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NON-HOMOGENEOUS BINARY QUADRATIC FORMS.

II. The second minimum of (x + x,)*— 7 (y + ¥,)%
By

R. P. BAMBAH.

ST. JOEN's COLLEGE, CAMRBRIDG:

Introduetion.

1. In a previous paper® we showed that for all real x,, y,, there exist in-
tegers z, y for which

oty 9+ )] = [+ o =7+ ] = 2

We further showed that for (x,, y,) = (2, + ;SZ), we can make | f(x - 25,y + ¥o) |

less than 1—%8 In this paper we modify our method with the help of a lemma,
due to Dr. J. W. 8. Cassels, to prove that the exact value of the second mini-
mum is é Our argument is purely geometrical and, as Dr. Cassels pointed out

to the author, this seems to be the first time a purely geometrical argument has
been applied to the study of the second minimum of a non-homogeneous form.
Our result can be stated as

Theorem: Let f(x, y) = 2 — 7y% Then, for any pair of real numbers x,, y,,
there exist numbers x, y such that

(1) x=1x, (mod. 1) y=y, (mod. 1)
and

9
() | f (2, y)| = e

! This paper forms a part of anthor's thesis: Some Results in the Geometry of Numbers:
approved for the degree of Ph.D, at the University of Cambridge.

? Non-homogeneous Binary Quadratic Forms (I): Acta mathematica, this vol. p. 1. We shall
refer to this paper as NHF. For references also see NHF.
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The equality in (2) is needed if and only if

(3 o 0=}, £ 2) woa )
For all z,,y,, not satisfying (3) we can replace (2) by
1
(4) |, 9)] = 2>

the equality in (4) being necessary if and only if

(5 (500 )= (3 3) tmod. 1)

Proof of the Theorem.

2. We first prove two lemmas about (x,, y,) satisfying relations (3) and ().

Lemma 1: Let (z,, %) = (;I: + ;52) (mod. 1). Then for all (z, ¥) = (z,, %)

9
=

(mod. 1), |2 —74*| = . For some of these (x,y), for example (3, + 5),

2’ T 14
the result holds with the equality sign.
Proof: This is lemma 1.1 of NHF.

Lemma 2: Let (z,, yo) E(é’ —;) (mod. 1). Then for all (x, y) = (x,, y,) (wod. 1),

| — 792 = i For some of these (z, y), for example (2, %), the result holds

with the equality sign.

Proof: All (z, y) = (%, 9,) (mod. 1) are given by x = a + é, y="b+ é, where

a and b are integers.
For these x, y we have

{6) Ja? — 792 = u2+a—7b2~7b-—3 Zé,
since a® + a — 76 — 7 b is an integer.
The sign of equality arises in (6), when, for example, a =1, b = 0.
This proves the Lemma.
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3. In the rest of the proof we suppose xy, y, is a pair of real numbers such
that for all

N =

(7) (2, y) = (2o, yo) (mod. 1), [2°—74°[=

As in NHF we can easily prove that there exist unique numbers (x,, y,)
and (x;, y;) such that

I I
(8) "_‘5<y1=y2.§5¢
(©) (@i, ) = (0, o) (mod. 1), =1, 2,
(10) B—7hi< =@+ 1) =7y,
(1) A7 < =(@m—1 -7

By (7), (9), (10) and (11), we also have

(12) xf—7y§£——;,ac§~—7y§é—

N |-

4. Now let us represent a pair (z, y) of real numbers by the point P with
co-ordinates (z, ) in the x—y plane.
We denote by A the set of all points, which have no congruent points in
the region €, defined by

9 .2 r
|2 —79* <7

Clearly 1t will be sufficient for the progf of the theorem to show that H con-

. . I 1 1 5
t. t > t -y - - + = .
sists of points congruent to (2 2), (2, + 14) only

We shall refer to a member of F as an H-point. In particular (z,, y,} is
an Hpoint.

5. We first define congruence of regions and points, and the translation
Im,n as in NHF. Then, defining the point (x,, y,), as in § 3, we shall complete
the proof in three stages, outlined below.

Stage I: With the help of translations o0 we shall show that, if ¥, = o,
(y, y,) must lie in one of two regions R, and R;, to be defined later.

Stage II: We shall apply translations 5 2, Js-3 and Ji5,—17 in succession

to prove that R, cannot contain any F-point. Then we shall use 1,1 to show
5642128 Acta mathematica. 86
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that a large part of R, is free of Hpoints. From this we shall deduce that

all (x,, y,) = (iy ;—) lie in regions congruent to two small regions, X,, , (to be

2
Stage II1I: We shall then apply Lemma B, kindly shown to the author by
Dr. J. W. 8. Cassels, to complete the proof that A consists only of points con-

gruent to (E,—I), (1, + i)
2 2 2 14

For the sake of completeness we end this work with Cassels’ proof of his
Lemma.

