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Introduction

A detailed study of the boundary regularity for solutions of the Dirichlet problem in an
open region D of RY, N=3, was carried out by H. Lebesgue and others: this investiga-
tion culminated in the celebrated Wiener criterion. By relying on a fundamental notion
of potential theory, namely that of capacity of an arbitrary subset of R, N. Wiener was
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able to characterize the boundary regular points—as classically defined by H. Le-
besgue and N. Wiener himself—in terms of an intrinsic condition which must be
satisfied by the domain D in the neighbourhood of the given point x, (see [23]).

A further interesting contribution was given by V. G. Maz’ja, who showed that the
pointwise modulus of continuity of solutions of Dirichlet problems, with arbitrary
continuous boundary datum #, is related to the rate of divergence of the integral
appearing in the Wiener’s criterion (see [18], [19]).

At the same time, in the framework of the theory of variational inequalities, H.
Brézis, H. Lewy, G. Stampacchia, and others initiated the study of the regularity of
solutions of a class of free boundary problems, the so called unilateral obstacle
problems, involving a second order elliptic operator L (see [21], [3], [16]). This study
was pursued by L. A. Caffarelli, J. Frehse, D. Kinderlehrer, and others (see [4], [8],
[9]. Most of these results are of global or local nature, in the sense that, for example,
the solutions are shown to be continuous at a given point, provided the obstacle is
continuous on a neighbourhood of that point.

The methods used are primarily ““a priori’’ estimates like in the usual P.D.E.
theory. However, the connection with potential theory and related methods were
explicitly also taken into account, in particular by H. Lewy and G. Stampacchia and
later on by L. Caffarelli and D. Kinderlehrer.

Related to both P.D.E. and potential theory is the approach taken by J. Frehse and
U. Mosco to study the pointwise regularity of local solutions of obstacle problems for a
class of quite general irregular obstacles, i.e. obstacles not necessarily continuous (see
[10], [11], [12]). These authors introduced the notion of regular point of an obstacle
and, by relying on capacity methods as in the classical theory, they established a
criterion for regularity of the type of the Wiener criterion. Moreover they proved
estimates of the modulus of continuity of the solutions of the type of the Maz’ja
estimate.

In this paper we consider a more general class of variational inequalities, the so
called two-obstacle problems (see Definition I1.1.1), and we carry out the study of the
pointwise behaviour of the local solutions. This theory provides a unified framework
for the study of regular points both for Dirichlet problems and for unilateral obstacle
problems.

The point x,, at which the regularity is tested, may indeed be a point of a fixed
boundary, as in the Dirichlet problems, as well as a point of a free boundary in a two-
obstacle problem, that is a point of the boundary where the solution leaves one of the
two obstacles. It may even happen that the ‘‘geometry”’ of the obstacles at the given
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point x, is more complicated: the two obstacles may ‘‘touch’ each other at x;, while
both oscillate very much in an arbitrarily small neighbourhood of the point, interpene-
trating each other.

We will consider variational solutions in Part II and generalized solutions in Part
III. The former are solutions in the Sobolev space H!, which exist provided the two
given obstacles y;, ¥, are separated by some H' function w. The latter can be defined,
more generally, as limit of variational solutions, by only requiring the separating
function w to be quasi continuous in the capacity sense.

The notion of regular point for two given obstacles v, ¥, is first introduced in Part
II in terms of continuity at a given x, of all variational solutions in a neighbourhood of
xp and then extended in Part III in terms of generalized solutions. A Wiener criterion,
which characterizes the regular points, is proved for variational solutions in Theorem
I1.1.1 and for generalized solutions in Theorem II1.2.1. In particular, such a criterion
shows that even a point x, where the two obstacles touch one each other will be regular
for the two-obstacle problem, provided it is regular separately for each of the (one-
sided) obstacles. This qualitative result follows indeed from the one-sided criterion by
means of suitable comparison arguments.

We are also concerned in establishing a priori estimates for local solutions, to be
satisfied at an arbitrary point of the domain. A peculiar interesting feature of all these
estimates is their structural nature. By this we mean that they depend only on the
dimension of the space and on the structural constants of the operator L, such as its
ellipticity constants. .

Estimates of the modulus of continuity are given in Theorem 11.2.1 for variational
solutions and in Theorem II1.2.2 for generalized solutions. More general estimates of
energy type for variational solutions are given in Theorem I11.2.2, by assuming the
separating function w to be in a suitable Kato class. The estimated energies of Dirichlet
problems must be replaced, in general obstacle problems, by some potential seminorms
as given in Section L.8.

Let us point out finally a special interesting case of our theory, namely Dirichlet
problems in which a non-homogeneous condition u=h is prescribed on an arbitrary
Borel set E of positive capacity in RV, Such a problem can indeed be formulated as a
two-obstacle problem, with the obstacles y; and vy, defined to be y,=y,=h on E and
Y1=—,P,=+ on R¥—E. Unless E is compact, the regularity at a point x,€3E can
not be reduced to the classical boundary regularity theory in R¥—E, nor the pointwise
results of the potential theory can be applied (except in the case, typical in potential
theory, where A is a constant on E).
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Part I. Notation and preliminary results

In this part of the paper we fix the notation and state some preliminary results.

L1. Capacity notions

If K is a compact subset of RV, N=3, we define

Cap(K) = inf{f (|V<p|2+tp2) dx:p€ C(')(RN), g=1lon K},
RN

where Vg denotes the gradient of @. If A is an open subset of RV we put
Cap(A) = sup{Cap(K): K compact, Kc A}.
If E is an arbitrary subset of R we put
Cap(E) = inf{Cap(A): A open,A 2 E}.

Let Q be a bounded open subset of RY; if K is a compact subset of Q we define

(1.1) cap(K, sz):inf{ f [Vol’dx: 9 € Co(Q), ¢ = lonK}.
Q

We then extend this definition to an arbitrary EcQ as in the previous case. We refer to
[31, [5], and [9] for details and properties.

We say that a function u defined on a subset ECRY is quasi continuous (in the
capacity sense) if for every >0 there exists an open subset A of R with Cap(A)<e,
such that u|¢_, is continuous on E—A.

If a statement depending on x € RY holds for every x € E except for a subset N of E
with Cap(N)=0, then we say that it holds quasi everywhere (q.e.) on E.

We say that a sequence of functions y,: E—[—, + %] converges quasi uniformly
(in the capacity sense) to a function y: E—[—o, + ] if for every £>0 there exists an
open subset A of RY, with Cap(A)<e, such that y,——0 uniformly on E—~A (with the
convention + o0 —(+®)=—o00—(—x)=0). If each vy, is quasi continuous on E, then y
also is quasi continuous on E.
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Let v be a function E—[—x, + =], then we denote by supzv the essential supre-
mum of v on E taken in the capacity sense; in the same way we define infgv.
Boundedness from above and below (in the capacity sense) are defined accordingly.
For every x €E we define

(1.2) 6(x)=inf{ sup v} and y(x)=sup{ inf v}

0>0 { B (x)NE 0>0 | B (x)NE
3 0

where B,(x)={y ERY: [x—y|<@},0>0. We have i(x)<+ (resp. v(x)>— ) if and only if
v is locally bounded from above (resp. below) in some neighbourhood of x.
If Cap(E)>0, supgv>—o, and infrv<+ o, the oscillation of v on E is defined by

(1.3) osc v = sup v—infu.
E E E

We set osczv=0 in any other case. We say that v is continuous at x, on E if

lim|{ osc v]=0.
00 \ENB,(xp

1.2. The Sobolev spaces

Let Q be an arbitrary open subset of R¥. By H'(Q) we denote the space of all functions
u of LY(Q) whose distribution derivatives are in L), endowed with the norm

el = (il HIVelr )™
By H, (Q) we denote the set of all functions u € L%, () such that ug. € H'(Q") for
every open set Q'€Q (i.e. Q' compact and Q'cQ). By Hy(Q) we denote the closure of
Cy(Q) in H(Q), and by H™}(Q) we denote the dual space of Hy(Q). The dual pairing is
denoted by (, ).
It is known that for every u € H, (Q) the limit

lim

u(y) dy
00" ,Bg(x)l B (x)

exists and is finite quasi everywhere in Q, where |B,(x)| denotes the Lebesgue measure
of the ball B,(x).

We make the following convention about the pointwise values of functions
uEH,'oc(Q): for every x € Q we always require that
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.. . 1
2.1 lim inf u(y)dy <u(x) <limsup-—— u(y)dy.
0—0" |Bg(x)| B,(x) o—0"* 'Bg(x)l B,(x)

With this convention, the pointwise value u(x) is determined quasi everywhere in € and
the function « is quasi continuous.

Note that for a function u € H{OC(Q) the condition #=0 a.e. in Q and ¥=0 q.e. in Q
are equivalent. A function u € Hy(Q) can be extended to a quasi continuous function
u € H'(R™) by simply putting «=0 g.e. in R"—Q.

It can be proved that for every EcRY

Cap(E) = min{ f (|Vul*+u?ydx: u€ H'RY),u=1 q.e. on E}.
RN

Moreover
cap(E, Q) = min{f |Vul*dx: u€ H(Q),u=1q.e. on E},
Q

provided that Q is bounded and contains E.

By a non-negative Radon measure on Q we mean a non-negative distribution on
Q. By a (signed) Radon measure we mean the difference of two non-negative Radon
measures.

If u€ H! is a non-negative Radon measure, then the equality

(ﬂ,v)=f vdu
Q

holds for every UEH(I,(Q), where the pointwise values of v are determined g.e. in Q by
the convention (2.1). For the preceding properties of H™'(Q) see e.g. [5].

Given two functions « and v defined in Q, we denote by uAv and Vv the functions
defined in Q by

(#Av) (x) = min{u(x), v(x)}, (@Vv)(x)=max{u(x),v(x)}.

The function u* and u~ are defined by u*=uVO0 and u~=—(xA0).
It is well known that if u and v belong to H'(Q) (resp. H}(Q), Hy(Q)), then uAv
and uVv belong to H'(Q) (resp. H},(Q), H)(Q)).

Definition 2.1. We say that two functions «, v € HY(Q) satisfy the inequality #<v on
3Q (in the sense of H'(Q)) or equivalently that v=u on 3Q, if (v—u)AO belongs to
Hy(Q).
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Note that in the previous definition we do not assume that # and v can be extended
to quasi continuous functions defined on Q.

If, u,v € H'(RY), then u<v on 3Q in the sense of H'(Q) if and only if u<v g.e. on
9Q, where the values of # and v on 8Q are defined according to our convention (2.1). If
u€H\Q),vE HY(Q), and u<v a.e. on Q, then clearly #<0 on 3Q in the sense of H'(Q).
More generally, we can prove the following lemma.

LEMMA 2.1. Let Q be a bounded open subset of RY and let u € H'\(Q). Assume that
there exists a quasi continuous function y: Q—R such that usy q.e. on Q and Y=0
g.e. on 3Q. Then u<0 on 3R in the sense of H(Q).

Proof. 1t is enough to prove the lemma under the additional assumption O0su<y=<1
g.e. on Q. Since ¥ is quasi continuous on €, for every h € N there exists an open set A,
such that y|s_ A, is continuous and Cap(A,)<1/h. Since y=0 q.e. on 3Q, we may
assume that y(x)=0 for every x €3Q—A,. Therefore the set

K, = {x€Q: w(x) =1/h}—-A,

is compact and contained in Q.
For every h€ N we denote by v, the solution of the minimum problem

min{j (Vo +vY) dx:vE H'RM),v=1 q.e. on Ah}.
RN

Since Cap(4,)<1/h, the sequence {v,} converges to 0 strongly in H'(R"). Let
1
u,= (u— " —vh) VO.

