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In tro d u c t io n  

Twenty years ago Bloch, [B1], introduced the complex C.(A; p) of p-typical curves in 

K- theory  and outlined its connection to the crystalline cohomology of Berthelot-  

Grothendieck. However, to prove this connection Bloch restricted his attention to the 

symbolic part of K-theory, since only this admitted a detailed study at the time. In this 

paper we evaluate C. (A; p) in terms of the fixed sets of Bhkstedt 's topological Hochschild 

homology. Using this we show that  for any smooth algebra A over a perfect field k of 

positive characteristic, C. (A; p) is isomorphic to the de Rham-Wit t  complex of Bloch 

Deligne-Illusie. This confirms the outlined relationship between p-typical curves in K-  

theory and crystalline cohomology in the smooth case. In the singular case, however, we 

get something new. Indeed, we calculate C.(A;p) for the ring k[t]/(t 2) of dual numbers 

over k and show that  in contrast to crystalline cohomology, its cohomology groups are 

finitely generated modules over the Witt  ring W(k). 
Let A be a ring, by which we shall always mean a commutative ring, and let K(A) 

denote the algebraic K-theory  spectrum of A. More generally, if I c A  is an ideal, K(A, I) 
denotes the relative algebraic K-theory, that  is, the homotopy theoretical fiber of the map 

K(A)~K(A/I).  We define the curves on K(A) to be the homotopy limit of spectra 

C(A) = hol!m ~K(A[X]/(Xn), (X) ). 
n 
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The homotopy groups C. (A)=~r.C(A) are given by Milnor's exact sequence 

0 ~ li_mO)K.+2(A[X]/(X'~), (X)) ~ C.(A) ~ ~ K.+I(A[X]/(X~), (X)) ~ 0, 
n n 

so in particular, Co(A)=W(A), the big Witt ring of A. We note that originally Bloch 

defined the curves on K(A) to be the inverse limit on the right-hand side. So our 

definition differs from his in that we include a possible lim(1)-term. Furthermore, Bloch 

defined a pairing on C(A) which makes C(A) a homotopy associative ring spectrum. 

In particular, this gives a ring homomorphism from W(A) to the ring of cohomology 

operations in C(A). So when A is a Z(p)-algebra, the idempotents of W(A) give a 

splitting 

C(A)~- I I  C(A;p), 
(k,p)=l 

as a product of copies of a spectrum C(A; p), the p-typical curves on K(A). 
For any ring A, the topological Hochschild homology TH(A) is an Sl-equivariant 

spectrum, and there are maps 

R, F: TH(A) Cp~ ~ TH(A)C~ ~-' 

of the fixed sets under the cyclic groups of order p~ and pn- 1. The map F is the obvious 

inclusion while the map R, introduced by BSkstedt, Hsiang and Madsen, [BHM], is given 

by the cyclotomic structure of T(A). We write 

TR(A; p) = holim TH(A) Cp" . 
R 

THEOREM A. Let A be a Z/pJ-algebra. Then C(A;p)~TR(A;p). 

The proof is based on a recent result of McCarthy, [Mc], which states that the 

cyclotomic trace of [BHM], 

trc: K(A) --~ TC(A), 

from K-theory to a certain topological version of Connes' cyclic homology, induces an 

equivalence of the relative theories K(A, I) and TC(A, I) after profinite completion, pro- 

vided that the ideal I c A  is nilpotent. For any Fp-algebra A, TR(A; p) is a generalized 

Eilenberg-MacLane spectrum, and therefore, determined up to homotopy by its homo- 

topy groups TR.(A;p). In higher characteristic, however, this is not likely to be the 
c a s e .  

Let k be a perfect field of characteristic p>0 and let Wn(k) be its ring of p-typical 

Witt vectors of length n. For any k-algebra A we have the de Rham-Witt complex W , ~  
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of Bloch, Deligne and Illusie, [I]. It is a differential graded algebra over W~(k) whose 

restriction modulo p is equal to the de Rham complex f ~ .  The restriction, Frobenius 

and Verschiebung maps of Wit t  vectors extend to operations 

R ,  F:  W n • *  A --) W n _ l a * A ,  V:  W n a *  A -.-) Wn_l_la*_A , 

suitably compatible with the differential structure, and Wnf~4 may be characterized 

as the universal example of such a structure. We show in w below that  topological 

Hochschild homology provides another example. In particular, there are maps 

I: W ~ f ~  --~ 7r. TH(A)Cp ~-1 . 

The differential 5 on 7r. TH(A)Cp ~-1 is induced from the Sl-action. In the basic case 

n=l ,  it corresponds to Connes' B-operator  under linearization 7r. TH(A)--~HH.(A). In 

w we prove 

THEOREM B. Suppose that A is a smooth k-algebra. Then the map I extends to an 

isomorphism 

I: Wn~'~*A~Wn(k) Swn{O'n} ~ 7r. TH(A)Cp n-: , degas  = 2. 

Moreover, F(a~)=a~_:, Y(an)=pa~+: and R(an)=pA~an-:, where ~,~ is a unit of 
W n ( F p ) = Z / p  n �9 

The basic case A=k was proved in [HM1]. The bulk of w is the explicit calculation 

of the right-hand side in the case where A is a polynomial algebra. We find that  it is 

abstractly isomorphic to the left-hand side, which is known from [I], and prove that  the 

map I is an isomorphism. The general case follows by a covering argument. If we take 

the limit over the restriction maps, the extra generator cr,~ vanishes, and hence 

THEOREM C. I rA  is a smooth k-algebra, then Wf~*A-~TR.(A;p)~-C.(A;p). 

We note that  Bloch proved that  the same result holds if C. (A; p) is replaced by its 

symbolic part SC.(A;p), provided that  A is local of Krull dimension less than p. The 

restriction on the dimension was later removed by Kato, [K]. We do not require that  A 

be local. 

For any scheme X over Spec k, Berthelot, [Be], has defined its crystalline cohomology, 

H*(X/Wn),  H*(X/W)=li_mH*(X/W~).  
n 

It is a good cohomology theory when X is proper and smooth. In particular, the coho- 

mology groups are finitely generated W(k)-modules. However, if X is either not smooth 
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or not proper, the theory behaves rather pathologically. The main theorem of [I] states 

that there are natural isomorphisms 

H * ( X / W n ) = H  (X, Wngtx), H * ( X / W ) ~ - H  (X;Wgtx) ,  

provided that X be smooth and smooth and proper, respectively. Here the right-hand 

sides denote the hypercohomology of X with coefficients in the complexes Wnl2~ and 

W~t~ of Zariski sheaves on X. It follows that 

H*(X/W)  ~ H*(X; C . ( - ;  p)) 

when X is smooth and proper. However, in the non-reduced case we get something 

new: in w below we e~aluate C.(A;p) for the ring k[t]/(t 2) of dual numbers over k. 

The argument is based on [HM1]. Let re(i, j) be the unique natural number such that 
pro(i,/)- l j  ~< 2i + 1 <pm(i,j)j, then 

THEOREM D. Let X=Speck[t]/(t2). Then 

(i) p>2: H2i(X; C.(-;p))~-n2i+l(X; C. (--;P))-~(~l<~j<<.2i+l,jodd W(k)/(J, Pm(i'J)), 
(ii) p=2: H2i(X; C. (- ;  p)) --H2i-I(X; C. (- ;  p)) =k ei, 

and in both cases H~ C.( - ;p) )=W(k) .  

We note that in comparison the crystalline cohomology H* (X/W)  is concentrated 

in degree 0 and 1 and the latter is infinitely generated as a W(k)-module. This suggests 

that H*(X; C(- ;p))  might be a more well-behaved theory than crystalline cohomology 

for non-reduced schemes. The proof of Theorem A involves the following result, which 

is also of interest in its own right. 

THEOREM E. Let A be a Z/pJ-algebra. Then Ki(A[X]/(Xn), (X)) is a bounded 

p-group, i.e. any element is annihilated by pg for some number N which may depend 
on i. 

The fact that these groups are p-groups has previously been proved by Weibel, [We], 

by quite different methods. However, the result that they are bounded is new. 

Throughout the paper we shall use the notion of a G-spectrum. The reader is referred 

to [LMS] for this material. We use the term equivalence to mean a weak homotopy 

equivalence, i.e. a map of spectra which induces isomorphism of all homotopy groups. 

A G-equivalence will mean a G-equivariant map which induces an equivalence of H-fixed 

spectra for all closed subgroups H c G .  Throughout, G will denote the circle group and 

rings are assumed commutative without further notice. 

It is a pleasure to thank Ib Madsen for helpful discussions and for his strong encour- 

agement. I would also like to thank John Klein for helpful remarks. I am particularly 
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grateful to Teimuraz Pirashvili who suggested to me the possible link between topolog- 

ical cyclic homology and crystalline cohomology. The majority of the work presented 

here was done during my postdoctoral fellowship at the Mittag-Lettter Institute in Stock- 

holm, Sweden, and I would like to take this opportunity to thank the institution for its 

hospitality and support. 

1. The complex TR.(A;p)  

1.1. We briefly recall the ring of p-typical Wit t  vectors associated to a ring A. The 

standard reference is [Se] but see also G. M. Bergman's lecture in [Mu]. As a set W ( A ) =  

A N~ and the ring structure is determined by the requirement that  the ghost map 

w: W ( A )  ~ A N~ (1.1.1) 

given by the Wit t  polynomials 

Wo -- ao, 

W l  =aP+pal ,  

p2 +P ap +p2 a2, W 2 ~ a o 

be a natural transformation of functors from rings to rings. In more detail, we consider 

the polynomial ring B = Z [a0, al,  ...; b0, bl, ... ] and the ring endomorphism r B--* B which 

raises the variables to the pth  power. Then, as one easily verifies, a sequence (x0, Xl, ...) 

is in the image of the ghost map if and only if x n - r  (mod p'~B), for all n ) 0 ,  and 

hence the image of w is a subring. In fact, w is the inclusion of a subring. Let si and Pi 

be the unique polynomials such that  

(a0, al,  . . .)+ (bo, bl, ...) = (So, 81, ...), 

(a0, al,  ...)" (b0, bl, ...) -- (P0,Pl, :..) 

in this subring structure. Then if A is any ring, we may substitute elements of A for 

the variables of B and get a sum and product on the set W ( A ) .  The ring axioms hold 

in the special case A = B  since W ( B )  is a subring of B N~ By functoriality they hold in 

general. We note that  1=(1, 0, 0, . . . )EW(A) .  

