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1. The  object  of this paper  is to show how the ideas of pa r t  I I I  of this series 

m a y  be applied to the  problems considered in pa r t  I .  No results f rom par t s  I and  

I I  are used, but  a knowledge of sections 1 and  2 of pa r t  I I I  is essential  for an 

unders tanding  of the method.  For  convenience of reference, the  necessary definit ions 

and  theorems are repea ted  here. 

Le t  / (x, y) = a x 2 + b x y + c y~ be an indefinite b ina ry  quadra t ic  form with real 

coefficients and discr iminant  D = b ~ -  4 a c  > 0. For  any  real numbers  xo, Yo we define 

M (/; x0, Yo) to be the  lower bound of I / (x + xo, y + Yo) I t aken  over  all integer  sets x, y. 

The  inhomogeneofis m i n i m u m  M ( / )  of / (x ,  y) is now defined to be the  upper  bound  

of M (/; x0, Y0) over  all sets x0, Y0. I t  is convenient  to ident i fy  pairs of real number s  

with points  of the  Cartesian plane. 

As in pa r t  I I I ,  we approach  the prob lem of evaluat ing  M ( / )  geometrical ly,  and  

consider an inhomogeneous lat t ice 1: in the ~, }?-plane i.e. a set of points  with coordinates 

~ =  ~~ + ~ + flY' (1.1) 

~ = ~ o  + yX  +{}y, 

where ~0, ~0, :{, fl, Y, ~ are real, a 5 -  fl y # 0, and x, y take  all integral  values. The  

de te rminan t  of 1: is defined to be 

A=A(C)=I~-~r{. 

I f  we suppose t h a t  E has no point  on ei ther  of the  coordinate axes ~ = 0, ~ = 0, 

then  s has a t  least  one divided cell: t h a t  is to say, there  exist  points  A, B, C, D 

of I:, one in each quadrant ,  such t ha t  A B C D  is a para l le logram of a rea  A. 
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If  we suppose further tha t  there exists no lattice-vector of C parallel to either 

of the coordinate axes (the condition for which is simply tha t  the ratios r and 7 /5  

in (1.1) shall be irrational), then s has an infinity of divided cells A ,  B n C n D n  

( - ~  < n <  oo). The relations between the vertices of successive cells are: 

where V, is the lattice-vector 

A n + l = A ~ - ( h ~ + l ) V n ]  

B n + l = A n - h ~ V ~  [ 

C n + l = C n  + ( k n  + l)V~n [ 
On+l=Cn-}-]cnV~ n J 

V n = A n  - Dn = B n  - Cn. 

( 1 . 2 )  

Here the convention is adopted tha t  An, Cn lie one in each of the first and third 

quadrants, and Bn, D= lie one in each of the second and fourth quadrants. The in- 

tegers hn, kn are then uniquely determined by  the cell A n B n C n D n ;  they are non-zero 

and have the same sign. 

Let  the ~, ~-coordinates of An, B , ,  Cn, Dn be given by 

Cn=(~n,~n),  B n = ( ~ n + : c n , ~ n + ~ ' , ) ,  D n = ( ~ n + f l n , ~ n + 5 , ) ,  

so that  
v .  = ( ~ . ,  r . )  = ( - f i n + , ,  - ~ . + , ) .  

I f  we write 
an + l : hn -1- kn , (1.3) 

it follows tha t  
r = ( -  1) ~ (cr - f loqn) ,  

7 n = ( -  1)n (7o Pn --6oqn), 
where 

p - l = 0 ,  q 1 = - - 1 ;  p o = l ,  q0=0 
and 

1 1 1 
Pn __ a l  - -  = [ a l ,  a2, . . . ,  an] (n >-- 1), 
qn a 2 -- a a . . . .  an 

( - - q - n )  1 1 1 
( - p - n )  a~ a _ l - a _ 2  . . . .  a_n+2--=[a~ 1,-- . ,a-n~2] (n>-2). 

A passage to the limit gives 

a oo = 0 = [ao, a- l ,  a -2 , . . . ] ,  ~j = 
flo ~'0 ~0= [al, a2, a3, '"],  

(the continued fractions being necessarily convergent). I f  for each n we set 
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en = h~ - k~, (1.4) 

On = [an, an-l, an 2 , . . . ] ,  (~n = [an+l ,  an+2, an+3, ...], (1.5) 

we have fur ther  

2G0~_0~0~_70 = : (__])n-l~_n((~oP_n_~oq_n)__/30 : ( _ _ l ) n  ~--n--1 , (1.6) 
n~: ~=o 0-1 0-2 . . .  0-n 

~ n  . (1.7) 2~o+ 7o§ ~ o :  n~o ~" ( _ l ) n  ~ (7o ~ _ ~oqn) = 7On~o(_ 1). ~ 1 + ; : .  + n =  

To relate these ideas to t ha t  of the inhomogeneous min imum of a b inary  qua- 

dratic form /(x, y), we observe tha t  for points of /Z we have 

G ~ = (Go + ~o x + t30 y) (~o + 70 x + ~o Y). 
We call 

/ (x, y) = (~o x +/30 Y) (Yo x + 5 o y) 

a form associated with /2; it has discriminant D = ( % 8 o - / 3 o T o ) 2 = A  2. I f  xo, Yo are 

any  real numbers  and we write 

Go = ~o Xo +/30 Yo, ~1o = 70 Xo + bo Yo, 

it is clear tha t  l(X+Xo, y + y o )  takes the same set of values for integral x, y as the 

product  G~ for points of 1~. Thus 

M(l;Xo, Yo)=g .1.b. IG~I, 
(~.~)e~ 

As was proved in par t  I I I ,  Theorem 5, this lower bound is also the lower bound of 

]G~] taken over the vertices An, Bn, Cn, Dn of the chain of divided cells. I t  follows tha t  

M (/ ; Xo, Yo)= g.l.b, min {]~nz/nl, I (Gn + ~n) (~. + m) l, {(G.+/3n)(~.+~nXl, 
n 

[(Gn+~tn+/3n)(~n+yn+(~n)]}. (1.8) 

I t  follows also tha t  /(X+Xo, Y+Yo) is equivalent  to 

]n(X +Xn, y+ yn)=(G~ +~nX + /3ny) ( ~  +TnX +Sny) (1.9) 

for each n by  a unimodular  integral affine t ransformation,  i.e. a t ransformat ion 

x - + p x + q y + a ,  

y-+rx + sy+b ,  

where p s - q r =  •  and p, q, r, s, a, b are integral. 
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2 .  / - r e d u c e d  f o r m s  

We shall say tha t  an indefinite binary quadratic form 4)(x, y), of determinant  

D = A s > 0, is inhomogeneously reduced, or I-reduced, if it may  be factorized in the form 

where 
4)(x, y ) = 2 ( O x + y )  (x+ 4)y), 

Iol>a, 14)1> . 

By comparison of determinants  it is clear tha t  

A 
4) (x, y) = • ~ 1  (O x + y) (x + 4) y). (2.1) 

Lemma 2.1. I] f(x, y) has integral coe/ficients and does not represent zero, there 

are only /initely many I-reduced ]orms equivalent to ] (x, y). 