We may remark here that the proof follows the lines of NHF up to the
end of Stage II. But in stage three there is complete divergence and the argu-
ment now is purely geometrical. The method of this proof could also be applied
to the theorems of NHF, but this would require much heavier details.

defined later), situated about the points (—; ) ;52) and (- 5 ———154-) respectively.

Stage 1.
6. Let A, &3, C and D be the arcs of the hyperbolas 2 — 74> = +

I
~, as
2
shown in fig. 1. Then € is the open region included between these arcs.

Let the line y = é meet these arcs in the points 4, B, B and 4 as shown

in the figure. Move the part of A, lying between 4 A and the z-axis, through
a distance — 1 parallel to the z-axis. Let it take up the position D CV with
the points D, C; ¥V on A 4, C and the z-axis respectively. Clearly the equation

of DCVis(z+ 1) — 7y =

N Fo=

Also move the part of J3 between 4 4 and the x-axis through a distance
1 parallel to the z-axis to take up the position D C ¥, as shown in the figure.

The equation of D C ¥ is(x— 12— 7y° = é

Denote the closed curvilinear triangles BCD and BCD by R and R re-
spectively.
1

Suppose that y,, as defined in § 3, is non-negative, i.e. 0 <y, < 5

Then the relations (8), (9), (r0) and (12) mean that there exists a unigue
point P, = P, (x,, 9) in R, while relations (8), (9), (11) and (12), mean that
there is just one point Py= P, in R.
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H 9

Fig. 4 Fig. 5 Fig. & Fig. 7

Figs. 1—7.

For convenience of reference, we tabulate the co-ordinates of the vertices
of R and R. R is obviously the image of R in the y-axis.
7. We first observe that P, cannot coincide with C. For, the point C

+(2, —1) = (2, ]//—IIZ~1) lies in °C, since
2’——-7(]/,/L——1)"= Vig—3.3 <§-

Consequently in the rest of this section we shall suppose C = C to be excluded

from the regions we consider.
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Table I.
Point Curves on which it lies Co-ordinates
B yzl’m2_7y2=__ ( E, —)=(1.118..., 5)
2 2 4
D y=;—,(x+1)2~7y2=§ (“;’ §)=(51 5)

Q
8

l

\‘
<

i

l
W=
£}
+

l

~
wa

I

N o
—
o
NG
~—
|
©
(M
(@)

Image in the y-axis of

B B (—r1.118..., .8)
D D (—-5, -5)
C C (0, .26...).

Let the translation 7,0 change R into R’ (See fig. 2). The vertex B
(~ 1.118 ..., i) changes into B’ (—.118, .5), D into D' = D (.5, .5) and C into

C (1,.26...) on A, ie. the vertices of R  are as shown in fig. 2. Now we
assert that R’ consists of three parts.

i) s, which lies in €,
ii) the closed curvilinear quadrilateral ,, which lies in R, and
iii) the region &, which lies outside ¢ as well as R.

The above assertion will clearly follow if we can show that the intersec-
tions of the boundary ares of R’ and R are as shown in the figure. This, in
turn, is a clear consequence of lemma A of NHF.

Now R’ is congruent to JR. Therefore R’ contains a point Q= P,= P,
As @ cannot lie in €, it must lie either in R, or in & We include the com-
mon boundary of R, and & in R, only.

Now let the translation 1,0 change & into &§”. The arc joining D' = D to
the lower vertex of & will change into a part of A, while B’ (—.118..., .5)
will change into B” (.881...,.5) as shown in the figure. Then, because of
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Lemma A of NHF, we can assert that the position of & is as shown in the

figure, i.e. & consists of two parts. i) the region =, lying in €, and ii) the

closed curvilinear triangle R, lying in R.
Now if the point @ lies in &, a point @ = @ = P, will lie in R’. As ¢
cannot lie in C, it will lie in JR,. Hence a point = P, lies in R; or R,.
As both R, and R, lie in R and R contains just one point P, = P,, P,
must lie in Ry or Ry.
Let the vertices of R, be D, E, I and G and let those of R, be H, K
and B as shown in fig. 3. We give the co-ordinates of these points in Table IT.

Table II.

Point

Curves through

it

|

Equations of the curves

co-ordinates of the point

DE,

Fa,

FaG,

HB,

KB,

K B,

Er

EF

xQ

HK

HK

BH

DE, DGC (m—2)2—7y2=—;y (+1)2—7y?

