 

14-898286 Acta Mathemat ica  163. Imprim6 le 20 decembre 1989 
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So the Euler characteristics of the complexes dA-Qs FA,  dAfi)~p s are constant in s. On 

the other hand when s=O, 1 one easily sees that these agree with the definitions of 

- f iE)  made using Ao, Al respectively. Similarly, to see that fiE) is independent of the 

bounded conformal structure [g] on X we first observe that the d~ operators vary 

continuously in operator norm with [g] (identifying the if(Q+) spaces in the familiar 

way). Then, after stabilisation, we can find a continuous family of inverses Q and fit 

into the framework above. 

(v) Moduli spaces 

Let ~ be the space of/~ connections on a bundle E--~X and ~3=AutE the/~ gauge 

group, as above. We let ~3=~/~3 be the quotient space, with the quotient topology. 

LEMMA 4.13. ~ is a Hausdorff  space. 

Proof. The topology on ~ is induced from a ~-invariant metric on ~r so it suffices 

to show that the q3 orbits are closed. If gi(A)--*B in ~ then da gi is a bounded sequence 

in s and we can suppose the gi converge in C O to a limit g~. Then 

d A gi---~Ag~-Bg~ 

so dA g= exists (distributionally), lies in /~4 and g=(A)=B. 
We can describe the local structure of ~,  using the implicit function theorem in 

Banach spaces, beginning with the linear theory of w 4(iii), (iv). For this we should 

replace the bundle E by the bundle of Lie algebras ge associated to the structure group. 

First, just as in the smooth situation, the stabiliser subgroups FA = q3 of connections A in 

are compact Lie groups. The Lie algebra of FA is Ker dac/l~ and the argument of 

Proposition 4.11 shows that this is finite dimensional. Likewise Im dACB~(~E) is closed. 

Now in the smooth action 

~Jx ,~--, 

the derivatives at a point (I~,A) is given by 

(a, u)---~a--da u 

for u E/~~ Lie algebra of the gauge group (cf. Proposition 4.6). It follows then, 

given only the abstract Banach manifold set-up, that the orbit of A is a submanifold of 

sr with tangent space Im da at A. 
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LEMMA 4.14. For each connection A in M there exists a subspace TACTS~A-~BI(gE) 
transverse to Imda (that is with TM-~TAOImdA as topological vector spaces). 

Proof. Let QA be a right inverse to d A, as in w 4 (iii). Then 

Im Qa = Ker(q~ ~q0-Oa dA alp) 

is closed in/~1(~E). We claim that the intersection of the closed subspaces Im da, Im QA 

is finite dimensional. For 

ai= da ui = Qa ~PiE Imda fllm Qa 

with IlaillB,- 1, the compact embedding/3~176 allows us to suppose that the U i converge 

in C ~ Then d,~ a i=[F  +, u/] =~p/is s convergent, so ai=Oa(lPi) is/~ convergent. Similar- 

ly, if 

is the projection map 

P:/~l(~E)--->/~l(gD/Im QA 

p(Im( d a + QA F+ ) ) = Im( p( d A + QA F +) 

has finite codimensions by Proposition 4.11. But QF + is a compact operator so 

p(Im da) 

is also of finite codimension. Hence Im dA+Im QA has finite codimension in B~(fie) and 

we can modify Im QA by finite rank changes to achieve the desired transversal. 

Given these transversals it is straightforward Banach space differential topology to 

construct local models for ~,  just as in the smooth situation (when we can take the 

standard transversal TA=Kerd3). We call a connection A irreducible if FA is equal to 

the centre of G; then we have: 

PROPOSITION 4.15. I f  A is an irreducible connection the restriction of  the projec- 

tion map: 

A+ TA---~ 

gives a homeomorphism from a neighbourhood o f  the origin in TA to a neighbourhood 

of[A] in ~, and these give charts making the space ~3" of  irreducible connections into a 

Banach manifold. 
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At reducible connections we have to modify the description to take account of the 

FA action. We choose a IrA invariant transversal Ta; then a neighbourhood of [A] is 

modelled on TA/F A. 

Finally, to complete the abstract Banach manifold picture, we consider the moduli 

space M c ~ .  By definition this is the set of equivalence classes of anti-self-dual 

connections. 

PROPOSITION 4.16. I f  A is an anti-self-dual connection a neighbourhood of  [,4] in 

M c ~  is represented in the local model by ~p-I(0)/Fa where 72 is a smooth, Fa- 

equivariant, Fredholm map from a neighbourhood o f  0 in TA to s The 

Fredholm index of  ~p is i(gE)-dim Kerda. 

Proof. By definition M is given locally by the solutions of 

F+(A+a)=daa+(a^a)+=O,  f o r a  in T A. 

This expression represents a smooth map (cf. Proposition 4.7) and the index is 

ind(d~lrA ) = i(gE)-dim Ker d m. 

To sum up we have duplicated the essential parts of the usual description of the 

moduli space in the quasiconformal situation. For example we know that the ~- 

equivalence classes of irreducible anti-self-dual connections A with H~=0 are parame- 

trised by a smooth manifold of dimension i(.qE). More abstractly we can set up the anti- 

self-dual equations F J = 0  as the zeros of a Fredholm section (with index i(~E)) of a 

Banach space bundle over ~*; with the usual extension to reducible connections. 

w 5. Index calculation 

(i) Index formula 

In w 4 (iv) we have defined for every/~ vector bundle E---~X over a compact quasiconfor- 

mal 4-manifold X an integer i(E). In this section we want to prove that 

(5.1) i(E) = -(2pl(E)+rank(E) (1-b~(X)+bf(X)). 

Here pl(E)EH4(X;Z)=Z is the Pontryagin class, bl(X) is the first Betti number and 

b-~(X) is the rank of a maximal positive subspace for the cup product form on HZ(X). In 

the smooth situation this formula follows from the Atiyah-Singer index theorem ([2]), 

and in the Lipschitz case could be deduced from the work of Teleman [29]. We need to 
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show that the same formula is valid in the quasiconformal setting. The general scheme 

of our proof---an excision argument to reduce to easily calculable cases-- is  a very 

familiar one, so we will pass quickly over some details. 

(ii) I-lodge theory 

The discussion of  w 4 applies, afor t ior i ,  in the case when A is the product  connect ion on 

E = X x R .  Just as in the smooth case we have, for a in/3~; 

(5.2) fx,d+ al2-1d-alZ d~ = fxda^da = O. 

So K e r d + / I m d = K e r d / I m d = H ~ ( X ; R )  by the de Rham theorem 4.2, also we clearly 

have ( K e r d c B ~ 1 7 6  R). To verify formula (5. I) in this case (p j (E)=0,  rank(E)= I) it 

suffices to show that the dimension of the second cohomology group of  the complex 

is bf(X). 

LEMMA 5.3. There is a 

- o ~  1̂ d+. ,~2.-,+, 

natural  inclusion H + c H 2 ( X ; R )  o f  H + = C o k e r d  §  

KerdN s as a m a x i m a l  posi t ive subspace  f o r  the cup produc t  f o r m .  

Proof .  We know that forms in H + are closed so there is a natural map 

i :H+--*H2(X;R),  i is injective since, by (5.2), 

to E H + , co = da =~ d - a  = O =~ d+ a = O =~ co = O. 

Furthermore for co in H + 

so H + is a positive subspace. Symmetrically we have a negative subspace H - .  

It remains to prove that H2(X; R ) = H + O H  - i.e. that for any closed form co in/~z we 

can find a in B~ such that 

oJ+da = co+ +to_ 

with co+ in H +. But we know that f f ( f~+ )= ( Im d +)0 )H  § so we can find a such that 
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with to+ in H +. Then 
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to + + d +  a = to 

t o +d a - to +  

is closed and anti-self-dual as required. 

(iii) C o n n e c t e d  s u m s  

Suppose Ev-~Xl, E2--~X2 are bundle of  the same rank over quasiconformal 4-manifolds. 

