THE INHOMOGENEOUS MINIMA OF BINARY QUADRATIC
FORMS (IV)

BY

E. S. BARNES

1. The object of this paper is to show how the ideas of part IIT of this series
may be applied to the problems considered in part I. No results from parts I and
II are used, but a knowledge of sections 1 and 2 of part III is essential for an
understanding of the method. For convenience of reference, the necessary definitions
and theorems are repeated here.

Let f(z,y)=aa®+bxy-+cy® be an indefinite binary quadratic form with real
coefficients and discriminant D=5 -44¢>0. For any real numbers #,, y, we define
M (f; o, yo) to be the lower bound of |f(z+ =y, y+y,)| taken over all integer sets x, y.
The inhomogeneous minimum M (f) of f(z,y) is now defined to be the upper bound
of M (f;xy, yo) over all sets x,, y,. It is convenient to identify pairs of real numbers
with points of the Cartesian plane.

As in part III, we approach the problem of evaluating M (f) geometrically, and
consider an inhomogeneous lattice £ in the &, -plane i.e. a set of points with coordinates

— £, o+ By,
F=botantfy (1.1)

n=nytyx+dy,
where &, 79, «, 8, 9,0 are real, ad—By=+0, and z,y take all integral values. The
determinant of £ is defined to be
A=A(C)=]as~ Byl
If we suppose that £ has no point on either of the coordinate axes £=0, =0,

then £ has at least one divided cell: that is to say, there exist points A4, B, C, D
of C, one in each quadrant, such that 4 BCOD is a parallelogram of area A.
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If we suppose further that there exists no lattice-vector of L parallel to either

of the coordinate axes (the condition for which is simply that the ratios /8 and /6
in (1.1) shall be irrational), then £ has an infinity of divided cells 4, B, C, D,

(— oo <n< o). The relations between the vertices of successive cells are:

Apa=Ay— (b +1)V0
Bn+1:An_hnI~/n

Crir=Cnt (kn + 1)V [
Dyi1=Cr+ k. Vs J

where V, is the lattice-vector

Va=An—Dy=B,—Ch.

(1.2)

Here the convention is adopted that A4,, C, lie one in each of the first and third

quadrants, and B,, D, lie one in each of the second and fourth quadrants. The in-

tegers h,, k, are then uniquely determined by the cell 4, B,(C, D, ; they are non-zero

and have the same sign.

Let the &, 5-coordinates of A4,, B, Cn, D, be given by

so that

If we write

Ch =(&n, 7]n), Bn':(fn + &n,y Nn +'}’n), Dnz(fn +ﬂn, Na + 671),

it follows that

where

and

Prn_
qn

( p—n)zao

(—q-n)

An=(En+on+ P, YutYnt0n),
Va=(@n, Ya)=(—Brs1, —0ns1)-
Qi1 =hn+ kn,
an=(—1)" (otg Pn — Bo qn),
Ya=(—1" (Yo pn— 0o qn),

p-1=0, ¢.1=—1; py=1, ¢,=0

1 1 1 :
a, — — — ~—=[al,a2,...,dn] (nZl),
Ay~ Qg """Qp
1 1 1
- =[a0, a,,l,...,a,_,,__g] (nZQ).
A_1—Q_g— "Q_ns2

A passage to the limit gives

(the continued fractions being necessarily convergent). If for each » we set

%o
bl U
Bo

G
[ag, @_1,a s,...], —=¢yg=lay, a,, as,...],
()}

(1.3)
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en="hy,—k,, (1.4)
On=I[an, @n_1, Cn_s,...], bn= [@ns1s Anizs Tnssy -1, (1.5)
we have further
< n— y < n E-n—
28 +agtyo= 2 (—1) lg—n(“op—n_ﬁo%n):ﬁoz(—1) m“’ (1.6)
n=1 n=0 -1Y-2..-V_n
& n 2 En o
270+ Yo+ 0= 2 (=1 en()’opn“aoqn)z}’oz(_1)ni4' (1.7)
n=0 n=0 ¢1¢‘2 ¢n

To relate these ideas to that of the inhomogeneous minimum of a binary qua-

dratic form f(z, y), we observe that for points of £ we have

En=(5t+az+PBoy) (770+70x+6oy)'
We call
f (@ y)=(otgz+ Poy) (Yo + 0o y)

a form associated with C£; it has discriminant D= (0o — fo70) =A% If w,, y, are

any real numbers and we write
So=0g@g+ PoYo, 7Mo="Vo%o T Y0,

it is clear that f(z+x), y-+y,) takes the same set of values for integral z,y as the

product &% for points of £. Thus

M (f; z, yo)=gLb. |£7].
& meg

As was proved in part ITI, Theorem 5, this lower bound is also the lower bound of
|&7| taken over the vertices A,, By, Cn, Dy of the chain of divided cells. It follows that

M (f; =, yo):g'ln-b- min {I&n Nn l’ |(§n +otn) (1 ¥a) |7 l(fn +/371) (nn+ 6ﬂ)~l’
i(§n+0€n+ﬂn)(nn+7n+6n)’}' (1.8)

It follows also that f(z+wx,, y+y,) is equivalent to
fn (@ + 20, y+yn)=(§n+°‘nx+ﬂn?/) (N + Y&+ 00 Yy) (1.9)
for each n by a unimodular integral affine transformation, i.e. a transformation

r—>pr+qy+a,

y—rx+sy-+b,

where ps—gr= +1 and p,q,r,s,a,b are integral.
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2, I-reduced forms
We shall say that an indefinite binary quadratic form ¢ (z, y), of determinant
D= A?>0, is inhomogeneously reduced, or I-reduced, if it may be factorized in the form
¢z, y)=A(0z+y) (z+ oY),
|[0]>1, |¢|>1.

where

By comparison of determinants it is clear that
A
¢ y) = il—gqs—_ﬂ (Bz+y)(z+¢y) 2.1

Lemma 2.1. If f(x,y) has integral coefficients and does not represent zero, there

are only finitely many I-reduced forms equivalent to f(x,y). -

Proof. Let ¢ (z,y)=a2*+bzy+cy® be I-reduced and equivalent to f(z, y). Then
it is easily seen from the definition that each of 2|a|, 2|c| lies strictly between
|b—A| and |6+ A|, where A® is the discriminant of f and therefore of ¢. Since the
forms a2’ +bzxy+cy® are equivalent, it is sufficient to suppose that 5>0. Thus

|b—A|<2|al, 2|c|]<[b+Al (2.2)

If now 0<b< A, the relation
—4dac=A*-p?

shows that, for each b, there are only a finite number of possible values of each of
a and c.

