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In tro d u c t io n  

Classically, one has for every commutative ring A the associated ring of p-typical Wit t  

vectors W(A). In this paper we extend the classical construction to a functor which 

associates to any associative ring A an abelian group W(A). The extended functor 

comes equipped with additive Frobenius and Verschiebung operators. We also define 

groups Wn(A) of Witt  vectors of length n in A. These are related by restriction maps 

R: Wn(A)-+Wn-I(A) and W(A) is the inverse limit. In particular, WI(A) is defined to 

be the quotient of A by the additive subgroup [A, A] generated by elements of the form 

xy-yx, x, yEA. There are natural exact sequences 

O-~ A/[A,A] Y~-l, Wn(A) R-~ Wn-I(A)-"-~O 

which are useful both for proofs and calculations. We use these in Theorem 1.7.10 below 

to evaluate W(A) when A is a free associative Fp-algebra without unit. The sequences 

are usually not split exact, but in contrast to the classical case, this is not even true as 

functors from rings to sets, i.e. Wn(A) is not naturally bijective to the n-fold product of 

copies of A/[A, A]. Finally, the construction W ( - )  is Morita invariant: 

W(Mn(A)) ~W(A) 

This more general algebraic structure arises naturally in topology: the topological 

cyclic homology defined by BSkstedt-Hsiang-Madsen, [BHM], associates to any ring A 

a (-2)-connected spectrum TC(n ;p ) .  We write TC,(A;p)--~,TC(A;p). In w below we 

prove 
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THEOREM A. For any associative ring A, 

TC-I(A;p)  ~ W(A)F, 

the coinvariants of the Frobenius endomorphism F: W ( A ) --* W ( A ) . 

While it is unlikely that the higher groups TC.(A;p) admits an algebraic descrip- 

tion in general, this has been expected when A is an Fp-algebra. Indeed, the original 

calculation of TC(F~; p) in [M] shows that TC(A; p) is a generalized Eilenberg-MacLane 

spectrum, i.e. that the k-invariants are trivial. And in the case of a smooth algebra over 

a perfect field of characteristic p, it follows from [HI that the groups TC. (A; p) may be 

determined up to an extension from the de Rham-Witt  complex of [I]. In w below, we 

evaluatethe topological cyclic homology of a free associative Fp-algebra without unit. It 

turns out to be concentrated in degree -1 ,  and since the topological cyclic homology of 

a simplicial ring may be computed degreewise, we obtain the following general formula: 

THEOREM B. Let A be an associative Fp-algebra. Then 

TC. (A; p) ~- L.+IW(A)F, 

the left derived functors in the sense of Quillen of the functor W(--)F. 

In an earlier paper, [HI, we evaluated the complex of p-typical curves in Quitlen's 

K-theory in terms of the fixed sets of BSkstedt's topological Hochschild homology. In 

Corollary 3.3.6 below, we evaluate this complex for a free associative Fp-algebra without 

unit. The resulting complex bears a close resemblance with the de P~am-Witt  complex 

of a commutative polynomial algebra, as exhibited by Deligne-Illusie, [I], but in contrast 

to the latter, it is concentrated in degrees 0 and 1. 

Let K.(A; Zp) denote the p-adic K-groups of the ring A, that is, the homotopy 

groups of the p-completion of the spectrum K(A). Similarly, let TC. (A; Zp) denote the 

homotopy groups of the p-completion of the spectrum TC(A; p). The main result of [HM] 

states that if k is a perfect field of positive characteristic p and A a finite algebra over 

the Witt ring W(k), then the cyclotomic trace of [BHM] induces isomorphims 

Ki(A;Zp)~-TCi(A;Zp),  i>~O. 

When A is an Fp-algebra, TC(A; p) is already p-complete, so we have 

THEOREM C. Let k be a perfect field of positive characteristic p and let A be a finite 

associative k-algebra. Then the p-adic K-groups of A are given by 

Ki(A; Zp) ~ Li+I W(A)F, 

the left derived functors of W(--)F. 
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We note tha t  at primes 1 different from p and rationally, one has K,(A;Zz)---- 

K.(A/J;  Zz), where J c A  is the radical. Moreover, A/J  being semi-simple, the lat ter  

splits as a product of / -adic  K-groups  of finite division algebras over k. These are known 

when k is a finite field by Wedderburn 's  theorem and Quillen's original calculation. 

All rings considered in this paper  will be associative but not necessarily commutat ive  

or unital unless otherwise stated. We shall write G for the circle group. 

It  is a pleasure to thank Mike Hopkins for the original suggestion to evaluate the 

topological cyclic homology of a free associative algebra as well as for several valuable 

conversations. 

1. W i t t  v e c t o r s  

1.1. For any commutat ive ring A, one has the associated ring of Wit t  vectors W(A), [W]. 

In this paragraph,  we extend the definition of W(A) to all associative rings. If  the ring 

A is not commutative,  W(A) will of course only be an additive group. 

Let A be an associative ring and let [A, A] denote the subgroup of commutators ,  

tha t  is, the additive subgroup generated by elements of the form xy -yx ,  x, yEA. We 

recall the ghost map  

w: A N~ --+ (A/[A, A]) N~ (1.1.1) 

given by the Wit t  polynomials 

w0 = a0, 

W l  z a~--}-pal, 
p2 +pa~ + p2 a2, 

w2 = a o 

Here p is a fixed prime. One may of course factor w through the equivalence relation 

which identifies two vectors a and b when their ghost components wn(a) and w,~(b) are 

equivalent modulo commutators ,  for all n~>0. We shall see tha t  it is possible to divide 

this requirement by p~. 

1.2. Let B=Z{xl,. . . ,  xs} be the non-unital ring of polynomials in the non-commu- 

ting variables xl ,  ...,x~ and recall that  the non-unital free monoid F of all finite words 

in the variables xl ,  ..., x~ forms an additive basis for B. The  length of a word defines a 

grading on F and we let Fn denote the graded piece of degree n. The infinite cyclic group 

C acts on Fn by cyclically permuting the letters in a word. An orbit is called a circular 
word and two words are called conjugate if they are in the same orbit. We denote a 
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typical word by ~ and a typical circular word by w. Note that  words are conjugate 

precisely when they viewed as monomials in B differ by a commutator .  We refer to the 

element of a circular word which is smallest in the lexicographical order as the preferred 

representative. For any subset ScF ,  we let S denote the set of preferred representatives 

of the circular words given by the elements of S. We define a parti t ion 

(1.2.1) 
din 

X n Here Fn,1--{x~, ..., s } is the subset of trivial words and F,~ d, d>  1, is defined recursively 

as follows: 

Fd'd=Fd-- H Fd,e, 
eld,e~d 

F~,d=Fd,d*.. .*Fd,d (n/d factors), 
! 

Fn,d = C" Fn, d. 

We define non-commutat ive polynomials 

Ad(x, , . . . ,x~)= E ~ (1.2.2) 

~E~d,d 

and write 5k(Xl, ..., X~)=Apk (Xl, ..., X~). 

PROPOSITION 1.2.3. For all n>~ l, 

xi - x~= E dAd(xl '""X~)n/d+sn(Xl'""Xs)'  
\ i = 1  / i = l  d]n,d•l 

with ~n(Xl, ..., Xs) a commutator. 

Proof. Let t denote the generator of C and suppose that  WEF~n,d . We claim tha t  

tmwEF~n,d if and only if dim. If d divides m then obviously tm~EF~n,d; we prove the 

converse. First note that  if we write ~=xioxil ... xi,_~, then 

idk~idk+l, 

whenever O<~ k ~ n / d - 1  and O<~ l ~ d - 1 .  If m=de+r with l <~ r ~ d - 1  and tm~EF~,d then 

also 

idk-r ~ idk-r+l, 

for all O~k<.n/d-1 and O<~l<~d-1. It  follows that  all the letters are equal, contradicting 

tha t  ~ is non-trivial. Hence the claim. 
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From the definitions, Ad(Xl, ..., x s ) n / d = ~ E r ,  ~, and so the claim shows that  

dAd(Xl,... ,xs) n/d= ~ ~+Cn,d(Xl,...,X~) 
~ E r n , d  

with En,d(Xl,..., Xs) �9 [B, B]. NOW the proposition follows from (1.2.1). [] 

1.3. Let A be an associative ring and suppose that  A has an additive endomorphism 

r A-*A  which preserves the commutator  subgroup and satisfies that  for all xEA and all 

n>~l, 

Xpn~--~)(X pn-1) (modulo pnA+[A,A]). (1.3.1) 

We have the following non-commutative version of a lemma of Dwork. 