Proof. Let  4)(x, y ) = a x  ~ + b x y + c y  s be /-reduced and equivalent t o / ( x ,  y). Then 

it is easily seen from the definition tha t  each of 2]a[ ,  2Ic I lies strictly between 

] b -  A I and [b + A I, where A s is the discriminant of / and therefore of 4). Since the 

forms a x 9 •  c y 2 are equivalent, it is sufficient to suppose tha t  b_> 0. Thus 

Ib-Al<21a I, 2lcl<[b+a I. (2.2) 

I f  now 0_<b< A, the relation 

- 4 a c =  A s -- b s 

also 

whence 

shows that,  for each b, there are only a finite number  of possible values of each of 

a and c. 

We cannot have b = A, since / is not a zero form, so tha t  it remains to consider 

b > A .  Since 4 a c = b 2 - A  2, a and c have the same sign. Writing k = c - a ,  we have 

from (2.2) 
I k l = l c - a ] < ~ ( b +  A ) - - ~ ( b -  A ) = A ;  

( a  § c) ~ - -  k 2 = 4 a c = b 2 - A s, 

A 2 - k S = ( b  - a - c )  ( b  + a § c ) .  

For each of the finite number  of possible values of k, there are only a finite number  

of choices of b - a - c  and b + a + c .  I t  follows at  once tha t  each of a, b and c can 

take only a finite number  of values. 

Lemma 2.2. I /  ](x, y) is an inde/inite quadratic /orm which does not represent 

zero, there exists an I-reduced /orm equivalent to it. 
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Proof. I t  is well known tha t  ](x, y)" is equivalent to a form reduced in the 

sense of Gauss, i.e. a form (2.1) satisfying the more stringent inequalities 

0 < - 1 ,  r  

Now it was shown in par t  I I I ,  w 4, tha t  any  irrational ~t with ]~ [>  1 may  be 

expanded (in infinitely many  ways) as a continued fraction 

1 1 
r  I . . . .  [ a l ,  a2, as, ...], 

a 2 - -  a 3 . . . .  

where the integers an satisfy the conditions: Jan l -  > 2; an is not constantly equal to 

2 or to - 2  for large n. Conversely, if {an} is any sequence of integers satisfying 

these conditions, the continued fraction [al, %, a s, ..~] converges to a real number  ~. 

with I cr > 1. 

From this point, the theory of chains of /-reduced forms and the associated 

continued fractions may  be developed in a similar way to any of the classical theo- 

ries of reduced forms. The important  difference is tha t  now there exist infinitely 

many  chains of reduced forms equivalent to a given form;  moreover, any  single 

chain need not  contain all the /-reduced forms equivalent to a given form. 

Now let {an} ( -  ~ < n < oo) be any  chain of integers satisfying the conditions: 

Ilanl_>2; 
(A) I an is not constantly equal to 2 or to - 2  for large n of either sign. 

We can then associate with {a,} a chain of integer pairs {ha, k,} satisfying the 

conditions 

(i) 

(ii) 

(E): (iii) 

(iv) 

hn q- kn =an+l; 

hn and kn are non-zero and have the same sign; 

neither hn nor kn is constantly equal to - 1  for large n of either sign; 

the relation hn+zr=kn+er+l=l does not hold, for any n, either for all 

r > 0  or for all r < 0 .  

As was shown in par t  I I I ,  Lemma 1, the chain {ha, kn} derived from the successive 

construction of divided cells of a lattice, according to the formula (1.2), satisfy the 

conditions (E) (ii), (iii), (iv); and then (E) (i) implies tha t  the chain (a~} satisfies 

the condition (A). Thus (A) and (E) arc necessary conditions for the constants ha, kn, an 

to correspond to a chain of divided cells of a lattice. We shall now show tha t  they 

are su//icient. 
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We first note, as remarked above, that  if {an} satisfies (A), then the numbers 

0n, tn  of (1.5) are well defined and satisfy [0hi > 1, [~b, [> 1. 

We next prove that  the series (1.6) and (1.7), with e==hn-k~ ,  are absolutely 

convergent provided that  {h,, kn} satisfy E (i), (ii). 

Lemma 2.3. The series ~ !a-n+l-I--- 2 is convergent and 

] a n + l l - 2  
n=ol q,, q,, ... 6.1 - I q ' o l - l  (2.3) 

Equality holds in (2.3) i] and only i/ an has constant sign. 

P r o o f .  We have 
1 

~n_l=[an. an+l,...]=an - - ,  
4~n 

and so 
1 Iq , . [ -1  Ir162 ~ [  - (2.4) 

Using this relation for n =  1, 2 , . . . ,  we have 

Iq, o l _ l > [ a l l _ 2 a  la21-2 lan[-- 2 !•.[-a 

The first assertion of the lemma follows at once, since I ~ n [ - 1  =0.  

There is clearly inequality in (2.3) if there is inequality in (2.4) for any value 

of n;  and equality holds in (2.4) if and only if an and ~n have the same sign, i.e. 
1 

if and only if an and an+l have the same s;gn, since always I ~ n - a , + l [ = ~ <  1. 

Thus equality holds in (2.3) if and only if an has constant sign. 

Lemma 2.4. I /  {hn, kn} satis/ie8 the conditions (E), the series 

~(-1F ~. 
.=o  ~ q,~ . . .  ,#n 

o/ (1.7) is absolutely convergent, and its sum is numerically less than ]~b0]- 1. 

Proof. Since en:hn-  kn and hn, kn satisfy (E) (i) and (ii), we have 

le . l_<la.+ll-2 
and so, using Lemma 2.3, 

la.+11-2 _ ( - 1 )  n --< X < ,-o ~ , ~ . . . + .  ..o I,~,~. . .  q,~ -14'~ (2.5) 
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I t  remains to show that  equality cannot hold throughout (2.5). By Lemma 2:3, 

there is certainly strict inequality unless all an have the same sign. Suppose then 

first that  an < 0 for all n. Then ~n < 0 and so ~b 1 ~ . . .  ~n = ( - 1) ~ { ~ ~b2... ~ {; hence 

equality in (2.5) implies that  • 2 4 7  for all n (with a fixed 

determination of •  But  this gives 

either h~=�89 +an+l)= - I or k~=~(an+l-en)-- - 1  

for all n, contradicting E (iii). 

Suppose next  that  an > 0  for all n, so that  6n >0.  Then equality in (2.5)implies 

that  •  for all n. But  this gives 

either h2~+1-' e -~.( 2n+l+a2n+2)=l ,  ken =l~.(aen+l-e-zn)=l, 

or h2n ~ 1  a ~( 2~+1+~2n)=1, k2n+l=l(a2n+2-e2n+l)=l 

for all n, contradicting E (iv). This completes the proof of the lemma. 

Precisely similar results hold, by symmetry, for the series (1.6); and these results 

are clearly independent of the starting-point of the enumeration of the chains. Thus 

for each n we may define numbers ~'n, ~]'n by the formulae 

en-e_ § in-3 . . . .  
2 ~ ' n § 2 4 7  On--1 On-lOn--2 ' (2.6) 

E:n+l gn+2 2~'n + i + 6 n =  ~= t- , (2.7) 
r Cn+lCn+~ 

provided that  the chain {h~, kn} satisfies (E); and then we have 

12~'n+On+li<lOnl-1, 

I t  may be immediately deduced from these inequalities that  

The points 

sgn ~'n =sgn  (~'n + 1)= - sgn On, "1 

sgn ( ~  + On) =sgn  (~e' + On+ 1) =sgn  On; ] 

sgn r/n = sgn (r/~ + 1)= - sgn q~n, ] 

sgn (r/n + ~.) =sgn  (r/~ + ~. + 1) =sgn  q~n. 