Then there is an obvious notion of a "connec ted  sum"  bundle E over the manifold 

X=XI~X2. In this subsection we shall establish the following formula (which serves as 

our version of  the Atiyah-Singer "excis ion ax iom" [3]). 

PROPOSITION 5.4. i(E) = i(EO+i(E2)+rank(E). 

The remainder of  this section consists of  a proof  of  this formula. We begin by 

introducing some notation. 

We can suppose that the 4-manifolds Xj,X2 have flat conformal structures in 

neighbourhoods of  points Xl,X2; and we use Euclidean co-ordinates ~1,~2 in these 

neighbourhoods. We write Bi(o) for the 0-ball in Xi about xi defined via these co- 

ordinates. Suppose, for simplicity, that the bundles E l ,E :  have anti-self-dual connec- 

tions At, A2 (this will be the case in our application of  Proposition 5.4 below). The idea 

of the proof  if to "cu t  and pas te"  bundles and connections using cut-off functions. 

These cut-off functions depend on three real parameters r, 2, K; where r and ;t will be 

small and K large. These parameters  are introduced now. 

The parameter r. For  each (small) r we fix a connect ion fi-i on Ei which agrees with 

Ai outside Bi(2r) but is flat in Bi(r). For  example we can take 

Ai ~- )~rAi 

where Zr(z)=x(Izl/r) is a cut-off and the right hand side refers to the connection matrix 

of A; in a local trivialisation of  E~. For  a suitable choice of this trivialisation we get: 

(5.5) F,~I z;'- and IIAi-mill~, are o(r) as r--*0. 

The parameter 2. This parameter  defines the connected sum X = X ~ X 2  as a 

quasiconformal 4-manifold with a conformal structure. Choose an orientation reversing 



QUASICONFORMAL 4-MANIFOLDS 221 

isometry ~ of  R 4 and let3~ be the map from a punctured neighbourhood ofx~ in X~ to 

the corresponding punctured neighbourhood of x2, defined in coordinates by: 

. - 
(5.6) f~(~l) = ~ ~51. 

The connected sum X is defined by removing small balls, Bi0.) say, from X~ and 

identifying the remaining manifolds Ui=Xi\Bi(2) by j~. We regard Ui as common open 

subsets of X~ and X and will make a number of  obvious abuses of notation: for example 

we regard a compactly supported function on U~ as being simultaneously a function on 

X and X~. Similarly we extend a function on U~ which is constant outside a compact  set 

to X and Xi and we will not distinguish between these functions. 

Let  X~ =Xi\Bi(l)`l/2), s o  Xm-X'I USr2 and X' 1 nX~ is an annulus. To define the s 

spaces on X we can introduce a metric on the " n e c k "  region in the connected sum. We 

will not need detailed formulas: the important point is that there is a constant c 

(independent of).) and a choice of  s o n / ~  with the two properties: for a form a 

supported on X[ 

(5.7 a) 

for any form a supported on the common open set U i w e  have 

(5.7b) Ila[lL4~.~se) ~ c][allL4~.~x~. 

This just  reflects the fact that J~ increases distances in the set l~l<~21/2 but distorts 

distances by only a bounded factor on the annulus 1.21/2~[~11~<221/2. 

The parameter K. For  K > I  let ~l/~ be the annulus 

~g = {zER4IK -l<~lzl<~g}. 

The fundamental fact we will exploit is the existence on PlK of functions ZK with: 

(i) ZK(Z) = 0 when Izl = K-1 

(ii) ZK(z) = 1 when [z] = K 

(iii) I[VZK][L4-"~0 a s  K ~ .  

For example we can take: 

ZK(z ) = loglzl+log K 
2 log K 
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(This leads to the notion of  the conformal "modu lus"  of an annulus [32], and is bound 

up with the failure of the Sobolev embedding L ~ C  ~ at the critical exponent p=4. )  

Now for given K, with 

( 5 . 8 )  K32 I/2 <~ l r  
4 

we let 01 be the function. 

(5.9) 01(~) = X K ( ~ ) ,  

extended by constants outside the domain of definition. Thus 81 is a function on X1 (or 

X) which is equal to 1 outside the ball B1(K321/2) and to zero on BI(K21/2). The derivative 

of 01 is supported in an annulus conformal to 9AK, and, by conformal invariance: 

(5.10) tld0,llL, 0 as g---~oo. 

Similarly define a cut-off 02 on X2 and X. 

We will now introduce some more cut-off functions depending on the parameters 

above. First, regarding 02 as a function on X, put 

(5.11) q~l = 1-02:X--*R. 

By our conventions q~l is simultaneously a function on X and X~, with compact support 

in U1. Like 01, q~l is a cut-off function equal to 1 on " m o s t "  of XI but the support of 991 

is larger, in particular: 

(5.12) 9~1 = 1 o n  XI\BI(21/2). 

Similarly we define q~2- 

Next, let Yl be a cut-off function on XI equal to 1 on XI\BI(22/r) and to 0 on 

XI\B1(2/r). Thus the support of dyl is contained in a very small annulus in XI, which is 

mapped by 3~ to the annulus: 

r ~ l ~ 2 l ~ r  
2 

in X2. This means that the s norm of dyl is estimated by the ~/~4 n o r m  measured in X2 

(by (5.7b)) so we can suppose, regarding )'1 as a function on X, that: 

(5.13) Ild~llle(x~ is independent of K, 2. 
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1 . . . . . . . . . . . .  7 - -  - -  - r  . . . . .  5 - -  
I s i ,' 11  

I / 

YI ,' q~l / , 01," 
p d 

,i s" 
/ t  / 

I f / 
0 ~ ; : ~ ~ . . . .  " 

xl 2/r 22/r K-321/2 K-12 I/2 K21/2 K32 u2 

Diagram5.14 

Define ~2 similarly. Finally, let fl: X---~R be a function equal to 0 outside X~ and to 1 

outside XI,  and let ~=1--(01+02). The various cut-off functions we have defined are 

summarised in Diagram 5.14. 

We will now explain the significance of  the term " rank  E "  in the formula of  

Proposition 5.4. For  any identification between the fibres (Ei)x, of  the two bundles we 

can form a connect ion A on a bundle E over X by gluing the flattened connections /~i 
over the neck. For  symmetry,  we will regard this identification as an identification of 

each fibre (Ei)xi with a fixed space V. So sections of  E over the neck region can be 

viewed as V-valued functions. We define a map: 

(5.15) j :  V-~,Ker d,~ 

by lettingj(v)=dA(flv) on the neck region and extending by zero over the rest of X. For  

any right inverse Q we get a corresponding cohomology class 

[j(v)] E Ker  dA/Im(dA--QFA), 

and this cohomology class is independent of the particular choice of  cut-off function ft. 

So we have a canonical map: 

(5.16) i: V---~HJA, Q 

with i(u) =[j(v)]. Proposition 5.4 asserts, roughly speaking, that the cohomology of  A is 

made up of the sum of  cohomologies of  A~, A2 and the image of  i. The precise statement 

is simplest in the case when the Ai are acyclic. 

PROPOSITION 5.17. Suppose IFA~ and HPA2 are zero for  p=O, 1,2. Then for  a suitable 

choice o f  parameters r, Z, K we have: 

(i) d~ is surjective i.e. H2A=0. 

(ii) There is a right inverse Q for  d A such that HOA. Q=0 and i:V--~H~A.Q 

is an isomorphism. 
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This immediately implies Proposition 5.4, in the acyclic case. To give the corre- 

sponding statement in the general case we proceed as follows. For any harmonic form 

o~ with: 

~o 6s daoJ = 0 

we multiply by the cut-off function 0, to get a form 0,w which we can regard as an 

element of s similarly for the A2 harmonic forms. This gives us a map: 

(5.18) k:H2a ~ H~2---~LZ(V2x(E)). 

