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I n t r o d u c t i o n  

In 1948, S. Bochner introduced a curvature tensor on Hermitian manifolds [1]. He defined 

it as an analogue to the Weyl conformal curvature tensor. When,  on a Riemannian mani- 

fold M n, the Weyl conformal curvature tensor (n>3)  or the Schouten-Weyl tensor (n--3)  

vanishes, then M n is said to be a conformally flat manifold. In this case, M n can be 

uniformized over the n-sphere S n with respect to the group of conformal t ransformations 

Conf(Sn).  It  is natural  in Geometry  to determine the class of compact  K~ihler manifolds 

for which the Bochner curvature tensor vanishes. The Bochner curvature tensor B on a 

complex manifold with a K/ihler metric is defined as follows: 

B,~Qa = R~$a~ 
1 

n + 2 (R~$ge~ + RQ$ g~  + g ~  Re~ + gQ~ R~a) 

R 
( n +  1)(n+2)  (g~$gea +g0~g~a). 

Here, R~hee is the curvature tensor, and Re~ = R ~ e ~  and R=ge~RQ~ are the Ricci tensor 

and the scalar curvature respectively. 

The purpose of this note is to show tha t  when the Bochner curvature tensor B 

vanishes with respect to a K~ihler metric g, the K~ihler manifold M 2n can be uniformized 

over the K/ihler manifold Yd with a canonical K/ihler metric with respect to the transitive 

group G consisting of transformations preserving the geometric structure of yd .  

Recall that  a uniformization of M 2n is a maximal collection of charts {(r Ua)}aeh 

satisfying the following: 
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(*) M = U a e  A Ua, Ca: Ua ~r  (cY~) is a homeomorphism, 

(**) if Ua nU/~ r  then the local change of coordinates 9aa=r dpa(Ua n U a ) - ,  

r extends to an element of ~. 

(See [10] for example.) 

We shall consider a local contactization, which in our case is a procedure for ob- 

taining a CR-manifold with a characteristic CR vector field from a K~Jaler manifold. 

Then, the Bochner tensor can be interpreted geometrically as the obstruction for the 

CR-manifold to be locally modelled on the sphere S 2n+1, where S 2"+1 is the boundary 

of complex hyperbolic space. (Compare that the vanishing of the Weyl tensor implies 

that a manifold is locally modelled on S n, where S" is the boundary of a real hyperbolic 

space.) The proof uses an idea which goes back to Webster [14]. Webster observed that 

the Chern-Moser curvature tensor of the CR-manifold coincides with the Bochner ten- 

sor when n > l .  Let R ,a/~ (a,f~=l,  ...,n) be the covariant differentiation for the scalar 

curvature R of M 2n. Define a tensor R to be Raa=R ,a~. 

We shall prove the following: 

THEOREM A. Let M be a K?ihler manifold of dimension 2n. Suppose that the 

Bochner tensor B (with respect to the Kdhler metric) vanishes when n > l  or that the 

tensor R=O when n = l .  Then M is uniformized over Yd with respect to G. Here Yd is 

a connected simply connected K?ihler manifold with a canonical Kdhler metric, equipped 

with a transitive group of biholomorphic transformations G. More precisely, (~, Yd)  is 

one of the following geometries: 

(1) a projective geometry (PU(n+ I), CPn),  

(2) a similarity geometry (C r' x (U(n) • R+), C"),  

(3) a hyperbolic geometry (PU(n, 1), HS),  

(4) a projective-hyperbolic geometry 

(PU(m, 1) • P U ( n - m + l ) ,  H ~  • CPn-m),  m =  1,2 , . . . ,n-1 .  

Remark 1. The above geometries (1), (2) and (3) are subgeometries of the projec- 

tive geometry (PGLn+I(C), CPn). Except for (2), the group G is a transitive group of 

Y~ preserving the canonical K~ihler structure. The Euclidean group Ec(n)=Cn)~ U(n) 

preserves the Ks structure of C n as well. 

In the compact case, we derive the following corollary from the theorem. 

COROLLARY B. Let M be a 2n-dimensional compact Kdhler manifold. Suppose that 

the Bochner tensor B vanishes when n > l  or that the tensor R--O when n = l .  Then M 

is holomorphicaUy isometric to: 

(1) the complex projective space CP n, 
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(2) a complex Euclidean space form T~/F,  FcU(n) ,  

(3) a complex hyperbolic space form Hh/r, FcPU(n, 1), 

(4) the fiber space H ~  x cPn-~/r where 

F c P U ( m ,  1 ) •  m = 1 , 2 , . . . , n - 1 .  

