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& 1. Introduction.

Originally it was assumed in the theory of Hilbert space that the space
considered, which we shall call %, was complete (that is, from |fn—ful — 0
for m, n - oo follows the existence of an element f€R satisfying ||/ — /| = 0
as » — oo} and separable (that is, there exists an enumerable set of elements
lying everywhere dense in R). It was, however, pointed out by F. Rellich that
the most important part of the theory of linear transformations in % maintains
its validity when the condition of separability is dropped, and, if we confine our-
selves to completely continuous self-adjoint or normal transformations, even the
completeness of N is not necessary.! We shortly recall some definitions. A linear
transformation K, defined for all elements f of the (not necessarily separable,
and not necessarily complete) Hilbert space R is called completely continuous
when, for every bounded infinite set {f}, the set {Kf} contains a sequence con-
verging to an element g€H. It is not difficult to prove that every completely
continuous linear transformation K is bounded, that is, | K /| < M|f| for every
FE€NR, where M = 0 does not depend on f. The bounded linear transformation K,
defined for all elements f€MN, is called normal when the adjoint K* is also de-
fined for all elements f€N (so that therefore the relation

(1) (K f, 9) =/, E*g)
holds for arbitrary f, g €M), and when, moreover, X K* = K* K. If K is its own
adjoint, K is called self-adjoint. Evidently every self-adjoint transformation is

normal. In the case that the space M is complete, it is a wellknown theorem

that every bounded linear transformation possesses a uniquely determined bounded

! F. RELLICH, Spektraltheorie in nicht-separablen Riumen, Math. Annalen 110 (1934), p. 342
—356.
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adjoint K* and that, if, moreover, K is completely continuous, the same holds
for K*. When, however, the space N is not complete, this theorem is no longer true.
F. Rellich has proved now the following

Theorem A. Let R be a (not necessarily separable, and not necessarily complete)
Hilbert space in which the norimal transformation K s defined. Supposing now that
both K and K* are completely continuous, and that K is not identical with the null-
transformation, this transformation K has at least one characteristic element @, with
characteristic value A, # o. DMoreover, the same element @, ts also a characteristic
element of K* with characteristic value i, (by A, we mean the conjugate complex
number of A ). Furthermore, there exists an orthonormal (finite or enumerable) se-

quence of characteristic elements @;(¢ =1, 2, . ..) satisfying
Koi=lhigi, K*@i=1lgi Ao
such that, if a;=(f, @) for an arbitrary f€R,

(2) lim | Kf— kel =lim (Kf— Dergs, Kf— D hiasp)t =0
e i=1 R i=1 i=1
and

” n n
(3) Jim | K* f— Zizaiq%H Z}im (K*f— Dhieigs, K*f— Ahiaigi)s =o.

o0 i=1 00 i=1 i=1

In the preseut paper we shall introduce generalizations of the notions hitherto
defined, and this will lead to the proof of a theorem which contains Theorem A
ag a special case. As an additional result we shall see that the assumption of
the complete continuity of K*, which is essential in Rellich’s proof, is superfluous.
Our method of proof differs considerably from that adopted by Rellich. More-
over, we shall show that this theorem may be used to obtain expansion theorems
for certain systems of linear integral equations, a result which generalizes earlier
results of J. Ernest Wilkins* (who in his turn generalized investigations of
G. A. Bliss? and W. T. Reid?®) and the present author.*

! J. ErNEST WILKINS, Definitely self-conjugate adjoint integral equations, Duke Math. Journal
11 (1944), p. 155—166.

? G. A. BLiss, Definitely self-adjoint boundary value problems, Transactions Am. Math. Soc.
44 (1938), p. 413—428.

® W. T. RED, Expansion problems associated with a system of linear integral equations,
Transactions Am. Math. Soc. 33 (1931), p. 475—485.

* A. C. ZAANEN, On the theory of linear integral equations VIII, Proc. Kon. Ned. Akad. v.
Wetensch. (Amsterdam) 50 (1947), p. 465—473 and p. 612—617 (= Indagationes Math. 9 (1947),
p. 271—279 and p. 320—325).
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We consider a bounded, positive, self-adjoint transformation H, that is, a
bounded linear transformation H satisfying (Hf, g)=(f, Hg) and (Hf, f)=o0
for arbitrary f, g€ R, and we shall denote by [£] the set of all elements % for
which Hh = o0, while the set of all elements g orthogonal to [€] (that is, (9, ) =0
for all h€[L]) will be called [IR]. Assuming now that every f€NR is expressible
in the form f=g + h, where g€[I], h€[L], the projection E on [I] is defined
by g = Ef. Furthermore we shall write N(f) for the non-negative number (H f, f)*.
It is important to observe that, since the identical transformation 7 is evidently
bounded, self-adjoint and positive, we obtain a special case by taking H = T.
In this case the set [¢] contains only the nullelement, F =1 and N(f)={f].
Returning to the general case, we shall call two bounded linear transformations
K and K each other's H-adjoints when

(4) (HKf,g)=(Hf, Kg)

holds for arbitrary f, g€ . When, moreover, H K K = H K K, the transformation
K will be called normalisable (relative to H). Two elements f, g € R will be said to be
H-orthogonal when (H f, g) = 0, and the sequence ¢; of elements ¢, €R (7 =1,2,...)
will be termed H-orthonormal when (Hg@;, @) =1 for i =j and = o for ¢ # j.

‘We shall prove now, besides other theorems, the following theorem (obtained
y Joining together the contents of the Theorems 10, 12 and 16):

Theorem B. Let R be a (not necessarily separable, and not necessarily complete)
Hilbert space in which the normalisable transformation K s defined. Supposing now
that the transformation T = E K ¢s completely continuous, and that P = H K is not
vdentical with the nulltransformation, the transformation T = E K has at least one
characteristic element @, with characteristic value A, % 0. Moreover, the same element
@, 75 also a characteristic element of T = E K with characteristic value . Further-
more there exists an H-orthonormal (finite or enumerable) sequence of characteristic

elements @i(v =1, 2, .. .) satisfying
Toi=2ligi, Topi=digi, hi# 0

such that, if e;=(H f, @) for an arbitrary fe€R,

() lim N(Kf— D laip) =lim (HKf— Qhaig), Kf— Qlap)t=o0
00 =1

> i=1 i=1
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and

(6) lim N(Bf— Dhaig)=lim (H(Rf~ Jhap) Kf—hap):=o.

1> o0 i=1 n—oo i=1 i=1 i

In the special case that any element, satisfying Hf= o, satisfies also Kf= o,
the transformation K itself has at least one characteristic element 1, with charac-
teristic value 4;, and there exists an H-orthonormal (finile or enumerable) sequence
of characteristic elements ;, satisfying K ;== ;W; such that, if e; = (Hf, v for
an arbitrary f€R, the relations (5) and (6) hold with @; replaced by ;. '

As we have already obser\fed, we obtain a épecial case by taking H= 1.
From (1) and (4) we infer that in this case any H-adjoint K of K is identical
with the adjoint K*, which implies that the notions of normalisable and normal
transformations become identical as well. Since also E=1I we see that
T=EK=K and T=EK=K?*, it follows therefore that in this case Theo-
rem B becomes identical with Rellich’s Theorem A, except for the assumption
about the complete continuity of K* in Rellich's theorem, which is superfluous.

There exists a close connection between normalisable and normal trans-
formations as will be shown by introducing a factorspace § = R/[&], the ele-
ments [f] of which are classes of elements of the space . The element [f]€3
contains besides the element f€NR all elements g €R for which Hg= Hf Ad-
dition and multiplication with complex numbers « are defined by [fi] + [f.] =
=i+ fil elf)=lef], while ([fi], [£]) = (H/,, f). In general, the space 3
will not be complete, even in the case that N is complete. By adjunction of
ideal elements, however, we shall obtain the complete space 3, the closure of 3.
Defining now, for a normalisable transformation K satisfying the conditions of
Theorem B, the transformation [K] in 3 by [K][/] =[Kf], it will be shown
that [K] is a bounded normal transformation in 8. Defining [K] also for those
elements of the closure 3 which do not belong to 3 (this is possible in virtue
of the boundedness of [K]), we shall prove (Theorem 23):

Theorem C. If the normalisable transformation K satisfies the conditions of
Theorem B, the transformation [K] in the space 3, corresponding with K in the way
described, is a completely continuous mormal transformation in 3.

We shall also pay attention to bounded linear transformations K which,
without being normalisable, possess an H-adjoint- K. An analogue of Theorem B
(obtained by joining together the contents of the Theorems g, 6 and 20) will

be proved.
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In § 13 we consider normalisable transformations of the form K= A H,
where one at least of the bounded linear transformations H and 4 is completely
continuous, and where A satisfies HA HA* H= H A* HA H, and we prove in
Theorem 26 that in this case the convergence of the expansions Z1;a;¢; and
3 %ia;@: relative to the norm N(f), as expressed by (5) and (6), may be replaced
by ordinary convergence relative to the norm [/f|. The sums of the expansions,
however, are not necessarily equal to K f and Kf, but

Kf=3khawi+h Kf=Shay +Fk,
where Hh=Hk=o.

Finally, in § 14, we indicate the aforementioned applications to the theory
of systems of linear integral equations in the space L™ (4) of all functions f(x)
with complex values, having the property that |f(x)|® is Lebesgue-integrable over
the m-dimensional interval 4.

The special case of completely continuous symmetrisable transformations
(that is, bounded linear transformations which are their own H-adjoints) has
been treated before!, and its implications for the theory of one linear integral
equation with symmetrisable kernel have been investigated in detail.? Some of
the proofs for mnormalisable transformations resemble more or less closely the
corresponding proofs for symmetrisable transformations. Nevertheless, it seemed
advisable to us to include these proofs in the present paper, partly because it is
always difficult to know where to draw the line as regards the use of the phrase:
“The reader, by comparison with the corresponding theorem, will easily find
that ..."”, but mainly in order to make an independent whole of the contents
of the present paper.

§ 2. Some Preliminary Considerations.

We suppose that R is a (not necessarily separable, and not necessarily
complete) Hilbert space. We shall not assume that this space has necessarily
infinite dimension, so that it may also be a unitary space. The following nota-

tions will be used:

! A. C. ZAANEN, Ueber vollstetige symmetrische und symmetrisierbare Operatoren, Nieuw
Arch. v. Wisk. (2), 22 (1943), p. 57—8o0.

A. C. ZAAXEN, On the theory of linear integral equations I, Proc. Kon. Ned. Akad. v. Wetensch.
(Amsterdam) 49 {(1946), p. 194—204 (= Indagationes Math. 8 (1946), p. 91—1o01).

* A. C. ZAANEN, On the theory of linear integral equations II—VI, Proc. Kon, Ned. Akad.
v. Wetensch. (Amsterdam) 49 (1946), p. 205~—212, 292—301, 409—423, 571—585, 608—621 (= In-
dagationes Math. 8 (1946), p. 102—109, 161—170, 264—278, 352—366, 367—380).
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frg @, ..., elements of N,

e, B A, ..., complex numbers,

@pB, %4 @, ..., the conjugate complex numbers of «, 8,4, 4,...,
(f, 9), the scalar product of f and g,

1A, the non-negative number (f, /)",

K,T,E, U,..., bounded linear transformations in %, that is (for K), |Kf| =
< M|f| for a certain M =0 and K(ef+gg)=cKf+8Ky
for arbitrary ¢, 8,1, g,

IK|, |T],..., the bounds of K, 7,..., that is (for K), the smallest number
M = o satisfying | K f| < M| f| for every f€NR,
K* T*% .. ., the adjoint transformations of K, 7, ..., as far as they exist in

M (it is well-known that, when 9N is complete, every bounded
linear transformation K has a uniquely determined, bounded
adjoint K* with the same bound as K); we have therefore (for
K) the relation (Kf, g) = (f, K*g) for arbitrary f, ¢,

H, a bounded, positive, self-adjoint transformation, that is, a bounded
linear transformation satisfying (Hf, g)=(f, Hg)and (Hf, f)= o0
for arbitrary f, g,

NS, the non-negative number (H f, )",
1, the identical transformation; I/ =/ for every f€N,
0, the nulltransformation; O f= o0 for every f€N,

[€],[M], ..., closed linear manifolds in N, that is (for [L]), a subset of N
having the properties that f, g€[¢] implies «f + Bg€[¥] for
arbitrary «, 8, and £, €[&] (n=1, 2, ...), lim f, = f implies f€[¥].

