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Introduction

Classically, one has for every commutative ring A the associated ring of p-typical Witt
vectors W(A). In this paper we extend the classical construction to a functor which
associates to any associative ring A an abelian group W(A). The extended functor
comes equipped with additive Frobenius and Verschiebung operators. We also define
groups W, (A) of Witt vectors of length n in A. These are related by restriction maps
R:W,(A)—=W,_1(A) and W(A) is the inverse limit. In particular, Wi(A) is defined to
be the quotient of A by the additive subgroup [A, A] generated by elements of the form
zy—yx, ¢,y€A. There are natural exact sequences

0— A/[A, A L Wi (A) B W1 (4) — 0

which are useful both for proofs and calculations. We use these in Theorem 1.7.10 below
to evaluate W(A) when A is a free associative Fp-algebra without unit. The sequences
are usually not split exact, but in contrast to the classical case, this is not even true as
functors from rings to sets, i.e. W,(A) is not naturally bijective to the n-fold product of
copies of A/[A, A]. Finally, the construction W(—) is Morita invariant:

W (M, (A)) =W(A).

This more general algebraic structure arises naturally in topology: the topological
cyclic homology defined by Bokstedt—Hsiang—Madsen, [BHM], associates to any ring A
a (—2)-connected spectrum TC(A;p). We write TC.(A; p)=m.TC(A4;p). In §2 below we
prove
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110 L. HESSELHOLT

THEOREM A. For any associative ring A,
TC_1(4;ip) 2 W(A)r,
the coinvariants of the Frobenius endomorphism F:W(A)—W(A).

While it is unlikely that the higher groups TC.(A4;p) admits an algebraic descrip-
tion in general, this has been expected when A is an Fp-algebra. Indeed, the original
calculation of TC(F,; p) in [M] shows that TC(A;p) is a generalized Eilenberg-MacLane
spectrum, i.e. that the k-invariants are trivial. And in the case of a smooth algebra over
a perfect field of characteristic p, it follows from [H] that the groups TC.(4;p) may be
determined up to an extension from the de Rham-Witt complex of {I]. In §3 below, we
evaluate the topological cyclic homology of a free associative F,-algebra without unit. It
turns out to be concentrated in degree —1, and since the topological cyclic homology of
a simplicial ring may be computed degreewise, we obtain the following general formula:

THEOREM B. Let A be an associative Fy-algebra. Then
TC* (A, p) = L*+1W(A)F,
the left derived functors in the sense of Quillen of the functor W(—)r.

In an earlier paper, [H], we evaluated the complex of p-typical curves in Quillen’s
K-theory in terms of the fixed sets of Bokstedt’s topological Hochschild homology. In
Corollary 3.3.6 below, we evaluate this complex for a free associative Fp-algebra without
unit. The resulting complex bears a close resemblance with the de Rham-Witt complex
of a commutative polynomial algebra, as exhibited by Deligne-Illusie, [I], but in contrast
to the latter, it is concentrated in degrees 0 and 1.

Let K.(A;Z,) denote the p-adic K-groups of the ring A, that is, the homotopy
groups of the p-completion of the spectrum K(A). Similarly, let TC,(A;Z;) denote the
homotopy groups of the p-completion of the spectrum TC(A;p). The main result of [HM]
states that if k is a perfect field of positive characteristic p and A a finite algebra over
the Witt ring W (k), then the cyclotomic trace of [BHM] induces isomorphims

Ki(A;Z,)=TCi(A;Zy,), i>0.
When A is an Fp-algebra, TC(A;p) is already p-complete, so we have

THEOREM C. Let k be a perfect field of positive characteristic p and let A be a finite
associative k-algebra. Then the p-adic K-groups of A are given by

Ki(A; Zp) = L'+1W(A)F,

the left derived functors of W(—)p.
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We note that at primes ! different from p and rationally, one has K.(A;Z;)=
K.(A/J;Z;), where JCA is the radical. Moreover, A/J being semi-simple, the latter
splits as a product of l-adic K-groups of finite division algebras over k. These are known
when £ is a finite field by Wedderburn’s theorem and Quillen’s original calculation.

All rings considered in this paper will be associative but not necessarily commutative
or unital unless otherwise stated. We shall write G for the circle group.

It is.a pleasure to thank Mike Hopkins for the original suggestion to evaluate the

topological cyclic homology of a free associative algebra as well as for several valuable
conversations.

1. Witt vectors

1.1. For any commutative ring A, one has the associated ring of Witt vectors W (A), [W].
In this paragraph, we extend the definition of W (A} to all associative rings. If the ring
A is not commutative, W(A) will of course only be an additive group.

Let A be an associative ring and let [A, A] denote the subgroup of commutators,
that is, the additive subgroup generated by elements of the form zy—yz, z,ycA. We
recall the ghost map

w: ANo s (A/[A, ADNe (1.1.1)
given by the Witt polynomials

Wo = Qp,
— p+
W1 = ag+vpa,

2
_ P Py 2
we =agy +pa;+p-ag,

Here p is a fixed prime. One may of course factor w through the equivalence relation
which identifies two vectors a and b when their ghost components wy(a) and wy,(b) are
equivalent modulo commutators, for all n>0. We shall see that it is possible to divide
this requirement by p™.

1.2. Let B=Z{z1,...,z,} be the non-unital ring of polynomials in the non-commu-
ting variables xi,...,z, and recall that the non-unital free monoid I" of all finite words
in the variables 1, ..., z, forms an additive basis for B. The length of a word defines a
grading on I" and we let I',, denote the graded piece of degree n. The infinite cyclic group
C acts on I',, by cyclically permuting the letters in a word. An orbit is called a circular
word and two words are called conjugate if they are in the same orbit. We denote a
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typical word by & and a typical circular word by w. Note that words are conjugate
precisely when they viewed as monomials in B differ by a commutator. We refer to the
element of a circular word which is smallest in the lexicographical order as the preferred
representative. For any subset SCTI', we let S denote the set of preferred representatives
of the circular words given by the elements of S. We define a partition

Tn=]]Tna (1.2.1)
dn

Here I'y, 1 ={z7, ...,z7} is the subset of trivial words and T, 4, d>1, is defined recursively

as follows:
ded = Fd - H Fd,e’
e|d,ed
I, 4=Tgax..xTqa (n/d factors),
Fn,d = CF{IL,d

We define non-commutative polynomials
Ag(zy, . T)= Y @ (1.2.2)
wela,a
and write 6x(z1, ..., Zs)=Apk (21, ..., Zs)-

PRrROPOSITION 1.2.3. For alln>1,

(28: z,)n—zs: = Z dAg(zy, ..., :rs)"/d+6n(x1, vy Tg)y
i=1

i=1 dln,d#1
with ep(x1,...,25) a commutator.

Proof. Let t denote the generator of C' and suppose that wel’, ;. We claim that
t"wely ; if and only if djm. If d divides m then obviously t™we€lI, ;; we prove the
converse. First note that if we write w=x;,;, ... z;,_,, then

Tk L tdk+i

whenever 0<k<n/d—1 and 0<I<d—1. If m=de+r with 1<r<d-1 and t”‘o?el“;’d then
also

Tak—r S ldk—r+ls
for all 0<k<n/d—1 and 0<I<d—1. It follows that all the letters are equal, contradicting
that @ is non-trivial. Hence the claim.
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From the definitions, Ag(z1, ..., xs)™ 4= ser w, and so the claim shows that

dAd(CEl, ey xs)n/d = Z w +5n,d($1a ey Lg)
wely a4

with €, 4(21, ..., 25) €[B, B]. Now the proposition follows from (1.2.1). O

1.3. Let A be an associative ring and suppose that A has an additive endomorphism
¢: A— A which preserves the commutator subgroup and satisfies that for all z€ A and all
nzl,

2P =¢(z"" ) (modulo p"A+[A, A)). (1.3.1)

We have the following non-commutative version of a lemma of Dwork.