LEMMA 1.3.2. A sequence (Wo, wl, ...) is in the image of the ghost map 

w: A N~ --~ (A/[A, A]) N~ 

if and only if wn-r modulo pnA+[A,A], for all n>~l. 

Proof. If (w0, wl, ...) is in the image of w, then 

n--1 n--2 1 r162 )+pr )+...+pn- r 

and  so W n ---- r  n _ l  ) m o d u l o  p n A  + [A, d] .  

Conversely, we may assume by induction that  there exist elements a0, ..., a~- i  � 9  

such that  
n - - 1  n - - 2  

Wn-1 =-- a p +Pa p +... +pn-lan-1 

modulo commutators. Since r maps commutators to commutators and satisfies (1.3.1), 

we get that  
pn pn--1 - -  n _ l a  p 

r =-- a o +pa 1 t . . . t p  n-1 

modulo pnA+[d, A]. By assumption, Wn-r  modulo pnA+[A, A], so we see that  

there exists an such that  
Wn - a~ n +pa pn-1 +... +pn an 

modulo [A, A]. We note that  the class of pnan modulo commutators is uniquely deter- 

mined. [] 

Let A = Z { S }  be the free associative ring without unit generated by the set S and 

define r A ~ A  by 

r  , (1.3.3) 
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where the sum runs over finite words in S. Then r is an additive endomorphism, which 

preserves commutators  and (1.2.3) furnishes an induction argument which shows tha t  

(1.3.1) holds. Given a linear ordering of the set of variables S, we define a preferred 

section 

a0: A/[A, A] ~ A 

of the projection as follows: a basis for A/[A, A] is given by the set of circular words 

w with letters in S. We define (row to be the preferred representative in the class w 

and extend by linearity. In the proof of (1.3.2) we may choose an to be this preferred 

representative of its class modulo commutators .  Therefore, we have 

ADDENDUM 1.3.4. If A = Z (  S} is the free associative ring without unit on a linearly 

ordered set S, then there is a preferred set section 

or: w(A N~ ~ A N~ 

of the ghost map. [] 

We define a new series of non-commutat ive polynomials rs, s~>0. Here r~ is a poly- 

nomial in the variables xij, Yij, where i=0 ,  1, ..., s; j = 0 ,  1, ..., ni. Let 

ni 

Ei -~- E xijyij --yijxij. 
j=O 

Then ro=c0 and rs, for s~>l, is defined by the recursion formula 

rn =s ...,rn-l,O)-~b(Wn-l(ro, ..., r n - 1 ) ) ) ) .  (1 .3 .5)  

Now let A be any associative ring. The values of the polynomials rs, s~>0, as the variables 

xij and Yij, i~>0, j - - l ,  ..., ni, run through all elements of A, define a subset 

N(A) C A N~ (1.3.6) 

We note that  N(A) is non-canonically bijective to [A, A] N~ Indeed, choose a represen- 

tat ion c = ~ x j y j - y j x j  of each commuta tor  in A. Then for a given (ro,rl , . . .)EN(A), 

we can define Ei recursively using (1.3.5). The commutators  r i~>0, obtained in this 

way are uniquely determined by the vector (ro, r l , . . .  )EN(A) .  In particular,  if A'--*A is 

a surjective ring homomorphism then N(At)--*N(A) is also surjective. 
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LEMMA 1.3.7. The preimage of zero under the ghost map 

w: A N~ ~ (A/[A, A]) N~ 

contains N(A) ,  and the two subsets are equal if A/[A, A] has no p-torsion. 

Proof. We show by induction that  wn(r0, . . . , rn)=0,  the case n=O being trivial. We 

have 

wn(ro, ..., rn) = wn(r0, ..., r n - 1 , 0 ) + p n r n  

and by (1.3.5) and induction pnrn=-Wn(ro,  . . - ,m - l , 0 )  modulo commutators. Hence 

N(A)  is mapped to zero by the ghost map. 

Conversely, choose a bijection of N(A)  and [A, A] No, and suppose that  (a0, el ,  ...) is 

mapped to zero by the ghost map. Let us write r~(fi0, . . . ,fin-l) for the second term on 

the right in (1.3.5). We must find a sequence (fiO,el,-.) of commutators such that  the 

following equality holds 

a n  : f i n - - r l n ( f i O ,  . . . ,  f i n - l ) .  

We are given that  for every n~>0, 

a~" +pc pn-1 +... +pn an __ 0 

modulo commutators and may assume by induction that  ai =ri(eo,  ..., ei), for i 4 n - 1 .  

The argument above implies that  

r ~ + p r ~ - i  n - 1  p - -  n I +.. .+p r n _ t = p  rn(eo, ..., On-l) 

n ! modulo commutators, and hence p (an-t-rn(fiO, .--,fin-l)) is a commutator.  Therefore, 

if A/[A, A] has no p-torsion, an+r'~(eo,..., en-1) is a commutator  fin. This proves the 

induction step. [] 

1.4. We now consider the free associative ring without unit, 

U = Z{ao, bo, a l ,  bl, ...}, 

with the generators ordered as indicated, and let r U--*U be as above. We define non- 

commutative sum and difference polynomials si and di by 

(So, Sl,... ) = a(w(ao, al, . . .)  +w(bo, bl,... )), 

(do, dl, ... ) = a(w(ao, al, ... ) -w(bo,  bl, ... ) ). 
(1.4.1) 

Then si is a non-commutative polynomial in the variables Co, b0, ..., ai, bi and similarly 

for d~. We note that if we map U to the commutative polynomial ring on the same set 
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of generators, the polynomials si (a, b) and di (a, b) are mapped to the classical Wit t  sum 

and difference polynomials. 

We define an equivalence relation on the set A N~ of vectors in A by 

a ~ b  r d(a,b) e N ( A )  (1.4.2) 

and note that  the ghost map factors through it. For if a~b, then 

w(a) -w(b )  = w(d(a, b)) = O. 

LEMMA 1.4.3. Let 7r: A'---~A be a surjective ring homomorphism, and let a and b 

be two equivalent vectors in A. Then there exists equivalent vectors a I and b ~ in A p such 

that ~ca'=a and 7rb~=b. 

Proof. In the equation r=d(a, b) either two of the indeterminates determines the 

third. Indeed, 

di ( ao, bo, ..., ai, bi) = ai - bi + polynomial in co, bo, ..., ai-1, bi-1. 

Now let a and b be equivalent vectors in A and let r=d(a, b); then t E N ( A ) .  We choose 

a vector a' in A' and r ' E N ( A  ~) such that  lra'=a and 7rr'=r, and let b' be the unique 

solution of the equation r'=d(a',  b'). Then ~rb I satisfies the equation r=d(a, Tcb'), and 

hence ~rb~=b. [] 

PROPOSITION 1.4.4. The set of equivalence classes 

W ( A )  = AN~ ~ 

with the composition a+b=s(a, b) is a functor from associative rings to abelian groups 

such that the ghost map w: W(A) -+(A/[A ,  A]) N~ is a natural homomorphism. 

Proof. If A/[A, A] has no p-torsion, then Lemma 1.3.7 shows that  the ghost map 

w: W ( A )  --* (A/[A, A]) N~ 

is an injection onto a subgroup and w(s(a, b))=w(a)+w(b).  For a general A, we choose 

7r: A ' - ~ A  surjective with AI/[A ~, A'] p-torsion free. If al and a2 are equivalent vectors 

in A then by Lemma 1.4.3 we can find equivalent vectors a t and a~ in A' such that  

~ra~ = a l  and ~ca~ =a2. This shows that  the composition a+b=s(a, b) factors through the 

equivalence relation of (1.4.2). To prove associativity, given vectors a, b and c in A, we 

choose lifts a ~, b ~ and c ~ to vectors in A' and calculate 

s(a, s(b, c)) = ~s(a ' ,  s(b', c')) = ~s(s(a ' ,  b'), c') = s(s(a, b), c). 

The additive inverse of a is given by d(0, a). One shows that  this factors through the 

equivalence relation and verifies the remaining abelian group axioms in a similar man- 

ner. [] 
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Definition 1.4.5. We call W(A) the group of Wit t  vectors over the ring A. 

We note that  for any pair of rings W(A•215 In particular, if A is 

an algebra over a commutative ring k, we get a pairing 

W(k) • W(A) ~ W(A), (1.4.6) 

and an argument similar to the proof of (1.4.4) shows that  this makes W(A) a module 

over the ring W(k). 