We cannot have b=A, since f is not a zero form, so that it remains to consider
b>A. Since 4ac=b— A% a and ¢ have the same sign. Writing k=c—a, we have

from (2.2)
|k]=]c—a|<3(®+A)-}(b—A)=A;
also
(a+c)l—k=dac=b—- A%
whence
A'—F={B-—a-c)(b+atc).

For each of the finite number of possible values of k, therc are only a finite number
of choices of b—a—c and b+a-+c. It follows at once that each of @, b and ¢ can

take only a finite number of values.

Lemma 2.2, If f(x,y) is an indefinite quadratic form which does mot represent

zero, there exists an I-reduced form equivalent to it.
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Proof. It is well known that f(2,y) is equivalent to a form reduced in the

sense of (auss, i.e. a form (2.1) satisfying the more stringent inequalities
< -1, ¢$>1.

Now it was shown in part III, § 4, that any irrational « with |«|>1 may be

expanded (in infinitely many ways) as a continued fraction

1 1
oz=a1—a:_a—3_ =l a5, 05, ... ],
where the integers a, satisfy the conditions: |a,|>2; a, is not constantly equal to
2 or to —2 for large n. Conversely, if {a,} is any sequence of integers satisfying
these conditions, the continued fraction [a;, @, as, ...] converges to a real number o
with |a|>1.

From this point, the theory of chains of I-reduced forms and the associated
continued fractions may be developed in a similar way to any of the classical theo-
ries of reduced forms. The important difference is that now there exist infinitely
many chains of reduced forms equivalent to a given form; moreover, any single
chain need not contain all the I-reduced forms equivalent to a given form.

Now let {a,} (— 0 <n<oo) be any chain of integers satisfying the conditions:
( lan|=2;
(A)

l, @, is not constantly equal to 2 or to —2 for large n of either sign.

We can then associate with {a,} a chain of integer pairs {h., k.} satisfying the
conditions

(1) Antkr=an;

(ii) 2, and k, are non-zero and have the same sign;

(E): 4 (iii) neither %, nor k, is constantly equal to —1 for large n of either sign;
(iv) the relation hAn,2,=k, 2r.1=1 does not hold, for any =, either for all

r=>0 or for all »<0.

As was shown in part 1T, Lemma 1, the chain {k,, k,} derived from the successive
construction of divided cells of a lattice, according to the formula (1.2), satisfy the
conditions (E) (ii), (iii), (iv); and then (E) (i) implies that the chain {a,.} satisfies
the condition (A). Thus (A) and (E) are necessary conditions for the constants &, k., a,
to correspond to a chain of divided cells of a lattice. We shall now show that they
are sufficient.
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We first note, as remarked above, that if {a,} satisfies (A), then the numbers
On, ¢n of (1.5) are well defined and satisfy |0,|>1, [¢n|>1.

We next prove that the series (1.6) and (1.7), with ¢, =h, —k,., are absolutely
convergent provided that {,, k,} satisfy B (i), (ii).

Lemma 2.3. The series Z lann]-2 is convergent and
n=1] 1o - énl
3 I +ll <
Al 72 (2.3)
Al

Equality holds in (2.3) if and only if a, has constant sign.

Proof. We have

1
¢n-1=[an: an+1,---]=an—a’
and so
1 |‘i’nl_1
noil=120ap|———1=la,|— 2+ . (2.4)
Using this relation for n=1,2,..., we have
ol — 12|y |2 12l 2 oy lonl= 2 Lon] 2

[ HPT </>n-1| (6162 on|

The first assertion of the lemma follows at once, since |¢,|—1=0.
There is clearly inequality in (2.3) if there is inequality in (2.4) for any value
of n; and cquality holds in (2.4) if and only if e, and ¢, have the same sign, i.e.

1
if and only if a, and a,,; have the same sign, since always |¢n—an+1|=—|¢ l<1.
n+1l

Thus equality holds in (2.3) if and only if @, has constant sign.

Lemma 2.4. If {h,, k,} satisfies the conditions (E), the series

UV e e ¢1¢2 - n

of (L.7) is absolutely convergent, and its sum is numerically less than |¢,|—1.
Proof. Since e,=h, —k, and h,, k, zatisfy (E) (i) and (ii), we have

len| <|@nia|—2
and so, using Lemma 2.3,

2 - Ian+1| 5
-1 < <ol -1 (2.5)
D el LIPS P ¢ =%l
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It remains to show that equality cannot hold throughout (2.5). By Lemma 2.3,
there is certainly strict inequality unless all ¢, have the same sign. Suppose then
first that @, <0 for all n. Then ¢, <0 and 50 ¢ydy---dn=_(—1)"|¢; by ... ¢n|; hence
equality in (2.5) implies that +e,=|an..|—2= —an+1—-2 for all n (with a fixed
determination of +). But this gives

either hp=4{ep+an)=—1 or k,=l(@,1—e&)=-—1

for all n, contradicting E (iii).
Suppose next that a,>0 for all », so that ¢,>0. Then equality in (2.5) implies
that +(—1)"en=an,;1—2 for all ». But this gives

either h2n+1:%(32n+1+a2n+2)=1, k2n=%(a2n+1—8~2n)= 1,

or hzn:%(aznﬂ‘l‘szn):l, k2n+1=%(a2n+2‘— Eans1)=1

for all n, contradicting E (iv). This completes the proof of the lemma.
Precisely similar results hold, by symmetry, for the series (1.6); and these results
are clearly independent of the starting-point of the enumeration of the chains. Thus

for each n we may define numbers &, n'n by the formulae

En-2 €n_-3
2 n—|~9n+1~ no +——— (LR 2.6
d T By Ons (2:6)
2t L = gy — (2.7)