Then u, € H(Q) and u,=0 q.e. on Q—K,,. Therefore u, € Hy(RQ). Since u,, converges to
uV0 strongly in H'(Q), it follows that xV0 € Hy(Q), hence u<0 on 3Q in the sense of
H(Q). i

L.3. The Kato spaces

Let Q be a bounded open subset of RY. By K(Q) we denote the set of all signed Radon
measures u on  such that

lim supj |y—x|2_Nd|ﬂ|(}’)}=0,
e—0" { *€2 Jang (v
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where |u| denotes the total variation of . We define a norm in K(Q) by setting
“/4”1((9): Squ |y—x|2‘Nd|/4|(y)
x€EQ Q

For every u € K(Q) and every x € Q we have

3.1) lim |l g, =0

0—0

(see e.g. [14], [2], [5]). Moreover K(Q)cH (Q) with continuous imbedding. In fact
f f ‘y—xlz_NdM(J’) dlu|(x) < diam (Q)Z_N”.“”.ZWQ)
oJa

for every u € K(Q2).

I.4. The operator L

In the whole paper we shall denote by L a linear second order partial differential
operator in R” in divergence form

N
@.1) Lu=-2 (a;u,),

ij=1

with coefficients agEL“(RN), i,j=1, ..., N, and satisfying the uniform ellipticity condi-
tions

N
4.2) > a0 EE =P, la x| <A for a.e. xER”

i,j=1

for some constants 0<<A<A.
Let Q be a bounded open subset of R¥. We define the bilinear form a on H(Q) by

N
4.3) a(u,v) = aglu,v)= 2 f a;u, vxidx.
Q

ij=1
According to [22] we say that « is a (local) solution in Q of the equation

4.4) Lu=f

for a given f€E H(Q) if u € H'(RQ) and
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.5 ag(u, @) = (f,p) forevery @€ Hy(Q);
we say that u is a subsolution of the equation (4.4) if

ag(u, ) < (f, @) forevery ¢ € H(Q), ¢ =0;
the supersolutions are defined similarly.
If u is a subsolution (supersolution) of the equation Lu=0 we also say that u« is a
subsolution (supersolution) of the operator L.

L.5. A priori estimates for solutions and subsolutions

In this section we give some estimates for solutions and subsolutions of the equation
Lu=v, where v is a measure of the Kato space K(Q).
Let Bg=Bg(x,), x,ER", R>0, let 0<s<1, and let v € K(B).

ProPOSITION 5.1. Let u € H\(Bg) be a solution, or a non-negative subsolution, of
the equation Lu=v. Then there exists a constant c=c(A, A, N, s)>0 such that

(5 1) ”ullz“’(gm) s C[R_N”u”f}(BR-BsR)-F”v“i'(BR)] ’
24, _+ |2-N < —N| 2 2 .
(5‘2) L |Vu' Ix x0| dx C[R ”u”Lz(BR—B:R)-*-“v”K(BR)]

SR

Proof. Lemmas 6.7 and 6.8 of [5], applied with #=0, give the result when u is a
solution. The same proofs can be easily adapted to the case of non-negative subsolu-
tions. =

For every u € H'(Bg) we put

Ug= 1 fu(x)dx.
|Bgl Bp

PrOPOSITION 5.2. Let u€ H'(Bg) be a solution of the equation Lu=v. Then

2
(osc u) < C[R-N'|u—uR||i2(BR_BsR)+||v||f((BR)],

SR
where ¢ is a constant depending only on A, A, N, and s.

Proof. Since oscy  u<2flu—ug||,., . itis enough to apply the estimate (5.1) to the
s SR
function u—upg. a

5-898285 Acta Mathematica 163. Imprimé le 8 septembre 1989
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PROPOSITION 5.3. Let u€ H'(Bg) be a solution of the equation Lu=v. Then

14/l gy < Sup |+ cl¥ll ks

where c is a constant depending only on A, A, and N.

Proof. For every y € Bg we set

w(y) = f G’ (x) d|v|(x),
B

R

where G” is the Green function for the Dirichlet problem relative to the operator L in
Byr with singularity at y. Then Lw=|v| on Bg and

(5.3) sup w < c|[v|[g,)
BR

by the well known estimates of the Green function (see [17], [22], [13]). Since |u| is a
subsolution of the equation Lv=|v| (see, for instance, [5], Proposition 2.6), the function
z=|u|—w is a subsolution of the equation Lv=0. By the maximum principle we have

supz<supz,

B 3B,
hence
sup |u| < sup z+sup w<sup z+sup w<sup |u|+sup w.
By Bp R R R 8B, By
The conclusion follows now from (5.3). O

1.6. H'-dominated quasi uniform convergence
In this section we introduce a convergence which will be used in Part III, in connection

with our definition of generalized solutions. Let E be an arbitrary subset of R".

Definition 6.1. We say that a function y: E—R is H'-dominated (on E) if there
exists v€ H'(R) such that |y|<v q.e. on E.

We refer to [1] for a characterization of the H'-dominated functions y in terms of
the capacities of the level sets of |y|.
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Definition 6.2. Let y,: E-R be a sequence of functions converging quasi uniform-
ly to y: E-R. If in addition there exists v € H'(R") such that |y,—y|<v g.e. on E then
we say that y is the H'-dominated quasi uniform limit of y,, (on E).

PROPOSITION 6.1. A function y: E—R is the H'-dominated quasi uniform limit of a
sequence of functions y,: E-R if and only if there exists a decreasing sequence vy, in
H'(R) converging to 0 strongly in H'(R™) such that [y,~vy|<v, q.e. on E for every
hEN. If E is bounded, we may assume in addition that each function vy, is a supersolu-
tion of the operator L in a neighbourhood Q2 of E.

Proof. Assume that v is the H'-dominated quasi uniform limit of v,. Then there
exists v € H'(RM) such that |y,—y|<v q.e. on E for every hEN. For every kEN there
exist o(k) EN and an open set A, such that Cap(4,)<2~* and |p,—y|<1/k on E—A, for
every h=o(k). We may assume that the sequence A, is decreasing and that o: N—N is
strictly increasing. For every kEN we may consider the solution w; of the minimum
problem.

min{f (Vwf+w?) dx;w € H'R),w=v q.e. on Ak}.
RN

Then the sequence w; is decreasing. Since v € H'(R") and Cap(4,)—0 as k—+, the
sequence w; converges to 0 strongly in H'(RM).
We define

v for h<o(1),

Up= w,+ <% A v) for atk) < h < a(k+1).

Then v, is decreasing and converging to 0 strongly in H'(R"). Since for a(k)<h

i/\ v gq.c.onE-A,

lvp—wl<y k

v=w, q.e.onFEnNA,

we have [y,~y|<v, q.e. on E for every hEN.
Let us suppose that E is contained in a bounded open set Q of RY. Then we can
replace the functions v, by the solutions z, of the variational inequality

z,—V,EH)(Q), z,=v, q.e.in Q.
ag(z,, 2—2,) =0
VZEH'(Q), z-v,EHYRQ), z=v, q.e.in Q.
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It is then clear that each function z, is a supersolution of L on Q and satisfies the
inequality |y,—y|<v, q.e. on E. Moreover the sequence z, is decreasing and converges
to 0 strongly in H(Q).

Converserly, assume that there exists a decreasing sequence vy, in H'(R") converg-
ing to 0 strongly in H'(R") such that |y,—y|<v, q.e. on E for every hEN. Since
[¥»—y|<v, q.e. on E for every hEN, to prove y is the H'-dominated quasi uniform limit
of yy it is enough to show that v, convergs to ¥ quasi uniformly (in the capacity sense).

For every k€N there exists a(k) EN such that

[N MRS 1/,

Let A,={v,4,>1/k}. Then Cap(A)<1/k* and |y,~y|<v,<v,,<1/k q.e. on E—A; for
every h=o(k). This proves that i, converges to ¥ quasi uniformly. O

1.7. The Wiener moduli

In this section functions y: R¥Y—R will be considered which will play the role either of a
lower obstacle or of an upper obstacle for our problem. The variational behavior of
these one-sided obstacles at a given point x€R" will be described in terms of a
function

7.1 w,(r,R)=w,(p,xy;r,R), 0<r<R, >0,

called the Wiener modulus of v at x,.
For a lower obstacle y, this will be done in terms of suitable one-sided level sets of
¥, namely

(7.2) E(e,0)=E(p,xp¢e,0) = {xEBg(xo): Y(x) 231(11:) w—s}

and their relative capacities
cap(E (e, 0), B,,(xy))
cap(B,(xo), B,y(xp) -

(7.3) 0(e,0) = 0(Y, x,;6,0) =

We then define the (lower) Wiener modulus (7.1) by setting

R
w,(r,R)= inf{w>0:wexp(j 6(aw,g)%) = 1}.

r

The modulus w, for a fixed ‘‘scaling factor’” 6>0, can be regarded as implicitly
defined by
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- ) do
w=exp| — 6(ow,g)——9— .

More precisely we have the following lemma (for the proof of the lemmas of this
section see [20], Section 4).

LeMMA 7.1. Let 0<r<R be fixed. Then >0 and 0>0 verify

- ) do
0= €eexp O(e, g)?

R
w,(r,R) = exp<— j o(e, g)%) and ow,(r,R)=¢.

if and only if

In addition to the integrals

R
(7.4) f 6(&9)199—

we shall also consider the integrals

R
.5 f 5*(e, 9)%,

r

where now 0*(¢, p), £>0, 0>0, is defined to be

_ cap(E*(e, ), Byy(xy))

0*(e,
&0 = b B (xy). By

and

E*(g,0) = {x € B (xp): p(x) = 1/;(x0)—-£}.
The Wiener modulus w(r, R) is defined as w (r, R) with d(e, ¢) replaced by d%(¢, g).

Remark 7.1. 1t follows immediately from the definitions that (¢, 0)<d*(¢, o) for
every €20, 0>0, hence w,(r, R)=w}(r, R) for every 0<r<R and for every 0>0. More-
over Lemma 7.1 continues to hold with d(e, ¢) and w.(r, R) replaced by 6*(¢, 0) and
wi(r, R) respectively.

The vanishing of w,(r, R) as r—0" is clearly related to the divergence as r—0" of
each one of the (lower) Wiener integrals (7.4) and (7.5). In fact we can prove the
following lemma.
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LEMMA 7.2. Assume that —o<y(xy)<+x. Then the following conditions are
equivalent:

(a) for every €>0 there exists R>0 such that limr_>o+ w(r, R)=0 for suitable
0=0(g, R;r) such that ow,r, RY<e for all 0<r<R;

(b) for every >0 there exists R>0 such that

R
f O(e, 0)3'[—9—= +o;
0

0

(c) for every >0 there exists R>0 such that
R
J’ O*(e, Q)£g= + o0,
o Y

The vanishing of w,(r, R) as r—0" is also related to the regularity of the set
F=F,={x:yp(x)> -}

at the point x, (in the sense of the classical potential theory) and to the continuity at x,
of the restriction of ¢ to F (in the sense of Section 1). For every 9>0 we set

B = [ B0 if Cap(B,(x)) N F) =0,
o) = B,(x)NF if Cap(B,(x))NF)>0,

and for every 0<r<R we define

R cap(B}(xy), By,(x0)) dp
(7.6) Wi(r,R) = exp( - J: cap(B, (). Boyig) > )

Then the following estimate holds.

LemmMma 7.3. For arbitrary 0>0 we have

Swo(r,R)Smin{l,max[WF(r,R),i 0sc 1/)]}

r
R O Bx)0F

Jor every 0<r<R.

For an upper obstacle v, the (upper) Wiener modulus of y at the point x, and the
corresponding (upper) Wiener integrals (7.4) are defined similarly by just replacing in
(7.2) the supremum with the infimum, —¢ with £, and = with <; that is by taking
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E(e,0)= {xEBg(xo): Y(x) < inf 1/)+£};
B(xy)

accordingly, the sets E* in the upper Wiener integrals (7.5) will be defined as

E*(,0)= {xG B (xy): p(x) < 1_/)(x0)+s}.

