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Introduction 

A detai led s tudy  of  the b o u n d a r y  regular i ty  for so lu t ions  of  the Dir ichle t  p rob lem in an  

open  region D of  R N, N~>3, was carr ied  ou t  by  H. L e b e s g u e  and  others :  this invest iga-  

t ion cu lmina t ed  in  the  ce l eb ra t ed  Wiener criterion. By re lying on  a f u n d a m e n t a l  no t ion  

of potent ia l  theory ,  n a m e l y  that  o f  capacity of  an  a rb i t ra ry  subse t  of  R s ,  N. W i e n e r  was 
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able to characterize the boundary regular points--as classically defined by H. Le- 

besgue and N. Wiener himself--in terms of an intrinsic condition which must be 

satisfied by the domain D in the neighbourhood of the given point x0 (see [23]). 

A further interesting contribution was given by V. G. Maz'ja, who showed that the 

pointwise modulus of  continuity of solutions of Dirichlet problems, with arbitrary 

continuous boundary datum h, is related to the rate of divergence of the integral 

appearing in the Wiener's criterion (see [18], [19]). 

At the same time, in the framework of the theory of variational inequalities, H. 
Brrzis, H. Lewy, G. Stampacchia, and others initiated the study of the regularity of 

solutions of a class of  free boundary problems, the so called unilateral obstacle 
problems, involving a second order elliptic operator L (see [21], [3], [16]). This study 

was pursued by L. A. Caffarelli, J. Frehse, D. Kinderlehrer, and others (see [4], [8], 

[9]. Most of these results are of global or local nature, in the sense that, for example, 

the solutions are shown to be continuous at a given point, provided the obstacle is 

continuous on a neighbourhood of that point. 

The methods used are primarily "a  priori" estimates like in the usual P.D.E. 

theory. However, the connection with potential theory and related methods were 

explicitly also taken into account, in particular by H. Lewy and G. Stampacchia and 

later on by L. Caffarelli and D. Kinderlehrer. 

Related to both P.D.E. and potential theory is the approach taken by J. Frehse and 

U. Mosco to study the pointwise regularity of local solutions of obstacle problems for a 

class of quite general irregular obstacles, i.e. obstacles not necessarily continuous (see 

[I0], [11], [12]). These authors introduced the notion of regular point of an obstacle 

and, by relying on capacity methods as in the classical theory, they established a 

criterion for regularity of the type of the Wiener criterion. Moreover they proved 

estimates of the modulus of continuity of the solutions of the type of the Maz'ja 

estimate. 

In this paper we consider a more general class of variational inequalities, the so 

called two-obstacle problems (see Definition II. 1.1), and we carry out the study of the 

pointwise behaviour of the local solutions. This theory provides a unified framework 

for the study of regular points both for Dirichlet problems and for unilateral obstacle 

problems. 

The point x0, at which the regularity is tested, may indeed be a point of a fixed 
boundary, as in the Dirichlet problems, as well as a point of a free boundary in a two- 

obstacle problem, that is a point of the boundary where the solution leaves one of the 

two obstacles. It may even happen that the "geometry" of the obstacles at the given 
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point x0 is more complicated: the two obstacles may " touch"  each other at x0, while 

both oscillate very much in an arbitrarily small neighbourhood of the point, interpene- 

trating each other. 

We will consider variational solutions in Part II and generalized solutions in Part 

III. The former are solutions in the Sobolev space H ~, which exist provided the two 

given obstacles ~p~, ~P2 are separated by some H I function w. The latter can be defined, 

more generally, as limit of variational solutions, by only requiring the separating 

function w to be quasi continuous in the capacity sense. 

The notion of regular point for two given obstacles ~pl, ~P2 is first introduced in Part 

II in terms of continuity at a given x0 of all variational solutions in a neighbourhood of 

x0 and then extended in Part III in terms of generalized solutions. A Wiener criterion, 

which characterizes the regular points, is proved for variational solutions in Theorem 

II. 1.1 and for generalized solutions in Theorem 111.2.1. In particular, such a criterion 

shows that even a point x0 where the two obstacles touch one each other will be regular 

for the two-obstacle problem, provided it is regular separately for each of the (one- 

sided) obstacles. This qualitative result follows indeed from the one-sided criterion by 

means of suitable comparison arguments. 

We are also concerned in establishing a priori estimates for local solutions, to be 

satisfied at an arbitrary point of the domain. A peculiar interesting feature of all these 

estimates is their structural nature. By this we mean that they depend only on the 

dimension of the space and on the structural constants of the operator L, such as its 

ellipticity constants. 

Estimates of the modulus of continuity are given in Theorem 11.2.1 for variational 

solutions and in Theorem 111.2.2 for generalized solutions. More general estimates of 

energy type for variational solutions are given in Theorem 11.2.2, by assuming the 

separating function w to be in a suitable Kato class. The estimated energies of Dirichlet 

problems must be replaced, in general obstacle problems, by some potential seminorms 

as given in Section 1.8. 

Let us point out finally a special interesting case of our theory, namely Dirichlet 

problems in which a non-homogeneous condition u=h is prescribed on an arbitrary 

Borel set E of positive capacity in R N. Such a problem can indeed be formulated as a 

two-obstacle problem, with the obstacles ~)l and ~P2 defined to be ~01=~2=h on E and 

~pl=-Oo,~p2=+oo on RN-E. Unless E is compact, the regularity at a point XoEaE can 

not be reduced to the classical boundary regularity theory in RN-E, nor the pointwise 

results of the potential theory can be applied (except in the case, typical in potential 

theory, where h is a constant on E). 
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Part I. Notation and preliminary results 

In this part of the paper we fix the notation and state some preliminary results. 

1.1. Capacity notions 

If  K is a compact subset of  R N, N~>3, we define 

Cap(K)=inf{fa(lVcpl2+cp2)dx:cpEC~o(R~),9>~ 1 o n K } ,  

where Vq~ denotes the gradient of q~. If  A is an open subset of R N we put 

Cap(A) = sup{Cap(K): K compact, K ~_ A}. 

If  E is an arbitrary subset of R N we put 

Cap(E) = inf{Cap(A): A open, A _~ E}. 

Let  f~ be a bounded open subset of RN; if K is a compact subset of fl  we define 

(I.1) cap(K, inf{f. ,VglZdx:q)EC~(ff2),q)>~lonK}. 

We then extend this definition to an arbitrary Ec_Q as in the previous case. We refer to 

[3], [5], and [9] for details and properties. 

We say that a function u defined on a subset E~_R N is quasi continuous (in the 

capacity sense) if for every e>0 there exists an open subset A of R N with Cap(A)<e, 

such that ule-a is continuous on E-A. 
If  a statement depending on x E R N holds for every x E E except for a subset N of E 

with Cap(N)=0, then we say that it holds quasi everywhere (q.e.) on E. 

We say that a sequence of functions ~Ph: E-*[ -co ,  +co] converges quasi uniformly 
(in the capacity sense) to a function ~p: E--~[-co, +co] if for every e>0 there exists an 

open subset A of  R N, with Cap(A)<e, such that ~ph--~p--->0 uniformly on E-A (with the 

convention + c o - ( + c o ) = - c o - ( - c o ) = 0 ) .  If  each ~Ph is quasi continuous on E, then ~p 

also is quasi continuous on E. 
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Let v be a function E--.[-oo, +oo], then we denote by super the essential supre- 

mum of v on E taken in the capacity sense; in the same way we define infev. 

Boundedness from above and below (in the capacity sense) are defined accordingly. 

For every x E E we define 

(1.2) 0(x)=inf~  sup v 1 and _o(x)=supl inf v / 
o>0[So(x)ne J o>0 l~o~x)nE ) 

where Be(x)={yERN: [x-yl<o},o>O. We have 0(x)<+ oo (resp. _v(x)>- oo) if and only if 

v is locally bounded from above (resp. below) in some neighbourhood of x. 

If Cap(E)>0, sup rv>-oo ,  and infEv<+oo, the oscillation of v on E is defined by 

(1.3) osc v = sup o-infv .  
E E E 

We set oscev=0 in any other case. We say that v is continuous at x0 on E if 

l im( osc v ) = 0 .  
o-~O \ EnB Q(x O) ,] 

1.2. The Sobolev spaces 

Let f~ be an arbitrary open subset of R N. By HI(~"2) we denote the space of all functions 

u of L2(f2) whose distribution derivatives are in L2(~'2), endowed with the norm 

Ijuij.1 o,--(jl.ij 2 o,+jlvuij 2,o,)l'2 
By H~oc(f~ ) we denote the set of all functions u E L~oc(fl) such that ut~, E HI(f2 ') for 

every open set f~'~f~ (i.e. O' compact and (2'___~). By H~(fl) we denote the closure of 

cl(~)) in Hl(f~), and by H-l(f l )  we denote the dual space of H~(f~). The dual pairing is 

denoted by ( , ) .  

It is known that for every u E H~oc(f2) the limit 

o-oo [Bo(x)t 3ao(x ) 

exists and is finite quasi everywhere in fl, where IBo(x)[ denotes the Lebesgue measure 

of the ball Be(x). 
We make the following convention about the pointwise values of functions 

u E H~o:(fl): for every x E Q we always require that 
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(2.1) lim i+nf ~ I  f u(y)dy<~u(x)<~limsup 1 ~  f u(y)dy. 

With this convention, the pointwise value u(x) is determined quasi everywhere in g2 and 

the function u is quasi continuous. 

Note that for a function u 6 Hlo~(f~) the condition u~>0 a.e. in f2 and u>~0 q.e. in f2 

are equivalent. A function u 6 Hl(fl) can be extended to a quasi continuous function 

u r H l ( W  v) by simply putting u=0 q.e. in RN-f~. 

It can be proved that for every E~_R N 

Cap(E)=min{fRN(lVul2+u2)dx:urH~(RN),u~lq.e. on E}.  

Moreover 

cap(E, f2)= min{f, IVul2dx: urHi(~),u>~lq.e, on E},  

provided that fl is bounded and contains E. 

By a non-negative Radon measure on Q we mean a non-negative distribution on 

ft. By a (signed) Radon measure we mean the difference of two non-negative Radon 

measures. 

I f / ~ r H  -l is a non-negative Radon measure, then the equality 

(I,, v> = f,  vd , 

holds for every v 6H~(f~), where the pointwise values of v are determined q.e. in f~ by 

the convention (2.1). For the preceding properties of H-~(Q) see e.g. [5]. 

Given two functions u and v defined in f2, we denote by uAu and uVv the functions 

defined in f2 by 

(uAv) (x) = min{u(x), v(x)), (uVv) (x) = max{u(x), v(x)}. 

The function u § and u- are defined by u+=uV0 and u -= - (uA0) .  

It is well known that if u and v belong to HI(g2) (resp. H~o~(ff2), Hl(f~)), then uAu 
and uVv belong to Hi(Q) (resp. H~o~(fl), HI(Q)). 

Definition 2.1. We say that two functions u, u 6 Ht(fl) satisfy the inequality u<.v on 

ag2 (in the sense of H1(Q)) or equivalently that v>>-u on af2, if (v-u)AO belongs to 

Hi(n). 
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Note that in the previous definition we do not assume that u and v can be extended 

to quasi continuous functions defined on ~ .  

If, u, v 6HI(RN), then u<.v on 0f~ in the sense of  HI(g2) if and only if u~o q.e. on 

af t ,  where the values of u and v on af2 are defined according to our convention (2.1). If  

u 6Hl(f~), v 6 H0t(f2), and u<.v a.e. on f~, then clearly u~<0 on af~ in the sense of H~(f2). 

More generally, we can prove the following lemma. 

LEMMA 2.1. Let f2 be a bounded open subset of R N and let u 6 H1(f2). Assume that 
there exists a quasi continuous function V: (2--~It such that u<<.~p q.e. on f~ and %0=0 

q.e. on aft. Then u<~O on af2 in the sense of  Hl(f~). 

Proof. It is enough to prove the lemma under the additional assumption O<~u<<-V<~ 1 
q.e. on Q. Since ~p is quasi continuous on f~, for every h 6 N there exists an open set Ah 

such that ~Plo-ah is continuous and Cap(Ah)<l/h. Since ~0=0 q.e. on a f t ,  we may 

assume that ~p(x)=0 for every x 6 a~"~-A h. Therefore the set 

Kh = {x6 ~ :  *p(x) ~l/h} --Ah 

is compact and contained in f~. 

For every h E N we denote by Oh the solution of the minimum problem 

min{f ,( ,Vo,2+o2)dx:o6H'(RN),o>-lq.e,  on ah} .  

Since Cap(Ah)<l/h, the sequence {oh} converges to 0 strongly in HI(RN). Let  

Uh = (U--I--Uh) VO. 

