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§ 1. Introduction.

The most useful conformal invariants are obtained by solving conformally
invariant extremal problems. Their usefulness derives from the fact that they
must auntomatically satisfy a principle of majorization. There is a rich variety
of such problems, and if we would aim at completeness this paper would assume
forbidding proportions. We shall therefore limit ourselves to a few particularly
simple invariants and study their properties and interrelations in considerable
detail.

Each class of invariants is connected with a category of null-sets, which by
this very fact enter naturally in function-theoretic considerations. A null-set is
the complement of a region for which a certain conformal invariant degenerates.
Inequalities between invariants lead to inclusion relations between the corre-
sponding classes of null-sets.

Throughout this paper £ will denote an open region in the extended 2
plane, and #, will be a distinguished point in £. Most results will be formulated
for the case ¢, oo, but the transition to z,= oo is always trivial. In some
instances the latter case offers formal advantages.

We shall consider classes of functions f(z) which are analytic and single-
valned in some region £. For a general class § the region £ is allowed to
vary with f, but the subclass of functions in a fixed region 2 will be denoted
by F(2). For z,€ 2 we introduce the quantity

(1) M5 (2o, Q)= sup |/ (2,)].
TEF(2)
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The abbreviations Mg, Mx(z,) or M5(£2) will be used when no misunderstanding
can result. It will be assumed that F(£2) is not empty.

The class § is said to be monotonic if Q < Q implies F(Q) < F(X2'). By (1)
we have then

(2) My(zo, @) < My (ey, @),

Suppose now that z = h(2) defines a one to one conformal mapping of Q
onto a region L', and set zo= h(z,). We shall say that the class § is conformally
wvariant if f(2') € F(2) implies f(h(2)€F (L) for all such mappings. For a con-
formally invariant class we have evidently

(3) M (20, Q) = My (20, )| ' (2)].
This can be written in the more symmetric form
(4) My (20, Q)| dzy]| = Mz (20, Q)| dei],

and it is seen that the differential

() My e, Q)| dz]

defines a conformally invariant metric in Q. Mg is itself a relative conformal
invariant, and this is the type of invariant we shall be mainly concerned with.
Absolute invariants can be introduced either as the quotient of two relative in-
variants or by forming the curvature of the metric (5).

If § is both monotonic and conformally invariant we can combine (2) and
(4) to obtain

(6) My (7, Q)-|da| = My (20, Q)| d2,]

whenever 2" = h(z) maps 2 conformally and one to one onto a subregion of £'.
We shall refer to (6) as the weak monotonic property of Mg.

A stronger result is obtained if § is analytically invariant. By this we mean
that f(2')€F(2') implies f(h(2)€F(LQ) ‘whenever h(Z') is single-valued and analytic
in £ with values in £, regardless of whether k(z) is univalent or not. Since
analytic invariance implies conformal invariance the metric (3) will have the same
invariance property as before. An analytically invariant class is eo spso mono-
tonic. Hence (6) is valid, but the stronger assumption implies that (6) holds not
only for one to one mappings, but for arbitrary analytic mappings of 2 into &'.
In this case we shall say that Mg has the strong monotonic property.
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A class § is said to be compact if the following is true: Given any in-
creasing sequence of regions 2, and functions f,€ F(L2,) there exists a subse-

quence f,, which converges to a limit function f€F (L), 2 = Z Q. uniformly on
1

every compact subset of £. For a compact class there is a function in F{(RQ)

which makes |f (z,)] a maximum,

Theorem 1. For a monotonic, conformally tnvariant and compact class & the
following holds:
i) of R, tends increasingly to Q, then

(7) lif?o M (29, 2n) = M5 (2, ©2);
ii) My(z, Q) 7s a continuous function of z;
iii) log My(z, 2) 2s subharmonic or = — oo,

By (2) lim M3(z,, Q) exists and is = Mz(zy 2). On the other hand, if f,

n— oo
is an extremal function in §(£2,), the compactness implies
M (2o, ) = lim [ fa(2o)| = Lim M(zy, 2n)
N> 0 n-— o<
and (7) is proved.

To prove the continuity, let f be extremal in F(2) for the point z,. Let
zo be another point in £ such that the circle |z —z,| < 2|2 — 2,| is contained
in 2. We have

M (e0, Q) = | fleo)]
and hence

(8 lim My (2%, 9) = My (e, Q).

gz

Zy -

Let 2 be the subset of Q consisting of all points whose distance from the
boundary is > |z — 2|, and let Q" be obtained from £’ by the parallel translation
which takes z, to 5. Then

My (2o, Q) < My(20, Q") = My(z,, )
and as z; >z, we obtain by (7)

(0) lim Mg(eh, Q) = My (2o, Q).

2>z

The inequalities (8) and (9) show that Mg(z,, Q) is continuous.



104 Lars Ahlfors and Arne Beurling.

Since log M3(z, ) is defined as the maximum in a family of subharmonic
functions log [/’ (2)| it must itself be subharmonie.

In all cases that we shall treat it will be seen that M3(z, 2) cannot vanish
at a single point unless it vanishes identically. It seems difficult, however, to
formulate a simple general property from which this would follow.

Our attention will be focussed on three basic classes, together with a sub-
class of each. The first two are the class B of bounded functions and the class
D of functions with a bounded Dirichlet integral. The third class € has a more
complicated characterization, but it will be shown to be related to the classes
B and D in a very symmetric manner.

More precisely, the classes B(2) and D (L) consist of all single-valued ana-
lytic functions f(z) in £ which satisfy the conditions |f(z)] = 1 and

fflf,(fwdxdyén

respectively.