L.8. Potential estimates for one-sided obstacle problems

In this section the function y:R¥—R plays the role of a lower obstacle. Let
Q=Bxr(X), X ERY, R>0, and let UEK(S2). We consider a local variational solution u of
the one-sided obstacle problem

UuEHYQ), u=y qe.inQ,
8.1 ag(u,v—u)zf (v—uw)du
Q

VWEHYQ), v=vy qe. inQ, v—u€HY(Q).

For every 0<r<R we set B,=B,(xg) and we consider the potential seminorm %{r) of
u defined by

r

2
8.2) V2r)= <osc u) +f IVu? x—xof* N dx.
B 5,

The decay of ¥(r) to zero as r—0% can be estimated according to the following
proposition.

ProrosiTioN 8.1. There exist two constants c=c(A, A, N)>0 and B=p4, A, N)>0
such that for every solution u of (8.1) we have

(8.3) V) < [RVu—dl| 3 , 01, R +00,(r, R)+| ks, )
for every 0<r<R/2, for every >0, and for every constant d>supBR1/).

Proof. The results for u=0 are proved in [20], Theorems 6.1 and 6.2. Let us discuss
now the case u+0. We shall denote by ¢ and 8 various positive constants, depending
only on 4, A,and N, whose value can change from one line to the other.

Let us consider the unique solution w € Hj(By) of the equation Lw=g. By Proposi-
tion 5.3 we have
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8.5) 0]l =, < lledlixayy-

The function z=u—uw is a solution in By of the variational inequality

Z€EH'(Bg), z=y—w q.e.in By,
(8.6) an(z,u—2)=0, Q=B,
YvEH!(B,), v=y-w q.e. in By, v—zEHyBg).

For every >0, 0<p<R we define

E (0 = {xEBQ: px)—wkx) = s;lp (w—w)—n}

[4

and

cap(E,,,(ﬂ, Q)a Bzg)

0,(n,0) = cap(®, B,)

Let ¥,(r), 0<r<R, be the potential seminorm defined as in (8.2) with u replaced by
z=u—w. Let us fix 0<r<R/2. By applying Theorem 6.1 of [20] to the obstacle problem
(8.6), we obtain

R2 d
Y., <cV, (RI2) exp<—,3 f 8,1, 0) f’) +ey

for every n>0 (see also Lemma 7.1). Take n=e+o0scy w with £>0. Since
E(¢,0)cE (1, @), we have

R2
8.7 V., (N<cV,RI2) exp(—ﬁf d(e, 0) %) +ce+coscw.

Bgp

By (8.5) and by Proposition 5.1 we obtain

2 1”2
|Y(e)-V,(0)| < (osc w) +f |V e—x,/> N dx
Bpp Bppn

(8.8)

= C[”w”L”(BR)+”'u||K(BR)] = C”:“”K(BR)
for every 0<p<R/2, and Theorem 6.2 of {20] implies

8.9) VIR2) < c[R™ju—dl| 2 +Hlllxiap]
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for every constant d>supBR1p. Therefore (8.5), (8.7), (8.8), and (8.9) yield

R
- d,
Nr)<c2’R N/2||u—dHL2(BR)eXp("ﬂf O(e, Q)—"QQ>+C8+C”:“”K(BR)'

Let us fix 0>0. For every e>0w,(r, R) the previous inequality implies
- e\f
VO S| R udl () + e+ iy

and taking the limit as ¢ | ow,(r, R) we obtain (8.3). O

Part II. Variational solutions

Throughout this part of the paper, ¥, and ¥, are two arbitrary given functions from R"
into R and x, is an arbitrary fixed point of R¥. We shall write B, instead of B,(x;), r>0,
and we shall freely use the notation from Part 1. In the proofs we shall denote by ¢ and
B various positive constants, depending only on the ellipticity constants A and A of the
operator L, on the dimension N of the space, and, possibly, on a parameter 0<s<I.
The value of these constants can change from one line to the other.

I1.1. Statement of the main results

Definition 1.1. For every open subset QcR”Y, we say that a function u is a (local)
variational solution in Q of the two-obstacle problem {y,,y,} if

u€ H\(Q), Y, Susy,q.e. in Q,
1.1 ag(u, v—u)=0

VvEHY(Q), y,<vsy,qe. inQ, v—u€HYQ).

In all this section we shall only consider variational solutions and we shall omit in
the following the term variational.

By %zj(xo) we denote the set of all functions # which are local solutions of the
problem {1, ,} on some open neighbourhood Q of x; (depending on u).

Definition 1.2. We say that x, is a regular point of problem {y,,y,} if the set
%if(xo) is not empty and every u € Gllzf(xo) is finite and continuous at x,.

With the lower obstacle iy, we associate the (lower) Wiener moduli w, (r, R),
wf,r,R), 0<r<R, 0>0, and the (lower) Wiener integrals [9,(¢, o) dolo, [d¥(e, 0)dolo
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defined as in Section 1.7. With the upper obstacle v, we associate the (upper) Wiener
moduli w, (r, R), w3 ,(r, R), 0<r<R, 0>0, and the corresponding (upper) Wiener inte-
grals [d,(¢, 0) dolo, [0%(e, 0)dolo also defined in Section 1.7.

Definition 1.3. We say that x, is a Wiener point of the problem {y, y,} if

. d ) d
(1.2) f 07 (e, Q)—Q =+ and f I C g)—-g =400
0 o 0 e
for every £>0 and for every R>0.

Remark 1.1. By Lemma 1.7.2. we have that x, is a Wiener point of the problem
{¥1, v} if and only if xy is a Wiener point, according to Definition 3.1 of [20], both for

the lower obstacle problem determined by y, and the upper obstacle problem deter-
mined by ;.

The following Wiener criterion holds.

THEOREM 1.1. The point x, is a regular point of {y1,y,} if and only if all the
Jollowing conditions (1.3), (1.4), and (1.5) are satisfied:

(1.3) P,(xp) <+, P,(x) >~, and ¥,(xy) < P,(xy),
(1.4) there exists R>0 and w € H'(Bg) such that Y, <w <y, q.e. in By,
(1.5) xo is a Wiener point of {y,, ).

Remark 1.2. By Remark 1.1 and by the characterization of the regular points of the
unilateral problems (Theorem 5.1 of [20]) we have that x, is a regular point of {y, y,} if
and only if all the following conditions (1.6), (1.7), and (1.8) are satisfied:

(1.6) ¥(x) S P,(x),
(1.7) there exists R>0 and w € H'(Bg) such that ¢, <w <y, q.e. on By,

(1.8) x, is a regular point, according to Definition 2.1 of [20], both for the lower obstacle
problem determined by v, and for the upper obstacle problem determined by ,.

The proof of the Wiener criterion will be given inb Section 3 after the estimates for
the solutions of the obstacle problem {y,,} presented in the next section.
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IL.2. Oscillation and energy estimates

In this section we give an estimate of the oscillation and of the energy at x; of an
arbitrary solution u of the two-obstacle problem

UEH'Bg), v, <Susy,q.e.in By,
2.1) ag(u, v—u)zj(v—u)du, Q=B,
Q
VvEH'(By), ¥, <vs<y,aq.e.in By, v—u€HYByg),

where u is a measure of the class K(Bgr), R>0. We shall always assume that

2.2) supy, <+ and infy,>—x.
B

r By

In order to estimate the modulus of continuity of i at a Wiener point xp of {y;, ¥-},
for every £,>0, £,>0 we define

W(e,, &,R) = {S;P Y,V [‘_/’z(xo)'*'le} - {igfw: A [l/;!(xo)—sl]}
= [z_pz(xo)—uil(xo)p{ [ngp Y, —t_pz(xo)] Y sz} +{ [&,(.ro)—i;f w_,] % e,}
and
Z(R) = [ngp ¥ —ig?f wz] ++R_N/2”"-dR“L3(BR)’
where

( . . .
sup y, A inf y, if up,<supy, Ainfy,,
Bg B By By

R
de=( Ug= L f u(x)dx if supy Ainfy,<up<supy,Vinfy,,
!BR} By Bg Bg Be By

sup y, V inf y, if supy, Vinfy,, <ug.
\ B, - Bg By

BR
Moreover for every 0<r<R, ¢,>0, 0->0 we set
W, o(r.R)=W(e . &,,R), where ¢ = 0,0}, (r.R) and & = 0,03, (r. R).

Note that W(e,, £,, R)=0 for every £,>0, &,>0.
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THEOREM 2.1. Assume (2.2) and let 0<s<1. Then there exist two constants
c=c(4, A, N, 5)>0 and B=B(, A, N)>0 such that for every solution u of (2.1) we have

(2.3) oscu SW,,0,(r R)+c {Z(R) [l (r R+ w3 (1, R +lxn }

for every 0<r<sR and for every 5,>0, 0,>0.

Remark 2.1. If -°°<1/)_,(x0)=y)2(x0)<+oo, then
W, o R)= { [s;lp Y, —1,51(x0)] Vo,w5,(r R)} +{ [%(xo)—ilglftpz] Vo, of,(r, R)}.

Therefore, if x, is a Wiener point of {y,, ¥}, then the Wiener moduli at the right hand
side of (2.3) vanish as r—0" by Lemma 1.7.2. and we get

limsup oscu < [sup Y, -1/3,(160):' + [gl)z(xo)‘iﬂf%] +c||ulgs,)-
r»0* B, Bp Bg
Since the right hand side of this inequality tends to 0 as R—0" (see 1.1.2) and (1.3.1)),
we obtain that the function « is continuous at x,.
If ¢l(x0)<q)2(x0), as for instance in the one-obstacle problem or in the free equa-
tion, then the estimate (2.3) will be improved in Theorem 2.2.
We shall see that Theorem 2.1 follows easily from the following propositions.

ProrosITION 2.1. Assume (2.2). Then there exist two constants c=c(A, A, N)>0
and =8, A, N)>0 such thar for every solution u of (2.1) we have

2.49) oscu sY, ,az(’»R)"‘C{ (oEsRc u) [@Fs,(r, R}t @i, (r, R)]ﬁ+||#||K(BR)}

r

for every 0<r<R and for every 0,>0, 0,>0.

ProrosiTioN 2.2. Assume (2.2) and let 0<s<1. Then there exists a constant
c=c(4, A, N, 5)>0 such that

+
(2.5) osCu< [Szlalp 12! "‘ing’Z] +C[R‘NI2””“'dR”L2(BR)+”ﬂ”K(BR)]
R

SR R
for every solution u of (2.1).

In Section IIL.3, in the more general setting of generalized solutions, we shall
describe how the estimate (2.4) can be applied to obtain the Maz'ja estimate of the
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modulus of continuity of solutions of Dirichlet problems at a regular boundary point x,

of the domain by just choosing o, and o, suitably.

Proof of Theorem 2.1. Let u be a solution of (2.1) and let 0<r<sR. By Remark
I.7.1. and by Proposition 2.1 we have

2 sR B
oscu<W¥(e, ¢, sR)+c(osc u ) {Z exp (—j 0 (e, Q)d—g> } +cllullx s,
B BsR i=1 r Q

r

for every £,>0, £,>0. Taking the inequality 6}(¢;, 0)<1 into account, the estimate (2.5)
of Proposition 2.2 yields

8 i=1

r

2 R B
oscu<W¥(e, e, R)+csPZ(R) {Z exp (—f of (e, 0) _‘Z(L) } +C”#“K(BR)
¢ . o
for every £,>0, £,>0. From this inequality we obtain easily (2.3) using the definition of

o}, (. R). O

In order to prove Propositions 2.1 and 2.2 we need some preliminary results. We
begin with an elementary comparison principle. Let Q be a bounded open subset of
RY, let @1, P2, X 1> X, be functions from  into R, let Uy, 1, be two measures of the class
K(Q), and let u,, u, be solutions of the problems (i=1,2)

w,€EH'(Q), @, <u<y qe. inQ,
(2.6) ag(u;, v—u,)?f(v—u,-) du;,
o
VvEH'(Q), ¢,<v<y;qe.inQ, v—u,€HYQ).