There are natural operators, Probenius and Verschiebung, on W ( A )  characterized 

by the formulas 

F: W ( A )  ---* W(A), F(wo, wl, . . . )  = (wl, w2,...), 
(1.1.2) 

V: W ( A )  ---* W ( A ) ,  V(ao, al, ...) = (0, co, al, . . .) .  
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By considering the universal case, one shows that  F is well-defined and a ring homomor- 

phism, that  V is additive and that  the following relations hold: 

x.V(y)-=Y(F(x).y), FY=p, YF=multy(1). (1.1.3) 

When A is an Fp-algebra, one has in addition V(1 )=p  and F=W(~), where ~ is the 

Frobenius endomorphism of A. The Teichmiiller character w: A--+W(A) given by w(x)= 
(x, 0, 0, ...) is multiplicative but not additive. We will also write x=w(x). 

The additive subgroup ynw(A) of W(A) is an ideal by (1.1.3) and the quotient 

Wn(A) =W(A)/VnW(A) 

is called the ring of Witt  vectors of length n in A. The elements in Wn(A) are in 1-1 

correspondence with tuples (a0, ..., a~- l ) ,  with addition and multiplication given by the 

same polynomials si, Pi as in W(A). We note that  si and pi only depend on the variables 

a0, ..., a~ and bo, . . . ,  b i .  Therefore, W(A) is the limit of the W~(A) over the restriction 

maps 

R:W~(A)--+W~_I(A), R(ao,...,an-1)=(ao,...,an-2), (1.1.4) 

and hence complete and separated in the topology defined by the ideals VnW(A), n~ 1. 
If k is a perfect field of characteristic p, W(k) is the unique complete discrete valuation 

ring with maximal ideal VW(k)=VFW(k)=pW(k). In particular, W(Fp)=Zp. 

1.2. This section recalls the de Rham-Wit t  pro-complex of Bloch-Deligne-Illusie. 

We shall only give a very brief account of the construction and refer to [I] for details. 

Suppose that  A is an Fp-algebra. The de Rham-Wit t  pro-complex associated to A is a 

limit system of connnutative DGA's over Z, 

w 3 n o  d , w3a  d , w3a  e , ... 

w ao e ,w2a  e w2a  e ... 

W l a O  e , Wla  e , e , ... 

such that  WnQ~ and such that  R extends the restriction map (1.1.4). Further- 

more, there are additive maps 

F: Wn~'~iA --+ Wn_l~iA, V: Wn~-~iA -"> Wn+l~'~iA 
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which extend the Frobenius and Verschiebung maps (1.1.2), and the following set of 

relations hold: 

R F  = FR, R V  = VR, 

F V  = VF =p, FdV =d, F d a : a p - l d a ,  (1.2.1) 

F(xy) =F(x )F(y ) ,  xV(y)  = V(F(x)y) .  

Moreover, W. fl~ is universal with these properties, cf. [I, 1.1.3 and 1.2.17]. The de Pdaam- 

Wit t  complex of A is defined as the limit 

W ~~* A : ~l_.__m W n  ~-~* A . (1 .2 .2 )  

R 

We note a few easy facts. The canonical map 

is a surjection for any n~>l, and an isomorphism when n = l .  Similarly, the maps R: 

W n f ~  ~Wn--1 ~2~t are surjective for all n>~ 1. Finally, consider the composite 

where qo is induced from the Frobenius endomorphism of A. One has F=piF.  In w 

below we recall the concrete description of the de Rham-Wit t  complex of a polynomial 

algebra. 

1.3. We shall recall some facts about the topological Hochschild spectrum T(A) 

and refer the reader to [HM1] where this material is t reated in detail, see also [Ma]. We 

begin by recalling the notion of an equivariant spectrum following [LMS]. 

Let G be a compact Lie group and let H be a complete G-universe, that  is, a 

countably-dimensional G-representation with a G-invariant inner product such that  every 

finite-dimensional G-representation is isomorphic to a subrepresentation of H. A G- 

prespectrum t indexed on H is a collection of G-spaces {t(V)}, one for every finite- 

dimensional subrepresentation VC 14, together with a transitive system of G-maps 

where W - V  denotes the orthogonal complement of V c W. A map t--*t ~ of G-prespectra 

is a collection { t (V)-~t ' (V)}  of G-maps compatible with the structure maps. A G- 

spect~trn T indexed on b/ is  a G-prespectrum where the structure maps are homeomor- 

phisms. We denote by GT~L/the category of G-prespectra indexed on b / a n d  by GSbl 
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the full subcategory of G-spectra. The forgetful functor l: G,.g/4~GP/4 has a left adjoint 

L: GP/4--*GS/4, called spectrification, given by 

Lt(V)-- li_.m 12w-Yt(w), 
W D V  

provided that the structure maps are closed inclusions; this can always be arranged. 

The smash product of a pointed G-space X and a G-prespectrum t is the G- 

prespectrum {XAt(V)} with the obvious structure maps. For a G-spectrum T, however, 

we need to spectrify to get a G-spectrum back: we define XAT=L(XAIT). Dually, we 

define function G-prespectra F(X;t) as {F(X,t(Y))}. This construction preserves G- 

spectra. We shall often make use of the following duality result: Let Ad(G) be the adjoint 

representation and let HcG be a finite subgroup. Then there is a natural G-equivalence 

EAd(G) F(G/H+, T) ~-G TAG/H+, (1.3.1) 

valid for any G-spectrum T, indexed on/4; see [LMS, p. 89], or [HM1, w Similarly, 

colimits and homotopy colimits of G-prespectra are defined spacewise, but for G-spectra 

we again have to spectrify. Limits and homotopy limits, on the other hand, are formed 

spacewise both for G-prespectra and G-spectra. 

An important difference from the non-equivariant theory is the role of the universe. 

In the discussion above we can replace/4 by the trivial universe/4c and get categories 

GP/4 G and GSU G of G-prespectra and G-spectra, respectively, indexed on ~G. We 

also call a G-spectrum D indexed on /4G a naive G-spectrum or a spectrum with a G- 

action. The forgetful functors j* :GP/4--*GP/4 G and j* :GS/4-~GS/4 G induced from the 

inclusion j:/4G--*/4 have left adjoints j . :  Gp/4G--*G'Pl4 and j . :  GS/4G--~G,S/4. If d is a 

G-prespectrum indexed on/4G and VC/4 is a finite-dimensional subrepresentation, then 

(j,d) (V) = sv-VCAd(VG), 

with the evident structure maps, and for spectra, j.D=L(j.ID). The unit ~: D--~j*j.D 
and counit ~:j.j*T--~T are non-equivariant equivalences but usually not equivariant 

equivalences. We also note that evidently j*F(X,T)~F(X,j*T) which by category 

theory implies that XAj.D~--j.(XAD). For a G-spectrum T indexed on/4, we call the 

spectrum j*T with its G-action forgotten the underlying non-equivariant spectrum of 

T and denote it ITI. We shall often use the following isomorphism of spectra with a 

G-action: 

~: ]T]AG+ idAA)[T]AG+AG+ t tAid * - -  ) j :/'ACt+. (1.3.2) 
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Finally, we recall from [LMS, p. 97], that if T is a G-spectrum indexed on b/and E is 

a G-space which is free in the pointed sense, then the equivariant transfer induces an 

equivalence 

T: j 'TAG E -* j* (E- Ad(G)(TA E))G. (1.3.3) 

From now on, G will denote the circle group. Finite and hence cyclic subgroups of 

G are denoted by C or C~ if we want to specify the order. The topological Hochschild 

spectrum T(A) is a G-spectrum indexed on a complete universe H. We shall mostly be 

concerned with the associated naive G-spectrum j*T(A) which we write TH(A). The 

fact that T(A) is indexed on a complete universe implies in particular that the obvious 

inclusion maps 

F~: TH(A) Cr~ -* TH(A) C8 (1.3.4) 

are companioned by 'transfer' maps going in the opposite direction, 

V~: TH(A) C8 ---+ TH(A)  C~8 . (1.3.5) 

We call these maps the rth Frobenius and Verschiebung, respectively. 

In addition, T(A) is a cyclotomic spectrum in the sense of [HM1, w This implies 

in particular the existence of an extra map 

P~: TH(A)  C~8 -* TH(A)  C~ , 

called the rth restriction. It has the following equivariance property: Let C c G  be a 

subgroup of order r. The rth root defines an isomorphism of groups gc: G-*G/C, and 

we may view the G/C-spectrum TH(A) C as a G-spectrum Q~ TH(A) C via ~c. Then Rr 

is a map of G-spectra 

P~: Q~sTH(A) C~" -* 0~ TH(A) C'. (1.3.6) 

We also define G-spectra 

TR(A)=hol im~TH(A)  C, TR(A;p) =holim -*~cp~TH~c~) (1.3.7) 
R R 

and note that F~ and V~ induce (non-equivariant) selfmaps of these which we again denote 

Fr and V~. Finally, TH(A) is a commutative ring spectrum in a strong sense, see [HM1, 

Proposition 2.7.1]. In particular, for any CcG, the homotopy groups ~.TH(A) C form a 

graded commutative ring. The following relations are proved in op. cit., Lemma 3.3, 

(1) R~(xy)=Rr(x)P~(y), 

(2) Fr(xy)= F~(x)F~(y), V~(F~(x)y)=xVr(y), 

(3) F~Y~=r, Y~F~=Y~(1), 

(4) FrVs = VsF~, if (r, s)=l, 

(5) RrF~ = FsP~, R~V~ = V~P~. 