Cn=(~'n,'~'n), Bn=(~'n+On,~'n+l), Dn=(~'n+l ,~ 'n+~),  

An=(~'~+On+l,V'~+l+4n) 
16 - 543808. Acta Matbematica. 92. Imprim6 le 30 d~cembre 1954. 

(2.s) 

(2.9) 

(2.1o) 

(2.11) 
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therefore  lie one in each 

cell of the lat t ice 

of the four  quadran ts  and are the  vert ices of a divided 

Next ,  f rom the formulae  (2.6), (2.7) we have  

2 ~:n+, + On+x + 1 = e,, ----0~- + . . . .  en--  (2~:'n + On + 1), 

, 1 , 
2~/n + 1 + 4,, = s n  - 7 - -  (2r/n+, + 1 + ~bn+,). 

(~n+l 

F r o m  these, using the  identi t ies 

1 1 
On+l=an+l - - ,  ~bn=an+l- ' - - ,  2kn=an+l-en, 

On r 
we deduce at once that  

- O, } '+ ,  =~ ' ,  + (kn + 1) On, 
t 

t r/,,+, =r/n + kn + 1. 
(~n+l 

(2.12) 

(2.13) 

A simple calculation now shows tha t  the four  points  

A , - ( h n + l )  Vn, An-hnV, ,  C n + ( k n + l )  V,, Cn+k~Yn 

(where V n=An-D,J  are 

{8 (~'n+~ + 0 . . . .  + ' 1 n+lZV1), ~](~]n+l~-l~-(fin+l)}, {~(~n+l On+l), r(~]n+l ~- )}, 

{/~ ~tn+l, ~ gin +1}, {1~ (~'n+ 1-}-1), ~ (?],tt + 1 ~- (~n +1)}, 

1 
where / 3 = - 0 , ,  ,~ ~n+l'  and so are again the vert ices of a divided cell of the  

lattice. 

Thus  the divided cell A,,+IBn+IC,,+IDn+I is obta ined  f rom the cell AnBnCnD,~ 
by  precisely the formulae  (1.2). 

I t  follows f rom the above  results tha t ,  given a n y  chain {hn, kn} satisfying con- 

ditions (E), there exists a lat t ice s whose chain of divided cells satisfies the recurrence 

relat ions (1.2). Moreover,  ~ is uniquely determined,  apa r t  f rom a constant  mul t ip le  

of each coordinate.  

I n  part icular ,  let /(x, y) be a b inary  quadrat ic  form of discr iminant  A 2 > 0 .  Le t  

{[n} be any  chain of / - r educed  forms equivalent  to ](x, y) and {an} the associated 
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chain of integers satisfying (A). Let (hn, kn} be any chain satisfying (E). Then, for 

each n, the numbers ~ ,  ~]'~ given by (2.6), (2.7) define an inhomogeneous form 

A 
/, (X+Xn, y+y , )=  • 0, Cn - 1] (~" + Onx+y) (~',, +x+ ~ny) (2.14) 

I - ~  i ! ? equivalent to /(x+ xo, y Yo) for some Xo, Yo. Conversely, corresponding to any real 

numbers x0, Y0, there exist chains (/~}, (an}, {h,,/c,} satisfying (A) and (E)such that 

](x+xo, y Yo) is equivalent to the form (2.14) for each n. 

3. The determination of M(f) 

I t  is more convenient for the applications to quadratic forms to work with the 

numbers ~ ,  ~'n of w 2 rather than the ~n, ~n of w 1; these are clearly connected by 

the relations 
r ~ A 

We therefore drop the prime from ~'n, ~'n in all that  follows. 

For any fixed form /(x, y) we write 

M (P) =M (/; xo, Yo), 

where P is the point (xo, Y0) of the x, y-plane. Then (1.8) gives 

i ( P )  = g.l.b. Mn (P), (3.1) 
n 

where 
A 

Mn(P) 1 0 n ~ n _ l ] m i n { l ~ n ~ n l ,  ](~n+0,~)(t}n+l)l, 

I(~+l/(~+~n)J, I(~n+0n+l/(,~+l+r (32) 

The results of w 2 show that the set of values of 31" (/; x0, Y0) for real %, Y0 coincides 

with the set of values of M(P)  for all possible chains {h~,/~} associated wi th / (x ,  y). 
Hence 

M (/) = 1.u.b. M (P), (3.3) 

where the upper bound is taken over all chains associated with /(x, y). 
To determine the relations between the successive inhomogeneous forms 

/n(X+xn, y+yn), 

arising from any chain (h,, ]c~}, we first note that, by (2.12) and (2.13), 
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- On ~:,,+l = ~n + O, (k,  + 1), 

- -  ~ n + l  = ~bn i-1 (7In -1- k n  -[- 1). 
Hence ,  if we set  

x '  = y, 

y ' =  - x - a , , + l y  + kn + l ,  
we h a v e  

~ n + l  -]- X' "~- (])n+l y'  = - (~n+l (~n  -~ kn  ~- 1) + y + ~bn+l ( -- X -- an+l y + kn + I)  

: 4 

a n d  s imi l a r ly  
1 

C n + l + O n + l X '  + y ' =  - ~ ( r  + O n x  + y ) ;  

t h u s  
A 

/ n+ l (x '+xn+l ,  y '  + yn+l )  = --+ . . . . . .  a . .,(~,n,l+On+iX': + y ' ) f f l , , ~ i + X ' +  ~n+ly)' 
v n + x  q)n+l  --  i [ 

A 
= • 4),__l](#n+Onx+y)(q,~+X+4,ny) 

= / . ( x  + x , ,  y +  yn). 

(3.4) 

(3.5) 

Also, u s ing  (3.4) a n d  (3.5) again ,  we have  

so t h a t  

On+l Xn+l -~. yn+l = ~n+l --- -- (Xn § an+i yn + 1 + IOn) -:- On +1 y , ,  

Xn: 1 @ ~n+l y , + l  = qn+l = - (xn e a , + ,  yn + 1 + kn) (~n+l _,L yn, 

~ n + l  = yn,  I 

y n + l :  -- (Xn + a n + l  yn ~'- 1 + kn) I .  
(3.6) 

I n  the  p rac t i ca l  p r o b l e m  of f i nd ing  the  n u m e r i c a l  va lue  of M ( [ )  for a g iven  

fo rm [(x,  y), t he  success of t he  m e t h o d  d e p e n d s  u p o n  the  r ap id  conve rgence  of the  

series (2.6), (2.7) de f in ing  ~n a n d  ~]n ; t he  error  m a d e  in  rep lac ing  t h e m  b y  a pa r t i a l  

s u m  is eas i ly  e s t i m a t e d  f rom (2.8), (2.9). We  have  

En+l  , 
2~],~ + 1 + ( b ,  =e,~ - - : . . .  -~ 

~ n + l  

( - 1) r e . .~  

__ l )  r+ l  
-~ . . . . . . . . . . . . . .  (2~/n+r+l + qSn ~ r+i § 1), 

(~n+l ' ' '  ~ n + r + l  

a n d  so, b y  (2.9), 
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e n + l  ( -- 1) ~ e.+r 2r/n+ 1 + ~ O n = e n - - - - - - } -  . . .  q- 
6 n + 1  6 n + l  "'" ~ n + r  

+ 1 (1 
II n+x: n+r ' 

245 

Here  we use the (permanent)  no ta t ion  Ilxll for a quan t i ty  whose modulus  does not  

exceed Ix]. I n  the  same way  we find 

2 ~n + On + 1 = e,__l --  e n - 2  + . . .  -!-, ( -- 1)r+l  e n - r  

(f t . -1 0 . - 1  . . .  On_r+X 

+ l-lo 2-_ 1 (3.8) 

(ii) On 

~=, z/~, where 

I n  order  to avoid  excessive enumera t ion  of cases, we now just i fy  some formal  

operat ions  on the  chains {a=}, {e~}. 