1.5. We let U'=Z{ao, al,  ...} with the variables ordered as indicated and note that  

U' contains the Wit t  polynomials wi=a~+...+piai. Let fi=fi(ao,al,...,a/+l) be the 

non-commutative polynomials given by 

(fo, f l ,  .-.) = a(wl ,  w2, ... ), 

where a is the section of Addendum 1.3.4. We have 

fo =a~+pal, fl = (1-PP-1)aP-~I(aP,pal)+Pa2, ..., 

and in general the Kummer congruences show that  f n -a  p modulo p. Now let A be a 

ring and define the Frobenius operator by 

F: W(A) --* W(A), F(ao, al , . . . )  = (/0, f l ,  ...). (1.5.1) 

An argument similar to the proof of Proposition 1.4.4 shows that  F is well-defined and 

additive. We also note that  if A is an Fp-algebra, then F(a0, a l , . . . ) = ( a  p, a n, ...). We 

define the accompanying Verschiebung operator by 

V: W(A) --+ W(A), Y(ao, al, ...) = (0, ao, al ,  ...). (1.5.2) 

Again this is well-defined and additive. Moreover, 

FV =p. 

Indeed, if F '  and V' are operators on (A/[A, A]) N0 such that  F'w=wF and V'w=wV, 
then one easily calculates F'V'=p. Hence we have FV=p on W(A) whenever A/[A, A] 
has no p-torsion. But taking Witt  vectors preserves surjections, so the formula holds in 

general. 
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1.6. The relation polynomials ri and the sum and difference polynomials si and d~ all 

have the property that  they only depend on the variables x~j, Ysj and as, bs, respectively, 

with s~ i .  Therefore, we can repeat the construction of W ( A )  starting from vectors of 

length n and get the group of Wit t  vectors of length n, 

Wn(A)  = A ~ / ~  (1.6.1) 

with addition given by the first n sum polynomials, 

(a0, al ,  . . . ,an-1)+(b0,  bl, . . . ,bn_l) : (s0, Sl, ...,Sn--1). 

Therefore, W ( A )  may be identified with the inverse limit of the W~ (A) over the restriction 

maps 

R : W ~ ( A ) ~ W n _ I ( A ) ,  R (ao , . . . , a~- l )=(ao , . . . , an -2 ) .  (1.6.2) 

The Frobenius and Verschiebung operators reduce to 

F : W n ( A ) - - ~ W n - I ( A ) ,  V : W n _ I ( A ) - - . W n ( A ) ,  

which, on the other hand, induce the original operators F, V: W(A)--* W ( A )  on the limit 

over R. 

PROPOSITION 1.6.3. The sequences 

0 --* W,~(A) V* n" , W~+k (A) ~ Wk (A) --* 0 

are exact. 

Proof. Let N s ( A ) c A  s denote the analogue of (1.3.6). We choose representations of 

all commutators in A such that  we get a bijection between Ns(A) and [A, A] ~. A repre- 

sentative of a typical element in the kernel of R n has the form 

a = (to, ..., rk-1, ak, . . . ,  an+k-l)  

with (r0, ..., rk-1)ENk(A).  Let ~0, ..., ~k-1 be the corresponding sequence of commuta- 

tors; let 

r = (ro, ..., rk-1, rk, ..., rn+k-1) E N~+k-1 (A) 

be the vector which corresponds to the sequence of commutators ~0, ..., r ..., 0. We 

now let b be the unique solution to the equation r=d(a,  b). Then b is equivalent to a and 

by inspection of the difference polynomials, we see that  b has the form 

b= (0, ...,O, bk, ...,bn+k-1). 
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This shows that  ker R n c  im V k. The opposite inclusion is trivial. [] 

Remark 1.6.4. We note that  WI(A)=A/[A,A],  so in particular, Proposition 1.6.3 

gives exact sequences 

O--+ W~(A) y n n Wn+l(A) ~ A/[A,A] 4 0 .  

We recall that  when A is commutative, R ~ has a natural multiplicative (but of course, 

non-additive) section given by the Teichmiiller character, 

~-:A--+Wn+I(A), T(a)=(a,O,...,O). (1.6.5) 

In the non-commutative setting, we still have the map ~-, but it does not in general factor 

over A/[A, A]. In fact, although Wn(A) is bijective to the product (A/[A, A]) ~, there 

exists no natural bijection. To see this, suppose that  there were a natural set section 

y: A/[A, A] --+ W2( A ) 

of the restriction, and consider the ring homomorphism r Z[c ]~Z{x ,  y} given by r  

x y - y x .  Let us write A=Z{x ,  y}. By naturality, we would have a commutative diagram 

2[c] " - w 2 ( 2 [ c ] )  F , 2[c] 

A/[A,A] W2(A) F A/[A, AI. 

Since u is a section of the restriction, v(c)=(c,  f(c)) for some f(c)CZ[c], so F ( u ( c ) ) =  

cP+pf(c). By the commutativity of the diagram, we have 

(xy -yx )P  + p f ( x y - y x )  -- 0 (1.6.6) 

modulo commutators. We shall see that  this is impossible. We have f (c)=}-]  anC ~ and 

hence 

f ( x y - y x )  :Ean(Xy--yx)n. 
n 

Here ( x y - y x )  ~ is a homogeneous polynomial of degree 2n, which is not a commutator  

unless n =  1. Since ( x y - y x )  p is homogeneous of degree 2p we must have f(c)=apc p, and 

then (1.6.6) becomes'  

(xy -yx )P  +pap(xy -yx )  p - 0 

modulo commutators. Now ( x y - y x )  p is divisible by p but not by p2 modulo commuta- 

tors. Therefore, this equation is not satisfied for any integer ap. 
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1.7. Let S be a linearly ordered set and let A=~'p{S} be the free associative Fp- 

algebra without unit generated by S. In this paragraph we evaluate the group of Witt 

vectors W(A). The calculation is inspired by Illusie's paper [I]. 

Consider the free associative Qp-algebra without unit generated by S, 

L=Qp{S};  

we recall the structure of the Hochschild homology of L. Let ~t0 be the set of circular 

words with letters in S, that is, the set of orbits of the action by the infinite cyclic group 

C on the set F of finite non-empty words in S by cyclically permuting the letters in 

words. The period of w, by which we mean the length ~w of the orbit w, divides the 

length Jw[ of the word, and then 

HH.(L/Qp) ~ qp(f~o}|162 degc : 1, (1.7.1) 

with Connes' B-operator given by the formula 

B(~v| 1) = ( l ~ l / ~ )  

The map r L---+L of (1.3.3) induces a map of the Hochschild groups which satisfies 

Be =pCB. (1.7.2) 

Let D* be the complex obtained from HH, (L/Qp) by inverting r and with the differential 

given by (1.7.2); we describe D* in more detail. 

Let Cn be the quotient of C of index n and note that 

~0 -- H Map(Cn, S)/C, 
n~>l 

where the action by C on the set of maps is induced from the action on Cn. We let Cp 

be the profinite and hence topological group 

n 

where the limit is over the natural projections. In other words, Cp is the additive group 

of p-adic integers written multiplicatively. Then C CCp acts by multiplication and we 

define 

~= H ZxMap(CpXCd, S)/C, (1.7.3) 
(d,p)=l 
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where the action by C on the mapping space is induced from the diagonal action on 

Cp • Cd. We write elements of n as 

w=(d;r,[a]), 

where d is a natural number prime to p, r E Z and [a] is a C-orbit of continuous maps 

from Cp• to S. By the length of w we mean the rational number [w[=prd and by 

the period we mean the length ~w of the orbit [a]. The period is finite because a is 

continuous. 

We identify ~ 0 C n  with the subset of those w where [w[ is an integer and divisible 

by 7rw. More generally, we define ~nC~t to be the subset of those w such that  pn[w[ is 

an integer divisible by 7rw and note that  

n =  U ~n. (1.7.4) 
n~>0 

We have bijections 

f:nn---~nn_l, f(d;r,[a])=(d;r+l,[a]), n~>l,  (1.7.5) 

which induce a bijection f :  ~--*n, and the inclusion n 0 c n n  followed by the bijection 

fn:  ~ n - - ~ 0  is equal to r ~0---*n0. Hence n is the set obtained from ~0 by inverting r 

and 

D* = Qp(n) |  d e g e =  1, 

with the differential B given by the formula (1.7.1). 