(1.3.8) 
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We will mainly be interested in the fixed point spectra of TH(A) for the cyclic p-groups. 

When there is no danger of confusion we shall write R, F and V instead of FB, Rp and Vp. 

We shall also write ~.T(A) c instead of 7r.TH(A) C. In [HM1, Theorem 3.3], we proved 

that  

~roT(A) Cp" ~- Wn+l (A), (1.3.9) 

such that  7r0R, Tr0F and ~r0V corresponds to the restriction, Frobenius and Verschiebung 

of Wit t  vectors, respectively. We also recall from op. cit., Theorem 2.2, the cofibration 

sequence of non-equivariant spectra 

TH(A)hcp,, ~ TH(A) Cpn ~ TH(A)C~ n-1 , (1.3.10) 

where TH(A)hc~,,=TH(A)Acp, ECp,~+ is the homotopy orbit spectrum. The spectra in 

this sequence are all TH(A)Cp"-module spectra, and therefore by (1.3.8), the associated 

homotopy long exact sequence is a sequence of Wn+I (A)-modules. The skeleton filtration 

of ECp,~ gives rise to a first quadrant homology type spectral sequence 

E 2 =H.(Cpn; (Fn)*(r.T(A))) ~ 7r.TH(A)hcp,~. (1.3.11) 

This is a spectral sequence of W,~+I (A)-modules in the sense that the Er-terms are bi- 

graded W,~+l(A)-modules and the differentials W~+l(A)-linear. The homotopy groups 

u.T(A) are A-modules which we view as Wn+l(A)-modules (Fn)*(Tr.T(A)) via the iter- 

ated Frobenius Fn: Wn+l (A)---+A. This specifies the W,~+~ (A)-module structure on the 
E2-term. 

1.4. We shall define a differential on ~r.T(A), and more generally, on ~ .D for any 

spectrum D with a G-action. 

We let T be a G-spectrum indexed on L/and consider the Tate construction of [GM], 

f i(G; T) = [EG AF( EG § , T)] G, 

where /~G is the unreduced suspension of EG and the smash product on the right is 

formed in GSL/. A map T--+T' of G-spectra which is a non-equivariant equivalence in- 

duces an equivalence of Tate constructions. In particular, so does the counit s: j.j*T-+T. 
Let C be the standard G-representation. We can take EG to be S(C~)=[_] s (Cn) ,  where 

S(V) is the unit sphere in V, and then /~G is 

s c ~ =  [.J S c~, 
n~l 

the union of the one-point compactifications. We recall Greenlees' 'filtration' of EG, 

c ~ ... _+ s - C  ~ . ' - ~  s - C  2 ~  S O ~ )  S c A ~  S c~ __+ ... __+ S . 
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When we smash with the G-spectrum F(EG+, T) this makes perfect sense and we obtain 

a whole plane spectral sequence 

El=P[s,s-1]| ~ ~r.(H(G;T)); d e g s = ( - 1 , - 1 ) .  

If T is a G-homotopy associative and commutative G-ring spectrum then this is a mul- 

tiplicative spectral sequence in the sense that (E~,d ~) is a differential bigraded alge- 

bra, r>~ 1. This spectral sequence (indexed slightly differently) is treated in great detail 

in IBM] and [HM2]. 

Recall that the obvious collapse maps give an isomorphism 

S 1 ,-~ S 1 S 0 (s), (1.4.1) 

and let o, ~C~r~(G+) denote the generators which reduce to (id, 0) and (0, ~?), respectively. 

LEMMA 1.4.2. The differential dn, " JJn,m~l _.+E1L~n_l, m is given by the composition 

~rm_~(T) ~ Trm_~+I(G+A j*T) " ~ 7(m_n+l(T), 

where the first map is exterior multiplication by a + n~ and the second map is induced by 

the action map. 

Proof. We first show that /~1 is as claimed. The cofiber of i1: S~ c may be 

identified with EG+. Indeed, for any representation s v - ~ S ( R G V )  and we have the 

cofibration sequence 

S i R  ) • D(C) "-+ S i R  ) • D ( C ) U D i R  ) • S(C) --+ (D(R) x S(C) ) / (S iR  ) • S(C)). 

In general, in=ids(n-1)c Ail so the cofiber is EG+AS (n-1)c. The map which collapses 

EG to a point induces an equivariant equivalence 

~ G + / ~  S ( n -  1)c /~ F(EG+, T) ~-c EG+ A S (n- 1)c AT, 

and hence an equivalence of G-fixed spectra. The transfer equivalence of (1.3.3) gives in 

the case at hand an equivalence 

r: E 2G+Ac j*(S (n-1)cAT) - -  j*[EG+ AS (n-1)cAT]c, 

and finally, the left-hand side is isomorphic to IE2S(n-1)CATI =EenlTI, with the isomor- 

phism given by the action map. 
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In order to evaluate the dLdifferential we consider the following diagram of non- 

equivariant spectra: 

j*[EG+AS('~-I)CAT] G 

E2G+ AG S (n-1)c Aj*T  

E2[S(~-I)CATI 

0 , j .[Es(n_I)CAT]G 

0 > (E2S(n_I)CAj ,T) /G 

pr > j,[E2G+AS(n_2)CAT] G 

pr > E3G+AGS(n_2)CAj, T 

E31s(n-2)c AT[. 

1 If we apply zrn+m(-), then dn,,~ is the composite of the maps from the lower left-hand 

corner to the lower right-hand corner. The unit map S~ induces a map of non- 

equivariant spectra 

~: ~21s(n-1)C A T  I _.., E2G+AS("-X)C A j*T, 

which composed with the projection onto the orbit spectrum is the inverse of/2. Moreover, 

the composite 

E21s(n-1)C AT I ~ ~ E2G+AS(n-1)CA j , T  0 ~ E2s(n-1)CA j ,  T pr) E3G+AS(n_2)CA j ,  T 

represents exterior multiplication by aEzrSl(G+). We may write the action map # as the 

composite 

G+AS(n_2)C A j , T  4^1 ~ G+AS(n_2)C A j , T  tw^l ~ S(n_2)C AG+A j , T  

l^t~ s(n_2)C A j ,T ,  

where ~ is given by 

~: G+AS(n_2) c AA1 G+AG+AS(n_2) c 1Art) G+AS(n_2)C. 

We claim that  under the isomorphism in (1.4.1), (r 0) 
~ =  n - 2 ) r l  1 ' 

where the matrix multiplies from the right. It suffices to consider the ease n = 3  where the 

representation is C. For the case n > 3  follows by composition and the case n < 3  follows 

by smashing with S Nc for some N > a - n .  Moreover, when n = 3  we may identify ~ with 

the composite 

D(C)  • S(C)US(C) • D(C)  pr (S(C) • D(C))/(S(C) x S(C))  " ,  D(C)/S(C) ,  

and finally, it is well known that  this map represents rl. [] 

The lemma leaves us two choices of differentials on ~r, (T). For the identification 

7r ,(T)~/~l ,n+,  gives, in general, different differentials for n even and n odd. If D is a 

spectrum with a G-action, we can consider the spectral sequence for T = j , D .  
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Definition 1.4.3. For a spectrum D with a G-action we let 5 be the degree-one 

operator on lr, (D) given by 

5:7rn(n) ")Orn+I(G+AD) ~)Orn+l(n), 

where the first map is exterior multiplication by a C 7rl S (G+) and the second map is induced 

by the G-action. 

One might also want to replace a by ~. However, the operator which results is just 

exterior multiplication by ~ETrls(S~ We note the formula 

56= r/5 =&/. (1.4.4) 

In particular, the two choices of differentials coincide and equal 5 when ~ acts trivially 

on 7r, (D). For example, this is the case if multiplication by 2 on 7c, (D) is an isomorphism 

or if the underlying non-equivariant spectrum of D is a generalized Eilenberg-MacLane 

spectrum, e.g. D=TH(A).  

For later use we record the effect of the isomorphism ~ of (1.3.2) on homotopy groups. 

LEMMA 1.4.5. Under the decomposition 7~, (T A G+ ) ~- ~, (T) @ ~,_ 1 (T) induced from 
(1.4.1), o) 

~ =  id ' 

where 5: 71",_ 1 ( T )  --+71", (T) is the map from Definition 1.4.3 and the matrix multiplies from 
the right. 

Proof. It is enough to prove that  ~22:~r,-l(T)--~Ir,_l(T) is the identity. Since the 

unit and counit of the adjunction j ,  ~ j* are non-equivariant equivalences, we may instead 

study the following map of G-spectra indexed on b/: 

j ,  ITIAG+ idAA)j, ITIAG+AG + ~_~ j , ( j*T)AG+ cA1)TAG. 

We consider the diagram 

j*(j ,  ITIAG+) a 

r lrl 

idAA > > j , ( j ,  IT]AG+AG+)G (r j , (TAG+) G 

(ia,1) ZITIAG+ " ZlTh 

in which the vertical maps are the transfer equivalences of (1.3.3). Both squares are 

homotopy commutative by naturality of the transfer, and finally, the composition of the 

maps in the bottom row is the identity. [] 
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We end this section with a comparison with ordinary Hochschild homology. Recall 

from [HM1, Proposition 2.4] that  the 0th space of TH(A) is naturally equivalent to 

BSkstedt's topological Hochschild space THH(A).  This is the realization of a cyclic 

space with k-simplices 

THH(A) k = holim F(Si~ A... AS ik , A(S  i~ A... A A ( S  ik )), 

ik+l 

where A(S  i) is an Eilenberg-MacLane space for A concentrated in degree i. The set 

of components of THH(A)k is equal to the iterated tensor product A | that  is, 

the k-simplices in the cyclic abelian group HH(A). which defines ordinary Hochschild 

homology. Moreover, the cyclic structure maps are such that  we get a map of cyclic 

spaces 1.: THH(A) . -*HH(A) .  and hence a G-equivariant map of their realizations, 

l: THH(A) --~ HH(A), 

called linearization. It induces an isomorphism of 7rn(-) for n~< 1. 