AV 2:£, e 21
2=yt = Lar— gy -

(x—l)’—7y2=~§’x“’~7y2= -

2

1 I
w—1 =y ==t @ =gy =t

2

g I
=7y =— e—2f—7y" =

y = le—2f—gy——
2
= Yoot
y S ;

SR

1

2

2

3}
28) (.5, .327...)
ey
, /~—m) (.25, .389
33
14) (1, .462 .. )

Let L be the point (1, é)

Then the equation of HL is = 1. It is easily seen from the equations of
HK and HB that the curvilinear triangles HB L and H K L are symmetrical to
each other with respeet to the line HL: z = 1.
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Similarly the equation of the line DF is = = ;— and the curvilinear trian-

gles DEF, DGF are symmetrical with respect to it.

Stage II

8. Lemma 3: Every point in the closed curvilinear triangle HK L has a
congruent point in C: [x*— 742 |< é .

Proof: Suppose H K L contains a point P,, which has no congruent point in C.
We shall obtain a contradiction in three stages (i), (ii) and (iii) below.
(i) Let the translation & s change HK L into H'K'L’. (See fig. 4).
Then, the point L' = L + (3, —2) = (4, — 1.5) lies in €, since |4® — 7 (1.5)*|

=,25<.3; the point H = H + (3, —2) = (4, ]/—%—2) lies below the arc 2

L. I . . .
i.e. in that part of z* —7y* < — > where y is negative, since

2 _E_ " /_7,_ = V168 — —
4*—7 1 2} =28 1 13.5 = V168 — 13.5 < —.5;

the point K' = K + (3, — 2) = (5 —l/i, ——2) lies below 2, since

(5 ——]/i) — 7(—=1.5)f = 10.5 — V125 <~;-

This shows that the points H', K’ and L’ are situated as in the figure.
Consequently K’ L' and L' H' meet 2 in single points M’ and N’, respec-
tively. Also K'L' and L'H’ do not intersect A.
Now K’'H' arises from I3 by translation F2 o + Fs-2 = Zs,—2. Therefore

its equation is

(13) —s5yP—7(y+2)f=—

[ S

The equation of 2 is x®—7y* =— é

Therefore the points of intersection, if any, of K'H’ and 2 satisfy the
equation

(14) o=1122"—(102x + 3+ 56 = 122 —60x + 47 = f(x) (say).
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Clearly f (o) > o0 and f(1) <o. Therefore one of the roots of (14) lies be-
tween 0o and 1. As the z-co-ordinate of any point on K'H’ is greater than 3,
K'H' does not intersect 2 in two points. Therefore by Lemma A of NHF,
K'H' does not intersect 2 at all.

This shows that the position of H'K'L’ is as shown in the figure.

Now P, lies in HK L. Therefore a point P'= P, lies in H'K'L'. As P
cannot lie in C, it must lie tn the closed region K'M'N' H' K'.

The co-ordinates of M’ and N’ are

Point Curves through it Co-ordinates
’ 1 61
M y=—§,x2—7y2=—5 (L/ -“) (3.90..., —1.5)
A s T /38—, —
N rx= 4,2 —7y 2 (4, l 14) (4, —1.33...)

(i) Now apply the translation J_s to H' K'M'N'H'. Let it change into
a region H'K'"M"N"H". (See fig. 35.)
Then

H'=H + (8, —3)= (12 l/ ——5) lies in <, since

o)/ Z 1

the point N' =N+ (8, —3)= (12 —3 ——l/ 33)lxes in C, since

w7 (s+]/ %)

M'=M +(8, —3)= (8 + V%, — 4.5) lies in C, since

o/ % ] e

the point K'=K'+ (8, —3)= (13 — .l/i, —4.5) lies below 9, since

32.5— Vioso| <

1
-
2

=|64.5 ——V4158(

“1/s5)— — —V8ae <« L.
(13 ‘/4) 7(4.5) =285 —V845 <~
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This shows that the points H”,K"”, M N are situated relative to A and
9D as shown in the figure.

As M"K"” is parallel to the x-axis, it intersects 2 in one point S (say).
Also it does not intersect A at all.

The line H” N” is parallel to the y-axis and meets neither & nor 2.

Now M"” N” arises from 2 by the translation 3. Therefore its equation is

(15) (x~_8}2—7(y+3)2:——é.

The equation of D is x*— 7yt= — ;—

Therefore the points of intersection, if any, of M N” with 2 satisfy the
equation.
o=—(1—42y)* + 17929 — 128 =28y® + 84y — 129,
which clearly possesses a positive root.
As M"N" arises from 9 by translation 3, the y-co-ordinate of every
point on it must be less than — 3. Consequently M” N” cannot intersect 2 in
two points. So that, by Lemma A of NHF, M’ N” does not intersect 2 at all.