Then uh6nl(Q) and Uh=O q.e. on f~--Kh. Therefore Uh6H~(f2). Since uh converges to 

uV0 strongly in Hl(fl) ,  it follows that uV0 6 H~(f2), hence u~0  on 0f2 in the sense of 
HI(~).  [] 

1.3. The Kato spaces 

Let f~ be a bounded open subset of R N. By K(Q) we denote the set of all signed Radon 

measures bt on f~ such that 

lim§ I ,y--x,2-Nd, lzl(y)}= O, 
o-,o I xen J~nBo(~) 
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where ~u] denotes the total variation of/a. We define a norm in K(f~) by setting 

Itullxt~)-- sup I lY--xl2-Ndl~l(Y) 
xe~ J~ 

For every/~ 6 K(fl) and every x 6 • we have 

(3.1) lim = 0 
0--. ,0 + 

(see e.g. [14], [2], [5]). Moreover K(~)~H-I(f~) with continuous imbedding. In fact 

fofo (~'~)2-N I" 2 ly--xlE-N d~l(y) d~l(x) <~ diam ~ K<~) 

for every/~ 6 K(~). 

1.4. The operator L 

In the whole paper we shall denote by L a linear second order partial differential 

operator in R N in divergence form 

N 

(4.1) Lu = - E (au ux~)x, 
i,jffi I 

with coefficients aoEL| i,j= 1 . . . . .  N, and satisfying the uniform ellipticity condi- 

tions 

N 

(4.2) E au(x)~J~,>~2]~] 2' lao (x)l<~A for a.e. x6R"  
i , j = l  

for some constants 0<2~<A. 

Let f~ be a bounded open subset of R N. We define the bilinear form a on H~(f~) by 

(4.3) a(u, v) = aa(u, o) = E aijuxjvxi dx" 
i,j= I 

According to [22] we say that u is a (local) solution in f~ of the equation 

(4.4) Lu = f  

for a given f 6  H-I(Q) if u 6 HI(f  J) and 
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(4.5) ate(u, q0) = (f, q0) forevery  q0 EH~(Q); 

we say that u is a subsolution of  the equation (4.4) if 

an(u, qg) <<. ( f ,  q)) for every q0 E H01(f2), q0 I> 0; 

the supersolutions are defined similarly. 

If  u is a subsolution (supersolution) of  the equation Lu=O we also say that u is a 

subsolution (supersolution) of  the operator  L. 

1.5. A priori estimates for solutions and subsolutions 

In this section we give some estimates for  solutions and subsolutions of  the equation 

Lu=v, where v is a measure of  the Kato space K(f2). 

Let  B R =B~(x0), x 0 E R N, R>0 ,  let 0 < s <  I, and let v E K(BR). 

PROPOSITION 5.1. Let u EHI(BR) be a solution, or a non-negatioe subsolution, o f  

the equation Lu=r. Then there exists a constant c=c(2,  A ,N,  s )>0 such that 

(5.1) IlulI~~ < c[R-NllulI~2(BR-B,R)+IIvlI2(BR)]' 

(5.2) fe IVul2 lx-x~ dx <~ c[R-Nllull 2r . 
sR 

Proof. Lemmas  6.7 and 6.8 of  [5], applied wi th /z=0,  give the result when u is a 

solution. The same proofs can be easily adapted to the case of non-negative subsolu- 

tions. [] 

For  every u E H1(BR) we put 

I fB u(x)dx. 
uR-IBRI R 

PROPOSITIOrq 5.2. Let uEH1(BR) be a solution o f  the equation Lu=v. Then 

B sR 

where c is a constant depending only on A, A, N, and s. 

Proof. Since oscB, R u<~2tlu-u~ll,:(B,R), it is enough to apply the estimate (5.1) to the 

function u-uR. [] 

5-898285 A c t a  M a t h e r n a t i c a  163. Irnprim6 le 8 septembre 1989 
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PROPOSITION 5.3. Let u EHl(BR) be a solution o f  the equation Lu=v. Then 

IlullL <  ) sup lul+cllvllKr 
aB R 

where c is a constant depending only on 2, A, and N. 

Proof. For every y E BR we set 

w(y) = fB GY(x)dlvl(x)' 
R 

where G y is the Green function for the Dirichlet problem relative to the operator L in 

B~ with singularity at y. Then Lw=[v I on BR and 

(5.3) sup w cllvllK B   
Be 

by the well known estimates of the Green function (see [17], [22], [13]). Since lul is a 

subsolution of the equation Lo--Ivl (see, for instance, [5], Proposition 2.6), the function 

z=lul-w is a subsolution of the equation Lv=O. By the maximum principle we have 

sup z ~< sup z, 
Be anR 

hence 

sup [u[ ~< sup z+sup w~<sup z+sup w~<sup lul§ w. 
B R B g B R OB R B R aB R B R 

The conclusion follows now from (5.3). [] 

1.6. H~-dominated quasi uniform convergence 

In this section we introduce a convergence which will be used in Part III, in connection 

with our definition of generalized solutions. Let E be an arbitrary subset of R N. 

Definition 6.1. We say that a function ~: E--->I~ is HI-dominated (on E) if there 

exists vEH1(R N) such that I~pl~<v q.e. on E. 

We refer to [1] for a characterization of the Hkdominated functions ~# in terms of 

the capacities of the level sets of [~p[. 
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Definition 6.2. Let ~0h: E---~I~ be a sequence of functions converging quasi uniform- 

ly to ~p: E---~I~. If in addition there exists v E Hl(R N) such that I~h--~O[<~V q.e. on E then 

we say that ~0 is the HI-dominated quasi uniform limit o f  ~Ph (on E). 

PROPOSITION 6.1. A function V2: E--->R is the HI-dominated quasi uniform limit o f  a 

sequence o f  functions V2h: E---~R if  and only i f  there exists a decreasing sequence Oh in 

H~(R N) converging to 0 strongly in Hl(R N) such that 1~2h--V21<~Vh q.e. on E for every 

hEN. I f  E is bounded, we may assume in addition that each function Vh is a supersolu- 

tion o f  the operator L in a neighbourhood f~ o f  E. 

Proof. Assume that ~p is the H~-dominated quasi uniform limit of ~0h. Then there 

exists vEHI(R s) such that IV2h-Vdl<<.v q.e. on E for every hEN.  For every kEN there 

exist o(k)EN and an open set Ak such that Cap(Ak)<2 -k and IWh-Wl<l/k on E - A k  for 

every h~o(k). We may assume that the sequence Ak is decreasing and that a: N---~N is 

strictly increasing. For every k E N we may consider the solution Wh of the minimum 

problem. 

min{f RN ([Vwl2+w2)dx;wEHl(RN)'w>~v q.e. on ak}. 

Then the sequence Wk is decreasing. Since v EHI(R N) and Cap(Ak)--}0 as k---~+~, the 

sequence wk converges to 0 strongly in HI(RN). 

We define 

{v ( ) f o r h < a ( 1 ) , w k +  v 
v h = I A for o(k) ~< h < a(k+ 1). 

Then Vh is decreasing and converging to 0 strongly in H~(R~). Since for o(k)<<-h 

t l q.e. on E - A  k, I h- 01 < -k A v 

I V<.Wk q.e. on EllA k, 

we have Ilffh--lffl~V h q.e. on E for every hEN. 
Let us suppose that E is contained in a bounded open set ~2 of R N. Then we can 

replace the functions Vh by the solutions Zh of the variational inequality 

f Eh--VhEHI(~'~), Zh~V h q.e. in f2. 
a~(z h, Z--Zh) >I 0 

VzEHI(fD, Z--VhEffo(fD, Z>-Vh q.e. in Q. 
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It is then clear that each function Zh is a supersolution of L on f~ and satisfies the 

inequality [~r)h--~)[~Vh q.e. on E. Moreover the sequence Zh is decreasing and converges 

to 0 strongly in H~(f~). 

Converserly, assume that there exists a decreasing sequence Vh in Hl(R N) converg- 

ing to 0 strongly in HI(R N) such that [V2h--Wl<-Vh q.e. on E for every hEN. Since 

IWh--Wl<<-Vh q.e. on E for every h E N, to prove ~p is the H~-dominated quasi uniform limit 

of~0h it is enough to show that ~Ph convergs to ~p quasi uniformly (in the capacity sense). 

For every k E N there exists o(k)E N such that 

IIv k)lln,   )  1/k . 

Let Ak={votk)>I/k }. Then Cap(Ak)<l/k 2 and ]Wh--Wl~Vh~Vo~k)~l/k q.e. on E-Ak for 

every h>-o(k). This proves that ~Ph converges to ~p quasi uniformly. [] 

1.7. The Wiener moduli  

In this section functions ~p: RN----~I~ will be considered which will play the role either of a 

lower obstacle or of an upper obstacle for our problem. The variational behavior of 

these one-sided obstacles at a given point x0E R N will be described in terms of a 

function 

(7.1) wo(r,R)=WoOP, xo;r,R), 0 < r < R ,  o > 0 ,  

called the Wiener modulus of ~p at Xo. 
For a lower obstacle ~0, this will be done in terms of suitable one-sided level sets of 

% namely 

(7.2) E(e,o)= EOp,xo; e,o)= {xEBo(xo): tp(x)>~ sup ~p-e} 
/~o(x0) 

and their relative capacities 

(7.3) 6(e, 0) = bOP, x0; e, tg) - 
cap(E(e, 0), B2o(Xo)) 
cap(Be(x0), B2o(x0)) 

We then define the (lower) Wiener modulus (7.1) by setting 

wo(r,R)=inf{w>O:wexp(fRd(ow, Q)-~) >~ 1}. 

The modulus w, for a fixed "scaling factor" a>O, can be regarded as implicitly 

defined by 
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= ex - crto, . 

More precisely we have the following lemma (for the proof of  the lemmas of this 

section see [20], Section 4). 

LEMMA 7.1. Let O<r<.R be fixed. Then e>0 and o>0  verify 

if and only if  

too(r, R) = exp - 6(e, •) and otoo(r, R) = e. 

In addition to the integrals 

(7.4) 

we shall also consider the integrals 

(7.5) 

f l~ 6(e, O) do 
Q 

f R6.(e,Q ) do 
q 

where now 6*(e, ~,), e>O, Q>O, is defined to be 

and 

6*(e, Q) = cap(E*(e, (~), B2o(Xo)) 
c a p ( B e ( x 0 ) ,  B2q(Xo) ) 

E*(e, O) = (x EBQ(x0): ~(x)/> r  } . 

The Wiener modulus to*(r, R) is defined as too(r, R) with 6(e, Q) replaced by 6*(e, Q). 

Remark 7. I. It follows immediately from the definitions that 6(e, Q)~<6*(e, O) for 

every e>0,  Q>0, hence too(r, R)~to*(r, R) for every O<r<.R and for every a>0.  More- 

over Lemma 7.1 continues to hold with 6(e, O) and r replaced by 6*(e, Q) and 

to*(r, R) respectively. 

The vanishing of o~o(r, R) as r---~0 + is clearly related to the divergence as r---~0 + of 

each one of the (lower) Wiener integrals (7.4) and (7.5). In fact we can prove the 

following lemma. 
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LEMMA 7.2. Assume that - ~ < q ~ ( X o ) < + ~ .  Then the following conditions are 

equivalent: 

(a) for  every e>0  there exists R > 0  such that limr_~O+wo(r,R)=O for suitable 

tr=o(e, R;r) such that owo(r, R)<-e for  all 0<r<~R; 

(b) for every e>0  there exists R > 0  such that 

fo R6(e,o) do = + ~ ;  
O 

(c) for  every e>O there exists R>O such that 

fo n6*(e, d o = +  P) oo. 
O 

The vanishing of  wo(r, R) as r--*0 + is also related to the regularity of the set 

F=Fv:= {x: ~ p ( x ) > - ~ }  

at the point x0 (in the sense of  the classical potential theory) and to the continuity at x0 

of  the restriction of  ~p to F (in the sense of  Section !). For  every 0 > 0  we set 

~Be(x o) if Cap(Be(x o) fl F)  = 0, 

BF(x~ = [Be(x o) (1F if Cap(Be(x o) fl F)  > 0, 

and for every O<r<.R we define 

(7.6) Wr(r, R) = exp - cap(B o(xo)" B'.o(Xo)) . . 

Then the following estimate holds. 

LEMMA 7.3. For arbitrary o > 0  we have 

r _ _ <  . _. < m i n { l , m a x [ W F ( r , R ) , l  osc ~o]} R w,,(r, bl) o B,(.~dnF 

for every O<r<.R. 