The class €(£) is defined only with respect to a point z,, and consists of
all single-valued analytic functions f(z) in 2 with the property that (f(2)—f(g)?
omits a set of values of area = . )

The corresponding invariants are denoted by Mg, Mgy and M. As far as
these invariants are concerned we can replace B, ® and € by the subclasses
B,, Do and &, of functions which vanish at z,. This is obvious for the classes
D and €, and for a function f(z)€B we need only observe that

SE) — )

1 —flal /()
is in B, while its derivative at z, is of absolute value =|f'(2)].

In addition we shall consider the subclasses &8, ©D and &€, formed by
all univalent (schlicht) functions in B, ® and €. In order to be sure that these
classes dre not empty, and in order to make the corresponding classes ©8,y, S,
and &€, compact, we agree in this connection to consider constant functions as
univalent. The invariants Mcy, Mey and Mes are then well defined.

It is easy to verify that all six classes are monotonic and conformally in-
variant. The classes B and € are also analytically invariant. Hence My and
Mg have the strong monotonic property while the others have only the weak
monotonic property. The classes By, Dy, €, and &Y,, ©D,, €&, are compact.
We are thus in a position to apply Theorem 1 to all our invariants.
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In this paper we shall prove the interesting relations

My = Mg
(IO) ]'19 — er@
Mey = Mer.

Since ¢ < and ST <D it will follow that the three distinet invariants
satisfy the inequality

(II) Meg = Mo = Mg.

The quantity Mey = Mzr will also be identified with the maximum of an in-
vaviant u (2,5, p) of different nature, defined by means of extremal lengths.

The complement of a region 2 will be denoted by Z. Conversely, if a closed
set L7 and a point 2z, outside of E are given, the complement of I/ has a unique
component £ which contains z,. We shall say that E is a null-set of class Ny
it My(z,, £} is identically zero. To this definition we observe that for all classes
considered above My vanishes identically as soon as it vanishes at a point. This
is trivial for the classes of univalent funections, for then the vanishing of My
at any point means that the class F{f2) contains only constants. In view of (10)
the property will thus need verification only for the class B.

The inequality (11) implies the inclusion relations
(12) New > No > Ny,

and it will be shown by examples that these inclusions are proper. It follows
from (10) that the three types of null-sets have a double characterization, and
such information is of course apt to be valuable.

We close this introduction on the remark that a greater degree of generality
can be attained by introducing classes of multiple-valued functions. As examples
we could consider either the whole class of functions f{(¢) which can be con-
tinued along all paths in 2 and take only values of modulus = 1, or the sub-
class for which |/f(2)] is single-valued and = 1. The first choice leads to the
hyperbolic metric with constant negative curvature on £ provided that E has
at leagt three points. The second choice leads to an invariant which for ¢, = oo
reduces to the capacity of E. The capacity is hence a majorant of My, and it
follows that all our classes of null-sets contain the sets of capacity zeros. The
properties of capacitary null-sets are comparatively well known, and this case will
not be discussed further.
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There are also important intermediate metries, for instance the one which
arises from the class of Abelian integrals. It is merely for the sake of con-
centration that we have decided to leave this and similar cases out of con-

sideration.

§ 2. The Invariants My and Mg.

This section is devoted to the proof of the relation My = M. It is evident
that every function in B, belongs to the class €,. The relation My = Mg is hence

trivial, and only the opposite inequality need be proved.

Assume that f(2)€E,(2) and denote by A the set of values Which} does

not take in ©. A is a closed set, and its area I(4) is by hypothesis = 7#. We

form the function

(13) Pl =g | |

W

Sle)

(w=wu+1iv).

This function is clearly analytic in £, and its derivative at z, is

F(z,) = dudv =1 (2.

If we can show that | F(z)| =1 in Q the inequality Mg = M will follow.
It is sufficient to prove that

\ffdudv
w—a

for all complex a. An auxiliary congruence transformation is obviously allowed,

< I(4)

and hence we may take ¢ =0 and assume that

ffdu dv
w
4
is real and positive.

Let A" be the part of A situated in the right half-plane. In polar co-
ordinates w = re’? we have then
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(14) ff%)é [{cos@drdﬂ.
4 e

Denote by I(r, 6) the linear measure of the set of points w€ A" with arg w =6
and |w|=<r. Setting I(co, 8) =1(6) we have first

T
2

(13) ff cos 0d1*(l¢9=jl(0) cos Gdﬁg(gfl(o)gdo)‘/z.

2

On the other hand, I(r, ) =< r, and integration with a fixed 6 gives
[rdrz fl(r, o) dilr a)=l(3)'-

and by (14), (15) and (16) it follows that

f duwd”é(nﬂA»"’éI(A).

A

This is what we wanted to prove. We have thus shown that
(17) MB(ZO: ‘Q):M@(‘?Oa 'Q)

If Mg(z,, ) = 0, every bounded function in Q must satisfy /" (z,) = 0. But
if f(z) is not constant, it can be written in the form

fle)=fleg) + el —2)f + -, ex # 0
and then

fle) — fleo)

(2 — z,)F1

would be bounded with a non-zero derivative. This is a contradiction, and we
conclude that the class B(Q) contains only constants. It follows that Mg(z, 2)
is identically zero. As already pointed out, this observation is important when
we consider the identical null-classes Ny and Neg. The former was first con-
sidered by Painlevé (7], and a set E of class Ny will be referred to as a Pain-
levé null-set.
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The following theorem is an immediate consequence of the strong mono-

tonic property of My:

Theorem 2. A mnon-comstant meromorphic function, considered on the. comple-
ment of a null-set of class Nw, takes all complex values with the exception of another

null-set of the same class.