Here F is a finite group and F is a discrete cocompact subgroup, both acting properly 

discontinuously. 

Remark 2. Similar results have been obtained (cf. [2], [3], [16], [17l) under some 

assumptions on Ricci tensors, scalar curvatures on compact K~hler manifolds, or on 

certain relations between Chern classes. 

Acknowledgement. The author would like to thank Professor John Albert for his 

suggestion to the earlier draft and reading carefully. The author also would like to 

thank Professor Sidney Webster for an explanation of his thesis. The author is grateful 

to Professor K. Tsukada for calling his attention to current results of Bochner K/ihler 

metrics. 

1. C o n t a c t i z a t i o n  

Let M be a 2n-dimensional K/ihler manifold with fundamental 2-form f .  For each xEM, 

choose an open subset U in M homeomorphic to a ball. Pu t  ~ v  = f [ v ,  the restriction of 

f to U. Since flu is exact, there exists a 1-form wv on U such that  dwu=fv .  In the 

product space M ( U ) = R x  U, we define a 1-form 

w=dt+p* wv 

where t is the coordinate on R and p: M(U)-*U is the projection. Let ~=d/dt be a 

vector field induced by the R-action. Since w(~)=l  and dw=p*fv for the K/ihler form 

12v, it follows that  w A ( d w ) ~ 0 .  Thus w is a contact form. It is easy to check that: 

LEMMA 1.1. (1) W is a contact form on M(U). 

(2) ~ is a characteristic vector field, i.e., w(~)=l  and dw(~, Y ) = 0  for all V ETM(U). 

(3) R acts as contact transformations of M(U). 

1.2. Let J be a complex structure on M. When T M | 1 7 6  ~ is the canonical 

splitting, it implies that  [T 1'~ T 1'~ C T  1'~ If we put  N u l lw ={ X  ETM(U) Iw(X) =0}, 

then it is a codimension 1 subbundle of the tangent bundle TM(U). Since p.  :Null w---* T M  
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is an isomorphism at each point, we define an almost complex structure J on Nullw to 

be the pullback of J by p. ,  

J(X) =p ,  loJop.(X) for X E Nullw(t,x). 

If N u l l w | 1 7 6  ~ is a splitting for J ,  then [TI '~176176 because p.(~l,0)___ 

T 1,~ and p . ( [X,Y])=[p . (X) ,p . (Y)] .  Therefore J is a complex structure on Nullw. By 

definition, the pair (w, J)  is a pseudo-Hermitian structure on M(U). (See [4], [8], [13], 

[14].) 

Let {r be the one-parameter group l:t of contact transformations. Obviously 

J~162  =( r  o~ and so Ct is a pseudo-Hermitian diffeomorphism. In this case, ~ is called 

a characteristic CR vector field and (w, J ,  ~) is said to be a standard pseudo-Hermitian 

structure (cf. [8], [13]). 

Now (Nullw, J)  is a CR structure on M(U) for which M(U) is the trivial principal 

bundle R--*M(U) p ~U over the Kihler  manifold U where ~ generates R. At this stage, 

Webster finds the relationship between the CR curvature tensor on the total space and 

the curvature tensor of the base space, which is crucial to our argument. 

THEOREM 1.3 ([14], [13], [4]). The Bochner tensor B of U coincides with the fourth 
order Chern-Moser tensor of the strictly pseudoconvex CR-manifold M(U). B vanishes 
identically when n= 1. 

Moreover, Chern and Moser defined the second-order curvature tensor Q on a CR- 
manifold, which satisfies Q=(n+I)-I(n+2)-IR, i.e., V~z=(n+l)- l (n+2)- lR ,~  in 

this case. 

In general, the fourth order Chern-Moser curvature tensor of a CR-manifold M 2n+1 

vanishes when n > l  (the tensor Q vanishes when n=l) if and only if M 2n+1 can be 

uniformized over the (2n+l)-dimensional sphere S 2n+1 with respect to the group of CR 
transformations AutcR(S2'~+I). The group AutcR(S 2n+1) is isomorphic to the group 

of biholomorphic transformations PU(n+I, 1) of complex hyperbolic space H ~  +1. The 

sphere S 2~+1 is viewed as the boundary of H ~  +1. In this case, M 2'~+1 is said to be 

a spherical CR-manifold. Let AutcR(M 2n+1) denote the group of all CR transforma- 

tions of M 2~+1 onto itself. The usual monodromy argument shows that  there exists 

a homomorphism Q:AutcR(M)--oAutcR(S 2n+1) such that  7rl(M)CAutcR(M ) and an 

immersion dev:M--~S 2~+1 which preserves the CR structure, where M is the universal 

covering space of M. Note that:  