For an upper obstacle ~p, the (upper) Wiener modulus of ~ at the point x0 and the 

corresponding (upper) Wiener integrals (7.4) are defined similarly by just  replacing in 

(7.2) the supremum with the infimum, - e  with e, and/> with ~<; that is by taking 
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E(e,o)= {xEBo(xo): V2(x)<- inf , / ,+el; 
n~(xd J 

accordingly, the sets E* in the upper Wiener integrals (7.5) will be defined as 

E*(e, O) = {x E Bo(xo): ~p(x) ~< _q,(Xo)+e } . 
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1.8. Potential estimates for one-sided obstacle problems 

In this section the function ~0:RN-->I~ plays the role of a lower obstacle. Let 

f2=BR(x0), x0 E R N, R>0,  and let # E K(f~). We consider a local variational solution u of 

the one-sided obstacle problem 

f u E HI(~), u I> ~p q.e. in ~ ,  

iS.l) la.(u,v-u)>-- fo(v-u)d# 
[ V v E H ' ( Q ) ,  v>~p q.e. in f~, v-uEHIo(f~). 

For every O<r<.R we set Br=Br(xo) and we consider the potential seminorm ~ of 

u defined by 

(8.2) ~ = (OSCR~2+ (IVUl2IX--XoI 2-Ndx. 
~kBr /] Jnr 

zero as r--->0 § can be estimated according to the following The decay of T'(r) to 

proposition. 

PROPOSITION 8.1. There exist two constants c=c(2, A, N)>0  and 13=13(2, A, N ) > 0  

such that for every solution u of(8.1) we have 

(8.3) ~(r) ~ c[R-N/Zllu-dllatBR ~ wo(r, R)# +owo(r, R)+II#11KeBR)] 

for every O<r<~R/2, for every o>0,  and for every constant d>~SUPB R ~p. 

Proof. The results fo r#=0  are proved in [20], Theorems 6.1 and 6.2. Let us discuss 

now the case #4=0. We shall denote by c and fl various positive constants, depending 

only on 2, A, and N, whose value can change from one line to the other. 

Let us consider the unique solution w E ffo(BR) of the equation Lw=#. By Proposi- 

tion 5.3 we have 
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(8.5) Ilwllm~,) < cll~llx(B~>. 

The function z = u - w  is a solution in BR of the variational inequality 

(8.6) { zEHI(BR), Z>~O--w q.e. i nB  R, 

aa(z,v-z)>~O, Q=B R 

'r v>~vd-w q.e. in B R, v - z  E H~(BR). 

For every r/>0, 0 < o < R  we define 

Ew(rl, O) = {xEBo: ~d(x)-w(x) ~ sup(~-w)-r l}  
B e 

and 

~ ( ~ ,  e) = 
cap(E~(y,0),B~) 

cap(B e, B2 o) 

Let ~ 0<r~<R, be the potential seminorm defined as in (8.2) with u replaced by 

z=u-w.  Let us fix O<r<~R/2. By applying Theorem 6.1 of [20] to the obstacle problem 

(8.6), we obtain 

/ f R / 2  _~__) 
r~(r)<~cr~(R/2)expk-flJr d~(rl, O) +crl 

for every r/>0 (see also Lemma 7.1). Take rl=e+oscB~w with e>0. 

E(e, Q)~Ew(r 1, Q), we have 

(8.7) ~ 6(e,o) +ce+coscw. 
BR/2 

Since 

By (8.5) and by Proposition 5.1 we obtain 

 . 0,o  oscw/ 4 
L \ sR~ / JB~ (8.8) 

< c[IIwlImB,)+II~IIKCB,~] < clI~IIKcB,) 

1/2 

for every 0<p~<R/2, and Theorem 6.2 of [20] implies 

(8.9) ~(R/2) ~ c[R-N/211u-dlIL2(B,)+II~II.~<BR)] 
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for every constant d>supB R ~p. Therefore (8.5), (8.7), (8.8), and (8.9) yield 

~r(r) <~ c2aR-N/211u--dlIL~B,, ) exp - f l  6(e, O) do +ce+cll~llK(..r 
0 

Let  us fix o>0.  For  every e>trtoo(r, R) the previous inequality implies 

e # 

and taking the limit as e $ oo)o(r, R) we obtain (8.3). 
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[] 

Part II. Variational solutions 

Throughout this part of the paper, /Pl and ~P2 are two arbitrary given functions from R N 

into 1~ and Xo is an arbitrary fixed point of  R N. We shall write B, instead of  B,(xo), r>0,  

and we shall freely use the notation from Part I. In the proofs we shall denote by c and 

fl various positive constants, depending only on the ellipticity constants 2 and A of the 

operator L, on the dimension N of the space, and, possibly, on a parameter 0 < s < l .  

The value of these constants can change from one line to the other. 

II.1. Statement of  the main results 

Definition 1.1. For  every open subset ~ '~R N, we say that a function u is a (local) 
variational solution in f~ of  the two-obstacle problem {~Pl, ~P2) if 

f uEHl(f~),  ~D1 ~ a ~ / P 2  q.e. in t ,  

(1.1) ~au(u, v-u)  >I 0 
I 
[VvEHI(ff2), ~pl---<v-~<~p2q.e. inff~, v-uEHI(•). 

In all this section we shall only consider variational solutions and we shall omit in 

the following the term variational. 
~/~2 By 9/~01(x0) we denote the set of all functions u which are local solutions of the 

problem {~'1, ~/)2} o n  some open neighbourhood f2 of x0 (depending on u). 

Definition 1.2. We say that x0 is a regular point of problem (~r~l, ~32) if the set 
TP2 ~2 ~ 0) is not empty and every u E ~//~(x 0) is finite and continuous at Xo. 

With the lower obstacle /Pl w e  associate the (lower) Wiener moduli col,o(r,R), 
w~,o(r, R), O<r~R, a>0,  and the (lower) Wiener integrals f 61(e, O) do~o, fb~(e, O) dO/O 
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defined as in Section 1.7. With the upper obstacle 7)2 we associate the (upper) Wiener 

moduli wz,o(r, R), to~,o(r, R), O<r<.R, o>0, and the corresponding (upper) Wiener inte- 

grals f O2(e , O)dO~O, f 6~(e, O)do/o also defined in Section 1.7. 

Definition 1.3. We say that x0 is a Wiener point of the problem {q'l, ~02} if 

f0 f0 (1.2) d~'(e, 0) do = +oo and d~(e,o) do = +oo 
0 0 

for every e>0 and for every R>0. 

Remark 1.1. By Lemma 1.7.2. we have that x0 is a Wiener point of the problem 

{~Pl, ~02} if and only if x0 is a Wiener point, according to Definition 3.1 of [20], both for 

the lower obstacle problem determined by ~Pl and the upper obstacle problem deter- 

mined by ~02. 

The following Wiener criterion holds. 

THEOREM 1. I. The point Xo is a regular point o f  {~/)l, ~32) if and only i f  all the 

following conditions (1.3), (1.4), and (1.5) are satisfied: 

(1.3) ~l(xo)< +0% ~2(Xo)>-oo, and ~l(xo)~<~2(Xo), 

(1.4) there exists R > 0  and wEHI(BR) such that ~Pl <- w<-~P2 q.e. in BR, 

(1.5) Xo is a Wiener point o f  {e/l, el2}. 

Remark 1.2. By Remark 1.1 and by the characterization of the regular points of the 

unilateral problems (Theorem 5.1 of [20]) we have that x0 is a regular point of {7)1,7)2} if 

and only if all the following conditions (1.6), (1.7), and (1.8) are satisfied: 

(1.6) ~l(Xo) ~< ~2(Xo), 

(1.7) there exists R > 0  and wEHI(BR) such that ~Pl ~< w<<-~P2 q.e. on BR, 

(1.8) x0 is a regular point, according to Definition 2.1 of [20], both for the lower obstacle 

problem determined by ~Pl and for the upper obstacle problem determined by ~P2. 

The proof of the Wiener criterion will be given in Section 3 after the estimates for 

the solutions of the obstacle problem {~Pl, ~'2} presented in the next section. 
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II.2. Oscillation and energy estimates 

In this section we give an estimate of the oscillation and of the energy at x0 of  an 

arbitrary solution u of  the two-obstacle problem 

I u E HI(Bn), /ffl ~< u~< ~P., q.e. in B s, 

(2.1) ]an(u,v-u)>- f (v-u)dp, Q=B  
I, VvEHI(BR), ~Pl<~v~pzq .e .  inBR, v-uEHlo(Bn), 

where # is a measure of  the class K(Bn), R>0.  We shall always assume that 

(2.2) s u p ~  1 < + ~  and i n f v / _ , > - ~ .  
B R BR 

In order  to estimate the modulus of continuity of u at a Wiener point x0 of {~Pt, v22}, 

for every el>0, e2>0 we define 

and 

where 

Z ( R ) =  [ sup  q / l - in f  ~,_]++R-~"'-[lu-dnllLkn,), 
L oR s~ j 

sup~pl A infqL, if u n <  supq;~ A infq;,_, 
B R B R B R B R 

llR = u(x)dx if sup~plAinfqc,~<Un~<Supvd~Vinf~_,, 
n BR BR BR Be 

sup ~Pl V inf~p2 if sup ~Pl V infer 2, < u n. 
BR B R B R B R 

Moreover for every 0 < r ~ R ,  crl>0, 0,_>0 we set 

�9 o~o:(r,R) = ~ ( t  l, e,.,R), where e I = olw~(.o(r, R) 

Note that qJ(e l, e_,,R)>~0 for every el>0,  e ,>0.  

and e, = o2tO*.o(r. R). 
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THEOREM 2.1. Assume (2.2) and let 0 < s < l .  Then there exist two constants 

c=c(2, A, N, s)>0 and/7=#3(2, A, N ) > 0  such that for every solution u of (2.1) we have 

(2.3) oscu~gAot,o2(r,R)+c{Z(R)[w*,o,(r,R)+oo~,~2(r,R)]t%ill~liK(B.)) 
B r 

for every O<r~sR and for  every ol>O, 02>0. 

Remark 2.1. If - oo <q~l(x0)= ~2(Xo) < + oo, then 

,,,..<.,.,={[,,.:,,,_+,<., Vo, ",, , 

Therefore, if :co is a Wiener point of {~Pl, ~P2), then the Wiener moduli at the right hand 

side of (2.3) vanish as r---~0 + by Lemma 1.7.2. and we get 

Since the right hand side of this inequality tends to 0 as R--+0 § (see I. 1.2) and (I.3. I)), 

we obtain that the function u is continuous at x0. 

If g)l(Xo)<~2(Xo), as for instance in the one-obstacle problem or in the free equa- 

tion, then the estimate (2.3) will be improved in Theorem 2.2. 

We shall see that Theorem 2.1 follows easily from the following propositions. 

PROPOSlTIO~ 2.1. Assume (2.2). Then there exist two constants c=c(2, A , N ) > 0  

and fl=fl(2, A, N ) > 0  such that for every solution u of(2.1) we have 

for every O<r~R and for every o1>0, a2>0. 

PROPOSITION 2.2. Assume (2.2) and let 0 < s < l .  Then there exists a constant 

c=c(2, A,  N, s)>0 such that 

(2.5) oscu ~ [sup ~,,-inf~o2] + +c[R-N'211u-d.ll:,B., + II.ll,q.. ] 
n,. L n. n~ J 

for every solution u of(2.1). 

In Section III.3, in the more general setting of generalized solutions, we shall 

describe how the estimate (2.4) can be applied to obtain the Maz'ja estimate of the 
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modulus of continuity of solutions of Dirichlet problems at a regular boundary point :co 

of the domain by just choosing a~ and v2 suitably. 

Proof of  Theorem 2.1. Let u be a solution of (2.1) and let O<r<~sR. By Remark 

1.7.1. and by Proposition 2.1 we have 

( osc u ~< V(e,, e2, sR)+c_osc u E cap - 6*(ei, e) +cllulIK(BR) 
B, \ B~R t i= 1 

for every Q>0, e2>0. Taking the inequality 6*(e i, 0)<~1 into account, the estimate (2.5) 

of Proposition 2.2 yields 

OSC U ~ ~I/(el ,  e2, R)+ c s-~Z(R) exp --  6~(ei, p) "{-CHfl, IHK(BR) 
Br i=1 

for every e~>0, ez>0. From this inequality we obtain easily (2.3) using the definition of 

w~,oi (r,R). [] 

In order to prove Propositions 2.1 and 2.2 we need some preliminary results. We 

begin with an elementary comparison principle. Let g~ be a bounded open subset of 

RN, letepl, q~E,Z~,Zz be functions from ~ into 1~, let ~,/~z be two measures of the class 

K(f2), and let u 1, u z be solutions of the problems (i= l, 2) 

I uiEHI(Q), qgi<~Ui<~Zi q.e. in f~, 

(2.6) ]a~(ui, v-ui) >~ fn(v-ui)dlu i, 

[,VvEHI(s q~i<.v<-zi q.e. in f~, v-uiEHlo(~). 