PROPOSITION 1.4.6. There is a commutative diagram 

7rn(T(A)) z > HHn(A) 

7rn+l(T(A)) z , HH.+I(A) ,  

where l is linearization and B is Connes' operator. 

Proof. Recall that  a simplicial abelian group X. determines a (generalized Eilen- 

berg-MacLane) spectrum X whose 0th space is IX.I. A model for the n th  deloop is 

provided by the realization of the n-fold iterated nerve 

X(n)  = IN ... N X  ....... l, 

where the realization may either be formed by realizing the diagonal simplicial set or 

inductively realizing the simplicial directions one after one; the spaces which result are 

canonically homeomorphic. From this description it is clear that  if X. is a cyclic abelian 

group then each X(n)  is a G-space and the spectrum structure maps are G-equivariant. 

In particular, the G-action gives a map of spectra #: G+ AX---~X. We evaluate the induced 

map on homotopy groups 

H,(a; Z) 
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Let Co be the standard cyclic model for the circle with n-simplices the cyclic group 

C~={1, T~, ..., Tn ~} and structure maps 

diTs [TS_l, i f i + s ~ n ,  
8--1 [~'n-1, if i+s>n ,  

s~T~= ~ "r~+l' if i+s<~ n, 
l _ s+ l  ~ 'n+l, i f i + s > n ,  

Then we may identify the 0th space of the smash product spectrum G+AX with the 

realization of the simplicial abelian group Z[C.]| We write X, for the chain com- 

plex associated with X. and recall that the Eilenberg-MacLane shuffle map provides an 

explicit chain homotopy equivalence 

O:Z[C.],| ~ (Z[C.]eX.) , .  

The forgetful functor from cyclic abelian groups to simplicial abelian groups has a left 

adjoint which assigns to a simplicial abelian group Y. the cyclic abelian group FY. with 

n-simplices 

FYn = Z[Cn] | 

and cyclic structure maps 

di(TS| = ~-S_l| , if i+s <~ n, 
( 8--1 7n_l@di+sy , if i+s>n ,  

si(T~@y) = ~ T~+l@si+Sy' if i+s <. n, 

t s + l  Tn+l@Si+~y , i f i + s > n ,  

tn( :ey) = Uley. 

Here all indices are to be understood as the principal representatives modulo n + l .  Al- 

though FY. and Z[C.] | have the same n-simplices they are not isomorphic as simpli- 

cial abelian groups. However, their associated chain complexes are canonically isomor- 

phic, the isomorphism given by 

h:FY,~(Z[C.]@Y.) , ,  h(T.~| 

Finally, if X. is a cyclic abelian group, then #, is given by the composite 

p , : Z [ C . ] , e X ,  h| Z[C.], |  e (Z[C.]eX.) ,  h-1 ) ) FX ,  ~ X,, 
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where e: F X . - * X .  is the counit of the adjunction. 

When X. =HH(A) .  is the cyclic abelian group which defines Hochschild homology 

of A one readily calculates 

n 

( - 1 ) n i l | 1 7 4  |174  =Z . . . .  

i = 0  

This is the usual formula for Connes' B-operator,  cf. ILl. [] 

We note that  by [HKR], (HH,(A/k) ,  B)-~(~*A/k, d) when A is a smooth k-algebra. 

1.5. Suppose that  A is an Fp-algebra. We may take D=ob~TH(A)Cp" in Defini- 

tion 1.4.3 and get a map 

~: ~r,T(A) Cp~ ~ r ,+IT(A)  C,~ . 

We know from [HM1, Proposition 5.4] that  TR(Fp;p)=HZp,  the Eilenberg-MacLane 

spectrum for the p-adic integers concentrated in degree zero. Hence TH(A) C~ is also 

an Eilenberg-MacLane spectrum. For it is a module spectrum over TR(Fp;p)  and any 

module spectrum over an Eilenberg-MacLane spectrum is again Eilenberg-MacLane. It 

follows that  ~o$=0 such that  ~ makes r,T(A)Cp" a graded commutative DGA over Z. 

Moreover, (1.3.6) shows that  the restriction map R is a map of DGA's. We get a new 

limit system of DGA's over Z, 

ror(A)C,2 e > rtT(A)C,2 e >.1r~T(A)C,2 e > ... 

roT(A)C,  e > r l T ( A ) C ,  e >v2T(A)C,  e > ... 

roT(A) ~ , t i T ( A )  e > r2T(A)  e > ... 

and roT(A)Cp ~-1 =Wn(A).  It remains to prove two of the relations in (1.2.1). 

LEMMA 1.5.1. Let A be a ring. Then Fr~Vr=~+(r-1)r  I. 

Proof. We consider the basic case s = l ;  the general case is similar. Let us write 

T = T ( A )  and C=C~. We have an isomorphism of spectra with a G/C-action 

j*T  c ~ F(G/C+ j ' T )  a 
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where the (left) G/C-action on the spectrum on the right-hand side is induced from the 

(right) action by G/C on itself by multiplication. Moreover, the duality equivalence of 

(1.3.1) gives 

F(G/C+,j*T) G ~_ E-lj*(TAG/C+) G, 

and one verifies readily that the duality map is G/C-equivariant, when we give the 

spectrum on the left the (left) G/C-action induced from the action by G/C on itself by 

Cleft) multiplication. Let ~ denote the composition 

G/C+Aj,(TAG+) a Pr>G/C+Aj,(TAG/C)G ~ j,(TAG/C+) a pr'> j,(TAG+)G, 

where pr ! is the equivariant transfer associated with the projection pr: G--*G/C. It 

follows from [HM1, Lemma 8.1] that F~SVr is equal to 

lr. ((TAG+) a) --if-* 7r.+l (G+ A (TAG+) a) OcAl> 7r.+1 (G/C. A (TAG+) a) 
c ~  

We claim that ~ is homotopic to the composition 

G/C+Aj.(TAG+)G ~A1 G+Aj,(TAG+)G ~_~ j.(TAG+)G, 

where ~-: E+G/C--+E+G is the ordinary non-equivariant transfer of the r-fold covering 

G--*G/C. Granting this for the moment, the fact that under (1.4.1), 

( ,  0) 
T ~ 

r--1)r 1 

shows that F~dV~=d+(r-1)~ as stated. To prove the claim we consider the two sub- 

groups of G x G given by 

Cl={(x, 1) l x 6 C  }, A={(x ,x -1) lxEC}  

and note that A N C1 ---- 1 and AC1 = C x C. Let I XI denote the underlying non-equivariant 

space of the G-space X. Then we have a G-homotopy commutative diagram of equi- 

variant suspension spectra 

  (ICl xG)/C1 > ~+(IG[ xG)/(CxC) " > Y]~G/C 

r, lalxG , r, (lalxG)/A , r, G. 

(1.5.2) 
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For in the diagram 

c 

(lalxa)/c  . ( l a l • 2 1 5  " , a / c  

IGI• ,~e ~ (IG[xG)/A ~ >G 

both squares are pull backs. Moreover, the equivariant transfer T C1 is G-homotopic to 

TAI: IEC~[G/CIAI3~ E~}GIAIETG 

by [LMS, IV.5.3]. Finally, we note that  in (1.5.2), pozr~ is equal to the multiplication 

#: IG[ xG---*G, and now the claim follows from the commutativity of (1.5.2) upon taking 

G-fixed points. [] 

We shall need some facts about the multiplicative structure of topological Hochschild 

which we now recall, see also [HM1, 2.7]. There are G-spaces THH(A(n);S~), n~0 ,  

together with a transitive system of G-equivariant maps 

#re,n: THH(A('~); S'~)ATHH(A('~); S n) --* THH(A(m+n); sm+~), (1.5.3) 

where G acts diagonally on the left-hand side. When n>~l there is a natural chain of 

equivalences 

TH(A) (0) *-- THH(A) ~ f~ THH(A(1); S 1 ) ~ holim f ~  THH(A(m);S m) 
I 

~_ ftn THH(A(n); S'~), 

where TH(A)(0) denotes the 0th space of TH(A). The last two maps are equivalences 

by the approximation lemma, see [B61, 1.6] or [Ma, Lemma 2.3.7]. More generally, 

the induced map of C-fixed sets is an equivalence for every finite subgroup CcG. In 

particular, we have a canonical isomorphism of groups 

7r, T(A)C~--Tr,(ft'~THH(A(~);sn)C), n>~ 1, 

and under this isomorphism the maps #, , ,  make zr, T(A) C a graded commutative ring. 

When n=O we have 

THH(A(~ ; S ~ _-_ INkY(A). [. 

The right-hand side is the cyclic bar construction of A considered a pointed monoid under 

multiplication with 0EA as basepoint, cf. [HM1, w and w below. It is a commutative 
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topological monoid under the product #0,o. Moreover, there is a canonical G-equivariant 

map 

tn: THH(A(~ S ~ ~ ~ THH(A(~); Sn), 

for every n~>0, and the diagram 

cy cy IN?, (A).IAIN~ (ALl 

l /to,o 

INkY(A). I 

~-~^~ > ft THH(A(m); S'~)Af~ '~ THH(A(n); S ~) 

~-~+~ ~ ~tm+ n THH(A(m+n); S re+n) 

commutes. In particular, we obtain a multiplicative map on the level of homotopy groups 

t: 7r, ([N~Y(A). [c) ~ ~r,T(A)C. (1.5.4) 

Next, recall from [HM1, w that  there are equivariant homeomorphisms 

iNkY(A).[ / " c  [(sdcN~Y(A).)c[ D O,c[g~y(A).[c ' 

where, we remember, Oc: G---*G/C is the root isomorphism. They are multiplicative 

by naturality and induce multiplicative isomorphisms on homotopy groups. Composing 

with (1.5.4) we obtain a multiplicative map 

w: 7r, (INkY(A). [) ~ 7r, T(A) C. (1.5.5) 

When *--0 this is the Teichmfiller map A--~W(r)(A), by [HM1, Addendum 3.3]. 