¢n+1 ¢n+1 ¢n+2

provided that the chain {h,, k,} satisfies (E); and then we have

|28, +0,+1]<]|0,] -1, (2.8)
|27 +1+¢n|<|¢a]—1. (2.9)

It may be immediately deduced from these inequalities that

sgn &, =sgn (&, +1)= —sgn 6, ] (2.10)
sgn (,+ 0x)=sgn (1 + 0, +1)=sgn 6,; | .
SgN 72 =5gN (72 +1) = —sgn ¢n, ] (2.11)
SN (75 + n) =SgN (1 + gn+ 1) =s5gn b | |

The points
Cn=Ens M), Bu=(En+0nn+1), Do=(En+ 1,70 +da),

n=(§n+0n+l’ 7}n+1+¢’n)
16 - 543808, Acte Mathematica. 92. Imprimé le 30 décembre 1954,
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therefore lie one in each of the four quadrants and are the vertices of a divided

cell of the lattice
{ E=f+0nz+y

/] =77;, +x+dny-
Next, from the formulae (2.6), (2.7) we have

En-1

6

, 1 '
281t Onpa+1=8,— +"':3n_0_’(2£n+0n +1),

, 1 '
2hnt+ 1+ pn=tr——— 21+ 1+ ¢ns1)
¢n+1

From these, using the identities

Bn =a s n=0nt1— ) 2k7l =Qany1— Eny
#1701~ g ol +1 Snrt +1
we deduce at once that
"en £;+1:‘S;l+(kn+l) en, (2'12)
7]:1+1 ’
— e+ R L (2.13)
¢n+1

A simple calculation now shows that the four points
An - (hn + 1) I/m An _hn Yn; Cn + (kn + l) Ym On +kn .Vn
(where V,=4,—D,) are

{B(ni1+Oniat1), )/(77;+1+1+¢:;+1)}s {ﬂ(§;+1+0n+1)7 7(77;+1+1)},
{ﬂ§;+1,'}’77::+1}, {ﬂ(£;+1+1), '}’(77;z+1+¢n+1)},

where f=-0,, d=— , and so are again the vertices of a divided cell of the

n+1
lattice.

Thus the divided cell 4,,;B,:1Cni1 Dy is obtained from the cell 4,B,C,D,
by precisely the formulae (1.2).

It follows from the above results that, given any chain {h,, k.} satisfying con-
ditions (E), there exists a lattice £ whose chain of divided cells satisfies the recurrence
relations (1.2). Moreover, £ is uniquely determined, apart from a constant multiple
of each coordinate.

In particular, let f(z,y) be a binary quadratic form of discriminant A®>0. Let
{f=} be any chain of I-reduced forms equivalent to f(z,y) and {a,} the associated
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chain of integers satisfying (A). Let {h,, k.} be any chain satisfying (E). Then, for

each n, the numbers &,, 97; given by (2.6), (2.7) define an inhomogeneous form

A ’ r
fn (@ +x,, Y+ya)= i‘wm (£n + 9n$+y) (771; +x+¢ny) (2.14)
n n
equivalent to f(x+ag, y+yo) for some g, . Conversely, corresponding to any real
numbers g, yo, there exist chains {f.}, {an}. {hn, k,} satisfying (A) and (E) such that
f(x+20, y+yo) is equivalent to the form (2.14) for each .

3. The determination of M (f)

It is more convenient for the applications to quadratic forms to work with the

numbers &, 7%, of § 2 rather than the &,,7, of § 1; these are clearly connected by

the relations

1 ’ A
gn: nén, n=Ynn, aYn= LT 5"
Pudu, Ma=yntin Buyn= 2t Sy

We therefore drop the prime from &,,7, in all that follows.

For any fixed form f(x, y) we write
M(P)=M(f; ,, %o),
where P is the point (%, y,) of the z, y-plane. Then (1.8) gives

M(P)=glb. M, (P), (3.1)

where

A .
Mn(P):m—qs;—l_i mm {lfnnn,, I(fn"’on) (77n+1)';

[En+ D) n+da)ls [(En+0a+1) (a+1+¢a)]  (3.2)

The results of § 2 show that the set of values of M (f;z,, y,) for real x,, y, coincides

with the set of values of M (P) for all possible chains {k,, k,} associated with f(z, ).
Hence
M(fy=Lub. M(P), (3.3)

where the upper bound is taken over all chains associated with f(x, y).

To determine the relations between the successive inhomogeneous forms
fn(@+Tn, Y+ yn),

arising from any chain {A,, k,}, we first note that, by (2.12) and (2.13),
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_0n5n+1=§n+0n(kn+1): (34)
~Nn+1=Pn+1 (77n+kn+ 1). (3-5)
Hence, if we set
' =y,

Y=—x—dnytk.+1,
we have

7]n+1+x,+¢n+ly’= '—¢n+1(7]n+kn+1)'}‘y+¢n+l("x_an+1y+ku+I)

= - ¢n+1 {Z-l- (an+1 - ¢:+1) ?/‘!‘ nn}

= —¢n+1(7]n+x+¢ny)

and similarly

, 1
bt Onna’ +y = —F(§n+9nx+y)§

thus
r r’ A ’ ’ . ’ ?’
fn+1 (x T &ni1> Y +yn+1): i T (§n+1+0n+1x +y)(7ln+17‘x +¢n+1y)
|0n+1¢n+1 ll
a0z ) (e )
_|0"¢n "ll n n n n

=fu{T+Zu, Y+ Yn)-
Also, using (3.4) and (3.5) again, we have

0n+1 xn—1+yn+1:5n+1: - (-Tn Sl Yot 1 +kn) ~:'Gnirl Yn,

Tna TP Yns1=Nns1= — (xn tanaynt+ 1+k,) Gni1FYn,
so that

T =Yn,
nt1=Y l (3.6)