LEMMA 1.3.2. A sequence (wg,wr, ...) s in the image of the ghost map
w: ANo — (A/[A, A])Ne

if and only if w,=¢(wp—_1) modulo p"A+[A, A], for alln>1.
Proof. Tf (wg,wy,...) is in the image of w, then
—2

S(wn_1)=¢(al ) +pd(al” ) +.. 4" d(an1),

and so wp =¢(wy,—1) modulo p"A+[A, A].
Conversely, we may assume by induction that there exist elements ag,...,an—1€4
such that

pn—l pn—Z n—1
Wp—1=0g +paj +...+p Qn-—1

modulo commutators. Since ¢ maps commutators to commutators and satisfies (1.3.1),
we get that

n n—1
$(wn—1)=ah +pal +.+p"lab_;

modulo p"A+[A, A]. By assumption, w,=¢(wn,—1) modulo p"A+[A, A], so we see that
there exists a, such that

L n—1
wp=af +pa)  +..+p"an

modulo [4, A]. We note that the class of p™a, modulo commutators is uniquely deter-
mined. U

Let A=2{S} be the free associative ring without unit generated by the set S and

define ¢: A— A by
¢(Z aaﬁ) =Zaaa~1", (1.3.3)
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where the sum runs over finite words in S. Then ¢ is an additive endomorphism, which
preserves commutators and (1.2.3) furnishes an induction argument which shows that
(1.3.1) holds. Given a linear ordering of the set of variables S, we define a preferred
section

oo: A/[A A - A

of the projection as follows: a basis for A/[A, A] is given by the set of circular words
w with letters in S. We define oggw to be the preferred representative in the class w
and extend by linearity. In the proof of (1.3.2) we may choose a,, to be this preferred
representative of its class modulo commutators. Therefore, we have

ADDENDUM 1.3.4. If A=Z{S} is the free associative ring without unit on a linearly
ordered set S, then there is a preferred set section

o: w(AN0) — ANo

of the ghost map. 0

We define a new series of non-commutative polynomials 7, s20. Here r; is a poly-
nomial in the variables x;;,y;;, where i=0,1, ..., 5; j=0,1,...,n;. Let

U
&= E Tij¥Yij —Yi; Tij-
J=0

Then rg=¢¢ and r;, for s21, is defined by the recursion formula

Tn =€n—00(p_"(wn(r0, veey Tn—1, O) —¢(wn_1(ro, ceey 7'"_1)))). (135)

Now let A be any associative ring. The values of the polynomials r, $220, as the variables
z;; and y;5, 120, j=1, ..., n;, run through all elements of A, define a subset

N(A) c ANo. (1.3.6)

We note that N(A) is non-canonically bijective to [A, A]N°. Indeed, choose a represen-
tation €=} z;y;—y;z; of each commutator in A. Then for a given (ro,71,...)EN(A),
we can define ¢; recursively using (1.3.5). The commutators ¢;, ¢20, obtained in this
way are uniquely determined by the vector (rg,71,... )€N(A). In particular, if A'— A is
a surjective ring homomorphism then N(A’)— N(A) is also surjective.
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LEMMA 1.3.7. The preimage of zero under the ghost map
w: AN° — (A/[A, A])No

contains N(A), and the two subsets are equal if A/{A, A] has no p-torsion.

Proof. We show by induction that wy,(rg, ..., 7,) =0, the case n=0 being trivial. We
have

’wn('f'(), ceey Tn) = wn('r01 ey -1, 0) +pn’rn

and by (1.3.5) and induction p™r,=—w,(rg,...,7n_1,0) modulo commutators. Hence
N(A) is mapped to zero by the ghost map.

Conversely, choose a bijection of N(A) and [A4, A]N¢, and suppose that (ag, a1, ...) is
mapped to zero by the ghost map. Let us write 7} (&g, ...,£n—1) for the second term on

the right in (1.3.5). We must find a sequence (&g, €1, ...) of commutators such that the
following equality holds

U =En—Th(€0, -y En—1)-

We are given that for every n>0,
n n—1
ab +pal +.+4p"an=0

modulo commutators and may assume by induction that a;=r;(eo, ...,€;), for i<n—1.
The argument above implies that

AT n—1,p —pn./
rg +ory 4Pl =p"r (g0, En—1)

modulo commutators, and hence p™(an+77,(€o,...,€n—1)) is a commutator. Therefore,
if A/[A, A] has no p-torsion, a,+7/,(¢0,...,En—1) is a commutator &,. This proves the
induction step. U

1.4. We now consider the free associative ring without unit,
U= Z{a()) bO) a, b17 "'}5

with the generators ordered as indicated, and let ¢: U —U be as above. We define non-
commutative sum and difference polynomials s; and d; by

(s0, 81, ...) = o (w(ag, a1, ... ) +w(be, by, ... )},

(1.4.1)
(do,ds,...) =0c(w(ag, a1, ...)—w(by, by, ...)).

Then s; is a non-commutative polynomial in the variables ay, by, ..., @;, b; and similarly
for d;. We note that if we map U to the commutative polynomial ring on the same set
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of generators, the polynomials s;(a,b) and d;(a,b) are mapped to the classical Witt sum
and difference polynomials.
We define an equivalence relation on the set AN° of vectors in A by

a~b & d{a,b)eN(A) (1.4.2)
and note that the ghost map factors through it. For if a~b, then
w(a) —w(b) =w(d(a, b)) =0.

LEMMA 1.4.3. Let m: A'— A be a surjective ring homomorphism, and let a and b
be two equivalent vectors in A. Then there exists equivalent vectors a’ and b’ in A’ such
that 7a’'=a and wb’'=b.

Proof. In the equation r=d(a,b) either two of the indeterminates determines the
third. Indeed,

di(ao, bg, ..., a;,b;) = a; —b;+ polynomial in ag, bg, ..., @i—1,b;—1-

Now let a and b be equivalent vectors in A and let r=d(a,b); then r€ N(A). We choose
a vector @’ in A’ and '€ N(A’) such that ma’=a and 7r'=r, and let b’ be the unique
solution of the equation r'=d(a’,b’). Then mb’ satisfies the equation r=d(a,7d’), and
hence b’ =b. a

PROPOSITION 1.4.4. The set of equivalence classes
W(A) = ANe/~
with the composition a+b=s(a,b) is a functor from associative rings to abelian groups
such that the ghost map w: W(A)— (A/[A, A)N° is a natural homomorphism.
Proof. If A/[A, A] has no p-torsion, then Lemma 1.3.7 shows that the ghost map
w: W (4) — (A/[A, ADN°

is an injection onto a subgroup and w(s(a,b))=w(a)+w(b). For a general A, we choose
7: A'— A surjective with A’/[A’, A’] p-torsion free. If a; and ay are equivalent vectors
in A then by Lemma 1.4.3 we can find equivalent vectors a} and a} in A’ such that
ma}=a; and mah=ay. This shows that the composition a+b=s(a, b) factors through the
equivalence relation of (1.4.2). To prove associativity, given vectors a,b and c in A, we
choose lifts o/, b’ and ¢’ to vectors in A’ and calculate

s(a, s(b,c)) =ms(a’,s(t/,c")) =ns(s(a’,b'), ') = s(s(a, b),c).