We define a subcomplex E * c D *  as follows: call an element T=~-~we~XwW| i 
integral if x~EZp,  for all w e n ,  and let 

E* = {T E D*[ T and BT are integral}. (1.7.6) 

More concretely, E i, i=O, 1, is a free Zp-module on the generators ei(w), one for each 

w e n ,  given by the formulas 

w|  if vp(rw) ~ r, 

eo(w) = pV, (~)_rw |  ' if Vp(7~d) >r, (1.7.7) 

e l ( w )  = w Q E .  

The linear automorphism F: D*--*D* induced from the bijection f :  f/--.fl  and the endo- 

morphism V=pF -1 both restrict to monomorphisms of the subcomplex E*, and more- 

over ,  

F V = V F = p ,  BF=pFB,  VB=pBV. (1.7.8) 



122 L. HESSELHOLT 

The complex E* has a decreasing filtration given by 

Fi l~E i = VnE ~ + BV~E i-1 (1.7.9) 

and we write E*=E*/Fil~E *. In other words, Fi lnE ~ is the free submodule of E i on 

generators pm ei (w), where m = min{n, n + r -  Vp (Trw) }. We note that  E~ ~ HH.  (A). 

Let K be the free Zp-module generated by f~o and note that  K c E  ~ We compose 

the restriction of the section co: A/[A, A]--+A to ~0 cA/[A,  A] with the map  ~-: A-+W(A)  

to obtain a map Co: flo--*W(A). We then extend this by linearity to a map  

*o: K ~ W(A)  

using that  W(A)  is a Zp-module. 

THEOREM 1.7.10. The map co extends uniquely to a linear embedding c: E~  

such that Vc=cV. Moreover, this extended map induces isomorphisms 

c: E ~ --+ W~ (A), 

for all n>/1. 

Proof. If w ~ f~o then we can write 

eo @) = pVp ( .~) -  r~  = VVp (.~)-Tw0 , 

where oJ0=(d; Vp(Zrw), [a])Eflo. It  follows tha t  

EO= V K, (1.7.11) 
n>~O 

from which the uniqueness of the extension immediately follows. On the other hand, if 

an extension exists, it must  be given by c=V~Lo on the submodule V n K c E  ~ To see 

that  this gives a well-defined map,  we must show that  

Vmco = V'~,o: V m K n V n K  -+ W(A).  

Suppose that  m<~n. Then V m K M V n K = V m ( K N V ' ~ - m K ) ,  so we may assume tha t  m = 0 .  

Suppose that  woE~o and let x=V"wo.  We assume that  xEK.  This means tha t  if we 

write x=pnoJ then wel l0 .  Now recall that  f~0 is canonically bijective to the set of circular 

words in S and note that  if ~ is the preferred representative of w, then the preferred 

representative of wo is ~P". We find 

go(X ) :pn(~,O,...) =Fnvn(~,O,...) =(O,...,o,~Pn O,...)=vn(~d pn,O,...) ~-Vn(LO(030)) 



W I T T  V E C T O R S  AND T O P O L O G I C A L  CYCLIC H O M O L O G Y  123 

and hence we get a well-defined map ~: E~ which commutes with V. 

To prove the second part  of the theorem, we recall that  V: E~ ~ is a monomor- 

phism so that  

vn: E~ ~ --~ VnE~ ~ 

is an isomorphism. Moreover, we have K N VE ~ C pK and also pK = VFK C VK C K N VE ~ 

This gives a map  K/pK---*E~ ~ which is an isomorphism by (1.7.11). Finally, K / p K =  

A/[A, A] and the map of short exact sequences 

0 >A/[A,A] Y~ o " E~+l > E ~ > 0 

0 , A/[A,A] v'~> W,~+I(A) R ~ W,~(A) > 0 

furnishes an induction argument  which finishes the proof. [] 

COROLLARY 1.7.12. The group of Witt vectors W(A)  is canonically isomorphic as 

a Zp-module to the set of infinite formal sums ~wef~xweo(w) with xwEZp such that 

Vp(X~))vp(~rw)-r and for every N ) O  the set 

a I vp(x ) < N} 

is finite. Moreover, the frobenius F: W(A)---~W(A) is induced from the map f: f~--+f} of 

(1.7.5). 

2. T o p o l o g i c a l  cyc l ic  h o m o l o g y  

2.1. In this paragraph we prove Theorem A of the introduction. The result was estab- 

lished for commutat ive rings in [HM]. The topological cyclic homology functor associates 

to any unital ring A a ( -2) -connected  spect rum TC(A;p) .  We first recall how this is 

defined and how one may extend the definition to all associative rings. For a thorough 

t rea tment  see [HM]. In this paragraph,  G will denote the circle group S 1. The finite 

subgroup of G of order r will be denoted Cr. 

For any unital ring A, one has the topological Hochschild spectrum T(A) defined by 

BSkstedt, [B]. This is a G-equivariant spectrum indexed on a complete G - u n i v e r s e / / i n  

the sense of [LMS]. Therefore, the obvious inclusion map  

Fr: T(A) C~8 --+ T(A) C~ (2.1.1) 

from the C~-f ixed set to the C.~-fixed set is accompanied by a transfer map going in the 

opposite direction 

V~:T(A) c~ -~T(A) c~ . 
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We call the maps F~ and V~ the r th  Frobenius and Verschiebung, respectively. However, 

T(A) has an additional structure: it is a cyclotomic spectrum, see [HM, w In particular, 

there is an extra map, called restriction, 

P~:T(A)Crs---,T(A) C,. (2.1.2) 

The restriction and Frobenius maps satisfy 

R~R~=Rr~, FrF~=F~, P~Fs=F~R~, (2.1.3) 

and on the level of homotopy groups, one has in addition 

R~Vs  = V s I ~ ,  F r V r  = r. 

We shall often restrict attention to the p-subgroups Cp. for some prime p. We then 

simply write R, F and V instead of Rp, Fp and Vp. 
In general it is very difficult to analyze the fixed sets of an equivariant spectrum. 

However, for a cyclotomic spectrum, and in particular for T(A),  one has the following 

fundamental cofibration sequence of spectra 

T(A)hcp, N)T(A)C,, R T(A)C,._I. (2.1.4) 

The left-hand term is the homotopy orbit spectrum whose homotopy groups are approx- 

imated by a strongly convergent first-quadrant homology type spectral sequence 

E2,t = Hs(Cp.; rtT(A) ) =~ 7rs+tT(A)hcpn, 

where ~rtT(A) is a trivial Cp~-module. 

Consider the functor 

TR(A; p) = holim T(A) Cp". (2.1.5) 

R 

The Frobenius maps F: T(A)Cp~--~T(A)C, ~-1 induce a self-map of TR(A;p) ,  which we 

also denote F,  and now topological cyclic homology is defined as the homotopy-fixed set 

TC(A; p) = TR(A; p)h(F). (2.1.6) 

It is canonically equivalent to the homotopy fiber of F - i d :  TR(A; p ) -*TR(A;  p). 

More generally, if A---~B is a map of unital rings, the relative topological Hochschild 

spectrum 

T(A --* B) = hofiber(T(A) ~ T(B)) 



W I T T  V E C T O R S  AND T O P O L O G I C A L  CYCLIC H O M O L O G Y  125 

is again a cyclotomic spectrum, so the above discussion applies to T(A---+B) as well. Now 

if A is a possibly non-unital ring, we can form the associated unital ring Z ~< A, which is 

Z |  with multiplication given by the formula 

(x, a)(x', a') = (xx', xa' +ax' +aa'). 

This is an augmented ring with augmentation ideal A and we define 

T'(A) = T(Z ~<A-~ Z). (2.1.7) 

If A is unital, we have the ring homomorphism r Z~<A~A given by r a)=x.l+a 
and hence a ring isomorphism r • r Z ~< A ~ Z  • A. Moreover, the topological Hochschild 

spectrum preserves products such that  we get a G-equivariant equivalence T(Z ~(A)--* 

T(Z) x T(A), i.e. for all closed subgroups CcG,  the induced map of C-fixed point spectra 

is an equivalence. It follows that  in this case, we have a canonical G-equivalence 

T'(A)--*T(A). 