1.4. Given a spherical CR structure, the developing pair (Q, dev) is uniquely deter- 

mined up to conjugacy by an element of PU(n+I, 1). 
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2. Fibrat ion of  spherical  CR-manifo lds  

Let (Nullw, J)  be a CR structure on M(U) for an open subset U of M. Note that  

RcAutcR(M(U)). 
Suppose that  the Bochner tensor B vanishes on M 2n (R=0  when n =  1) with respect 

to a K~ihler metric. Then, it follows from Theorem 1.3 that  M(U) is a spherical CR- 
manifold. Since M(U) is simply connected, we have a developing pair 

(Q, dev): (R, M(U)) --* (PU(n+I, 1), $2n+1). 

We can assume that  dev: 0 • U-*dev(0 • U) is a homeomorphism for each U. 

Notation 2.1. Let G be the closure of the holonomy y(R) in PU(n+I, 1). 

LEMMA 2.2. Let (Q~, devi): (R, M(Ui))-~(PU(n+I, 1), S 2n+1) be developing pairs 
for i=1 ,2 .  If UlfqU2~O, then they define the same CR structure, i.e., there is an ele- 
ment hcPU(n+ l, 1) such that dev2=hodevl on M(Ul nU2). Moreover, G2=h.Gl'h -1 
where G i =  ~i(R)'. 

Proof. Choose an open subset homeomorphic to a ball in each component of U1 n U2 

and let W be a finite union of such open subsets. Let (wi, ffi) be pseudo-Hermitian struc- 

tures on M(Ui) for i=1 ,  2. Since d(Wl-W2)=O on M(UlnU2), the 1-form wl-w2 repre- 

sents a cocycle in HI(M(W); R) which is zero, so there is a smooth map X: M ( W ) ~ R  

with wl-w~=d X. Define a diffeomorphism f:M(W)---*M(W) as f(t,w)=(t+ x(w),w). 
Then it is easy to see that  f.(d/dt)=d/dt and f*w2=wl on M(W). Since pof=p for the 

projection p :M(W)-- -W,  it follows from the definition that  J 2 o f . = f . o J 1  on Nullwl. 

Therefore f is a pseudo-Hermitian diffeomorphism and so (Null wi, Ji) define the same 

CR structure on M(W). Since (Q~, devi) is a developing pair for (Nullwi, J~) (i=1, 2), 

restricted to M(W),  1.4 implies that  for some element hEPU(n+I, 1), 

dev2 = hodevl on M(W),  (2.3) 

Qa(t)=h.Qx(t).h -1 f o r t e R .  (2.4) 

Recall that  S2n+I=PU(n+I, 1)/PU(n+I, 1)~ is analytic where PU(n+I, 1)~ is the 

stabilizer at the point {~} ,  and the local change 

dev2o dev~- 1: devl (0 x U1 n U2) ~ dev2 (0 x U1 n U2) 

is a smooth map on the domains of S 2 n + l ,  s o  it is a restriction of an analytic map. By 

(2.3), dev2 o dev ~- 1 _- h on devl (0 • W); it follows that  dev2 = h o devl on 0 • U1 N/-/2. Since 

devi is equivariant with respect to Oi and by (2.47, dev2=hodevx on M(UlnU2). [] 
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Let (Q, dev): (R, M(U))-*(PU(n+I ,  1), S 2n+l) and G be as above. 

If 9 r is the fixed point set in the sphere with respect to the group G, then we have 

dev-l(gr)=O, because 1% acts freely on M(U) and dev is an immersion. In particular it 

follows that 

dev(M(U)) C S 2n+1-~" and G C AUtcR(S 2n+1-.~). (2.5) 

We examine the fixed point set of G in S 2n+1 using the result of [9]. Recall that if G is 

noncompact, then G has a fixed point {oe} in S 2n+1. If G is compact, then either G has 

no fixed points on S 2n+1 (in this case, up to conjugacy G has a unique fixed point at the 

origin of hyperbolic space H~  +1 so that GCU(n+I) ,  the maximal compact subgroup of 

PU(n+I ,  1)), or G has the fixed point set S 2m-1 up to conjugacy for each m = l , 2 ,  ...,n. 