The additive inverse of a is given by d(0,a). One shows that this factors through the
equivalence relation and verifies the remaining abelian group axioms in a similar man-
ner. g
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Definition 1.4.5. We call W(A) the group of Witt vectors over the ring A.

We note that for any pair of rings W(Ax B)~XW(A)xW(B). In particular, if A is

an algebra over a commutative ring k, we get a pairing
W(k)xW(A) - W(A4), (1.4.6)

and an argument similar to the proof of (1.4.4) shows that this makes W(A) a module
over the ring W (k).

1.5. We let U'=Z{ag,a1,...} with the variables ordered as indicated and note that
U’ contains the Witt polynomials wi:agl—i-...%—p"ai. Let f;=fi(ag,a1,...,ai+1) be the
non-commutative polynomials given by

(fO, fla ) :O(wth; )7
where o is the section of Addendum 1.3.4. We have
fo=af+par, fi=(1-p" ')a}—-61(af,par)+paz, ..,

and in general the Kummer congruences show that f,=a? modulo p. Now let A be a
ring and define the Frobenius operator by

FW(A)—>W(A), F(ao,al,...):(fo,fl,.,.). (151)

An argument similar to the proof of Proposition 1.4.4 shows that F is well-defined and
additive. We also note that if A is an F,-algebra, then F(ag,a1,...)=(a},a?,...). We
define the accompanying Verschiebung operator by

V. W(A)HW(A), V(ao,al,...)z(O, ao,al,...). (152)
Again this is well-defined and additive. Moreover,
FV=p

Indeed, if F' and V' are operators on (A4/[A, A])N¢ such that F/w=wF and V'w=wV,
then one easily calculates F'V'=p. Hence we have FV=p on W(A) whenever A/[A, A]
has no p-torsion. But taking Witt vectors preserves surjections, so the formula holds in
general.



118 L. HESSELHOLT

1.6. The relation polynomials r; and the sum and difference polynomials s; and d; all
have the property that they only depend on the variables z,;,y,; and a,, b,, respectively,
with s<i. Therefore, we can repeat the construction of W(A) starting from vectors of
length n and get the group of Witt vectors of length n,

Wo(A)=A"/~ (1.6.1)
with addition given by the first n sum polynomials,

(a07a17 -"7an—l)+(b07bl7 "'7b’n—1) = (807817 "*7571—1)-

Therefore, W (A) may be identified with the inverse limit of the W, (A) over the restriction
maps
R: Wn(A)—‘ n—l(A)a R(ao,...,an_l)Z(ao,...,an_g). (162)

The Frobenius and Verschiebung operators reduce to

F:W,(A) > W,_1(A), V:W,_1(4) > W,r(4),
which, on the other hand, induce the original operators F,V: W(A)—W(A) on the limit
over R.

PROPOSITION 1.6.3. The sequences
vk R"
0— Wp(A) — Woyr(A) — Wi(A)—0

are exact.

Proof. Let Ns(A)C A® denote the analogue of (1.3.6). We choose representations of
all commutators in A such that we get a bijection between N (A) and [A, A]®. A repre-
sentative of a typical element in the kernel of R™ has the form

a = (7‘0, ey T—1,0g, ...,an+k_1)

with (rg,...,7k~1) €Nk (A). Let g, ...,£k—1 be the corresponding sequence of commuta-
tors; let

r= (To, s The—1,Tk> ...,T‘n+k_1) S Nn+k_1(A)

be the vector which corresponds to the sequence of commutators €q, ...,€5-1,0,...,0. We
now let b be the unique solution to the equation r=d(a,b). Then b is equivalent to a and
by inspection of the difference polynomials, we see that b has the form

b= (O, weny O, bk, “eey bn+k—1)-
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This shows that ker R Cim V*. The opposite inclusion is trivial. ]

Remark 1.6.4. We note that Wi (A)=A/[A, A], so in particular, Proposition 1.6.3
gives exact sequences

0— Wi (A) -5 Wiy (4) 2 A/[A, A] — 0.

We recall that when A is commutative, R™ has a natural multiplicative (but of course,
non-additive) section given by the Teichmiiller character,

Ti A= Wphi1(4), 7(a)=(a,0,..,0). (1.6.5)

In the non-commutative setting, we still have the map 7, but it does not in general factor
over A/[A, A]. In fact, although W, (A) is bijective to the product (A/[A, A])", there
exists no natural bijection. To see this, suppose that there were a natural set section

v: AJ[A, Al — Wa(A)

of the restriction, and consider the ring homomorphism ¢: Z[c]—é{x, y} given by ¢(c)=
zy—yz. Let us write Azi{x, y}. By naturality, we would have a commutative diagram

Zlc| —— W, (Z] c]) —£ 7

l‘f’ i¢

AJ[A Al ——W(A) —E—~ A/[A, A].

-<—

Since v is a section of the restriction, v(c)=(c, f(c)) for some f(c)€Z[c], so F(v(c))=

c?+pf(c). By the commutativity of the diagram, we have

(xy—yz)P+pf(zy—yz) =0 (1.6.6)

modulo commutators. We shall see that this is impossible. We have f(c)=}_ a,c"™ and
hence

flay—yz) = Zan(wy yz)"

Here (zy—yx)™ is a homogeneous polynomial of degree 2n, which is not a commutator
unless n=1. Since (zy—yx)? is homogeneous of degree 2p we must have f(c)=a,c?, and
then (1.6.6) becomes

(zy—yz)" +pap(zy—yz)* =0
modulo commutators. Now (xy—yx)P is divisible by p but not by p? modulo commuta-
tors. Therefore, this equation is not satisfied for any integer a,.
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1.7. Let S be a linearly ordered set and let A=F~‘p{S} be the free associative Fp-
algebra without unit generated by S. In this paragraph we evaluate the group of Witt
vectors W(A). The calculation is inspired by Illusie’s paper [I].

Consider the free associative Qp-algebra without unit generated by S,

L= QP{S};

we recall the structure of the Hochschild homology of L. Let Qg be the set of circular
words with letters in S, that is, the set of orbits of the action by the infinite cyclic group
C on the set T' of finite non-empty words in S by cyclically permuting the letters in
words. The period of w, by which we mean the length 7w of the orbit w, divides the
length |w| of the word, and then

HH.(L/Qp) = Qp(Q)®A{c}, dege=1, (1.7.1)
with Connes’ B-operator given by the formula
B(wel) = (|w|/mw) w®e.
The map ¢: L— L of (1.3.3) induces a map of the Hochschild groups which satisfies
Bé=pdB. (1.7.2)

Let D* be the complex obtained from HH,(L/Q,) by inverting ¢ and with the differential
given by (1.7.2); we describe D* in more detail.
Let C, be the quotient of C of index n and note that

QO = H Map(Cn, S)/C$

nzl

where the action by C on the set of maps is induced from the action on C;,. We let 5,,
be the profinite and hence topological group

Cp = }iﬂ Cpn,
n
where the limit is over the natural projections. In other words, 6’,, is the additive group

of p-adic integers written multiplicatively. Then C’C@p acts by multiplication and we
define

Q= J[ ZxMap(CyxCiy,S)/C, (1.7.3)
(d.p)=1
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where the action by C on the mapping space is induced from the diagonal action on
CpxCq. We write elements of 2 as

w=(d;r[a]),

where d is a natural number prime to p, r€Z and [@] is a C-orbit of continuous maps
from @,xCd to S. By the length of w we mean the rational number |w|=p"d and by
the period we mean the length 7w of the orbit [@]. The period is finite because « is
continuous.