The equation of A is x2—7y2=—;. Therefore, because of (15) the points

of intersection, if any, of M N” and A satisfy the equation
(16) o=—(2—42y)?®+ 1792y* + 128 =28y* + 168y + 124 = [ (y) (say).

Now f{0)>o0 and f(—2)<o. Therefore one of the roots of (16) lies be-
tween 0 and — 2. So that M N” cannot intersect & in two points. Therefore
by Lemma A of NHF M” N” has no point common with A.

Also because of the position of H” K’ relative to H' N’ and N'M"”, H'K"
does not intersect A.

By Lemma A of NHF, H'K"” meets 9 in a single point 7" (say).

The above discussion shows that the region H”' K" M"” N’ H" is situated as
in the figure.

Now P’ lies in HK M NH and H'K'M'N'H" is congruent to
H' K'M'N'H'. Also no point congruent to P'=P, lies in €. Therefore, a
point P’ =P = P1 lies in K" S"T".

The co-cordinates of S are (l/éi—i’ —4.5)-
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We observe that
y(I") >y (H") > — .

Also y(8")= —4.5.
Therefore the y-co-ordinate of any point on the arec S’ 7" lies between

— 4.5 and — 3.
(iii) Now let the translation i _17 change K’S”T” into K" S T
(See fig. 6).
Then both
K" =K" + (45, —17) = (58 - ]/i - 2L5)
and

444 17 ;—6—*
8" = 8" + (43, —17)=(45 - V—F’f — 21.5)
lie in C, since

(/3 -
l(45 + ]/5—%2)2— 7(21.5)

Again, the translation Jg,-17 does not change the positions of KX''7" and
S” T relative to each other, i.e. KT is below S” 7”. Therefore, to prove that
K" 8" I lies entirely in €, we have only to show that (i) 8" T lies be-
low A, and (ii) K" T lies above 9. For this it will suffice to show that
a) 8 I"" does not intersect A, and b) K"’ T has no points common with 2.
These we prove below.

(a) The equation of 8" 7" is

120.5 — V16820

I
< =,

2
and

=] 5365 — 10805 <.

).
(e—asf =70y + 17 =— 5

and that of A is x®—7 s 1
y 2

Therefore, on eliminating = between these equations, we find that the points
of intersection, if any, of §"" 7" and A satisfy the relation

o= —{(238y—3)°*+ 7 X 8100 %® + 4050

(17) =56y" + 1428y + 4041 =f(y) (say).



42 R. P. Bambah.

Now f(o)>o,
Sf(—4)=896 —5712 + 4041 <o,
Sfl—22) = 28 (—22) (—44 + 51) + 4041 = 4041 — 4312 <o,
(—

~

oo} > o.

Therefore (17) has no root in the interval (— 21.5, — 22). We have already
seen that the y-co-ordinates of points of §' 7" lie between — 4.5 and — 5. There-
fore the y-co-ordinates of points of 8"/ 7" lie between — 21.5 and — 22. So that
S T"" does not have any point common with & i.e. (a) is true.

(b) The arc K’ T" arises from K" T" by Jis5 -1z, and therefore from
K H' by Js3,—20. Therefore, by (13), its equation is

(18) (x—58)”——7(y+22)’=—§.

The equation of 2 is

2 na2_ T
r—7Y 2

Therefore their points of intersection would satisfy
(19)  o=28472>—(292 + 6)" + 423.5 =62 — 348 + 387.5 =f () (say).
Now f(o)>o,
f(+2)<o,

f(56.88)=06(56.88)(56.88 — 58) + 387.5 = 387.5 — 382.2336 > 0.

Therefore both the roots of (19) are less than 56.88.
But the x-co-ordinate of any point of K’ T is greater than that of

K’ =158— l/i =56.881 ... Therefore K"’ T"’ does not intersect D i.e. (b) is

true. Comsequently K’ 8" T"” lies entirely in <.
As K 8" T" is congruent to K’ 8" T”, a point P”" = P” = P, liesin .
This gives the required contradiction and the lemma follows.

Corollary: The closed curvilinear triangle HK L does not contain any

Hpoint ie. a point which has no congruent point in C: |2*— 74| < %

Lemma 4: There is no A point in R,.
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Proof: We have seen that there is no A -point in HKL. Now consider
HBL. We saw at the end of stage I that HBL is the image of HK L in the
line HL:x=1. Therefore if HBL contains an H-point (z, y), its image
(2—=,y), is an Fpoint in H K L, which is impossible. Consequently there is no
Hpoint in R,.

Lemma 5: Every point in the closed curvilinear triangle D EF, excluding
the point D and a closed curvilinear triangle F'IJ, has a congruent point in .