We suppose that the bounded, positive, self-adjoint transformation H is
defined in N, and that H >£.0. Then the set of all elements A€ H, satisfying
Hh=o0, is a closed linear manifold [¥], not identical with the space N itself.
It is not difficult to see that the set of all elements g €M, orthogonal to [£]
(that is, (g, B) =0 for every h€[&]), is also a closed linear manifold, which we
shall denote by [¥]. We shall assume now that, for every f€N, there exists a
decomposition f=g + h, where g €[], h€[8]. Then, evidently, this decomposi-
tion is unique (It is well-known that, when N is complete, a decomposition of
this kind always exists. The same is true, even when J is not complete, in the
special case that H is definite, that is, Hf=o0 only for /= o, since in this
case [¥] contains only the nullelement). The manifold [¥] not being identical
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with the whole space R, the manifold [¥] contains not only the nullelement,
but other elements as well. Defining, when f=g + h (g€[I], h€[L]), the pro-
jection E on [M] by g= Ef, we have therefore E # (0. The projection on [¥]
is I — L. We observe that E = I in the special case that H is definite.

Lemma 1. H=HE.

Proof. On account of Hh =0 for every h€[¥] we have H(I — E)f= o for
every f€R, hence Hf=HUEf or H=HLUE.

Lemma 2. For any element f€R, the relations Hf =0 and N(f)=(Hf, f)*=0
are equivalent.

Proof. It is trivial that Hf= o implies N(f)=o0. To show the converse,

we use the inequality

(7) [(Hf, I =< (LS SV (Hyg, 9" = N(f) - Ng),

which is proved in a similar way as Schwarz’s inequality |(/, g)| <[ f]- [ gl.
Taking now g = H f in (7), we obtain

VHfP < N(f)- N(HS),

which shows that N(f)=o implies Hf = o.

§ 3. H-adjoints.

When the bounded linear transformations K and K, defined in 3, satisfy

the relation
(8) (HK f, g) = (Hf, K g)

for arbitrary f,g€%, we shall call K an H-adjoint of K. Generally K is not
uniguely determined, since, if K is an H-adjoint of K, and the bounded linear
transformation K, satisfies EK, = E K, then K, is also an H-adjoint of K, as

follows on account of Lemma 1 from

(HKf, 9)=\Hf, Kg)=(f, HKg)=(f, HEKg) =
—(f, HER, 9)=(f, HK,9) = (H/, K, 9)-

Conversely, if K and K, are both H-adjoints of K, we have ER=EK,
since (HKf, g)=(Hf, Kg)=(Hf, K, ¢) implies (f, HK g)=(/, HK,g) for arbi-
trary f, g€R, hence H(K — K,)g=o0 or (K— K,)g€[2] for every g€, so that
E(R—K)=0or EK=EK,.
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It is evident that, when K is an H-adjoint of K, then K is also an H-
adjoint of K, since (8) implies

(HKg,f)=(Kg, Hf)=(g, HKf)=(Hg, K [)

for arbitrary f, geR.
Finally we observe that, in the special case that H = I, the relation (8)
becomes

(Kf, 9)=(f, Kg).

Any H-adjoint of K, if it exists, is therefore in this case identical with the
uniquely determined adjoint K*.
Before proving now several theorems on H-adjoints, we prove the following

Lemma 3. When, in R, the adjoint K* of the bounded linear transformation
K is defined, it vs bounded.

Proof. If 3 is complete, the theorem is well-known; we shall suppose there-
fore that I is not complete. Then, by adjunction of ‘ideal’ elements (‘limits’ of
fundamental sequences possessing not already a limit in ), we may obtain the
complete space R, the closure of . For f€R, and ¢N, f=1lim f,, /€N, Kfis
defined to be lim K f,. It is easy to prove that this definition is legitimate.
Then K is bounded in R, so that, on account of the completeness of N, K* is
also bounded in N, and therefore certainly in R

Theorem 1. Let the bounded linear transformations K and K be H-adjoints.
Then any f€R, satisfying Hf = o {equivalent with f€[R]) satisfies also EKf=o0
and EKf=o.

Proof. From (8) and Hjf=o0 follows (H K f, g)= 0 for every g€N, hence
HKf=o0. Then K f€[2], so that FKf=o.

From

(Kg, Hf)=(HKyg,f)=(Hg, Kf)=(9, HK[)

and Hf=o follows (g, H K f) = o for every g €N, hence H K f=o0. Then K f€[Y],
so that EKf=o.
A bounded linear transformation K which is its own H-adjoint, so that it

satisfies the relation
(9) (HKf, 9)=(Hf, Ky)

for arbitrary f, g€MN, is called symmetrisable (to the left, and relative to H).

Since (9) is equivalent with
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(HKf,g)=(f, HKg),

we may also say that K is symmetrisable whenever H K is self-adjoint.! In the
special case that H = I, a symmetrisable transformation is therefore the same

as a self-adjoint transformation.

Theorem 2. Let the bounded linear transformations K and K be H-adjoints.
Then KK and KK are symmetrisable, tn other words, HEKKRK and HK K are self-
adjoint. Furthermore the self-adjoint transformations H K K and H K K are positive.

Proof. Using (8) several times, we have, for. arbitrary f, g€MN,.

(HKKf, 9)=(HKf, Kg)=(Kf, HKg)=(f, HK Kg)=(Hf, K K g)
and
(HEKf, g9)=(KKf, Hg)=(Kf, HKg)=(HKf, Kg)= (Hf, KKg),

which shows that KK and K K are symmetrisable.

Furthermore ,

(HKKf, f)=(HKf Kf)y=o0
and
(HEEKf, f)=(EKf Hf)=(Kf, HKf)=o,

because H is positive.

Corollary. Let the bounded linear transformation K possess the adjoint K*
(K* is bounded by Lemma 3). Then K K* and K* K are self-adjoint and positive.

For abbreviation we shall write, whenever K and K are H-adjoints, F K = T
and EKX=7. Since by Lemma 1 we have H = H E, it follows from (8) that

(HEKf, )=(HKf, g)=(Hf, Rg)=(f, HR g)=(f, HEK g) = (Hf, EK g)
or

(10) (HTf, g)=(Hf, Tg),

so that 7 and 7 also are H-adjoints. We observe that, whenever K is sym-
metrisable, the same is therefore true of 7= E K. As a consequence of Theo-

rem 2 we have now

Theorem 3. Let the bounded linear transformations K and K be H-adjoints,
let T=EK and T=EK. Then HTT and HTT are posttive, self-adjoint
transformations.

! Symmetrisable transformations K such that both H and K are of integral type with bounded
kernels H (x,y) and K(r, y) were introduced for the first time by J. MARTY, Valeurs singuliéres
d’'une équation de Fredholm, Comptes Rendus de I’Acad. des se. (Paris) 150 (1910), p. 1499—1502.
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Theorem 4. Let the bounded linear transformations K and K be H-adjoints.
Then, for every fe€N,

(11) IHEf|<|K|-|H[" N(/)
and
(12) IHEA<|K|-|HI"- N(f)

Proof. Taking g = H f in (7), we obtain
VHfF < (Hf £ (H2f, Hf)".

But
(HEf, HY) <= |H S| -V HfI < H| | HfI,
so that
VHAF<IHI"- (Hf, /)" | Hf]
or
(13) VHA<|H|" (HS, )= =|H|* N(f).
Furthermore

V\HEff=(HKf, HKf)=(Hf, KHKf)<|Hf|- |KHKf|<|K|-|Hf|-|HEf|
IHEfI<|K| [ HS],
so that by (13)
|HEf|<|K|-|H[" N(f).

This disposes of (11). The inequality (12) follows now also, since K and K may

be interchanged.

§ 4. Introduction of a Factorspace.

Two elements f and g€N will be called H-orthogonal when (H f, g) == 0; and
the system ¢ of elements will be called H-o0rthonormal when, for ¢ € Q, Y€ Q,
we have
1 for p=1,

(He, 1p)z{o for ¢ = .

The elements fi, f;, ..., fa will be called H-independent when HE e fi=o0

i=1
implies ¢, =@, == =@, = 0. Evidently, when f, f,, . .., fu are H-independent,

they are linearly independent.
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Lemma 4. When the elements ¢y, ..., gu are H-orthonormal, they are H-in-
dependent.
Proof. From HZa[ @; = o follows, for k=1,..., n,

=1

n

dai(Hepi, pr) = o,

=1

hence, since

A (1 for i=F,
H iy )= . ,
oo 9=y tor i 2k

oy ===y =0.

Lemma 5. Given the finite or enumerable set V of H-independent elements
Saln=1,2,...), there exists an H-orthonormal set @ of elements @n(n=1,2,...)

such that the linear manifold (V) of all finite linear combinations Zafﬁ 15 tden-
i

tieal with the linear manifold L(Q) of all finite linear combinations Z,()’,- @i

Proof. The H-orthonormal sequence § of elements ¢, @,, ... originates
from the sequence fi, f;, ... by a process, wholly similar to Schmidt’s well-known
orthogonalization process, in the following way:

9 =/, @ = .GJ/N(.%),
gs =1y — (Hfy, 971) P, P2~ 91 N {g,),

Generally, if ¢, ..., pn-1 are already defined,

n—1

g =fo— z(an, P pi,  Pn=gn/N(gu).
To justify this definition of ¢. we have to show that N(g.) # o. Now, since
Jiv - -+, fo are H-independent, so are ¢;, ..., ¢u_i, fo, hence Hg, 7 o. This, how-
ever, by Lemma 2, is equivalent with N(g,) % 0. It is easy to see that the se-
quence ¢ is H-orthonormal. Moreover, ¢, depends linearly on f, ..., fx, and
Jfn depends linearly on ¢, ..., pu; hence (V)= £(Q).

We shall introduce now a Hilbert space 3 with elements [f] that are classes
of elements of the space M. The following definitions of [f] are, by Lemma 2,
equivalent:
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1°. [f] contains f and all elements g for which Hg = Hf,

2°. [f] contains f and all elements g for which N(f— ¢)=o.

The class [f] contains in particular the element Ef, since H Ef= Hf by
Lemma 1. The nullclass [0] consists of all elements & for which Hh = o, that
is, all elements h€[L]. We shall write f=g¢ (mod [¥]), or shortly f=g, when-
ever f— g€[%], in other words, whenever [f] = [g].

Furthermore we define

L1+l =1/+ 9],
a[f] =[ef] for arbitrary complex «,

(Lf), lol) = (H £, g);

hence
1LY = (/1 D= = ("), £)F = N(f).

No contradiction can arise from these definitions, since /= f, and g = ¢, imply
fH9=f+4g, ef=qaf,, and

(Hf, 9)=Hf,, 9)=f,, Hg) = (f,, Hg,) = (Hf,, 9.)

Finally o =|[f]|= N(f) if and only if Hf==o, that is, if and only if [f] = [0].

With these definitions the space J is therefore a Hilbert space. It is evidently
some factorspace of N relative to [¢], so that we may write 3 = /[L]. We observe
that, even in the case that the space M is complete, the space 3 is generally
not complete. 1f the transformation H is definite, that is, if Hf= o0 only for
J=o0, there is a one-to-one correspondence between the elements f€R and the
elements [f]€3. In the special case that H = I, the spaces i and 3 may be

regarded as identical.

Lemma 6. The system {f} in the space R is H-orthonormal if and only if
the system {[f]} in the space 8 is orthonormal.

Proof. (Hf, g) = o0 is equivalent with ([/], [¢]) =0, and (Hf, f) =1 is equi-
valent with ||[[f][? = 1. ‘

Lemma 7. The elements fi, ..., fu in the space N are H-independent if and
only if the elements [f1]1, ..., [fa] in the space B are linearly independent.
n " ) ,
Proof. HZ a;f; =0 is equivalent with Za,- [fi] = [o]; if therefore one of
=1 ‘ i=1

these relations implies @, =---=a, = 0, the same is true of the other.
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Lemma 8. Let vi(i =1, ..., n) be an H-orthonormal system in R, and let the
unitary space, determined by this system, be called R,. Then, {f the lincar trans-
formation U, defined in R, (that is, f€R, implies UfER,), has the property that
the system Uwvi(i =1, ..., n) is also H-orthonormal, there exists an H-orthonormal

system @ (i =1, ..., 1) in Nu such that
Upi=pwigi, {wl=1 (t=1,..., n)
Proof. We observe first that Hf=o0 for an element f€R, implies f=o.