We identify Qo CQ with the subset of those w where |w| is an integer and divisible
by nw. More generally, we define 0, C§ to be the subset of those w such that p™|w]| is
an integer divisible by 7w and note that

Q= U Q. (1.7.4)
nz=0
We have bijections
[ —Qu1,  fldyr[a])=(d;r+1,[a]), n>1, (1.7.5)

which induce a bijection f:Q2—Q, and the inclusion 27C{, followed by the bijection
fr:Q,—Q is equal to ¢": Qy— Q. Hence 2 is the set obtained from 2y by inverting ¢
and

D*=Q,()@A{e}, dege=1,

with the differential B given by the formula (1.7.1).
We define a subcomplex E*CD* as follows: call an element T=Zweﬂ T wee
integral if x,€Z,, for all we?, and let

E*={r € D* |t and Br are integral}. (1.7.6)

More concretely, E¢, i=0,1, is a free Z,-module on the generators e;(w), one for each
w€fd, given by the formulas

w1, if vp(mw) <7,
eo(w) = ,
pr (M) =Tu@1, if vp(rw) >, (1.7.7)
e1(w) =wRe.
The linear automorphism F: D*— D* induced from the bijection f:(— and the endo-
morphism V=pF~! both restrict to monomorphisms of the subcomplex E*, and more-

over,
FV=VF=p, BF=pFB, VB=pBV. (1.7.8)
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The complex E* has a decreasing filtration given by
Fil"E'=V"E‘+BV"E*™! (1.7.9)

and we write EX=FE*/Fil"E*. In other words, Fil"E" is the free submodule of E* on
generators p™e;(w), where m=min{n, n+r—v,(nw)}. We note that Ef =HH,(A).

Let K be the free Z,-module generated by o and note that K CE%. We compose
the restriction of the section oo: A/[A, A]— A to Qo C A/[A, A] with the map 7: A-W(A)
to obtain a map tg: Q9 —W(A). We then extend this by linearity to a map

to: K = W(A)

using that W(A) is a Zy-module.

THEOREM 1.7.10. The map g extends uniquely to a linear embedding ¢: E°—W(A)
such that Vi=.V. Moreover, this extended map induces isomorphisms

L E2 —W,(A4),
for all nz1.
Proof. If w¢Qp then we can write
o (w) = pPr (1)~ = YT =Ty
where wo=(d; vp(nw), [a]) €Q. It follows that

E‘):ZV"K, (1.7.11)
nz20
from which the unigueness of the extension immediately follows. On the other hand, if
an extension exists, it must be given by t=V " on the submodule V*K CE®. To see
that this gives a well-defined map, we must show that

V™o =V VPENVTK — W(A).

Suppose that m<n. Then V*KNV*K=V"(KNV"~™K), so we may assume that m=0.
Suppose that wg€Qy and let z=V™wy. We assume that x€ K. This means that if we
write z=p™w then we€y. Now recall that )y is canonically bijective to the set of circular
words in S and note that if & is the preferred representative of w, then the preferred
representative of wq is @P". We find

to(@) =p"(@,0,...) = F"V™(@,0,...) = (0,...,0,&"",0,...) = V*(@",0,...) =V"(0(wo0))
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and hence we get a well-defined map ¢: E°—W (A) which commutes with V.
To prove the second part of the theorem, we recall that V: E°— E? is a monomor-
phism so that
V™ EYVE® - V"EY V" E®
is an isomorphism. Moreover, we have KNVE?C pK and also pK=VFKCVKCKNVE®.
This gives a map K/pK — E°/VE? which is an isomorphism by (1.7.11). Finally, K/pK =
A/{A, A] and the map of short exact sequences

0—= A/[4, A] —"—EY, | Ep 0
0— A/[A, Al > W, 11 (A) —E> W, (4) 0
furnishes an induction argument which finishes the proof. W

COROLLARY 1.7.12. The group of Witt vectors W(A) is canonically isomorphic as
a Zy-module to the set of infinite formal sums 3 o Tweo(w) with x,€Z, such that
vp(2y) 2 up(nw)—7 and for every N 20 the set

{weQ|vp(z,) <N}

is finite. Moreover, the Frobenius F: W(A)—W (A) s induced from the map f:Q—Q of
(1.7.5).

2. Topological cyclic homology

2.1. In this paragraph we prove Theorem A of the introduction. The result was estab-
lished for commutative rings in [HM]. The topological cyclic homology functor associates
to any unital ring A a (—2)-connected spectrum TC(A;p). We first recall how this is
defined and how one may extend the definition to all associative rings. For a thorough
treatment see [HM]. In this paragraph, G will denote the circle group S'. The finite
subgroup of GG of order r will be denoted C,.

For any unital ring A, one has the topological Hochschild spectrum T(A) defined by
Bokstedt, [B]. This is a G-equivariant spectrum indexed on a complete G-universe U in
the sense of [LMS]. Therefore, the obvious inclusion map

F: T(A)¢ —T(A)%" (2.1.1)

from the C,s-fixed set to the C,-fixed set is accompanied by a transfer map going in the
opposite direction
T(A)® —T(A)"
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We call the maps F, and V; the rth Frobenius and Verschiebung, respectively. However,
T'(A) has an additional structure: it is a cyclotomic spectrum, see [HM, §2]. In particular,
there is an extra map, called restriction,

Ry: T(A)C —T(A)C-. (2.1.2)
The restriction and Frobenius maps satisfy
R.-R;=R,s, F.Fs=F,, R, Fs=F:R,, (2.1.3)
and on the level of homotopy groups, one has in addition
R.Vs=VsR,, F.V,=r.

We shall often restrict attention to the p-subgroups Cp~ for some prime p. We then
simply write R, F' and V instead of R,, F, and V.

In general it is very difficult to analyze the fixed sets of an equivariant spectrum.
However, for a cyclotomic spectrum, and in particular for T(A), one has the following
fundamental cofibration sequence of spectra

T(A)ho,n —o T(A)C7" 2o T(4)Com-., (2.1.4)

The left-hand term is the homotopy orbit spectrum whose homotopy groups are approx-
imated by a strongly convergent first-quadrant homology type spectral sequence

E?,t = Hy(Cpn; mT(A)) = 7fs+tT(A)hc,,m

where 7, T(A) is a trivial Cpn-module.
Consider the functor
. — 1 Cpn
TR(A; p) =holim T'(A)>»". (2.1.5)
R
The Frobenius maps F:T(A)%" —T(A)%"~" induce a self-map of TR(4;p), which we
also denote F', and now topological cyclic homology is defined as the homotopy-fixed set

TC(4; p) = TR(A; p)MF. (2.1.6)

It is canonically equivalent to the homotopy fiber of F —id: TR(A;p)—TR(4;p).
More generally, if A— B is a map of unital rings, the relative topological Hochschild
spectrum
T(A — B) =hofiber(T(A) — T(B))
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is again a cyclotomic spectrum, so the above discussion applies to T'(A— B) as well. Now
if A is a possibly non-unital ring, we can form the associated unital ring Z x A, which is
Z$ A with multiplication given by the formula

(z,a)(z',a’) = (zz', xa' +azx’+ad’).
This is an augmented ring with augmentation ideal A and we define
T'(A)=T(Zx A 7). (2.1.7)

If A is unital, we have the ring homomorphism ¢:Zx A— A given by ¢(z,a)=z-1+a
and hence a ring isomorphism & x ¢: Zx A—Z x A. Moreover, the topological Hochschild
spectrum preserves products such that we get a G-equivariant equivalence T'(Zx A)—
T(Z)xT(A), ie. for all closed subgroups C CG, the induced map of C-fixed point spectra
is an equivalence. It follows that in this case, we have a canonical G-equivalence

T'(4) — T(A).