Yny1= — (7 +@niy Yo+ 1 +kn) I

In the practical problem of finding the numerical value of M (f) for a given
form f(x, y), the success of the method depends upon the rapid convergence of the
series (2.6), (2.7) defining &, and 7),; the error made in replacing them by a partial

sum is easily estimated from (2.8), (2.9). We have

+ —1 T "
T . R B Gt TS
P+ bnt1 Pni2 oe Grar
(Hl)”’l

i e 2 ntr + n-+r +]' 3
¢n+1---¢n+r+1( Nntre1 + Pnoril )

and so, by (2.9),
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_lr n+r
R ¥ W G ) 1113

Pn+1 ¢n+l"'¢‘n+r

-+

1 1
— 1 -——1- 8.7
bniiee- Pnor ( I¢"+T+1|) I ( )

Here we use the (permanent) notation ||z|| for a quantity whose modulus does not

exceed |z|. In the same way we find

_ -1 r+1 _
2¢&, +6n+1=e"“1—ﬂ+...+(—)——3‘—i

n—1 anl...ﬂn_rﬂ

1 1
1— . (3.8
07!.—1 e en_r+1 ( IOn—r I) “ ( )

In order to avoid excessive enumeration of cases, we now justify some formal

+.

operations on the chains {a,}, {&.}.

Lemma 3.1. The value of M (P) is unaltered by any of the following operations:

(i) reversing the chains {an,1}, {e.} about the same point;
(ii) changing the signs of all &,

(iii) changing the signs of all a, and of alternate ¢,.

Proof. (i) Reversing the chains is equivalent to interchanging &,, 7. and On, ¢n;
this does not affect the set of values of M, (P).
(ii) On replacing ¢, by —e, for all n, we obtain the values Sn, 7in in place of
&n, M, where
25, +1+0,=—(2&,+140,),

20+ 1+¢a=— (292 + 1+ ¢n)-

Hence &, 7jn, (En+02n) (n+1), En+1) (Fn+ ¢n)s (En+ 0n+1) (n+ 1+ $,) are respectively
equal to (£,+0,+1) M+ 1+¢a), Ent1)ntdn), (nt02)(at+l), Ena. Thus
M, (P) is unaltered.

(iii) On replacing @, by —a, and &, by (—1)"¢, for all n, we obtain values

671! a’m En» 7_/71 in Place Of 07!; Ebn; Em 7]7“ Where

Bn: "‘671, b(i)nz "‘4)7“
2041+ §n= 3 (1) 7%11’7:
S (13 (1Y = (1) @t L )

r=0 Pni1 oo Pnoir
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and similarly 2&,+0,+1=(—1)"""(2£,+0,+1). It is now easily verified that the
four quantities é,, ijn,... are merely a permutation of —&7,..., so that M, (P) is
unaltered.

Using (ii), we see that the same result holds if we replace a, by —a, and &,
by (—1)"1e,.

A very useful result which enables us to eliminate by inspection most chains

{f»} is given by:

Lemma 3.2. For any chains {a,}, {e.}, and for all n, we have
A .
M(P)SMn(P)Sm min {{(0,— 1) (¢n— D, |02 +1) (g2 +1)[}.  (3.9)

Proof. By (2.10), £, + 0, and &,+1 have opposite signs, so that

2[(En+0n) En+ D) P <|En+0n| +]&n+1|=]|(En+00)— (£ +1)|=]0,—1];

similarly

2’(’7n+1)(77n+¢n)|§§|¢"——l|,
whence ‘
4] (Ea+0) (gn+1) (En+1) (g + ) <[ (Bn 1) (pn — 1)]-

In the same way, using the fact that &, and &,+6,+1 have opposite signs, as
do also %, and 5, + 1+ ¢,, we find

4| Enn (En+0n+1) (n+ 1+ ) [F <[ (B + 1) (¢ + 1))

From these results and the definition of M, (P), (3.9) follows immediately.
From Lemma 3.2 we can deduce a simple inequality for M (P) or M (f), which

is in a sense best possible.!

Lemma 3.3. Suppose that the chain {f.} contains the form f(x,y)=az*+bxy-+cy.

Then, for any choice of {e,} we have for the corresponding point P,
M (P)<min }|a+b+c|=min |f(}, +1)| (3.10)

Equality can hold in (3.10) only if e,=0 for all n, so that P=(xy, y,)= (%, %) (mod 1).

! This result is closely related to an estimate for M (f) found in Barnes [1]. There it was shown
that, if f(z, y) =qa’+ bzyte y2 (not necessarily reduced in any sense) and P is any point, then

M(P)S% max {Ial,lcl, min |aib+c|},

where equality is possible only if P=(}, }), (0, 3) or (4, 0) (mod 1).
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Proof. Since

. A
fnlw, y)= im(enx+y)(x+¢n?/),
(3.10) follows immediately from (3.9). Clearly we can have equality in (3.9) only if

there is equality in the arithmetic-geometric mean; in either case this implies that
EntOn= — (.t 1), N+ ¢n= _(nn‘l'l);

thus 2£,+1+0,=29,+1+¢,=0, whence ¢,=0 for all n. Finally, if this relation
holds, we have

s n zi
frn (@ +Tn, y+yn) O om — 1

{On@e—D+@—H{E-D+eénly— D}
so that P=(},3) (mod 1).

4. In this and the following section we apply the methods established above to
the determination of M (f) for the particular forms 2% —19%% and 2% —464% These
two norm-forms had proved difficult to handle by the technique of Part I of this
series, and so were examined to test the practical efficiency of the present methods.

In the evaluation of M (f) for a given form f(z, y), the first step is to find the
I-reduced forms equivalent to it; for forms with integral coefficients, this is perhaps
best carried out by the method of Lemma 2.1.