LemMMA 2.1. Assume that u<u, on Q (in the sense of measures) and that
@<, and x,<x, q.e. on Q. If u;<u, on 3Q (in the sense of H\(Q)), then u,<u, q.e. on
Q.

Proof. The function v=u,Vu,=u,+(u;—u,)"* is admissible in (2.6) for i=2, so we
have

(2.7 ag(uz,(ul—u2)+)BJ’(ul—uzfd/tz.
2

On the other hand, the function v=u,Au,=u,—(u,~u,)" is admissible in (2.6) for i=1, so
we have
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2.8) ag(uy,—(,~uy)*) = —f (uy—u,) du,.
Q
Since uy<u,, by adding (2.7) and (2.8) we obtain
ag((u,~uy)”, (“1‘"2)+)s0’

which yields (¢,—u,)* =0, hence u,<u, q.e. on Q. O

We now estimate the supremum and the infimum of a solution « of (2.1) in terms of
the quantities

W (e,R)= igfw: A [x)—e], WieR)= Sllilp ¥,V [Yalxg)+e].

Note that W(¢;, R)<W,(¢,, R) and W(¢,, &,, R)=W (&,, R)—W (¢, R) for every >0,
£,>0. Moreover (2.2) implies that ¥,(g, R)<+x and W,(¢, R)>—x for every £>0.
In the following lemma we make the convention + o —(4®)=—00—(~%)=0,

LeEMMa 2.2. Assume (2.2). There exist two constants c=c(A,A,N) and f=
BlA, A, N)>0 such that for every solution u of (2.1) we have

_ R
2.9 igfu?lI»‘,(el,R)—c{I:infu—‘P,(el,R)] exp(—ﬂj 6’{‘(81,0)—‘2&>+c”/¢||x(gk)},
r BR r

4 R
(2.10) sgp u< ‘I’z(ez,R)+c{ [s;xp u—Y,(e,, R)] exp (—ﬁJ. 03(e,, 0) %) +chl]K(BR)}

for every 0<r<R and for every £,>0, £,>0.

Proof. Let u be a solution of (2.1). We shall prove only the estimate (2.10), the
other being analogous. For the sake of simplicity we assume u=0. The case u+0 can be
treated arguing as in the proof of Proposition 1.8.1. Given &,>0, we set 1=W,(¢,,R) and

E,= {x€Bpg,: yx)st}.

If =+, then (2.10) is trivial. If t<+, then t>—= by (2.2) and we can consider the
solution w of the problem
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wE€H'B,), wstqe.onE, w=uVtonodBy,
Q.11 ag(w,v—w)=0, Q=B
VvEH'(By), vs<tqe.onE, v=uVtondB,

By the comparison principle (Lemma 2.1) we have w=t and w=u in Br. By applying to
(2.11) the unilateral results of [20] (Theorem 6.2 and Corollary of Theorem 6.1) for
every 0<r<R/2 we obtain

supu<supw = infw+oscw
B B B B

r r r r

12 R2 cap(E.NB,, B
<t+cR-MN? J' (w—-t{zdx> exp<_ﬂj _P_(.'_e._@)Q)
Bp r Cap(B o’ B 29) e

2.12)

Since E(e,, 0)<E,N B, for every 0<o<R/2, from (2.12) we obtain
12 R do
(2.13) supu<t+c ZﬁR‘”’z(f )w—t)zdx> exp(—ﬂJ’ 0%(ey, Q))—Q-—>.
B, Bg r

As Lw=<0 in Bg and w=uV't on 3Bg, by the maximum principle we deduce that

w=supuVt q.e.on Bg,
B,

hence

+
(2.14) 0= w—ts(supu—t) ;
By

The estimate (2.10) follows now easily from (2.13) and (2.14), provided 0<r<R/2. In the
case RI2<r<R the estimate (2.10) is trivial: it is enough to take c=2%. 0

Proof of Proposition 2.1. Let u be a solution of (2.1) and let 0<r<R, ¢,>0, 0,>0.
Given &>0\0f, (r, R) and &,>0,05,(r, R), we set 1;=W,(¢;, R) and £,=Wy(¢,, R). From
(2.9) and (2.10) of Lemma 2.2 we derive

+ - 2 R d
o;cuStz—t,+c{[<supu—t2) v (infu—t1> ]ECXP(-ﬂj 6?(6.':9)?9)""”/1“1((8,,)}'
r Bg Bg =1 r

Since 1,1y, infg u<t), and sup, u=t,, we have

+ -
supu~t,] V|infu—t, | <oscu.
Bg B, By
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Therefore

2 R
oscu<W(e,, ¢, R)+c{ <osc u ) > exp (‘ﬂf 0f(e, 0) ——699 ) +C||/4||K(BR)}
B r

, Bg i=1

and we can easily conclude the proof by taking the limit as &—o0,0f, (r,R) and
e>0,03, (1 R).

To prove Proposition 2.2 we need the following lemma. We denote by x#* and x~
the positive and the negative part of the measure u.

LemmMa 2.3. Let u be a solution of (2.1) and let dER. If d=v, q.e. on By, then
(u—d)* is a subsolution of the equation Lv=u". If d<vy, q.e. on By then (u—d)  is a
subsolution of the equation Lv=u".

Proof. Assume that d=vy, q.e. on By and define :=u—d. Let y,, h€EN, be a
sequence of functions belonging to CX(R) such that

limy,O=1", Osy()<t", O0sy,(n<l, Oy (<h
h-o )

for every tER. Let @ € Hy(B) with =0. Since y,<d q.e. on By, for every 0<e<lI the
function v=u—ey,(z) (p A(z*/€)), is admissible in (2.1). Therefore

+ +
ag(u, ey, () ((pAZ—)) S[ ((p/\z—) du, Q=B
£ o £

hence

N . N
> agzx,waxz)zx.-("m%) dxt D, | ay2, Vi@, dx

ij=1/B, ij=1JE,

N
+_:T Z a; ijll)i,(z) (Z+)xi dx < f pdu”.

i,j=1JBg-E, By

where E,={x€ By: p(x)<z*(x)/e}. Since ¥;(2)=0 and y}(z)=0 we obtain
N .
> a7 vi@ ‘Px,.dX$f odut.
ij=1Jg, ' 5,

As Z, Y(2)=(y,(2)), and y,(z) converges to z* weakly in H'(By), passing to the limit as
7
h— -+ we obtain
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N
+ +
2.15) 2 | aeh), @ dx< f @du*.
i,j=1JE, B

Since (z%),=0 a.e. on {z=<0} and E, 1 {z>0}, by taking the limit in (2.18) as ¢—0 we
obtain that

aQ(Z+,(p)sf (pdﬂ+7 QzBR:
Q

hence z'=(u—d)* is a subsolution of the equation Lv=u*. The proof for (u—d)~ is
analogous. ]

Proof of Proposition 2.2. Let us define

ty=supy,Vd, and t,=infy,Adg.
BR BR

By Lemma 2.3 the function (z—¢)* is a non-negative subsolution of the equation
Lv=u". Therefore Proposition 1.5.1 implies that

Sup us tl+SB}‘lp (u—t1)+ = tl+c[R_lell(u—dR)+||L2(BR)+Hll’t+”K(BR)] *

sR SR

In the same way we prove that

Lnfu > 1,=sup (u—t) = t2—C[R_N/2”(u—dR)_”LZ(BR)"'“/"—”K(BR)]'
SR SR

From these inequalities we obtain

(2.16) oscu < (t=t)+ c[R™u=dgll 25 ) Hlkllxiap] -

sR

Since

supy, Ainfy,<dp<supy, Vinfy,,

Bp Bp By Bg
we have

+
h—hs |:SUP wl_inf‘/h] ,
BR BR

so the estimate (2.5) follows easily from (2.16) a

6—898285 Acta Mathematica 163. Imprimé le 8 septembre 1989
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We now consider the potential seminorm %{r) of the solution # introduced in
Section 1.8. The decay of ¥(r) to zero as r—0" can be estimated according to Theorem
2.2 below, under the following separation assumption: there exists a function w such
that

2.17) wEH'(By), LwEK(By), and y,<ws<y, q.e.inBg.

By Theorem 4.11 of [5] the function w is continuous on B,. Note that, if ¥ (X <ty(xp),
then (2.17) is satisfied by a suitable constant w, provided that R is small enough.
For every r>0 and for every v€ H'(B;) we put

v,= 1 fvdx.
'Brl B,

THEOREM 2.2. Assume (2.17) and let 0<s<1. Then there exist two constants
c=c(d, A, N, $)>0 and B=c(A, A, N)>0 such that for every solution u of (2.1) we have

Nr) < c{R_N/2||u—w||L2(BR)[wMI(r, R+, ,(r, R+, @, (r, R)+0,0,,(r, R)

+R™M|w— wR”LZ(BR)+ ILwllkeo 1l s}

for every 0<r<sR and for every 0,>0, 0,>0.
Theorem 2.2 follows immediately from the following propositions.

ProrosiTiON 2.3. Assume (2.17). Then there exist two constants c=c(A, A, N)>0
and B=8(4, A, NY>0 such that for every solution u of (2.1) we have

NN < c{ VIR) [0, (r, R)+ @, ,(r, R)]'B +0,0,, (1, R)+0,0,,(r, R)

(2.18) _
+R™Mjw— wR”LZ(BR)+ ”Lw”K(BR)+ ”/‘”K(BR)}

for every 0<r<R and for every ,>0,3,>0.

ProrositioN 2.4, Assume (2.17) and let 0<s<1. Then there exists a constant
c=c(A, A,N, 5)>0 such that

CV‘(SR) =c {R—N/2||u—w”L2(Bk)+|'Lw|IK(BR)+R_N/2||w— wR”Lz(BR)+|Iﬂ“K(BR)} ’

for every solution u of (2.1).
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To prove Proposition 2.3 and 2.4 we need some preliminary results. Let u be a
solution of (2.1) and let 0<R<R,. We define z=u—w, ¢,=y,~w, @,=y,—w, v=u—Lw.
Then the function z satisfies the following variational inequality on Bg:

ZEH'(By), ¢, <z<g@,q.e.on By,
2.19) ay(z,v—2) Zf(v—z) dv, Q=B,,
Q
VvEH'B,), ¢, <u<g,in B, z—vEHBy).

Note that ¢<<0<¢, q.e. on Bg and v€ K(Bg).

LeEMMA 2.4. Assume (2.17) and let 0<s<l1. Then there exists a constant
c=c(A, A, N, §)>0 such that

2
[osc(u—w)] +I IV(u—w)| x—x ™ dx
B

sk SR

(2.20)
= C[R N “u_w”zz(BR—BsR)-*-“’u“?((BR)-‘-”qui(BR)]

for every solution u of (2.1).