We interrupt to remark that the corresponding theorem is of course valid
for any strongly monotonic class. Although a direct consequence of the defini-
tions this theorem is very important as a sharp and general characterization of
omitted sets. For greater emphasis we shall give it the following striking

formulation:

Theorem 2'. Let F be any strongly monotonic class of functions, and let a
compact set E be measured by mg(E) = My (oo, Q), where Q is the complement of

E. Then any normalized meromorphic function f(2) =z + ¢, + CZ—I + - in Q omils

the values of a compact set E' with mz(E') = mg(E).

We return now to the case of Painlevé null-sets and note the further char-

acteristic property:

Theorem 3. Suppose that a null-set E of class Ny is contained in a region
Q. Then every analytic and bounded function f(z) in & — E can be continued to
an analytic function in . Conversely, if the continuation ts always possible, the
set K 4s of class Ny.

By a standard application of Cauchy's integral formula we can write
Sfl&y=/f(2) + fi(2), where f (z) is analytic in Q" and f,(¢) is analytic in 2, the
complement of E. But then f,(z) is bounded, and if F is a null-set it must
reduce to a constant, so that f(z) must be analytic in £'. The converse is

obvious:

Corollary. The value of the invariant My (z,, 2) does not change if a null-set
of class Ng s removed from L.

In fact, the family of competing functions remains the same.

! The first precise statement of this theorem is difficult to locate, but it is implicit in the
work of PAINLEVE (7].
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§ 3. The Invariants My and M.

109

We shall now prove that Mgy = Mgs. We wish to point out that this result
and the method by which it is proved are previously known, although not ex-

actly in the present connection. The idea of the proof goes back to Grunsky [4],

and a theorem by Schiffer [10] is essentially equivalent with ours. Nevertheless,

it is essential for our purposes to give a new version of the proof.

The classes D, and ©E, both satisfy the conditions of Theorem 1. For this
reason it is-sufficient to prove the relation Mgy = Mgs for regions- which can be

used to approximate an arbitrary region from within. We are therefore allowed

to assume that the region £ under consideration is bounded by a finite number

of analytic curves. The complete boundary, taken in the positive sense with re-

spect to the region, will be denoted by I

The existence of a univalent function

which maps £ onto a region bounded by horizontal slits is well known.

larly, there exists a function

which maps £ onto a region bounded by vertical slits.

Let f(z) be any regular analytic function in the closed region Q.

familiar formula

DMP—4%=fff@ﬂf@-@%WMdy=gffwﬁ~dﬂ

But djj =dp and di= —dq on I'. Hence

[fap—di)= [flap + dg)= — 47if (z)

F

by the residue theorem, and we obtain

(18) D(f.p—a)=z2nf (e)

For f= p — ¢ this formula gives
Dip—q)=2m(a—0b)

and we find, incidentally, that a — b is real and positive.

Simi-

By a
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The Schwarz inequality

I D(f,p— P =D(f)Dp—9
now yields

47| f (2) P = 27m(a—b) D(f),
and hence D(f) = = implies
a—1Db
2

Lf (z0)| =
with equality for

I zz—ﬁ__:_q_-
(10) )=y

It is thus proved that

(20) Mz (2,, .Q):l/a;b.

In fact, any standard approximation technique can be used to show that (18)

remains valid when f(2) is known to be analytic only in the open region L.
We turn now to the class €. For functions g(z) which are analytic in
the closed region £ except for a simple pole at 2, we introduce the integral

If the pole is missing, I(g) is equal to the Dirichlet integral D(g), and in the
presence of a pole it can be used as a substitute for D(g). If g is univalent,

— I(g) is the area,enclosed by the image of I', and if é is of class ©€ (Q2) we

bave hence I(g) = — .
The corresponding bilinear integral can again be evaluated by the residue
theorem. We find

(21) I{g,p + q)=%fg(d13 + dé)=§f§/(dp—dq)= —mela—b),
Ir r
where ¢ is the residue of g at 2,. In particular,

(22) Ip+q=—2n(a—0b).

From the fact that

I(y—g(p+4))=1)(y—g(p+q))20
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we obtain by (21) and (22)

Ig)z ~Z]effla— 1),

and if I(y) = — = the inequality

_Igl/a—b
lel ™ 2

follows, with equality for the function

ptq

gﬁVz(a— )

The relation

(23) Me(g (2’0, .Q) = l/a —2_ b

will hence be proved if we can show that the function p + ¢ is univalent. We

shall then have found identical representations (20) and (23) of My and Mee.
In order to investigate the nature of the function p + ¢ we observe that

4q is purely imaginary on I’ with two simple zeros and two simple poles on

dp

each contour. Then ERZ—Z cannot vanish at any interior point, for a level curve
dq

Eﬁd—p =0 would have to pass through a pole and there are no such curves be-

sides the contours. Since Sﬁfll—; =1 at 2, we conclude that ER% > o throughout

the region. This implies that SZ—Z decreases along each contour, and hence

arg (dp + dg) = arc tg (S %)

is also decreasing with the total variation — 27z We conclude that each con-
tour is mapped on a convex curve, and a standard argument shows that p + ¢
is univalent. Our proof of the relation

Mo (2, 92) = Mec (2, 2)
is now complete.
Since Mee(zy, 2) is evidently = Mg(z,, 2) we have also proved, in con-
junction with (17), the inequality

M’D (20’ 'Q) = M% (501 'Q)
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In the introduction we have already remarked that Mgs = o0 only if &€
contains only the constant zero, and this property is of course independent of
z,. We can now conclude that the class ® enjoys the same property, and we
can introduce the identical null-classes Nz and Ngg. The former has previously
been considered by Nevanlinna [6] and Sario [9]. The identity of Ny and Nge

can be expressed more explicitly as follows:

Theorem 4. A set E is a null-set of class Ny if and only if every region
which- ws conformally equivalent with the complement of E has a complement of

zero area.