Now if g(z,y) is I-reduced, so also are the equivalent forms g(x, —¥), ¢(y, %),
g(y, —x); also, any chain containing one of these latter forms may be converted
into a chain containing g(z, y) by reversing the chain {a,}, or replacing it by { —a.},
or both [ef. Lemma 3.1]. It is therefore sufficient to list only those I-reduced forms
azx® +bxy+cy® with

=0, |a|<|c|. (4.1)

For these we have the factorization

ax®+brytey’=A(ax+y) (x+fy), |a|>1, [B]>1
with

- 4.2)
b+A bFA ., (
PP g= 2a A*=b*—4dac. I

For convenience, we shall write (a, b, c¢) for the form ax®+bxy +cy.
Theorem 1. If f(x,y)=2>—19¢>% then
M(f)=1
Note. The value of M (f) is incorrectly given as 31/38 in Part I (Table, p. 315).
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The proof of Theorem 1 will be given as a series of lemmas, representing the
successive steps in the argument. For convenience we write
8§=V19=1A.
Lemma 4.1. If M (P)>3, the chain {a,} is

{3’ 5) 3’ - 8} (4-3)
or its negative (where the crosses denote infinite repetition of the period 3, 5,3, —8).
Proof. If M(P)>3 Lemma 3.3 shows that only forms (a, b, ¢) with |a+b+c¢c|>4,

|a—b+c|=4 can occur in the chain {f,}. With the restrictions and notation of (4.1),

(4.2), all such forms are
o+4

n=(8 -3, w=-20% posia
é+5 60+5
92:(_2: 107 —3), 12=——3—, 52=—T.
Also we have
0+4 5—0
ay= =g = —3+ 5o =[~3, )
Bi= O+4= 81+0-4=[8, )],
6+5 5—4
w=my C Ty TR
0+5 5—0
ﬂ2=_T=_5+T=[—5’a2]’

where, in each case, the alternative expansion leads to a reduced form other than
g, or g,. The lemma now follows at once.

For the proof of Theorem 1 it now remains for us to consider the chains {g,},
which can be associated with the chain {a,} given by (4.3).

We number the chain {a,} so that

a,=3, a,=5, a;=3, a,=—8;
then
> : +4
¢0=03= [3)5’37 _8] :6—3_’
o - 5+0
sn—0,=[53 -8,3] 22,

o 1 5496
¢2=01= [3’ ~8: 3’ 5J =

bi—o— | —83,5,3] = —(6+4);

and each of a,, 0, ¢, is periodic in n with period 4.
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Since |en|<|@n+1|—2 and &, has the same parity as a,,;, the possible values

of ¢, are given by:
Egn= il’ Eant1 ™ ily igy Eani2™ il’ £4n+3=0’ izy i4: i6’

and it is easily verified that conditions (E) are satisfied for any choice of &, from
these values.?!
We now show that M (P)<.982 unless

Ein=Eini1=Eansz=1, E4ni3= —2 (4~4)

for all » (or the negative of these values).
Lemma 4.2. If M (P)=.93, then ¢,= *1.

Proof. We have

1 —
2§2+1+02:81+11—F =81+’6—23“’
1
. o+2
e I e |

If now & =3, we obtain

0+1 ||6-3 8+4 [i6+2
§2=_—+ —4‘— ) ﬂZZ_T-I- — |}

4 6
so that 0<_(§2+1)<é%§’ 0<7]2+¢2<6—_;—2'
Sinece
5+6
0 “‘].: — ]
v-1-5("5°)
we have

26
ml(fﬁl)(nﬁ%)l

5—0\ (6—3\ (6+2
<2( 2 )( 3 )( 3 )—14—36<.93.

By Lemma 3.1, the same result holds if & = —3. This proves the lemma.
We now suppose therefore that

M(P)S M,(P)<

Ein1= T1 for all ». (4.5)

1 It is clear that E (iii) and (iv) are always satisfied if each of the sequences {an} and {a_n}
(n=0, 1, 2,...) changes sign infinitely often.



250 E. S. BARNES

Lemma 4.3. Suppose that M (P)=>.83. Then if e,=1 or if ¢,=1 we have £5<0;

and if gg=—1 or gg= —1 we have £;,=0.

Proof. By symmetry, it suffices to show that £<0 if ¢,=1. We have

1 1
e:(l“e:)

using (4.4) and the hypothesis ¢,=1, it follows that

>

253+1+03=az—‘;—1+
2

1 1 1
£ 1————[1——})>
2&,+1+0,> 5, 92( 61)
whence
46—8
253>— 3 >
20—17
0< ~(§+1) <=
Next,
1
2173+1+¢3=£3+ll—;'=£3+||5—6”.
4

If now we suppose, contrary to the assertion of the lemma, that e;=>2, this gives

293+ 1+ ¢3>2-(5-9),
whence
0< —(n3t¢3) <4

[0 45— 1]|=(0+4) (‘s—;é)+1=25(6i34),

Since

these inequalities give
[
1035 —1]

<(0—4) (26—;;7) 4=88—-200<.83.

M(P)S My(P)< &+ 1) (ns+ ¢3)|

Lemma 4.4. Suppose that M (P)>.89 and that either e,=1 or g=1. Then
g,=0 or —2.

Proof. By symmetry, it suffices to suppose that g=1. After Lemma 4.3, we
have ¢;<0, and so we have to show that & cannot be —4 or —6.

Suppose then that e;< —-4. We have
1
a3
babs ¢

& €
2n3+ 1+ py=ey— 2+ —>+
T et

’
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where g, < —~4, g,=1 by Lemma 4.3, and, by (4.5), ¢;= +1. Hence

1 1 1 1
2yt L gy —d— b P L
GRRRALH ¢4¢m5¢mi )

1 1 1 1
0<2py< ~B5—hy— b — o —— 1——)
s % g e %%( %0
— 54 (0+4)—(8—4) +(36—13) - (48 —11)=38— 83,
0<773<19—45.

As in Lemma 4.3,

0< —53<2——6_4, |03¢3—1|=25(—6+4)-
3 3
Hence

20 20—4
M(P)SM3(P)SWT|I83173|<(6—4) (~—3——) (19 —49)

=646 — 1484 < .89,
contradieting our assumption.
Our next step is to eliminate the possibility that ¢;=0, which we do in two
stages.

Lemma 4.5. Suppose that e3—=0 and that M (P)> .96. Then
g =& =g =g=11.

Proof. By symmetry, we may take &= +1. Using (4.5), we certainly have
g==11, ¢g=+1, &= F1.