Proof: Let the translation & _; change DEF into D' E F'. (See fig. 7).
Then, from table II,

D=D+(1,—1)= (g, ~;)1ies on A,

since .
K} Y R A S
(2) 7( 2) 2’
also _ |
E=E+(,—1)= (Z, V—i—l) lies in €,
4 112
since

G = V2= |- ) =] <2

and F' = F + (1, —1) ( l/~—— 1) lies below the arc 2 i.e. in that part

I . - .
of 2 —7 < — 5 where y is negative, since

(A3 e

This proves that the position of the points D', E' and F’ is as shown
in fig. 7.

We also observe that D'E’ and E'F’ are arcs of hyperbolas with asymp-
totes parallel to = + V7 y =o.

By Lemma A of NHF, E'F’ meets 2 in a single point I’ (say). As F'D’
is a line parallel to the y-axis, it intersects 2 in one point J’, say. The arc
D'E’ arises from JB3 by a translation Fz.1=F,0+ Fr0+ Fi—1. Therefore its
equation is

(20) @3t~y + ="
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The equation of 2 is

=7yt = —

N

Therefore, eliminating y between (20) and the above, we find that the points
of intersection, if any, of D' E and 2 satisfy the equation

o0=—14—282"+(1—6x)2=8x"—1200—13.

This has a negative root. Therefore, as all points on D'E have a positive
abscissa, there is at most one point of intersection of D'E’ and 2. But, by
Lemma A of NHF, the points of intersection of D’E’ and 2 are two or none.
Therefore D' E' does not intersect 2.
1
>

From (20) and the equation of A it is easily seen that D'E’ and A touch
each other at D',

The effect of all this is to show that the position of D'E’F’ is as shown
in the figure. The translation J_q 1, i.e. the translation inverse to 41,1, change
F'I'J into the FIJ of the lemma.

The equation of A is 22— 7 4% =

Fig. 8.

9. Let JM, the image of JI in DF, meet the arc FG in M. As in
Lemma 4, we see that there is no H-point in the whole of R,, excluding the
point and the closed region FI.JM. We shall denote the region FIJM by Z,.

As any point congruent to an FApoint, is an HA point, the above combined

with Lemma 4 shows:-— Let (x,, y,) be an H -point and y, =y, with 0 <y, < ;*1

then (74, y,) is congruent either to (;—> é) or to a point (x;, »;) in Z,.
Now let X, be the image of X, in the origin, Then, by symmetry, if

— g <y, <o, (%, 4,) has a congruent point (zy, #,) = (zy, ¥;) in X,

Regarding the point (é ) é) as a region X, we conclude that all A points
lie in regions congruent to X, X, and Z,.

We give below the equations of the boundaries of X, and the co-ordinates
of its vertices.
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FM: (x—1)2—7y*= -

JM: (x—2f—7(y—1)= —

—3“)=(-5a 3273 .- ); J: (—;’ 'I—l/é_;):('s’ .3732...)

12—, 121/ 1) - |
L (]/6 2 2 1/42) (5801 ..., .3456...);
o (2 l/6 > ‘/42) (4108 ..., .3456...).

) obviously lies on FJ between F and J.

oo (5 5 [
The point (2, 14) (2 3571 ...
F,, I, J, and M, are the images in the origin of F, I J and M respectively.

Stage 111I.
10. We now introduce some standard notation for use in the rest of the chapter.
If R, and R, be two sets of points, R; U R, will denote their union i.e.
the set of points which belong to R, or to R, or to both.
URiorU R, R,, ..., Rn} will denote the union of R, R;, ...and Rn.
i=1

R, N R, will denote the intersection of SR, and R, i.e. the set of points

which belong to both R; and R,.
NR; or N {R,, Ry, ..., Rn} will denote the intersection of R, , R,
i=1

and Rn..
A will denote the lattice of points with integer co ordinates.

If P be a point with co-ordinates (a, b), R + P will denote the region into
which R is changed by the translation &, ;. In particular if P be a point of

A, R + P will be a region congruent to R.
If T be any transformation 7'(P) will denote the point into which T trans-

forms P, while 7' () will stand for the region into which R is changed by 7.
T-1 will denote the transformation inverse to 7.
11. In this notation we can express the conclusions of § 9 as follows:
Every HA-point must belong to the set X, where
z = LSJ(ZL‘ + P).
PE

=1
A
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Consider the transformation 7T defined by

(x) ( 8z — 21 y)
T = .
Y —3x+ 8y
Both T and 7-! are integral and uni-modular. They leave z*— 7 y* un-
changed. Consequently, both 7 and 7! change an H-point into an H-point,

ie. if P is an HA point, so also are T (P) and T-! (P). This implies that if P
is an Fpoint, there exist HA -points @ and R such that

T(R)y=T71(@) = P.
As P, Q and R are members of X, P belongs to X, T (X) and 71 (X). Contin-
uing like this we can show P belongs to 7% (%), T°(X),... and T72%(Z),

T3(Z),....
In other words, every Fpoint belongs to the set

y=n{..., T2, T2, TE) 123),...).