The following theorem is analogous to Theorem 3, and it is proved in the

same manner.

Theorem 5.* Every analytic function f(z) with D(f)<< oo in Q" — E can be
extended to an analytic function in Q if and only if E is a null-set of class Nz.

Corollary. The value of Mx(z,, £2) does not change if a null-set of class Ng

zs removed from £.

Tt is easy to show that the relations (20) and (23) remain valid for arbitrary
regions 2 if p and ¢ are defined as limits of the corresponding functions for
an approximating sequence of regions with analytic bouridary. This remark leads

to the following characterization of null-sets of class Ng:

Theorem 6.> 4 set E ¢s a null-set of class No if and only if every univalent

Junction in the complement of E is linear.

If E is a null-set every univalent function can be extended to a mero-
morphic function in the whole plane. We may in fact assume that the function
has a pole outside of E, and then its Dirichlet integral over a neighbourhood
of F is finite. The resulting function has a single pole and is hence linear.

Conversely, if F is not a nullset, p and ¢ cannot both be linear, for then
they would be identical and we would have a — b =o.

The considerations of this section are suitably supplemented by a discussion

of the quantity

! The necessity was recently pointed out by MYRBERG [5]. There is no record of the suf-
ficient condition.

? Stated and proved in SARIO [g]

3 Stated in NEVANLINNA [6] and proved in SARI1o [9].
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Mz(zy, 20, Q) = sup |flz)) — fle)]

JED{Y)

defined with respect to two points z,, 2, in Q. We prove first:

Theorem 7. The wvanishing of Mz, z,, Q) is equivalent with the identical
vanishing of Mz (z,, Q).

In the first place, if Mg(z,, Q) =0 the class D(2) contains only constant
functions and Mz (s, 25, 2) vanishes trivially. The converse can be proved as

tollows: Let f(z) be univalent in 2 and choose any z,€ Q. The function

S (2) I

fle)—flzo) 2—eg
has a finite Dirichlet integral, and if Iz (2, 2,, 2) = 0 we must consequently have

f, (20) _ ! _ /, (o) o I

Sle) —flao) 21— 2 #./.(32) —fla) 2 — '~’0'

With 2, as variable this is a differential equation with linear solutions. Hence
all univalent functions are linear, and by Theorem 6 this implies Mz (z,, Q) =o.

The invariant Mz (z;, 25, 2) can be determined explicitly by a method com-
pletely analogous to the cne used for deriving the relation (20). We assume
again that the boundary I' of £ is composed by a finite number of analytic
curves. It is possible to map 2 by functions P(z) and @(z) onto regions bounded
by concentric and radial slits respectively so that 2z, is mapped into o and z,
into oo. We may normalize the mappings so that both functions have the res-
idue 1 at z,, and we set P’ (z,)= 4, @ (z,)= B.

P

The function log@ is analytic and single-valued in 2. For any regular

function f(2) in 2 we obtain
_Z)

D(f, log @) == ffd log -f—:: — [fd log PQ = 27 (flz) — flzy),

and in particular

D(log g) = 27 log Aj;
From this we derive

| /(z) —fle) ' = = log

‘2

-D(f),

I

and hence D(f) = = implies

9 — 642136 Acta mathematica. 83
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with equality for a multiple of log g It follows that
—

I A
(24) Mx (2, 25, Q) = ]/ 5 log B

The result remains true for an arbitrary region £ provided we define P
and ¢ as limits of the corresponding slit-functions for a sequence of approxi-
mating regions. We conclude that Mz =o if and only if the functions are
identical.

It could also be proved that VP¢ is univalent and maps £ on a region
whose exterior has maximum logarithmic area.

In § 6 we shall give an interesting interpretation of the relation (24) in the

case where E lies on the circle |z]|=1.

§ 4. The Invariants Mgy and Mcg.

The equality of Mgy and Mey will result from comparison with a third in-
variant, defined by means of extremal lengths. An account of the theory of
extremal lengths is under preparation, but since it cannot yet be referred to we
“shall list below the definition and main properties of this notion.

Let {y} denote a family of rectifiable curves in a region 2. Consider the
class of non-negative functions g(¢) in Q for which the quantities

Lo{7}=irylffgleI

7
A4,(9) =ff92 dxdy
(%

are defined and not simultaneously o or co. The least upper bound

trh=eup ﬁi{(ﬁ)

with respect to this class is called the extremal length of the family {y}. The
value of A{y} does not depend on the region £, but very frequently the family
{y} will be defined with reference to a specific £2.
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It is easy to see that A{y} is a conformal invariant in the sense that any
conformal one to one mapping of Q will transform {y} into a family {y'} with
Myt =a{y}.