We shall therefore simply write T'(A) for the spectrum in (2.1.7). As already mentioned
T(A) is a cyclotomic spectrum, so we can define TR(4; p) and TC(4;p) by the formulas
(2.1.5) and (2.1.6), respectively. Finally, we note that since homotopy limits commute,
we get a cofibration sequence of spectra

TC(4;p) — TC(Zx A; p) = TC(Z; p). (2.1.8)

If £ is a unital ring and A is a k-algebra, we could also form the associated unital
k-algebra kx A and define a functor T”(A)=T(kx A-=+k). However, since the topolog-
ical Hochschild spectrum only depends on the underlying ring of a k-algebra, T"(A) is
canonically G-equivalent to T'(A). So for k-algebras, we can replace Z by k in (2.1.8).

2.2. We note that for any ring A,

where we remember that HHy(A)=A/[A, A]. For commutative rings, HH;(—) preserves
surjections of rings, but for unital rings in general, this is not true. Instead one has an
exact sequence

HH, (A) — HH, (A/I) — I/[I, A] — A/[A, A]

for any two-sided ideal I C A.
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LEMMA 2.2.1. For any unital ring A, there is a unital ring B and a ring homomor-
phism B— A such that

HHZ(B)—>HH1(A), i=0,1,
are surjections and such that B/[B, B] is a free abelian group.

Proof. Let V=Z{A} be the free associative unital ring on the underlying set of A.
Then V/[V,V] is a free abelian group and HHo(V)—HHp(A) is surjective. However,
HH,(V))—HH; (A) need not be a surjection. To obtain this, we first construct, for each
cycle z€ A® A, a ring homomorphism U, — A such that the class of z is in the image of
the induced map HH;(U,)—HH;(A). Suppose that

z= Zn: a; b;
i=1

and let U, be the associative ring on generators z; ,, ¥;i. (¢=1,...n,) subject to the
relation

Z(xiyzyi,z_yi,zzi,z) =0. (222)
i=1

Then there is a unique ring homomorphism U, — A which sends z; , and y; , to a; and b;,
respectively. Under this map, the cycle 2’=3""" | z; ,®y; . is mapped to 2. Hence the
class of 2’ is mapped to the class of 2z under the induced map

Now let B be the generalized free product of V and the U, as z runs through all cycles
in A®A, that is, the coproduct in the category of unital associative rings. Concretely, B
is the associative ring on generators a€ A and z; ., y; ., where z runs through all cycles
in A®A and i=1,...,n,, subject to the relations (2.2.2). We have ring homomorphisms
B— A and, for each cycle z, U, — B such that the composite U, — B— A is the original
map U, —A. Hence the induced map

HH,(B) — HH,(4)
is surjective. Finally, we choose a linear ordering of the set of generators. Then a basis

for B/[B, B] is given by the circular words in the variables a, z; . and y; . which does
not contain a factor z1 ,y; .- a
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PROPOSITION 2.2.3. For any associative ring A, the sequence
0— moT(A) L5 mT'(A)Cr™ o moT(A)Crm1 — 0

s exact.

Proof. The fundamental cofibration sequence (2.1.4) induces a long-exact sequence
of homotopy groups

oo > T(A)Cpn—1 2, 0T (A)nc,n X, moT(A)%" &, moT(A)%Pm—1 — 0.

Moreover, the edge homomorphism of the spectral sequence of (2.1.4) gives an isomor-
phism
tn: T (A) = T (A)nc,n

and [HM, Lemma 3.2] shows that Not,=V™ We must show that the boundary map @
is trivial.
Suppose first that A/[A, A] is p-torsion free. By (2.1.3) the composition
vr Con Fm
moT (A) — meT(A)~*" — meT(A)

is multiplication by p", and therefore in this case, V™ is injective. Suppose next that A
is a unital ring and let B— A be as in Lemma 2.2.1. We consider the diagram

ML (B)acyn —>mT(B) 7"~ my T(B) Ot —2—0

l | l

ﬂ-lT(A)thn _N_> WlT(A)C?n __R; WlT(A)Cpn_l .
The spectral sequence (2.1.4) gives an exact sequence
HH, (B) % 1, T(B)c, . — HHo(B)/p" HHo(B) — 0

and similar for A. It follows that ﬁlT(B)thnqwlT(A)hcpn is surjective. An induc-
tion argument based on the diagram above now shows that m T'(B)C>™ —m; T(A)C>™ is
surjective, for all m >0, and hence

:m T (A1 — T T(A)rCpn

is trivial. This proves the proposition for any unital ring, and finally, the general case
follows from (2.1.7) and the (3x 3)-lemma. O
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For any ring A, there is a natural map of sets
A A—meT(A)C. (2.2.4)

This was defined in [HM, 3.3] for unital rings and extends by (2.1.7) and naturality to
all rings. Let m: A—A/[A, A] be the projection. Then one has the following formulas,
proved in [HM, Lemma 3.3.2]:

R.cAra=ma, F,oA.a=ma". (2.2.5)
We consider the following map of sets

n—1
I AP g T(A)C 2, I(ag, .y Gno1) = z VH{(Apn-1-i(ai)), (2.2.6)
i=0

where [n—1]={0,1,...,n—1}. We also consider the map of spectra
W:T(A) 1 - T(A)P (2.2.7)

which on the ith factor is given by R*~!1~*F*. It induces an additive map on homotopy
groups, which we also denote w, and the relations (2.2.5) show that

Wol =w: AP~ - (4/[4, A1 (2.2.8)

where w is the ghost map of (1.1.1).

THEOREM 2.2.9. For any associative ring A, the map I factors to an isomorphism
of abelian groups
I: Wy (A) = moT(A) e

which commutes with the operators R, F and V.

Proof. We show by induction that the map I of (2.2.6) is surjective, the case n=1
being trivial. The fundamental cofibration sequence (2.1.4) gives an exact sequence

AV o T(A)Comr By g T (4)Crm2 =0
and it follows from [HM, Lemmas 3.3.1 and 3.3.2] that the image of I (ag, ---, an—1) under
R is equal to f(ao, ..-y@n_2). Therefore as ay, ..., an—2 vary, the elements f(ao, ey Op—1)
of 71'0T(A)Cv"‘l form a set of coset representatives of the image of A under V"~1. Hence
Tis surjective. In particular, it follows from (2.2.4) that the image of the homomorphism

@: moT(4) % — (A/[4, A" Y
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is equal to the image of the ghost map.

Suppose that A/[A, A] has no p-torsion. Then by (1.3.6) the ghost map w: W, (4)—
(A/]4, A])["‘l] is a monomorphism. Therefore, to prove the theorem in this case it
suffices to prove that the same holds for the map w above. Again we proceed by induction
from the trivial case n=1. In the induction step, we use the following map of exact

sequences
7rOT(‘A)thn—l A 71'0T‘(A)CP"_1 £ 7r0T(AA)CP"”2 —(
J/trf lﬁj lﬁ;
0 —— T (A) —— 7T (A)P~1] ——= 1, T(4)l»~2 ~0.

The left-hand vertical map is the transfer associated with the projection
pr: T(A) /\ECpn—l g T(A) /\Cpn—l ECpn—l s

and ¢ and 7 are the inclusion as the last coordinate and the projection away from the
last coordinate, respectively. The left-hand square commutes by [HM, Lemma 3.2] and
the right-hand square by [HM, Lemmas 3.3.1 and 3.3.2]. Moreover, the composition

T (4) 25 1T (A)nc,,_, 0 moT(A)

is multiplication by p"~! and hence trf is injective. Therefore, @ is injective by induction
and the five lemma.