12. We now state Cassels’ Lemma. We shall give a proof at the end of
the paper.

Cassels’ Lemma.
Suppose

i) S is the transformation defined by

S(w) (ax + by)

y] \ex+dy ’

where a, b, ¢, d, are integers such that ad —be= + 1, and 2® —xz (2 + d)+ ad
—be =0 has two distinct real roots,

ii)* Fy=(,n), Fo=(&,n), ..., Fi= (&, ) are ¢ points incongruent mod.
A, such that
S(F)=F; (mod. A4), t=1, 2,..., ¢
iii) Ry, ..., Rt are bounded regions containing F,, ..., F: respectively,
such that
a) no two of the regions
Ri+ P, i=1,...,t Peda (%

intersect, and

! It is not difficult to generalise the lemma to cover the case when the S (i) are congruent
to the F) in any permuted order.
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b) for each j=1,2,..., t, S(R)) intersects only one region of (*), namely
%j + P.
Then, if R denotes the union of all regions (*) i.e.
t
R = U ((7\?; + P),
PE4

the only points common to R, S(R), S*(R). ..., S1(R), S2(R), ..., are
the points F;+ P(t=1,2,...t P€A).

13. Now take
z 8x—21y
S=Tie 8 = .
y —3x+ 8y

The condition i) is easily seen to be satisfied.
Let F, = (E, i), F,= (__1, ——i),.and F, = (1, 1). These points are
2 14 2 14 2 2
obviously incongruent mod. 4.
Also

T(F1)=(—g, %)Eﬁa,
rwy-( L -2)=r,

I ni
T(F,) = (~—2§ g)zﬁx,
so that ii) is satisfied.
Let
'~‘7el=2u f7e2=22) $3=23.

The regions X, + P, X, + P, 3I;+ P respectively contain the points

1 1 1 I .
(—+m,i+n), (—+m, ——5—+ n), (—+m,— + n), (m, n) integers. These
2 14 2 14 2 2

regions lie in rows and columns as shown in fig. 9.

The regions in the rows immediately above and immediately below the lines

y=a+ I are congruent to Z; and X, respectively.
2

We can easily see that A does not intersect R;+ P, 1445 or R;+ P,
Ped, P+o,4,j=1,2,3, i.e. no two of i+ P, © =1,2,3, P€ 4, intersect.

Now we verify iii) (b).
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FE e s
oz 308
M M wan
A XA ] R RA
V= .6726-.
2%
‘y=~62“7--
“z.5 T3
M= .%732. % LN
Y=-3273
4= 0
[9)
Nz -3273- 2, v
FER ]
“-}:-~3’132~-
s -5
4=--6267..
ki ]
Y=~ 67126
Fig. 9.

8(3?3): T(Es) = (_E’ 2‘) = 23+(—7a 2)

2

and so is easily seen to have points common with no other region of (*).

The region X, was defined by
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3
w©
»
: 3
! "
% z
Y= ra2¢ J— ‘f=175
% - So5. i [ gt
-
- y=19
g
£
Yoie2. ™
Y= 6726
5 = 5%
- 5-‘ o Ld
3 5 - S o«
M T : o~ '
“ " n 1 "
A P 3 ; X
Fig. 10.
@ gyt~ 2,
2
2 2 1
@—1)—7y=—-
2
1
2 . 2
@+ —7—1f=—-,
I
2
w2 —7p—1r=—1

Let T(Z,) be denoted by o), the points 7 (F), T (I), T {(J) and T (M) being
denoted by f, 7, 7 and m respectively. (See fig. 10).
We easily see that T transforms (x —a)?— 7 (y — 8)? into (x — a')*— 7 (y — &')®

where
(a') T(a ( 8a-—21b)
v] T\ \—3a+ 8B
Therefore the equations of f¢, ¢, jm and mf are

fi=T(FI): z*—yy?= —i,

6 - 642128 Acta mathematica. 86
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fm=T(FM): (x— 8°—7(y+ 3)2:_2,
ij =T(1J): (@+20f —7ly—11ff=—2,
jm=TUM): @+ sP—7lp— 2=—-

Consequently o, can be defined by

2 __ 2 _E,

x 7y = >

I

(c— 8F—7y+ 3P=<—_,
(@+20) —7ly—11f < — 2,
@+ sF—70— 2r=—,-

The co-ordinates of f, 7, j and m are

28
3_1/7
— 3.8
m=1TM): T|> _/6_ =( 35(9)’?2 )
I 1 .
z V a4

As all the ares f4, ¢, j m and m ¢ are parts of hyperbolas with axes par-
allel to the co-ordinate axes, it is easily seen that o, lies between the lines