Similarly, pick open sets GicXi in the region where the metrics are smooth but not 

meeting the neck region in the connected sum (for small enough r). Then we can define 

(5.19) p:/~E)---~H~ ~ H~ 

by L 2 projection over the Gi, i.e. 

t J G ,  

Now for any right inverse Q for d~ we have a diagram 

(5.21) 

0 0 

0 0 H~ (D H~2 s +)/im k 

~0 6a . /~,  . s 

t / /  t 
Kerp 2 z 

0 0 

Here the columns are exact and the diagonal maps yield another Fredholm complex. It 

is then easy to prove abstractly that the Euler characteristic of the diagonal complex 

Ker p---,/~'--~s k 

is 
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- i(E) - d i m  (H~ ~ HOA,) - d i m  (H2A, (~ HaA). 

So Proposition 5.4 is a consequence of  the following generalisation of Proposition 5.17: 

PROPOSITION 5.22. For a suitable choice of r, 2, K there is a right inverse Q for d] 

such that the cohomology of  the diagonal complex Kerp--->Bl---~L2(f2)/Ira k is zero in 
1 1 dimensions O, 2 and in dimension 1 is isomorphic to HA, ~H'A2G V, 

For simplicity we will prove Proposition 5.17; the proof  of  Proposition 5.22 is the 

same in all essentials. Note  however that there is one case where we can see explicitly 

how the cohomology groups behave and verify Proposition 5.22: when A i are the flat 

connections on the trivial bundles over copies S~, S~ of  S 4. This observation will be 

important in our proof  of  Proposition 5.17. 

Proof of  Proposition 5.17. 

Step 1. Construction of Q. Let  Q~, Q2 be right inverses for da ,  d +A, respectively. 

Given a form f i n  f2~(E) we write f=f~ +j~ where f / i s  the restriction of  f to X i \Bi(2v2). 
Then define: 

P:L 2( fl fz(E ) ) ~  [t~x(E ) 

by 

P( f )  = ~ Ql( f0  +92 Q2(f2). 

Then 

d~ P(f) = Z ~ifi +[dcPi +(Ai-A,)lQi(fi). 
i 

Now q~lfl +q~2J~ = f  so: 

]IdA P( f )  --filL ~ ~< E I I  dq~, +(A,-A,)IIL4 ]lQi ( )llL  
i 

~(~ [Ida,IlL, +IIA,-A,llL.)]]fllL.~. 
i 

Here we have used (5.7) to compare the norms on X and Xi. Now by making r (and so 

C4i-a)  small, cf. (5.5)), and K large (hence [Id%l[t4 small, cf. (5.10)) we can arrange 

that dAP--1 is a contraction on L 2. (This will require that 2 be made small, to maintain 
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(5.8)). Then d,~ is surjective, as asserted in (5.7a), and we define the right inverse Q to 

be: 

O = e (daP) - ' .  

Notice that we get uniform bounds on the (L 2, L 4) operator norm of Q. 

Step 2. i is injective. The hypothesis that H~ =0 and the L 4 Sobolev embedding 

give, for sections ti of Ei o v e r  X[ =Xi : 

(5.23) ]lt;llc0~x;~ < IldAtil]s 

with bounds independent of r and ;t (cf. [6] p. 314). Suppose i(v)=0 for some v in V, so 

j(v) = dAt-- QF](t)  

for some section t to E. Let  ti be the restriction of  t to Xi. So that, on XI, 

and on X~, 

Then, by (5.23), 

and 

dA((1--t3)v+ Q = Q(Fa(t))lx,, 

dA(flv+ t2) = Q(F+a (t))lx; . 

II( l -~)v+t ,  II c0,x,, ~ I[F,~ I! C-Iltl[ c0~x~ 

Now choose r and hence ][FAII~ 2 sO small, using (5.5), that these inequalities give: 

II(1-fl)v+qll ~<~lltll, 
II ~v+t2 II ~< ~11/11, 

say. Over the annulus Xj NX2 in X we get: 

Ivl--II~v+(1-~)vll ~< +lltll 
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so, substituting back, 

lit; [I ~ 311tll 

and, since t i is the restriction of  t to X~\B~(V'--ff) and these are two sets cover X, we 

must have t=v=0 .  

Step 3. /~A,Q =0. 

The proof follows that of Step 2 above exactly. 

Step 4. i is surjective. We will define a map T from KerdacBJc(E)  to itself such 

that I[T(a)[IL4<~9tla[[~4 and T(a) is equivalent to a modulo Im(d  a - Q F ~ ) + l m j .  So if 

(2(n)=Tn0~, ~(n) tends to zero in L 4 as n tends to infinity, but for all n, a t") defines the 

same class in Hla, a/Imi.  Since Im(d  A - Q F ~ ) + I m j  is closed in L 4 we deduce that i is 

surjective, as required. 

Suppose d~a=0;  we define T(a) by splitting a into three pieces: 

a = Ola+O2a+l~ot 

supported on Xl, X2 and the neck region respectively. 

Consider first 01a. We have 

dA, (O[a) = (dOOa +(A 1 -AI) (Ola), 

so by making r small and K large, as in Step 1, we can make Ilda,(O,a)llL2(X,) less than an 

arbitrarily small multiple of  I[a[[L4(x ). Now since H ~al=0 we can write: 

O,a = dA U l +Ql{d],(O1)}, 

and we can suppose, by the above, that for r<~r o, K<~Ko: 

Jldu, I1~,<)+ Ilu,ll~0<)< Cllall r,(x) 

for a constant C depending only on A1. Now let 01 =ul(xl) in V: by the equicontinuity of 

L~ functions (2.39) we have 

[ ut(y) - v l  l<  e(2)Ilallt,r 

for y in the small ball Bl(22/r) containing the support of d71, where e(2)--+0 with 2. 

Now consider O,a-j(v). We have, on X~, 
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O,a--jv = dAU ~ -d/i ((1-8) v) + Ql {dA,(01(Z) } 

= da , [ . ,  - ( l - f l )  v] + n .  

say, for small r and large K. Put 

SO 

IIRIIL4~ ~ <  1 ilallL4~x~ ' 
10 

~ = ~q( Uj - (  I-/~) v) 

dA~ 1 = y,da,[u , - ( 1 - 8 )  v) ] +(dy,) (ul - ( 1 - 8 )  v). 

Now, and this is the key point, 

I., -(1-,8) o, I~< ~().)IlallL. 

on the support of  dyl, and IId~',llL, is independent of) .  ((5.13)). So by making ). small, 

for any fixed r and K, w e  can make 

II(d~',) (u, -(1-,8) v,) IIL,,~ ~< qt6--o I1'~ II L,,~, 

hence 

Similarly, 

IIo,~-jv, --#aa, IIL,~z ~< ~ 0  Ilallt,~ - 

IIQFX(~,)IIL,~ ~ IIFXIIL2 Ilalle, 

so by making r small we can get 

IIQFX(ul)IJL,r <~-~-0 N allL,r 

whence 

[[O,a-jo I - ( d  a - QFA ) ull L, <~ --~tletllL, . 



QUASICONFORMAL 4-MANIFOLDS 229 

We treat OEa in just  the same way, (using (1-f l )  in place off l )  to get v2, ~2 with 

11o2a-jv2-(d A -QFa)•2 tl I la l lL ,  �9 

It remains to deal with the term ~pa supported on the neck. To do this we compare with 

the model connected sum S4=S~#S~ and the trivial bundles. Clearly the neck regions in 
4 4 S ~ S  2 and X1#X2 with the same parameters  r, 2, K, can be identified. For  a form f 

supported on the neck region in XI#X2 we write f *  for the corresponding form on 
4 4 St#S 2, and similarly we have operators Q* etc. 

Now we know that the index formula is correct  on $4#S~ by elementary de Rham 

theory (using the fact that in the fiat case d+a=0  implies da=0) .  So we have a 

decomposition: 

(~pa)* = dw* + Q*(d+ Opa) *) 

where HQ*(d+(~oa)*llL, is bounded by a multiple of  II(d~p)allL,, hence by a small multiple 

of Ilallt,, for large K. Consider the subset S~ \B*(K32 '/2) in S~ where 0pa)* is zero, 

using an obvious extension of  (5.23) to the case when there are constant sections we get 

a bound on the variation of w* over this region. Let  w~', w~' be the average values of  w 

on these two regions. Changing w by an overall constant we can suppose w~'+w~'=0. 