LEMMA 2.1. Assume that lzt<~tz 2 on f2 (in the sense of  measures) and that 
q~l<<-q~ z and zl~Z2 q.e. on Q. I f  Ul<~U 2 on O~ (in the sense of Hl(fD), then ul<~u 2 q.e. on 
f2. 

Proof. The function G=UlVUz=U2+(Ul-U2 )+ is admissible in (2.6) for i=2, so we 
have 

(2.7) an(u2,(u,-u2) +) >t f f  (Ul-/./2)+d/~2 . 

On the other hand, the function V=UlAUz=Ui-(ul-u2) + is admissible in (2.6) for i= 1, so 

we have 
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(2.8) an(u,,-(u,-uz) +) >I - fQ(u,-u2) + d#l �9 

Since/~l~<~z, by adding (2.7) and (2.8) we obtain 

a d ( u l - u 2 )  +, (u , -uz )  + ) <- O, 

which yields (Ul - -U2)+=0,  h e n c e  ul<~u 2 q.e. on ft. [] 

We now estimate the supremum and the infimum of a solution u of (2.1) in terms of 

the quantities 

~t l l ( e ,n  ) = inf .2  A [//~l(X0)--e], 1u ) = sup ~p, V [_~2(x0)+e]. 
sR nR 

Note that udx(el,R)<~z(ez, R)and ~(el, e2,R)=Vdz(ez, R) -Wt(evR)  for every el>0 , 

e2>0. Moreover (2.2) implies that W~(e, R ) < + ~  and qJz(e, R ) > - o ,  for every e>0. 

In the following lemma we make the convention + o o - ( + o o ) = - o o - ( - o o ) = 0 .  

LEMMA 2.2. Assume (2.2). There exist two constants c=c(2 ,A ,N)  and fl= 

fl0-, A , N ) > 0  such that for every solution u of(2.1) we have 

(2.9) infu>~Wl(e"R)--c([infu-Wl(e"R)]-exp(--flfR6~(epp)d~QQ)+cltl~l[r(nR)} [.l_nR 

(2.10) sup u <~ udz(e z, R)+c sup u-Ilzl2(e 2, R) exp -r 6~'(ez, o) +cII~I1K~B.) 
B, ILs~ d 

for every O<r<.R and for every el>0, e2>0. 

Proof. Let u be a solution of (2.1). We shall prove only the estimate (2.10), the 

other being analogous. For the sake of simplicity we assume #=0.  The case/~*0 can be 

treated arguing as in the proof of Proposition 1.8.1. Given e2>0, we set t=W2(e2,R ) and 

E, = {xeBR/2: W2Cx)--< t}. 

ff t = + ~ ,  then (2.10) is trivial. If t < + ~ ,  then t > - ~  by (2.2) and we can consider the 

solution w of the problem 
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(2.11) 

w E HI(Bn), w <<. t q.e. on E,, 
a~(w,v-w)>~O, ~ = B  R 
Vv E HI(BR), v <. t q.e. on E,, 

w = u V t  on OB R, 

v = u  V t on 0B R. 

By the comparison principle (Lemma 2.1) we have w>~t and w~u in BR. By applying to 

(2.11) the unilateral results of [20] (Theorem 6.2 and Corollary of Theorem 6.1) for 

every O<r<_R/2 we obtain 

(2.12) 

sup u ~< sup w = infw+osc  w 
B r B r B r B r 

) I/2 [ (RI2 cap(EtflBe, B~) dQ ) 
t+cR-Nn(~ [w-t[2dx 

Since E~2(e2, O)~_E, n Be for every O<o<.R/2, from (2.12) we obtain 

w, lw-t}Zdx) exp -/ J. �9 

As Lw<~O in Bn and w=uVt o n  OBR, by the maximum principle we deduce that 

w<-supuVt q.e. o n B  R, 
abe 

hence 

( 5+ 
(2.14) O ~ w - t ~  s u p u - t  . 

\ BR / 

The estimate (2.10) follows now easily from (2.13) and (2.14), provided O<r<.R/2. In the 

case R/2<~r<.R the estimate (2.10) is trivial: it is enough to take c~>2 ~. [] 

Proof of Proposition 2.1. Let u be a solution of (2.1) and let O<r~R, al>0, 02>0. 

Given et>al~o~.o~(r, R) and e2>a2to~,o~(r, R), we set tl=tPl(e v R) and t2=W2(e2, R). From 

(2.9) and (2. I0) of Lemma 2.2 we derive 

oscu<~t2-t,+c [ (supu- t z )+V( in fu- t ,  - 2 e x p ( - f l  f O*(ei, Q) do ~+llttllK(nR) �9 
Br L \  Be ] \ B e  ] J i=I \ J r  Q ] 

Since q <.t2, infaR u<.t2, and sups" u~t 1, we have 

( ) . (  sup u - t  2 V infu-t~ ~ oscu.  
\ BR \SR / Be 
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Therefore 

and we can easily conclude the proof  by taking the limit as e:-*altO~,oz(r,R) and 

e2--> o2og ~,o2 ( r ,R ). 

To prove Proposit ion 2.2 we need the following lemma. We denote by/ t+  a n d / t -  

the positive and the negative part of  the measure / t .  

LEMMA 2.3. Let u be a solution o f  (2.1) and let dER.  I f  d ~ p l  q.e. on B R, then 

(u -d)  + is a subsolution o f  the equation Lv=/t +. I f  d<<.~ 2 q.e. on B R then ( u - d ) -  is a 

subsolution o f  the equation Lv=/t- .  

Proof. Assume that d~>~) 1 q.e. on B R and define z = u - d .  Let  ~Ph, hEN,  be a 

sequence of  functions belonging t o  C2(R) such that 

lim lffh(t ) = t +, O~h( t )  <- t +, O<-~'h(t) <~ 1, O<~O'~(t) <~ h 
h--*~ 

for every tER.  Le t  q0 EH~(BR) with 9~>0. Since ~pl~<d q.e. on B R, for every 0 < e < l  the 

function V=u--e~'h(Z)(gA(z+/e)), is admissible in (2.1). Therefore  

( fo(z,) au u, e~P'h(Z) q~A <~ rpA--~ d/t, f2 = B R, 

hence 

t x ,, z dx+ Z a o.zxj ~Ph(Z) CPx, d E ao.Zx ~h(Z)Z~, tPA-- 2- ij=l 
i , j = l  R J ' e / e 

ao.Zxjlffh(Z)(Z )x, d X ~  fffd~ +. 
E i , j =  I R--Ee R 

where E,={xEBR: cp(x)<.z+(x)/e}. Since ~r~h(Z)~O and ~)h(Z)~.-O w e  obtain 

Z aoZxj~'h(Z)q~xl dx<~ qDd/t+" 
i , j = l  ~ R 

As zxj ~'h(Z)=(~h(Z))xj and ~Ph(Z) converges to z + weakly in H1(Bn), passing to the limit as 

h--> + o0 we obtain 
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E ao.(Z+)xj qgx, dx <~ q~ dM +. 
i,j=l e R 

81 

Since (Z+)xj=0 a.e. on {z~<0} and E~I' {z>0}, by taking the limit in (2.18) as e---,0 we 

obtain that 

au(z+,cp)<~ f qgdM +, g2=B R, 

hence z+=(u-d) § is a subsolution of  the equation Lv=p § The proof  for (u-d)-  is 

analogous. [] 

Proof of Proposition 2.2. Let  us define 

t l = s u p T ) l V d  R and t 2 = i n f . 0 2 A d  R. 
BR BR 

By Lemma 2.3 the function (u - - t 0  + is a non-negative subsolution of  the equation 

Lv=/u +. Therefore Proposition 1.5.1 implies that 

sup u ~< t ,+sup  (u-t1) + <~ t, +c[R-N/211(u--dYlIL~(B~) +II#+IIK(z,)]. 
BsR BsR 

In the same way we prove that 

infu >1 t2 - su  p (u- t2) -  >1 t2--c[R-N/ZII(u--dylIL2~B,)+II~-IIx(B~)]. 
BsR BsR 

From these inequalities we obtain 

(2.16) OBS f U <~ (t,-t2)+ c[R-N/211u--dRIIL2(BR)+II#IIXr 

Since 

sup/Pl A inf/p2 <~ d R ~< sup lpl V inf/p2, 
B R B~ B R B R 

we have 

t l - t2  ~< I sup lPl-inf/p2] + , 
L BR BR ] 

so the estimate (2.5) follows easily from (2.16) [] 

6-898285 Acta Mathematica 163. Imprim6 le 8 septembre 1989 
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We now consider the potential seminorm ~(r) of the solution u introduced in 

Section 1.8. The decay of ~/'(r) to zero as r--->0 + can be estimated according to Theorem 

2.2 below, under the following separation assumption: there exists a function w such 

that 

(2.17) wEHI(BR), LwEK(BR), and ~pl<~w<~22 q.e. inB R. 

By Theorem 4.11 of [5] the function w is continuous on B R. Note that, if ~l(x0)<~2(x0), 

then (2.17) is satisfied by a suitable constant w, provided that R is small enough. 

For every r>0 and for every v E H~(BR) we put 

1s 
Vr = ~rl vdx. 

r 

THEOREM 2.2. Assume (2.17) and let 0<s< l .  Then there exist two constants 

c=c(2, A, N, s)>0 and fl=c(2, A, N)>0  such that for every solution u of  (2.1) we have 

~ffr) <. c ( R-N/Zllu--WlIL2(B.)[tO,,o~ (r, R)+w2,oe (r, R)]'+o, aq,o,(r. R)+o 2 w2,oe (r, R) 

+ R-NnlIw--wRIIL,(..) +IILwlI,~(B.) +II~IIx(B.,} 

for every O<r<~sR and for every o1>0, 02>0. 

Theorem 2.2 follows immediately from the following propositions. 

PROPOSITION 2.3. Assume (2.17). Then there exist two constants c=c(2, A, N)>0 

and fl=fl(2, A, N)>0 such that for every solution u of (2.1) we have 

7/'(r) ~< c{ ~"(R) [to,.o,(r, R)+to2.o2(r, R)]#+cr, w,.o,(r, R)+tr 2 tOe,o2(r, R) 

(2. is) +R-U%0- w.ll,2(o.)+ IlLwlb..)+ II~'ll,,r 

for every O<r<~R and for every o1>0, 02>0. 

PROPOSITION 2.4. Assume (2.17) and let 0 < s < l .  Then there exists a constant 

c=c(;t, A, N, s)>0 such that 

N I 2  N I 2  ~ (R-  Ilu-wlla(B,) +IILwlI~(..)+R- IIw-w.lla(B.) +lbllx(e.)}, 

for every solution u of  (2.1). 
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To prove Proposition 2.3 and 2.4 we need some preliminary results. Let u be a 

solution of (2.1) and let 0<R~<R 0. We define z = u - w ,  q~ =v2~-w, tp2=~,2-w, v = g - L w .  

Then the function z satisfies the following variational inequality on BR: 

I Z E HI(BR), tpl ~< Z~ < q02 q.e. on B R, 

(2.19) )a.(z,o-z)>- fo(o-z)dv, Q= B R, 

[VvEHI(BR),  tpl~<v~<tp2 in B R, z-vEH~(BR). 

Note that qh~<0~<q~2 q.e. on BR and vEK(BR). 

LEMMA 2.4. Assume (2.17) and let 0 < s < l .  Then there 

c=c(2, A, N, s)>0 such that 

IV(u-w)l  z ix-x01 z-N 

(2.20) <~ c[R -N Ilu- w11~2r _~,.~ + II~ll~r162 

exists a constant 

for every solution u o f  (2.1). 

Proof. Since u - w  is a solution of the obstacle problem (2.19), by Lemma 2.3 the 

functions ( u - w )  +- are non-negative subsolutions of the equations Lv=v +- in BR, where 

v=~t-Lw. Therefore Proposition 1.5.1 gives 

II(U--W)-+II~tBsR~+~ IV(U--W)+-121x-XoI2-Ndx 
BsR 

<_ c[R-Ntl(u- w) % , .  + llvll ,.., ], 

which implies easily (2.20). [] 

LEMMA 2.5. Assume (2.17). Then there exist two constants c=c(2, A , N ) > 0  and 

fl=fl(2, A, N)>0  such that 

in f (u -w)  >I sup (lff l - -  W )  - -  C (U--W) exp - f l  81(e 1, Q) 
Br Br 

(2.21) 
+ E~ + R-N/211W--WRIIL,~B.~ +IILwlIK~B.~ +II~IIKtB~ } 

and 
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sup(u-w)<~inf(~?2-w)+c(osc(u-w)exp(- f l fRc)2(e2,p)-~ - )  
B,  B r L BR 

(2.22) 
+ ~2 + R-N/211W--WRII,a(B.) + II/~IIK(B,) } 

for every O<r<.R and for every e~>0, e2>0. 