Suppose first that ¢,= —1. Then since

€ & & €,
2&+14+0;=g,— 4 — =1
s 5T 0, 60,0, 0, 0,0,

3 &5 € &
2yt 1+ gy=gg— 2+ — =242

b0 ads b1 Gads

1 1
e:(l‘ei)

we have

2E,+1+0,=1— L4
0,

02 01 02 :

and, with ¢,= —1,
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1 (1 _1_)
P4 ¢

Lk
b4 s

252

1
2yt 1+¢s= ¢4+

|

4¢5

28

—2(nst+¢y) < — ¢3+1_¢4¢5 3

0< —(ns+¢a) <¥-

Hence
26
M(P)SMS(P)SWI(E:;'*‘I) ("73‘*‘4’3)'

Thus we require &= +1.
In order now to show that g =g5=1, it suffices, by symmetry, to show that

g,=1. Suppose to the contrary that & — —1, so that now &= —1, &=1, &=0,
1 1

1——

o (-a)

g=1, &g= +1. Then
51
1 1 1 1
l1+———(1——}=1+ ,
7T, 02( el) 6,0,

26+ 1+0,=1—

—2(g+1)<6,— 09 -2=24-8,

0< —(&+1)<d—4;

also
2+ 1+ g= — 4+ ---=“1—— > -1+1,
P4 Py b4
1
—2(nat g) < — 3+ 2——=10,
LN
—(ns + ¢3) <B.
Hence
M(P)< M, (P)<(6—4) (6 —4)5=>5(35—80) < .65.

Lemma 4.6. Suppose that

s=g=6=g==11, &=0.

Then M (P)<.982.
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Proof. We have, taking the upper sign without loss of generality,

o ()]

2ey+ 14 0,=6— 0+

6,
1 1 1
<1+—+~(1-~—-),
0, 0.\ |[6,]
28,+20,<6 +2__ 1 4406
z 2TTR00, 6,06, ’
0<g+0,<7-96;
also
& £ £ 1 1
2yt Lt y=gy— 24— — 5 p ‘ (1——)“
T b e o Gadn badate || dagads . [o]
1 1 1 1 ( 1)\
=1-— — + 1——| ||
¢s Gsbs Padats || adabs s
whence
1 1 1 1 1
— 29, =2 <y — 2+ — — + + (1——)
S T ada Gadads  badade\ o]
1105476
==
0<—(n2+1)<§§—5ﬁ-
) 5+0
Thus, since 0,¢,—1=49 3 ) we have
M (P)< M,(P)<(5—3)(T—9) (5553—_23;) =19428 — 8464 < .982,

as required.

253

It follows from Lemmas 4.5 and 4.6 that, for M (P)>.982, ¢=+0, and so, by

Lemma 4.4, ¢= +2.

Allowing for an eventual change of sign of all ¢,, we take g;= —2, so that, by

Lemma 4.3, g,=¢,=1.

Lemma 4.7. If ¢,=¢,=1, ¢3= —2 and M (P)=.79, then ¢ —¢;=1.

Proof. By symmetry, it suffices to show that & =1. Suppose to the contrary

that ¢,= —1. Then
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1 1
a;(l"ei)

>1+i-l(L“§=1+J_,

2§3+1+03=32—§1+
2

6y 0, 6, 6, 0,
1
—253—2<03—2—0 7 =26-8,
12
0< —(&+1)<d—4;
also
273+ 1+ ¢pg=¢5+ l—i >—2—(1—¢%),
4
1
“2773_2¢3<“¢3+4—E=12,
0< —(n3+¢3) <6;
hence.

M (P)<M,(P)<6(5—4)(0—4)=6(35—85)<.79.

In Lemmas 4.2 to 4.6 we have now established that, if M (P)=.982, then
g =¢&=g=6=1, g=—2 (or the negative of these values). By the periodicity of
the chain {a,} it follows that, for each =, either

Egni1=E4nie=E4nsa=Eanss=1, E4nyz3= —2,
or

Eint1=E4ni2=Einsa=E4nps= — 1, Eansz3=2.

Since 4n+5=4(n+1)+1, it is immediately clear that if the first alternative holds
for any one value of =, it holds for all n. Thus {e,} is the periodic chain given by
(4.4), or its negative.

We now complete the proof of Theorem 1 by proving
Lemma 4.8. If the chains {a,}, {en} are given by (4.3) and (4.4),

M(P)=1R.

Proof. The values of &, and 7, may easily be calculated from the series for
28, +0,+1, 29, +1+¢,, since each of these quantities is periodic in n with period 4.
Thus

& € & 1
2ng+ 1+ gp=gy— =+ —— ——2— 4
o et T e drdade  bidadathe

(2 774 + 1 + ¢4)’
whence

1 1 2
_ + ——— + .

b1 D192 Pr1dady

1
2r0+1+gy) (1-——
(2770 %o) ( P192 3 ¢’4)
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Inserting the values of ¢,, we find

_ 152+236
U T
Similarly we may calculate
_57+208

%o 57

Using the recursion formulae (3.4), (3.5), we then find

g 190+235 _ 1714256
1= 71 hT 114

By the periodicity and symmetry of the chains, it is clear that
M (P)=min {My(P), M,(P)}.
A rough calculation easily decides the minimum of the four expressions defining
M,(P), M,(P). Using the relations
26 20

|0o¢o_1|:m’ |01¢1_ll=5_6’

we have

26
Mo(P)=m'_—1||(§o+oo) (ﬂo‘*‘l)l

w~@(

170 .
171>

376 +171 (236— 19
57 L 171

20
Ml(P)zm;——lll(§1+l) (’71+¢1)|

-0 (

17

17

5741648 (19+ 236)
57 171

[on =]

Thus M (Py=14%, as required. This completes the proof of Theorem 1.