This follows from the fact that every f€M, can he written in the form f'= Z o Uiy

=1

32

£l

n
so that Hf=o0 implies Z ae;Hvi=0 or

i=1 i==

ai(Hvi,v)y=0 (j=1,...,m) or

—

¢j=0(j=1,...,n). Introducing the unitary space 3., corresponding with R,
in the same way as the Hilbert space 3 corresponds with the whole space R,
there exists therefore a one-to-onme correspondence between the elements [f] of
Bn and the elements f of M,. Furthermore we define the linear transformation
{01 in 3. by [UlLf]1=[Uf]. Then [U] transforms the orthonormal system
[v] (é =1,...,n) into the orthonormal system [Uwv] (i =1, ..., n), so that, by
a well-known theorem, [ U] is a unitary transformation in 3., that is [U][U]*=[1],
where [I] is the identical transformation in B.. It follows, using another well-
known theorem on unitary transformations in unitary spaces, that there exists

an orthonormal system [p] (¢ =1,..., %) in 3. such that

[0lle] = wiled, lmwl=1 (f=1,...,n),

so that in the original space R, there exists an H-orthonormal system ¢; (i =1, . . ., %)
such that
Upi=wiq:, |w|=1 (e=1,...,n).

§ 5. Singular Values of H-adjoints.

The linear transformation K, defined for all f€N, is said to be completely
continuous when every bounded, infinite set of elements of N contains a sequence
Jf« such that the sequence K f, converges to an element g€H. In the case that
R is complete, it is sufficient to require that the sequence K f, converges, since
in this case the limitelement g€NR exists by hypothesis. 1t is not difficult to
prove that every completely continuous linear transformation is bounded.

15~ 642136 Acta mathematica. 83
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Theorem 5. Let the bounded linear transformations K and K be H-adjoints;
let T=EK and T=EK. Supposing now that T is completely continuous, and
that P= HK 5 O, there exist two elements uw and v, both > o, and a positive
number L such that

Tu=2dv, Tv=~u

The number A will ce called a singular value of T and T.*

Proof.> On account of P s O there is an element f, 7 o such that Pf, #o.
This implies H f, # o (since from H f, = o would follow, by Theorem 1, £ K f; = o,
hence Pf,=HKf,= HEKf,=o0), so that also N(f,) % o. Writing f, =/,/ N(f,)
and f, = Tf,, we find

Hf,=HIf,=HEKf,= HKf,= Pf,#o.
hence N(f,) % 0. The sequences of elements f, and faln=o0,1,2,...) are now
defined by
Jo = ful N(f2),
Jont1= Tfén, Jant2 = T,}T“MHJ

(n=o0,1,2 ...}

To justify this definition, we have to prove that N(f.) s o for every value of ».
This, however, is a consequence of N(f,) # o, N(f}) # o,

N(fons1) = (H frns1, Jonsr) = (H TJ;?naﬁnH) = (H fon, T fons)) =
(Hfzn,fznw) = N(ﬁn) * N{fans2) = N(fons2) (n=o0,1,2,...)
and
N(fon) = (H fon, fon) = (H T fon-1, fon) = (H fan-1, Tfan) =
(H fono1s frnir) = N{fond) - N(fons) = N fanrr)  (e=1,2,...).

The sequence of numbers N (£} (»n =1, 2, .. .} is therefore non-descending.. Furthesr-
more we observe that N(f5) = (H fu-1, fa+1) implies

(14) N{fa-i) Nfa) =Hfoo1, far)  (n=1,2,...),

and, since on account of this relation (H fa—1, fa+1) = (fa—1, Hfay1) is real, also
(15) N{(fu-1) - NUfo) = (H fos1, fam1) n=1,2..)

! Some authors use the name of singular value for the reciprocal value of .

? Part of the idea of this proof is derived from the proof that an integral equation with a
non-vanishing Hermitian kernel has at least one characteristic valne # o, as given in O. D. KeLLO0GG,
On the existence and closure of sets of characteristic functions, Math. Annalen 86 (1922), p. 14—I7.
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We shall prove now that the sequence fint1 == T fan contains a converging
subsequence. For this purpose we observe first that the sequence H f; is bounded

since, on account of Theorem 4,

|HT fu-sl I T) - HI™ - N(fam) =] - | H[* for # 0dd,
(HT fur[ SN T]-[HI® - N{fuz1)=|T]-|H|"* for n even.

10

This enables us to show that the assumption that lim ||fax] = oo leads to a com-
tradiction. Indeed, supposing that lim |fa.]|= oo, there is an infinite number of
values of the index 2# for which |fini2] = |lfanl, so that for a certain sub-
sequence f; (j=2n,, 2n,, ...) we have | fj+2] =|fjll. Since T is completely con-
tinuous and [[fi/| /]| = 1, the sequence T'f;/| f;|l = fi+1/]/;|l contains a subsequence
fir1l|lfi] converging to an element f. We have then

Hf=lim Hfinllfil = o
on account of lim ||fi| = oo and the boundedness of Hfi;:. Furthermore
Tf=1lim T fisa/|fi] = tim N(fi1) - TﬁH/HﬂH =lim N (fi+1) fk+2/||f_lH
But, in virtue of N(fit2) = N(fis1) = N(f) and |fiso] = [ fil, we find

[N (fier) - frrad il | = | N (frra) N (fia) - fiad | fill|

= N(fos2) N(fira) - [fira [ |l = N* (1),
so that ~
Tf=1lm N(fi+1)fere! | f] 5 0.

This, however, is in contradiction with H f= o, since, by Theorem 1, Hf=0
implies 7' f= EKf=o0. The relation lim |fs:] == 0o being therefore impossible,
we may conclude that the sequence fan contains a bounded subsequence fi.
Then, on account of the complete continuity of 7', the sequence fi1;= Tf; con-

tains a subsequence f; converging to an element t€R. From

N (f)=(Hfi, /) | HAN- NS =[H| - AP
it follows further that the sequence of numbers N(f) is bounded, so that, since
N(f) is a subsequence of the non-descending sequence N(f) (n =1, 2,...), the
whole sequence N{fy) is also bounded. Consequently i =lim N(fs) exists, and
4> o0. Then lim f;=t/4, so that

(16) {limﬁ+1=lim 1~’fi=1~’t/l=u,

lim fiy2 = lim T fip1 = Tuld=v.
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The relations (14) and (15) imply

lim (Hf, fiss) = lm (H fio, fi) = lm N(f) - N(fr+)) = 22,
hence
NE(t—v) = lim N‘l(ﬁ'——fzw) =
Him [N2(f) — (Hf;, fiea) — (Hfire, f) + N2 (frsa)] =12 —22 =22 + A2 =0,

so that also H(f{ —v)=o0 by Lemma 2, which implies, on account of Theorem 1,
T(t—v)=o0 or Tt= Twv. This being so, we infer from (16) that

Tu=2iv, Tv=2Au.

Both « and v are > o0 on account of N(u)=1lim N(fi+1)=1>0 and N({v)=
lim N(fi+2) =4 > o. This completes the proof. :

Theorem 6. Let the bounded linear transformations K and K be H-adjoints,
and let T= EK be completely continuous and P= H K 5 0. Supposing now, more-
over, that any f€R, satisfying Hf=o, satisfies also Kf= Kf=o, the trans-
Sormations K and K have a singular value > 0; in other words, there exist tiwo

elements y and z, both o, and a positive number L such that

Ky=1.lz, Ke=1y.

Proof. Since by hypothesis Kh = Kh=o0 for all h€[2] (we recall that []
is the set of all elements h satisfying Hh =0), we have

K(I—-Ef=K(I—FE)f=o0

for all f€EN, or K= K E, K= K E. Furthermore, by the previous theorem, there
exist two elements » and v, both £ o, and a positive number A such that

Tu=2>iv, Tv=2iu.
Then
KRv=KEKv=KTv=21Ku,
KEKu=KEKu=FKTu=1Kv.
Defining :/'L“‘];'v, z=A4""Ku, we have therefore

Ky=12zs, K’zzly.

From u 5 o follows EKv = Tv=4u% 0, hence Kvs0 ory=A"'Kv > 0. Then
also 2z 5 0, since z=0 would imply y =A'Kez=o0. -
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Remark. We observe that
Ey=A'ERKv=2"Tv=u,
Ez=1""EFKu=»31"'Tu=r.

Theorem 7. Under the same assumptions as in the preceding theorem, the rela-

tions u=Ey, v=Ez and y =21 Kv, 2 = A"1 Ku define a one-to-one correspondence

between all pairs of elements vy, z (both o) satisfying
(17) Ky=1z, Ke=1y  (A#0),

and all pairs of elements u, v (both 5 O) satisfying

(18) Tu=2lv, Tv=14iu (4 # o).
Proof. Whenever Ky =14z, Kz=1».4y; A,y and ’z % 0, we have, writing
u=FKy, v=Fe,
Tu=EKu=EKEy=EKy=21Fz=ar,
Tv=ERKv=ERE:=FEKz=AEy=hu,
w0, since Ku=KFy=Ky=»4z3o0,
v#o0, since Ke =KEz=Kz=2y#o.
With every pair of elements y,z 5 o, satisfying (17), corresponds therefore the
pair of elements u = Ey, v= Ez, both 7# o, satisfying (18). We shall show now
that with different pairs #,, 2, and y,, 2,, satisfying (17), cannot correspond the
same pair u, v, satisfying (18). For this purpose we suppose that 1 70, ¥, 2y, ¥, 2,5 0,
Ky =iz, Kz,=23y, and Ky, = Az,, Kz, = Ays,,
W # Y Ey=Eys,.
Then z, # 2, (since 2z, = #, would imply 1y, = K 2z, = K z, = Ay, or y, = y,), hence
Ky, —ys) =2z, —2)) # 0"
But from Ey, = Ey, and K = K I follows
Ky, —y:) = KE(y, — y,) = K(Ey, — Eys) =0,
so that we arrive at a contradiction.
1t remains to prove that, if u, v 5 o satisfy (18), there exist elements y, z % 0,

satisfying (17), such that Ey=wu, Fz=v. As we have seen in the preceding
theorem, the elements y =471 K’v, z = A"' Ku fulfil these conditions.
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§ 6. Characteristic Values of Normalisable Transformations.

Theorem 8. When the bounded linear transformations K and K are H-adjoints,
then HKK=HTT and HKK=HTT.
Proof. From H= HE follows HK=HEK=HTand HK=HEK=HT,

hence
(HKKf, g)=(HTKf, 9)=HEKf, Tg)=(HTf, T9)=HTTIF, g)

for arbitrary f, g€R, so that HK K= HTT. The relation HKK=HTT is

proved in a similar way.

Definition. Let the bounded linear transformations K and K be H-adjoints.
Then K will be called normalisable (relative to H) when HKK = HK K.

It follows from Theorem 8 that we may also say that K is normalisable
whenever HT 7 = HT T, and this shows that, even though the H-adjoint K of
K may not be uniquely determined, our definition is nevertheless independent
of the particular choice of K. We observe that, in the special case that H =1,
we have K:——-K*; in this case, therefore, K is normalisable when K K* = K* K,
which shows that a bounded linear transformation which is normalisable relative

to I is simply a bounded normal transformation.

Theorem 9. The bounded linear transformation K s normalisable if and only
fTT=TT.
~Proof. If TT =TT, K is evidently normalisable. Conversely, if K is nor-
malisable, we have H(T 7 — T T)f=o0 or, by the definition of E, E(TT—TT)f=
=o0 for every f€N. But, since E*=F, we have ET =F*K=FEK=1T and
ET=FEK=EK=1T. Hence (ITT—TT)f=0 for every f€R or TT=TT.

If K is a bounded linear transformation in N, and Kf = A/ for an element
S # o, this element is called a characteristic element of K, belonging to the
characteristic value A.! The set of all characteristic elements, belonging to the
same characteristic value 1, is a closed linear manifold in R, and the dimension
(that is, the maximal number of linearly independent elements) of this closed
linear manifold is called the multiplicity of the characteristic value .. We shall

assume the following lemma to be known:

! Some authors call 4 an eigenvalue of K, and reserve the name of characteristic value for
the reciprocal value of A.
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Lemma 9. The number of characteristic values of a completely continuous linear
transformation s finite or enwmerable, and in this latter case the characteristic values
tend to o. The multiplicity of every characteristic value # o is finite.

Lemma 10. Let the linear transformation A be completely continuous, and
Hf=o0 imply Af=o0. Supposing now that A% 0 is a characteristic value of 4,
there exist a positive integer n and an H-orthonormal system ,, ..., @n such that
the set of all characteristic elements of A, belonging to the characteristic value A,

n

s identical with the set of all linear combinations Zaiq)i.
i=1

Proof. By Lemma 9 the muliplicity of the characteristic value 1 is a finite
integer n = 1. There exist therefore » linearly independent elements y;, ..., =
such that the set of all characteristic elements of A, belonging to the charac-

teristic value A, is identical with the set of all elements Za; y:. The elements
1=1
n

Lty - - o> %n are H-independent since, by hypothesis, H2ai y¢ = O implies
i=1
’l} n
AZW%;':O or A D wiy =0,
f==1 =1
hence o, = --=a, =0 on account of 10 and the linear independence of
%1> -+ > %n. The existence of an H-orthonormal system ¢,, ..., g, with the re-

quired property follows therefore from Lemma 5.