On the other  hand using j* (the analogue o f j  for J 2 5 4 : ~ 5 4 )  w e  can write 

(5.24) 0Pa)* = &b* +j*(v*) Q*(d+ Opa) * ) 

~ * - -  * 1 * ~ *  * 1 * where the average values are: w~ -w~ +~v , So we can w2 = w 2 - ~ v  . suppose in (5.24) 

that w~'=w~'=0. Then we have: 

I I w*ll cO(s4 \n?(IC'~ %) <~ C(r, K) I I II e ,  

where C(r, K) can be made arbitrarily small by making K large and r small. Now let 

/..O = 71 7 2 / ~ * ;  

which we regard once again as being defined over X (supported in the neck region). We 

can estimate the norm of  dAW+j(v*)--Opa), just  as before,  to show that for r<~q, K<.Kj 
and 2---<21(r) we have: 

IIdAW+j(v*) -(v-'a) lle ~< ,3-~-IlallL4 
l l J  

(note that QFA(W ) =0). Finally, then, put 
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Ta = a - j ( v  I +vz +v*) - ( d a - Q F  a) (#, +~2+w) 

so that our three previous estimates give 

tl T(a)llz,, tl d I L., �9 
I U  

This completes our proof  of  Proposition 5.17 and as we stated above the exten- 

sions to cover the cohomology of  the A i, giving Proposition 5.22, are routine. The ideas 

involved are exactly parallel to those in [6], [26] where the moduli spaces of anti-self- 

dual connections are given similar local models. The problem here is essentially a 

linearisation of those moduli problems (in the case when E is a Lie algebra bundle gE) 

and the analytical argument above is a modification of  that in [6]. It is worth pointing 

out that one can also carry through the moduli description in the quasiconformal 

case---combining the proof  here with that of [6]. In particular if a quasiconformal 4- 

manifold X has a conformal structure which is smooth in some region ~ c X  then the 

"concent ra ted  connec t ions"  over X with curvature concentrated in ff~ can be described 

just as in [6] Theorem 5.5. However this description breaks down over the points where 

the conformal structure is not smooth. 

(iv) Proof of (5.1) 

We clearly have 

i(E~F) = i(E) +i(F) 

so the index i gives a linear map 

i: KO(X)---> Z. 

Now by straightforward algebraic topology 

KO(X)~Q ~ Q~Q 

with generators detected by the rank and first Pontryagin class. By the Hodge theory of  

(ii), (5.1) holds for the trivial bundle so to prove the formula in general it suffices to 

check it for any bundle E with pI(E):r Let  E, be a non-trivial bundle over S 4 (which 

we can suppose carries an anti-self-dual connection cf. [2]) and E2 a trivial bundle over 

X of  the same rank. Then  consider X=S4~X and the connected sum bundle E=E~#E2. 
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We know by the smooth theory, that (5.1) holds for El and then Proposition 5.4 shows 

that the formula for i(E) is correct. 

w 6. Regularity 

(i) Coulomb gauges 

The local regularity theory for anti-self-dual solutions is based on the fundamental 

theorem of Uhlenbeck on the existence of local "Coulomb gauges". Let D be the unit 

ball in R 4, equipped with the standard Euclidean metric. 

PROPOSITION 6.1 (Uhlenbeck [30]). There are constants K, cq>O such that if  A is 

an L~ connection matrix ooer D (p>2) with IIFAIIL2<K then there is an L~ gauge 

transformation g such that .4=g(A) satisfies: 

(i) d*A=O, 

(ii) II),IIL  <.Cq IIFallLq, 2<~q<~p. 

The same statement holds true if A is only an L~ connection, but one must take 

care that the gauge transformation g need not then be continuous. Uhlenbeck deduces 

this limiting case by an approximation argument ([30]). We want a version of this 

theorem which applies to/~ connections. These are not covered by the statement in 

Uhlenbeck's paper but exactly the same argument applies. If A is a J~ connection over 

D with I[FAHL2 <K we can approximate A in/~1 norm by smooth connections A~, e-->0, 

and IIFAJlL2<K for small e. The gauge transforms A~ given by Proposition 6.1 have: 

d*A.~ = 0 

For simplicity consider an interior domain D' c o D .  Let fl be a cut-off function equal to 

1 on D', then by our L p elliptic theory, as in w 3, 

II a lle < I[(d*+d)(~A)l[L: 
< II(v/ )A IIL2 +IIP, IIL, + II/ A,^A,IIL2 

< IIA IIL,(1 + II/ A, lle)ll ,llv- 

Now combining the Sobolev embedding L ~ L  4 with Proposition 6. I (ii) we see that, i f  K 

and hence [IA~IiL, is sufficiently small, the above inequality yields a uniform bound: 

15-898286 Acta Mathematica 163. Imprirn6 le 20 decembre 1989 
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II~'EIIL' ~ IIF, IIL2" 

Substituting back gives a bound on IIdr So the flA, are bounded in/~1 and we can 

find a weakly convergent subsequence: 

It then follows easily that ,4 represents a /~ connection matrix over D', B~ 

equivalent to A, and with: 

d*A = 0 

IIA IIB,,o,~ ~< Cllf~ IIL2,o,. 

To sum up, we have: 

PROPOSITION 6.2 (Uhlenbeck). There are k, C>0 such that if A is a BJ connection 

matrix over D with IlfallL~<g then there is a B ~ equivalent .4 over O' with: 

(i) d*A = 0. 

(ii) I1~,11~,~o,~ ~< CIIFallL2~o~. 
(iii) llallL~r ~< CIIFAIIL2~Dr 

Remark 6.3. A consequence of this is that a Frobenius theorem holds for /~ 

connections--a connection with curvature zero is locally trivial. In the usual way the 

flat B~ connections, in general, can be identified with representations of the fundamen- 

tal group. 

(ii) Regularity and compactness 

Let/~ represent a bounded conformal structure on D, with ~u[<c and A be a/~-anti-self- 

dual connection matrix over D with d 'A=0.  We emphasise that the d* operator here is 

that defined by the Euclidean metric, not of a metric compatible with ~. 

LEMMA 6.4. I f  AEL4(D), dAEL2(D) and if Ilallt, is sufficiently small then A is in 

L~(D') for some p>2, and llallL~o)~<[[FAIIL2r m" 

Proof(Compare [13], and Proposition 8.3). Take a cut-offfl as above then the anti- 

self-dual equation gives: 

(d*~dF+,)(flA) = {Vfl, A} +{flA, A} 
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Now consider the linear operator: 

T: L~(~)~LP(f~ + ) ~ LP(f~ ~) 

r(W =~Ld.*~ d;) r W) + { ~, A ). 

The operator norm of the algebraic term is O(HA ILL,)- We transform to a compact 

manifold as in w 2--then the leading term d*~)d~-is invertible for p close to 2 and this 

gives that, if tlAIIL4 is small, 

flA = T- l ( {V f l ,A} )  

lies in L~ for some p>2. 

One consequence of Lemma 6.4 is that our/~ anti-self-dual solutions in Coulomb 

gauge are in 12+~ for some e>0. So the moduli spaces of B + and /t solutions are 1, loc 

identical. 

The estimates above depend on the conformal structure only through the uniform 

bound c. Using the Coulomb gauges of Proposition 6.2 and the uniform bound of 

Lemma 6.4 we have: 

COROLLARY 6.5. Let  /~ i be a sequence o f  conformal structures on D with I/tit < c < l  

and D' c c D .  There are constants k=k(c),  p--p(c) >2, such that i rA  i is a sequence o r b  I 

~ti-anti-self-dual connections over D with IIFAit[Lz~o)<k then there is a subsequence 

(i'}, L p connection matrices rii' over D' gauge equivalent to Ar, such that the rir are 

weakly convergent in L~. I f  the t~i converge in L ~ to/~ the rii' can be supposed to be 

strongly L~ convergent to a l~-anti-self-dual connection matrix over D'. 