Note. A simple calculation shows that the point P of Lemma 4.8 corresponds
to taking

(@, y)=(0, £ (mod 1)
in f(x, y)=2"—194°
5. The form x*-46y?
Theorem 2. If f(x,y)=a—46%% then

M(f)=187=1.579.... (5.1)



256 E. S. BARNES

The reduced forms axz?+bzy+cy® equivalent to f(r,y) with |[a+b+¢|=>7 are
found to be g, (z, +¥), g.(y, Tx) (n=1,2,3,4) where

o+4 644
g.=(—5,8,6), o= ﬁ1=——5——,
6+6 6+6
9.=1(2, 12, —5), %= == Bo= 5
7
b=(,14,3),  a="1,  f=b+47,
0+8 6+8
=(3,1 ==_° - ,
gs (37 6: 6), oy 6 y ﬁ4 3
where we have written
0=V46=1A.

By Lemma 3.3 we see that, for any point P with M (f; P)>3$, no other forms can

occur in the corresponding chain of reduced forms.

Lemma 5.1. If M (P)>1.5, the chain {a.} is given by

{14,5,2, — 2,6, —2, 2,5} (5.2)
(or its megative).

Proof. It is sufficient to observe that, if the chain of reduced forms contains

no other forms than those listed above, then we have the following unique expansions:

a; =[2, B4], Br=1-2, Bl
xg = [ - 2, al]’ ﬂz = [6; az]:
xg = (5, a4]’ ﬁ3= [14, ‘xs]:

a,=[2, §;], ﬂ4=]5: B3l
thus

w=13,51452 -2,6 2], =126 -22514,5:2],
wa=| —5,2,514,52 -2,6], =16 —22514,52 —2],
a= 5,2, —2,6, ~2,2,5,14], p=114,5.2 —2.6, —2,2,5],
w— 3, 2,6, -225145], p=151452 2,6 —22],

Hence all the above forms occur in the chain, and the chain {a,} is given by (5.2).
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We number the chain (5.2) so that
Agni1=14

for all n. Then a,, 6, and ¢, are periodic with period 8 and

B=¢g=0+7,
62=¢7=§—§—8,
0,= 6=6g4,
64=¢5——6—J5r§,
Oy=="00
By = by = —524,
6, = 2:‘3—?,
05 1—5—‘;3

We note that e,=g5=¢e;=6,=0, |g]=<12, |&|<3, |&|<4, |&]|<3.
Lemma 5.2, If M (P)>1.5, then g,=0 or +2.

Proof. It is sufficient to prove that g,+4.

If e5=4, we have

£ £ 1 1
2&+1+0,=g,— 2+ 2+ (1——)
* 64 0463 164|63 92
B ELREC
b— 2 bl
36—-20
—25<0;-3+5"-=26-10,
 0< —£,<8-5;
3 1 1
20+ 1+ gs=e;——+ ~(1——)
7 b= bs |l Ps P7
R
=751

9 —
2’}']5< —(l)5—1+—5'—6=2,

0<y;<l.
17 — 543808. Acta Mathematica. 92. Imprimé le 31 décembre 1954.

257
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2
Since |05¢,—1|= 6-:6—6, we therefore have

MPYSM,(P)<(6—6)(6—5)=T76—-116=1.39--- <L.5,
contradicting our assumption that M (P)>1.5.
Lemma 5.3. If M (P)>1.5, then ;= *1, g,= *+1.

Proof. By symmetry, it is sufficient to prove that &, +3. If ¢,=3 we have

2E+ 1+ f,=,+[|1- ; 3+“ ”
6—4 26—
—252—2<02_4+T=—3"’

0<—4§+4)<i15;
3
1 106
|1__' _“‘E—”’

2n+ 1+ ¢py=¢3+ |¢3I
2n2+2¢2<¢2—1+T—2

106

O0<nyyt+dg<l.
Since 0, ¢y —1

, we therefore have

2
8-
5—4
M(P)<M,(P)<(8— a)( ) 46-26=1.12..- <1.5,

contradicting our assumption that M {(P)>1.5.
Lemma 5.4. If M (P)>1.55 and &, =1, then g,=4.

Proof. Suppose to the contrary that g,<2. Then
1 1
1—-—
01 ( 02)
1 (7-—6 n 13688
T3 3
-0 13588
_2§2~2=02—2+80(73 )+“ 3 ”

7~6)+l36~88

2§2+1+02=

<02—2+2( 3 3

=46—24,
0< —(£,+1)<28—12.
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Also
2}

v meenl (|
S P + 1-—
b3 bady P3dads || bsbads| be
7—-6 416 — 278
e

76 415278

2+ 1+ =g

k]

since |&,] <2, by Lemma 5.2, this gives

- 19278 —24
2n2+2¢2<¢2_1+2(735)+4 662 :3866 8

196-124

0<772+¢2< 6

Since 0, ¢y—1= %, we therefore have

M(P)<M,(P)<(8—9)(26—12) (1?‘3%2—4) =7964—11748=1.544 ...

contradicting our hypothesis that M (P)>1.55.
Corollary. If M (P)>1.55 and ¢,=1, then ¢_;=1.

For e =11, by Lemma 5.3, and ¢ ,= —1 would imply &< —~4, by an ap-
plication of Lemma 5.4 to the sequence {—a.,}.

Lemma 5.5. If M(P)>1.55 and ¢ =1, then g,=4 or 6.

Proof. By Lemma 5.4 and its corollary, it is sufficient to show that if ¢ ,=1,
& =1, £,=8, then M (P)<1.55.

Supposing then that ¢ =1, =1, ¢>8, we have
1

[ EES TR
B

~28-2=0,~1—g,+] 86|,
<0,—1-8+86—-6=256-8,

0< —(5+1)<d—~4;
=1+“76—47 )

286, +1+6,—¢,+

& &
2y 1t =g — 2+ 2
T T s

+

1 1
= (1-2
(¢2¢3'( 4’4.)
3

76—47 86—40
29 +2¢, <y t+ 3 = 3 ’

46—20

O<y+¢1< 3
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Since 8, ¢, — 1= 20 we therefore have

-8
M(P)SMI(P)<(7—6)(46 20

)(6 4)=1168—1726=1.439..

so that certainly M (P)<1.55.
Lemma 5.6. If M (P)>1.55 and ¢,=1, then g,= —2.