Now we come to one of our main theorems:

Theorem 10. Let the bounded linear transformation K be normalisable, T = E K
be completely continuous, and P=H K % 0. Then T has at least one characteristic
value A % o with characteristic element @,. Moreover, T = E K has the characteristic
value A; with the same characteristic element g,.

Proof. By Theorem 5 there exist a number i >0 and elements u, v 54 0
such that

Tu=2iv, Tv=Au.

Then T Tv=1Tu=A%v, which shows that v is a characteristic element of 7' T
with characteristic value 1°. The transformation T T is completely continuous
(T is completely continuous and 7' is bounded), and Hf=o implies 77 f=o0
(Hf =0 implies Tf=o0 by Theorem 1, hence certainly T 7 f=o0). The set of
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all elements v, satisfying 7 7 v = 2%v, is therefore, by Lemma 10, identical with
n

the set R, of all linear combinations Zaiw, where »n = 1, and the system
i—=1
Uiy ..., Uy 18 H-orthonormal.

From TT =TT and TTvi=2%v; (i =1, ..., 1) follows
TTA Te)= AT T To,= A T(TTev)=22(A"" T,

which shows that the elements A='Tw; (i==1,...,n) are also characteristic
elements of 7 7T, belonging to the characteristic value A%, The transformation
U=2A7'T transforms, therefore, every element of M, into an element of N,.

Furthermore

(HUvi, Upy) =22 (HTvi, Toy)= A (HT Tvi, vj) = A2 (HT Twi, vj) = (Hus, v)),

so that the system Uw; (=1, ..., n) is H-orthonormal. Then, by Lemma 8,
there exists an H-orthonormal system @, ..., @, in Rysuch that
Upi=wuig:, Jl=1 (e=1,...,n),

hence, since U=1"1T,
To;i=2igi, |M]=12 (t=1...., n).
This shows that T has at least one characteristic value A, # o with characteristic

element ¢, .
To prove that T g, = 1;p; we observe that, since ¢,€%R,, we have

TTe: = TTq)[ =22, = L A i,
bso that from ;@ = T @; follows

XiTQDi == j‘ T@l = ll-}-»upf.
Hence T ;=1 ;.
Considering the case that H = I, we obtain the following
Corollary. Let the completely continuous linear transformation K 5 O be normal.

Then K has at least one characteristic value A, 5 0 with characteristic element ;.
Moreover, K* has the characteristic value X, with the same characteristic element g, .

Theorem 11. Let the bounded linear transformation K be symmetrisable,
T=FEK be completely continuous, and P=HK # 0. Then T has at least one

real characteristic value A, < o.
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Proof. Since now T = T, there exist, by the preceding theorem, a complex
number 2, % 0 and an element ¢, # o satisfying

T¢1='11¢P17 T‘PL:T'%:ZJQQL-

This shows that 4, = 1,, so that 4, is real.
Considering again the case that H = I, we obtain the following:

Corollary. If the completely continuous linear transformation K 7% O is self-
adjoint, then K has at least one characteristic value A, # o.

Theorem 12. Let the bounded linear transformation K be normalisable, T = E K
be completely continuous, and P = HK # 0. Supposing now, moreover, that any
JENR, satisfying Hf=o, satisfies also K f=o, the transformation K has at least
one characteristic value 1, # o. ‘

Proof. By Theorem 10 the transformation T' = E K has at least one charac-

teristic value 4, # o with characteristic element ¢;:

T, =io,.

Then, since now K = K FE by our additional hypothesis (compare the proof of
Theorem 6), we have

KKp,=KEKep =KTg =1, Kg,,
so that v, = A7 K ¢, satisfies
Ky, =4y,

Theorem 13. Under the same assumptions as in the preceding theorem, the
relations o

g=Ey, y=01"Kg
define a one-to-one correspondence between all elements W % 0 satisfying
Ky=iy  (A#0)
and all elements ¢ #~ 0 satisfying
Tp=1g (A # o).

Proof. The proof of this theorem is similar to that of Theorem 7.
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§ 7. Some Properties of TT.

Theorem 14. If the bounded linear transformation A is symmetrisable (that is,
if HA is self-adjoint), and f Hf= o implies A f= o, then the characteristic values
of 4 are real, and characteristic elements, belonging to different characteristic values,
are H-orthogonal. 1If, moreover, H A 1is positive, the characteristic values of A are
non-negative.

Proof. Let f>o0 and Af=Af 1f (Hf, f)=o0, so that by Lemma 2 also
Hf=0, we have by hypothesis 4 /=0 or Af=o0. Hence, since f 0, L=o0.
If (Hf, f) # o, we find '

MHSf)=(HA f)=(HAL f)=(f, HAf) =}, HLf) = I(H ], [)

or A =1, which shows that A is real.
Let now 252 u, f#o0, g0, Af=2~4fand A4¢g=gug. Then

MHf 9)=(HAS g9)=(f, HAg)=a(f, Hg) = n(H, 9)

or (A—u)(Hf g)=o0, from which follows, since A — u 5 o, that (Hf, g) = o.
Finally, if H A is positive, f5£ 0, Af=1f, we have A=0 for (Hf, f)=o0
as already proved, and, for (Hf, f) > o,

AHS )= (HLf, [)=(HAS f) = o,

hence A = o. This shows that now the characteristic values of 4 are non-negative.

Supposing now again that the bounded linear transformations K and K are
H-adjoints, that P= H K # O and T = F K is completely continuous, the results
of the last theorem can be applied to the completely continuous symmetrisable
transformation T 7', since Hf=o0 implies T f=o0 (Theorem 1), hence certainly
TTf=o0, and HTT is positive (Theorem 3). The characteristic values of T'7T
being therefore non-negative, we shall denote an arbitrary one of them by |2%|.
It is evident that 7'7 has at least one characteristic value £ o, since, by
Theorem 5, there exist elements % and ¢ >0 and a number 1> 0 such that
Tu=4iv, Tv=~Au, hence TTv=24Tu=24%v. On account of Lemma 9 it is pos-
sible now to range the characteristic values 7 o into a sequence [4[* (¢ =1,2,...)
such that every one of them occurs in this sequence as many times as denoted
by its multiplicity, while, moreover, |%,| =|4;| = --. By Lemma 10 it is possible
then to choose in the unitary space of all characteristic elements belonging to
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a certain characteristic value |1|® o with multiplicity » an H-orthonormal system
consisting of #» elements such that this system determines this unitary space.
Doing this for all characteristic values £ 0, we may range the elements of all
these H-orthonormal systems into a sequence v; (z = 1, 2, ...) such that for every

2

value of ¢ the element v; belongs to the characteristic value |4|*, hence
(I9) T T v, = “.,‘2 [

Evidently the whole sequence v; is also H-orthonormal, since for |in|=|i.]| the
relation (H vy, v,) =0 follows from our definition of the sequence v;, and for
|Am| # | 4] this relation follows from the H-orthogonality of characteristic elements
belonging to different characteristic values. We observe that as a result of these
remarks every characteristic element of T T with characteristic value |A|* # o0
is‘a linear combination of those elements 7; from the sequence ; for which
|4 =14l

Writing now 7v; = |A|u;, so that Tu = |A|w by (19), the sequence u; is
also H-orthonormal, as follows from
(Hugy ) = b |7 (H T v, To) =iV (HT T i, v)) =
o 1 for i =},
= H.,‘l" lAi}va I(Ht'z‘, ?;j) = {O for ;éj

& 8. A Maximum-property of the Characteristic Values of a Normalisable
Transformation.

To prepare the way for the proof of an Expansion Theorem for normalisable
transformations, which will be given in the next paragraph, we shall prove in
the present paragraph that the characteristic values of the normalisable trans-
formations T and K, considered in Theorems 10 and 12, possess a certain
maximum-property.

We suppose therefore that the bounded linear transformation K is nor-
malisable, that P=HK 5 0, and T = EK is completely continuous. Then it
follows from Theorem 10 that the sequences v; and |4, satisfying

TT’U,‘ = “,lg v,
which we introduced in the preceding paragraph, may be identified now with

the H-orthonormal sequence ¢; of characteristic elements of T and with the
absolute values of the characteristic values 1; of 7, satisfying

Toi=higs, Toi=1g:.
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Theorem 15. 1°. || = max N(Kf)/N(f) for all elements f satisfying the
conditions N(f)# o and (Hf, @)= - = (Hf, gu_1) =o0. For f= @n the maximum
is attained. ’

2°. N(Kf)=o0 if and only if (Hf, ¢;))=o0 for every value of i.

In the special case that Hjf= o implies K f=o0, the characteristic elements
@ of T may be replaced vn both parts of the theorem by the characteristic elements
Y of K, corresponding with the elements @ by Theorem 13.

Proof. 1°. Let N(f)# oand (Hf, @)= = (Hf, guouy)=o0. It N(K f)=o0,
the inequality N (K f)/N(f) < 4] is certainly satisfied; if, however, N (K f) # o,
we have Pf= HK f> o0, and we define the sequences f; and fi(k=o0,1,2, )
in the same way as in Theorem 5 by
Jo=1f, fe=/il N(fi),
forr=Tfox, forse =T forss

(k=o0,1,2,...).

We observe first that (Hfi, ;)= = (Hfi, pu—1) =0 for every value of &.
This is proved by induction; the relations hold for 2 =o0 by hypothesis, and
supposing them to be true for # — 1 (k odd), we find

(Hﬁ, Qpi) = (H T fi-1, @) - (Hfie1, Tq'p,') :11. (ka_l, gpi)/N(fk-/l) =0

for ¢=1,...,n—1. The proof for even % is similar. In the same way as in
Theorem 5 we find now. elements u, v 0 and a positive number 1 such that
Tu=2Aav, Tv=_»~u, where v = lim fi49 (0 =k, ks, ...). This implies

(20) (He, p) = = (Hv, gu_s) =o0.

Now, since 7T v=4%¢, the element v is a linear combination of those elements
¢; from the sequence g; for which [4;] = ; the relations (20) show that g, ..., gn_
are not among these elements; hence 1 <|1,|. Finally, the non-descending se-
quence of numbers N(f;) (t =1, 2,...) having the limit A, we conclude that

N(ENIN(f)= NEf) = N(Tf)=N(f) <= [h].
For f= @, the maximumvalue |A,| is attained on account of

N(K )/ N(pn) = N(K @u) = N(T @u) = N(dn p) = [An| N (a) = [4n].
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20, We suppose first that N (K /) =o. Then, by Lemma 2, HKf= HT f=o,

go that A o ‘
(Hf p)=Hf A To)=171(Hf, Te) =17 (HTf, ) =0

for every value of <. - '

Let now conversely (Hf, ¢;) =0 for every value of 2. If l\T(f);to, then,
by Theorem 4, H K f'= o or N(K f) = o; we shall assume therefore that N(f) # o.
Supposing first that the number of characteristic values J; is infinite, so that
lim 2; = o, the relations (Hf, ¢;) = o imply, by what we have proved in 1°,

N(EKf)<|u|N() G=1,2,..)

hence N (K f)=o. If the number N of characteristic values 4; is finite, the
existence of an element f such that N(Kf)# o and (Hf, ¢;)=ofor¢=1,...,N
implies, as the proof of 1° shows, the existence of a characteristic element v
of T7 with characteristic value 4 o, and with the property that (Huv, @)= o
for ¢=1, ..., N. This, however, is impossible since v must be a linear combina-
tion of some of the elements ¢;.

In the special case that Hjf=o implies K f=o0, the elements ¢ may be
replaced in both parts of the theorem by the corresponding elements 1, since then
(Hf, v) = (I f, @;), the system y; is H-orthonormal, and K, = K Ey, = K.

Remark. Since .
N} Kf)=(HKf, Kf)=(Hf, KKf)=(f, HKKf)=
—(f, HKKf)=(Hf, KKf)=(HRf, Kf)=N*(Kf)
we may replace N(Kf) by N(Kf) in the last theorem.

§ 9. Expansion Theorem for Normalisable Transformations.

Under the same assumptions about K and T as in the preceding paragraph,
we shall prove now the following

Theorem 16 (Expansion Theorem). If o;=(Hf, @) G=1,2,...) for an
arbitrary element €N, then

(21) lim N(Kf— D haig) =1lim (H(Kf— D hap), Kf— Dhag) =0
=1 =1 =1

n—> o0 n—+ o

and

(22) lim N(Kf— 2 A @) =1lim (H(Kf— 2 Liag), Bf—Qlag) =o.
" =1 i=1

n-—+co i=1 — o0
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Fuwrthermore
(HEL f)=Dule:l’, (HES, )= D i|e:l.
In the special case that H f= o wmplies K f=o0, the elements @; may be re-
placed by the corresponding elements 1y, and then «;= (Hf, ¢:) = (H f, ).