LEMMA 1.5.6. Suppose that A is a ring. Then Frhx=x~-ldx for all xEA.  

Proof. We again restrict ourselves to the case s =  1 leaving the general case to the 

reader. It suffices to prove that  the diagram 

G+ AN~Y(A)o Do~c cy iC ecAid G+AIN ~ (A). :, G/C+AIN~Y(A).[ C 

lincl I t  t 

G+ A [ N~Y(A). ] [ N~Y(A). iv 

1(~-~, ~d) 1 ~ 
cy cy /zAl> cy cy /Zo,0 cy 

:" IN~ (ALl G'+ A IN?, (A).IAIN,:, (ALl I A IN?, (ALl IN~ (A). 

(1.5.7) 

is homotopy commutative. Here # is the action map, P r - 1  is induced from the ( r - 1 ) s t  

power map on A and F is the obvious inclusion map. To this end we note that  the 
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composition of the maps in the top row and the right-hand column is equal to the 

composition 

G+AN~Y(A)o idAincl G+AIN~Y(A). ] id^Ac G+AI(sdcN~Y(A).)C ] 

i(sdcN~Y(A).)c[ F [ cy D sdcN~ (A). I , INkY(A).[. 

The (non-simplicial) homeomorphism D: ]sdcN~Y(A). I--~IN~Y(A).I is homotopic to the 
cy realization of the simplicial map sdcN~ (A).---*N~Y(A). which in simplicial degree k is 

d(r-1)(k+l) given by the iterated face map ~0 . This fact, true for any simplicial space X., 

follows from the proof of [BHM, 2.5]. Now let C~ be the standard cyclic model for the cir- 

cle as recalled in the proof of Proposition 1.4.6 and consider the diagram of simplicial sets 

(if there is more than one simplicial direction the diagonal simplicial set is understood), 

c y  �9 C. A (sdc N~Y(A).) C C.AN~ (A)0 ) C. AN~Y(A). i d A A c  

c .  A (sac 

C .  cy cy t r a id  AN~ (A). AN~ (A). ) N~Y(A). AN~r ,o,o ) N~,Cy(A).. 

One verifies by inspection that this commutes. Therefore (1.5.7) is homotopy commuta- 

tive; compare with the proof of Proposition 1.4.6. [] 

The universal property of the de Rham-Witt  pro-complex immediately gives 

PROPOSITION 1.5.8. Suppose that A is an Fp-algebra. Then there is a natural map 

I: WnQ*A ~ 7r.T(A) Cp~-I , 

such that R I = I R ,  F I = I F ,  V I = I V  and 5I=Id, and such that for *=0, I is the iso- 

morphism of (1.3.9). [] 

The homotopy groups of TR(A; p), which we denote TR. (A; p), are given by Milnor's 

short exact sequence 

0 ~ li_m(1)~r.+lT(A) c ~  --* TR. (A; p) ~ li_mr.T(A) C~ --* O. 
R R 

Therefore, if the derived limit on the left vanishes, (1.5.5) defines a natural map of 

complexes 

I: W~2:4 --* wa .  (A; p), (1.5.9) 

where the differential on TR.  (A; p) is given by Definition 1.4.3. 
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2. S m o o t h  a lg eb ra s  

2.1. Let k be any ring. We recall that  a k-algebra A is said to be smooth if it is finitely 

presented and if every k-algebra map A--~C/N into the quotient of a k-algebra C by 

a nilpotent ideal N has a lifting to a k-algebra map A--~C. If there is at most one 

such lifting, A is called unramified. A k-algebra is dtale if it is smooth and unramified. 

Equivalently, A is smooth if there exist relatively prime elements f l , - . . ,  fs E A such that  

AI~ =A[1/fi] is an ~tale extension of a polynomial algebra in finitely many variables 

o v e r  k ,  

k[X1,..., X~] ~ A A. 

See for example [L, appendix]. To prove Theorem B we first calculate TR. (A;p)  when 

A is a polynomial algebra over Fp. The proof in the general case is a covering axgument 

based on the second characterization of smoothness. So let A denote Fp[Xl,  ..., Xn]. We 

first recall the description of W. D~ from [I, 1.2]. 

Consider the ring 
- r  - r  

]. 
r 

The formula dX k -~ k X  kd log X shows that  any ~ E 12~/Q~ may be written uniquely 

w= ~ ai~ ..... i~(X)dlogXi~. . .dlogXi~,  (2.1.1) 
i l < . . . ( i m  

such that  each ail,...,i,~(X)EC is divisible by X P S  ... XPs 8 for some s~>0. We say that  

w is integral if the ai~ ..... i,~ (X) have their coefficients in Zp and let 

E*c nS/q  (2.1.2) 

be the sul~DGA of those forms w such that  w and dw are both integral. If we write w as 

in (2.1.1), then the formula 

F(w)---- ~ ail,...,im(XP)dlogXil...dlogXim 
i l  <.. .  < im  

defines an automorphism of ~5/Qp considered as a graded ring. We let V=pF -1 and 

note that  F and V restrict to endomorphisms of E*. Moreover, the Teichmfiller map 

w: Fp-~Zp extends to a multiplicative map w: A - * E  ~ specified by w(Xi)=Xi.  

We filter E* by the DG-ideals 

Fil r E m = VrE m + dVrE m- 1 



22 L. H E S S E L H O L T  

and consider the quotient DGA's 

E~ = E*/Fil  ~ E*. 

The operations F and V restricts to F:E*--*E*_ 1 and V: E*--*E*+I, respectively, and 

we let R:E*-~E*_  1 be the projection. The formulas (1.2.1) are trivially verified, and 

moreover, one may prove that  E~ such that  R, F and V correspond to restriction, 

Frobenius and Verschiebung, respectively. 

THEOREM 2.1.3 (Deligne). The canonical map W.~*A-*E* is an isomorphism. [] 

Let Ni l /p]  be the monoid of non-negative rationals with denominator a power of p 

and let 

K = N[1/p] n (2.1.4) 

be the n-fold product. We grade E* over K as follows: C is a K-graded ring in an 

obvious way and we call an m-form w written as in (2.1.1) homogeneous of degree k if 

the ail ..... i~ (X) are so. We note that  R and d preserve the grading after k whereas F 

(or V) multiplies (or divides) the degree by p. Let 

k E * c E *  (2.1.5) 

denote the subgroup of E* of homogeneous elements of degree k and let kE* be the image 

of kE* in E*. It is proved in [I, 1.2.8] that  kE rn is a f.g. free Zp-module and an explicit 

basis is given. We recall how this basis is defined. 

We fix k E K and let 

Ira = { / =  (il, ..., ira) 11 ~<i8 ~<n and k~ ~0}.  

Reordering if necessary we may assume that  v(kl)<~...<~v(kn), where v ( - )  denotes the 

p-adic valuation. Fo r /EI ra  fixed we let 

1, 

to : p - v ( k l )  X~l, i l[ ,  

tx ,l , [ , [  

t ,  = p-V(kl,) X~i ~ i~ , j ,  
~ ~ -  t 

if il = 1 ,  

if il > 1 and v(kl )  < O, 

if il > 1 and V(kl) ~ 0, 

for l ~ s ~ m  with v(ki~) <0 ,  

for 1 ~< s ~ m with v(ki~) >1 0, 

(2.1.6) 

where k _ X s - l - I i e 8  X~ ~ for S C  [1, n] and [ira, im+l [----[ira, n]. We define 

e (k) e kEm (2.1.7) 
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by the formula 

Then by [I, 1.2~8], 

ei-(k)=to l'I dts H uPV(kls)-ldus" 
l~s~m l~s~m 

v(k~)<0 v(ki~)>>.O 

kEm = Zp(q(k)  I i e Ira). (2a.8) 

We also recall the description of kE~  from [I, 1.2.12]. Let s=s(k)=-min{v(ki)} and set 

Then 

r-8, 

v = v ( r , k ) =  O, 

r, 

if s >0,  r>s,  

if s > 0 ,  r~s ,  

ifs~<0. 

kEF = Z/p  v (q(k)  l i ~ Ira). (2.1.9) 

We note that  k E m is non-zero if and only if v(r, k)>0 and 1 ~< m<.n. We shall also write 

kWrfl~ for kE*. 

2.2. In this section we evaluate ~r.T(A)Cp d. We recall that,  for any monoid F, 

Waldhausen has defined its cyclic bar construction N Cy(F). This is a cyclic set in the 

sense of Connes, and therefore, the realization carries an action by the circle G, see for 

example [J] or [L]. Let (X1, ..., Xn) be the free abelian monoid on the listed generators. 

Then we proved in [HM1, Theorem 7.1] that  there is a canonical equivalence of G-spectra 

indexed on H, 

T(A) ~-a T(F , )  A IN.cY ((X1, ..., Xn))[+, (2.2.1) 

where the smash product is formed in GSH. Taking cyclic nerve and realization commute 

with finite products, so we have a G-equivariant homeomorphism 

INCy((x1 ,  ..., X~))[-----G IN.cY((X1))I • . . .  x IN.~Y((X~)) I . 

We now note that  as a cyclic set 

N:Y((X) )  : H N:Y((X) ;  1), 
~>o 

(2.2.2) 

where Ncy((x);I) is the cyclic subset whose k-simplices is the tuples (Xi~ ..., X ik) with 

io+...+ik=l. In particular, Ncy((x}; 0)=*. We let Sl(1) denote S 1 with zEG acting as 

multiplication by z t. 
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LEMMA 2.2.3. SI(/) is a strong G-deformation retract of INCY( (X); l)I. 