Proof. Since u—w is a solution of the obstacle problem (2.19), by Lemma 2.3 the
functions («—w)* are non-negative subsolutions of the equations Luv=v" in Bg, where
y=u—Lw. Therefore Proposition 1.5.1 gives

|IGe—w)*|]? +J’ IV(u—w)* pe—xo|* N dx
B

L*(B,p)
SR

= C[RdN”(u_ w)i”iZ(BR_Bm)+||v”§((BR)] ’
which implies easily (2.20). d

LeEMMA 2.5. Assume (2.17). Then there exist two constants c=c(A, A, N)>0 and
B=B(@, A,N)>0 such that

R
inf(u—w) = sup (tpl—w)—c{osc (u—w) exp(—ﬁj 0,(¢4,0) g9_>
B, B, By r Q

@.21) i
+81 +R N/ZHw— wR”LZ(BR)+ ”Lw”K(BR)+”lu”K(BR)}

and
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R
sup(u—w)sinf(tpz—w)+c{osc(u—w)exp(—-ﬂf 62(82,9)£>
B, B, By r o

(2.22) _
+82+R lellw—wR”||L2(BR)+ ”,u”K(BR)

for every 0<r<R and for every &,>0, £,>0.

Proof. We prove only (2.22), the proof of (2.21) being analogous. Let us fix
0<r<R/4 and let v=y4—Lw and t=inf3m(z/;2—w). We consider the solution u; of the
variational inequality

u, € H\(Bgy,), u,<y,q.e.on Bg,, u,=uVw+z) on 3B,
(2.23) ag(uy, v—u,) = (Lw, v—u,) +j (v-uy)dv*, Q=Byg,
Q
VvEH'(Bg,), v<y,, q.e. on By, v=uV (w+) on 3By,
and the solution w, of the Dirichlet problem
Lw,= Lw+v" in Bg,, w,=uV (w+t) ondBpg,.
By the comparison principle (Lemma 2.1) we have
(2.24) YWSwHt<u,<w, q.e.on Brp

and

u<u, q.e.on Bpgp.

Therefore

sup(u—w) < sup u,~infw < inf y,+0sc u,—inf w
B B B

r T r r r r

<inf (y,—w)+o0sc u,+oscw
BI Br BRM

and Proposition 1.5.2 yields

H -NI2
(2.25) sup (u—w) < 12f(tp2—w)+0:c u2+c[R Hw—lele(BR)+||Lw||K(BR)].

r r r

We now apply to (2.23) the estimates for the one-sided problems proved in
Proposition 1.8.1. By Lemma 1.7.1, given &>0 we obtain



A POINTWISE REGULARITY THEORY FOR THE TWO-OBSTACLE PROBLEM 85

(2.26)
R2 d@
ose uzsc{R ”’zlluz—dlle(Bm)exp<—ﬂ f az<e2,@>?)+sz+||v+n,<wm)+||Lw||K<BR)},

r

where a’=inf31m w+1t. By (2.24) we have d<u,<w, g.¢. on Bg;, and by the definition of ¢
we have also

infu<infy, < sup (w-+1).

Brp Bgp Bgrp

Therefore, by applying Proposition 1.5.2 to w and Proposition 1.5.3 to w,—d we get

-NRy|,, < -
R™"||u, d||L1(Bm) 531:5 w,—d
<sup [uV (w+d]—inf (w+O+c[|" ||k, HILWlk@,,)
aBR/Z BR/Z
+
< [supu—sup(wﬂ)] +osc wc[||lullxgy + LWl ks,)
BR/Z BR/Z BR/Z

(2.27)

< 0sc u+0sc w+c[||ul| kg + 1wk,
Ben Brn

s (;sc (u—w)+C[”/"”K(BR)+R_N/2“w—wR||L2(BR)+“Lw“K(BR)]'
Rf2

Since d,(e;, 0)<1, we have
RI2 d R d
(2.28) exp(—ﬂ f 52(82,9)FQ> <2 exp(—ﬂ f 52(82,9)?9)-

From (2.25), (2.26), (2.27), and (2.28) we obtain easily (2.22) in the case 0<r<R/4. If
R/4<r<R, then

R
eXP(‘ﬂf 0,(£5,0) %) =47,

Therefore

sup (u—w) = inf (u—w)+osc (u—w) < inf (y,~w)
B B B

r r r r

R
+4f osc (u—w) exp ( -8 f 0,(&5,0) %) ,
By i

which implies (2.22) for every c=4°.
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Proof of Proposition 2.3. Let us fix a solution « of (2.1). For every 0<r<R we
denote by ¥,,(r) the potential seminorm of z=u—w, defined by

2
°V2w(r) = [osc (u——w)] +f IV(u—w)2 |x_x0|2—Ndx
B, s,

To estimate ¥,,(r), for every 0<r<R we define

ig(r) =||/““K(Br)+r_N/2”w_wr”LZ(B')-'_”Lw”K(B,)’

=)
m,= (u-LU) dx,
IBr—BrDI B,—-B,,

p
sgp(tp,—w) if m< sgp(tpl—w),

m

]
i
N

r

if sup(y,—w)<m, <inf(y,—w),
B, B,

inf (y,—w) if inf(y,~w)<m,.
\ B, B,

Let us fix £,>0 and £>0. By Lemma 2.5 for every 0<r<R/2 we have

2 R
la,—m,|< c[ YV, (RI2) 2 exp(—ﬂ f ode, g)%) +&,+¢&,+ %(R/Z):I

(2.29) 2 R d
<2 l:‘Vw(R/Z) > exp( -B f (¢, 0) f) e +e,+ %(R)]

i=1

Since y;<w+a,<y, q.e. on B,, we can apply Lemma 2.4 with R replaced by r and w
replaced by w+a,. Therefore

(2.30) Vi) < clir”Nf (u—w—a,) dx+ %’2(")]-
B,-B,,

By the Poincaré inequality we have

r‘Nf (u-—w—a,)zdx$2 r“Nf
B B

(u—w—m,)2 dx+(a,—m,)2]

,~B,p ,—B,,

2.31) < c[f IVu—w)? Ix—xo|2_Ndx+(a,—mr)2] .
B,~B,,
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From (2.29), (2.30), and (2.31), for every 0<r<R/2 we obtain

(2.32) Vi) <c, ] IVu—w) x—x)* " dx+c, 4%, R),

Br_Ber

where

2 R
AXr,R) = ["Vfu(R/Z) 2 exp(-—ﬁf d(¢;,0) -%Q—) +(€l+82)2+ %’Z(R)].

i=1
Let us fix 0<r<R/4 and 1<t<R/2r. If t>2 and
(2.33) V2(r)=2c, 4%(r, R),

then by (2.32)

V2 (0/2) < 2c, f V(= w)f? fe—xo* " dx

Bg_Bg/Z
for every 2r<p<rr. By adding 2c,%(g/2) to both sides we obtain
(142¢)V 3 (0/2) < 2¢, V" (0)
for every 2r<p<r1r, and by a standard iteration argument this implies
(2.34) V2 <ct™?Vi(or).

The same inequality holds trivially if 1<7<2 by choosing ¢=2%. If (2.33) is not satisfied,
then

(2.35) V2(r)<2c, 4%z, R).

In any case, from (2.34) or (2.35) we obtain
2 ’ R d
(2.36) Vi(n< c{ V2(RI2) [ r"5+2 exp(—ﬂ f o, g)f) ] +(g,+&) '+ %’Z(R)}
i=1 r

for every 0<r<R/2 and every 1<z<R/2r.
Since d,(¢;, 0)<1, we have

r%xp(—ﬁf Ofe, g)%) =1,

therefore (2.36) yields
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2 R
VGRS c{ V2(R/2) [r'ﬂﬂﬂ > exp <—,3 f 8e,0) -“;—9) ] +(e,+8,)"+ %Z(R)}.

i=1

1 2 R d —-172
= {—-2 exp(—ﬂj LYCA g)—9->}
2 i=1 r e
we obtain

2 R
V2= c{ V2(R/2) Z exp<——'§—f o/, 0) d—;’) +(e, )"+ %Z(R)} )

i=1 r

By taking

therefore
2 R d
2.37) GRS c{ YV, (RI2) 2 exp(—ﬂj o/, 0) f) +&,+&,+ %(R)}.
i=1 r

By Proposition 1.5.2 we have

2 172
V@~ 0 < [(osc w) + Nz :x—xo|2-”dx] <cE®)
B BR/Z

R2

for every 0<p<R/2, thus (2.37) implies

i=1

2 R
(2.38) V() < c{ VRIZ) D exp(—ﬂ j e, 0) %) +ete,+ sg(R)}.

Let us fix 0,>0 and 0,>0. For every £>0,®,,(r R) and £,>0,0, ,(r, R) the

inequality (2.38) implies

g, 2

{22 [reverrem)
VAGEIZ R A —+;— +e,+&,+E€(R) ;.

Taking the limit as ¢ | 0,0, , (7, R) and &, | 0, @, ,(r, R) we obtain (2.18), provided
0<r=<R/4. In the case R/4<r<R the estimate (2.18) is trivial: it is enough to take c=40.
(]

Proof of Proposition 2.4. Let u be a solution of (2.1). By Lemma 2.4 we have

(2.39) VR C[R_N/ZHV"w“Lz(BR,'*‘”ﬂ ”K(BR)+”Lw“K(BR)]’
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and from Proposition 1.5.2 we obtain

2 "
V(R)< Y, (sR)+ [(osc w) +J IVw|? |x—x0]2“Ndx:|
B B

sR SR

(2.40) _
< %‘w(SR)-‘_C[R Nf2||w_ wR“Lz(BR)+ “Lw”K(BR)] )

The inequality to be proved follows now from (2.39) and (2.40).

IL.3. Proof of the Wiener criterion

In this section we prove the Wiener criterion stated in Theorem 1.1. To this aim we
introduce the {y,,y,}-potentials at x,, relative to the operator L, defined as the
solutions u=u, ,, r>0,7ER, of the problem

u€H'®B,), y,sus<y,q.e.inB, u-t€HYB,),
3.1 ag(u,v—-u)=0, Q=18,
VWEH'(B,), y,<v<y,qe.inB, v-t€EHYB,)

Note that, if condition (1.4) of Theorem 1.1 is satisfied, then u, , is well defined for
every T€R and every 0<r<R.

The following proposition gives another characterization of the regular points,
which represents the analogue for obstacle problems of the classical de la Vallee
Poussin criterion. '

ProrosiTioN 3.1. Assume (1.3) and (1.4). Then x, is a regular point of problem
{1, ¥2} if and only if both the following conditions hold:

3.2) l'f‘(/;l(x(ﬂ > —oo, then infu,_,l(xo) =,(x,) for every 7,< Y, (xp),
r>0

(3.3) if Py(xg) <+, then suop U, . (Xg) = Py(x,) for every 7,> ,(xp),
r>

The proof of Theorem 1.1 and Proposition 3.1 will be achieved by means of the
following steps.

Step 1. If x, is a regular point of {y;, -}, then (1.3), (1.4), (3.2), and (3.3) hold.
Step 2. If (1.3), (1.4), (3.2), and (3.3) hold, then x, is a Wiener point of {1, ¥}.

Step 3. If (1.3), (1.4), and (1.5) hold, then x, is a regular point of {y,,v,}.
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Proof of Step 1. Assume that x, is a regular point for {1, y,}. Then (1.4) follows
easily from the fact that %ﬁf(xo) is not empty. To prove (1.3) we pick up an arbitrary
u€ %zf(xo). Since u is finite and continuous at x, we have

1/;1(x0) < a(xg) = u(xp) < +, 1_/)2(x0)2 u(xy) = u(xy) > — o,
Iljl(xo) = a(xo) = l_l(xo) = 1_/)2(X0),

which imply (1.3).
To prove (3.2) we may assume that ,(xg)>—. Let us fix 71<y1(x0). Since the
{1, y}-potentials u, , belong to Gltﬁf(xo), they are continuous at x,, hence

infu, . (x))=infa, , (x;) =v,(xp).
>0 ! o !

By the definition of y,(xy), for every ¢>0 there exists R>0 such that 1(xo)+e=supp ¥y,
thus the comparison principle (Lemma 2.1) implies ug ,§w=1/51(x0)+s g.e. on By,.
Therefore inf _,u, rl(xo)s¢x(xo)+8 for every £>0, and this concludes the proof of (3.2).