We shall therefore simply write T(A) for the spectrum in (2.1.7). As already mentioned 

T(A) is a cyclotomic spectrum, so we can define TR(A;p) and TC(A;p) by the formulas 

(2.1.5) and (2.1.6), respectively. Finally, we note that  since homotopy limits commute, 

we get a cofibration sequence of spectra 

TC(A;p)--+ TC(Z ~< A;p) -% TC(Z; p). (2.1.8) 

If k is a unital ring and A is a k-algebra, we could also form the associated unital 

k-algebra k~<A and define a functor T"(A)=T(k D< A ~ k ) .  However, since the topolog- 

ical Hochschild spectrum only depends on the underlying ring of a k-algebra, TrY(A) is 

canonically G-equivalent to Tr(A). So for k-algebras, we can replace Z by k in (2.1.8). 

2.2. We note that  for any ring A, 

~iT(A)-=HHi(A), i = 0 , 1 ,  

where we remember that  HH0(A)=A/[A, A]. For commutative rings, H H I ( - )  preserves 

surjections of rings, but for unital rings in general, this is not true. Instead one has an 

exact sequence 

HH1 (A) ~ HH1 (A/I) ~ I/[I, A] ---+ A~ [A, A] 

for any two-sided ideal I c A .  
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LEMMA 2.2.1. For any unital ring A, there is a unital ring B and a ring homomor- 
phism B--*A such that 

HHi(B)---~HHi(A), i = 0 ,  1, 

are surjections and such that B/[B, B] is a free abelian group. 

Proof. Let V = Z { A }  be the free associative unital ring on the underlying set of A. 

Then V/IV, V] is a free abelian group and HH0(V)--*HH0(A) is surjective. However, 

HHI(V)--*HH1 (A) need not be a surjection. To obtain this, we first construct, for each 

cycle zEAQA,  a ring homomorphism U ~ A  such that  the class of z is in the image of 

the induced map HH1 (Uz)-*HHI(A).  Suppose that  

n 

z = E a~ | 
i = 1  

and let U~ be the associative ring on generators Xi,z, yi,z (i--1, ... n~) subject to the 

relation 
n 

E (xi,~yi,~ -yi,zxi,~) = 0. (2.2.2) 
i : 1  

Then there is a unique ring homomorphism Us-~A which sends xi,~ and Yi,z to ai and bi, 

respectively. Under this map, the cycle z '=~-~_ 1 xi,~Qy~,~ is mapped to z. Hence the 

class of z' is mapped to the class of z under the induced map 

HH1 (U~) --* HH1 (A). 

Now let B be the generalized free product of V and the Uz as z runs through all cycles 

in A| that  is, the coproduct in the category of unital associative rings. Concretely, B 

is the associative ring on generators aEA and xi,~, Yi,~, where z runs through all cycles 

in A|  and i=l ,  ..., n~, subject to the relations (2.2.2). We have ring homomorphisms 

B--~A and, for each cycle z, U~--~B such that  the composite Uz--~B--*A is the original 

map Uz---~A. Hence the induced map 

HHI(B) --) HH1 (A) 

is surjective. Finally, we choose a linear ordering of the set of generators. Then a basis 

for B/[B, B] is given by the circular words in the variables a, xi,~ and Yi,z which does 

not contain a factor Xl,zyl,z. [] 
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PROPOSITION 2.2.3. For any associative ring A, the sequence 

V,~ 0 ~ ~oT(A) > ~roT(A)C,~ R, ~oT(A)C~_~ ~ 0 

is exact. 
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lhT(B)hcpn N > ~hT(B)Cp,~ R > ~lT(B)Cp,~_~ 

I l l  
7rlT(A)hc,~ Y , 7hT(A)C,~ n , ~IT(A)C,~_~. 

�9 .. ~ ~ IT(A)  C~-1 ~ ~roT(A)hc~, N> uoT(A)Cp~ R> 7roT(A)C~_I ~ O. 

Moreover, the edge homomorphism of the spectral sequence of (2.1.4) gives an isomor- 

phism 

~n : ~oT( A ) --~ ~ToT( A )hc~  

and [HM, Lemma 3.2] shows that  N o c ~ = V  n. We must show that  the boundary map 0 

is trivial. 

Suppose first that  A/[A,  A] is p-torsion free. By (2.1.3) the composition 

F n 
7roT(A) Y~.>uoT(A)Cpn ~oT(A) 

is multiplication by pn, and therefore in this case, V ~ is injective. Suppose next that  A 

is a unital ring and let B--+A be as in Lemma 2.2.1. We consider the diagram 

0 7 0  

The spectral sequence (2.1.4) gives an exact sequence 

HH1 (B) ~> ~IT(B)cp~ ~ HHo(B) /pnHHo(B)  ~ 0 

and similar for A. It follows that  ~rlT(B)hcp~--~TrlT(A)hcp~ is surjective. An induc- 

tion argument based on the diagram above now shows that  ~rIT(B)C~'~---+ZelT(A) C~m is 

surjective, for all m~>0, and hence 

O: 7rlT(A)C~ ~-1 --~ 7r lT(A)hc~ 

is trivial. This proves the proposition for any unital ring, and finally, the general case 

follows from (2.1.7) and the (3 • 3)-lemma. [] 

Proof. The fundamental cofibration sequence (2.1.4) induces a long-exact sequence 

of homotopy groups 
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For any ring A, there is a natural map of sets 

At:  A ---* ~roT(A) c€ (2.2.4) 

This was defined in [HM, 3.3] for unital rings and extends by (2.1.7) and naturality to 

all rings. Let ~r: A - * A / [ A ,  A] be the projection. Then one has the following formulas, 

proved in [HM, Lemma 3.3.2]: 

RroA~a = ra, F~oA~a = ira ~. (2.2.5) 

We consider the following map of sets 

n--1 

i :A[ '~ - l l~ roT(A)C~  ~-1, ] ( a o , . . . , a n _ l ) = E V i ( A p . - ~ - ~ ( a ~ ) ) ,  (2.2.6) 
i=O 

where In-1]={0,  1, ..., n - 1 } .  We also consider the map of spectra 

~: T(A)Cp "-1 --, T(A) In-l] , (2.2.7) 

which on the i th factor is given by R ' ~ - I - i F  i. It induces an additive map on homotopy 

groups, which we also denote ~,  and the relations (2.2.5) show that  

@oi = w: A [n-ll --~ (A/[A, A]) [~-1], (2.2.s) 

where w is the ghost map of (1.1.1). 

THEOREM 2.2.9. For any associative ring A, the map I factors to an isomorphism 

of abelian groups 

I: W,~(A) ~ roT(A)Cp ~-~ 

which commutes with the operators R,  F and V. 

Proof. We show by induction that  the map/~ of (2.2.6) is surjective, the case n = l  

being trivial. The fundamental cofibration sequence (2.1.4) gives an exact sequence 

y • - i  
A , ~oT(A)C~ ~-~ ~ ~roT(A)C~ ~-2 ~ 0 

and it follows from [HM, Lemmas 3.3.1 and 3.3.2] that  the image of I(a0, ..., an-I )  under 

R is equal to i(a0, ..., a~-2). Therefore as co, ..., an-2 vary, the elements i(a0, ..., an - l )  

of ~roT(A)C~ "-~ form a set of coset representatives of the image of A under V ~-1. Hence 

i is surjective. In particular, it follows from (2.2.4) that  the image of the homomorphism 

~: ~roT( A )Cp "-1 ~ ( A/[A,  A]) b- l ]  
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is equal to the image of the ghost map. 

Suppose tha t  A/[A,  A] has no p-torsion. Then by (1.3.6) the ghost map w: Wn(A)---* 

(A/[A,A]) In-l] is a monomorphism. Therefore, to prove the theorem in this case it 

suffices to prove that  the same holds for the map ~ above. Again we proceed by induction 

from the trivial case n--1.  In the induction step, we use the following map  of exact 

sequences 

0 

The left-hand vertical map is the transfer associated with the projection 

pr: T(A)  AECp,~-~ ---* T(A)Acp~_~ ECp,~-I, 

7coT(A)hcp,~_~ N ~ ~roT(A)C,,,_l R ~ IroT(A)C,,~_~ > 0 

noT(A)  ~ ) 7roT(A) In-l] ~ ) 7roT(A) [~-21 > O. 

and ~ and 7r are the inclusion as the last coordinate and the projection away from the 

last coordinate, respectively. The left-hand square commutes by [HM, Lemma 3.2] and 

the right-hand square by [HM, Lemmas 3.3.1 and 3.3.2]. Moreover, the composition 

noT(A)  pr trf ----* 7coT(A)hcp,,_~ ~ 7roT(A) 

is multiplication by pn-1 and hence trf  is injective. Therefore, ~ is injective by induction 

and the five lemma. 