The argument for extending this convergence over balls to a general manifold goes 

through just as in the smooth situation ([5], [13], [21]), using the fact that for an anti- 

self-dual connection: 

(6.6) fxlFAI2=--fxTr(FA)2 

is a topological invariant. We have: 

PROPOSITION 6.7. Let  X be a compact  quasiconformal 4-manifold and [gi] a 

uniformly bounded sequence o f  conformal structures on X. I f  A i are [gi]-anti-self-dual 

connections on a bundle E--~X we can f ind  a gauge equivalent subsequence converging 

weakly in Bllo + on the complement  o f  a finite set o f  points {xl . . . . .  xt} in X.  I f  the [gi] 
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converge in L ~ to a limit [g~] the convergence is strong in Bl~o+~ and the limiting 

connection A| is [g| on X{xl . . . . .  x/}. Moreover: 

Yx\{x~ ,}'FA=12<<" fxlFa'12" ...... 

(iii) Removability of singularities 

The remaining task, completing our quasiconformal version of  the local analytical 

theory of anti-self-dual connections, is to establish Uhlenbeck's removability of point 

singularities in finite energy anti-self-dual connections. 

PROPOSITION 6.8. Let  /a be a bounded conformal structure on the ball D ~ R  4 and A 

a l~-anti-self-dual connection over D \ { 0 }  with 

o\(o) I f  AI2dl~<~" 

Then there is a B I+ connection matrix 7t over D, gauge equivalent to A over D \ { 0 } .  

The original proof of  this in the smooth situation [30] does not adapt very easily to 

the quasiconformal case. We will give a different proof, extending the ideas of [5] 

Appendix, [13], which reduces the analysis to the results obtained in (ii), (iii) above. 

We begin by considering connections over the annulus: 

= {x R l k< Ixl < 1 } 

and fix a slightly smaller annulus 

LEMMA 6.9. There are constants k, C such that i f  A is a ~a-anti-self-dual connection 

matrix over 9J with ~u I < c and L  IFAI 2 d/a < k then A is gauge equivalent over 9J' to an ,~ 

with 

IIAII Ir ClIF AIIL2r c 

Proof. Write 2[ as the union of two balls D 1, D2, whose intersection is homotopy 

equivalent to S 2. When .f~]FAt 2 is small we can apply Proposition 6.2 to each ball to get 

connection matrices A i, A 2 over D I , D 2 respectively, with I[Aill~vnD, ~ J'~(IFA[ 2. The "4i are 

related by a transition function g on D I liD z, with du = g ij~_A2g so dg is small in /]4, 
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and since D 1ND 2 is connected g is approximately constant. By modifying one of the A; 

by a constant guage transformation we can suppose that g is close to the identity, 

and using the composition property in Proposition 3.12, that g = e x p ( h )  where 

Ilhlla0 < f~lFAI 2. Now modify A 1 on D 11qD 2 to exp(gh)A 1 where Z is a cut-off function 

equal to 0 on a neighbourhood o f D  2 N 92', and to I on a neighbourhood of D~ t3 92'. After 

this modification, we can glue the two connection matrices together to get the desired 

small representative A over 92. 

Now to prove Proposition 6.8 consider the family of annuli 

96. = {x 1 2-~"+') < Ixl < 2-"} 

with 92"cc92. and the dilation map q0n: 92---~92.. Then {p.}, p .  = gc*(/~[~ ), is a bounded 

sequence of structures. Now if 

In = f ~.lFal 2 d~ = f~lF~0.(A)12 d/~ 

we have I.---->0, since E.In<OO. 

A. for cp*(A) such that: 

So by Lemma 6.9 there is, for n large, a gauge 

f lAJ' d~ <. I. 2. 

Fix a cut-off function 7, equal to 1 on the outer edge of and to 0 on the inner edge, 

and let A* be the connection matrix 

A* = 7A.. 

Then 

F *  2 [I An[IL2(~ ,) = II~FA +dTAn +(7z-7)A2.]]zz 

<~1.+ z < I ta , l l t ,  - I , .  

Now let An + be the connection formed by gluing 

Al~xl bxl > 2-.} 

to the product connection 0 on {x I Ixl <2 -~n+l~} using (cp~l)*A *. An+ is a /~  connection 

and: 
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IIFA:II a < ln~0 

as n -->oo. Also we can suppose that [[FA+IIL~ is less than the constants k of Proposition 

6.2 (shrinking the disc D). So let A n be the connection matrix, gauge equivalent to A~ +, 

in Coulomb gauge, given by Proposition 6.2. Then 

d*fi~ n = 0 

d~zi  n + {,'i n , / i n }  ~ 0  in L 2 

and IIAolIL~ is bounded on an interior domain. So there is a weak L~ convergent 

subsequence and FA~ = 0. By Lemma 6.4 zi~ lies in/~1 and we conclude read- 

ily enough that it is gauge equivalent to A on D \{0} .  

Of course it follows from this removal of singularities property that the "weak 

limit" connections of Proposition 6.6---initially defined on the punctured manifold-- 

extend to/~ connections over all of X. 

w 7. Applications 

(i) Transversality 

We have now set up the foundations of the theory of the first order Yang-Mills 

equations on quasi-conformal manifolds. One could hope to go on to transfer all the 

differential topological results proved for smooth manifolds by means of Yang-Mills 

fields, to the quasi-conformal category. We shall do rather less than this and shall be 

content to give proofs of Theorems 1 and 2. The main ingredient which we are lacking 

is a firm grip on the t ransversa l i t y  of the anti-self-dual equations. We would like to put 

ourselves in a position where the cohomology groups H~ vanish for all (irreducible) 

anti-self-dual connections A. In that case, the moduli spaces of irreducible solutions are 

smooth manifolds of the "correct"  dimension given by Proposition 5.4 and we can 

proceed to make various topological arguments using them. 

In the smooth theory, there are a number of possible approaches to this transversa- 

lity. One is to appeal to the result of Freed and Uhlenbeck [13] which gives the desired 

property for generic smooth Riemannian metrics (conformal structures) and non-trivial 

SO(3) or SU(2) bundles. Unfortunately, the proof of this does not seem to transfer to 

the quasiconformal case. Another approach is to use more abstract perturbations of the 

equations of various kinds, [5], [7], [9], [15]. In the latter case, one can distinguish two 

goals: the first is to find a small perturbation: 
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(7.1) F~+e(A)  = 0 

of the equations, on a given space fO=~ e, having transverse zeros. The second is to 

make a family of such perturbations for different bundles E which are compatible under 

the 'weak convergence' of connections discussed in w This second goal is consider- 

ably harder to achieve and we will not attempt to achieve it in the quasiconformal case 

(although we have no reason for doubting that this can be done). This gap in our theory 

prevents us from obtaining the most general results. 

The simpler kind of perturbation e(A) on a single space ~e  can be constructed, in our 

set up, by abstract arguments. It is a general fact [20] that a reflexive Banach space V 

with V, V* both separable admits a C 1 function ~ : V ~ R  supported in the unit ball. This 

gives the existence of locally finite C ~ partitions of unity on paracompact Banach 

manifolds modelled on such spaces [11]. Now our function spaces have this abstract 

property so we construct in a standard way many C 1 perturbations of the anti-self-dual 

equations. (Sections of appropriate Banach bundles.) These yield C 1 perturbed moduli 

spaces: 

(7.2) M~ = (a  I F +(A)+e(a) = 0}/~ 

which suffice for the differential topological arguments. Moreover, it is easy to arrange 

that if M e is compact, say, then M~ is also. 