L e m m a  3.1. The value o/ M (P) is unaltered by any o/ the /ollowing operations: 

(i) reversing the chains {a~+l}, {e~} about the same point; 

(ii) changing the signs o/ all e~ ; 

(iii) changing the signs o/ all an and o/ alternate e=. 

ProoL (i) Revers ing the  chains is equivalent  to interchanging ~ ,  ~ and  On, ~bn ; 

this  does not  affect  the  set  of values  of Mn (P). 

replacing e= b y  - e ~  for all n, we obta in  the  values  ~ ,  vj. in place of 

2 .e .+1+0 .=- (2~ .+]+0 . ) ,  

2 ~ . +  1 + e n =  - ( 2 r / .  + 1 +6" ) "  

Hence  .=~ 5:j., (~. + 0.)  (~= + 1), (~. + 1) (~. + 6-) ,  (~- + 0 .  + 1) (~.  + 1 + ~b.) are respect ively  

equal  to (~n+On+l)(r]n+l+d?n), (~n+l)(r]n+en), (~n+On)(rln+l), ~n~ln" Thus  

M .  (P) is unal tered.  

(iii) On replacing a .  b y  - a .  and s .  b y  ( - 1 ) " s .  for all n, ~,e obta in  values  

0.,  d~., _~., ~ ~.- in place of 0.,  6- ,  ~-, ~/-, where 

0.= -0. ,  ~.= -~. ,  

(__ 1)"+r e.+r 2 .+1 5 l - a )  r 
n=---1 

= ( _ l ) n  ~ (_. 1)r e.+r -- (--  1)"(2~/. + 1 + ~b.) 
~=o ~.+1 ... 6"+~ 

(3.7) 
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and similarly 2 ~n + 0n + 1 = ( - 1)n-1 (2 ~n ~- On -~ 1). I t  is now easily verified t h a t  the  

four  quant i t ies  ~n~n . . . .  are merely  a pe rmuta t ion  of - - ~ 1 , . . . ,  so t h a t  M n ( P ) i s  

unal tered.  

Using (ii), we see t h a t  the  same result  holds if we replace a, b y  - a n  and  en 

b y  ( - 1 ) n + l e  n .  

A very  useful result  which enables us to e l iminate  b y  inspection mos t  chains 

{/n} is g iven by :  

L e m m a  3.2. For any chains (an}, {en}, and for all n, we have 

A 
M ( P ) < - M n ( P ) <  min {](0n-- 1 ) (~n- -  1)], ] ( 0 n + l )  ( ~ n + l ) ] } .  (3.9) 

- 4 1 0 . r  

Proof. B y  (2.10), ~n+  0n and  Sn+ 1 have  opposi te  signs, so t h a t  

2 [(#. +o.)(#.  + 1)la-<l#. +o.[  + I~. + 1 [=1(# .+o . ) - (# .  + 1 ) [ = l o . -  1 l; 

similarly 

2 ](~. + 1) (~= + ~.)[~-< ] 6 = -  1 l, 
whence 

41(~n + On) (~n + l ) (~n + l ) (~n + r ]~ <-- I (On --1) (4n --1) I. 

I n  the  same way,  using the fact  t h a t  ~n and  ~n + 0n + 1 have  opposi te  signs, as 

do also ~n and  ~/n + 1 + r  we find 

41~,  Vn (~n +0n  + 1) (~n + 1 +4n)l~-< I (0n + 1) (r + 1)1. 

F rom these results  and  the  definit ion of Mn (P), (3.9) follows immedia te ly .  

F rom L e m m a  3.2 we can deduce a simple inequal i ty  for M ( P )  or M(/) ,  which 

is in a sense best  possible. ~ 

L e m m a  3.3. Suppose that the chain {In} contains the/orm /(x, y )= a x2 + b x y + c y~. 

Then, ]or any choice o/ {en} we have /or the corresponding point P, 

M ( P )  -<min ] la+-b+cl =rain I[(~, +-1)1. (3.10) 

Equality can hold in (3.10) only i/ e n = 0  /or all n, so that P = ( x 0 ,  y0)-=( 1, ~) (rood 1). 

1 This result is closely related to an estimate for M (]) found in Barnes [1]. There it was shown 
that, if ](x, y ) : a x 2 +  bxy + cy u (not necessarily reduced in any sense) and P is any point, then 

M(P)<-- 1 max {]a], ]el, min ]a+_b+cl}, 

where equality is possible only if - -  1 1 . P = ( ~ ,  ~), (0, 1) or (~, 0) (mod 1). 



THE INHOMOGENEOUS MINIMA OF BINARY QUADRATIC FORMS (IV) 247  

Proof. Since 
A 

].(x, y)= + (O.x+y) (x+epny), 
- -  On ~ .  - 1 

(3.10) follows immediately from (3.9). Clearly we can have equality in (3.9) only if 

there is equality in the arithmetic-geometric mean;  in either ease this implies tha t  

~n+ 0n= - - ( ~ . +  1), ~/n +~bn = -- 01. + 1) ; 

thus 2 ~. + 1 + On = 2 ~.  + 1 + ~b. = 0, whence e. = 0 for all n. Finally, if this relation 

holds, we have 

]n ( x + x . ,  y+yn)-- +_ 

so tha t  P ~  1 1 (~,~) (mod 1). 

A 
0 . 4 . -  1 { 0 . ( x - ~ ) + ( y - ~ ) }  { ( x - ~ ) + 4 . ( y - ~ )  }, 

4. In  this and the following section we apply the methods established above to 

the determination of M(/) for the particular forms x~-19y  ~ and x~-46y  ~. These 

two norm-forms had proved difficult to handle by the technique of Par t  I of this 

series, and so were examined to test  the practical efficiency of the present methods. 

In  the evaluation of M (/) for a given form /(x, y), the first step is to find the 

/-reduced forms equivalent to it;  for forms with integral coefficients, this is perhaps 

best carried out by  the method of Lemma 2.1. 

Now if g(x, y) is /-reduced, so also are the equivalent forms g(x, -y ) ,  g(y, x), 

g ( y , - x ) ;  also, any chain containing one of these latter forms may  be converted 

into a chain containing g(x, y) by reversing the chain (an}, or replacing it by  { - a , } ,  

or both [cf. Lemma 3.1]. I t  is therefore sufficient to list only those / - reduced  forms 

a x ~ + b x y + c y~ with 
b_>o, [a]-<lcl. (4.1) 

For these we have the factorization 

with 
ax2+bxy+cy~=2(:cx+y)(x+fly) ,  I ~ ] > l ,  Ifll > 1 ]  

b + A  _ b + A  A~=b 2 j 
a =  2c ' fl---- 2-a ' - 4 a c .  

(4.2) 

For convenience, vCe shall write (a, b, c) for the form a x ~ + b x y + c y~. 

Theorem 1. I] ](x, y)=x 2 -  19y 2, then 

M ( / ) = ~ .  

Note. The value of M(])  is incorrectly given as 31/38 in Par t  I (Table, p. 315). 
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The proof of Theorem 1 will be given as a series of lemmas, representing the 

successive steps in the argument .  For  convenience we write 

5=Vi~=IA. 