In the general case, we choose a ring epimorphism A’— A such that A'/[A’, A’] has
no p-torsion. Then myT(A")—>ngT(A) is onto and an induction argument based on the
diagram

moT(A') Yo 1o T(A')Com -2 — B> 1 T(A7)Cor—2 ——> 0

| | |

moT(A) _‘/.& WoT(A)CP"_l _R 71.()T(A)C',,n—z — =0

shows that so is 7T (A")%»"~1—myT(A)%~. Hence I factors to a surjection of abelian
groups
I: Wy (A) — moT(A)Crm1,

Moreover, we have the following commutative diagram

0 Wi(4) — > W (4) —B = W, _1(A) ——0

C T

0 —> mT(A) Y 7y T(A)Cr-t —Bs 11 T(4)Con—2 —— 0
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with the rows exact by (1.6.3) and (2.2.3), respectively. The claim now follows by induc-
tion and the five lemma. g

We recall that topological Hochschild homology and its fixed points are Morita in-
variant. This is proved in [B] and {BHM] for a unital ring, and the non-unital case follows
easily from (2.1.7) and the fact that M, (Zx A)~M,(Z)x M,(A). We may therefore con-
clude from (2.2.9) that there is a natural isomorphism

Wi (Mn(A)) 2 W, (A). (2.2.10)

One would like also to have an algebraic proof of this fact.
We can now prove Theorem A of the introduction. The homotopy groups of the
spectrum TR(A;p) defined in (2.1.5) are given by Milnor’s exact sequence

0~ lim W7 T(A) % — 1, TR(A; p) — limm T(A) 7 — 0.

For =0 the maps in the limit system on the left are all surjective and hence the derived

limit vanishes. Therefore, we obtain that for any associative ring
TRo(A; p) = W(A). (2.2.11)

Finally, TC(A; p) is the homotopy fiber of F—id: TR(A;p)—TR(A;p) and since TR(A; p)
is a connective spectrum, Theorem A follows.

3. Free algebras

3.1. In this paragraph, we evaluate the topological cyclic homology of a free associative
Fp-algebra without unit and prove Theorem B of the introduction.

Let k be a unital ring and let S be a set. The free associative k-algebra with unit
generated by S, which we denote k{S}, is the monoid algebra of the monoid (S) of all
finite words in S under concatenation. We recall that for any monoid I', one has the
cyclic bar-construction N (T") introduced by Waldhausen. It is a cyclic set in the sense
of Connes with n-simplices

NY(T)=Tm! (3.1.1)

and cyelic structure maps

(707---3’71;7%'-}-17'“,771), 0<’L<Tl,
di(IYOa (X33} ’Y'n) =

('7n70)71a""7n—1)a i=n,
311(703 neey 7n) = (70) ceey Yis ]-a Yi41y ey ’771)7 0 < 1 < n,
tn('YOv 7’Yn) - (’Yn: Yo, -+ '7n—1)-
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In particular, N (I') is a simplicial set so we can take its geometric realization. The
amazing fact about cyclic sets is that the realization carries a continuous action by the
circle G, see e.g. [J].

We shall use Theorem 7.1 of [HM] to study the topological Hochschild homology
of k{S}. It states that there is a natural equivalence of G-spectra indexed on U,

T(k{S}) = T(R)AINZ ((S)]+ (3.1.2)

where the smash product on the right is formed in the category of G-spectra indexed
on U. The infinite cyclic group C acts on (S) by cyclically permuting the letters in a
word, and for each orbit w, the subset of N ((S)) consisting of those simplices (o, ..., W)
for which the product Wp*...*w, Ew is preserved under the cyclic structure maps. We
denote this cyclic subset by N ({S});w) and note the splitting

No(S) = [ NoUSHw). (3.1.3)

wERg

The realization decomposes correspondingly. Recall the notion of length and period of
circular words from §1.7.

LEMMA 3.1.4. Let C(w) denote the cyclic group of order \w|/mw. There is a G-equi-
variant equivalence

INZ((8);w)| ¢ §Y/C(w)+,
which depends on a choice of representative for the circular word w.

Proof. We choose a representative @ for the orbit w and write |w|=n+1. If o=
(Wo, ...,wr) is a simplex in N ((S);w), there exists by definition u,€C such that
U Wo*...xwWy=w. Hence the simplex ¢ is determined by the following data: the or-
dered partition (|wol, ..., |wk|) of |w| and the element u,€C, or equivalently, a weakly
increasing function 6,: [n]— [k] and the element u,€C. Moreover, two simplices o and
o’ are equal if and only if 6, and 6,/ are equal and the product u;'u,  acts trivially
on w. We also note that w is a transitive C-set with isotropy group the subgroup of C
of index 7w.

We recall that the cyclic category A has the same objects as the simplicial category
A but more maps: the automorphism group of [n] is cyclic of order n+1 with a preferred
generator 7, and any morphism f€A([k],[n]) decomposes uniquely as f=uf, with ue
Auta ([k]) and §€ A([k], [n]). Also recall the standard cyclic set

Aln]=A(=, [n]),
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which is the free cyclic set generated by the identity ¢p,: [n] —[n]. Suppose that W=xo ...z,
with z;€S5. Then there is a unique cyclic map

a: An] = N¥((S);w)

which maps ¢, to the n-simplex (g, ..., z,). The automorphism group of [n] acts on A[n]
through cyclic maps; let C(w) denote the subgroup of index mw. It follows readily from
the characterization of the simplices in N (({S);w) that « factors to an isomorphism of
cyclic sets

a: A[n]/C(w) = N¥ ((S); w).

The realization of A[n] is homeomorphic to S'x A™, where G acts by multiplication in
the first variable. Moreover, the homeomorphism may be chosen such that 7,, € Aut ([n])
acts by the formula

1

n+1;ula ooy Up,y Uo),

Tn(T; UGy ooy Un ) = (x—
when we identify S! with R/Z, see [HM, 7.2]. It follows that we have a G-equivariant
homeomorphism

INY((S);w)| 2= 8% gy A™

Finally, $'/C(w) is a strong G-equivariant deformation retract of $*xc(,) A™. O

If the set S is linearly ordered, then we have a preferred representative of w. For later
reference we note that if a word & is a preferred representative then so is any iterated

concatenation w*...*w of it.

PROPOSITION 3.1.5. Let k be a ring and let k{S} be the free associative k-algebra
without unit generated by a linearly ordered set S. Then there is a preferred equivalence
of G-equivariant spectra indexed on U,

T(’:?{S}) zc \42 T(k)/\Sl/C(w)+’

wello
where the wedge runs over the set Qo of non-empty circular words in S.

Proof. The associative k-algebra with unit k{S} is augmented over k and the aug-
mentation ideal is the free associative algebra without unit generated by S. Moreover,
the map T(k{S})—T (k) induced by the augmentation corresponds under (3.1.2) to the
map which collapses all the non-trivial summands w in (3.1.3) to the base point. Now
the claim follows from (2.1.7) O
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3.2. Let T be a G-spectrum indexed on a complete G-universe I and let j: Us-u
be the inclusion of the trivial universe. We write j*T for the G-spectrum indexed on U®
obtained by forgetting the value of T on non-trivial representations. We also call 5*T a
spectrum with a G-action or a naive G-spectrum. In this paragraph, we determine the
structure of the C,-fixed point spectrum

F(TNSYCoy),

which is a spectrum with a G/C,.-action.