(ii) Proof of Theorem 1: topological 4-manifolds without quasi-conformal structure 

We use the argument of Fintushel and Stern [12]. Suppose X is a compact simply 

connected topological 4-manifold with a negative definite, even intersection form which 

represents - 2  (for example -E8), such manifolds exist by the work of Freedman. We 

show that X does not admit a quasi-conformal structure. Assume, on the contrary, that 

X is quasi-conformal and, with Fintushel and Stern, consider an SO(3) bundle E-->X 

with 

(7.3) E-~ R G L  

where c1(L)2=-2.  It follows from (6.6), Proposition 6.7 and the fact that 

- p l ( E )  = 2<4 that M E is compact. Making a generic perturbation if necessary we 

achieve a perturbed moduli space M~ which is a compact 1-manifold with a single end 

point associated to the reduction (7.3) of E. This space M~ then gives the desired 

contradiction. 
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More generally we can prove that no simply connected compact  4-manifold with a 

non-standard definite intersection form admits a quasi-conformal structure. To do this 

we use the argument  of  [6], modifying the original proof  of  [5]. We sketch the 

argument.  To begin we fix a conformal  structure on such a manifold X which is s m o o t h  

on an open set •, the complement  of  a ball in X. This is possible since, for any compact  

4-manifold X, X",,point,  can be smoothed [20]. We take an SU(2) bundle E - - ~ X  with 

c 2 (E ) - -1  and consider  a suitable perturbat ion M E of  the moduli space. Now any 

homology classes a s, a 2 in HE(X) can be represented by smooth surfaces E I, Z 2 in 

X \ f 2  and, appealing to the smooth  theory,  we can "cu t  d o w n "  M E by codimension 2 

submanifolds Vz,  V~-2, so that 

MEn Vz, n vz: 

is a 1-manifold with a number  of  boundary  points associated to classes e in 

HE(x) with e 2 = - 1. Now M E is not compac t  and in the smooth case one shows that its 

end is a collar on X (the "concen t ra t ed  connect ions") .  In the quasi-conformal case we 

are not able to analyse a l l  of  the end of  M E in this way but we can show that the same 

result holds for the connect ions concentra ted over the smooth part  Q (see the remarks  

at the end of w 5). But for e lementary  reasons the end of  MEn Vz~ n V~2 consists of  

connections concentra ted  over Z~ N Z~cg2 so we are able to ignore the " u n k n o w n "  part  

of  the end of  M e . The same holds for the per turbed space M E . In this way we deduce 

just  as in [6] that 

1 
a,-~=-2 ~' (a,'~)(~'~) 

e ' =  --1 

and the form is standard. 

(iii) Proof of Theorem 2: homeomorphic 4-manifolds with distinct quasi-conformai 

structures (zero dimensional moduli spaces) 

The simplest p roof  of  Theorem 2 is obtained by adapting a recent result of  Kotschick  

[19]. In general if X is a smooth  simply connected 4-manifold, with b + ( X )  odd and at 

least 3 one defines di f feomorphisms invariants which are integral p o l y n o m i a l s  in the 

cohomology of  X. I f  there is an SO(3) bundle E over X such that the virtual dimension 

i (E)  is zero then the corresponding polynomial  has degree 0 - - i . e .  is just  an integer. 

Kotschick shows how one can define such an invariant, in a special situation, where 
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b+(X)=l.  He shows that the complex "Barlow surface" is not diffeomorphic to 

Cp2~8C--P 2, although by Freedman 's  classification they are homeomorphic. 

We will show that these invariants are quasiconformal invariants of smooth 4- 

manifolds. (So we will not go so far as to define invariants for manifolds only known to 

have a quasiconformal structure.) In this section we consider a situation like Kot- 

schick's where the invariant is an integer obtained from a bundle E ~ X  with i(E)=0. 

Then for generic smooth metrics g on X the moduli space M~g) is a finite set of points 

(representing irreducible, transverse connections) and the invariant q=qx is the total 

number of points, counted with suitable signs. (Strictly there is an overall choice of sign 

involved, see [7]). Suppose then that (XI, g~, E~), (X 2, g2, E2), are two triples of this kind 

and 

f'. X1--, X2 

is a quasiconformal homeomorphism, with f*(Ez)-~E ~. We have to prove that the 

integers qx~, qx2 are equal. 

To show this we let [g2] be the pull back of [g2] by f .  So we can suppose g2 is a 

bounded metric on X~. By a familiar regularisation we can find a uniformly bounded 

sequence of smooth metrics g(")2 on X~ such that 

g~)---~g2 in L2(Xl) 

~(i) (hence in any LN(X0). Now let [g~i)] = (f-~).[~/~]. So the [ 2 ] are a uniformly bound- 

ed family of conformal structures on X 2. Arguing as in Lemma 2.29 we see that the [ 2 ] 

converge to [g2] in any LN(X2)--that is: 

fX d([g~i)]' [g2])N----)0. 

If we represent the structures g~0 relative to g2 by bundle maps kt~ then 

(7.4) 

and 

(7.5) 

By our theory the/~ anti-self-dual moduli spaces for (X,, [g~i,]). (X2, [g~i)]), are matched 

up by f* .  The heart of the matter then is to prove: 
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PROPOSITION 7.6. For large enough i and for each point [A] of  M(g2) there is a 

small JB neighbourhood of[A] in fO* which contains exactly one point o f  M[g~i)]. These 
E 2 

points are transverse zeros and there are no other points in M[g~i)]. 

It will be clear from our proof that the signs with which the points of M(g2), M(g~ i)) 

are counted agree and Proposition 7.6 then gives the equality of qx, and qx 2. The point 

here is that any of the smooth metrics ~ can be used to calculate qx,. 

For the proof of Proposition 7.6 we simplify notation and write X, g, E for 

X2, g2, E2. If the bundle maps /~i (representing (i)~ g2, converged to 0 in L ~ the result 

would follow straightaway from our discussion in w 4. The extension to the hypotheses 

(7.4), (7.5) is another application of the idea used in our fundamental Lemma 2.16. 

We begin by considering the linearised problem. Let A be a g-anti-self-dual 

connection over X. 

LEMMA 7 .7 . / f  

+ .  , l _...) + dA.(Ker dA Cf~'x(.qe)) Qx(gE) 

is an isomorphism then for large i so also is dA +/XidalKerd ~. Moreover, if Qi is the 

inverse map the operator n o r m s  of  dAQ i +  on L p are bounded for i large and p close to 2. 

Proof. Consider the Laplacian 

A = +dad* A +(dA)*d A 

on Q~(~E)- This preserves T={afl*Aa=O } (sinceF,]=0) and on T 

(Aa,a) + 2 = IId allL. . 

Now 

IIdXall2-1ldXall 2 = - fxTr( aA[F,a]) 

SO 

IIdXalJ 2 = ( (A+[F_ ,  ])a, a) .  

The algebraic operator [ F ,  ] does not preserve T so put 
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9(a) = [F_, a]-daGAd~[F_, a] 

where G A is the Greens operator  of  d* a d A on fl~ This is the L 2 projection of [F- ,  a] 

to T. Then the quadratic forms 

Ildxal[ 2, IldAall 2 

on T are represented by A, A+q~ respectively, q~ is a pseudo-differential operator  of 

order zero and if 0~<k< 1 

,% = A - k 2 ( A + q ~ )  

is a self adjoint, elliptic, second order  operator  with positive symbol. So A k has a 

discrete spectrum, bounded below, and there is an orthogonal decomposit ion of 

Q~(fie) into A k eigenspaces. This induces a decomposit ion of T and in particular a 

splitting: 

T = H 1 •B 

into A k invariant subspaces,  with Ak>0 on H~ and B finite dimensional. Now fix k>c, 

where c is the uniform bound in (7.4). Let  H2=dAH 1 and 

C ~ s + H~ CQx(gE). 

Write p, q for the L 2 projections to H 2, C. For  a in H~: 

IIp(t,,daa)ll 2 ~< ILu,daall 2 

~< C211daall = 

<~ ( s /kblLp( d~ a)ll = 

since Ak>0 on H~. Then, as in w 2, we can invert the operator  

P ( G  +HidA)Itt :H1--*HE 

with inverse P say. With k, c fixed we have a fixed bound on the L z operator  norms of  

d~P i, d~P i (and also on the L p operator  norms for p close to 2). We claim now that if, in 

addition, ]~i]]r2(x) is sufficiently small (i.e. if i is large) then dA+HidA is invertible on T. 