In the general case, we choose a ring epimorphism AI---~A such tha t  W/[W,  Aq has 

no p-torsion. Then ~roT(A')---*TcoT(A) is onto and an induction argument  based on the 

diagram 

7roT(A') v '~-~ ~roT(A')Cp ~-~ R > 7coT(A,)C~_2 ~ 0 

7coT(A) Y'~-~, 7roT(A)C, n-1 R > 7coT(A)C,,_2 ~ 0 

shows that  so is woT(A')C,"-I---*woT(A)G ,'~-~. Hence _T factors to a surjection of abelian 

groups 

I: Wn(A)  ---* 7coT(A)G"~-L 

Moreover, we have the following commutat ive diagram 

0 ~ WI(A)  v'~-~ ~ Wn(A)  R ~ W n - I ( A )  ~ 0 

0 , ~roT(A) v"- l~  noT(A)C, n-1 R > lroT(A)C,n_2 , 0 
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with the rows exact by (1.6.3) and (2.2.3), respectively. The claim now follows by induc- 

tion and the five lemma. [] 

We recall that  topological Hochschild homology and its fixed points are Morita in- 

variant. This is proved in [B] and [BHM] for a unital ring, and the non-unital case follows 

easily from (2.1.7) and the fact that  Mn(Z ~ A)-~Mn(Z) ~< Mn(A).  We may therefore con- 

clude from (2.2.9) that  there is a natural  isomorphism 

Wn(Mm(A))  '~ Wn(A). (2.2.10) 

One would like also to have an algebraic proof of this fact. 

We can now prove Theorem A of the introduction. The homotopy groups of the 

spectrum TR(A;p)  defined in (2.1.5) are given by Milnor's exact sequence 

0 --~ h_m(1)~r~+lT(A)Cp "-1 --* ~i TR(A; p) ---* h lm~iT(A)C~ ~-~ ---* O. 
n Tt  

For i = 0  the maps in the limit system on the left are all surjective and hence the derived 

limit vanishes. Therefore, we obtain that  for any associative ring 

TR0(A; p) ~- W(A) .  (2.2.11) 

Finally, TC(A; p) is the homotopy fiber of F - i d :  TR(A; p) -~TR(A;  p) and since TR(A; p) 

is a connective spectrum, Theorem A follows. 

3. F r e e  a l g e b r a s  

3.1. In this paragraph, we evaluate the topological cyclic homology of a free associative 

Fp-algebra without unit and prove Theorem B of the introduction. 

Let k be a unital ring and let S be a set. The free associative k-algebra with unit 

generated by S, which we denote k{S}, is the monoid algebra of the monoid (S) of all 

finite words in S under concatenation. We recall that  for any monoid F, one has the 

cyclic bar-construction N.cY(F) introduced by Waidhausen. It is a cyclic set in the sense 

of Connes with n-simplices 

N~Y(F) = F ~+1 (3.1.1) 

and cyclic structure maps 

f (~/O, ...,~/i'~i+l, ...,~fn), O < i < n ,  
di ( ~o, 

~. ("~n"~0, ~/1, ..., ~ n _  1 ), i = n ,  

si(~/o,...,%~)=(~/o,...,'yi, l,'~i+l,...,%~), O<.i<~n, 

. . . ,  = . . . ,  
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In particular, N.Cy(F) is a simplicial set so we can take its geometric realization. The 

amazing fact about cyclic sets is that  the realization carries a continuous action by the 

circle G, see e.g. [J]. 

We shall use Theorem 7.1 of [HM] to study the topological Hochschild homology 

of k{S}. It states that  there is a natural equivalence of G-spectra indexed on ZX, 

T(k{S}) ~G T(k)AIN~.Y(<S))I+, (3.1.2) 

where the smash product on the right is formed in the category of G-spectra indexed 

on U. The infinite cyclic group C acts on (S) by cyclically permuting the letters in a 

word, and for each orbit w, the subset of N ~y ((S)) consisting of those simplices (~0,-.., ~n) 

for which the Product w0*...*wnEw is preserved under the cyclic structure maps. We 

denote this cyclic subset by N~Y((S); w) and note the splitting 

N'~Y(<S))= H N-r (3.1.3) 
wE~o 

The realization decomposes correspondingly. Recall the notion of length and period of 

circular words from w 

LEMMA 3.1.4. Let C(w) denote the cyclic group of order Iwl/Trw. There is a G-equi- 

variant equivalence 

IN-~Y((S); w)l ~-o S1/C(w)+ , 

which depends on a choice of representative for the circular word w. 

Proof. We choose a representative ~ for the orbit w and write Iwi=n+l .  If a =  

(~0,...,~k) is a simplex in N~Y((S);w), there exists by definition uoeC such that  

u,-~o*.. .*wk=a;.  Hence the simplex a is determined by the following data: the or- 

dered partition ([w0], ..., [wk[) of [w[ and the element u~EC, oi" equivalently, a weakly 

increasing function 0~: [n]-~[k] and the element u,,EC. Moreover, two simplices a and 

a' are equal if and only if O~ and O~, are equal and the product ujlu~, acts trivially 

on w. We also note that  w is a transitive C-set with isotropy group the subgroup of C 

of index nw. 

We recall that  the cyclic category A has the same objects as the simplicial category 

A but more maps: the automorphism group of [n] is cyclic of order n + l  with a preferred 

generator ~'n and any morphism fEA([k],  [n]) decomposes uniquely as f=uO, with uE 

AutA([k]) and 0EA([k], [n]). Also recall the standard cyclic set 

h[n] = A ( - ,  [n]), 
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which is the free cyclic set generated by the identity t , :  [n] ~ [n]. Suppose that  ~=xo ... xn 

with xi 6 S. Then there is a unique cyclic map 

a: A[n] --*/:Y (<S); r 

which maps ~n to the n-simplex (x0, ..., x,~). The automorphism group of [n] acts on A[n] 

through cyclic maps; let C(w) denote the subgroup of index ~w. It follows readily from 

the characterization of the simplices in N~Y((S);w) that  c~ factors to an isomorphism of 

cyclic sets 

~: A[n]/C(w) --* Ncy ((S>; w). 

The realization of A[n] is homeomorphic to S l x  A '~, where G acts by multiplication in 

the first variable. Moreover, the homeomorphism may be chosen such that  Tn 6 AUtA (In]) 

acts by the formula 

( 1  ) 
Tn(X;Uo,...,Un)= X - - - ~ ; U l , . . . , U n ,  UO , 

when we identify S 1 with R / Z ,  see [HM, 7.2]. It follows that  we have a G-equivariant 

homeomorphism 

JNcY((S); 0J)J ~ S l •  A n. 

Finally, S1/C(~) is a strong G-equivariant deformation retract of S 1Xc(~)A n. [] 

If the set S is linearly ordered, then we have a preferred representative of w. For later 

reference we note that  if a word ~ is a preferred representative then so is any iterated 

concatenation ~ , . . . ,  ~ of it. 

PROPOSITION 3.1.5. Let k be a ring and let k{S} be the free associative k-algebra 

without unit generated by a linearly ordered set S. Then there is a preferred equivalence 

of G-equivariant spectra indexed on ld, 

T(k{S}) ~ c  ~V~o T(k)  A S1/C(w)+, 

where the wedge runs over the set no of non-empty circular words in S. 

Proof. The associative k-algebra with unit k{S} is augmented over k and the aug- 

mentation ideal is the free associative algebra without unit generated by S. Moreover, 

the map T(k{S} ) -*T(k )  induced by the augmentation corresponds under (3.1.2) to the 

map which collapses all the non-trivial summands w in (3.1.3) to the base point. Now 

the claim follows from (2.1.7) D 
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3.2. Let T be a G-spectrum indexed on a complete G-universe b / a n d  let j :  ~G__+~{ 
be the inclusion of the trivial universe. We write j*T for the G-spectrum indexed on ~G 

obtained by forgetting the value of T on non-trivial representations. We also call j*T a 

spectrum with a G-action or a naive G-spectrum. In this paragraph, we determine the 

structure of the Cr-fixed point spectrum 

j*(TAS1/Cs+) c~, 

which is a spectrum with a G/Cr-action. 

The r th  root defines a group isomorphism •: G--~G/Cr, which allows us to view 

a spectrum D with a (G/C~)-action as a spectrum Q ~ D  with a G-action. If T is a 

spectrum with a G-action, we write T(i) for the spectrum T with G acting through the 

i th power map. 