Here S 2m-1 is the boundary of the totally geodesic subspace H ~  of H ~  +1. These are all 

the possible cases of fixed point sets for G. Given a CR structure, the developing pair is 

unique up to conjugacy from 1.4, so we fix those fixed point sets. If the developing pairs 

(6, dev) define the same CR structure, then the corresponding groups G are conjugate so 

that the fixed point sets ~" are isomorphic. In particular, each fixed point set as above 

is mutually distinct. From (2.5) now follows 

PROPOSITION 2.6. For the spherical CR structure (Nullw, J,~) on M(U), either 

the developing pair (p, dev) satisfies that dev(M(U))CS 2'~+1 for which GCU(n+ I), or 

it determines a refinement (AutcR(X), X)  uniquely, where X is one of the domains 
S 2n-kl-{OO}, S 2nq-1 - -S  2m-1 (m----l, 2, ..., n). None of these are CR equivalent. 

2.7. Model space (~, Yc). We consider fibrations for X of Proposition 2.6. First, 

for the sphere S 2n+1 with a canonical metric, put S 1 =ZU(n+I) ,  the center of U(n+l ) .  

We have an equivariant fibration: 

(S 1, S 1) ~ (V(n+l) ,  S 2nq-1) v> (PU(n+I),  CPn). (2.8) 

The projective space C P  n carries the Fubini-Study metric. 

Suppose that G has a fixed point {oo} in S 2n+1. The complement S 2~+1- {oo} is 

CR equivalent to the Heisenberg nilpotent Lie group A/" such that GcAutcR(Af) .  Here 

Af has the central extension 1---~7~---~A/'--~C'~---~I and AutcR(Af)--Af~ ( U ( n ) x R  +) (cf. 

[6], [12]). As 7~ is a normal subgroup of AutcR(Af), we have an equivariant principal 

bundle: 

(n ,~)-- , (A/ '~(U(n)xR+),A/")  "~ , (Cn~(U(n)xR+) ,C") .  (2.9) 

Suppose that C has the fixed point set S 2m-1 for each m=l ,2 , . . . , n .  The comple- 

ment $2~+1-$2"~-1 is CR equivalent to the quotient of the product of a Lorentz hy- 

perbolic space form and a sphere, P (V2~+lx  S 2(n-m)+1) and, AutcR(S 2n+1-S2m-1)= 
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P(U(m, 1) • (cf. [8], [91, [71). As AutcR(S 2'~+1 - S  2m-1) has the center $1= 

P(ZU(m, 1)• ZU(n-m~-l)), we have an equivariant principal bundle: 

(S 1, S 1) ---, (Aut cR(S 2~+1 --$2m-1), $2n+1 _ $2-~-1) 
(2.1o) 

- ~  (PU(m, 1) • I),H~ • CP'~-m). 

S 2"+1 S 2"-I-P~V 2n+1 xS  1) V2~ +1 and In particular when m=n, - - ~ - 1  " = - 

(S 1 , S 1) --* (U(n+ 1, 1), V_2~ +1 ) - -~ (PU(n+I, 1), H~)  

is a principal bundle over the complex hyperbolic space. 

3. C o n s t r u c t i o n  of  uni formizat ion  

For simplicity, let (T, T)-*(H, X) ~ (~, Yc) be the principal bundle representing one 

of (2.8), (2.9), (2.10), where T = n  or S 1. We call (G, Yc) the model space for our 

uniformization. Let M 2n be a K~hler manifold with vanishing Bochner tensor (R=0  

when n =  1). It follows from Proposition 2.6 that  for an open subset U of a point x, there 

exists a developing pair (Q, dev): (R, M(U))--*(AutcR(X), X). Note that  AuteR(X)=H 
when X=Af, $2'~+1-S 2"~-1 and if X = S  2~+1, H is the maximal compact subgroup in 

AutcR(X)=PU(n+I, 1). Since H acts transitively on X, we can assume that  dev(0 • U) 

is transverse to the fiber T. Then we can define a map ~: U-~Yc by setting 

~a(u) = uodev(0,u) for u �9 U. (3.1) 

Obviously ~ is a homeomorphism onto its image. In general, the choice of Yc is uniquely 

determined by the developing map dev. If (V,r is another pair with x �9  then there 

is a developing map dev p for M(V). Then by Lemma 2.2 and Proposition 2.6, dev' maps 

into the same space X as that  of dev. Thus r maps V into the same space Yc as ~o. For 

each point of M choose such a pair. Then we obtain a collection of charts {(Us, ~ ) } ~ e n  

of M. By the above remark, the collection of charts uniquely determines the model space 

Yc. 
Suppose that  Us n U~ ~ O. Let dev~, dev~ be the developing maps corresponding to 

~ , ~ .  When X=Af, S 2 n + I - S  2m-1 (m=l,2,...,n), Lemma 2.2 and Proposition 2.6 

imply that  both dev~ and devz define the same (AutvR(X),X)-structure for which 

devz=hodev~. Thus h lies in H=AutcR(X). On the other hand, as T ( = ~ , S  1) is 

normal in H, the map u takes h into an element h in ~. It is easy to see that  ~aZo~o~ 1 --h 

on UaNU~. Hence, when (G, Yc)=(C~ ~ iV(n)• C'~), or 

(PU(m, 1)•215 m =  1,2,. . . ,n,  



306 Y. K A M I S H I M A  

the collection of charts {(Uo, ~o)}oeA gives a uniformization of M. 