Proof. By Lemma 5.2, it is enough to show that ¢ <0. Suppose to the con-
trary that ¢,=0.. Then

. &y E_1
28t 14 0y=c,— 02 6,6, 0,0,0, |, 01 “
1 & 1

I

70, 0,6, 6,0,0,

oy
0,0,0,\ 6,

(since e_;=1 by Lemma 5.4, Corollary): hence, since ¢,<6 by Lemma 5.5,

1,6 1, 1
0, 0,0, 0,6,0, 6,00,
97146
-2,

28,+20,<0,—1

7 —14
O<§3+03<£—)~—6—~—6-

Also
& E=x &
2yt 1t y=gg— o —
s s e T T ety bu s o

‘129— 196”

5

cal2)

) ——
EXN ¢q
£

2

€
29+ 2= -¢3+1;¢T:

12 9—196”

< g1 120—-196 138189
Pat 5 5
(since ¢, >0, £,=0), whence

69 — 96

O<y+1<

2
~-6z, we therefore have

Since |0;¢5—1]| :6'

69—96)
5

—1(13236 —8970) < 1.512,

M(P)< My(P)<(3-4) (gﬂ:ﬁ_l@) (

contradicting our assumption that M (P)>1.55.
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Lemma 5.7. If M (P)>1.55 and &,>0, then
Esns1=1, &sn:2=0, &8013=0, Egnsa= —2, 8015=0, Eznie, Eans7=1

for all n, and e,=4 or 6 for each n.

Proof. If, for any =, €541 >0, then preceding lemmas (with r replaced by 8= +r)
show that

g3n-1=1, ggn=4 Or 6, £3,,0=0, £3,.3=0, Egn14= —2, E3045=0, £521=0.

If now &,_7<0, we have g, 1=.—1 (replacing » by »—1 and changing the sign
of all ¢); hence egn_7>0. If £,,7,<0, we have g,,4= +2 (considering the reversed
sequence); hence egn,7;>0, and so &g,,9>0. ,

It now follows that if &,,1>0 for any =, then &,.1>0 for all », and this

now gives the result of the lemma.

Lemma 5.8. If ggn= T4 for any n, then M (P)<1.577.

Proof. It suffices to show that M (P)<1.577 if ¢,=4. Using Lemma 7 we see
that then e_1=1, g=4, =1, =0, =0, g=—2, =0, &=0, g=1, &=4

or 6. Hence

1 4 1 1 1
1 = —~ -
Bt I 0= = 5,0, 0,0,0, ezeleo(l 0_1)
14
6, 6,06,
(since 0,0,0,>0); thus
1
28,+20,+2<8,+1——+-—=23-39,
3 3 3 02 0201
0<§3+03+1<23;35.
Also
2 1 e 1 1
29y + 1+ pg=—+ -2 +‘ (1——)
T s T Gabsdadr baedu |9 del \ o

2 1 £
—293—2-2¢3= —¢g—1——— :

_ +| 1
$s ba--br | dyee- gl

Iy --- 5]

2 1 316 —206
< —dg—l——= =

% $u-by D

(since gg=4>1),
316206

0< — (gt 1+e¢g)< 10



262 E. S. BARNES

Since |6, ¢3—1|=-6—2:6—4, it follows that

M(P)SM3(P)<(5_4)(23~36) (316—206)

2 10
—=4864.5— 7176
<4864.5 — 717 (6.78232) = 1.57656.

Lemma 5.9. If M (P)>1.571, then {e.} or {—e.} is the periodic chain given by

{6,1,0,0, —2,0,0,1}, (5.3)
where g,="06.

Proof. This follows at once from Lemmas 5.7 and 5.8.

Lemma 5.10. If the chains {a.}, {e.} are given by (5.2), (5.3), then

76877

M(P)= 13668

Proof. By (3.6) we have, in matrix notation,

Tni1) 0 1 Zn)\ 0
(yn+l) B ( -1 —a, +1) (?/n) (kn + 1) (64)

for all n, where 2k,=a,.,—&,. Since z,, y, are periodic in »n with period 8, we have

(ZS: ?/s) = (xo’ ?/o),
and so we find that

(xo)_(xs) ( 781 —10764 ( ) ( 170 781) (0)
v \us 3588 49451 781 -—3588) \5
- - 170) (0 ( 69) (0)
317 781) \3 147 —317
—( o ) s) (20 Zs) ) ()
( 782 10764) (xo)_(—3510)
—3588 —49450/ \y,/ \ 16123
(xo) _ 1 (—49450 - 10764) ( - 3510)
y,] 48668 3588 782/ \ 16123

1 (21528
~ 7 48668 \14306/°
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whence

(@0, Yo) = ( -

Using (5.4) successively, we now obtain

(xy, )= ( -
(%2, yo) = ( ~ 1058’

(23, Y3) = ( -

(w4s ’y4) = ( -

468

1058’

311

1058’

468

523

1058’

602

1058’

311
1058

By symmetry and periodicity we clearly have

M (P)=min {M,(P), M,(P),

where, by (3.2),

M, (P)==min {lfn (%, ?/n)] lfn (1 +zn,

Here we find easily that
fi(@. y)

fz(x’ y)=

?/nl

My(P), M, (P)},

| fa @ns 1+ 92) ],

=32t +14zxy+4t

62 +16zy+ 347

fs(@, y)= —52>+8xy+ 647,

folw, y) =22 +122y— 547,

and a straightforward calculation gives

311 590\ 83939

Py— —f  ~ ,
MU (P) fl( 1058 1058) 48668~
535\ 79707
1058 1058) 48668
3 535 456\ 76877
My (P)= 1058° 1058) ~ 48668
456 377\ 76877
My (P)= (1058 1058) T 48668

[fn (1420, 1 +ya) [}
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It follows that

M(P)=76877

48668
as required.

Theorem 2 now follows immediately from Lemmas 5.9 and 5.10.
We note that, with f(z, y)=2%--463% we have

M (f; o, yo) =M (f)
if and only if
1 311
=- =+— .
x, % Yo * 1058 (mod 1)

In conclusion I wish to express my gratitude to the University of Sydney for
supplying me with a Brunsviga, on which the calculations of §§ 4 and 5 were carried out.

The University of Sydney, Australia
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