Proof. We prove only (2.22), the proof of (2.21) being analogous. Let us fix 

O<r<-R/4 and let v=l~-Lw and t=infBRa(~P2--w). We consider the solution u2 of the 

variational inequality 

I u2E HI(BR~), u2 ~</P2 q.e. on BR/2, u 2 = uV(w+t) on C~BR/2, 

(2.23) 1a~(u2, v-u2)>-(Lw, v -u2)+ f (v-u2)dv+, f2=BR/2 

[VvEHI(BR/2), v~<~/2, q.e. onBR/2, v= uV(w+t)  on aBR/2, 

and the solution w2 of the Dirichlet problem 

Lw 2 = Lw+v + in BR/2, w 2 = u V (w+t) on OBR/2. 

By the comparison principle (Lemma 2.1) we have 

~I~W-I-t~U2~W2 q.e. onBR/2 (2.24) 

and 

Therefore 

U ~ U 2 q . e .  o n  BR/2. 

sup(u-w) ~< sup u2-infw <~ inflP2+osc u2-inf w 
sr sr s, s r s, s, 

~< inf (~2- w)+osc u2+osc w 
B, B, Bs~ 

and Proposition 1.5.2 yields 

(2.25) sup (u -w)  <~ inf(w2- w)+osc U2+c[R-N/ZlIw--wRIIL2(B.) +IILwlIK(BR J 
B r B r B r 

We now apply to (2.23) the estimates for the one-sided problems proved in 

Proposition 1.8.1. By Lemma 1.7.1, given e2>0 we obtain 
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(2.26) 

~s?u2<~c(R-N/~l~uz~d~lL2~nR~)exp(-~R/z~2(e~)-~-)+e2+llv+~x`nR/9+llLw~lmn~)}~ 

where d=infB~ ~ w+t. By (2.24) we have d~u2<.wz q.e. on BR/2, and by the definition of t 
we have also 

infu~< inf ~p2 ~< sup (w+t). 
BR/2 BR/2 BR/2 

Therefore, by applying Proposition 1.5.2 to w and Proposition 1.5.3 to wz-d we get 

R-N/211u2--dlIL2<B~,~, ~ sup w2-d 

(2.27) 

sup [u v (w+t)]--inf(w+t)+c[IIv+IIK(B~=)+IILwIIK(B.=)] 
aBR/2 BR/2 

<~ [ sup u - s u p  (w+ t) ] ++osc w+c[ll/~ll~(B,)+ IltwllK<~,~] 
L BR~ nRa J n~ 

osc  u + o s c  w+c[ll~llK~,.)+lltwllK<~.)] 
BRi2 BR/2 

osc  (U--W)+C[II~IIK<BR) +R-N/ZlIW--wRIla<B,)+IILwlIK<B,)]. 
BRa 

Since t~2(E2, Q)~ 1, we have 

/ (R/2 do \ R 
(2.28) exp~--fl J r O2(ez,Q)--~-)~2#exp(--flf r 0z(e2, p ) -~- ) .  

From (2.25), (2.26), (2.27), and (2.28) we obtain easily (2.22) in the case O<r<.R/4. If 
R/4<r<~R, then 

Therefore 

sup (u-w) = inf (u-w)+osc  (u-w) <~ inf(~0 2-  w) 
Br Br B r B r 

+4 ~ osc (u -  w) exp -f l  62(e2, 0) , 
BR 

which implies (2.22) for every c~>4 ~. 
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Proof of Proposition 2.3. Let  us fix a solution u of  (2.1). For  every O<r<~R we 

denote by  ~Vw(r) the potential seminorm of  z=u-w, defined by  

T'2(r) = r o s c ( . _ w , l ~ +  (IV(u-w)21x-xol2-Ndx 
LBr J Jn, 

To estimate ~w(r), for every O<r<~R we define 

a r 

~g(r) +r-N llw-w lla(,,) +llLwllx( , ), 

_ 1 ~ (u-  w) dx, 
I *  

mr ]Br-Bm] JB,-B m 
r 

s u p 0 p l - w )  if mr<  sup0p~-w) ,  
B r B r 

m r if sup (~Pl-w) ~< m, ~< inf(~02-w), 
B, B, 

inf( lP2-w ) if inf(y)z-W ) < m r 
B, B, 

Let us fix e l>0  and e2>0. By Lemma 2.5 for every O<r<.R/2 we have 

(2.29) 

lar-mrl <~ c (R/2) exp -- di(E i, p) +el+e2+ ~(R/2) 
. =  

<~ c R/2 e x p  - Oi(Ei, O + e  1+•2+ c~ 

S i n c e  ~pl<~w+ar<~fl2 q.e. o n  Br, we can apply Lemma 2.4 with R replaced by r and w 

replaced by w+ar. Therefore 

f r Nf~o,_B,e (u_w_a)2dx+~2(r)]. (2.30) ~V2(r/2) ~< c_  - 

L 

(2.31) 

By the Poincar6 inequality we have 

r-NfBr_Bra(U--W--ar)2dx~2[r-NfBr_S,a(U--W--mr)2dx+(ar--mr)2 ] 

 CL   W'XXo  X+(armr' ] 
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where 
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From (2.29), (2.30), and (2.31), for every 0<r~<R/2 we obtain 

c, [ IV(u- w)l 2 Ix-xol 2-N dx+c2 ,d2(r, R), ~2(r/2) 
dB r-Br/'2 

~/2(r,R)= ~2 (R/2 )~exp- f l  t)i(ei, Q) -t-(el-]-e2)2-l-~'2(R) . 
i=1 

Let us fix O<r~RI4 and l<~r<~R/2r. If ~>2 and 

(2.33) 

then by (2.32) 

~2(r) I> 2c 2 ~/2(rr, R), 

87 

t 
T'~(Q/2) 2c~ | IV(u-w)l 2 Ix-x01E-N dx 

J~ Be-Be/2 

for every 2r<~o<<.rr. By adding 2c I ~2(Q/2) to both sides we obtain 

(1 + 2c~)~2(e/2) ~< 2c 1 ~2(o) 

for every 2r<<.9<~rr, and by a standard iteration argument this implies 

(2.34) T'2~(r) ~< c r - ~ ( r r ) .  

The same inequality holds trivially if 1 ~<r~<2 by choosing c>~2 a. If (2.33) is not satisfied, 

then 

(2.35) ~2(r) ~< 2c 2 ~r R). 

In any case, from (2.34) or (2.35) we obtain 

(2.36) ~176 o) d--QQ)]+(glq-e2)2-l-~2(R) ) 
for every O<r<~R/2 and every l<~r<~R/2r. 

Since 6i(ei, ~))~<1, we have 

r ~ exp - di(ei, O) >I 1, 

therefore (2.36) yields 



88 G. DAL MASO, U. MOSCO AND M. A. VIVALDI 

{ [ .i exp(--flf~ R ~ ~ ) l~-fl-l-z-fl/~ 1 f~i(~i,Q)~-)l+(Fq+e2)2+~2(R) !. 

By taking 

we obtain 

therefore 

(fr" r e = exp --~ r ' O) I. -- i=l 

~2(r) ~ c(~ 2/__~1 exp / - -~ -  J r / f l  I"R~i(ei, Q) d~__QQ )_t_(c I +e2)2+ ~'2(g) / , 

(2.37) ~w(r) ~< c ~w(R/2) exp --~ (~i(~.i, Q) +e l'~e2+ ~(R) . 
i= 1 

By Proposition 1.5.2 we have 

for every O<~p~R/2, thus (2.37) implies 

(2.38) ~(r) <<. c{ ~(R/2) Ei~=l exp(-fl f'~i(ei, p)-@-) +e, +e2+ ~(R) } �9 

Let  us fix th>0  and a2>0. For  every e~>o~wl,o~(r,R)and e2>cr2w2,o2(r,R) the 

inequality (2.38) implies 

Taking the limit as e 1 ~oao)Lo~(r,R)and e 2 ~, 02~O2,o2(r,R) we obtain (2.18), provided 

0<r~R/4 .  In the case R/4<~r~R the estimate (2.18) is trivial: it is enough to take c~>4 ~. 
[] 

Proof of Proposition 2.4. Le t  u be a solution of  (2.1). By Lem m a  2.4 we have 

(2.39) ~ ~ c[R-N/211u- wlla(B.~+l[~ IIK(B.)+ Iltwll~(e.)], 
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and from Proposition 1.5.2 we obtain 

(2.40) 

~ ( sR) ~  ~'w(sR)+[ (~  \ B'R / .lB,~lVwl2[x--x~ dx] 1/2 

%(sn)+c[R- z211w-wRII,2{ ,)+lltwll { ,)]. 
The inequality to be proved follows now from (2.39) and (2.40). 

II.3. Proof of the Wiener criterion 

In this section we prove the Wiener criterion stated in Theorem 1.1. To this aim we 

introduce the {~p~,~02}-potentials at x0, relative to the operator L, defined as the 

solutions U=Ur,~, r>0, rE R, of the problem 

f uEHI(B2r), ~l<~u~<~p2q.e. inB,, u-rEH~(B2r), 
(3.1) Jau(u,v-u)>~O, ~d---B2r 

[ VvEHI(B2r), ~pl<~v<~tp2q.e. i n B :  v-rEH~(B2r). 

Note that, if condition (1.4) of Theorem 1.1 is satisfied, then u~.~ is well defined for 

every r E R  and every 0<r<R.  

The following proposition gives another characterization of the regular points, 

which represents the analogue for obstacle problems of the classical de la ValiSe 

Poussin criterion. 

PROPOSITION 3.1. Assume (1.3) and (1.4). Then Xo is a regular point of problem 
{~1, ~/'2} if and only if both the following conditions hold: 

(3.2) if ~l(x o) > - ~ ,  then infu, ~ (x0) = ~l(x0) for every r 1 < ~l(Xo), 
r>0 , I 

(3.3) if ~02(x o) < + oo, then sup u r ~z(Xo) = ~32(Xo) for every r 2 > ~/)2(Xo), 
- r>0 ' - - 

The proof of Theorem 1.1 and Proposition 3.1 will be achieved by means of the 
following steps. 

Step 1. If x0 is a regular point of {~ol, ~02}, then (1.3), (1.4), (3.2), and (3.3) hold. 

Step 2. If (1.3), (1.4), (3.2), and (3.3) hold, then x0 is a Wiener point of {~Pl, ~P2). 

Step 3. If (1.3), (1.4), and (1.5) hold, then x0 is a regular point of {~Pl, ~P2}. 
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Proof  o f  Step 1. Assume that xo is a regular point for {v/l, V/2}. Then (1.4) follows 

easily from the fact that ~176 is not empty. To prove (1.3) we pick up an arbitrary --~PI w 

u E ~21(x0). Since u is finite and continuous at x0 we have 

V~l(X0) -< a(Xo) = U(Xo) < + oo, _~2(x0)~ > _u(x0) = U(Xo) > - ~ ,  

V~l(Xo) <- a(xo) = _U(Xo) <- _~2(x0), 

which imply (1.3). 

To prove (3.2) we may assume that ~R(Xo)>-oo. Let us fix rl<_~l(X0). Since the 

{V/l, v/2}-potentials u,, ~ belong to ~ they are continuous at xo, hence 

inf u, ~ (x o) = inf a,. ~, (x d >>- ~j(Xo). 
r>0  , 1 r>0  

By the definition of ~(x0), for every e>0 there exists R>0  such that ~I(X0)+eI>supBRV/I, 

thus the comparison principle (Lemma 2.1) implies uR,~<~W=~l(xo)+e q.e. on B2R. 

Therefore infr> o ur, ~l(Xo)<~l(Xo)+e for every e>0, and this concludes the proof of (3.2). 

The proof of (3.3) is analogous. [] 

Proof  o f  Step 2. Assume (1.3), (1.4), (3.2), and (3.3). Let us consider the v/r 

potentials at x0, relative to the operator L, introduced in Definition 2.1 of [20] as the 

solutions w= Wr. ~, r>0, r E R, of the problem 

f 
wEHI(B2r), v / l - - - < w  q.e. onB r, w-I:EH~(B2r), 
an(w, v -  w) >I O, f2 = B2r 

VoEHI(B2r), V/I -~< o q.e. on B~, U-TEHIo(B2r). 