Proof. As a cyclic set Nc.Y((X);l) is generated by the (/-1)-simplex (X,. . . ,X). 

Therefore the realization is a quotient of standard cyclic (/-1)-simplex A 1-1, [J]. In 

fact, 

IN.~Y ((X); l)l = hl-~/C,,  

where the generator of C~ acts as the cyclic operator vl-1. As a G-space A z-1 ~$1•  A 1-1 

with G acting by multiplication in the first variable. Moreover, the homeomorphism may 

be chosen such that Tl-1 acts as 

T I - - I ( Z ;  •0, "", U l - 1 )  = ( Z ~ / 1 ;  Ul ,  ..., U l - 1 ,  U0), 

where ~z=exp(2~ri/l), see [HM1, 7.2]. Hence the inclusion of the barycenter in A z-1 

induces a strong G-equivariant deformation retraction S1/CI--~ I N.CY((X); 1)l. Finally, 

SI(1)-~S1/Cz by the / th  root. [] 

Let l=  (/1, ..., ln) be a tuple of non-negative integers and let (li~,..., lij) be the sub- 

tuple of positive integers. We have shown that 

T(A)  "G V T(Fp)A (S 1 (lil) x.. .  x S 1 (lij))+, 
l E N  n 

and restricting to the trivial universe we get 

TH(A)_~G V J*(T(Fp)A(SI(li~) x...  x Sl(lij))+). (2.2.4) 
IEN" 

The splitting being G-equivariant induces a similar splitting of Cpd-fixed points and 

the maps F, V and 5 preserve this splitting. The restriction R maps a summand 1 to 

the summand l ip if p divides l and annihilates the remaining summands. This follows 

from [HM1, Theorem 7.1]. We write e=min{v(/i)} and for d~>l we let w=w(d , l )=  

min{d, e}. 

PROPOSITION 2.2.5. Let l and d be as above. Then 

j*(T(Fp)A(SI( l i l )  x ... x Sl(lij))+)cp d ~ T H ( F p ) C ~ A ( S ~ q  x ... x S 1 )+, - -  c~ij 

where the ai. are dummies. 

Proof. For any G-spectrum T indexed on/4 and any C-trivial G-space X we have 

an equivalence of G/C-spectra indexed on/4  c,  

(T AX)C ~-- G/c T c  AX" (2.2.6) 
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In the case at hand this shows that  

(T(Fp) A (S I (lil) • • S* (lit))+)c ~--G/C T(Fp)CA (SI (lil) • • S I (1% ))+, 

whenever CcCp~. The proposition follows when d<.e. We consider the remaining case 
d>e where we write T=T(Fp) and C=Cpe. From (2.2.6) we have 

j* (TA ( S  1 (lil) X . . .  X S 1 (lij))+ )Cpd ~ j .  (TCA (S 1 (lil) x.. .  x S 1 (li t))+)cP"/c, 

where now Cp~/C acts freely on S 1 (li~)x ... x $1 (lit). Hence by (1.3.3), 

j* (TCA ( S  1 (lil) X... X S 1 (lit))+) C~~ ~ j .TCAcp,/c ( S1 (lix) x...  x S 1 (li t ))+. 

Suppose first that  li=p e for some i. Then SI(li)~-G/C by the peth root, so (1.3.2) 

provides a G/C-equivariant isomorphism 

j*TCA (S I (lil) x... x S I (lit))+ ~- ITCA (S I (li~) x... x S I (li-"~ x... x S I (lit))+ ]A S I (li)+, 

(2.2.7) 

and finally, SI(Ii)/(Cp~/C)~-S 1 by the pd-*th power map. In the general case, where 

li---p*m with ( m , p ) = l ,  we use that  the mth  power map 

P m : S l ( p e ) ~ s l ( / m ) ,  Pm(z)=z m, 

is G-equivariant with cofiber a Moore space for Z/m. Since T(Fp) C is a p-local spectrum, 

Pm induces an equivalence 

TCAcp~/c ( S1 (lil) x...  x S 1 (li) x... x S 1 (li~))+ 

~- TCAcp,/c (S' (lil) x... x S 1 (pe) x... x S 1 (li~))+ 

and we are back to the special case. [] 

We compare the graxiings of (2.1.5) and (2.2.4). Let k 6 K  and r~>l and suppose 

that  v(r, k)>0. Then l=pr-lk  is an n-tuple of non-negative integers. On the other hand 

we obtain all n-tuples of non-negative integers this way. Therefore, if we write 

kTH(A)Cp ~-~ = j* (T(Fp) A (S 1 (li~) x...  x S 1 (li~))+)cpr-' 

then we may write (2.2.4) as 

TH(A) C~-~ -~ V kWH(A) C~-~, (2.2.8) 
kEK 

v(r,k)>O 
with v=v(r, k) as in (2.1.9). From Proposition 2.2.5 we get 

1 )+, kTH(A)C, ~-~ ~--TH(Fp)C,~-~A(SI x...xS~,~ 

and hence, the homotopy groups become 

~. (kTH(A) cp~-~ ) ~ Sz/p~ {a~} | {*i~, ..., *ij }, (2.2.9) 

where deg(ar)=2 and deg(,i~)=l. Let us note that in the grading after k the restriction 

R and the differential 3 preserve the grading whereas F and V multiply and divide by p, 

respectively. 
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2 . 3 .  

elements 

We use the isomorphism (1.3.9) and the formulas (2.1.6) and (2.1.7) to define 

gi(k) e 7r, (kTH(A)Cp ~-~ ). 

Concretely, we assume that V(kl)<....<.v(kn) and let 

if il = 1, 

i f i l  > 1 and V(kl) <0,  

if il > 1 and V(kl) ~> 0, 

for 1 <~s<~m with v(ki~) <0,  

for l<<.s<<.m with v(ki,) >~ 0, 

1, 

ao = p-.(k,~)X~ 1'i~[' 
k 

X[ 1 , Q[ ,  

-v(k, s) ..k as =p A__[i,,i,+l [, 

T p-~(a i~)k  

k k~ where X s=Hies  X i  for SC [1, n] and [ira, ira+l[ = [ij, hi. Then 

gi(k) E ~rm(kTH(A) cpr- '  ) 

(2.3.1) 

(2.3.2) 

is defined by the formula 

gi(k) = a0 H 5as H ~ ' (k")- lSbs" 
l<~s4rn l<~s<~rn 

v(k~,)<0 v(k,s)~>0 

By definition, I(ei(k))=gi(k), and the calculations in w above show that Theorem B 

will follow in the case of a polynomial algebra over Fp given 

PROPOSITION 2.3.3. The gi(k) generate the subgroup 

of 7r.(k TH(A)Cp ~-~ ). 

7r. (~ (kTH(A) Cp'-1 ) = Az/p, {Lil,..., Lit } 

Proof. We already know that this is true when v(kl)~O and r=l.  For by Proposi- 

tion 1.4.6 the composite 

~*A ~ ~r,T(A)-* HH, (A) 

is the isomorphism of [HKR]. The case v(kl)>~O and r > l  follows similarly because the 

iterated restriction 

maps generators to generators. So we are left with the case v(kl)=-s<O. Again the 

iterated restriction Rr-s-I:kWr~*A---*kWs+lQ* A maps generators to generators, so we 
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may assume that  r = s + l .  This has the advantage that  kWs+l~*A is an Fp-vector space, 

cf. (2.1.9). 

We first take m = l  in (2.3.2). When i1=1 we have 

and p~X k generates 7r0 (kTH(A)Cp ~ ) ~Fp.  Recall that  by definition 

x k) = ), x k ) ,  

where #~ is the composition 

kTH(A)C~AS I idAo kTH(A)C.~A(S1/Cp~)+ ~ kTH(A)C~ 

and aeTrS(S+ 1) is the generator from (1.4.1). From (2.2.7) we have the G/Cp~-equivariant 
equivalence 

kTH(A) c~ ~- IT(Fp) A (S 1 (/2) • • S 1 (/j))+ [A (S1/Cp ~)+. 

It follows that  gi~(k)6~rl (kT(A) cp~ ) is a generator. 

When i1>1 and v(kil)>~O we have 

, ~v(~il) --i~. 
gii ( k ) = ao~1 ooi , 

cp ~ are where ao E~ro(ki~,~tTH(A) ) and ~'(k~)-lSbl 6~rl (kE~,nl TH(A)Cp8 ) both generators. 

We show that  gi~(k)E~rl(kTH(A)Cp ~ ) is a generator. Recall that  

k 1,,1ETH(A) cp8 = j .  (T(Fp)A (S 1 ill) •  • ~ 1 ~ / 1  ) ) . ) C P ' ,  

kEq ,~1TH(A) C'~ = J* (T(Fp) A (S 1 (lil) x... • S 1 (lj))+)CPS, 

where li=pSki. Hence v(/1)=0 and as demonstrated in the proof of Proposition 2.2.5 we 

may assume that  /1=1. For notational reasons we shall further assume that  i 1 = j = 2 .  

We shall also write T=T(Fp) and C=Cp~. We must evaluate the multiplication map 

j* (TAS '  (ll)+)CAj * (TAS 1 (/2)+)c--~ j* (TA (S 1 (ll) x S 1 (/2)) +) C (2.3.4) 

under the equivalences of Proposition 2.2.5. Recall from [LMS] that  the equivalence 

of (1.3.3) 

~-: j*TAcSI(l l)+ - ~  j*(TASI(ll)+ ) c 
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is the adjoint of the equivariant transfer ~: j 'TAG S ~ (l~)+ ---* j* (TA S 1 (/1)+) and consider 

the diagram 

j* (T AS 1 (/1)+ AT AS 1 (/2)+) 

( j*TAS 1(11)+ A j * T A S  1 (12)+)/C 

I 1AF s 

j *TAc  S 1 (/1)+ A j ' T e A S  1 (/2)+ m ! 