The following properties are immediate consequences of the definition:

Lemma 1. If two families {y} and {y'} are such that every y contains a y’,
then
Mtz ayh
Lemma 2. If the families {y,} and {y,} cover disjoint pointsets, and if a third
Jamily {y} ¢s such that every y contains a y, and a y,, then

AMyy = Alyd + Ayt

Lemma 3. If the families {y,} and ly,} cover disjoint pointsets, and if every
v, and y, 18 contained in a curve y of a third family {yl, then

LN S

Myl }-{7'2}

Lemma 4. The extremal length of the family of curves which join the sides of

length a in a rectangle with the sides a, b s %-

Lemma b. The extremal length of the family of curves which separate two

< Iy

circles |z] =1 and |2} =R > r is equal to 2 n/log

In the present connection we shall only consider extremal lengths which
are defined in a very special way. Let £ be a region, 2, a point of Q and E,
a subset of the complement E of 2. We denote by {y}. the class of simple
closed curves in (2 which separate 2, from F, while maintaining a distance =r
from z,. The extremal length {y}, will tend to zero with . But if +' < it
follows from Lemmas 3 and 5 that

3=

+ L log
Z{V}r' A {9’}r 2 o0

~

or
27 27

Ay} Ayt

+ log .
We conclude that

2a
uleg, Ep) = lim ~e <0

r—0 7
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exists, The differential element
(2, Eo) l dZo]

is conformally invariant for a proper definition of the transform of E,.

It follows from Lemma 1 that u(z,, F;) is a non-decreasing function of the
set E, and a non-decreasing function of 2. We shall call u(z,, E,) the perimeter
of E, with respect to the region £ and the center z,. For a circle |z —z)|< R
all subsets of the complement have the perimeter 1/R.

It is obvious that the value of u(z,, E,) depends only on the set of com-
ponents of E which contain points of I, and not on the individual points within
a component. Thus the perimeter of a single point is equal to the perimeter of
the component to which it belongs. The perimeter of a point p is denoted by
u(zy, p). For a simply connected region u(z,, p) has only one value, and for
2o =00 this value equals the capacity of E. In the general case, u{co, E)=
= cap L.

We shall prove:

Theorem 8. The invariants Mes and Mes are both equal to the maximum of
ulz. p) for peE.

We suppose first that £ is bounded by a finite number of analytic contours
I'y,...,Tn. Then u(z,, p) has only = values, one for each component of the
complement. There exists a function fi{z) which maps £ on a region bounded
by the wunit circle, corresponding to I';, and # — 1 concentric circular slits; we
suppose that the center corresponds to z,. For a region of this sort it is easily
proved that the perimeter of the outer contour is exactly 1, regardless of the
number and location of the slits. By conformal invariance we have hence

L (Zo» Fl‘) = Ifl, ('Zo)l = Mey (2'07 Q)

and we have proved that
max u(zy, p) = Mey (2, £2).

Conversely, suppose that f(z) maps 2 on a subregion of |w|=1 and that
flzo)=o0. The image of 2 has a definite outer contour which corresponds to
a I%, and by application of Lemma 1 and conformal invariance we obtain at

L/ ()] = wlzo, T).
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Hence
M@‘B (2‘0, 'Q) = max .u'('?O! p)7

and we have proved that max pu(z;, p) = Mex(z,, Q).

Let us now consider a mapping of by a function of class 9. The image
region has again a definite outer contour which we suppose corresponds to I'z.
We replace Q by its image £ under w = fi(z); 2 is a unit circle with con-
centric slits.

For f€SD(Qy), set

Ley= [ 1£|ldw]

lwj=

whenever |w| =7 does not contain any slit, and

D(r) = ff If Fdudv (w=mu + 1v)

Jwl<r
for all . By the Schwarz inequality we have first
L =Z2arD ()

for all non-exceptional r. On the other hand, since the image of |w]| < r will
always have the image of |w|=1r as its outer contour, the isoperimetric in-
equality yields
LY =z47nD().
Hence .
‘(v

(r)

N~

=

RN

s

N

and integration from 7, to 1 gives
D) =D()rs=nrp.
Letting 7, tend to o we conclude that |f (0)| =< 1. In terms of the original re-
gion £ it is then proved that
Mer = max | fi(z,)],
and since all the functions f;(2) are of class &D we find
Men = max | fi(z,)]| = Mes.

In the general case we approximate 2 with an increasing sequence of regions
2, with analytic boundaries. We write ua(z,, p) when the invariant is taken
with respect to £2,. We have trivially
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w2y, p) = ualzy, »)
and hence

sup u (2o, p) = lim max p, (25, p) = Mea (2, 2).
n-+0 N

The opposite inequality can be proved directly. Suppose that = f(z) with
Sfle) =0 maps 2 on a subregion 2, of |w|<1. We can find a sequence of
points w, = f(z,) which tends towards the infinite component of the complement
of Q,. Let p be a limit point of the sequence z,. Then any curve y which
separates 2z, from p has an image which separates o from |w|=1, and we con-
clude immediately that

[£" (20| = 2o, p)
and consequently the equation

Mew (25, 2) = max u(z,, p)

holds for arbitrary Q. The relation Mey = Mgy for arbitrary Q follows of course
directly by a limit process.

§ 5. Further Characterization of the Null-sets Ny.

If E, and E, are disjoint compact sets in or on the boundary of a region
R, the extremal distance ie(E,, E,) between the sets with respect to the region
2 is by definition the extremal length A{y} of the family of curves y which join
E, and E, within Q.

We stated in Lemma 4 of § 4 that the extremal distance between opposite

sides of a rectangle R is equal to the ratio g of the sides. Suppose now that

a compact set F is removed from R. Then, by Lemma 1 of § 4, the extremal
distance between the sides with respect to R— E is known to be = a/b. We
claim that the sign of equality will hold for all rectangles R if and only if F
is a null-set of class Ngy.