By the comparison principle (Lemma 2.1) we have u,, ~<~Wr, ~ q.e. on B2,, thus condition 

(3.2) implies infr> 0 w~, ~(x0)>~l(X0) for every r<~l(x0). Since the opposite inequality is 

always satisfied (see the proof of Theorem 5.2 of [20]), we have 

infr>oWr, r(Xo)=~)l(Xo) for every r<~l(X0). By the Theorem 5.2 of [20] we then have 

either ~l(Xo)=- ~ or 

fO (~l (e, e) -~00, do 

e 

so Remark 1.7.1. implies that 

f0 1 d o _  

e 
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Since the same property holds for 6~', condition (1.2) is satisfied, hence x0 is a Wiener 

point of {91,92}. [] 

Proof o f  Step 3. Assume (I .3), (1.4), and (1.5). If  ~l(xo)=~_2(xo), then Theorem 2.1 

and Lemma 1.7.2 imply that every u 6 9/~21(x 0) is continuous at x0 (see Remark 2.1). 

If  -~<~l(x0)<~2(x0)<+oo,  then there exist d ER and R > 0  such that 91<-d<.92 

q.e. on Br. Therefore we can apply Theorem 2.2 with w=d. By Lemma 1.7.2. the 

estimate of Theorem 2.2 implies that every u E q/~21(x 0) is continuous at x0. 

If --00~l])1(X0)<92(X0)="{ -0o, then each u 6  9/~2(x0) is locally bounded near x0 by 

Theorem 2.2. Since SUPr>0 infBr 92-- + oo, there exists R > 0  such that supB R u + 1 <~infBR 92, 

therefore u is a solution of the one-sided obstacle problem 

u 6H1(BR), u I> 91 q.e. on B R 

an(u,v-u)>>-O , g )=B R 

Vo6HI(BR), 0~>91 q.e. o n B  R, v -u6H~(B  R) 

to which we can apply the continuity results of Theorem 5.2 of [20]. Therefore u is 

continuous and finite at x0. 

The case - ~  =~l(x0)<~2(x0)~<+ oo can be treated in a symmetric way. [] 

Part III. Generalized solutions 

In this part of the paper we study a notion of generalized solutions of the two-obstacle 

problem {9b 92} which extends the notion of variational solution to the case where 

there exists no function u EH 1 such that 91<.u<<.92 (see Definition II.I.1). We then 

extend to generalized solutions the Wiener criterion proved in Part II in the variational 

case. 

III.1. Dominated generalized solutions 

Let Q be a bounded open subset of  R N. 

Definition 1. I. Le t  V1, V2: ~--->1~ be two functions such that VI, V2 q.e. on s We 

say that a function u: Q--->I~ is a (dominated) generalized solution (in f2) of the two- 

obstacle problem {91,92) if there exist three sequences 91. h, 92,h, Uh of functions from 

Q into 1~ such that 91,92, u are the HLdominated quasi uniform limits (in Q) of 

91,h, 92,h, Uh respectively and for every h E N the function Uh is a variational solution of 

the two-obstacle problem {91. h, 92, h} according to Definition II. 1. I. 
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Remark 1.1. It follows immediately from the definition that, if u is a generalized 

solution of the obstacle problem {VI, V2}, then u is quasi continuous and VI<<.u~Vz q.e. 

in f~. Moreover for every set g2'~f~ the function uln, is HLdominated in f~'. 

We prove now an existence result for generalized solutions of a two-obstacle 

problem. 

THEOREM 1.1. Let Vl, V2: ~-->R be two functions such that '/.~l~l]r) 2 q.e. on Q and 

let g: a~--*R be a quasi continuous function. Assume that there exists a Hi-dominated 

quasi continuous function 7): ff2---~R such that ~OI<<.V<~V2 q.e. in if2 and V/=g q.e. on OQ. 

Then there exists one and only one quasi continuous function u: ~--*R such that u is a 

generalized solution of  the obstacle problem {~1, q~2} in Q and u=g q.e. on a~.  

To prove Theoren 1.1 we need the following lemmas. 

LEMMA 1.I. Let ~/)l, 1]Y2" ~'~---->l~ be two functions such that ~/)I~lD2 q.e. in f~ and let 

u fi HI(~) be a variational solution o f  the obstacle problem {~p~, V2} in f2. Let w 6 HI(~) 

be a non-negative supersolution of  the operator L in Q and let v be the unique 

variational solution of the obstacle problem {~pl+W, VE+W} in f~ such that 

v-(u+w)6H~(~) Then v<.u+w q.e. in g2. 

Proof. The function Zl=VA(U+W)=V--(v-u--w) + satisfies the obstacle condition 

Vl+w<<-Zl<~V2+w q.e. in ~2, moreover z~-v fi H~(g2). Since v is a variational solution of 

the obstacle problem {Vl+w, ~p2+w} we have 

(I.1) an(v, - ( v - u - w )  +) >I O. 

On the other hand the function z 2 = ( v - w ) V u = u + ( v - w - u )  § satisfies the obstacle 

condition VI<<.z2~V~ q.e. in g2, moreover z2-u 6 H0~(ff2). Since u is a variational solution 

of the obstacle problem {7)1, ~02} we have 

(1.2) an(u , ( v -w-u )  +) >! O. 

Finally ( v - u - w )  + is not negative and belongs to H01(fD. Since w is a supersolution 

(relative to the operator L) we have 

(1.3) a n ( w , ( v - u - w )  +) >10. 

By adding (1.1), (1.2), and (1.3) we obtain a ( v - u - w ,  (v-u-w)+)~<0, which yields 

(v-u-w)+=O, hence v<.u+w q.e. in if2. [] 
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LEMMA 1.2. Let (~01,~02, ~)l,V.)2: ~-~'--r be four functions such that qgi<<-q~ 2 and 

~pl<~p2 q.e. in Q, and let w E HI(Q) be a non-negative supersolution o f  the operator L 

in if2. Assume that ~pl<~qgl+W and ~p2~<92+w q.e. in Q. Let u, v be two variational 

solutions of  the obstacle problems {9i, 92} and {Wi, ~P2} respectively, such that v<.u+w 

on a~.  Then v<.u+w q.e. in if2. 

Proof. Let z be the unique variational solution of the obstacle problem 

{91+w, q92+w } in f2 such thatz-(u+w)EH~(~)) .  By Lemma 1.1 we have z<-u+w q.e. 

in f~, and by an easy comparison argument (Lemma II.2.1) we have v<.z q.e. in fL [] 

Now we prove a lemma concerning the approximation of an HI-dominated quasi 

continuous function. 

LEMMA 1.3. Let K be a compact subset o f R  N and let ~p: K---~R be a HI-dominated 

quasi continuous function. Then ~p is the Hi-dominated quasi uniform limit in K of  a 

decreasing sequence o f  functions Wh o f  Hl(R N) such that Wh>~p q.e. in K. 

Proof. Since ~p is HI-dominated, by adding a suitable function of HI(RN) ,  w e  may 

assume that ~p~>0 q.e. in K. Since ~ is quasi continuous, there exists a decreasing 

sequence Ah of open sets such that V/IK_ah is continuous on K - A  h and Cap(Ah)< 1/h for 

every h E N. Therefore for every h E N there exists a function cp h E Co(R N) such that 

q~h~>0 on R N and ~O<~gh<<.V/+l/h q.e. in K - A  h. Since ~0 is Hi-dominated, there exists 

vEHI(R s) such that ~ < v  q.e. in K and v~>0 q.e. on R N. Let us define 

Vh=VACPh. ThenvhEHl(RN), O<<-Vh<~V q.e. in R N and ~p<<.Vh<<.V/+l/h q.e. in K - A  h. 

Let Zh be the solution of the minimum problem 

m i n { f  RN(l~Tzl2+z2)dx:zEHl(RN)'z>~v q.e. in  Ahl .  

Since v EHI(R N) and Cap(Ah)--->0 as h-~+oo, the sequence z h converges to 0 strongly in 

HI(RN). Since A h is decreasing the sequence Zh is decreasing, therefore it converges to 0 

quasi uniformly in R N (in the capacity sense). 

Let us define Wh=Vh+Zh. 

Zh~W h q.e. in KNA h imply that 

The inequalities ~)~Vh~W h q.e. in K - A  h and ~ < v ~  < 

(1.4) ~ <~ Wh q.e. in K. 

The inequality Vh<~lp+I/h q.e. in K - A  h implies that Wh<~lp+Zh+l/h q.e. i n K - A  h. On 

the other hand Wh~U+Zh~I3+2Zh q.e. in KNAh, hence 
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(1.5) w h <~ ~+2Zh+- ~- q.e. in K. 

Since Zh converges to 0 quasi uniformly, (1.4) and (15) imply that Wh converges to V 

quasi uniformly. Since 

[Wh--V) I "~- l.,Oh--~ r) = (OACffh)"~-Zh--~ r) ~ 1)'Jt'Zl q . e .  in  K 

for every h 6 N, the function V is the Ht-dominated quasi uniform limit of Wh. To obtain 

a decreasing sequence we take w 1 A w2A...Aw h for every h = 1,2 . . . . .  [] 

P r o o f  o f  T h e o r e m  1.1. Let us prove the existence. By Lemma 1.3 the function V is 

the Htdominated quasi uniform limit in (2 of a decreasing sequence wh of functions of 

H~(RN). By Proposition 1.6.1 there exists a decreasing sequence vh in HI(R N) converg- 

ing to 0 strongly in H~(R N) such that 1/)~Wh~r)'Jf-Vh q.e. in (2 for every h 6N. Moreover 

we may assume that each function Vh is a supersolution of the operator L in f~. 

Since V l<<_Wh<. V2 + oh q-e. in f2, for every h 6 N there exists a variational solution (in 

Hl(f~)) of the obstacle problem {VI, ~D2-~Oh} which satisfies the boundary condition 

Uh- -Wh~HI(~ ) .  I f  we extend uh to (2 by setting Uh=Wh q.e. on af2, the extended 

function u h is quasi continuous in (2. Let us fix h<.k. Since ~/)2-JCVk~)2dt'Oh q.e. in f2 and 

Wk<~Wh on 0f~, by an easy comparison argument (Lemma II.2.1) we have uk<~u h q.e. on 

ft. Taking into account the inequalities U k = W k ~ W h = l t h  q.e. on af2, we obtain 

(I.6) u k <~ u h q.e. in (2. 

Since tp2"~Uh~(lp2-~-Vk)'-~Oh q.e. in fl and Wh~Wkdt-Oh o n  aQ, by Lemma 1.2 we have 

Uh~llk'~-V h q.e. in f2. Taking into account the inequalities Uh~'l.,Oh~l~k"~-Vh=llk'q-l.)h q.e. on 
aft, we obtain 

(1.7)  II h ~ Uk'Jt-Oh q . e .  in  (2. 

From (1.6) it follows that the sequence Uh is decreasing q.e. on (2, so it converges 

pointwise q.e. to a function u: (2--~1~. By letting k tend to + ~  in (1.6) and (1.7) we 

obtain 

l l ~ l l h ~ U + V  h q.e. in (2, 

for every h 6 N, hence u is the HI-dominated quasi uniform limit of Uh in (2. This implies 

that u is quasi continuous in (2 and that u=~p=g q.e. on aft2 (recall that Wh converges to 

V quasi uniformly on (2). Since ~/32 is the HLdominated quasi uniform limit of {~P2+ Oh}, 
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the function u is a generalized solution in Q of the problem {~tgl, ~32}" This concludes the 

proof of the existence. 

Let us prove the uniqueness. Let u and ~ be two quasi continuous functions on ~.  

Assume that u and/~ are generalized solutions of the obstacle problem (~Pl, ~P2} in Q 

and that u=[t=g q.e. on aQ. By definition there exist six sequences ~Pl,h,~P2,h, 

U h, (Ol, h, (02,h, it h such that %0,. and V)i and the HI-dominated quasi uniform limits in if2 

respectively of ~oi, h and V)i, h for i= 1,2, u and ~ are the HI-dominated quasi uniform 

limits in ff~ of Uh and tih respectively, and for every hEN, the functions 

u h and t~ h belong to H~(Q) and are the variational solutions of the obstacle problems 

{~)l,h' ~P2, h) and (Vl,h, ~2,h) respectively. 
By Proposition 1.6.1 there exists a decreasing sequence Vh in H1(R s) converging to 

0 strongly in HI(R s) such that Oh is a supersolution of the operator L in fl and 

[~)l,h--~ldl[~Vh, [~)2, h--~/d21~Vh, lUh--Ui~Vh, I~l,h--Wll~Vh , 1~)2,h--~d21~Vh, I[lh--~l]~Vh q.e. in 
Q for every h 6 N. 

Let wh be the unique variational solution of the obstacle problem 

 ;2,hV 2,h> 

in fl such that Wh--(Uh V r4 h) 6 H~(~). 
Since UhV~h<.-.lU--a{+Uh+2V h q.e. in ~ and lu-al=O q.e. on a~ ,  by Lemma 1.2.1 we 

have 

(1.8) u h V ~h <~ Uh+2Vh on aQ in the sense of Hl(fl). 