The proof of (3.3) is analogous. g

Proof of Step 2. Assume (1.3), (1.4), (3.2), and (3.3). Let us consider the ;-
potentials at x,, relative to the operator L, introduced in Definition 2.1 of [20] as the
solutions w=w, ,, r>0,7ER, of the problem

w€H'(B,), y,<wgq.e.onB, w-tEHYB,),
agw,v-w)=0, Q=B28,,

VvE€ H'B,), w,<vq.e.onB, v—tE€HYB,).

By the comparison principle (Lemma 2.1) we have u, ,<w, , q.e. on B,,, thus condition
(3.2) implies inf,_,w, ,(x))=v,(x,) for every <y ,(x,). Since the opposite inequality is
always satisfied (see the proof of Theorem 5.2 of [20]), we have
inf, o w, .(x)=",(x,) for every T<y,(x,). By the Theorem 5.2 of [20] we then have
either ¥ (x,)=— or

1
f 0, Q)& =+,
0 e
so Remark 1.7.1. implies that

1
f 516,002 = +o0.
0 e
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Since the same property holds for 6%, condition (1.2) is satisfied, hence x, is 2 Wiener
point of {y1,y>}. 0

Proof of Step 3. Assume (1.3), (1.4), and (1.5). If 1/31(x0)=1_p2(x0), then Theorem 2.1
and Lemma 1.7.2 imply that every u € %zf(x(,) is continuous at x, (see Remark 2.1).

If —oo<y),(x)<tp,(x)<+, then there exist JER and R>0 such that y <d<y,
g.e. on B,. Therefore we can apply Theorem 2.2 with w=d. By Lemma 1.7.2. the
estimate of Theorem 2.2 implies that every u € ollzf(xo) is continuous at x;.

If —°°S1/31(x0)<1_/)2(x0)=+00, then each u€ Glt',f,j(xo) is locally bounded near x, by
Theorem 2.2. Since sup,,yinfy y,=+, there exists R>0 such that supy u+ I<infy y,,
therefore u is a solution of the one-sided obstacle problem

u€H'B,), u=v,q.e. on By
agu,v—u)=0, Q=B

VvE H'(B;), v=vy, q.e.on By, v—u€HyBg)
R 1 R 0

to which we can apply the continuity results of Theorem 5.2 of [20]. Therefore u is
continuous and finite at x,.
The case —°°=1/51(x0)<1_p2(x0)s+oo can be treated in a symmetric way. a

Part IIl. Generalized solutions

In this part of the paper we study a notion of generalized solutions of the two-obstacle
problem {y,,y,} which extends the notion of variational solution to the case where
there exists no function u € H' such that y,<u<y, (see Definition II.1.1). We then
extend to generalized solutions the Wiener criterion proved in Part II in the variational
case.

II1.1. Dominated generalized solutions

Let Q be a bounded open subset of RY.

Definition 1.1. Let y;,v,: Q>R be two functions such that ¢, 9, q.e. on Q. We
say that a function u: Q—R is a (dominated) generalized solution (in Q) of the two-
obstacle problem {y, ¥} if there exist three sequences v, ,, ¥, 4, 4, of functions from
Q into R such that y;,1,,u are the H'-dominated quasi uniform limits (in Q) of
Y1 p» Wap» Uy, Tespectively and for every A EN the function u, is a variational solution of
the two-obstacle problem {y, ,, ¥, ,} according to Definition II.1.1.
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Remark 1.1. 1t follows immediately from the definition that, if u is a generalized
solution of the obstacle problem {y,, ¥}, then u is quasi continuous and Y, <u<y, q.e.
in Q. Moreover for every set Q'€Q the function u|g, is H'-dominated in Q'.

We prove now an existence result for generalized solutions of a two-obstacle
problem.

THEOREM 1.1. Let yy, 9,: Q—R be two functions such that Y.<y, q.e. on Q and
let g: 3Q—R be a quasi continuous function. Assume that there exists a H'-dominated
quasi continuous function y: Q—R such that Y, <y<y, q.e. in Q and Y=g q.e. on 8Q.
Then there exists one and only one quasi continuous function u: Q—R such that u is a
generalized solution of the obstacle problem {y,,y,} in Q and u=g q.e. on 3Q.

To prove Theoren 1.1 we need the following lemmas.

LEeMMA 1.1. Let ¢, y,: Q—R be two functions such that Y,<y, q.e. in Q and let
u € H\(Q) be a variational solution of the obstacle problem {,,y,) in Q. Let w€ H\(Q)
be a non-negative supersolution of the operator L in Q and let v be the unique
variational solution of the obstacle problem {y\+w,yp,+w} in Q such that
v—(u+w)EHYRQ) Then vsu+tw q.e. in Q.

Proof. The function z;=vA(u+w)=v—(v—u—w)* satisfies the obstacle condition
Yi+w<z;<yY,+w q.e. in Q, moreover z,—v € Hy(Q). Since v is a variational solution of
the obstacle problem {y,+w, y,+w} we have

(1.1 ag(v, —(v—u—w)*) =0.

On the other hand the function z,=(v—w)Vu=u+(@w—-w—u)* satisfies the obstacle
condition y,<z,<y, q.e. in Q, moreover z,—u € Hy(Q). Since u is a variational solution
of the obstacle problem {y,,y,} we have

(1.2) acu,(v—w—u)")=0.

Finally (v—u—w)" is not negative and belongs to H(l,(Q). Since w is a supersolution
(relative to the operator L) we have

(1.3) aow,(v—u—w)*)=0.

By adding (1.1), (1.2), and (1.3) we obtain a(v—u—w, (v—u—w)*)<0, which yields
(v—u—w)*=0, hence v<u+w q.e. in Q. m|
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LemMA 1.2. Let @, @,,9,,9,: Q—R be four functions such that @, <@, and
Y, Sy, g.e. in Q,and let w€ H'(Q) be a non-negative supersolution of the operator L
in Q. Assume that Yy, <@,+w and Y,<@,+w q.e. in Q. Let u, v be two variational
solutions of the obstacle problems {@,, ¢,} and {y,,y,} respectively, such that v<u+w
on 3Q. Then vsu+w q.e. in Q.

Proof. Let z be the unique variational solution of the obstacle problem
{p,+w, @,+w} in Q such thatz—(u+w)€H(’,(Q). By Lemma 1.1 we have z<u+w q.e.
in Q, and by an easy comparison argument (Lemma II.2.1) we have v<z q.e. in Q. O

Now we prove a lemma concerning the approximation of an H'-dominated quasi
continuous function.

LEMMA 1.3. Let K be a compact subset of RY and let y: K—R be a H'-dominated
quasi continuous function. Then y is the H'-dominated quasi uniform limit in K of a
decreasing sequence of functions wy, of H'(RY) such that w,=vy q.e. in K.

Proof. Since v is H'-dominated, by adding a suitable function of H'(R"), we may
assume that =0 q.e. in K. Since ¥ is quasi continuous, there exists a decreasing
sequence A, of open sets such that y|,_ A, is continuous on K—A, and Cap(A,)<1/h for
every h€N. Therefore for every hEN there exists a function @, € Cy(R") such that
@,=0 on R and y<@,<y+1/h q.e. in K—A,. Since y is H'-dominated, there exists
vEH'(RY) such that y<v q.e. in K and v=0 g.e. on RY. Let us define
v,=vAg@,. Thenv, € H'(RY), 0<v,<v q.e. in RY and y<v,<y+1/h q.e.in K—A,.

Let z, be the solution of the minimum problem

min{ J (VzP+2) dx: zEH'RY), z=v q.e. in A,,}.
RN

Since v € H'(R") and Cap(A,)—0 as h— + o, the sequence z, converges to 0 strongly in
H'(RM). Since A, is decreasing the sequence z, is decreasing, therefore it converges to 0
quasi uniformly in R (in the capacity sense).

Let us define w,=v,+z,. The inequalities y<v,<w, q.e. in K—A4, and y<v<
z<w, q.e. in KNA, imply that

(1.4) Yy=<w, q.e.inK.

The inequality v,<y+1/h q.e. in K—A, implies that w,<y+z,+1/h q.e. inK—A4,. On
the other hand w,<v+z,<y+2z, q.e. in KNA,, hence
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(1.5) wh$¢+22,,+% g.e. in K.

Since z, converges to 0 quasi uniformly, (1.4) and (1.5) imply that w), converges to ¥
quasi uniformly. Since

lw,~yp|=w,—yp=WAp)+z,-p<v+z;, qe. inK

for every A EN, the function y is the H'-dominated quasi uniform limit of wy. To obtain
a decreasing sequence we take w, A w,A...Aw, for every h=1,2, ... O

Proof of Theorem 1.1. Let us prove the existence. By Lemma 1.3 the function v is
the H'-dominated quasi uniform limit in Q of a decreasing sequence wj of functions of
H'R™). By Proposition 1.6.1 there exists a decreasing sequence v, in H'(R") converg-
ing to 0 strongly in H'(R") such that y<w,<y+v, q.e. in Q for every h EN. Moreover
we may assume that each function v, is a supersolution of the operator L in Q.

Since ¥, <w,<y,+v, q.e. in Q, for every h EN there exists a variational solution (in
H\(Q)) of the obstacle problem {y,,,+v,} which satisfies the boundary condition
u,—w, € Hy(Q). If we extend u, to Q by setting u,=w, q.e. on 9Q, the extended
function u, is quasi continuous in Q. Let us fix h<k. Since y,+v,<y,+v, q.e. in Q and
weSwy, on 9€2, by an easy comparison argument (Lemma 11.2.1) we have u,<u, q.e. on
Q. Taking into account the inequalities u,=w,<w,=u, q.e. on 3R, we obtain

(1.6) u,<u, g.e.inQ.

Since y,+v,<(y,+v)+v, q.e. in Q and w,<w,+v, on 3Q, by Lemma 1.2 we have
u,Sutv, q.e. in Q. Taking into account the inequalities u,=w,<w,+v,=u,+v, q.e. on
9Q, we obtain

1.7 u, <u+v, q.e.in Q.

From (1.6) it follows that the sequence u, is decreasing q.e. on Q, so it converges
pointwise g.e. to a function u: Q—R. By letting k tend to + in (1.6) and (1.7) we
obtain

u<u,<u+v, q..inQ,

for every hEN, hence u is the H'-dominated quasi uniform limit of «;, in Q. This implies
that u is quasi continuous in Q and that u=y=g q.e. on 3Q (recall that w;, converges to
¥ quasi uniformly on Q). Since v, is the H'-dominated quasi uniform limit of {y,+v,},
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the function u is a generalized solution in Q of the problem {, y,}. This concludes the
proof of the existence.

Let us prove the uniqueness. Let « and # be two quasi continuous functions on Q.
Assume that ¥ and i are generalized solutions of the obstacle problem {y,,y,} in Q
and that u=d=g q.e. on 9Q. By definition there exist six sequences ¥, ,, ¥,
uh,tﬁ,, h,:/QZ’ i, such that y; and ¥, and the H'-dominated quasi uniform limits in Q
respectively of v, , and 1/3,.,,‘ for i=1,2, u and # are the H'-dominated quasi uniform
limits in Q of u, and 4, respectively, and for every A€EN, the functions
u, and i, belong to H'(Q) and are the variational solutions of the obstacle problems
{91,10 ¥, 4} and {, ,, ¥, ,} respectively.

By Proposition 1.6.1 there exists a decreasing sequence v, in H'(R") converging to
0 strongly in H'(RM) such that v, is a supersolution of the operator L in Q and
01 1= YAl [0 h= ol Y= IS0y 19, =Y S0 12— WolSU |8, — a1y, gee. in
Q for every hEN.