We may assume that the rectangle R lies symmetrically with respect to the
coordinate axis, the sides of length a being parallel to the z-axis. The ratio

—g is the extremal length between the vertical sides. As in § 3 we shall ap-

proximate the complement £ of E by regions £, with analytic boundary, and
introduce the functions p,(¢) for z,=oco. If E is a null-set of class Np we know
that lim p,(z) = 2.

f—» 00
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For large n pn(z) will map the perimeter of R on a quadrilateral which differs
very little from L. We may hence find @, and b,, tending to a and b, such that

[Rp.(e)| = %’3 on the vertical sides of R and |Jpa(2)] g%’—‘ on the horizontal

sides. Let the rectangle with sides @, and b, be denoted by R,. Every curve
which joins the vertical sides of B, contains the image of a curve joining the
vertical sides of R within B — E. By Lemma 1, § 4, we can hence conclude
that the extremal distance Ap_pg with respeet to R — F satisfies

a
Ap-p < T
bn

and passing to the limit we obtain Arx—x =< a/b. This proves that the extremal
distance does not change when a set £ of class Np is removed.

a

To prove the converse, assume not only that Ag_p = X but also that the

extremal distance iR_E between the horizontal sides of B has the value Zt—;. Let

{=s(2) be an arbitrary univalent mapping of 2 with a pole at co. It will
transform the perimeter of R into a simple closed curve whose interior can be
mapped in turn by a function w = ¢ (z) onto a rectangle R’ of dimensions a’,
b’. Conformal invariance and Lemma 1, § 4, lead to opposite inequalities from
which we conclude that

’

a —
bl

2,
b

in BR—FE. TFor every curve y which joins the vertical sides

dw
Choose ¢ = ‘%—
of R within R — E we shall then have

f@|d2| =a.
Y

By the definition of Ax-x the rectangle R must hence be mapped onto an
area =
a’z/lR_E = a' b’.

This means that the map of R — E will fill out all of R except for a set of
measure zero, and since the derivative |¢ (2)| is bounded away from zero on the
image of R — E, it follows that s(z) must map 2 onto a region whose comple-
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ment is of zero measure. This is true for an arbitrary univalent mapping, hence
for the mapping p + ¢ of § 3, and hence F is of class Ng.

The proof could be modified so as to apply to arbitrary quadrilaterals, and
in fact to arbitrary extremal distances. We shall therefore announce our result
in the following form:

Theorem 9.' 4 set E is a null-set of class Nz if and only if the removal of

E does not change extremal distances.

We have assumed, so far, that F is contained in the open rectangle R.
The result remains of course true when the intersection of R with an arbitrary
E of class Ny is removed, although the proof is not so trivial as it might seem.
Let R’ be a concentric rectangle with sides ¢’ > a and b’ < b. Since F is totally
disconnected, it is possible to find a curvilinear quadrilateral R which is con-
tained in the rectangle with sides o', b and contains the rectangle with sides
a, V', and whose perimeter does not meet I. It encloses a compact subset E”
of E, and we have hence Ar'—p' == Ag". On the other hand, by two applications
of Lemma 1, § 4, we obtain

- ’
A S daropr = A S A = [

and since a'/b’ can be chosen arbitrarily near to a/b we find Ar-p = a/b as
desired.

We remark also that the other half of Theorem 8 has been proved in
slightly stronger form, for we have shown that F is of class Np as soon as two
particular extremal distances are unchanged. It can be proved in a trivial
manner that ir-z= a/b if the projection of F on the vertical sides is of mea
sure zero. This accounts for the sufficient condition in

Theorem 10. A set E is of class Ny if its projections in two orthogonal di-
vections are of linear measure zero. On the other hand, if E is of class No any
two points in the complement Q can be joined by a curve in Q whose length differs
arbitrarily little from the distance between the points.

The necessary condition is easily proved. If two points have a distance in
£ which is superior to their distance in the plane, it is clear that a thin rec-
tangle B can be constructed such that the distance of two sides is greater in
B — F than in R. This implies Ar—r > Ag, and hence I/ cannot be of class Ngp.

! A related theorem in different terminology and connection is found in GrROTZSCH [3).
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§ 6. Linear Sets.

In this section we shall always choose z,=c0. We can then think of the
invariants Mg, My and Mgy as functions of a compact set £ which does not
divide the plane.

There is a classical relation between My and the linear measure of the set
L. More precisely, we shall denote by .4 the greatest lower bound of the total

length of a system of closed curves y which separate I from oo, and we shall

prove that
(25) Mo — 4.
27
This is an immediate consequence of Cauchy’s theorem. If f(z) ::g + .-+ is re-

gular and of absolute value =1 in 2 we have indeed

1 I
el= 5 [l = 3 [ 1ae),
7 7

and the relation (23) follows at once.
We shall consider separately the case where F lies on a straight line, for
instance on the real axis. If the linear measure of ¥ is L we have £ =21L

and (23) implies

(26) My =< —L.

r
7
An inequality in the opposite direction is obtained by considering the function

fw=f'mj=5+

g— Z
E

It is immediately seen that |J f(¢)| < =, and the function

is hence of class B with the first coefficient f We have thus

(27) Mez=L.
4
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In particular, we may conclude:

Theorem 11.! A linear set s of class Ny if and only if it is of linear mea-
sure zero.
More generally, we may consider a set I/ on an analytic curve y. We can

still prove:

Theorem 11°. A set E on an analytic curve is of class Nw if and only of ot
is of length zero.

This is proved by showing that every bounded function which is analytic
in a region Q@ — E, where Q' is an open neighborhood of E, is analytic in &'
if and only if F is of linear measure zero. But it is clearly sufficient to prove
the corresponding local statement, which follows from the fact that every point
on y has a neighborhood which can be mapped conformally so that y will cor-
respond to a segment of the real axis. In order to apply Theorem 3 it is nee-
essary to choose the neighborhood so that its boundary does not intersect E.
If E is totally disconnected this is always possible, and if E contains an arc
neither My nor the linear measure can be zero.