Since ~t/i,hV~l,h<-..~])l,h+2Vh a n d  Y2, hVr q.e. in Q, from (1.8) and Lemma 

1.2 we obtain 

(1.9) w h <~ Uh+2V h q.e. in ft. 

Since  ffOl,h~lPl,hV~Yl,h,~J2, h~lff2, hV~)2, h q.e. in g2, and Llh~UhV[l h on af2, by an easy 

comparison argument (Lemma 11.2.1) we have 

(1.10) ~lh~lff) h q.e. in g2. 

From (1.9) and (1.10) we get I~lh~Uh+2V h q.e. in ft. Since Oh converges to 0 quasi 

uniformly in Q, we have ~<u q.e. in Q. The opposite inequality can be proved in the 

same way, so t~=u q.e. in Q and the uniqueness is proved. [] 

Remark  1.2. We could have defined a different notion of generalized solution by 

using quasi uniform convergence (in the capacity sense) in Definition 1.1 instead of H l- 
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dominated quasi uniform convergence. However this new notion, called Cap-general- 

ized solution, is not useful for our purposes because both existence and uniqueness 

results of Theorem 1.1 are lost, as the following examples show. 

Example 1.1. Let ~2=Bl(O),L=-A,Vl=-O, and 9 2 - + ~ .  Then for every t~>0 the 

functions U(X)=tlxl2-N--t are Cap-generalized solutions of the obstacle problem {91,92} 

which satisfy the boundary condition u=0 q.e. on af2. In fact, for every h 6N the 

function Uh=(tlxlE-N--t)Ah is a variational solution of the obstacle problem {91,h, 92}, 

where 

91,h(x) = {~ in Brh(0)' 
elsewhere, 

and r~-2=t/(t+h). Since Cap(Brh(0))---~0 as h---~+oo, the sequence 9~.h converges to 

91=0 quasi uniformly and the sequence uh converges to u quasi uniformly. 

Note that the unique dominated generalized solution u of {9~, 92} with boundary 

condition u=0 q.e. on af2 is the function u=0. 

Example 1.2. Let f2=Bl(0), L = - A ,  WI(X)=IXI1-N, 92(X)=+ oo for every x r f~ ,  and 

let g(x)= 1 for every x 6 aft2. Then 9=91  is a quasi continuous function on ~ such that 

91<~9~<92 q.e. in f~ and 9=g q.e. on aft ,  but there exists no quasi continuous function 

u: ~)--o1~ such that ulu is a Cap-generalized solution of the obstacle problem {91, 92} in 

and u=g q.e. on aft.  

We argue by contradiction. Suppose that such a function u exists. Then there exist 

three sequences 91,h,92, h, ah such that 9i, h converges to 9i quasi uniformly for 

i=1,2, Uh converges to u quasi uniformly, and for every h the function Uh is a 

variational solution of the problem {91, h, 92, h}" Fix t> 1, let Oh be the unique variational 

solution of the obstacle problem {9~, h At, 92,h At} which satisfies the boundary condi- 

tion Oh=UhAt on a~'~. By an easy comparison argument (Lemma 11.2.1) we have 

(1.11) Uh~U h q.e. in f2. 

Since the sequences [(uAt)-(UhAt)] +, [(ViAt)--(Vl,hAt)] +, and [t--(92.hAt)] + are 

uniformly bounded and converge to 0 quasi uniformly in f2, by Proposition 1.6.1. there 

exists a decreasing sequence Zh in H~(R N) converging to 0 in H~(R N) such that each Zh is 

a supersolution of --A in f2 and 

(1.12) u A t ~ ( U h A t ) + z  h q.e. in f2, 
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( 1 , 1 3 )  l f f l A t ~ ( l f f l , h A t ) + Z  h and t ~ ( ~ 3 2 , h A t ) + z  h q.e. inQ.  

From (1.12) we obtain 

(1.14) 1 ~< (U h A t)+z h on aQ in the sense of H1(Q). 

Let w, be the unique variational solution of the obstacle problem {~lAt, t) which 

satisfies the boundary condition w,-1 6 HI(Q). By Lemma 1.2 and by (1.13) and (1.14) 

we have Wt~Vh-~-Zh q.e. in Q, so (1.11) implies Wt~Uh-~-Z h q.e. in Q. By taking the limit 
as h--~+oo we obtain 

wt~<u q.e. inQ.  (I.15) 

Since 

t -1  2N ] w,(x) = [ t-z-Si-_i (Ixl_ - -1)+1 A t for every xfi Q, 

with a=  (N-2 ) / (N-1 )<  1, by taking the limit as t---~ + ~ in (1.15) we obtain u(x)= + ~ for 

every x 6 Q, which contradicts the assumption that u is quasi continuous in g) and u = 1 

q.e. on aQ. 

Remark 1.3. Let V1, ~/32-" ~'2"---)1~ be two functions such that ~01~<V2 q.e. in Q and let 

u: Q--~l~ be a generalized solution of the obstacle problem {VI, V2}- By Remark 1.1 the 

function u is quasi continuous and for every open set Q'�9 the function 

ulo,, is HI-dominated on (2', so we can apply the uniqueness result of Theorem 1. I with 

~"~=~')', 113 l=l])l[f~,, 1132=~02[ff~, , and g=ul~u,. Therefore from the proof of the existence in 

Theorem 1.1 it follows that there exist two decreasing sequences Uh and Vh in HI(g2 ') 

such that Uh converges to u quasi uniformly in Q', Vh converges to 0 strongly in 

HI(Q'), Vh is a supersolution of the operator L in f2', Uh is a variational solution of the 

problem {~Pl, ~2"~ in Q', and U~Uh~U-Ot-Vh q.e. in Q'. 

THEOREM 1.2. L e t  /ffl,~2"Q--~l~ be two functions such that there exists 

wEHl(ff2) with VI<,W<~V2 q.e. in Q. Let u be a generalized solution of  the obstacle 

problem {~1,V2} in Q. Then for every open set Q'~ff2 the function ul~ 2, 

belongs to Hi(if2 ') and is a variational solution of the obstacle problem {~01, V2} in Q'. 

Proof. Let Q" be an open set with Q' �9 By Remark 1.3 there exist two 

decreasing sequences Uh and Oh in H1(Q ") such that uh converges to u quasi uniformly in 

g2", vh converges to 0 strongly in H1(~2"), uh is a variational solution of the problem 

{V1, V2+Vh) in Q", and U<.Uh<~U+V h q.e. in ~". 

7-898285 Acta Mathematica 163. ImprimE le 8 septembre 1989 
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Let us prove that U h is bounded in H~(f~'). Let 99E Co(f~'9 with 0~<99<~1 in f~" and 

99= 1 in f2'; then the function 992W+(1--992)Uh satiesfies the inequality 

~l ~< 992w+( 1-992) Uh <~ ~2+Vh q.e. in f~". 

Moreover 992W-t-(1--992)Uh-~-U h on ~.)a. Since Uh is a variational solution of {~Pl, ~r)E"l-Uh} 

in f2" we have at~.(Uh, 992(W--Uh))~O hence 

2 ~ aij(Uh)x,99xj99(W--Uh)dX+ adU.)xWxj992dx>-- - ~ adUh),9(Uh)x~992dx 
i , j f f i l  " i , j = l  J Q "  i , j = l  " 

so there exists a constant c=c(2, A, N)  such that 

for every e>0. Taking e= 1/2 we obtain 

(1.16) f~,lVUh]2dx<-..ffl, IVUh12992dx<~.2c{ffllVw12992dx+ffl]V9912]W-Uh12dx}. 

Since lUh--U]<.Vh q.e. in fl", the sequence Uh converges to u in L2(•"), so (1.16) implies 

that Uh is bounded in HI(f2'). Therefore u EH~(Q ') and Uh converges to u weakly in 

Hl(f~'). 

It remains to prove that ula, is a variational solution of the obstacle problem 

{~P,,~P2} in f2'. Let vEHI(~2 ') such that ~pl~<o~<~p2 q.e. in f~' and o-uE HI(fu). Then 

Uh+O--u~HI(~"]'), ~l~Uh-~O--U~U'~-Oh~2q-Uh q.e. in fl '  and Uh-~I--U=U h o n  af2'. 

Since u h is a variational solution of the problem {~01,V/2+Vh} in f~', we have 

a,,(u h, o-u)>~O. Since Uh converges to u weakly in H~(ff2'), we obtain au,(u, v-u)>_-O, 
and this proves that u]u, is a variational solution of the obstacle problem {lpl, ~P2} in f2. [] 

The following comparison theorem is useful in the proof of the Wiener criterion for 

generalized solutions of obstacle problems. It extends to generalized solutions the 

elementary result proved in Lemma II.2.1 for variational solutions. 

THEOREM 1.3. Let 991,992,~31, ~22: O--->]~ be four functions such that 991~992 and 
~1<<-~2 q.e. in Q. Let u, v: ~--->R be quasi continuous HLdominated functions such that 
u and v are generalized solutions in Q of  the obstacle problems {991,992} and 
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{~l,~p2} respect ive ly .  I f  qgl<<.~O l q.e.  in f~, q92~/32 q.e.  in f2, and  u<~v q.e.  on afrO, then 

u<.v q.e.  in f2. 

Proof .  From the proof of Theorem I. 1. it follows that there exist two increasing 

sequences q91,h, U h and two decreasing sequences ~02. h, v h such that qo l, u, ~P2, o are the 

HLdominated quasi uniform limits of q~l. h, Uh, ~2, h, Vh respectively, and u h, v h are vari- 

ational solutions of the obstacle problems {qOl, h, q~2} and {~0~, ~02.h} respectively. Since 

~01,h~tPl~) 1 and ~92~)2~J2, h q.e. in f2 and Uh~V h on a ~  in the sense of H~(f~) (see 

Lemma 1.2.1), by an easy comparison argument for variational solutions (see Lemma 

II.2.1) we have Uh~O h q.e. in Q. By taking the limit as h--~+ oo we obtain u<<.o q.e. in ~2. 
[] 

III.2. Wiener criterion for generalized solutions 

In this section we extend to generalized solutions of a two-obstacle problem the Wiener  

criterion and the Maz'ja estimates proved in Part II for variational solutions (Theorems 

II. I. I and 11.2.1). 

Let ~p~, ~P2: RN-"~I~ be two functions such that ~l~<~p2 q.e. in R N and let x0 be a point 
~2 X of R N. By q/~,(o) we denote, in this section, the set of all functions u which are 

general i zed  solut ions  of the obstacle problem {~Pl, ~P2} in some open neighbourhood f~ 

of Xo (depending on u). 

Defini t ion 2.1. We say that x0 is a regular  po in t  of the genera l i zed  obstacle problem 
W2(x {~Pl, ~P2} if the set q/~l 0) is not empty and every solution u E vu,,~'~2fx0) is finite and 

continuous at x0. 

R e m a r k  2.1. If x0 is a regular point for the variational problem {~Pl, ~02}, according 

to Definition II.1.2, then x0 is a regular point for the generalized obstacle problem 

{~/'1, ~02} according to Definition 2.1. In fact, in this case, Theorem 1.3 ensures that 

every generalized solution of {~Pl, ~2} is a variational solution in a neighbourhood of x0. 

Conversely, if x0 is a regular point for the generalized obstacle problem {~1, ~02} 

and if there exists w E HI(R N) such that ~01~<w~<~02 q.e. in a neighbourhood of x0, then x0 

is a regular point for the variational obstacle problem {~01, ~2}, as one can see by 

applying again Theorem 1.3. 

The following theorem is the Wiener  cri terion for generalized two-obstacle prob- 

lems. 
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THEOREM 2.1. The point Xo is regular for the generalized obstacle problem 

{~Pl, ~02} if and only if the following conditions (2.1), (2.2) and (2.3) are satisfied: 

(2.1) ~l(x0) < + o% _~2(x0 ) > - oo, and ~l(xo) <<- _~2(x0); 

(2.2) there exists an HLdominated quasi continuous function ~p: RN---~R such that 

~pl <<-~p<<.~p z q.e. in a neighbourhood of  xo; 

(2.3) Xo is a Wiener point of  {~Pl, ~P2} according to Definition II. 1.3. 

To prove that conditions (2.1), (2.2), and (2.3) are sufficient for the regularity we 

use the following extension of  Theorem II.2.1. 

THEOREM 2.2. Theorem II.2.1 and Propositions II.2. I and II.2.2 continue to hold, 

with /z= O, for every generalized solution u of  the obstacle problem {~Pl, ~2) on 

f2 =BR(x0) , R>0 .  