Lemma 4.1. I /  M ( P ) > ~ ,  the chain {an} is 
• x 

{3, 5, 3, - 8} (4.3) 

or its negative (where the crosses denote infinite repetition o/ the period 3, 5, 3, - 8 ) .  

Proof. I f  M ( P ) > ~ ,  L e m m a  3.3 shows tha t  only forms (a, b, e) with [a+b+c[>_4, 

J a -  b + c[_> 4 can occur in the chain {/n}. With  the restrictions and nota t ion of (4.l), 

(4.2), all such forms are 
6 + 4  

g l = ( 1 , 8 ,  - 3 ) ,  ~ - -  3 ' f l = 6 + 4 ;  

6 + 5  5 + 5  
g 2 = ( - 2 , 1 0 ,  - 3 ) ,  ~2-- 3 , /32= 2 

Also we have 
6 + 4  5 - 6  

0C1 - -  3 -- - 3 + - - ~  = [ - 3,/32], 

/31= 5 + 4 =  8 + 5 - 4 = [ 8 ,  cr 

6 + 5  5 - - 4  
~ 2 - -  3 - 3 3 [ - 3 , / 3 x ] ,  

5 + 5  5 - 6  
/3'- 2 5 + - ~ - = [ - 5 ,  ~2], 

where, in each case, the al ternat ive expansion leads to a reduced form other  than  

gl or g2. The lemma now follows at  once. 

For  the proof of Theorem 1 it now remains for us to consider the chains {e,}, 

which can be associated with the chain {an} given by  (4.3). 

We number  the chain {an} so tha t  

a 1 = 3, a 2 = 5, a a = 3, a 4-- - 8 ; 
then 

• = ,  0:03: [3,5,3, - ; ]  6+4 
3 

 1:02: [;,3, 
2 

• •  5 + 6  

~b2=01= 3 , - 8 , 3 , 5 ] - -  
3 

 3:0o: [ - ; ,  3, 5, : - (6+41;  
and each of a . ,  0., ~bn is periodic in n with period 4. 
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Since ] e n ] - < l a n + l [ - 2  and  e~ has  the  same p a r i t y  as a~+1, the  possible va lues  

of en are g iven  b y :  

e4~=4-1, e4n+l= 4-1, 4-3, e4~+~= 4-1, e4~+~=0, 4-2, 4-4, 4-6;  

and  i t  is easi ly verif ied t h a t  condi t ions (E) are sat isf ied for a n y  choice of e~ f rom 

these values.  1 

W e  now show t h a t  M(P)<.982 unless 

e 4 n  ~ C4n+1 ~ ~:4 n+2  ~ l ,  

for all n (or the  nega t ive  of these  values) .  

L e m m a  4.2. I[ M (P) >_ .93, then ~1= +1. 

Proof.  W e  have  

e4 n + a = -- 2 (4 .4)  

2 ~ 2 + l §  1 - -0~  i = e l §  

i l l= 8+2 2 ~ 2 + 1  + 6 2 = 1 1 q , 2 -  ~ -  �9 

I f  now e 1 = 3 ,  we ob ta in  

4 + - - - -  ' ~ 2 -  ~ - +  - -  ' 

8 - 3  8 + 2  
so t h a t  0 < - ( ~ 2 + 1 ) < - ~ - - ,  0 < ~ ] ~ + ~ <  3 

Since 

we have  
28 

M (P)  < M 2 ( P )  < [(~2 + 1) (~2 + 42)[  
02 42 1 

B y  L e m m a  3.1, the  same resul t  holds  if e 1 = -  3. 

We  now suppose therefore  t h a t  

This  proves  the  lemma.  

E 4 n + l :  + 1  for all  n. (4.5) 

' I t  is clear that E (iii) and (iv) are always satisfied if each of the sequences {an} and {a-n} 
(n= 0, 1, 2, . . .)  changes sign infinitely often. 
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Lemma 4.3. Suppose that M(P)>_.83. Then i/ e2= 1 or i/ e4= 1 we have e3_<0; 

and i/ e ~ = - 1  or ~ 4 = -  1 we have ea >-O. 

Prool. By symmetry, it suffices to show that  e3 < 0  if e2 = 1. We have 

el 

using (4.4) and the hypothesis ~2= 1, it follows that  

2,t 3 + 1 + 0 3 > 1  03 0~. 1 -  , 

whence 

Next, 

4 ( ~ - 8  

2(~-7 
0 < - ( ~ 3 + 1 ) <  3 

+ 1 
2~3+ 1 +~b3=r 3 1 - - ~  =~3+115-~11. 

If now we suppose, contrary to the assertion of the lemma, that  ca_> 2, this gives 

2~]3+ 1 + r  (5-- b), 
whence 

0 < - (~3 + ~3) < 4. 
Since 

[ 03 ~b3-- 1 [ = ((~ + 4) ((~ 3 ~ 4 )  + 1 = 2 5  ( ~ )  ' 

these inequalities give 

M ( P ) < _ M 3 ( P ) <  2~ ill (~3+ l)(73+ r 1 

Lemma 4.4. Suppose that M ( P ) > . 8 9  and that either ~2=1 o r  ~4:1. Then 

~3 = 0 o r  - 2 .  

Proof. By symmetry, it suffices to suppose that  e2= 1. After Lemma 4.3, we 

have ~3 <0,  and so we have to show that  ~a cannot be - 4  or - 6 .  

Suppose then that  ~3 < --4. We have 

2 ~ a + l + ~ s = e a  r r 
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where ca_<-4 ,  e 4 = l  by Lemma 4.3, and, by (4.5), es= +1.  Hence 

2~3-t- 1-]-~3< - - 4 - - 1  + 1 ~ 4  ~bl---+----~b5 641 (65 1 -  ~ )  

1 1 
0 < 2 ~ / 3 <  - -  5 - -  ~ b 3 - -  - -  A- - -  A- 1 - 

= -- 5 + (~ + 4 ) -  (~-- 4) § (3~- 13) § (48- l l  5) = 3 8 -  86, 

0 <z/3< 1 9 - 4 5 .  

As in Lemma 4.3, 

Hence 

2 5 - 4  
O< - ~ a <  3 ' 

M (P) _< M a (P) < [0 a ~ba _ 11 I r ~/a I < (5 - 4) - -  (i9 - 4 5) 

= 646 - 148 ~ < .89, 
contradicting our assumption. 

Our next step is to eliminate the possibility that  e3=0,  which we do in two 

stages. 

L e m m a  4.5. 

Proof. By 

e l =  +1,  e4= +1,  es= +1.  

Suppose first that  e 4 = - 1 .  

S u p p o s e  t h a t  ea=O a n d  t h a t  M ( P ) > _  .96. T h e n  

e j  = e 2 = e 4 = e 5 = -4-1. 

symmetry, we may take ~2= + 1. Using (4.5), we certainly have 

Then since 

we have 

and, with e 4 = - l ,  

E1 E o 2 ~ +  1 + O~ = ~ 2 - x - +  , ~ - - -  
1 ~03 ~2 

E1 E 0 . . . .  

. . . .  1 - ~  0301 

2 ~73 + 1 + ~b 3 = ~a -- : -  -t q~4 #5 4', q'4 4'S 

fl( 1) 
2 ~ a + l + O a = l - ~ - ~ +  ~ 1 - ~  

> 1 03 03 1 -  , 

2 1 
- 2 ( ~ a + 1 ) < - 2 + 0 3 + 0 3  0 1 0 2 = ~ ( 2 5 - 7 ) ,  

2 6 - 7  
O <  - - ( ~ 3 - } - 1 ) <  3 ; 
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Hence 

2,7 + 1 +l I] 
, 

> - - - - - -  1-- = , 
r r r r 

1 
- -  2 (73 "~- r  <~ - -  r  -~ 1 _ _  __ 28_, 

r Cs 

O <  --  (Y~3-r r  < ! ~ .  