Let us now find a bound for My when F is a compact set on the real
axis and has given length L. This problem is not quite easy and needs some
preparations. Comnsider first a funetion f(2) of the form

where @ (f) is of summable square and vanishes outside E. By an application of
the Fourier integral and the Parseval relation, we find this relation for D(f)
TRy 2
D(f):nf [ (s) ¢2(t)l dsdt=H(p)
(s—1

which holds whether both sides are finite or infinite. Conversely, if D(f) is

finite, f(z) is generated by a function ¢ with H(p)= D(f).
Since H(p)= H(|p|), we may conclude that the extremal function f of the
class D(£) is generated by a ¢ which is real and =0 on E. Let now ¢* be

! This theorem is due to DENJOY [2].
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the even, symmetrically decreasing and equi-measurable function to ¢, and set
kn(s) = Min (=ms~2 n). Thus H(p) is the limit as # -~ co of the expression

i

—o0 —

[

(% + @* D) kn(s — 1) dsdt——sz(p D) kals — t)dsdt = An(p)— Bale).

k\;g

8

Obviously A.{p) = A.(¢*), while B.(p) < B,(p*) according to a rearrangement
theorem due to Hardy, Littlewood and Polya (see e. g. Inequalities, Cambridge
1934, Theorem 380). Thus H(p) = H(p*) and D(f) = D(f*) follows, where f*
is the function generated by ¢@*. Since ¢* vanishes outside the segment E*
limited by the points * L/2, the function f* must be holomorphic outside E*
and we conclude that My (F) < My (E*) = L.

Theorem 12. For a linear set of length L we have the string of inequalities

(28) ﬁfe&séMméééMzsé—li-
4 7T
It is interesting to note that My is smallest while Mcy and Mg are largest
when FE consists of a single segment. In the next section we shall show that

there is no lower bound for Mgy or My in terms of L.

Theorem 13. For linear sets Mew and My are simultaneously positive or = o.

According to Theorem 8, the perimeter u vanishes for every boundary point
of 2 if Mew = 0. This property is obviously invariant under schlicht mappings
of 2 onto Q' and thus implies that the complement of 2 is always totally
disconnected. If in particalar # is linear, both slit functions p and ¢ must
degenerate. Thus a =0 =0 and My =0 follows.

We shall now give a more precise characterization of linear sets of class
Np. This is most easily done for sets E which lie on the unit circle |z|=1.

We begin by supposing that E consists of a finite number- of closed ares
e;. The complement of E on the circle is denoted by E’ and consists of open
arcs f;. According to formula (24) of § 3 the invariant Mgy(0, 00, Q) is deter
mined by the functions P(z) and @(z) introduced in that section. Obviously
P(z) =2, making A =1, while Q(z) must satisfy the relation

)=
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from which it follows that | @ (z)| = B* on the arcs §;. On the other hand, we

know also that (?in log |@(z)] =0 on e;, and for this reason B~¥ (z) can be

continued from |z|> 1 across the «; to a function @, (z), defined and single-

valued outside of the arcs §;, which satisfies

— 1

@)= e
We conclude that the funection

Vie)=3%(—log |2 Qs (e)| — 4 log B)

is regular and harmonic outside of E’ except for a logarithmic pole at co which
is such that V() + log |z| vanishes for z=oco. V({z) is then the equilibrium
potential of ' with the constant value — % log B on the set. The capacity of E’
is hence B* and it follows from (24) that

(29) M(b (Oa o, Q) = 1/2 log W_I—_E:’

cap

This result can immediately be carried over to the case of an arbitrary closed
set E on the circle. The complement E’ has then an ¢muner capacity, defined as
the least upper bound of the capacities of closed subsets of E’. It follows by
a trivial limiting process that (29) remains valid, provided that cap E’ is inter-
preted as the inner capacity.

From (29) we derive the following. criterion:

Theorem 14.' A closed set E on the unit circle is of class Np if and only if
the inner capacity of “tts complement s equal to 1.

It will be noted, of course, that this does not imply that the set E is of
zero capacity.
There is a more general theorem whose proof we shall omit.

Theorem 14'. A closed set on an analytic arc is of class Ny if and only if

the inner capacity of its complement is equal to the capacity of the arc.

§ 7. Special Sets.

In order to show that the classes Nzw, Ny and Ng are all distinct we must

exhibit a set which is in Ngy but not in Np and a set in Np which is not in Ng.

! Certain results in de PossiL [8] are related to this theorem.
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We shall also show that there are linear sets of positive measure in Ngg and
Nr. In most of the cases the examples will be generalized Cantor sets.