Proof. Writing 1,1 = f — Z a; i, we have (H7rpg1, @) = =(H"ut1, pn)=0,
=1

hence (H Frt1, Za,- qu) =0, from which follows immediately
=1

n

N (f)=(Hf £l = (HZ ai @i, Z az%‘) + (Fnt1s ras1) = N* (2 fxigpz) + NE("n+l),
i=1 =1 1

i=

s0 that N{rp.1) < N(f).

Supposing now that the number of characteristic values A; is infinite, and
that N(ru41) # 0, we find in virtue of Theorem 13, 1°, since (Hinti, ;) = =
= (Hrut1, @n) = 0, that
(23) N(Krp) = | N(rasa) = [Auts I N{f)-

If N(rp+1) =o0, then also H Ky4; =0 (Theorem 4) or N (K rny;) = 0, so that (23)

is true in this case as well. Hence

N(Kf=hap)=N(Ef~ Dale)=N(Ef—-DaKp)=
=1 i=1 i=1

= N(K"'n-H) = “'n+l| Av(/)v
and this shows, since lim |4.11] =0, that

lim N (K f— iliaiw,*) = o.
i=1

7n—+ o0

If the number N of characteristic values A; is finite, we find on account of

Theorem~135, 2° the relation N{(K ryi1}=-0 or-
N
N(Kf— D haip) =o.
i=1

Writing therefore 2, =o0 for # = N + 1, we see that (21) holds also in this case.
This disposes of (21). The formula (22) is proved. in a similar way, using
Theorem 15 with K replaced by K.

From

| (87~ 3 iy, o) | = N (K7~ Siveup) - Nlo) = 0
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as # — co we infer that
hmlHKf, Zliai(HW,g)lzo
n—o =1
or
(HEf, )= D he:(Hgs, g),

hence in particular, for g =f,

(HEKf, [)= D hi|ail.
The relation
(HEKSf, )= X]a:]?
is proved in a similar way.
Evidently, if Hf=o0 implies Kf==0, we have o, = (H f, ¢;) = (H f, Ev,) =
= (H f, ¥;), and the elements @; may be replaced by the corresponding elements
Y in (21) and (22).

Remark. By taking H = I, we obtain, as we remarked already in the In-
troduction, Rellich’'s Expansion Theorem for completely continuous normal trans-

formations.

§ 10. Continuation on the Closure R.

Supposing the Hilbert space N to be not complete, we may continue the
bounded linear transformations H, K, K, P, T, T and E, about which we make
the same assumptions as in the preceding two paragraphs, on the closure R of R
in such a way as to leave their bounds unchanged. It is easy to prove that the
relations H=HE, P=HK=HT T=EK, T=EK, TT=1TT, holding in
the space M, remain true in the space R. In the particular case that, in the
space R, the relation Hjf = o0 implies Kf=o0, we have found A = K E. This
relation, therefore, remains also true after continuation on 9i.

We shall prove now that the theorems in the preceding two paragraphs
remain valid for all elements f€ N, so that it is not necessary to restrict our-

selves to elements f€N.

Theorem 17. 1°. |L,| = max N(Kf)/N(f) for all elements f€R satisfying the
conditions N(f)# o0 and (Hf, ) == (Hf, pu-1) = 0. For f= @, the maximum
ts attained. '

20, N(Kf)=o0 for an element f€R if and only if (HFf, ¢;)=o0 for every

value of <.
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In the special case that, in the space N, the relation Hf = o implies K f=o,
the elements @ may be replaced in both parts of the theorem by the corresponding

elements .

Proof. 1° Let f€N, N(f)>o0 and (Hf, ¢,) =" = (Hf, gu_1) =0, and let
the sequence g¢;€Yl be such that lim g;=f, so that also lim Hg;= Hf. Then

n—1

the elements f; = g; — D\ (H gi, ¢1) g belong also to the space % and (Hf;, ¢,) =

k=1
=--=(Hf;, gu-1) =0. Hence, in virtue of Theorem 13,
(24) NEAINf) = .
But, since lim (Hg;, o) = (Hf, ) =0 for k=1,...,n— 1, we have lim f; =

=lim ¢; = f, so that lim Kf; = K f, lim N(K f;) = N(K f)and lim N (f) = N(f).
We conclude therefore from (24) that

NEf)N(f) = |l

We have already proved in Theorem 15 that the maximum value |Z.| is
attained for f= p,. | v

20, That N(Kf)=o implies (Hf, ;) ==o0 for every value of 7 is proved in
the same way as in Theorem r15. A :

Let now conversely (Hf, ¢) =0 for every value of . If N(f)=o, or if
the number of characteristic values A; is infinite, we may again repeat the proof
as given in Theorem 15. Let us assume therefore that the number N of charac-
teristic values A is finite, let f€ R, N(f) o0 and (Hf, ) == (H/, @) = O.

Then, supposing again the sequenée g: €N to be such that lim g; = f, we find
~

that the elements f; = g; — 2 (H g, @r) pr belong to the space R, and (Hf;, p,) =

k=1
== (Hfi, px) = 0. Hence, in virtue of Theorem 15, N(K f;) =o0. But, since
lim (Hg:, i) = (Hf, ¢) =0 for k=1,..., N, we have lim f; = lim g; = f, so that
N(Kf)=lm N(Kf)=o.

That the elements @ may be replaced by the corresponding elements ¥ in
the case that, in the space M, Hf= o implies Kf=o, is proved in the same
way as in Theorem 13,

Theorem 18. The statements i¢n Theorem 16 remain true for an arbitrary
element fE€R.

Proof. The proof of Theorem 16 remains unchanged.
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& 11. Expansion Theorem for H-adjoints.

In this paragraph we shall suppose again that the bounded linear trans-
formations K and K are H-adjoints, that P = HK 5 O, and that 7= EK is
completely continuous (but no longer that K is normalisable). We have already
introduced for this case, in § 7, the sequence |4;| of singular values of 7 and 7,
and the H-orthonormal sequences of elements #; and v;, satisfying

Tu; = |ds|vie T =i u,

and we further observe that, in the special case that H f = o implies Kf= K f=o,
Theorem 7 establishes a one-to-one correspondence between the H-orthonormal
sequences #;, v; and the H-orthonormal sequences y:, 2;, satisfying .

Kyi: “.i‘Zi, K.Zi: “.;{_’I/l

It is possible now to prove theorems analogous to those in the paragraphs
8, 9 and 10. Since the proofs are also analogous, we shall omit them and only
mention the theorems.

Theorem 19. 1°. |i,] = max N(Kf)/N(f) for all elements f€R satisfying
the eonditions N (f) # o and (H f, w,) =+ = (H f, un—1) =0. For f=un the maximum
is attained.

|4n| = max N (K f)/N(f) for all elements f€R satisfying the conditions N (f) # o
and (Hf,v)) == (Hf, va-i) =o0. For f=uv, the maximum is attained.

2. N(Kf)=o fo}' an element fE€R if and only if (Hf, w)=o0 for every
value of 7.

N(Kf)=o0 for an element fE€R if and only if (Hf, v:) = o for every value of 1.

In the special case that, in the space R, Hf = o implies Kf=Kf=o, the
elements w, v may be replaced in both parts of the theorem by the corresponding
elements y, z.

Theorem 20 (Expansion Theorem). If 8;=(H f, us) and y;=(H f, vi)(i=1,2,...)
Jor an arbitrary element fE€R, then

n
lim N(Kf~ 3 |L]fiv)=o0
and =
n
lim N(Kf— D\ || yiw) =o.
et i=1 :

16 — 642136 Acta mathematica. 83
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Furthermore
(HES, f)= 2|kl 8i7s, (HES, f)= D4l fire.

In the special case that, in the space R, Hf=o implies Kf=o, the elements
ui, v; may be replaced by the corresponding elements y;, z;, and then B; = (Hf, y:);
i = (Hf, z).

§ 12. The Relation between Normalisable Transformations in % and Normal
Transformations in the Factorspace 3.

We shall .consider here certain linear transformations in the factorspace
B =%R/[2], introduced in § 4. If 4 is a linear transformation in R, we define
the linear transformation [4] in 3-by [4][f] =[4f]. This definition, however,
is only then without contradiction if [f] = [g] implies [4 f] =[4 g], or, in other
words, if Hf=o0 implies HA f=o0. We shall consider, therefore, in this para-
graph only linear transformations A4 having this property. It is not difficult to
see that, conversely, with every linear transformation [A], defined for all [f]€ 3,
corresponds a class of linear transformations A in the space R, satisfying the
condition that Hf=o0 implies H A f =0, and such that [4 f]=[A][f] for each
of the transformations A. The equality [4,] = [4;] in 8 holds therefore if and
only if HA, = H 4, in R.

If the bounded linear transformations K and K in R are H-adjoints, Hf=o0
implies HKf=HKf=o0 by Theorem 4; this shows, by what we have just
seen, that the linear transformations [K] and [K] exist in 3. The same is true
of [K K] and [KK]. The proof for [K K] is as follows: Hf= o implies HK f=o,
and this in its turn implies H K K f=0; the proof for [K K] is similar. Fur-
thermore N . N N

[K][K][f]=[K][Kf] =[KKf]=[KK][f]
for arbitrary [f]€3, so that [K][K]=[KK]. In the same way we obtain
[K] [K]=[KK].

We shall suppose now, as in the paragraphs 8, 9 and 10, that the bounded
linear transformation K is normalisable, that P=HK +# 0, and T=EK is
completely continuous. Then the linear transformation [K]=[T] in the space 3
exists, and it is bounded, since on account of Theorem 15 we have

KT = Lub. [[KILAN/ A1 =Lub. [[ES/ILA1] = Lub. N(Ef)/ N(f) =]4,l.
V€S L1ES €N

In the same way we find that [K] = [7'] exists, and that |[K]]=]4,].
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Furthermore we see that [K] =[K]* on account of

(K1L/L [0 = (KL (o)) = (H K £, ) = (Hf, Eg) = ([/]. [E gD = ([/f], [E][4])

for arbitrary [f], [g]€3. Finally, observing that [K K]=[KK] in virtue of
HKEK=HKEK, we obtain

[K][K] = [K][K] = [K K] = [K K] = [K][K] = [K]" [K].

The result is therefore that [K] is a bounded normal transformation in 3.

If . £ 0 is a characteristic value of 7'= K K, that is, if Ap = E K ¢ where
Ao # o, we have A{p] =[E K][p] =[K][gl, where [¢] # [0] since Hp # 0 on
account of EK ¢ # 0. We see therefore that with any characteristic element
@ of T, belonging to the characteristic value 1 # o, corresponds the characteristic
element [p] of [K], also belonging to the characteristic value Ai. We shall prove
that this correspondence is a one-to-one correspondence, and this will enable us
to enunciate theorems for [K], analogous to the theorems for 7 in the para-
graphs 8, 9 and 10.

Theorem 21. There is a one-to-one correspondence between all characteristic
elements @ of T = E K, belonging to characteristic values # o, and all characteristic
elements [@] of [K], belonging to characteristic values 7% o. Corresponding elements
have the same characteristic value.

Proof. We have seen already that with the characteristic element ¢ of 7,
belonging to the characteristic value 4 # o, corresponds the ckharacteristic element
[p] of [K], also belonging to the characteristic value 2. We shall prove now
that no two different characteristic elements ¢, and ¢, of I’ correspond with
the same characteristic element of [K]. For this purpose we shall suppose that

A, =To, np,=T@,, A, #0, ng, %0, ¢, # ¢, [p,] =[g.],

and show that in this case we obtain a contradiction. Indeed, from 1¢, = T ¢,
and p g, = T ¢, follows [p,] =[K][p,] and u[p,] =[K][p,], hence i[p,] =ulyp,]
or 2=y on account of [¢,] = [¢.] # [0]. Since ¢, # @,, the relation 4 = u implies
T(p, — @,) = A{p,— @,) # 0. On the other hand, we derive from [p,] = [¢,] the
relation H(p, — @,) =0, so that alse TI'(p, —@,) =0, in contradiction with
T{p,— gs) # 0.

It remains only to show that, if A[p]=[K][p] where A[¢] # [o], there
exists an element 1 satisfying the relations Ay = 7y and [y] = [p]. For this
purpose we observe that i[p]=[K][p]=[K][E¢] implies Apg =K E¢p + h,
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where the element A satisfies H % = 0, and therefore also Fh =o0. We obtain
therefore A E @ =EK E@p-—=TZFgp, which shows that v = E ¢ is the required
element.