2~} [(~3+ 1) (~3+ r [ M (P)  _< M 3 (P)  _< 1 o3 r  1 I 

=~(22-5(~)  

< .96. 
Thus we require eL= + 1. 

In order now to show that e l = e s = l ,  it suffices, by symmetry, to show that 

e l = l .  Suppose to the contrary that ~ 1 = - 1 ,  so that now e l = - l ,  82=1, 83•0, 
e 4=1, e s=___l. Then 

tl [ 1 (  1) 
2 5 : 3 + 1 + 0 a = 1 - ~ +  ~ 1 - ~  

> 1 + - - - - =  1 1 = 1  1 
o~ o~ 

1 
- 2 ( ~ a + l ) < O  a 0201 2 = 2 ~ - 8 ,  

also 
0<  - (~3+ 1) < ~ - 4 ;  

_f.A4+ . . . .  [[1 1 [ 1 2~3+1+r r - ~  > - 1 + r  

- 2 (r/a+ r < - - r  
r 

Hence 
0 <  - ( 7 3 + r  < 5 .  

M (P)  < M 3 (P)  _< ((~ - _4) ((~ - 4) 5 = 5 ( 3 5 , 8  (~) < .65. 

Lemma 4.6. Suppose that 

tl --- t2 = e4 = E5 = + 1, ~3 = 0. 
Then M (P) < .982. 
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Proof. We have, taking the upper sign without loss of generality, 

2 e ~ + l + 0 2 = e 1 - - ~ +  ~ 1 1 

< 1  + ~ + ~  1-- , 

2 1 
2 ~ + 2 0 2 < 0 ~  01 011001-14-2~ '  

also 

whence 

0 < ~ 2 + 0 ~ < 7 - ~ ;  

_ _  ~ 1 1 

= l - c a  -~ r162 r162162 

- - - - + - -  1 -  
2~2 2 < ~ 2 - 2 + ~ 3  r162 ~r162162 r162162 

110 ~ - 476 
3 

558 - 238 
0 < - ( ~ +  1)< 

3 

Thus, since 0 z ~ 2 - 1 = ( ~ ( ~ ) ,  we have 

M (P) <- M2 (P) < (5 - ~) (7 - (~) (55 ~ 3 238) =1942 (~ - 8464 < .982 , 

as required. 

It  follows from Lemmas 4.5 and 4.6 that, for M (P) >_ .982, s340, and so, by 

Lemma 4.4, s =  _+2. 

Allowing for an eventuM change of sign of all ~ ,  we take e3= - 2 ,  so that, by 

Lemma 4..3, ~2 = ~4 = 1. 

Lemma 4.7. I[  e2=e4=l ,  e 3 = - 2  and M(P)_>.79, then e l = e s = l .  

Proof. By symmetry, it suffices to show that e l = l .  Suppose to the contrary 

that e j = - l .  Then 
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also 

hence, 

, 1(1 
1 

-2~3-2< 03-2 25-8, 
01 02 

0 <  - (~3 + 1 ) < 5 - 4 ;  

I lIP ( 1 )  
- 2 r / 3 -  2 ~ 3 <  - q , 3 + 4 - 1 = 1 2 ,  

~4 

0 <  -- (~s+~3) < 6; 

M (P)  _< M s (P) _< 6 (5 - 4) (5 - 4) : 6 (35 - 8 5) < .79. 

In  L e m m a s  4.2 to 4.6 we have  now establ ished tha t ,  if M ( P ) > . 9 8 2 ,  t hen  

e l=e2=ea=eS= 1, e s = - 2  (or the negat ive  of these w lues). B y  the per iodici ty  of 

the  chain {an} it follows tha t ,  for each n, ei ther  

or  
E4n+1=E4n+2=E4n+4~E4n+5~1~ E4n+3~  --2, 

E4n+l=E4n+2=E4n+4.~E4n+5= --  1, E 4 n + 3 = 2 .  

Since 4n  + 5 : 4 ( n  + 1 ) +  l ,  i t  is immedia te ly  clear t h a t  if the  first  a l te rnat ive  holds 

for any  one value of n, it holds for all n. Thus  {en} is the periodic chain given b y  

(4.4), or its negative.  

We now complete  the proof  of Theorem 1 by  proving 

L e m m a  4.8. I /  the chains {an}, {~n} are given by (4.3) and (4.4), 

M (P) - 17o - -  i?i" 

Proof. The  values of r and ~]n m a y  easily be calculated f rom the series for  

2 ~n + On + 1, 2 ~]n + 1 + ~bn, since each of these quant i t ies  is periodic in n with period 4. 

Thus  

~11 ~2 e s ~ 1 (2 ~]4 + 1 + ~b4), 
2 ~0 -~- l -~ ~0 : E0 -- ~b 1 -~ (~1 ~b2 ~bl ~b2 ~b3 ~bl ~b2 ~b3 ~b4 

whence 

) ____  1 2 
(2~]o+1+~0)  1- -  1 = 1  1 ~- r  

~1 ~2 (~3 (~4 (])1 ~1 ~2 ~I ~2 ~3 
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Inserting the values of 6n, we find 

152+238 
~0 = - 171 

Similarly we may calculate 
57 + 20 8 

to = 57 

Using the reeursion formulae (3.4), (3.5), we then find 

190 + 238 171 + 258 
~1-  171 ' ~1 = -- 114 

By the periodicity and symmetry of the chains, it is clear that  

i (P) = min {M 0 (P), M 1 (P)}. 

A rough calculation easily decides the minimum of the four expressions defining 

Mo(P), MI(P). Using the relations 

28 28 
10o6o-11--8_ 4, 1o~r 8, 

w e  have 
28 

M~ (P) = I Oo ~o - 11 [ (~o + 0o) (~o + 1)l 

- -  1 7 0 .  

171 

28 
Mx(P) =10z ~b~ - 1 ] [ (~ + 1) (T]l -[- (bl) ] 

= ( 5 - 8 )  (57 + 1 6 ~  (19+238~ 

_ _  17o 
- -  1 ' / 1 "  

Thus M (P) - 170 - ~ ,  as required. This completes the proof of Theorem 1. 

Note. A simple calculation shows that  the point P of Lemma 4.8 corresponds 

to taking 
(x, y)---- (0, • ~) (mod 1) 

in ] (x, y) = x 2 - 19 y2. 

5 .  T h e  f o r m  x 2 - 46y~ 

Theorem 2. I/ / (x, y) = x  2 -  46y2, then 

M (1) - 7 6 8 .  _ 1 ~ , T Q , ~  
- -  48668 - -  ~ .v. ~,v . . . .  (5.1) 
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The reduced forms ax~+bxy+cy 2 equivalent  to / (x ,y)wi th  [a+_b+cl>_7 are 

found to  be g.(x, +y), g.(y, +_x) ( n = 1 , 2 , 3 , 4 )  where 

6 + 4  6 + 4  
g 1 = ( - 5 , 8 , 6 ) ,  a l =  6 ' i l l =  5 ' 

g~ = (2, 12, - 5), ~. = - - -  
6 + 6  6 + 6  

5 , f 1 2 =  2 

6 + 7  
ga=(1 ,  14, 3), r162 3 ' f l3=6 + 7 ,  

ga = (3, 16, 6), 

where we have wri t ten 

6 + 8  6 + 8  
~ 4 =  6 ' f14= 3 

6=V~=IA. 