~- j* ( T A  (,..ql (/1) X S 1 (12))+) 

,. j * r / x c  (S ~(l~) x S ~(&))+ 

,. j * r / x c  (S  ~ (11) x S ~ (12))+ 

ITI A (S' (lt)/C)+ A ITClAIS ~ (12)+ 1 %  ITI A ((S' ( l ,) /C) x I S~ (Z2)I)+ 

ITI A (S' (l~)/C)+ A j*TCAS 1 (/2)+ 

where the map m' first includes ITC[ in IT I and then multiplies. The map in the top 

row induces (2.3.4) on C-fixed sets. Moreover, the composition of the maps in the left- 

and right-hand columns induces the equivalences of Proposition 2.2.5 which identifies 

the left- and right-hand sides of (2.3.4), respectively. Now the top square is homotopy 

commutative by naturality of transfer and the bottom square commutes because the 

multiplication m: TAT---*T is G-equivariant when G acts diagonally on TAT.  Therefore, 

it follows that under the equivalences of Proposition 2.2.5 the multiplication (2.3.4) may 

be written 

ITI A (S 1 (/1)/C)+ A j*TCA S 1 (/2)+ ~-~' ITI A (S 1 (ll)/C)+ A ITCIA IS 1 (/2)+ I 

1AF') IT[ A (S 1 (/1)/C)+ A IT 1 A IS 1 (/2)+ [ 

" ,  ITIA((St(II)/C) x IS~(Z=)l)+. 

The element 

a0 | ~ (~1  )-l$b 1 e r l  ([TI A ( S  1 (/1)/C)+ A j ' T e A  S 1 (12)+) 

is fixed by the isomorphism (~21),. Moreover, 

F':  :,rl(lTC[ A 5't (/2)+) --+~h(ITIASI(12)+) 

maps generators to generators. For FS: lroTC---*~roT is the reduction Z/pS+l----~Fp. Fi- 

nally, the multiplication m:TAT---*T induces an isomorphism on r0( - ) ,  and hence 

gi~(k) e~h (kWH(A) cp') is a generator. 
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The case i1>1 and v(kit)<0 requires some extra work. We have 

g i l ( k )  = a o S a l ,  

and a0 6 7r0 (k[1,11 [TH(A) cp. ) and/fa l �9  71"1 (~[il,n] TH(A) cp~ ) are both generators. We prove 

that gi~(k) is a generator under the same assumptions as above, i.e. 11=1 and 12=j=2. 

The general case is similar. We again write T = T ( F p )  and C=Cp~, and let C'=Cp,(~2) and 

C = C / C q  We also let j l :  L/c'--~L/and j2:14c---*14 C' and J3:L/G---~/4 c be the inclusions 

such that j=jaoj2oj l :  LtG~bl .  Then the diagram 

j,(TASI(II)+ATASI(12)+) m 

T ~-F 

"* "* "* 1 "* 1 ! m 3332(j1TAS (h)+A31TAS (&)+)/C 

T 1 A F  s 

"* "* '* 1 "* C' 1 m '  3332(31TAc, 8 (/1)+A21T AS (/2)+) 

l .g, 

j~ ( j~j~T Ac, 81 (ll)+ A j~j~T C' A S ~ (&)+ )/O 

" j * ( T A ( S  1 ( / 1 )  x S 1 ( / 2 ) ) + )  

�9 * "* "* 1 8 1  >3332(31TAc'(8 ( / 1 )  x ( / 2 ) ) + )  

"* "* "* 1 8 1  " 3 a 3 2 ( A T A c , ( S  (/1) X (/2))+) 

l .g, 
r 

m > j~ ( j ~ j { T A c  (S 1 (11) x S 1 (/2))+) 

is homotopy commutative by naturality of transfers. The spectra in the left column are 

G x G-spectra which we consider G-spectra via the diagonal A: G---*G x G. Let us write 

A (or A') for the image of C (or C'). Then the transfer T C' (or re,) of G-spectra is equal 

to the transfer T~' (or ~'~,) of G x G-spectra. Moreover, 

TC, A-r c, ~ T ~ ,  o T c x c 

as maps of G x G-spectra 

j , TAcS I ( I1 )+Aj ,TC 'AvS I (1 2 )+  . . . . . .  1 ., c'  1 ---~2322(21TAc, S (/1)+A31T AS (/2)+). 

Finally, we consider the diagram 

[ T [ A ( S I ( l l ) / C ) + A I T C ' I A ( S I ( & ) / ~ )  + ~^e , j*TAcSI( I1)+Aj*TC'AcSI(12)+ 

([T[A(SI( l l ) /C,)+AITC,]ASI(12)+)/C ~Ar . . . . . .  1 .* .* C' 1 -- 3 3 0 ~ A T A c ,  S (h)+A3231T AS (12)+)/C 

ITIA((SI(l l) /C)• ~,2 , j ~ ( j ~ j f T A c ( S l ( l l ) x S l ( l ~ ) ) + ) .  
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Again the top square homotopy commutes by naturali ty and m" is defined to make 

the bot tom square commute. Our analysis so far shows that  under the equivalences of 

Proposition 2.2.5 the multiplication map is equal to m'oT c•  One may argue as in the 

previous case that  m ~t maps generators to generators on 7rl ( - ) .  Therefore it will suffice to 

show that  T C• maps the generator ao| non-trivially. To see this we note that  T C• 

is homotopic to the identity on IT[A [TC'[ smashed with the ordinary (non-equivariant) 

transfer associated to the p~-fold covering 

prC• (S lx  (s l /c / ) ) /A  ~ (S lxS l ) / (CxC) .  

The homology of the base is 

g .  ((S 1 • S l ) / (C  • C); F,) ~ g .  (SVC; F~) |  (SVC; Fp) - hrp {~1 } | {t~ }, 

and TC•174 is non-trivial if and only if the homology transfer of l |  is non- 

trivial. We have a pull-back square 

(S7C)  • ') ~ > (S~• ( S T C ' ) ) / ~  

t l • pr~, lpr C x c 

(SI/C) x (S1/C) ~ (S 1 • Sx)/(C x C), 

where ~ is the homeomorphism given by ~(zl, z2)--(zl,  ZlZ2)- On homology 

trfC,(1) = p = 0 ,  trfC,(t) = t, 

and therefore 

( l | 174  ---- (1|  = 1@~2, 

which is a generator. This shows that  gil (k) is a generator. 

We can now prove that  the gil(k) generate 

7r~ ~ (kWH(A) Cp~ ) -~ Fp(~l, ..., Ljl. 

We have seen that  the gil (k), il =1,  ..., j ,  are non-trivial. However we have proved more, 

namely that  

ts e FAg~ (k), ..., gj (k)) 

if and only if i<.s. This concludes the proof in the case where m = l  in (2.3.2). 

The general case is similar. Again one proves that  the gi (k) , /CI ,~ ,  are non-trivial. 

The argument is only notationally more involved than the argument above. We have 

from (2.2.9), 

7r(m~ ~ ) '~ Am (Fp (tl, ..., ~j)). 
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Finally, one orders I,~ lexicographically to see that  

~)(kTH(A)  C~ ) ~- Fp(gi(k) l i e Ira) 

as claimed. [] 

2.4. The proof of Theorem B in the general case is a covering argument based on 

the fact that  in a smooth k-algebra A one can find relatively prime elements f l , . . . ,  fs 

such that  A/i =A[1/fi] is an @tale extension of a polynomial algebra in a finite number 

of variables, 
k[Zl,...,Zn] @tale A (2.4.1) 

. ~ f l .  

We first study @tale extensions. 

LEMMA 2.4.2. If f: A-~B is an dtale extension of Fp-algebras then 

~,T(B) -~ B| T(A). 

Proof. Recall the spectral sequence used in [B52], 

E2(B)=HH,(As)  ~ AQT,(B), (2.4.3) 

where .AB=HS, peC(HB; Fp) is the rood p spectrum homology of the Eilenberg-MacLane 

spectrum for B and ~4=.AFp./~s an algebra ~4B~--B| For the Hurewitz map induces 

a multiplicative homomorphisr~ 

B -- 7c, HB ~ Hs, pec(HB; Z) ---* Hs, pec(HB; Fp) -- -AB, 

and so does the unit map FB-*B. The ring homomorphism B |  is an isomor- 

phism because B as an abelian group is an Fp-vector space and because spectrum ho- 

mology commutes with sums. When B is an A-algebra we get 

AB ~ B| 

as Fp-algebras. We have a Kiinneth formula for Hochschild homology, 

HH, (As)  = HH, (B) |  (A), 

and similarly with A in the place of B, cf. ICE, p. 204]. The lemma may now be deduced 

from the fact that  for @tale extensions HH,(B)-~B| This result seems to have 

been proved in a varying degree of generality by a number of people. A well-written 

account is [WG]. In the case at hand we get 

HH, (As)  ~ B| 

Since (2.4.3) is a spectral sequence of B-algebras, E~(B)~BQAE~(A) ,  and hence 

AQT, (B)~-AQB| (A). The last step uses that  the filtration of the actual homology 

groups induced from the spectral sequence is finite in each degree. [] 
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PROPOSITION 2.4.4. I f  f :  A--~B is an dtale map of Fp-algebras then the canonical 

map 

W~ (B) | c~-1 ~ 1r*T(B) C~-1 

is an isomorphism. 

Proof. The proof is by induction on r with the case r =  1 proved in Lemma 2.4.2. 

In the induction step we use the long-exact sequences of W~-modules induced from the 

cofibration sequence (1.3.10). We get a diagram in which the rows are exact, 

> r m T ( A ) h c r _ l  N �9 rmT(A)Cp~_l R > ~rmT(A)Cp~_2 > ... 