Let X=S 2n+1. Consider the developing maps devo:M(Uo)--*S 2n+1 and dev~: 

M(U~)-~S 2n+1. The holonomy homomorphisms Qo, QZ map R into U(n+ 1) by Proposi- 

tion 2.6. Let Go, GZ be the closures as before. Then Go and GZ stabilize a unique point 

at the origin in complex hyperbolic space H ~  +1. On the other hand, Gz:h.Go.h -1 by 

Lemma 2.2, and the element h also fixes the origin by uniqueness. Hence hEU(n+l) 
which induces an element ]~EPU(n+I). Similarly as above, we have ~ o ~ 1 = ] ~  on 

UaNU~. Therefore M is uniformizable over C P  n with respect to PU(n+I). 

This proves Theorem A. 

3.2. Proof of Corollary B. Let M be a 2n-dimensional compact Ks manifold. 

Suppose that  the Bochner tensor B vanishes when n >  1 or that  the t e n s o r / ~ = 0  when 

n= 1. Then we have a uniformization from Theorem A, and so the monodromy argument 

implies that  there exists a developing pair (Q, dev): (Th (M), M)--* (G, c )  (cf. [10]). Note 

that  G acts as isometries of Y~ with respect to the K~ihler metric except in case (2). 

Then it is easy to see that  dev is a covering map onto Y~ because M is compact. As 

Y~ is simply connected, dev is a homeomorphism. It follows that  M ~ C P  ~, H ~ / F  or 

H ~  • CP'~-m/F according to whether (1), (3) or (4) holds. 

Consider case (2). If we note that  G=Cn)~ (U(n)• R+)cS im (R2 n ) ,  which is the 

group of similarity transformations, then M is a similarity manifold. It follows from the 

result of [5] (cf. also [11], [12]) that  either M is a (complex) Euclidean space form C"/F 
where FC E c ( n ) = C  ~ )~ g(n), or some finite covering is a n o p f  manifold (C n -  {0})/Z +-- 

$2~-1 • S 1 where Z + CU(n)• +. However since $2" -1 •  S 1 is not K~ihler when n > l ,  

the latter case does not occur. 

Finally consider the case when n =  1. Suppose M is a closed 2-manifold. In this case, 

M is always K~ihler and some multiple of the fundamental 2-form A.f~ is integral, i.e., 

[A.f~]EH~(M; Z). Then it represents a principal circle bundle 1--~S1--*VP-~M. Using 

a connection form on V, we have a contact form w such that  dw=p*ft  (cf. [8]). If l~=0, 

then V is a spherical CR 3-manifold by the fact that  Q=I~ (cf. Theorem 1.3). Moreover 

S 1 acts as CR transformations of V. Note that  the Euler class of this bundle is nonzero. 

Then the classification of [9] shows that  V is CR equivalent to the principal circle bundle 

over a complex curve of constant holomorphic sectional curvature. On the other hand, 

the Hopf torus S 1 • S 1 is not a flat one. Again this case does not occur. This completes 

the proof of Corollary B. 

Problems. (1) Let (w, J )  be a strictly pseudoconvex pseudo-Hermitian structure on 

M 2n-1. There exists a symplectization W=M • R where 12=d(tw). Since w is a contact 

form on M, (W, f~) is a symplectic manifold. Let ~ be a characteristic vector field on 
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M for ~. Putt ing J(~)=-d/dt and J(d/dt)=~, the complex structure J extends to an 

almost complex structure ] on W. (Note that  if ~ is a characteristic CR vector field 

(cf. 1.2), then j is a complex structure on W.) Thus we have the Bochner tensor B on 

an almost K~ihler manifold W. Then, is there any relationship between the fourth order 

Chern-Moser tensor S ~  (cf. [4], [14]) on M 2n-1 and the Bochner tensor B ~ f ~  on 
W2n? 

(2) As the Weyl conformal tensor is an invariant of the conformal class of Riemann- 

ian manifolds, define an equivalence class of K~ihler manifolds on which the Bochner 

tensor B will be an invariant (cf. [15]). 

(3) Construct an invariant such as Chern-Simons type (secondary characteristic 

class) for which the invariant is stationary in the space of equivalence classes of (2) if 

and only if the Bochner tensor B vanishes. 
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