B y  L e m m a  3.3 we see that ,  for any  point  P with M ( / ;  P)>.~, no other  forms can 

occur in the corresponding chain of reduced forms. 

Lemma 5.1. 1/ M (P) > 1.5, the chain {a,} /s given by 

(or its negative). 

x x 

0 4 , 5 , 2 ,  - 2 , 8 ,  - 2 , 2 , 5 }  (5.2) 

ProoL I t  is sufficient to observe that ,  if the chain of reduced forms contains 

no other forms than  those listed above, then  we have the following unique expansions:  

thus  

~ i  = [2 ,  f14], 

~ = [ - 2, ~1], 

~3 = [5, ~4], 

~4 = [2, ill], 

~1= [~. 5.14. 5. 2 . - 2 . 6 . - ~ ] ,  

o: 2 =  - 2 , 2 , 5 , 1 4 , 5 , 2 ,  - 2 ,  , 

• x 

~,4= [~.-2.8.-2.2.5.14.  ;]. 

f l , - -  [ - 2, fl~], 

fl~ = [6 ,  ~ ] ,  

fla = [14,  aa], 

& = ] 5 ,  #3 ] ,  

#,= [-~.6.-2.2.5.14.5.~] .  

f l ,=  [ ; , - 2 , 2 , 5 , 1 4 , 5 , 2 , - 2 ] ,  

t~= [~4. 5 .2 . -2 .6 . -2 .2 .  ;].  

~,= [;. 14. 5 .2 . -2 .6 . -2 .  ~]. 

Hence all the above forms occur in the chain, and the chain {a,} is given by  (5.2). 
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We number the chain (5.2) so that  

as n+l = 14 

for all n. Then an, On and ~b= are periodic with period 8 and 

O t = # s = 5 + 7 ,  

5 + 8  
02=67=  3 ' 

5 + 4  
03 = 6 6  = ~ - ~ '  

5 + 6  
0 4 =  ~ 5 -  5 ' 

5 + 6  
05 = 64 = ~ - '  

5 + 4  
06 = 6 ~ -  5 ' 

5 + 8  
07 = 6~  = ~ - '  

5 + 7  
0s=61 = 3 

We note that  r162162 1~0t~<12, le11-<3, [e41<4, 1~71~<3 

Lemma 5.2. I /  M ( P ) > I . 5 ,  then ~4=0 or +2.  

ProoL I t  is sufficient to prove that  e4 # 4. 

If ~a=4, we have 

2 ~ 5 - ~ - 1 + 0 5 = s 4 - ~ + ~ - 0 ~ +  i 0 ~ -  a 1 1 

= 4 +  35__~201, 

3 5 - 2 0  
- 2 ~ 5 < 0 5 - 3 ~  2 2 5 - 1 0 ,  

O< - ~ 5 < 5 - 5 ;  

2 ~5 + 1 + ~5 = ~5 - ~ 

9 - 5  
2~5< - ~ 5 -  1 + - - 5 -  =2 ,  

O<~]s< 1. 
17 - 543808. Acta Mathematica. 92. I m p r i m 6  le 3l d6cembre 1954. 
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Since [ 05 r - 11 = ~2~ 6, we therefore have  

M (P) _< M 5 (P) < (5 - 6) (~ - 5) - 76 - 11 5 = 1.39... < 1.5, 

contradict ing our assumpt ion  t h a t  M(P)> 1.5. 

L e m m a  5.3. I /  M ( P ) > I . 5 ,  then e,= +1, e 7=  + 1 .  

Proof.  B y  s y m m e t r y ,  it is sufficient to prove  t h a t  E , # 3 .  I f  Q=3 we have  

I 1 2 5 2 + 1 + 0 2 = e 1 +  1-~-1  = 3 +  

~ - 4  2 ~ - 8  
- 2 5 3 - 2 < 0 3 - 4 +  3 3 ' 

~ - 4  
0 < - ( $ 3 + 1 ) <  3 ; 

273+1++3: 3+ = @ ' 

10-6 
2~/3+2r162 6 ----2, 

0<~/2 + +3 < 1. 
2~ 

Since 03 +3 - 1 - 8 - 6' we therefore have  

M (P) < M3 (P) < (8-~)  ( ~ )  = 4 ~ -  26= l.12"" < l.5, 

contradict ing our assumpt ion  t ha t  M(P)> 1.5. 

L e m m a  5.4. I/  M (P) > 1.55 and ~1 = 1, then e o >_ 4. 

Proof. Suppose to  the  con t ra ry  t h a t  to<_2. Then  

25~+  1 + 0 2 = ~ 1 - ~  1 -  

= 1  - t  0 3 ' 

-- 252--  2 =  02-- 2 +  ~~ ( ~ )  +[[ 136-883 

< 0 2 - 2 + 2  -~ 3 

= 4 6  - 24, 

O< - (~2+ 1 ) < 2 5 - 1 2 .  



THE INHOMOGENEOUS MINIMA OF BINARY QUADRATIC FORMS (IV) 259 

Also 

2 ~2 + 1 + ~ = ~ - ~a s ~ ~a ~4 ~a ~4 q~ ~- I - 

since I E4] <---2, by Lemma 5.2, this gives 

19 ~ - 124 
0 < ~ z + ~ <  6 

25 
Since 0~ ~2 - 1 = 8 ---6' we therefore have 

M (P) <_M2(P) < (8-~)  (2~-12) (19(~6124 ) 

contradicting our hypothesis that  M ( P ) >  1.55. 

4 1 ~ - 2 7 8  3 8 0 - 2 4 8  
6 6 

= 7 9 6 4 -  11740= 1.544. . . ,  

Corollary. I /  M (P) > 1.55 and e~ = 1, then 8 _  1 = l. 
For e_ l=  +__1, by  Lemma 5.3, and e _ ~ = - 1  would imply e 0 < - 4 ,  by  an ap- 

plication of Lemma 5.4 to the sequence { -a_n} .  

Lemma 5.5. I] M(P)> 1.55 and e , = l ,  then e0=4 or 6. 

Proof. By Lemma 5.4 and its corollary, it is sufficient to show that  if e_ l=  1, 

e1=1,  e0>_8, then M(P)_<l .55.  

Supposing then that  e - l = l ,  e l = l ,  % > 8 ,  we have 

2~1+ 2d~ <~bl-~ 3 

48- -  
0 < ~ + 6 1 <  3 

20 

01-I- o+11 -611, 
0 1 -  1 - 8 + ~ - 6 = 2 ~ - 8 ,  

- (r + 1 ) < ( ~ - 4 ;  

e2 E3 ] "~- 1 ( ) I  1 
eo - - -  + 1 - 

7 ~ - 4 7  8 ~ - 4 0  

2 ~ i + 1 +  01= 

- 2 ~ 1 - 2 =  

< 

0 <  

2 91 + 1 + ~l = 
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26 
Since 01 4 , 1 -  1----7- 6' we therefore have 

M (P)<-Ml (P) < (7-6)  ( ~ - ~ - )  (6-4)  = 

so tha t  certainly M(P)<_ 1.55. 

Lemma 5.6. I /  M (P) > 1.55 and Q= 1, then 8 4 = - 2 .  