PROPOSITION 3.2.1. Let T be a G-spectrum indexed on bl. For positive integers r 

and s, let d=(r,s) be the greatest common divisor and write r '=r /  d and s '=s/  d. Then 

/or every pair o/integers m and n such that rnr +ns=d there is a natural non-equivariant 

equivalence 
* "* T 1 C ~ , . ~  * t I * "* Cd  I QC~2 ( AS/C8+) -Qc~,(G(rs )+AOc~2 T (mr))  

given by a chain of equivariant maps of spectra with a G-action. 

Proof. We recall from [LMS, p. 89] the duality equivalence of G-spectra  indexed 

o n  U ,  

TAS1/Cs+ "~G EF(S1/Cs+' T). 

It  induces, in particular, an equivalence of spectra with a G-action 

j* (TA S 1 / C s +  ) "~ G j* ~F(Sl/Cs+, T) = ~g(s1/cs+,  j 'T ) .  

We evaluate the Cr-fixed points of the spectrum on the right. To this end, we recall that  

if G is any group, H c G  a closed subgroup and X a left G-space, then the function space 

F(G/H+, X)  carries both  a left G-action and a left action by the Weyl group WH. The 

G-action is by conjugation and the left WH-act ion is induced from the right action of 

WH on the canonical orbit G/H. Moreover, evaluation in H defines a WH-equivariant  

homeomorphism 

X H~- F(G/H+, X)  a. 

If  we apply this space-wise in the spectrum at hand, we get a (G/Cr)-equivariant iso- 

morphism 

F(G/C~+, j ' T )  c~ ~- F(G/C~+, F(G/C~+, j 'T ) )  G ~- F( (G/C~ x GIGs)+, j ' T )  G. 
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For a spectrum D with a (G x G/Cr)-action and integers i and j ,  we write D(i, j) for the 

spectrum D with a new (G • G/Cr)-action given by _ i (gl, g ~ ) . x - g l ~ x .  With this notion 

in hand, the spectrum on the right-hand side of the equation above may be written more 

precisely as 

F((G/Cr(1, 1) xG/C~(1, 0))+, /*T(1,  0)) Gxcr.  

We note the (G x G/C~)-equivariant homeomorphism 

G/C~(1,1) • C/Cs(1, O) -~ G(r, T) x V(s, 0), 

which raises the first and second coordinate to the r th  and sth powers, respectively. The 

choice of m and n with m r + n s = d  specifies a linear isomorphism of the torus on the 

right-hand side above, 

G(r, r) x G(s, O) TM G(d, mr) • G(O, - r s /d ) ,  (z, w) ~-* (zmw n, z-s/dwr/d), (3.2.2) 

and the map 

F( (V(d, mr) x G ( 0 , - r s / d ) ) + ,  j ' T ( 1 ,  0)) G• ~ F(G(rs/d)+, j*T  Cd (mr!d)), 

which takes a function O to the function r given by r  w), is a (G/C~)-equi- 

variant isomorphism when G/C~ acts on the function spectrum on the right by conju- 

gation. We can view this as a spectrum with a (G/Cr,)-action via the dth root map 

ocd: G/C~, ~G/C~, 

* ~ " *  r obdF(G(rs/d)+,J*TC~(mr/d)) = F(oc,  G(rs/d)+, (Pea3 T c  )(mr!d)), 

so in all we obtain an isomorphism of spectra with a G-action 

Oc F(G/C~+, j .T )Cr~  �9 , ,  . .. ca , * (oca3 T ) (mr) ) .  =oc~,F(G(rs )+, 

Finally, the equivalence of [LMS, p. 89] gives us a chain of G-maps which induces a 

non-equivariant equivalence 

~Oc~,F(G(r~s,)+, * .* ca , * , ,  �9 .. c~ , * (oca3 r )(mr))~-Oc~,(G(r~)+AOca3 T )(m~)). 

In effect, this is just Spanier-Whitehead duality, but given by a chain of equivariant 

maps. [] 

Remark 3.2.3. Suppose that  m ~, n ~ is another pair of integers such that  m~r+n~s=d, 

say, m~=m+ks and n t = n - k r .  Then there is an isomorphism of spectra with a G-action 

* r t I * -* C a  t �9 i ! * .*  C a  ! i k.:Qc~,(G ( s ) + A 0 c a  3 T )(mr ))~Oe~,(G(rs)+AQce3 T ) ( m r ) ) ,  

given by k.(g,t)=(g, gkt), and as one readily verifies, the equivalences of (3.2.1) are 

compatible, for varying choices of m and n, with these isomorphisms. 
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Let aE~S(G+) be the element which reduces to zero in ~rS(S ~ and to the identity 

in 7rS(S1). We get a degree-one map 

5:Tr.T ~>Tr.+:(G+AT) ~>~r.+lT (3.2.4) 

as the composition of exterior multiplication by a and the map induced from the action 

map. More generally, for C C G  a finite subgroup, we may apply the construction above 

to the naive G-spectrum * c Qc T and get a map 5:~r.TC--*~.+:T C. We recall from [HI 

that  5 is a differential provided that  multiplication by ~ E r ~  on ~ . T  is trivial. In general, 

one has 55=75. 

COROLLARY 3.2.5. A pair of integers m and n with mr  + n s = d  determines an iso- 

morphism 

ann :  7r. (TA S:/Cs+ ) C~ --+ Ir.T C~ 07r ._lT Cd , 

, ,o - 1  and if also m'r+n 's=d,  then (a,~ n amn)(a, b)=(a+kSb, b), where k s = m ' - m .  

Proof. The underlying non-equivariant spectrum of the naive G-spectrum on the 

right-hand side of (3.2.1) is equal to S ~ A T  C~ independently of the choice of rn and n. 

Hence 

7r. (TA S:/Cs+ ) C~ -~ ~ , T  c~ eTr._: T Cd, 

where we use cr to identify the right-hand side as a direct sum. The isomorphism, 

however, depends on m and n, and different choices differ by the isomorphism of (3.2.3). 

The claim now follows from the definition of 5. [] 

Suppose that  r '  is a divisor in r. We next evaluate the map on homotopy groups 

induced from the obvious inclusion of non-equivariant spectra 

F~/r,: (T AS:/Cs+ )c'~----* (TAS1/Cs+ ) c,''. 

Let d and d ' be the greatest common divisors of r and s and r '  and s, respectively, and 

let q=rd~/r~d. 

ADDENDUM 3.2.6. I f  m and n are integers with m r + n s = d ,  then m~=mq and 

n'=nd~/d is a pair of integers with rn~/ +n~s=d ' and 

(OL m, n , O  Fr/r,O am 1 ) (a, b) : (qFd/d, a + (q -- 1) 7]Fd/d, b, Fd/d, b), 

where ~E1r s. 

Proof. The proof of (3.2.1) gives, in particular, an equivalence of non-equivariant 

spectra 

em,~: (TAS:/Cs+) c~ ---* EF(S~_, TCd). 
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Chasing through the argument, one sees that  there is, with the particular choices of m' 

and n', a strictly commutative diagram of non-equivariant spectra 

(TASt/Cs+)c~ em.> EF(S~.,T C~) 

(TAS'/Cs+)c. ' ~'~'~', EF(S~_,T c"'), 

where q: S 1 --~S 1 is the q-fold covering. Now let q!:E~S 1 --~E~S 1 be the Becker-Gottlieb 

transfer and recall that  under Spanier-Whitehead duality, 

EF(S~,  T c" ) ~- TC~ AE~ S 1, 

the map F(q, id) on the left corresponds to the map idAq ! on the right. Finally, we recall 

that  under the isomorphism _sfoz ~ r s ~ T r s  

q' (a, b) = (qa+ (q-  1)r/b, b). 

Hence the given formula for Fr/r,. [] 

Finally, it follows immediately from the definition of 6 and (3.2.1) that,  for any 

choice of m and n with mr+ns=d, the map 

6: 7r, (TA $1/C8+) C~ ---* Ir,+1 (TA S1/Cs+) c~ (3.2.7) 

is given by 

((~mnO6O(~n~)(a, b) = (0, (rs/d2)a). 

3.3. In this paragraph we evaluate the topological cyclic homology of the free 

associative Fp-algebra without unit generated by a linearly ordered set S. In passing, we 

also give a calculation of the p-typical curves on K(A) using Theorem A of [HI. 