Proof. It is enough to prove Lemma 11.2.2 and Proposition 11.2.2 for generalized 

solutions. For  every r>0  we set Br=Br(xo). Let u be a generalized solution of  the 

obstacle problem {~Pl, ~P2} on a ball BR and let O<R'<R. By Remark 1.3 there exist two 

decreasing sequences Uh and ~P2, h converging to u and ~P2 quasi uniformly in BR,, such 

that Uh is a variational solution of  the problem {~pj, ~12, h )  in BR,. 

Let  us fix 0 < r < R '  and el>0.  By the estimate (II.2.9) for variational solutions we 

have 

(2.4) 

where 

in fuh~W'h(e l 'R ' ) - -c[ in fuh--Wlh(e l 'R ' )] -exp(- - f l f ,  R'6":(el'Q) d~QQ) ' LBR' " _1 

tlJl,h(e 1, R')  = inf~p2, h A [~l(X0)-el]. 
B R , 

Since u h and ~P2,h are decreasing and converge to u and ~2 quasi uniformly in BR', w e  

have 

(2.5) i n f u =  lim infu h and inDp2= lim inf~P2,h 
B~, h---*+~ B 0 B~ h---,+ ~ B o 

for every 0<p<~R ', hence 

t l t l (e i ,R ' )=  lim tPi,h(ei,R'). 
h.-~+oc 
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Therefore, taking the limit in (2.4) first as h---~+ oo and then as R'--~R we obtain 

[ ] i n f u > ~ W , ( e l , R ) - c i n f u - U ~ l ( e l , R ) "  exp - f l  d I (el, O) 
Br LB, I --~'-,]' 

which proves the inequality (II.2.9) of Lemma II.2.2. 

The estimate (II.2.10) can be proved in a similar way, keeping now 7:2 fixed and 

using an increasing approximation of u and 7:1. 

To prove Proposition II.2.2 for generalized solutions we define 

t l=supT: lVdR and t2=inf~p2Ad R 
B R BR 

and we use the approximation from above of u and 7:2 on Bw, 0<R '<R,  considered in 

the first part of the proof. By Lemma 11.2.3 the function (Uh--t2)- is a non-negative 

subsolution of the operator L. Therefore Proposition 1.5.1 implies that 

inf uh >t t2-sup (Uh--t2)- >I t2-c(R')  -N/2 II(uh--dR)-IIL2<BR)" 
BsR, BsR, 

Since the sequence Uh is decreasing, by the monotone convergence theorem and by 

(2.5) we obtain 

in f  u ~ t z - c ( R ' )  -N/z II(u-NR)-IIL2~B.,). 
BsR, 

Using an increasing approximation of u and 7:1 we obtain also 

sup u <<- t I +c(R') -u/2 II(u-d )+l ar >" 
BsR, 

We now take the limit as R'- - .R  in the last two inequalities and conclude the proof as in 

the variational case. [] 

Proof  o f  Theorem 2.1. Let us prove the sufficiency. Assume that conditions (2.1), 

(2.2), and (2.3) are satisfied. If ~l(X0)<_7:z(X0) then there exists a constant t E R such that 

7:1~<t~<7:2 q.e. in a neighbourhood of x0. Therefore x0 is a regular point for the 

variational obstacle problem {7:1, ~P2} by Theorem II. 1. I and this implies that x0 is a 

regular point for the generalized obstacle problem {7:1,7:z} by Remark 2.1. ff 

~l(x0)=_7:2(x0), then every generalized solution of the obstacle problem {7:i, 7:2} is finite 

and continuous at x0 by Theorem 2.2. Therefore in both cases Xo is a regular point for 

the generalized obstacle problem {7:1,7:2}. 
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Let us prove the necessity. Conditions (2.1) and (2.2) are obvious. To prove (2.3) 

for every r ER and for r>0 small enough we consider the unique function 

u=ur.~:B2,(xo)---~R such that u is a generalized solution of the obstacle problem 

{~1,~2} in B2~ and u=r q.e. on OB2~(x o) (see Theorem 1.1), where 

~,(x)={~p,(oox) if xEB~, ~P2(x) if xEB, ,  
i fxCB, ,  and ~2(x)= - L+00 if x ~ B  r 

Then we can prove Steps 1, 2 and 3 of the proof of the Wiener criterion (Theorem 

II. 1.1) by using the comparison principle for generalized solutions provided by Theo- 

rem 1.3. [] 

We now apply the results of Sections 11.2 and III.2 to the important case of 

obstacles defined on an arbitrary (possibly "thin") subset F of R N. In this case the 

estimates of the oscillation of the solution can be given in terms of the oscillation of the 

obstacles and of the Wiener modulus W,4r, R) of F introduced in (I.7.6). 

Given two functions hi, h2: F---~I~, we define 

{h_~ onF ,  {h2 onF ,  
~)1 ~ elsewhere, ~P2 + ~  elsewhere. 

We fix a point xoER N and a radius R>0. We assume that 

s u p h l < + o o  and inf h2>-oo  , 
BRnF BRtlF 

where, for every r>0, we set Br=Br(xo). 

COROLLARY 2.1. Under the above hypotheses there exist two constants 

c=c(2, A, N)>0 and fl=fl(;t, A, N)>0 such that for every (generalized) solution u of  the 
obstacle problem {7)1,7)2} on BR we have 

(2.6) ~ ~ ht+~ h2+(~ Wv(r'R)~ LBR~r B~n~ \ e~ / 

for every O<r<.R. 

Proof. We may assume that the right hand side of (2.6) is finite. Let us fix O<r<.R 

and a solution u of the obstacle problem (~Pl, ~02} on BR. Given e>0, we choose th>0 

and o2>0 so that 
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(2.7) o I Wv(r,R)= osc hl+e 
ORfIF 

By Lemma 1.7.3. we have 

(2.8) O)l,ol (r, R) <<- WAr, R) 

Suppose that 

(2.9) 

By (2.7) and (2.8) we have 

and a 2 Wr(r,R) = osc hE+e. 
B R nF 

and to 2 o2(r, R) <- Wr(r, R). 

V)2(X0)--~I(X0) ~ OSC hi+ o s c  h 2. 
BRnF BRrlF 

qYov o2 (r, R) ~< _~2(x0)-~l(x0)+ osc hi+ osc h2+2e 
BRflF BRflF 

~<2[osc hl+OSC h2+e], 
L BR nF BRaF d 

thus Proposition 11.2. I for generalized solutions, together with (2.8), yields 

B~ kg.nF B.nF I ~R u 

and as e-->0 we obtain (2.6). 

If (2.9) is not satisfied, then there exists a constant d such that 

(2.10) infu ~< d ~< sup u 
BR BR 
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and lffl~<d~<~2 q.e. on Bn. Taking (2.7) and (2.8) into account, Theorem 11.2.2, applied 

with w=d, yields 

(2.11) ~(r)<<-c[ R-N/2IIu-dIIL2'BR) WF(r'R)a+OSCB, nF h,+ oscn, n~ hz+2e]'_l 

The estimate (2.6) follows now from (2.10) and (2.11), taking the limit as e-->0. [] 

111.3. Generalized Dirichlet problems 

In this section we give an estimate for the modulus of continuity of solutions of 

Dirichlet problems with quasi continuous HLdominated boundary conditions. 
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Let D be a bounded open subset of R N and let g: OD---~R be an Hkdominated quasi 

continuous function. 

Definition 3.1. We say that a function u:D---~R is a dominated generalized solution 

(in D) of the equation Lu=O if u is the Hkdominated quasi uniform limit (in D) of a 

sequence uh of functions of HI(D) such that Luh=O (in D) in the sense of Section 1.4. 

By Theorem 1.2, applied with Q=D,  ~p l=-~ ,  and ~p2=+~, every dominated 

generalized solution u of the equation Lu=O in D belongs to H~oc(D) and satisfies Lu=O 

in the sense of distributions. The converse is false, as the following example shows. 

Example 3.1. Let D=B~(0)\{0} and let L = - A .  Then for every tER the functions 

u,(x)--tlxl2-N-t belong to H~o~(D) and satisfy Lu,=O on D in the sense of distributions, 

but ut is a dominated generalized solution in the sense of Definition 3. I only for t=0. 

By Theorem 1.1, applied with f2=D, ~p~=-w, and ~p2=+w, there exists a unique 

quasi continuous function u:/)---d~ such that u is a dominated generalized solution 

of the equation Lu=O in D and u=g q.e. on OD. We shall refer to this function as the 

solution of the Dirichlet problem 

(3.1) Lu = 0 in D, u = g on aD. 

It is easy to see that, if g is continuous, then u concides with the solution of the 

Dirichlet problem (3.1) in the sense of [22], Section 10. 

We now show that the Maz'ja estimate at a boundary point (see [18] and [19]) for 

the solution of the Dirichlet problem (3.1) can be obtained from the estimates for 

generalized solutions of a two-obstacle problem given by Theorem 2.2. 

Let x 0 E aD. For every r>0 we set Br=Br(xo). 

THEOREM 3.1. Let u be the solution o f  the Dirichlet problem (3.1), with g quasi 

continuous and essentially bounded on ~D (in the capacity sense). Then there exist two 

constants c=c(;~, A, N) >0  and fl=fl(2, A, N)>0  such that 

oscu<~ osc g+c oscg exp - ~  
B, no BRaao \ o0 cap(Be, B2o) Q 

for every 0<r<R.  

Proof. Let us fix O<r<R'<R. By adapting the proof of Tietze's extension theorem 

(see for instance [6]), we can extend glBR, nao to a quasi continuous function ~p:BR,~R 
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such that 

(3.2) inf~p= inf g~< sup g = s u p %  
BR' BR'nOD BR 'NOD BR' 

Then we can extend ~0 to an essentially bounded quasi cont inuous function, still 

denoted by ~p, defined in R N such that  ~p=g q.e. on 0D. 

Let  E=RN-D, let ~p~, ~02: RN--*I~ be the functions defined by 

(3.3) ~Pl = ~ elsewhere,  ~P2 = ~ elsewhere,  

and let f~ be a bounded open subset  of  R N containing/5 LJ BR; then the obstacle  problem 

{7)1, ~P2} has a unique generalized solution v in f2 (Theorem 1.3) and we have 

u q.e. in D, 
(3.4) v =  ~P q.e. in ff~-D. 

By Theorem 2.2 the function v satisfies the est imate (11.2.4), therefore  by  Remark  1.7.1 

we have 

(3.5) ( 
OSC O ~< I u  e2, R ' ) + c  osc v e x p  - f l  Oi*(ei, Q) 

Br \ BR, 

for every e l > 0  , g2>0. Given e>0 ,  we set 

e I = 73(Xo)-inf~p2+e = 7~(Xo)- inf ~p+e 
B R, B R, n E 

and 

e 2 = sup/Pl--_~z(Xo) + e  = sup ~0--_7)2(Xo)+e. 
BR, nR.nE 

Then E~(el, Q) ~_E 17 B e and E~(e2, ~) ~_E n B e for every 0<Q ~<R', therefore (3.5) implies 

(3.6) B, no osc  u ~ < o s c v ~  < B, BR'OSC ne q)+Ee+c(oscv) \ BR' WE(r,R') ~ , 

where, according to (I.7.6), 

( fR ' cap(EnBo ,  Bz~)do) 
WE(r, R' )  = exp  - cap(B o, B2 e) O " 
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By (3.2) we have 

(3.7) osc ~p~< osc g 
BR, ne nRnon 

and from the maximum principle we get 

[ s u p  ] - [  inf uA inf ~ ]  oscv~< sup uV 
BR, LnR.no B~,ne ~ BR, nD Bit, hE _J 

(3.8) 
~< sup g - i n f g  = oscg. 

01) aD OD 

Since (3.6) holds for every R'<R and for every e>0, from (3.7) and (3.8) we obtain 

o s c u ~  < osc g+c(osc g) We(r,R) ~, 
BrnD BRnOD \ OD 

which is the Maz'ja estimate at the point x0 E aD. [] 

More generally, given an arbitrary subset E of Q, and an HI-dominated quasi 

continuous function ~0: RN--d~ we consider the formal Dirichlet problem 

SLu = 0 in f~ -E  
(3.9) / 

( u  = ~0 in E. 

By a solution of (3.9) we mean any generalized solution in f2 of the obstacle problem 

{~l, ~02} where ~Pl and ~P2 are given by (3.3). By applying (11.2.4) to the case at hand, we 

obtain the estimate 

oscu<~ osc~p+c oscu exp - f l  
B, BRne \ 8k cap(B~,B2 o) 0 

for every x0Eg) and for every 0<r<R with BR(xo)~_f2, where c=c(2,A,N),  
fl=fl(2, A, N), and BQ=Be(xo) for every Q>0. 
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