Remark. In the same way we may prove that there exists a-similar one-
to-one correspondence between the characteristic elements of 7' = E K, belonging
to characteristic values # o, and those of [K]=[K]".

This theorem shows that, since 7 and 7 have at least one characteristic
value # 0 by Theorem 10, the same is true of [K] and [K]. If now [¢] is the
orthonormal sequence of characteristic elements of [K], corresponding with the

H-orthonormal sequence ¢; of characteristic elements of 7, so that
(K] [p] = Llp], [Kllp]=Zlpl,

we immediately get the analogues for [K] and [K] of the Theorems 15—18
for T'and T. We observe that the statements in those theorems were the result
of the complete continuity of 7'= F K, whereas their analogues for [K] and [K]
are the result of the established correspondence between the sequences g; and [¢:].

Theorem 22. 1° |, =max[/[K][/] H/“ [f]H=maX AT Sor all
(/1 # [0] satisfying the conditions ([f], [@.]) =+ = ([f], [gu—1]) = 0. For [f]=[gpn]

the maximum s attained.

[K1[/1=1K11f1=[0] if and only if ([f], [p]) =0 for every value of <,

or, stated in a different way, the orthogonal complement of the closed linear manzfold
determined by [@,), [@.], . .. is identical with the set of all elements [f] satisfying

[K]1[/]1=[K]1[f]1=[o]
Proof. Follows immediately from Theorem 15 since, for any element f€R
belonging to the class of elements [f]€3, we have the relations

[ETLAINLA = N(EAI N, IR = NES)IN (/)

and ([f], [p]) = (Hf, @), while [f] 5 [0] is equivalent with N(f)> o, and
[K]1[/]=[0] with N(Kf)=o. '

Theorem 23 (Expansion Theorem). If ;= ([f],[g]) G=1,2,...) for an
arbitrary element [f]€ 3. then
[K][f] =2 kel
[R11f] =2 halpl,
(&1L L) =2 e, ARILSY, LD =2 Al

Proof. Follows immediately from Theorem 16.
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In the same way as we have obtained the complete Hilbert space R from
the space R by adjunction of 'ideal’ elements, we may obtain the complete
Hilbert space 3 from the space 3. We shall use the notation [f] also to denote
elements of 3, not belonging to 3, although for elements of this kind there are
no longer elements f€R corresponding with it. The bounded linear transforma-
tions [K] and [K] may be continued now on the closure 3 in such a way as
to leave their bounds |[K]| =|[K]]|= |2,] unchanged.

Theorem 24. The statements in the Theorems 22 and 23 remain true for all
elements [f1€ 8, so that it is not necessary to restrict owrselves to elements [f]1€ 3.

Proof. The proof is similar to those of the Theorems 17 and 18.
Theorem 25. The bounded normal transformations [K] and [K] are completely

continuous 1n the space g .

Proof. We might give a proof depending on a general theorem about the
spectral representation of bounded normal transformations®, but we prefer to
give a more ‘elementary’ proof. For this purpose we recall that a sequence [f].
of elements belonging to the complete Hilbert space 8 is called weakly con-
vergent when the sequence of complex numbers ([f]., [g]) converges for every
element [g]€3. Tt is wellknown that every bounded infinite set of elements
[f1€8 contains a weakly convergent sequence [f].. It follows therefore from
the definition of a completely continuous transformation in § 5 that to prove
the complete continuity of [K] in 3 it is sufficient to show that, if [f]. is a
bounded, weakly converging sequence, the sequence [K][f]. converges.

Let now [y, ..., ¢:] be the unitary space determined by [, ..., [g:].
Then, for any [f] belonging to the orthogonal complement of &[p,, ..., pi], we
[KTIL/1) =< |2+l -[lLf]l. In the case that
the total number N of characteristic values A; is finite, the same theorem shows
that, [K] [f] = [o] for any [f] in the orthogonal complement of L[g;, ..., px].

Given the bounded, weakly converging sequence [f],, we shall prove that
[K][f]n converges. Let [[f].| = M. Then, since we may write [ /], = [g]. + [h].,
where [¢l.€&[@,, ..., @] and [I], belongs to the orthogonal complement of
Llpy, - @i, so that [[fI.) =][g)ul’ + [ [k].]*, we see that also |[r].] =< M. By
what we have just proved, the element [K][h], satisfies therefore the inequ‘ality

K] Th]a ] < s |- [ [Ra] < VA | I

have by Theorem 22 the inequality

' A bounded normal transformation in a Hilbert space of infinite dimension is completely
continuons if and only if its spectrum converges to o.
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(in the case that the total number N of characteristic values 4; is finite, we
have even, for % = N, the relation |[K][k].|=o0); hence, given &> 0, we may
take the index % so large that |[[K][h].]| < ¢/3 for every value of .

As regards the elements [g],, it is not difficult to see that they converge.
k

Indeed, since [¢]. 22 ([f1s, [p]) [@] and [f]. converges weakly, we have
lim [/ ) =e =1, B

k
hence lim [g], 22 a;[p:]. The elements [K][g], converge then as well, so that

K] [g]» — [K] [g)n] < ¢/3 for m, n > n,.

This shows that, for m, z > n,,

KT ] — (K] /Il =
= |[E]lg)s — [K][g)n| + [[K] [R)a]l + N IET (W]l < &/3 + /3 + 6/3=¢;

the sequence [K][f]. converges therefore. This completes the proof for [K];
that for [K] is similar.

§ 13. Normalisable Transformations of a Special Kind.

In this paragraph we shall suppose that the Hilbert space R is complete,
that H is a bounded, positive, self-adjoint transformation and 4 is a bounded
linear transformation in . Then, as we already remarked in § 2, the adjoint
A* exists in N, and is also bounded. It follows now from

(HAHf g)=(AHf, Hg)=(Hf, A* Hy)

that the transformations K = A H and K = A* H are H-adjoints. We observe
that if f€R satisfies Hf = o, then also Kf= Kf=o0. If, moreover, HKK =
= H KK, that is, if

(25) HAHA*"H=HA*HAH,

the transformation K = A H is normalisable.

Making now the assumptions that (25) is satisfied and that one at least of
the transformations A4 and H is completely continuous, the transformation
K= A H is therefore normalisable and completely continuous, so that the theorems
in §§ 8—g hold. It is possible, however, to prove somewhat more in this spe-

cial case:
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Theorem 26 (Expansion Theorem). If v; is the H-orthonormal sequence of
characteristic elements of K= A H, belonging to the sequence of characteristic values
A#o, and if ao;=(Hf, ) (t=1, 2,...) for an arbitrary element f€R, then

Kf=Qhayi+h Ef=NhLay +k

where Hh=Hk=o0. For n = 2 we have
Krf= ey, Krf= D Iray;.

Proof. It is wellknown that, since H is bounded, self-adjoint and positive,
there exists a uniquely determined, bounded, self-adjoint and positive transforma-
tion H' having the property that (H")*= H. On account of (Hui, y;)=
= (H'*vy;, H'" ;) we see therefore that the sequence H'2y; is orthonormal, which

k
implies that, writing «;= (g, H'"* y;) for an arbitrary g € R, the sums s =, o H'*y;
=1

converge to an element p. Taking g = H'"f, we find then D o; H'* i = p, where
ai = (H" f, H? ;) = (H f, ¥;). From this we derive

AHI/"]’)=AH%zaiHl/zwiZZaiAHwi:Zliaiwi.

The convergence of the series Z/L- o;Y; is thus established, and this enables us

now to make n — oo in the relation

lim N(Kf— anlia,-wf) =0,
=1

n— 00

proved in Theorem 16. Writing Kf— D A;a;y; = h, we obtain then N(h)= o;
hence, N (k)= o0 being equivalent with H% = o,

Kf=2,'liaﬂlh' + h,
where Hh =o.

From this we infer
K f=hies Ky + Kh= Ko + Kh,
but, since Hh =0, we have Kh = 4 Hh == 0; hence
K2f=2 /lﬁmw,-.
Knf =\ M s

for » > 2 follows easily by induction.
The relations for Kf and K" f (n = 2) are proved in a similar way.

The relation
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Remarks. 1° It is not difficult to prove that the elements % and %k in
this theorem are not necessarily identical with the nullelement.

2°. It may be proved easily that the relation HAHA*H=HA*HAH
is equivalent with H”A HA*H'"= H'»A* HA H'”, and this latter equality is
evidently equivalent with saying that H'* 4 H' is normal. It is not difficult to
show now that, under the mentioned conditions, the normal transformation
H'"* A H'" has the same sequence i; of characteristic values # o as the normalis-
able transformation K = A H. Indeed, let Ky = A Hwy = Ay > 0. Then, writing
H'*wyw =y, we have H"* A H"y=H" A Hy =1 H"yp = Ay, where 1y # 0 since
AH"Ly =214 Hy=2yso. Conversely, if H'* A H'"y = Ly +# 0, we find, writing
Ww=A"1AH"y, so that H?y =A"'H'" A H'" y = y, the relation

Ky=AH"H"p=AH"y=72y,

where Ay 7% 0 since H'’Ayw = Ay < o. This shows that K and H'" A H' have
the same characteristic values £ o, and that with the H-orthonormal sequence
Y; of characteristic elements of K corresponds the orthonormal sequence H':;
of characteristic elements of H* A H':,

3°. In the special case that HA H= H A* H, in particular when A is self-
adjoint, we have (HK) =(HAH=HA*H=HAH=HK; in this case,
therefore, K is symmetrisable, so that all characteristic values A; are real.

4°. Supposing no longer that K = A H is normalisable, we may prove, in

a similar way as we did the last theorem, the following Expansion Theorem for
the H-adjoints K =A H and K = A* H:

Theorem 27. If y; and z; are the H-orthonormal systems and | ;| ¢s the sequence
of mon-negative numbers, mentioned in Theorem 20, and B; = (H f, y:), y: = (H [, 2)
(i=1,2,...) for an arbitrary element f€R, then

K'fzz [A:| Bz + I,
Kf =2 klyiy: + ¥,
where HW = Hk =o.
§ 14. Applications to Linear Integral Equations.

In the present paragraph we shall give, finally, some indications of how the
contents of the preceding paragraphs may be applied to the theory of linear
integral equations. Let a,, b; (/=1,...,m) be real, and such that a; <¥b;

(¢=1,...,m). Then 4 =/[a,, b,;...; an, bn] is an interval in the m-dimensional



Normalisable Transformations in Hilbert Space. 233

Euclidean space. The point (x, ..., zw) in this space will be denoted by z.
Furthermore we shall denote the function space of all functions f{z), with
complex values, such that |f(x)]* is summable (in the sense of Lebesgue) over 7,
by L{™(4) or L,(4) or shortly by L,. As well.known, L, is a complete Hilbert
space if addition and multiplication with complex numbers are defined in the
usual way, and the scalar product of f and g as the integral of f(z) g (x) over .
Convergence in this Hilbert space of the series Z filx) to f(x) means that

=1

Jlim [/ ﬂjfi(x) | da=o;

it is equivalent therefore with saying that D) fi(x) converges in mean to f(),
=1

and we shall write f(x)mz,ﬁ(x) in this case. The interval {a,, b;; . ..; Om, bu;
i=1

ay, by; ... am, by) in 2 m-dimensional Euclidean space will be denoted by #X 4,
and the function space of all functions f(x, y) (x, y € ), with complex values,
for which |f(x, )|® is summable over 4 X A4, by L2™, _

Furthermore, when R is a complete Hilbert space (elements f; ¢, .. .; @ complex),
it is well-known that the set N* of all elements {f} ={f", ..., "}, when the
fundamental operations and the scalar product in it are defined by

1+ lgt={r +g ...+ g,
el{ft={af ..., af"},

(171 19) =2 7, )

(where the letters 7 and j will denote indices, and not exponents), is also a
complete Hilbert space. The following lemma’s are now easy to prove:

Lemma 11. If, for x€d, the functions Asj(x) (i,j=1, ..., n) are complex-
valued measurable functions, the transformation A, defined by {9} = A {f}, where

gl(x):j Al](x)f](x) (i:I""vn)v

s a bounded linear transformation in [L{™ (A" if and only if all functions A:;(x)
are bounded in 4. In this case the adjoint {h} = A* {f} is given by
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=$Aji(x)fj(x) G=1,...,n).

We have A £ O if and only if one at least of the functions Aij(x) # 0 on a set of
posttive measure; A is self-adjoint if and only if the matrix || Ai;(x)| is Hermitian,
that vs, if and only +f Aij(x) = Aji(x) for almost every x € 4; and, supposing A to
be bounded and self-adjoint, it is positive if and only <f

2 45@) @ P =0

Jor arbitrary {f} €[ L) and for almost every x €.