Suppose that  k is a perfect field of characteristic p>0  and recall from [HM, Theo- 

rem 5.5] that  

7r.T(k) cp"-' ~-- SW~(k){a~}, (3.3.1) 

where an is a polynomial generator of degree 2. The Frobenius, Verschiebung and re- 

striction maps extend the corresponding maps on the coefficient ring Wn(k) and 

: a n - l ,  V(an-1):Pan,  : P  n n--l, 

where An E Wn-1 (Fp) is a unit. For degree reasons, the differential 6 of (3.2.4) is trivial. 

Therefore in this case, the identification of the homotopy groups in (3.2.5) is canonical, 

i.e. independent of the choice of rn and n. Now recall the complex E* defined in (1.7.6). 
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THEOREM 3.3.2. Let A be the free associative Fp-algebra without unit generated by 

a linearly ordered set S. Then there is a canonical isomorphism 

)Cp ~ �9 7r.T(A ~-~=E~| degan = 2, 

which is compatible with the restriction, Frobenius, Verschiebung and differential when 

these operators act on the extra generator an as in (3.3.1). 

Proof. The decomposition in (3.1.5) is equivariant, so we get an induced decompo- 

sition of the Cp~-fixed set. The homotopy groups of each summand are given by (3.2.5), 

riT(A)C,  ~-~ ~ ~ Z/p  m, i~O, (3.3.3) 
WE~o 

where m=m(w)=min{n,r -Vp(~rw)+l} .  Moreover, it follows from [HM, Theorem 7.1] 

that  under this decomposition the restriction map 

R:~ .T (A)C~-~- .~ ,T (A)Cp  ~-2 

takes the summand indexed by r to the summand indexed by w by the restriction 

map 

R: 7r.T(Fp)Cp "~-~ --~ 7r, T(Fp)C, "~-2 (3.3.4) 

and annihilates summands which are not indexed by elements in the image of r ~t0--*~0. 

We can use the bijections of (1.7.5) to index the sum above by f~n-1 rather than ft0. 

One gets 

~riT(A)Cp ~-~ ~- ~ Z ip  m, i >~ 0, (3.3.5) 
wC~tn-1 

with m--min{n, n+r-vp(~rw)}. Letting elements in ~-f~ ,~- i  correspond to the trivial 

group, we may view the sum (3.3.5) as indexed by f~. In this setup, the restriction map 

preserves the index w: it annihilates summands with w E ~ t - ~ _ 2  and is given by (3.3.4) 

on the remaining summands. Comparing this to (1.7.9), we see that  the homotopy groups 

are as stated and that  the isomorphism commutes with the restriction map. It remains 

to be shown that  the Frobenius, Verschiebung and differential are as stated. 

The Frobenius is induced from the inclusion F: T(A)C~n-I~T(A)Cp ~-2, and hence 

it preserves the index in (3.3.3) and covers the bijection f :~,~_l--~tn_2 in (3.3.5). We 

consider the summand indexed by w E ~ , - 1  and let s=pn-llw]/~rw. On this summand, 

F is the map 

F: 7ri (T(Fp) A S1/Cs+)c~-I __~ ~ri (T(Fp) A S1/Cs+)vp ~-2 
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induced from the inclusion, and was evaluated in (3.2.6). Let pr: Z / p m - * Z / p  m-1 be the 

projection. Since the fixed point spectra T(Fp)C~ ~ are all Eilenberg-MacLane, multipli- 

cation by ~? is trivial, so we get 

pr, if r>~Vp(lrw), 

F = p, if r < Vp(lrw) and i is even, 

id, if r < Vp(Trw) and i is odd. 

The claim for F and V readily follows. Finally, the claim for the differential follows from 

(3.2.7). [] 

Let E* be the complex from w let E* be the completed complex 

E* = h__mE* 
n 

and let F, V, 5:/~*-*2* be the operators induced from the Frobenius, Verschiebung and 

differential operators on E*. 

COROLLARY 3.3.6. Let A be as above, then 

TR,  (A; p) T M  E* 

compatible with the Frobenius, Verschiebung and differential. 

Proof. The groups Tl~(A;p)=Tri TR(A; p) are given by Milnor's exact sequence 

0 --* h__m(1)Tri+lT(A)Cp ~-' --* TI~ (A; p) ~ ~ 7riT(A)Cp ~-1 --* O. 
n n 

8 _ _  S S 8 The extra generator an vanishes in the limit, since R ( a n ) - p  A,~an_ 1. Finally, for i = - 1 ,  0 

the maps in the limit system on the left are surjective, so the derived limit vanishes. [] 

Let 

r,= II 
(d,k)=l  

where the dth summand is the set of continuous maps from Cp x Cd to the discrete set S. 

COROLLARY 3.3.7. The topological cyclic homology of A is concentrated in degree 

- 1  and 

WC_l(A;p) ~ ( (~ Zp)p, 
aEE 
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the group of infinite sums ~ e E  aaa, aaEZp, where, for every n>/O, all but finitely many 
aa E pn Zp . 

Proof. The previous result gives an exact sequence 

0--* TCI(A;p) ....+ ~1 F - l ) ~ 1  --* TCo(A;p)___~/~o F-l) /~0 --~ TC_I(A;p)  --~0 

and shows that  the remaining groups vanish. We first prove that  F - l :  ~1_..~1 is an 

isomorphism. Recall that/~1 consists of infinite sums ~ w c n  a~e~ (w) such that,  for every 

n~>0, only a finite number of the coefficients a~ has Vp(a~)~min{n, n+r-vp(Tcw)}. The 

Frobenius, given by Fel (w)=el (fw), acts invertibly making ~1 a Z[F, F-1]-module, and 

the topology o n / ~  is such that  this extends to a Z[F][F-~]-module structure. Hence 

F - 1  is an isomorphism with inverse 

( F - l )  -1 : ~ F  -i. 
i ~ 1  

Recall that  the Frobenius operator on ~0 is given by 

S co(w), if r >/Vp(nW), 
Feo(w) 

[ peo(w), if r < Vp(7~w), 

and let /~o and ~o_ be the submodules of sums E a~eo(w) supported on the wE~ with 

r>~Vp(Trw) and r<Vp(~rw), respectively. We define ~:/~0__~/~0 to be the automorphism 

given by ~eo(w)=eo(fw) and note the commutative diagram with exact rows 

o ~ ~ o  ~ ~o  , ~o  , o 

o , ~ o  _ _ ~  ~o  , ~ o  , o. 

The right-hand vertical map is an isomorphism with inverse 

(p~-l)-l=-~p~ ~, 
i~>0 

and finally, we have a split exact sequence 

0 - ~  ~ ~-~ ~ ~ (  $ z ~ ) ~ - ~ 0 ,  
a E E  

where r is induced from the map r fl--~G given by r r, [a])=(d; [a]). [] 
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Proof of Theorem B. We choose an equivalence P. ~ A of simplicial rings such that  

each P~ is a free associative Fp-algebra without unit. Then W(Po)F is a simplicial abelian 

group and by definition L.W(A)F is the homology of the associated chain complex, [Q]. 

We recall that  there are equivalences of spectra 

TC(A; p) _~ TC(Po; p) -~ holim TC(Ps; p). 
~ o p  

The skeletal filtration of the homotopy colimit of spectra on the right yields a strongly 

convergent right half-plane homology type spectral sequence 

El,t = ~r~ TC( Pt ; p) ~ 7r~+t holim TC(P~;p). 
Aop 

Finally, the El - term is concentrated on the line t = - 1  by (3.3.7) and El,_ 1 =W(Ps)F by 

Theorem A. [] 

Remark 3.3.8. It is in order to note that  in contrast to the case of a free associative 

algebra over Fp the topological cyclic homology of a free commutative algebra over 

Fp is not concentrated in a single degree. We let I~  denote the set of ordered tuples 

/ : ( i l , - . . , i m )  with 2<~il<i2<...<im<~n, for m~>l, and let I~={0}. Given / 6 I ~ ,  we 

denote by J(~)' the set of n-tuples k=(k l ,  ..., ks) with ks6N[1/p] such that  ki~#0 for all 

ij E/. The infinite cyclic group C acts on J( / ) '  by t.k--pk= (pkl,..., pkn); let J( i)  denote 

the orbit space. Finally, we let 

Gm = {(/, [k]) [/6/~m, [k] e J(/)}. 

Then one has 
~ Z A TCm_I(Fp[X1,...,Xn]) = ( ~ p)p. 

gEG~ 

It is non-zero if and only if O<.m<.n-1. 

(3.3.9) 
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