¥=1505..., y=1.02..., z=—38992..., = —26I...
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We know that the regions X; + P, ¢ =1, 2, 3, P€ .4 are situated in rows

and columns about the points (; + m, * ?52 + n): (é + m, -; + n) where m and

3
n are integers. In order to show that o, intersects no region of U (Z; + P)
i=1

other than X, + (—4, 1), it will clearly suffice to show that- res

1) o, does not intersect the columns about the lines z = — 4.5 and
= —2.5,

2) o, does not intersect the rows about the lines y = -21—% and y = %, and

3) the point (—Z, g) does not lie in o,.

1) Consider the column about the line x = — 4.5. The z-co-ordinates of any
point in a region X;+ P in this column is =< ]/é—é ~—5 = — 4.4198 ...,
and the x-co-ordinate of any point of ¢, = —3.8g.... Therefore o, does not

intersect this column,

Now consider the column about the line x = —2.5. The x-co-ordinate of
every point in a region X; + P of this column = g — t/%—3 = —2.5801 ...,

and the z-co-ordinate of any point in g, =< —2.61.... Therefore o, does not

intersect this column and 1) is proved.

2) Consider the row of Z; + P about the line y = %f—‘ Bvery point in this

—
row has an ordinate = ]/ —;—é +1=1.626.... Ag the y-co-ordinate of every

point in ¢, < 1.505 ..., o, does not intersect this row.

Similarly, since the y-co-ordinate of any point in the row about y = 1_94; is

= I—l/;%< 1.02 ..., o, does not intersect this row. This proves (2).

3) Finally the point (——

NN

g) lies outside o, since

(—g tg) _7(2_2),=§>_;
Therefore the only X; 4+ P which can have a point common with o, is the
region &, + (—4, 1).
By symmetry about the origin, it is easily seen that the dnly region 2%;+ P,
which can intersect 7'(%;) is Z, + (4, — 1).
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This shows that the condition iii) (b) of Cassels’ Lemma is also satisfied.
Consequently the set

y=n{..., I23), T1(X), 25, T (=), *(2), ...}

consists of points congruent to ( ) ( 752) only.
2

Combined with Lemmas I, 2 and § 11, this means that the set of H points

consists only of peints congruent to (é ) §)7 (—; » + %4) This proves the theorem.

14. We now give Cassels’ proof of his lemma.

Cassels’ Proof of His Lemma.
We build up the proof in a series of lemmas and corollaries.

Lemma C 1: Suppose that {4 + 1 is real and that 7 is the transformation

(@, 9) ~ (tx, £ylt).

Let SR be a bounded region of the z—y plane, containing the origin. Then
the only point common to

R, T(R), T*(R), ...
T1(R), T2(R), T3 (R), ...

is the origin.

Proof: Suppose, for example, |¢]|> 1.
Since R is bounded, for » large enough the ordinate of any point of

T"(R) can be made arbitrarily small in absolute value. Therefore, N 7" (R)
n=0
cannot contain any point with non-zero ordinate. Also the origin belongs to

T"(R) for all n. Therefore, n T"(R) is a part of the x-axis containing the

n=
origin.

Similarly N T" (R) is a part of the y-axis containing the origin.

—e

Therefore, N T"(R) consists of the origin alone.

Corollary: Let S be the transformation defined by

(@, y) > (ax + by, cx + dy),
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where a,b,c,d are real numbers such that ad—bec= + 1 and such that
2*—zx(a+ d)+ad—bec=o0 has two distinct real roots 4,, 4,. Let R be as be-
fore. Then the set

ns*R=n{..., S2R), ST (R), R, S(R), S*(R), ...}

— o0
consists of the origin alone.

Proof: We can change the axes so that in the new co-ordinates z', y*, S

can be defined by
(xla yl) - ()'l xl, }'2 .‘/1)
Since
MA, =+ 1 and A =4, |4 |+,
the corollary follows from Lemma C1.

Lemma C2: Suppose S is a transformation as in the corollary, but that
a, b, ¢, d are integers. Let .4 be the lattice of points with integer co-ordinates.
Further, let R be a bounded region containing the origin, such that the regions R,
S (R), and so also S~ (R) do not intersect any R + P, (P+o0, P€ 4). Write

y=U (R + P).
PEA
Then the set
N S*y)=n{..., 82, 871, ». Sk, (), ...}

consists of the points of .4 alone.

Proof: One can easily see’ that the set 1 S” (y) consists of mutually disjoint

-0

sets congruent to N S" (R) and containing the points P of 4. Each of these

sets consists of one point, namely the lattice point P. From this the lemma
follows.