Lemma 12. If, for (x,y)€4 X A, the functions Asj(x, y) (4,5 =1,...,n) are
complex-valued and measurable, and if the integrals

(26) [14sj(e, 9)|? da dy ((,j=1,..,m)

4xd

are finite (in other words, if Aij(x, y)€ L™ (A)), the linear ‘“‘integral transforma-
tion” A in [L{(A)]), defined by {g} = A {f}, where

H

;ﬂ [ Aisle, )i ) dy G=r1,..., n)

s completely continuous. The adjoint {h} = A* {f} is given by

éf x) fily) d (t=1,...,n).

We have A 5 O if and only if one at least of the integrals (26} does not vanish,
that s, if and only if one at least of the functions A;;j(x,y) 5% 0 on a set of positive
measure tn A4 X 4. A is self-adjoint if and only if the “matriz-kernel” | Aij(z, y)|
is Hermitian, that is, if and only if Ayglz,y)= Ajily, x) almost everywhere in
A X 4. Supposing A to be self-adjoint, it is positive if and only if

H

2 [ Ay, ) fi@) fily)dmdy = 0

,j=1 dxXd4
SJor arbitrary {f} €[L,]"

The theory in § 13 may be applied now to several types of integral trans-
formations:
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1. The normal integral transformation K in [L,]* with matrix-kernel || Ki;(x, v)|,
where all K;j(x,y)€ L2?™. The adjoint transformation K* being determined by
the matrix-kernel | Kj(x, y)| = Kj:(y, 2)|, we have therefore, since K K* =K* K,

S

Ms

[ Eulw. ) Kuly

P l

fK” x) Kijlz,y)dz
A4

1

il

=

._.

for almost every point (x,y)€4 X 4. Since (by Lemma 12) K is completely
continuous, Theorem 12 (with H =I) shows now that if one at least of the
functions Kij(x,y) > o on a set of positive measure in o4 X A, the system of
homogeneous linear integral equations

ZfKij(oc,y)wf(y)dy—).wi(x)=o (t=1,...,mn)
j=1l4d
has a non-trivial solution with 1 # 0, while from Theorem 26 it follows that, if
Yi(x) G=1,...,m; k=1,2,...) is the orthonormal sequence of characteristic
“functionsets” of this system of equations, belonging to the sequence of charac-
teristic values A; ¥ o, and if

ar = ({f}

llMs

—2 /e
for an arbitrary {/} = {/"(z), ..., /"(x)} € [L,]", then

(27) if i, y) f(y dyc\)Zlkakw' x) (t=1,..., m),

(28) Zf .’Z‘Jf" dyC\JZlkakwk x) (i=I,...,n).

We observe that the expressions on the left in (27) and (28) vanish if (and
only if) {f} is orthogonal to all {iu}.

Besides the expansions (27) and (28), it is, however, possible to prove an
expaunsion theorem for the element K;;(x, ) of the matrix-kernel as well.

Theorem 28. We have

(29) K (90,!/) N; A ‘Pi(x) W (l) J=1,.. n),
(30) 2 1K)l dody =2 |4
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Proof. From Kij(x,y)€ L™ follows that the element {£} = {£'(x), ..., &*(x)},
where #'(z) = K;j(z,y) and j is fixed, belongs to the space [L{™]* for almost
every y€4. We shall show now that the relations ({4}, {wk})zlkm) and
({£}, {g}) = o for every {g}€[L,]* orthogonal to all {1}, hold for almost every
Yy €, so that it will be possible to write

(kY =2 (1), {wad) {wed = 2 e v (o) ()
k
in the terminology of Hilbert space. Indeed,

ifKuxf tpk :Zf} )dw~lkwk()

for almost every y €, and, if ({g}, {yn}) =0 for all values of %, so that by (28)

2 foj (z,9) ¢ (y) dy = 0 almost everywhere, we have

Jj=14

Zlf 93:(/)9 d'%h—z ijz(y, g \a d.’E-——-O

i=14

for almost every y€o
The relation {%} :Z({ b {wd) {yi) implies

k) — 3 (U} tw) o = 3 1, (o,

k=1 k=p+1
hence
Zfllwwj — 2 ) v [ de= 3 [Pl
=14 k=1 k=p+1
for almost every y€.4. Summing from j=1 to j =» and integrating over y,

we see that

n

2 |Kse) Zlkm ) dedy =3 |l

i,5=1 4X4 k=p+1

For p =0 we have (30), and, making p ~ oo, we find (z9).
Similar results hold for the system of equations with iterated matrix-kernel
| K® (2, )|l, where
K (2, y) = Kij(x, y),

D=3 [Kale.d Kp-deg)de  (p> 1)

=1
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It is not difficult to prove that K@ (x,y)€ L{*™ (), that the transformation K7
in [L,]", corresponding with | K/® (x,y)|, is also normal, that A2 (k=1, 2,...) is
the sequence of all characteristic values 20 of KP? and that {y,} is a cor-
responding sequence of characteristic elements.

Finally, if | K;;(z, y)|| satisfies the condition that all Kj;(x,y) are continuous
ih mean, that is,

flK{j(.T, y)|?dy is finite for 7, j =1, ..., n, and for every x €,
4

and

lim || K2, 9)— Kyla, y)Pdy =0 (i,j=1,...,n),

Tp— 0y 4
it follows in a wellknown way that the convergence in mean in (27) and (28)
may be replaced by uniform convergence, and that, for p =2, the series

Z/lp W («) i(y) converges uniformly in 4 X 4 to K® (z, y).

II. The integral transformation K in [L,]* with matrix-kernel | K;;(x,y){=
= 4:j (@, y}|- | hi; ()| (the dot means that the matrix-product is to be taken), the
following conditions being satisfied:

(a) AWl h;i(y) are bounded and measurable in o/, and one at least of them

is 20 on a set of positive measure,

(b) hej(y) = hyi (y) and Z hij(y) & a; = o for any system of complex numbers
7,j=1

@, ..., an and every y€.; the matrix |h;(y)| is therefore Hermitian and of
positive type,

(c) ALl 4i{w,y) € L™ (),

(1) When the bounded linear transformation {g} = H{f} in [L,]* is de-
termined by

P =D Ple) =1, ... )

and A is the integral transformation with matrix-kernel ||4;;{x,y)|, so that

therefore K = 4 H, then
HAHA*H=HA*HAH.

Since, by Lemwma 11, the transformation H is self-adjoint, pdsitive and # O,
and the transformation 4 is, by Lemma 12, completely continuous, we see that,
by condition (d), the transformation K= A H is completely continuous and
normalisable (relative to H).
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Integral transformations of this kind were considered by J. Ernest Wilkins?,
who, however, supposed, instead of condition (a), all %;(y) to be continuous
on A, and, instead of condition (c), all A;;(x,y) to be bounded in 4 X 4 with
their discontinuities “regularly distributed”’, while finally, instead of condition (d),
he supposed that HA H= H A" H, in other words, that K = 4 H is symmetris-
able. He proved some extremizing properties for the characteristic values of the
system of linear integral equations, associated with the transformation K, and

obtained an expansion theorem for functions of the form 2 f]ﬂj (z,9) 1 {y)dy.

j=14
The present author? relaxed conditions (a) and (c) to the form quoted above,
but retained condition (d) in the form H A H = H A* H. He succeeded in finding
an expansion theorem for the elements of the matrix-kernel | K;;(x, y)l| as well.
Here we shall relax condition (d) to HA HA* H= H A* H A H, which is equi-
valent, therefore, to the generalization from a symmetrisable X to a normalis-
able K.

Before stating results we recall the well-known fact that every bounded,
positive, self-adjoint transformation H in a Hilbert space possesses a uniquely
determined ‘‘positive square root” H':, The question may be raised now what
can be said about this root H'" when H is defined as in condition (d). The
answer is given in the following lemma, which may be proved along well-known

lines:

Lemma 13. 1°. There exists a uniquely determined matriz |[hif" (x)||, which is
Hermatian and of positive type for all x€A, such that all functions hg@) (x) are
bounded and measurable in A, and

[ @) - IR () | = [P ()

2°. If all functions hij(x) are continuous in A, the same holds for all fumc-
tions h{lY (x).

3°. The wuniquely determined, bounded, positive, self-adjoint transformation
lg} = H'#{f} in [L,]" is determined by

n

g (x) = Z R () f () (t=1,...n)

j=1

! Cf. p. 198, footnote I.
* Cf. p. 198, footnote 4.
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Considering now the system of homogeneous linear integral equations

n
(31) EAfKn’(x,y)W'(y)dz/—lwi(w)=o G=1,...n)

=
Theorem 12 shows that if one at least of the functions Pi;(z,y) 7 0 on a set
of positive measure in 4 X o, where || Py (z, y)| = | hsj ()] - | Kij (@, y)]|, this system
has a non-trivial solution with A7 0. Let us demote by A (k=1,2,...) the
sequence of all characteristic values of (31) and by ¥i(z) ((=1,...,7n) a cor-
responding H-orthonormal sequence of characteristic functionsets. These func-
tionsets satisfy therefore the relations

Zn [ hijlo) i () i (@) daw = 1

i,j=14

Zﬂ [ 1 (@) i () i (2) dz =0 for k#1,

i,j=14

or, writing i hij () Wi (@) = #t (x) (so that H {yi} = {x}),

j=1
3 fueama={ "
) ptlx) de =
Vil x o for k# L

i=14

Then, by Theorem 26, if
ar = (H {f}, {yel) = ({f}, H{yd) = (s}, {xk})=i [ £ (@) 2 a) d=

for an arbitrary {f} = {f'(z), ..., /" (@)} €[L,]", we have

n

(32) Afoj(w, ) (y) dyNZk A e i (x) + p* (x) G=1,...,n),

.
-

where {p} = {p*(2), ..., p"(z)} satisfies H{p} = {0}, that is
Sh@re=o  (=1....u

Besides the expansion (32), we shall prove now an expansion theorem for
the elements Kij(x,y) of the matrix-kernel as well.

Theorem 29. We have
Kij (xs ?/) —Pi (JU, ?/) NZ A w;,(x) xi(y) (7".7 =TI, .. ")’
k
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where pij(x, y) € LE™ (A) (2,7 =1, ..., n) satisfies

(33) Zn x) poj{z, y) = o.

Proof. We observe first that by Theorem 26, Remark 2°, N= H" A H'"
has the same sequence A; of characteristic values # 0 as XK'= 4 H, and that
{#} = H'"{y,} is a corresponding orthonormal sequence of characteristic ele-

ments. Hence, by Theorem 28,

Nigl, yNZ A W) F(y) (¢, qg=1,... n),

with ¥} (z) = 2 ) (@) ] (x), so that

DV R (@) Ko (e, y) = D) B9 () Ao (w, y) s (y) =

r=1 r, s=1

n n

=N (\,Z M Wi(x (2 y) h ( y) kP (y))
or ! -
(34) Z e () K, y) 2 P (

Let us consider now the matrix-kernel | Dy;(x,y)||, belonging to the trans-
formation D= A H'>. Then, for every ¢ ((=1,...,n) and for almost every
x€d, \di} = {di y), ..., d*(y)}, where di{y) = Di;(x,y), belongs to [L,]*. Hence,
by Bessel's inequality (the system of functionsets ¥i(x) is orthonormal),

% |({d}, () I° < | {di} [P

or, since
= [dly) PL) dy =2 [ Dylw, o) #ily) dy =
=14 j=14
=V [ 2 Aigla, y) B0 (y) B (y) Zf r(z, y) Y (y) dy = b Y (),
Jj=14 q,r=1 =1 A4
(35) 2 |y (=) ZAfIDij(x}?/)de
x j==

for almost every x € .
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After this we observe that in the Hilbert space [L2™ (4)]*" the elements
= {file,y)=hy @) Py} Gi=1,.. .,n)

are orthogonal on account of the orthogonality of the system () in [Lm (4]
Furthermore, by (35),

Z“ Sit leklg 2 [ i@ P #{ ) dedy) =

7,j=1 4x4

=DV [ 4]?( Z fl z)Pdz) < D fID,-j(x,y)Igd.ccdy<oo,
3

1':1 A i,j=1 dx4

which shows, since

H; {ﬁ}u

by the orthogonality, that 2 {f:} converges in [LZ™ (#)]”. This implies that,

i N°

for 7,5 =1, ..., n, the series Z A Wi (x) #i(y) converges in mean. Denoting the
k
sumfunction by f;(x, y), we have therefore

fuz./’“zlkwk 17()

so that, writing

D fialw, o) W2 (y) = Ko (w, y) — pos e, ),
q=1
we have also
(36) Kile,y)— pile, )y D (2 7dw)  Gi=1,... 7).
k

n

The only thmg that remains to be proved is Zh,q ) Poj(x, ) = 0. From (36)
g=1
we deduce "

Z KB () Ky (o, ) Z BB () prj (2, y NZ A W () 1] (y),

hence, comparing this with (34),

Z h pl] x,¥4) =0 or Z hzr Pra (3" 1/)

This completes the proof. _
Similar results hold for the system of equations with iterated matrix-kernel
I EY) (, y).