Let w; be the vnique variational solution of the obstacle problem

{wl,hV'/;l,h’wZ,th/;z,h}

in Q such that w,—(u,V#,) € Hy(Q).
Since u, Vi, <|lu—a|+u,+2v,q.e. in Q and |u—i#|=0 q.e. on 3Q, by Lemma 1.2.1 we
have

(1.8 u,V i, <u,+2v, on 3Q in the sense of H'(Q).

Since y, V9, <y, ,+2v, and ¥, Vi), <y, ,+2v, q.c. in Q, from (1.8) and Lemma
1.2 we obtain

(1.9 w,<u,+2v, q.e.in Q.

Since 9, <Yy V), 4 Uy i <Y2. VY, , Q-€. in Q, and 4,<u, Vi, on 3Q, by an easy
comparison argument (Lemma I1.2.1) we have

(1.10) ,<w, q.e.inQ.

From (1.9) and (1.10) we get &,<u,+2v, q.e. in Q. Since v, converges to 0 quasi
uniformly in Q, we have #<u q.e. in Q. The opposite inequality can be proved in the
same way, so d=u q.e. in Q and the uniqueness is proved. a

Remark 1.2. We could have defined a different notion of generalized solution by
using quasi uniform convergence (in the capacity sense) in Definition 1.1 instead of H'-
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dominated quasi uniform convergence. However this new notion, called Cap-general-
ized solution, is not useful for our purposes because both existence and uniqueness
results of Theorem 1.1 are lost, as the following examples show.

Example 1.1. Let Q=B0),L=—A,y,=0,and y,=+, Then for every =0 the
functions u(x)=¢|x|>~V—t are Cap-generalized solutions of the obstacle problem {y, y,}
which satisfy the boundary condition 4=0 q.e. on 8Q. In fact, for every hEN the
function u,=(t|x*"¥—)Ah is a variational solution of the obstacle problem {y, ,, ¥,},
where

h in B, (0),

0 elsewhere,

Yy %) = {

and r,","' 2=t/(1+h). Since Cap(B,h(O))—>0 as h—+w, the sequence y, , converges to
;=0 quasi uniformly and the sequence u;, converges to « quasi uniformly.
" Note that the unique dominated generalized solution u of {y,, vy} with boundary

condition u=0 q.e. on 3Q is the function «=0.

Example 1.2. Let Q=B,(0), L=—A, y,(x)=|x|""", y,(x)=+ for every x€Q, and
let g(x)=1 for every x €3Q. Then y=v, is a quasi continuous function on Q such that
YiSyY=<y,q.e. in Q and y=g q.e. on 3Q, but there exists no quasi continuous function
u: Q—R such that ulg, is a Cap-generalized solution of the obstacle problem {y,, y,} in
Q and u=g q.e. on 3Q.

We argue by contradiction. Suppose that such a function « exists. Then there exist
three sequences vy, ,, Yy, U, such that y;, converges to y; quasi uniformly for
i=1,2, u, converges to u quasi uniformly, and for every h the function u, is a
variational solution of the problem {y, ,, ¥, ,}. Fix t>1, let v, be the unique variational
solution of the obstacle problem {y, ,At, ¥, ,At} which satisfies the boundary condi-
tion v,=u,\t on 3Q. By an easy comparison argument (Lemma I1.2.1) we have

(1.11) v,<u, q.e.inQ.

Since the sequences [(uAD)—(u,AD], [(W, AD)—(p, ,AD]", and [1—(y, ,AD)]" are
uniformly bounded and converge to 0 quasi uniformly in Q, by Proposition 1.6.1. there
exists a decreasing sequence z; in H'(R") converging to 0 in H'(R") such that each z, is
a supersolution of —A in Q and

(1.12) uhNt<@,Nt)+z, q.e.in Q,
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(1.13) YAt ,AD+z, and 1<(p,,AD+z, qe.inQ.
From (1.12) we obtain
(1.14) 1<(u,AD+z, on3Q in the sense of H'(Q).

Let w, be the unique variational solution of the obstacle problem {y,At, ¢} which
satisfies the boundary condition w,—1€ H(l,(Q). By Lemma 1.2 and by (1.13) and (1.14)
we have w<v,+z, q.e. in Q, so (1.11) implies w,<u,+z, q.c. in Q. By taking the limit
as #—+o we obtain

(1.15) w,<u q.e.in Q.

Since

w,(x) = IZ% ([x|2_N—1)+1] At for every x€Q,

with a=(N-2)/(N-1)<1, by taking the limit as t—+ in (1.15) we obtain u(x)=+ for
every x € Q, which contradicts the assumption that u is quasi continuous in Q and u=1
g.e. on 9Q.

Remark 1.3. Let ¢, ,: Q—R be two functions such that ¥,<y, q.e. in Q and let
u: Q—R be a generalized solution of the obstacle problem {y,,}. By Remark 1.1 the
function u is quasi continuous and for every open set Q'€@Q the function
ulg,., is H'-dominated on Q’, so we can apply the uniqueness result of Theorem 1.1 with
Q=Q', Y;=Y,|q» ¥,=¥,lq, and g=u],,. Therefore from the proof of the existence in
Theorem 1.1 it follows that there exist two decreasing sequences u; and v, in H (D)
such that u, converges to u quasi uniformly in Q', v, converges to 0 strongly in
HY(Q"), v, is a supersolution of the operator L in Q', u, is a variational solution of the
problem {y,,y,+v,} in Q’, and usu,<u+v, q.e. in Q'.

THEOREM 1.2. Let y,,9,:Q—>R be two functions such that there exists
w € H\(Q) with Y SwsY, q.e. in Q. Let u be a generalized solution of the obstacle
problem {y,,vy,} in Q. Then for every open set Q' EQ the function ulg
belongs to H(Q') and is a variational solution of the obstacle problem {y,,y,} in Q'.

Proof. Let Q" be an open set with Q'€Q"€Q. By Remark 1.3 there exist two
decreasing sequences u;, and v, in H(Q") such that u, converges to u quasi uniformly in
Q", v, converges to 0 strongly in H'(Q"), u, is a variational solution of the problem
{v, ¥t} in Q" and u<u,<u+v, q.e. in Q".

7—-898285 Acta Mathematica 163. Imprimé le 8 septembre 1989
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Let us prove that u,, is bounded in H'(Q’). Let ¢ € C5(Q") with 0<¢@=<1 in Q" and
@=1in Q'; then the function g’w+(1—¢?) u, satiesfies the inequality

Y, <@w+(1-¢Hu,<y,+v, q.e. inQ".

Moreover ¢*w+(1—¢?) u,=u, on 3Q". Since u, is a variational solution of {y,, ¥,+v,}
in Q" we have agdu,, *(w—u,))=0 hence

N N N
2 2 a; (uh)xj Px, pw—u,) dx+ 2 ag(uh)xj w, @dx= 2 aij(u,,)xj(uh)xi @*dx

Lj=1JQ" ij=1J¢ ij=1J¢

so there exists a constant c=c(4, A, N) such that

fIVu,Jz(pzdeC{f |Vuh|]Vw|<p2dx+f |Vu,,|[V<p|<p|w—uh|dx}
@ o o

< ef |Vu,,|2 ¢’ dx+—§— {f [Vw|? ¢ dx+j Vol |w—u,? dx}
o o o

for every £>0. Taking e=1/2 we obtain
(1.16) f |Vuh|2dx$f |V, |? (pzdeZC{f |Vw|2<p2dx+j |V<p|2|w—uh|2dx}.
Q Q" @ o

Since |u,—u|<v, q.e. in Q”, the sequence u, converges to u in LYQ"), so (1.16) implies
that u, is bounded in H'(Q’). Therefore u € H'(Q') and u, converges to u weakly in
H'(Q").

It remains to prove that u|o is a variational solution of the obstacle problem
{y1, ¥} in Q'. Let v€E H'(Q') such that y,<v<y, q.e. in Q' and v—u € Hy(Q'). Then
uptv—u€ H(Q"), yi1<up+v—usv+u,<y,+v, q.€. in Q' and u,+v—u=u, on 3Q'.
Since u, is a variational solution of the problem {y;,y,+v,} in Q', we have
ag(u,, v—u)=0. Since u, converges to u weakly in H'(Q’), we obtain ag(u, v—u)=0,
and this proves that u|g is a variational solution of the obstacle problem {y, ,} in Q.0

The following comparison theorem is useful in the proof of the Wiener criterion for
generalized solutions of obstacle problems. It extends to generalized solutions the
elementary result proved in Lemma I1.2.1 for variational solutions.

THEOREM 1.3. Let @y, @,,¥,, ¥,: Q>R be four functions such that ¢, <@, and
Y.<y, g.e. in Q. Let u, v: QR be quasi continuous H'-dominated functions such that
u and v are generalized solutions in Q of the obstacle problems {@,,¢@,} and
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{y,, ¥,} respectively. If ¢, <y, q.e. in Q, ¢,<y, q.e. in Q, and usv q.e. on 3Q, then
u<v q.e. in Q.

Proof. From the proof of Theorem 1.1. it follows that there exist two increasing
sequences @, ,, 4, and two decreasing sequences y, ,, U, such that @, u, v,, v are the
H'-dominated quasi uniform limits of @, ,, u,, ¥, U, TESpectively, and u,, v, are vari-
ational solutions of the obstacle problems {¢, ,,®,} and{y,,y, ,} respectively. Since
@, <@, <y, and @,<y,<y, , q.e. in Q and u,<v, on 3Q in the sense of H'(Q) (see
Lemma 1.2.1), by an easy comparison argument for variational solutions (see Lemma
11.2.1) we have u,<vj q.e. in Q. By taking the limit as ~— + % we obtain u<v q.e. in .

a

II1.2. Wiener criterion for generalized solutions

In this section we extend to generalized solutions of a two-obstacle problem the Wiener
criterion and the Maz’ja estimates proved in Part II for variational solutions (Theorems
II.1.1 and I1.2.1).

Let y,, p,: R¥—R be two functions such that y,<w, q.e. in R" and let x, be a point
of RM. By %zf(xo) we denote, in this section, the set of all functions # which are
generalized solutions of the obstacle problem {y,,y,} in some open neighbourhood Q
of xo (depending on u).

Deﬁhition 2.1. We say that x is a regular point of the generalized obstacle problem
{wi,y,} if the set oll,";f(xo) is not empty and every solution u€ "llzf(xo) is finite and
continuous at x,.

Remark 2.1. If xy is a regular point for the variational problem {y;,y,}, according
to Definition I1.1.2, then x4 is a regular point for the generalized obstacle problem
{1, y,} according to Definition 2.1. In fact, in this case, Theorem 1.3 ensures that
every generalized solution of {y,, ¥,} is a variational solution in a neighbourhood of x,.

Conversely, if x, is a regular point for the generalized obstacle problem {4, ¥»}
and if there exists w € H'(R") such that y,<w<y, q.e. in a neighbourhood of x,, then xo
is a regular point for the variational obstacle problem {y;,y,}, as one can see by
applying again Theorem 1.3.

The following theorem is the Wiener criterion for generalized two-obstacle prob-
lems.
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THEOREM 2.1. The point xy is regular for the generalized obstacle problem
{41,912} if and only if the following conditions (2.1), (2.2) and (2.3) are satisfied:

2.1) 9,(xp) < + 00, P,(xy) > —0, and P,(x)) < P,(xp);

(2.2) there exists an H'-dominated quasi continuous function y:R"—R such that
Y, SY=<yY, q.e. in a neighbourhood of xo;

(2.3) xo is a Wiener point of {y, ¥} according to Definition 11.1.3.

To prove that conditions (2.1), (2.2), and (2.3) are sufficient for the regularity we
use the following extension of Theorem I1.2.1.