This reduces to a finite dimensional problem. Let  



242 s . K .  DONALDSON AND D. P. SULLIVAN 

a '  = (d~)-~C,-  r ,  

then for hEH~, bEB' ,  g E H  2, cEC: 

(d a +/t i d A) (h + b) = (g + c) 

if and only if: 

(7.8) h = e(g--P(dA +/~i d~) b) 

and 

(7.9) q(d a +iti d A) h = c-q(d~ +/u i d A) b. 

Regard g, c as fixed and h as defined by (7.8). We must show that there is a unique 

solution to (7.9) for b in B',  when I[uillL2 is small. Write (7.9) as R(b)=c where R: B ~ C  

is: 

R(b) = q(d~ +~id;,) (b+ Pip(d~ +/~,d~) b) 

=d~ b+q(/aid~ (b+ Pip(d~ +luid ~) b)). 

By construction d~: B'---~C is an ismorphism so it suffices to show the operator norm of  

the remainder is small; that is if 

fl = d; (b+ P~(p(d~ +lz, d~) b )) 

then Hqfti(fl)l[L2<~olibHL2, for any •>0, when IL~iIIL2 is sufficiently small. 

We know that 

11/311L2 ~ IlbtlL2" 

The result now follows from the fact that elements of C are smooth. (We deduce this via 

elliptic regularity for the overdetermined operator (dA)*.) For if ~p is in C: 

(~ ,~; (~))v  <~ suplWl ILuelIL:II3IIL,-. 

COROLLARY 7.10. With A,/zi as above, we can find r/>0 such that for large i there 

is a unique solution a in T to 

FA+a+,i(F~+~) = 0 

with Ilalla,<r/. 
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Proof. The equation to be solved is 

(dft +/~i da) a + (a ̂  a) + +/h(a ^ a)- = --~t i F a . 

Now F a is smooth so: 

II~i(FA) IIL2--->O 

as i ~ .  On the other hand we claim that if i is sufficiently large the equation 

(da +l~i da) a + (a ̂  a) + +lxi(a ^ a)- =X 

has a unique small L~ for Z small in L 2. To see this write a= Qi~p and apply the 

contraction mapping principle using the uniform bound on dAQ i, d A Qi and the Sobolev 

inequality: 

Ila[IL, ~ Ild~al[L2 for a in T. 

The corresponding result for a/~J (or L~ +) neighbourhood follows just as in w 2, w 6. 

To complete the proof of Proposition 7.6 we have to show that there are no 

additional points in ME(g~ ")) for large i. It suffices to prove that any sequence [A.~ of 

points in M e (g~i)) contains a subsequence converging to a point of ME(g2). To see this 

we apply the compactness results of w 6. Those results give, first, that a subsequent 

converges, weakly in/~,  on the complement of a finite set S c X .  The next lemma shows 

that the weak limit is a g2-anti-self-dual connection. 

LEMMA 7.1 1. Suppose ~li-"-)O in L 2 and Fi=F + +F~ E L 2 converge weakly to F= in L 2 

and satisfy F+, +/~iF~=O. Then F+=0. 

Proof. If F~+=0 there is a smooth ~ with f ~F+~4:0. But: 

f ~l~iF~ <-IIFi-IIL211/~/IIL2supI~I--,0 as i ""~ O0, 

and 

f~F += limf ~F += limf r 
Now, by hypothesis, i(E)=0 so for any bundle F with ( - p l ( F ) ) < ( - p l ( E ) ) ,  we have 

i(F)<0. Since w2(E)~:0 all the "lower" moduli spaces MF(g2), where F satisfies 
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O < - p l ( F ) < - p l ( E )  and w2(F)=wz(E), 

are empty for generic smooth metrics g2- (Actually, in Kotschick's case, the lower 

moduli spaces are automatically empty by Proposition 6.7.) It follows that the excep- 

tional set S does not occur here and the global strong/~1 convergence that we need 

follows from the following local result. 

LEMMA 7.12. Suppose A~ are connection matrices over D which satisfy: 

(i) d*Ai=O. 

(ii) F~ +l.li(Faz)=O where ~i~C and ]Lii"-'>O in L z. 

(iii) Ai--~A= weakly in Bl. 

(iv) The A i are bounded in L~+~ for some 6>0. 

(v) Then for D' c c D  there is a subsequence o f  the Ai converging strongly in JB~ to 

A| over D'. 

Proof. Using (iv) we can suppose that Ai converge weakly in L 4+e for some e>0. 

Then substituting into the equation: 

d+Ai+/ui(d-Ai) 

is strongly convergent in L 2+~/z, while d+Ai, d-A i are bounded in L2+~/2(D ') by our L p 

theory of w 2. But /z ;~0 in L N for all N so, taking 

1 1 I < - -  
N 2+e/4 2+e/2 

we get (l~,d-Ai)~O in L2+~/4; so finally d+Ai is L 2+e/4 convergent and the result follows. 

(iv) General polynomial invariants 

We get many more examples, as explained in [9], of manifolds with distinct quasicon- 

formal structures by extending the general polynomial invariants of [9] to the quasicon- 

formal setting. We will sketch how this can be done. 

In the smooth theory the polynomial invariants are defined by intersecting a 2d 

dimensional moduli space ME with d codimension 2 submanifolds Vi. The Vi a re  

associated to surfaces Z~cX. They are the zeros of sections of line bundles 
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pulled back under the restriction maps: 

(There is some complication here to do with reducible connections: we shall ignore this 

point and refer to [6], [9] for more details.) Then one obtains compactness of the 

intersection 

under some mild restrictions on E. The important ingredients are that triple intersec- 

tions Zi n Zj n Ek (i,j, k district) are empty and that one can find many smooth sections of 

the line bundles ~ ,  over the Banach manifolds ~* This latter yields the generic , 5" i �9 

transversality used in proving compactness (see [6], Lemma 3.16). 

We encounter two difficulties in proving the invariance of the intersection num- 

bers, defined in this way, under quasi-conformal maps f: X~ ~X2 between a pair of such 

manifolds. First, f does not preserve the class of smoothly embedded surfaces Z. 

Second, it is hard to make sense of the restriction maps rz for/~ connections. To get 

round these difficulties we work with domains in the 4-manifolds in place of surfaces. 

For any domain f~2cX2 there is a topological space ~ 2  of/~o~ connections modulo/~o~ 

gauge transformations, endowed with the quotient topology. We also have a continued 

restriction map g~x2~n2. The problem is that it is not easy to put a manifold structure 

on ~n2. So we reduce to the case of compact manifolds by a "doubling" argument. 

First consider a/3~oc connection A over the half-space (x4>0) in R 4. Let 6>0 and 

f: [0, 

be a smooth function with 

(~ if t<6 /2  
f(t) = if t > 2 6  " 

Let p:R4----){x4>~di} be the map p(XI,X2,X3,X4)=(XI,X2, X3,f(x4)), and A=p*(A). Then if 
Z: R4----~R4 is the reflection map: 

Z(Xl , x  2 , x  3 , x  4 ) =  (XI ,X 2,X 3, --X4) 

we have a natural isomorphism between A and z*(A) over the strip ( -  1/2<x4<6/2] and 

we can define a corresponding B~o c connection A over R 4. 
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More generally, if F~2cX2 has a smooth boundary we can use this construction to 

make: 

(1) a closed manifold Y2 diffeomorphism to the double of fie and with a common 

subdomain g)~cQ2, Q2~c ]12" 

(2) a continuous map 

J2:~Ct2 -'~ ~ r  2 wi th  j2(A)Jn~ = aJ~. 

Now choose Qz to be a tubular neighbourhood of a smooth surface Z2c Y2- The 

homology class of  Z2 in II2 gives us a corresponding class 

/~(Y2) 6 H2(~3~2; Z) 

(see [6]) which we can represent by a line bundle 272--~2. Pull this line bundle back to 

the moduli space Me by the composite map: 

We can now carry out the same transversality arguments as in [6], [9] (using C ~ 

sections) taking the ambient smooth manifold ~r2 in place of 2~. z. We have the same 

compactness properties of the resulting intersections Men Vd provided we take the 

tubular neighbourhoods thin enough for their triple intersections in X to be empty. 

We can now verify that this modified construction gives invariants preserved by f .  