17 — 642136 Acta mathematica. 83
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Theorem 30. For p = 2 we have

(37) 3 [ED (z, ) fly dyNZl”mw’ (=1,...,m)

j=14

where ai has the same meaning as in (32);

(38) K9 (a, y)wg BY@aily)  Gi=1..., )

Proof. Formula (37) follows from the last part of Theorem 26. To prove (38),
we observe that, by Schwarz’s inequality,

Ky;(e, y) — Pai (2, ¥) NZ, Ax U7 (2) m)
T

implies

2 [ K, 2) Koo, y) de — 3 [ Kigo, ) posle, y) de o

g=14 qg=1 4

NZ}%%/(?/ ZfKthZ% 2)dz),

g=1

so that, since by (33)

Z fo,,(x, 2) pojle, y) de = [Alr (@, 2) hrq () pos (2, y) d2z = o,

q=1 4 g, r=1 4

we have

K (o, 9) 3 K v ) )

The proof for p > 2 follows by induction.

Finally, if all 4;;(x, ) are continuous in mean in 7 X #, and all h;;{x) are
continuous in o (so that by Lemma 13 all A/ (x) are continuous in 4 as well),
it is mot difficult to-prove that in (32) the convergence in mean may be replaced

by uniform convergence, while the functions p’(x) (=1, ..., n) are now con-

tinuous as well. Moreover, for p = 2, the series 2 A2 i (x) 4l (y) converges umi-
k

formly in 4 X 4 to K (,y).

III. The integral transformation K in [L,]" with matrix-kernel | K;;(z, y)||=
= A () ij(z,9)|, the following conditions being satisfied:
(a) AUl Hi(x,y)€ L2™(4), and one at least of them is £ 0 on a set of

positive measure in 4 X A,
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(b) Hij(x,y) = Hj:(y, x) almost everywhere in o X 7, and

n

2 [ Hijle,9) fil) fly)dxdy = o

7,j=1 Ax 4

for every {f}€[L,]"; the bounded linear transformation H in [L,]*, determined
by the matrix-kernel | H;;(x, y)|, is therefore self-adjoint and positive,

() All A;;(x) are bounded and measurable in 4,

(d) When the bounded linear transformation {g} = A {f} in [L,]" is de-
termined by

gt (x) '—-é Ay () f ) (f=1,...,n),

and H is the transformation defined in condition (¢), so that therefore K = 4 H, then
HAHA*H=HA*"HAH.

Since, by Lemma 12, the transformation H is completely countinuous, self-
adjoint, positive and £ O, and the transformation 4 is, by Lemma 11, bounded,
we see that, by condition (d), the transformation K = A H is completely continuous
and normalisable (relative to H).

Counsidering now the system of homogeneous linear integral equations

(39) i fKij(x, YW (y)dy — Ayi{x)=o0 (t=1,..., n)

j=14

Theorem 12 shows that this system has a non-trivial solution with 4 # o, if only
one at least of the functions Pi(x,y) >0 on a set of positive measure in
A X 4, where

Pff(xy y):Z fH;'fI(x) Z) qu(Z, ?/) dZ (277-7‘ =1I,..4 ”)'

qg=1 4

Let us denote by 4 (k=1, 2, ...) the sequence of all characteristic values of (39)
and by Yi(z) ((=1,..., n) a corresponding H-orthonormal sequence of charac-

teristic functionsets. These functionsets satisfy therefore the relations

Hij(e, y) ¢ (@) pily) dedy = 1,

Hij(z, y) vilx) Yi(y)dae dy =0 for k#1,
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or, writing 2 [ Hyj(w, y) Wily) dy = zi(x) (so that H {w} = {x}),

2 [zl d
Then, by Thebreﬁr 26, if
= (H L7}, (o) = (U B () = (), b =3 [ fi(e) )

for an arbitrary {f}€[L,]*, we have

{I for k=1,
- o for & #1.

(40) de i, y) fily yNleupk x)+ pilx) (E=r1,...,n),
where {p} = {p* (), ..., p" ()} satisfies H{p} = {o}, that is
Z [ Hijla,9) p(y) dy =0 (=1,... n).

Moreover, if | K/ (z,y)|| is again the p-th iterated kernel, we have for p = 2
(41) p fK"’ 20) Pl dy> DR aviE@)  @=1 0
=1

Besides the expansions (40) and (41) we shall prove now an expansion theorem
for the elements of the iterated matrix-kernel || K (x,9)| (»p=2) as well. Since,
in the general case that we consider here, the transformation H'” is not de-
termined by a matrix-kernel with elements belonging to L™ (4), it seems not
to be possible to obtain an expansion for the elements K,;(z, y) themselves.
The same fact causes some peculiar difficulties in the proof of the now following
theorem.

Theorem 31. We have
K@ (x,y) —pisle, ) 2 i (@) afly)  Gj=1,..., n)
- .

where pij (x, y) € LE™ () satisfies

(42) Z [ Higlw,2) pos(2,9) dz = o

g=14

Jor almost every point (x,y)€ 4 X 4.
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Furthermore, for p = 3,

K (x, y)NZk 12y () 2 (y) (G, j=1,...n).

Proof. The proof is divided into several parts.

i°. If, in the separable Hilbert space R, the transformation K is bounded
and linear, and ¢, (p=1,2,...) is a complete orthonormal system, K is said
to be of finite norm, if N*(K)= D\ |kp,|* < oo, where &y, = (K @,, ¢;). Then

; P, q=1
we have!:

If 4 is bounded and linear, and K is of finite norm, then 4 K and K4
are of finite norm, and

N(AK) =|A]- N(K), N(KA)<|4]-N(K).
Indeed,

e

Z AKQ')Q,Q% —”AKSD(I“Q<[JA‘2 ”Kq’ql’ = A’ (K%z» 9’7‘)|2>

r=1
hence summing over ¢, N*(A K) <[ A[*- N*(K)or N(AK)<{A4|- N(K). Finally,
since evidently N(K*)= N(K), we have N(K A)=N(A*K*)<|A4*|- N(K*) =
=) 4l- N(K)

20, If, in the Hilbert space [L{™ 4)]*, the transformation K is determined
by the matrix-kernel | K;;{(x, y)|, where all K;;(x,y)€ LE™ (), then K is of finite

norm. Indeed, if {p,} is an arbitrary complete orthonormal system in [L,]", then

N} (K) = Z‘\K @} | i [idﬂz szj (@, y) @i (y dyl dx]

p=1 p=1 i=1

=3 [aa]

i=1

n

l ‘AleJ )d?/lz]:if[ﬁ;! l_]vcjldy]d/l)_

1 =1 i=14 j=

L

Z f Kij(e,y)|Pdady.

i,j=1 4x4

Conversely, if K is of finite norm, so that, on account of Z | kpq|® < o0, the
P g=1

series ) kpg @) () pily) converges in mean in LP™(4) to a function Ky(x,y),
pg=1
it is not difficult to see that K is determined by the matrix-kernel | K;;(z, y)|.

! . SMITHIES, The Fredholm theory of integral equatlons Duke Math. Journal 8 (1941),
p. 107—130, Lemma 2.6.
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3°. Writing B= A HA, so that K? = B H, we see without difficulty that
HBHB*H=HB*HB H on account of condition (d), hence also H"”*B H B* H'*=
= H'»B* HB H'", which shows that N = H'"*BH" is normal. By Theorem 26,
Remark 2°, N has the same sequence i; of characteristic values % 0 as K* = B H,
and {¥:} = H"{yy} is a corresponding orthonormal sequence of characteristic
elements. Furthermore, by 1°, N is of finite norm, so that, by 2°, N is determined
by a matrix-kernel | Ny(z,y)| with elements belonging to L™ (). Hence, by
Theorem 28,

Nij \vz A W () ] (y) (¢6,j=1,..., n)

We shall show now that 2 Ax Wi (x) 21 (y) converges in mean as well. Indeed,

Q

from “Z ar { o “ —HH‘/2 ar {¥:) “ < | H" |- HZ ak{lpk}i]" we deduce, taking
=p

k=p

ar =i Pl : (), that

2 f]Z/m” POk dy<HH‘/‘|FZ f]Z 1) P [ dy,

=14 k=g

from which the result follows immediately. Hence

43) i, ) 3 1 # (5) ).

4°. We shall show now that the transformation C, corresponding with the
matrix-kernel || C;;(x, y)||, satisfies C = N H" (hence C = H'* B H = H'* K?). Let,
for this purpose, {f} and {g} be two arbitrary elements of [L,]", and write
{t} = H'"{f}. Then, denoting the inner product in the Hilbert space L{™ (1)
by (...,...)am, we have

n n

i,j=14X4 7, j=1
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—tim X[ zzjwz:(@?@m-!ﬂ@) )

P> g =1 k=1

dy]

—lim (Z 3 L (2) P (), o' (@) ¥ (9),,

P> g j=1 k=1

n

= 2 (Nijte, ) ¢*(x) ¢/ @hm = (N1}, {0]).
ij=
hence C{f} =N{t} =NH"{f} or C=NH"=H"K"*
5°. We consider now the matrix-kernel || D;;(x, y)|, belonging to the trans-
formation D = B H'. Then, for every ¢ ((=1,...,n) and for almost every
w€d, {d}=1{di{y), ..., d*(y)}, where di(y)= D;;(x, y), belongs to [L,]. Hence,
by Bessel's inequality (the system of functionsets ¥} (z) is orthonormal),

ZI I dl <“{d1 ”,
or, since
(0, () = 3} [ Dt ) #100) dy = 3, [ K5 o, 0)wil0) dy = 22w,
(44) %Ilkl*lwi(w)l"s ZIfIDu z,y) | dy

for almost every x € .

In the same way as we proved in Theorem 29 the convergence in mean of

Z b i (o ’I” () by using (35), we may prove now the convergence in mean of

2 A (z 7(y) by using (44). After that, as in 3°, we see that Z A wi(x) xf (w)
k

converges in mean as well. Hence, denoting the sumfunction by Kg) (x, ) —
— pij(z, y), we have

(45) K@ (x, y) — pij (2, y NZ By i)  Gi=1,..,m)
The only thing that remains to be proved is (42). From (45) we deduce as in 3°,
and bearing in mind that = H'* K® has the kernel || C;;(x, %)/,
(46) Cij (@, y) — i (@, y) o 2 1 W (@) 2] (),

k
where, when |pi;(x, )| corresponds with the transformation P, |g;{x, )| cor-

responds with H'"*P. Comparing (43) and (46), we see that H" P = O, hence
H P = 0, which is equivalent with (42).
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6°. For p =3, the proof of the expansion for K} (x,y) is similar to the
proof of Theorem 3o0.

Theorem 32. If the transformation H'" is delermived by a matriz-kernel with
elements lelonging to L™ (A), then

(47) Koy y) — pis (o, y) o 2 I (2) 2 (v) (€,7=1,..., n),
P
where pij(x, y) € L™ () satisfies
(48) 2 me (i, 2) pyjle, ) dz =0
g=1 4

Jor almost cvery point (x,y) €A X A.
Tuithermore, for p = 2,

(49) K (, y)~ ; @y Gi=r1, ..,

Proof. The proof is similar to that of the preceding theorem, using the
fact that in the case which we consider now, H' is of finite norm. We remark

that it is not difficult to prove that H'” is of finite norm if and only if Z wr
3

converges, where wu; (£=1,2,...) is the sequence of characteristic values 7o
of the transformation H.

Finally, if all Hj;(x, y) are continuous in o X 4, it is possible to prove that
in (40), (41), (47) and (49) the convergence in mean may be replaced by uniform
convergence, while (48) holds now for every point (z, y) €4 X 4. Moreover, when
H {p} = {o} implies {p} = {0}, and the functions 4,;(x) are either all continuous
in 4 or have the property that the determinant of the matrix |4 (z)]| is # o
for almost every x €., the functions p’(z) in (40) and p;(x,y) in (47) vanish

identically, while in the latter of these two cases the series D) 7/ (%) z](y) con-
k

verges to Hij(xz,y), uniformly in 4 X .

May 1948.