Proof. By  Lemma 5.2, it is enough to show tha t  84<0. 

t ra ry  that  e, > 0.. Then 

81 8 0 
2 ~ 3 +  1 + 0 3 = 8  ~ -0-~2+ 02 01 

1 8 o 

O~ O~ 01 

1168 - 1726 = 1.439 . . . .  

Suppose to the con- 

+11O?OlOoI,-  )1 02 01 Oo 

(since 8 _ 1 : 1  by Lemma 5.4, Corollary); hence, since e0<6  by Lemma 5.5, 

Also 

1 
2~3+ 203< 03 - 1 - ~ - f  

97 - 146 

3 

6 1 1 

02 01 02 010o 02 010o 

97 - 146 

I l l (   )ll 2#3+I+~3=~3  ~4 ~44,5 ~4~5~6 § [~4~4'6[ 1 -  

_ 84+ 1 2 9 - 1 9 6  [, 

4'4 5 I 

2~h+2=-r 129-196J5 

129-195 138-186 
< - - 4 , 3 + 1 +  5 5 

(since @4 > O, e 4 >_ 0), whence 
6 9 - 9 6  

0<~73+ 1 < 5 

25 Since [03+3-  1 [ : ~ - - ~ ,  we therefore have 

_a  (13236 - 8970) < 1.512, -.2 

contradicting our assumption tha t  M(P)> 1.55. 
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Lemma 5.7. I[  M (P) > 1.55 and c I >0,  then 

eSn+ l= l ,  88n+2=0 , ~8n+3=0, e8n+4=--2 ,  C8n+5=0 , ~8n+6, eSn+7 = l  

/or all n, and e8~=4 or 6 /or each n. 

Proof. If, for any n, e8 n+, > 0, then preceding lemmas (with r replaced by 8 n + r) 

show that  

~ S n - l = l ,  eSn=4 or 6, esn+2=O, ~8nff3=O, 88n+4=--2,  ~8n+5=0, 88n+1=0. 

If now e8~-7<0, we have e 8 = - 1 = - 1  (replacing n by n - 1  and changing the sign 

of all er); hence e8~-7 >0.  If e8=+7 < 0, we have Csn+4= + 2  (considering the reversed 

sequence); hence es~+7>0, and so esn+9>0. 

I t  now follows that  if eS~+l>0 for any n, then e8=§ for all n, and this 

now gives the result of the lemma. 

Lemma 5.8. I [  c8 .=  +_4 /or any n, then M ( P ) < l . 5 7 7 .  

Proof. I t  suffices to show that  M ( P ) <  1.577 if Co:4.  Using Lemma 7 we see 

that  then e _ l = l ,  e0=4, e l : l ,  e2=0, e3=0, e 4 = - 2 ,  es=0,  e6=0,  e T : l ,  e8=4 

or 6. Hence 

253-}-1-}-03:--~2-~ 0201 020100-{- ~ 1 -  

(since 02 0100 > 0) ; thus 

Also 

1 4 < 
- ~ +  02 01 

1 4 
2 } a + 2 0 3 + 2 < 0 3 + 1 - ~ + ~ = 2 3 - 3 ~ ,  

2 3 - 3 ~  

2 1 E 8 
2~3 + 1++3=- - - ] -  

+, +4+5+8 +7 r 

- - 2 ~ s - 2 - 2 + 8 :  - + 3 -  1 

14,...481 

(since e s_> 4 > 1), 

2 1 ~s _1 i 
~4 ~4"'" +7 [ ~4 "'" ~8 [ ~- i+4 ~8 

< {'3 1 
2 1 31 ~ - 206 

r162 r 5 

31 ($ - 206 
O< -- (~]3+ I +Ca) <~ 

lO 
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Since  103 ~b3 - 11 = ~ 2 ~  4, i t  fo l lows t h a t  

= 4864.5 - 717 (~ 

< 4864.5 - 717 (6.78232) = 1.57656. 

L e m m a  5.9. I /  M(P)>_ 1.577, then {en} or { - e n }  is the periodic chain given by 

• • 

{6,1, o,o, - 2 , o , o ,  1), (5.3) 
where e o= 6. 

Proof .  Th i s  fo l lows a t  once  f r o m  L e m m a s  5.7 a n d  5.8. 

L e m m a  5.10. I f  the chains {an}, {~,} are given by (5.2), (5.3), then 

76877  
M(P)=48668"  

Proof .  B y  (3.6) we h a v e ,  ill  m a t r i x  n o t a t i o n ,  

( 1 ( ) ( o )  ,~,, 
\yn+l/ - -  1 - an+l ,  yn bn + 1 

for  a l l  n,  w h e r e  2 k,  = a, + 1 - en. S ince  xn, yn are  pe r iod i c  in  n w i t h  p e r i o d  8, we h a v e  

(Xs, Ys) = (Xo, Yo), 
a n d  so we f ind  t h a t  

(xo)=(xs)~(_781 _1o7o,~(xo)_( 17o 781~(~) 
Yo Ys 3588 4 9 4 5 1 ]  Yo - 781 - 3 5 8 8 ]  

147 - 

( ~  ~)(~)(~ 1)(~) (~) 

- 3 5 8 8  - 4 9 4 5 0 ]  Yo \ 1 6 1 2 3 ]  

(xo) 1( ,9,50 1070,~35,0~ 
Yo 4 8 6 6 8  3588  7 8 2 ]  \ 1 6 1 2 3 ]  

_ ~ (21528~,  
4 8 6 6 8  \ 1 4 3 0 6 ]  
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whence 
( 468 311]. 

(Xo, yo) = 1058' 10-58] \ 

Using (5.4) successively, we now obtain 

( 311 468~, 
(xl, yl)= lO58' lb~ /  

(x~'Y2)=( 1058'468 1-~]523~' 

/ 523 602~, 
(xa, Ya) = | lO58' 1 ~ /  \ 

(x4'Y4)=( 1058'602 1~]681~" 

By symmetry and periodicity we clearly have 

M(P)=min {MI(P ), M2(P), Ma(P), M4(P)}, 
where, by (3.2), 

M~(P)=min{I/.(x,~,y~)I, I/n(l § yn)[, []~(xn, l +yn)[, I/n(l+x~,l+yn)[}. 

Here we find easily that 
/1 (x, y)=3x 2+ 14xy+ y2 

/2(x, y)=6x 2+ 16xy+ 3y ~, 

]3(x, y)= - 5 x  2+ 8xy+ 6y 2, 

/4(x, y)=2x 2+ 12xy -5y  ~, 

and a straightforward calculation gives 

311 590] 83939 
M1(P)=- /1  1058' 1058] =48668' 

( 468 535  79703 
M2(P)=-]2 1058' 1058] 48668' 

535 456] 76877 
M3(P)= /8 1058' 1 ~ ]  =48668' 

( 4 5 6  377~ 76877 
M4(P)= ]4\1-0~' 1058] =4866~" 
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I t  follows tha t  
76877 

M(P)  4 8 6 6 8 '  

as required. 

Theorem 2 now follows immediate ly  from Lemmas  5.9 and 5.10. 

We note  tha t ,  with /(x, y)=x2- -46y  2, we have 

if and only if 
M (/; x 0, Y0) = M (/) 

1 311 
xo=~, y 0 ~ _ 1 0 5 8  (mod 1). 

I n  conclusion I wish to express m y  grat i tude to the Univers i ty  of Sydney  for 

supplying me with a Brunsviga,  on which the calculations of w167 4 and 5 were carried out .  

The University o/ Sydney, Australia 
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