THEOREM 2.2. Theorem 11.2.1 and Propositions 11.2.1 and 11.2.2 continue to hold,
with u=0, for every generalized solution u of the obstacle problem {y, y,} on
Q=B(x,), R>0.

Proof. 1t is enough to prove Lemma I1.2.2 and Proposition 11.2.2 for generalized
solutions. For every r>0 we set B,=B,(xy). Let u be a generalized solution of the
obstacle problem {,y,} on a ball B; and let 0<R’'<R. By Remark 1.3 there exist two
decreasing sequences u;, and y, , converging to « and  quasi uniformly in Bg., such
that u, is a variational solution of the problem {y,, v, ,} in Bg.

Let us fix 0<r<R’ and £,>0. By the estimate (11.2.9) for variational solutions we
have

- R
(2.4) infuh2lI»‘l’h(sl,R’)—c[infuh—‘l’,,h(el,R’)] exp(—ﬂf af(s,,g)—‘;—@—>,
B, Bg. r

where

W, W&, R) = ian’/)z,h A [’/Jl(xo)_el]-

Since u;, and v, , are decreasing and converge to « and v, quasi uniformly in Bg, we

have

Bg h—+x B‘7 h—s+oc o

2.5 infu= lim infu, and infy,= lim infy,,
BQ

for every 0<p=<R’', hence

W,(s,, R) = lim W, ,(¢,R").
h—+x
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Therefore, taking the limit in (2.4) first as ~—+ and then as R’ —R we obtain
— R d
infuzW¥ (¢, R)—c[infu—lpl(el,R)] exp(—ﬂ f 0¥ (g, Q)?Q) ,
B, By ,

which proves the inequality (I1.2.9) of Lemma 11.2.2.

The estimate (I1.2.10) can be proved in a similar way, keeping now , fixed and
using an increasing approximation of « and .
To prove Proposition I1.2.2 for generalized solutions we define

t,=supy,Vd, and f,=infy,Ad,
By B

and we use the approximation from above of u and v, on Bz, 0<R'<R, considered in
the first part of the proof. By Lemma I1.2.3 the function (4,—1;)” is a non-negative
subsolution of the operator L. Therefore Proposition 1.5.1 implies that

infu, = t,—sup (u,—t,)” = t,—c(R")™™"? ”(uh_dR)_“LZ(BR.)'

SR’ SR’
Since the sequence u, is decreasing, by the monotone convergence theorem and by
(2.5) we obtain
infu=t,—c(R) ™M |(u—dp) ||

L%B.)
sR R

Using an increasing approximation of # and i, we obtain also

supu < t;+c(R") ™M ||(u—d,

+
) ”LZ(BR.)'
SR’

We now take the limit as R’ —R in the last two inequalities and conciude the proof as in
the variational case. a

Proof of Theorem 2.1. Let us prove the sufficiency. Assume that conditions (2.1),
(2.2), and (2.3) are satisfied. If 9,(x,)<y,(x,) then there exists a constant 7 ER such that
Y, <t<%, q.e. in a neighbourhood of x,. Therefore x, is a regular point for the
variational obstacle problem {y,,,} by Theorem II.1.1 and this implies that x; is a
regular point for the generalized obstacle problem {y,,vy,} by Remark 2.1. I
P,(xp)=y,(xp), then every generalized solution of the obstacle problem {¥, y,} is finite
and continuous at x, by Theorem 2.2. Therefore in both cases x, is a regular point for
the generalized obstacle problem {y,, y,}.
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Let us prove the necessity. Conditions (2.1) and (2.2) are obvious. To prove (2.3)
for every 7€R and for r>0 small enough we consider the unique function
u=u, :B,(x)—>R such that u is a generalized solution of the obstacle problem
{¥,,%,} in B, and u=t g.c. on 8B,,(x,) (see Theorem 1.1), where

. p,(x) if x€B,, d 600 y,(x) if x€EB,
V=) e irxen, ™ V9w ifx¢B,

Then we can prove Steps 1, 2 and 3 of the proof of the Wiener criterion (Theorem
II.1.1) by using the comparison principle for generalized solutions provided by Theo-
rem 1.3. O

We now apply the results of Sections I1.2 and II1.2 to the important case of
obstacles defined on an arbitrary (possibly ‘‘thin’’) subset F of R". In this case the
estimates of the oscillation of the solution can be given in terms of the oscillation of the
obstacles and of the Wiener modulus W(r, R) of F introduced in (1.7.6).

Given two functions h,, h,: F-R, we define

B {hl onF, _ {hz on F,
Yi= —o elsewhere, +o elsewhere.

We fix a point xo€R" and a radius R>0. We assume that

suph, <+ and inf h,>—,
BpNF BgNF

where, for every r>0, we set B,=B,(xy).

COROLLARY 2.1. Under the above hypotheses there exist two constants
c=c(d,A,N)>0 and B=B(A, A, N)>0 such that for every (generalized) solution u of the
obstacle problem {\,,y,} on Bg we have

(2.6) oscuU< c[ osc h,+osc h,+ (osc u) Welr, R)ﬂ]

B BanF  BenF By

for every 0<r<R.

Proof. We may assume that the right hand side of (2.6) is finite. Let us fix 0<r<R
and a solution u of the obstacle problem {,, .} on Bg. Given £>0, we choose 0,>0
and ;>0 so that
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2.7 0, Wg(r,R)= osc hy+&¢ and o, Wir, R)= osc h,+e.
! B

BpNF N F
By Lemma 1.7.3. we have

(2.8) wl,a,(” R)<sWgr,R) and wz,,az(” R)< W(r,R).
Suppose that

(2.9) PY,(x) = ,(xy) < 0SC h,+ 0SC h,.
- BpNF BgnF

By (2.7) and (2.8) we have

W (r,R) < y,(x)—,(xp)+ osc h,+osc h,+2¢
vh2 - ByNF BgNF

< 2[ 0sc h;+osc h2+e] ,

BgNF BNF
thus Proposition I1.2.1 for generalized solutions, together with (2.8), yields

oscu<2| osc h,+osc hy+e +c<osc u) W(r, R)?,
B BeNF  BgnF By

r

and as ¢—0 we obtain (2.6).
If (2.9) is not satisfied, then there exists a constant d such that

(2.10) infusd<supu

By By

and ¥ <d<, q.e. on Bg. Taking (2.7) and (2.8) into account, Theorem 11.2.2, applied
with w=d, yields

(2.11) Y(r)< C[R_lellu_d”Lz(B ) WF(r, R)ﬂ+ 0sC h1+ 0sC h2+28:| .
R BynF BgNF
The estimate (2.6) follows now from (2.10) and (2.11), taking the limit as £é—0. O

II1.3. Generalized Dirichlet problems

In this section we give an estimate for the modulus of continuity of solutions of
Dirichlet problems with quasi continuous H'-dominated boundary conditions.
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Let D be a bounded open subset of RY and let g: 3D—R be an H'-dominated quasi
continuous function.

Definition 3.1. We say that a function u:D—R is a dominated generalized solution
(in D) of the equation Lu=0 if u is the H'-dominated quasi uniform limit (in D) of a
sequence u, of functions of H'(D) such that Lu,=0 (in D) in the sense of Section 1.4.

By Theorem 1.2, applied with Q=D, y,=—, and y,=+«, every dominated
generalized solution u of the equation Lu=0 in D belongs to HL..(D) and satisfies Lu=0
in the sense of distributions. The converse is false, as the following example shows.

Example 3.1. Let D=B;(0)\ {0} and let L=—A. Then for every ¢ ER the functions
u(x)=t}x*"N~t belong to HL.(D) and satisfy Lu,=0 on D in the sense of distributions,
but «, is a dominated generalized solution in the sense of Definition 3.1 only for t=0.

By Theorem 1.1, applied with Q=D, y,=—, and y,=+, there exists a unique
quasi continuous function u: D—R such that u is a dominated generalized solution
of the equation Lu=0 in D and u=g q.e. on 3D. We shall refer to this function as the
solution of the Dirichlet problem

(3.1 Lu=0inD, u=g ondD.

It is easy to see that, if g is continuous, then u concides with the solution of the
Dirichlet problem (3.1) in the sense of [22], Section 10.

We now show that the Maz’ja estimate at a boundary point (see [18] and [19]) for
the solution of the Dirichlet problem (3.1) can be obtained from the estimates for
generalized solutions of a two-obstacle problem given by Theorem 2.2.

Let x,€3D. For every r>0 we set B,=B,(x,).

THEOREM 3.1. Let u be the solution of the Dirichlet problem (3.1), with g quasi
continuous and essentially bounded on 3D (in the capacity sense). Then there exist two
constants c=c(4, A, N)>0 and B=8(, A, N)>0 such that

cap(B,—D, B,,)
0SC U< 0sC g+c<osc glexp| -8B J’ ST Ta) do
B.ND BN3D cap(B,,B,,) ¢

for every 0<r<R.

Proof. Let us fix 0<r<R'<R. By adapting the proof of Tietze’s extension theorem
(see for instance [6]), we can extend g|; ,sp to a quasi continuous function y:Bp—R
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such that

3.2) inffy = inf g< sup g—supw

By BpnaD  BpnaD

Then we can extend y to an essentially bounded quasi continuous function, still
denoted by y, defined in R" such that =g q.e. on 3D.
Let E=R"-D, let y,,y,: R¥"—R be the functions defined by

63 w={?, BE p={t, DE

—oo  elsewhere, +o0  elsewhere,
and let Q be a bounded open subset of R" containing D U Bg; then the obstacle problem
{¥1,%.} has a unique generalized solution v in Q (Theorem 1.3) and we have

u q.e.inD,

34 v= {1/) g.e. in Q—-D.

By Theorem 2.2 the function v satisfies the estimate (I1.2.4), therefore by Remark 1.7.1
we have

r

(3.5) oscv<W(e, &, R’ )+c(osc v) Z exp( ﬂf oXe, Q)—>

B Bg

for every £,>0, £,>0. Given £>0, we set
& = P(x)—infy,+e =1, (x)— inf p+e
Bg By NE
and
&, = SUP P —Y,(xg)+£= sup Pp—y,(xy)+e.
By By NE
Then E¥(e|,0)2E NB,and E(¢,, 0)2E nB, for every 0<p<R’, therefore (3.5) implies

(3.6) 0SC U <0SCU < 0sC 1/)+Ze+c<osc v) Wi(r,R' P,
B,nD B BpNE B,

r

where, according to (1.7.6),

R’
’ cap(ENB,,B,) 4

WE(r,R)=exp<—f ——Bﬁ—@.
r Cap( o’ “ 2 Q
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By (3.2) we have

3.7 OSC Y=< 0sSC g
Bp.NE BpnaD

and from the maximum principle we get

oscvs[sup uV sup w]—': inf u A inf zp]

By BeND  BpNE BuND  BpNE
(3.8)

<supg—infg = oscg
aD aD

Since (3.6) holds for every R'<R and for every £>0, from (3.7) and (3.8) we obtain

0SC U< 0sC g+c<osc g) We(r, R)®,
BND  BynaD

which is the Maz’ja estimate at the point x,€38D. O

More generally, given an arbitrary subset E of Q, and an H'-dominated quasi
continuous function y: R¥—R we consider the formal Dirichlet problem

{Lu =0 in Q—-F

6.9) u=y  in E.

By a solution of (3.9) we mean any generalized solution in Q of the obstacle problem
{y1, ¥2} where y, and vy, are given by (3.3). By applying (I11.2.4) to the case at hand, we
obtain the estimate

cap(En Bg, B,,) do
OsSCU =< 0sC Yy+closcu jex
B 3Rn£¢ ( ) p( ﬂj cap(B,, B,,) ¢

r

for every x,€Q and for every 0<r<R with Bg(x)c®Q, where c=c(d,A,N),
B=PB(4, A,N), and B,=B,(x,) for every 0>0.
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