The rth root defines a group isomorphism g: G—G/C,, which allows us to view
a spectrum D with a (G/Cy)-action as a spectrum gf D with a G-action. If T is a
spectrum with a G-action, we write T'(¢) for the spectrum T with G acting through the
ith power map.

PropPoSITION 3.2.1. Let T be a G-spectrum indexed on U. For positive integers r
and s, let d=(r,s) be the greatest common divisor and write '=r/d and s'=s/d. Then
for every pair of integers m and n such that mr+ns=d there is a natural non-equivariant
equivalence

0%, 5" (TASY/Csr) = 0f (G(r's') 1 NG, 5* T (mr"))
gwen by a chain of equivariant maps of spectra with a G-action.

Proof. We recall from [LMS, p. 89] the duality equivalence of G-spectra indexed
on U,

TAS'/Csy =, TF(SY/Cyy, T).

It induces, in particular, an equivalence of spectra with a G-action
j*(T/\Sl/CS+) ] j*ZF(Sl/CS+a T) = EF(SI/CS-I-?j*T)'

We evaluate the C,-fixed points of the spectrum on the right. To this end, we recall that
if G is any group, HCG a closed subgroup and X a left G-space, then the function space
F(G/H,,X) carries both a left G-action and a left action by the Weyl group WH. The
G-action is by conjugation and the left WH-action is induced from the right action of
WH on the canonical orbit G/H. Moreover, evaluation in H defines a WH-equivariant
homeomorphism

XH=F(G/H, X)C.

If we apply this space-wise in the spectrum at hand, we get a (G/C;)-equivariant iso-
morphism

F(G/Cor,j*T)%" 2 F(G/Cry, F(G/Coy,5*T))% 2 F((G/Crx G/ Cy)+,5*T)°.
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For a spectrum D with a (G x G/C,)-action and integers i and j, we write D(4, 7) for the
spectrum D with a new (G x G/C,)-action given by (g1, g2)- =gt g%z:. With this notion
in hand, the spectrum on the right-hand side of the equation above may be written more
precisely as

F((G/Cr(1,1)xG/Cs(1,0)) 4, 7T (1,0))>.

We note the (G x G/C,)-equivariant homeomorphism
G/Cr(1,1)xG/Cs(1,0) =2 G{r,r) x G(s, 0},

which raises the first and second coordinate to the rth and sth powers, respectively. The
choice of m and n with mr+ns=d specifies a linear isomorphism of the torus on the
right-hand side above,

G(r,r)xG(s,0) = G(d, mr) >< G(0,—rs/d), (z,w)r— (z™w", z~% "/, (3.2.2)
and the map
F((G(d,mr)xG(0, =rs/d))+, *T(1,0)) ¥ — F(G(rs/d)+, j*T (mr/d)),

which takes a function ® to the function ¢ given by ¢(w)=®(1,w), is a (G/C;)-equi-
variant isomorphism when G/C, acts on the function spectrum on the right by conju-

gation. We can view this as a spectrum with a (G/C, )-action via the dth root map
0c,:G/Cr—G/C,,

00, F(G(rs/d)+, j* T (mr/d)) = F0g,G(rs/d)+, (0%, 5*T)(mr/d)),
so in all we obtain an isomorphism of spectra with a G-action
00, F(G/Cs4,5*T)% 2 05 F(G(r's") 4y, (08, 5T (mr")).

Finally, the equivalence of [LMS, p. 89] gives us a chain of G-maps which induces a
non-equivariant equivalence

2o, F(G(r's )+, (08,5 T (mr')) = 0t (G(r's') + Aog, 5*T%4) (mr')).

In effect, this is just Spanier—Whitehead duality, but given by a chain of equivariant
maps. O

Remark 3.2.3. Suppose that m’,n’ is another pair of integers such that m'r+n’s=d,
say, m'=m-+ks and n’=n—kr. Then there is an isomorphism of spectra with a G-action

i 05, (G ) A, " TO)(mr')) — g5 (G(r's )4 A g, 5 TO) '),

given by k.(g,t)=(g,g"t), and as one readily verifies, the equivalences of (3.2.1) are
compatible, for varying choices of m and n, with these isomorphisms.
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Let o€n{(G,) be the element which reduces to zero in 7 (S°) and to the identity
in 7(S"). We get a degree-one map

6: T - 1 (G AT) Lo 1 T (3.2.4)

as the composition of exterior multiplication by ¢ and the map induced from the action
map. More generally, for CCG a finite subgroup, we may apply the construction above
to the naive G-spectrum ¢}, T and get a map 6: 7,7 —m, 41 TC. We recall from [H]
that § is a differential provided that multiplication by n€ny on 7,7 is trivial. In general,
one has §6=né.

COROLLARY 3.2.5. A pair of integers m and n with mr+ns=d determines an iso-
morphism
Cmn: T (T A SI/CS+)C’ — T ®m, 1T,

and if also m'r+n's=d, then (amm: oo} )(a,b)=(a+kéb,b), where ks=m’—m.

Proof. The underlying non-equivariant spectrum of the naive G-spectrum on the
right-hand side of (3.2.1) is equal to S} AT independently of the choice of m and n.
Hence

T(TASYCop)r 2, TC @, _1 T4,

where we use ¢ to identify the right-hand side as a direct sum. The isomorphism,
however, depends on m and n, and different choices differ by the isomorphism of (3.2.3).
The claim now follows from the definition of 6. g

Suppose that 7’ is a divisor in 7. We next evaluate the map on homotopy groups
induced from the obvious inclusion of non-equivariant spectra

Fr i (TASYCoy )% — (TASY/Coy ).

Let d and d’ be the greatest common divisors of r and s and r’ and s, respectively, and
let g=rd'/r'd.

ADDENDUM 3.2.6. If m and n are integers with mr+ns=d, then m'=mgq and
n'=nd'/d is a pair of integers with m'r’+n's=d’ and
(Qmrm o Fyyprocimn ) (@, ) = (qFg/a a+(q—1)nFayarb, Fayarb),
where neny.

Proof. The proof of (3.2.1) gives, in particular, an equivalence of non-equivariant
spectra,
emn: (TASY/Csy)C™ — BF(SL, TC?).



136 L. HESSELHOLT

Chasing through the argument, one sees that there is, with the particular choices of m’
and n/, a strictly commutative diagram of non-equivariant spectra

(TASYCy.)Cr—22 > R F(SY,TC4)
lFr/,., izF(Q:Fd/d’)
(TASYC,y )Cr =22 > R (S}, TC4),

where ¢: S* — S? is the g-fold covering. Now let ¢': 23°S1 — XS be the Becker-Gottlieb
transfer and recall that under Spanier—~Whitehead duality,

TF(SY,TC) ~TCnEPS?,

the map F(q,id) on the left corresponds to the map idA¢' on the right. Finally, we recall
that under the isomorphism ¥ (S} )=rfend_,,

q! (a,b)= (qa+(q* 1)nb, b).

Hence the given formula for F /.. ]

Finally, it follows immediately from the definition of é and (3.2.1) that, for any
choice of m and n with mr+ns=d, the map

8: T (TASY Coy)or = Tuy1 (TASY/Ce i )Cr (3.2.7)

is given by
(@mnoboamy)(a,b) = (0, (rs/d*)a).

3.3. In this paragraph we evaluate the topological cyclic homology of the free
associative Fp-algebra without unit generated by a linearly ordered set S. In passing, we
also give a calculation of the p-typical curves on K(A) using Theorem A of [H].