If Y2cQ2cX2 are as above we can choose a smooth surface: 

Yl cf-J(g22) c X I 

homologous in f-l(Q2) to f-J(Z2) and a neighbourhood Q l of Zl with 

Q1 c c  f-I(F~ )" 

Put fil = Q~ and ~2=f- l (f l~) .  We have maps: 

(f*)-|J2 

~r2 / ~r ,  

and it is clear that 

(A o res)* ~,  -= ~ ,  
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over ~'2 n (Jl o r e s ) - l ~ .  So we can construct  a homotopy between any sections s~, s2 of  

Lr ~2 respectively using this isomorphism and the ambient space ~r: .  Moreover,  since 

~* is a manifold we can make this homotopy in general position relative to all of  the r2 
moduli spaces. 

Finally, then, if we start with an intersection 

n(g~) n g~) n . . .  n v~,~ ~ 

constructed using 2(2; we first argue (as in the simple case of  (iii)) that for metrics g~i) 

near g2 the points of  

M(g~ )) N V~2) N ... n v~ 2' 

match up with those of  the original intersection. We next  use f to transfer to the 

manifold X 1 where g~i) correspond to smooth metrics -(i) We choose generic g 2 "  

~1) . . . . .  V~f using the Xj smooth structure and thin neighbourhoods as above. The 

discussion of  the previous paragraph allows us to find a homology between: 

and 

M ( ~ )  N VI 2) N...  n v~' 

M(giO n vl" n . . .  n v~ '~ 

so the two invariants agree. (Of course the polynomials we have defined also agree with 

those in the smooth theory,  as one sees by considering the restriction map of  smooth 

connections to surfaces.) 

Appendix I: Gehring's theorem in even dimensions 

Let (X, g) be an oriented Riemannian manifold of  even dimension 21. The * operator  on 

f2tx depends only on the conformal class of  g and satisfies -x--x-=(- 1) I. If  we work with 

complexified forms (which we denote henceforth by QP), we can decompose:  

~'~ = Q; �9 ~;~ 

where -x-=+l or + i  on if2 -+, as l is even or odd respectively. We then have a "ha l f  de 

Rham complex" :  

d + 
0 d d r ~ l - I  g + 

ff2x'--~ Q'--~ ""'-'-~ "~'x --> Qx 

16-898286 Acta Mathematica 163. Imprim6 le 20 decembre 1989 
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+ the projection of d to g2 +. In a local in which the metric appears only in the last te rm dg, 

coordinate system we can represent  the conformal structure by a bundle map: 

#: A---~ A +, 

with II/~11<1. Then dg is represented by: 

d + +/~d- 

where d +, d- are constant coefficient operators defined by the Euclidean metric in the 

coordinate system. (If one prefers compact  manifolds one can work on a domain in S zl 

with the round, conformally flat, metric.) All of  this is an immediate generalisation of  

the four dimensional case considered in w 2. The only point to note is that the map from 

conformal structures to bundle homorphisms with operator  norm less than 1 is injective 

but not surjective w h e n / > 2 .  

Now as in w 2 we can consider operators d++~d - where II/~11<1 but/~ is otherwise 

only assumed to be measurable.  For  compactly supported l - 1  forms a we have: 

I f  da A da 1 fld+al2-ldal2=[ifdâ daj = 0  

(as l is even or odd), so the argument of  Lemma 2.7 shows that we have the usual 

elliptic estimates for d++~d - on Kerd*  for a small range of  indices p about p=2 .  

Similarly a 21 form which is closed and "se l f -dual"  relative to the bounded conformal 

structure defined by/~ is locally in L 2+e, for some e>0.  We can then easily deduce 

Gehring's theorem in dimension 2l. 

PROPOSITION (Gehring). I f  D is a domain in R 2t and cp: D---)R 21 is a K quasiconfor- 

mal map then the partial derivatives o f  cp are in 121+q for  some ~/(K)>0. ~]OC 

Again the argument is almost identical to that in the four dimensional case of  w 3. 

We choose a closed, nowhere-vanishing, form co in fl+, for example: 

dx I ... dxl+dxl+ 1 ... dxzl or dxj ... dxl-idxl+ 1 ... dxzt, 

then consider w=9*(o~), which is self dual relative to the bounded structure obtained 

by pull-back under % On a suitable interior domain D we have: 
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fo, I~ < 

and so: 

fo, lVqqz'+~'< fo, lo~lz+" < o~. 

When I= 1 this proof is just a restatement of that given by Boyarskii. The operator d § is 

in this case the Cauchy-Riemann 0 operator and (d++/ud-)f=g is the usual Beltrami 

equation. Of course Gehring's proof applies equally well to even and odd dimensions. 

It would be interesting to look for an odd-dimensional counterpart to the argument, 

depending on the Calderon-Zygmund theory, given here. 

Appendix 2: Index theory on quasiconformal manifolds 

The approach to the index theory we have adopted in Section 4 extends to general, 

even dimensional quasiconformal manifolds and gives, in particular, an alternative 

route to the main results obtained by Teleman for Lipschitz manifolds. First, by 

standard Hodge theory, we have integral "homotopy operators!' for the constant 

coefficient half-complex, that is operators: 

such that 

dop+apd= 1, p<l  

d+ot = 1. 

On a compact quasiconformal 2l manifold X we can introduce spaces of forms, just as 

in w 3. For example we have a Banach space of "B-forms" B", with 

12 E L 2l/i, da ~ L 21/i+1 . 

Let E be a complex vector bundle over X (with a/~ or B + structure). We wish to 

associate an integer "analytic index" invariant i(E) in the same way as in w 5. To do this 

we choose a bounded conformal structure on X, defining subspaces f2 x, f2 x, and a (/~ or 

B +) connection A on E. We have then a sequence: 

d + 

- ,  . . . - - ,  
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This can be modified to yield a complex by the procedure of w 4, extended inductively 

over all the last terms. First one sees that Im d a has a finite dimensional cokernel  H I 

(and it does not matter  whether  we use the B or /~  framework here). We find a right 

inverse: 

Q/(Ht)• Q~-I(E) 

by starting with a parametrix constructed using at in local charts. Then we put 

Ol_ 2 = da--OlFA on Q/-2(E), 

so d+6t_2=0. Suppose inductively that we have defined operators 6p for q>p>~l-2, 
differing from the dA by compact  operators,  and such that: 

~p ~p-I = 0. 

(Then we can show using the arguments of w 4 that the 6p have closed range and the 

cohomology groups/_/v are finite dimensional.) To construct  6q we start once again with 

a parametrix, an operator  

such that: 

We can take: 

�9 q+2 q+l P. ~ x  (E)---> if2 x (E) 

6q+1P = 1 +(compact)  on Im 6q+1 

i(E) = ~ ( -  1)qdimH q. 
q 

As we explained above, the theory of Fredholm complexes shows that i(E) is independ- 

ent of  the conformal structure on X and connect ion on E. The advantage of  this 

approach, compared to Teleman 's ,  is precisely that the underlying Banach spaces are 

It is then a straightforward exercise,  extending the discussion of  w to find a right 

inverse Qq+2, and we can put C~q=da-Qq+2F a. We define i(E) to be the Euler  character- 

istic of the 6q complex: 

e ( ~ )  = ~ ~a (Tq+2(~)lUa) (c f .  (4 .8 ) ) .  
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independent of  these auxiliary structures so the invariance of  the index is a compara-  

tively routine matter .  

When X is a smooth  manifold we can choose all our  data to be smooth.  The 

Atiyah-Singer index theory can then be used to calculate i(E). The single operator:  

D = ~ + 8 " :  s176 f22 ... --~ g21 +s ... 

has index i(E) and DO)D is equivalent (module compac t  opera tors  and direct sum with 

invertibles) to: 

D x + ( -  1)tDr 

where Dr is the signature opera tor  and D z the Euler  characterist ic  operator .  So we have 

the index formula,  in the smooth  case: 

l ( r a n k  E ) z ( X ) + ( - 1 )  t (ch(E)L(X) ,  [X] }. i(E) 
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