Let {¢:})7 be a sequence of real numbers 0 < ¢; < 1 and {n:}; a sequence
of positive integers. We shall construct a corresponding linear Cantor set
E({q:}, {n:}) as a closed subset of the unit interval E;: 0 <t = 1. The first step
is to divide E, in 2%, + 1 subintervals, the odd ones of length a, = ¢,/(n, + 1)
and the even ones of length b, = (1 — ¢,)/n,; for simplicity they will be referred
to as g -intervals and b-intervals, and the union of the closed a;-intervals is
denoted by E,. In the next step each a,-interval will be subdivided in 2%, + 1
alternating a,- and byintervals of length @, and b, respectively. These lengths
are chosen so that the a,intervals cover a proportion ¢, of the a,-intervals, and
the union of all gyintervals is denoted by E,. The process is repeated and we
obtain a mnested sequence of sets K, > E, > .- whose product K=FE F, ... is
the Cantor set FE({g:}, {n;}) which we set out to define. The length of F is

Hqi. It is positive if and only if Z(I — qi) < o0,
1 1

We shall first derive a sufficient condition for E to be a null-set of class
New. By Lemma 3 and 5 of § 4 this will be the case if each point of E can
be surrounded by a sequence of disjoint annuli ¢, which do not meet F and

whose decreasing radii », and 7, satisfy the condition

- OO,

NS

~

o0 7"
(30) D log
1

Let us fix our attention on a point t€ E. It belongs for each k& to a cer-
tain aj-interval which we shall denote by ai(f). We swrround ¢ by annuli
centered at the midpoint of ai(f) which pass through the br-intervals contained
in az—1(f); some of these may intersect the real axis in only one b-interval. In
order to make sure that the annuli do not meet £ and are all disjoint we agree
to include only those annuli whose inner radius is at least equal to ap + & while
the outer radius is at most equal to bz—:. It is clear that such an annulus cannot
intersect any a—iinterval other than ax—;(f) and hence cannot meet E. More-
over, an annulus of the & + 1:st generation cannot meet an annulus of the Z:th
generation, for a common point would at once be at a distance = a; + b from
the center of ax(f) and at a distance = b; from the center of aj4:(f) which is

impossible since the two centers have a mutual distance < ax.
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The smallest annulus of the £:th generation which can satisfy the imposed
conditions has radii %a; + by and 2a; + 20, and these radii are increased by
ar + br at each step.. The number »; of the last permissible annulus is therefore
determined by the condition

ar
—51: + br + w (a;,- + bk) = by

7*—2 ar—1 > (I — qr—1)ar—1. 1t is therefore
k-1

But ap + b < ar—1/me and b, > S L
sufficient to take

ve=m(1 — qe—1)] — 1
whenever this number is positive. We note, moreover, that
ar 743

log (? + b + v(ar + bk)) — log (; + var + bk))

by
=—log {1 — i >

—? + by + viae + by

ay 1 bk I
>bef{— + by + A+ b)) > >
L/(Z b + v (ax )l)) v+ 1 ap + by y + 1

Hence the annuli of the %:th generation contribute to the sum (30) an amount
greater than

11 1
[ (e e R -— .
2(2+3 +vk+1)(l 2,
where the factor in front is > log vtz The whole contribution is thus greater
than
(1 — qx) log n————-—————‘k(l /)

and we conclude that ¥ is of class Nzy whenever

(31) 30— g Jog "0

diverges. This condition does not contradict the convergence of Z (1 — q), and
. 1
we have proved:
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Theorem 15. There exists a linear set of positive measure which is a null-set
of class Negy.

The Cartesian product of two identical linear Cantor sets of positive length
is a 2-dimensional Cantor set of positive area. As such it will certainly not be
of class N». However, this set is again of class Ngy whenever the series (31)
diverges. The proof is the same as above, except that it is more convenient to
replace the circular rings by quadratic frames. In (30) we let »,/r, be the ratio
of the outer and inner dimensions of the frames and it is elementary to show
that the divergence of the series (30) is still a sufficient condition for the set
to be of class New.

Theorem 16. There exists a set of class Ney of positive area, and hence not
of class Nyp.

It remains only to construct a linear set of positive measure which is of
class Ngy. Such a set cannot be of class Ny and therefore also serves to show
that Ny is a proper subclass of Ng.

To this purpose we shall make use of Theorem 14, and our object is thus
to construct a closed set I on the unit circle which is of positive length while
the inner capacity of its complement E’ is equal to 1.

Let us first observe that the inner capacity of a finite number of open arcs
is equal to the capacity of the closed arcs. It is also wellknown that the
capacity of an arc of length 4/4 and radius 1 is sin 1/A. Let now u(z) be the
equilibrium potential of the are

Ex: |0 — 6, < 2/a (mod 2 7).

by

Then ;;u(z") is found to be the equilibrium potential of the set
E: |n@— @] <2/ (mod 2nx),

from which we conclude that

cap Ly =Vein 1/ =1 — %4, 0((10;; z))

n

while the length of Ej is 4/4.

This example proves the existence of open sets with arbitrarily small length
and with an inner capacity arbitrarily close to 1. Taking a sequence {En}? of
such sets with length L, = 4/, such that
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lim 10—g——'l":o, 24/1n£L
N=00 n 0
we find that the union E’ of the sequence {E,}® has a length < L and an inner
capacity = 1.
Theorem 17. There exists, on the circle or on the line, a set of pusitive linear

measure which is of type Nsz.

At the end of his thesis Sario [9] lists a number of unsolved questions. Those
which concern plane regions have all been answered in this paper. The ques-
tions are stated below in our own terminology.

Can a linear or plane Cantor set of class Ng have positive linear or areal
measure? For the areal measure of plane sets the answer is certainly negative
as seen by Theorem 4. For linear sets the answer is affirmative, as implied by
the proof of Theorem 16, but it must be noted that we have considered more
general Cantor sets.

Are there any totally disconnected pointsets which are not of class Ng? The
affirmative answer is trivial for we need only consider a totally disconnected
linear pointset of positive measure.

Is the total disconnectedness of a pointset invariant under conformal map-
pings of the complement? This is not so, for there exist totally disconnected
pointsets which are not of class Nes. An example was not given, but it suffices
to take a totally disconnected set whose complement has finite area. This implies
that the corresponding Mep > 0 and the set is not of class Ngg.
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