Formally: Define a set of regions A;, HA,, ... by the relations
“%1 = %,

Ay = AN S(H) = N{R, S(R), $*(R)},

Foir = A0S =0 LR, S(R), ..., SR

! We shall give the formal proof also,
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Similarly we define
B, =R, Brir=B:NS VB =nN{R,SR), ..., S (R)}.

Since A, < R and S{(R) does not intersect R + P, P+ o0, P€.4, we have

a) S(A,;) does not intersect A, + P(P€ .4, P+ o).

Similarly, since B, < R and S-1(R) does not intersect F + P, P+ o,
Pe 4, we have

b) 871 (T3, does not intersect &, + P, P=+o0, P€ A.

Also as R+ P does not intersect R + Q when P @, P, Q€_4, we have

¢) JB.+ P does not intersect A, + @ when P+ Q, P, Qe.4.

Now we show that y N S(y) = U (A, + P).

PEA
Since A, = R,

yn S(y) (GF, + PN(SAH) + Q).

= U {
P,Q€4
By (a), {} vanishes except when P = Q. Therefore,

YN S(y) igA[{C%I + PIn{S(A,) + P}
{A,NS(A)} + P

By induction we can easily show that

N S () = U (Fur + P).
= PEA

n=0
Similarly

NS ()
=0

n= Q

U (f%r-i-l + Q)
€a
Therefore,
NS (y)=U A1+ Py N {TBri1 + Q1.

n=—r P,QEA

Again, the [] vanishes except when P = @, so that

r

n S*(y) =PéJA{ (Ar 10 PBryy) + P

n=—r
Now write

er = (‘%r-}—l n $r+1 = f; S” (3\?)

n=-—r

R>C>6> ...

Clearly
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Since

C=n{S"(R),..., STHR), R, S(R), ..., S(R},
we can apply the corollary of lemma C1 to show that the only peint common
to &, G, ... is the origin. Therefore

lim U {G + P} = 4.

roo PEA
This gives the lemma.

Corollary: Suppose S is a transformation of the type
(¢, y) > (@ax + by + 1, cx + dy + m),

where a, b, ¢, d,l, m are integers and a, b, ¢, d satisfy the conditions of the
corollary of lemma C1. Then also the conclusion of lemma C2 holds.

Corollary 2: Suppose S is as in corollary 1, and (§, ) is a point such that
S (z) = (57) (mod. 4). Suppose further that JR is now a bounded region contain-

ing (&, 5). Define y by
y=U(R + P).
PEA

Then the set N S (y) consists of the points (£, ) + P alone.

f=—00
Proof: If we transfer the origin to the point (£, %), the previous corollary
applies.
Cassels’ Lemma.
Let S be as in the last corollary. Let F,=(&,%), Fo=1(, 7)) .-,
F; = (&, n;) be t points incongruent mod. 4. Also suppose

S(F)=F; (mod. 4) (j=1,2,..., 1.

Further, suppose R;, R,,..., R: are { bounded regions containing the
points I, F,, ..., F; respectively and that

i) No two of the regions

Ri+P;i=1,2,...,t, Ped, (¥

intersect; and

ii) for each 7, S (CR;) intersects ome and only one region of (*), namely
R; + P, where P is a point of A.

Denote by yp the union of regions (*), i.e.

y=U{R; + P}.

t
U
Fea
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Then the only points common to y, S(y), §*(3), ..., 871, (y), 872(yp), ... are
the points F;+ P; ¢ =1,..., t, Pe 4.

Proof: For simplicity suppose {= 3. Write
Y = U {‘7\')1 + P})
PEA

Y2 = U{R, + @},

QEA4

vs = U {Ry + R}.
REA

We shall now prove that the set N S™(y) consists of three distinct sets,

n=—o0

namely the sets N S*(y;), ¢ =1, 2, 3. We first have

yNS(y)

=, é’ HU(R, + PR, + @, Ry + R} N{U(SR)+ P, SR+ ¢, SRy + R')}]
ple%E 4

= U [[{3€1+P} N{S(R)+PHUR, +P}n {S(R,)+ ¢'}] U]
rleYea o . UHR,+RIN{S8(R)+ R}

={ynnN S()’J)} Uiy:n Sys)) U {ys N S('}’.%)}’

since {R; + P} N {S(R)) + @} = o, if { =j. Continuing this process we can show

o0 -]

A SG) =0 (0 S,

n=-—00 i=1n=—

Now applying corollary 2 of Lemma C2 we have

A oSG =U (NS () =

3

U

n=—00 =1 n=—co =1
€A

(Fi + P).

.,

This completes the proof.
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