Suppose that k is a perfect field of characteristic p>0 and recall from [HM, Theo-
rem 5.5] that

T T (k)P 2 Sy {on}, (3.3.1)

where g, is a polynomial generator of degree 2. The Frobenius, Verschiebung and re-
striction maps extend the corresponding maps on the coefficient ring W, (k) and

F(o,)=0_y, V(on-1)=poy, R(0,)=p'X,00 1,

n

where A, €W,,_1(F,) is a unit. For degree reasons, the differential 6 of (3.2.4) is trivial.
Therefore in this case, the identification of the homotopy groups in (3.2.5) is canonical,
i.e. independent of the choice of m and n. Now recall the complex E* defined in (1.7.6).
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THEOREM 3.3.2. Let A be the free associative F-algebra without unit generated by
a linearly ordered set S. Then there is a canonical isomorphism

. T(A)S" ' 2 EX®S5{0,}, degon,=2,

which is compatible with the restriction, Frobenius, Verschiebung and differential when
these operators act on the extra generator o, as in (3.3.1).

Proof. The decomposition in (3.1.5) is equivariant, so we get an induced decompo-
sition of the Cpn-fixed set. The homotopy groups of each summand are given by (3.2.5),

mT(A)C = @ Z/p™, >0, (3.3.3)
wENo
where m=m(w)=min{n, r—v,(rw)+1}. Moreover, it follows from [HM, Theorem 7.1]
that under this decomposition the restriction map

R: 7, T(A)%" ! -, T(A)Com-2

takes the summand indexed by ¢(w) to the summand indexed by w by the restriction
map
R:m,T(Fp)Crmt — 1, T(F,)Crm—2 (3.3.4)

and annihilates summands which are not indexed by elements in the image of ¢: Qg— Q.
We can use the bijections of (1.7.5) to index the sum above by Q,_; rather than .
One gets

nT(A% 1~ @ Z/p™, =0, (3.3.5)

WEN, 1

with m=min{n, n+r—uv,(nw)}. Letting elements in Q—,,_; correspond to the trivial
group, we may view the sum (3.3.5) as indexed by 2. In this setup, the restriction map
preserves the index w: it annihilates summands with weQ—Q,,_2 and is given by (3.3.4)
on the remaining summands. Comparing this to (1.7.9), we see that the homotopy groups
are as stated and that the isomorphism commutes with the restriction map. It remains
to be shown that the Frobenius, Verschiebung and differential are as stated.

The Frobenius is induced from the inclusion F:T(A)C»»~1—T(A)%"~2, and hence
it preserves the index in (3.3.3) and covers the bijection f:§2,-1—Q,_2 in (3.3.5). We
consider the summand indexed by w€(, 1 and let s=p"~!|w|/mw. On this summand,
F is the map

F: Wi(T(FP)/\Sl/Cs+)C”n_1 - 7ri(T(Fp)/\'S'I/C'S%-)C”"_z
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induced from the inclusion, and was evaluated in (3.2.6). Let pr: Z/p™ —Z/p™ ! be the
projection. Since the fixed point spectra T(F,)C»" are all Eilenberg-MacLane, multipli-
cation by 7 is trivial, so we get
pr, if r>vp(mw),
F={p ifr<uvy(mw)andiiseven,
id, if r <wvp(mw) and 7 is odd.

The claim for F' and V readily follows. Finally, the claim for the differential follows from
(3.2.7). O

Let E* be the complex from §1.7, let E* be the completed complex
E*= lim E7

n

and let F,V,é: E*—E* be the operators induced from the Frobenius, Verschiebung and
differential operators on E*.

COROLLARY 3.3.6. Let A be as above, then
TR.(A;p) = E*

compatible with the Frobenius, Verschiebung and differential.

Proof. The groups TR;(A4;p)=n; TR(A;p) are given by Milnor’s exact sequence

0— lim®Mm; 1, T(A) %" — TR, (4; p) - lim mT(A) "t - 0.
n n
The extra generator o, vanishes in the limit, since R(c3)=p*A505_;. Finally, for i=—1,0
the maps in the limit system on the left are surjective, so the derived limit vanishes. [J

Let
2= ][] Map(C,xCu,S)/C
(d,k)=1

where the dth summand is the set of continuous maps from 5,, x Cq to the discrete set S.

COROLLARY 3.3.7. The topological cyclic homology of A is concentrated in degree
—1 and

TC—I(A7p) = ( @ ZP);,
ocED
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the group of infinite sums Y .5 650, as € Zy, where, for every n>0, all but finitely many
05 €P"Ly,.

Proof. The previous result gives an exact sequence
0—TCy(4;p) = E' T=5 BT - TCo(4;p) » B =5 E° - TC_1(4;p) =0

and shows that the remaining groups vanish. We first prove that F—1: E'SE!is an
isomorphism. Recall that E! consists of infinite sums > weq dwel(w) such that, for every
n>0, only a finite number of the coeflicients a,, has vp(a,,)<min{n,n+r—vy(7w)}. The
Frobenius, given by Fe;(w)=e; (fw), acts invertibly making E? a Z[F, F~]-module, and
the topology on E! is such that this extends to a Z[F|[F~!]-module structure. Hence

F—1 is an isomorphism with inverse
et .
(F-1)" =) F~
i=1

Recall that the Frobenius operator on E0 s given by

eo(w), if r > vp(mw),

Feo(w) = {

peo(w), if r <vp(nw),

and let EQL and E° be the submodules of sums > a,ep{w) supported on the we with
r>vp(mw) and 7<v,(7w), respectively. We define ¢: E°—E to be the automorphism
given by peg(w)=ep(fw) and note the commutative diagram with exact rows

0 EY E° E° 0
lcp -1 [F— 1 lptp—- 1
0 EY E° E® 0.

The right-hand vertical map is an isomorphism with inverse
(pp—1)"1==>_"p'y,
20

and finally, we have a split exact sequence

0- B 2L B 5(@ 2,) -0,
oex

where ¢ is induced from the map : Q—X given by &(d;r, [a])=(d; [o]). O
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Proof of Theorem B. We choose an equivalence P,— A of simplicial rings such that
each P, is a free associative Fp-algebra without unit. Then W(P,)F is a simplicial abelian
group and by definition L,W (A)p is the homology of the associated chain complex, [Q].
We recall that there are equivalences of spectra

TC(A;p) ~ TC(P,; p) ~holim TC(Ps; p).
A°P

The skeletal filtration of the homotopy colimit of spectra on the right yields a strongly
convergent right half-plane homology type spectral sequence

E; , =ms TC(Py; p) = T4t holim TC(Ps; p).
A°P

Finally, the E'-term is concentrated on the line t=—1 by (3.3.7) and E} _;=W{(P.)r by
Theorem A. =

Remark 3.3.8. It is in order to note that in contrast to the case of a free associative
algebra over F, the topological cyclic homology of a free commutative algebra over
F, is not concentrated in a single degree. We let I/, denote the set of ordered tuples
1=(i1, -y im) With 2<i1<is<...<ip<n, for m>1, and let I}={0}. Given €I}, we
denote by J(z)' the set of n-tuples k=(ky, ..., k,) with k;€N[1/p| such that k;,#0 for all
i;€1. The infinite cyclic group C acts on J(z)’ by t-k=pk=(pki, ..., pk»); let J(i) denote
the orbit space. Finally, we let

G ={(0, [k]) | i€ Iy, [K]€ (D) }-

Then one has

TCr 1 (Fp[X1, s XD ( D Zy),.

9€Gm P

(3.3.9)

It is non-zero if and only if 0<m<n—1.
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