1 1 1  
, N ,   mT(S)C, _l R �9  mT(B)C,r_, , . . . .  

For an ~tale extension of Fp-algebras one has W r ( B ) |  and 

therefore, 

W~(B)|  T (A)  C~-2 =~W~ - l(B)|  -1 (A)r.  T (A)  C'r-" �9 

Hence, to prove the induction step, we must show that  

Wr (S)  | ~r.T(A)hc~_l ~ r . T ( B ) h c ~ _ l  

is an isomorphism. This follows from the corresponding statement for the E~- t e rm s  of 

(1.3.11), which in turn follows from the statement on E 2. So it suffices to prove that  

W~(B)| (F~-I)*~r.T(A) --* (F~-I)* Tr.T(B) 

is an isomorphism. We have F = R o ~ A  where ~A: W~(A)---+Wr(A) is the map induced 

from the Frobenius endomorphism of A. The claim now follows from the identifications 

W~(B)| (Fr-1)* ~r,T(A) ~- W~(B)|174 ( ~ - I ) * r . T ( A )  

~- (R~-I)*B|  ( ~ - I ) * ~ . T ( A )  

-~ (Rr-1)*B|  (~r4-- 1)*A| 7r. T(A)  

=~ ( R ~ - I ) * ( ~ y l ) * B |  

=~ (Fr-1)*B| T(A) ,  

where the second and the fourth identifications use that  B is ~tale over A. [] 

Let k be a perfect field of characteristic p and recall that  HH. (k)--k concentrated in 

degree zero. Moreover, Wr (k) | (Fp) Wr-  1 (Fp) ~ W~_ 1 (k) so the argument above shows 

that  

~.T(k |  r- '  ~- W~(k) |  ~-1 , (2.4.5) 

for any Fp-algebra A. 
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LEMMA 2.4.6. Let f l , - . - , f s E A  be relatively prime elements. Then the complex 

@ (W~(A)--~W~(A:,)), 
Wr(A) 

where i runs through 1, ..., s, is acyclic. 

Proof. Suppose first that  r=l  and note that  since A A is flat over A, 

H* ((~)(A ~ Aye)) = H s (@(A ~ AI~ )) = @(Af~/A). 
A A A 

We write l : X l f l  +...+xsf8 and note the formula 
8 

:- a s x j  a j  as 
al |174 ~ = ~ ~ | ~ | ~ , 

from which the case r=l  follows by induction. In the general case, note that  W~(A:)= 

Wr (A)/_ so that  it suffices to show that  f l , . . . ,  f~ are relatively prime. But 

xlf_l-}-...-]-Xsf__s e I+VW~(A) C W~(A) x , 

and the claim follows. [] 

Proof of Theorem B. Let us write the map in the statement as X~(A)--~Y~(A) and 

let A A be as in (2.4.1). We know from (2.3.3) and (2.4.5) that  the theorem holds when 

A=k[X1,..., Xn]. Moreover, if f :  A--*B is an ~tale extension then the horizontal maps in 

the square 

Wr(B)| ~- ~ Xr(B) 

1 l 
N~(B)| ~- , Y~(B). 

are isomorphisms by [I, 1.1.14] and by (2.4.4). Therefore, the theorem holds for ~tale 

extensions of polynomial algebras over k and hence for Aft, i=l, ..., s. Now recall that  

Af| which is ~tale over A:.  It follows that  the chain map 

(Xr(A)~Xr(Ay~))-~ @ (Xr(A)~X~(Ay~)) 
Wr(A) Wf(A)  

is an isomorphism in degrees/> 1. We prove that  both complexes are acyclic: write 

@ (Xr(A)-~Xr(AA))~-( @ (Wr(A)--§ 
W~(A) Wr(A) 

and use that  by Lemma 2.4.6, 

@ (Wr(A)-'*Wr(AA)) 
Wr(A) 

is an acyclic complex of flat W~(A)-modules. In view of Proposition 2.4.4 the same 

argument works with Y in place of X and the claim follows. [] 
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COROLLARY 2.4.7. Let A be as above. Then the map of (1.5.9) 

I: Wl2~ -* TR. (A) 

is well-defined and a natural isomorphism of complexes. 

Proof. We recall the Milnor short exact sequence 

0 --+ h_m(1)r.+lT(A) Cp8 --* TR. (A) ~ ~j__mTr.T(A) Cp8 ~ 0 
R R 

where by Theorem B, 

* O" ~.T(A)Cpr -,  ~- W~I2A | { ~} 

with degas=2. In addition, R(a~)=pa~_l and therefore the summand corresponding to 

the augmentation ideal of SF, {a~} does not contribute to the limit or the derived limit. 

The remaining part is the de Rham-Witt pro-complex W . ~  which has limit W~4 and 

satisfies the Mittag-Leffler condition, cf. (1.2.2). [] 

3 . 1 .  

We write K(A[X]/(X~))  for the homotopy fiber of the map 

3. Typical  curves in K - t h e o r y  

Let A be a ring and let K(A) denote Quillen's algebraic K-theory spectrum of A. 

K ( A [ X ] / ( X n ) ) ~ K ( A ) ;  X ~ O ,  

and recall from the introduction that the curves on K(A) is the spectrum 

C(A) = holim DK(A[X]/(Xn)).  (3.1.1) 
n 

To evaluate C(A) we use the cyclotomic trace of [BHM]. This is a map of spectra 

trc: K(A) ~ TC(A), (3.1.2) 

which is natural in the ring A. The target is the topological cyclic homology of A. 

As recalled in w we have two m a p s / ~ ,  Fr: TH(A) C'~ --~TH(A) C~, whenever m=rn,  

and TR(A) was defined as the homotopy limits over the restriction maps. The Frobenius 

maps induce self maps F~: TR(A)--*TR(A), one for each positive integer, and F~F~=F~s. 

Hence these maps specify an action by the multiplicative monoid of positive integers on 

TR(A) and one defines TC(A) as the homotopy fixed set, 

TC(A) = TR(A) h{f~lres}. (3.1.3) 
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Similarly, restricting attention to p-groups, the self maps Fps: TR(A; p)--*TR(A; p) de- 

fines an action by the additive monoid of non-negative integers on TR(A; p) and 

TC(A; p) = TR(A; p)h{Fp~ I~eNo} 

In this case, the homotopy fixed point spectrum is naturally equivalent to the homotopy 

fiber of the self map F p - 1  on TR(A;p). We note that  in the definition of TC(A) and 

TC(A; p) one may interchange the role of the maps P~ and Ft.  The resulting spectra 

are canonically homeomorphic. Finally, we recall from [HM1, Theorem 4.10], that  after 

p-completion 

TC(A);  _~ WC(A;p)p. (3.1.4) 

If A is a Z/pJ-algebra, then TC(A) is already p-complete. Indeed, any spectrum whose 

homotopy groups are bounded p-groups is p-complete, and hence [HM1, Addendum 3.3], 

shows that  TH(A) C~ is p-complete. Finally, a homotopy limit of p-complete spectra is 

again p-complete. 

Next, we recall from [HM1, w that  a pointed monoid is a monoid II in the symmetric 

monoidal category of pointed spaces and smash product, or equivalently, a (topological) 

monoid H with a base point 0EH such that  the multiplication factors over the smash 

product 

#: HAIl ~ H. 

A pointed monoid has a cyclic bar construction N~Y(H), which is a cyclic space in the 

sense of Connes with k-simplices 

and structure maps 

cy = ii^(k+l) N~,k(II) 

( 
~ro^ ... A~riTri+ V, ... ^Trk, 

di(~o^ ATl'k) t b  g / 
7fkT'0AT'I A ... ATfk--1, 

si 0to^ ... Ark) = ~r0^ ... ^TriAl^r~+l A ... Ark, 

rk 0r0^ ... Ark) = ~rk^~r0^ ... ^~rk-1. 

0~<i<k ,  

i = k ,  

O<~ i<.k,  

The realization has a continuous action by the circle group G. 

Consider the pointed monoid Hn=(0 ,  1,X, ..., X n-1 } with 0 as the base point and 

X'~=0. We also allow n=oc.  We proved in [HM1, Theorem 7.1] that  there is an equi- 

valence of G-spectra indexed on b/, 

T(A[X]/(X'~)  ) ~-a T (A)  A ]N~Y(1-I,~)], (3.1.5) 
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where the smash product is formed in G$/g. In analogy with (2.2.2), the cyclic bar 

construction splits as a wedge of cyclic sets, 

N~Y(II~) ~ ~ N~Y(IIn; m), 
m----0 

where the summand N~Y(Hn;m) consists of 0 and the k-simplices Xi~ ... ^X ik with 

io--k...--kik =m. The realization splits accordingly, and this splitting is G-equivariant. 

LEMMA 3.1.6. (i) Let l(m) be the least integer greater than m / ( n - 1 ) .  Then 

IN~Y(II,~; m)l is at least (l(m)-2)-connected. 

(ii) Whenever re<n, NAY(IIn; m)=NAY(Hoo; m). 

(iii) / f  m>0,  then S1/Cm+ is a strong G-deformation retract oZ IN~Y(H~;m)I, and 

I NAY(IIoo; 0) 1-- s o . 

(iv) Let P , ~ : I I o ~ - - , I I ~  

the diagram 
be the map of pointed monoids given by Pn(X)=X'L  Then 

is G-homotopy commutative. 

Proof 

SVCm+ - INXY(YI~; m)l 

Sl/C,-,,,~+ , IN~,Y(II~; mn)l 

(i) The k-simplices in NAY(H,; m) has the form 

X i~ ... AX ik, 

with i o +... q-ik----m. Therefore, if (k+ 1 ) (n -1 )<  m, there is only one k-simplex 0 so the 

k-skeleton of the realization is a point. 

(iii) As a pointed monoid H~=(X)+ ,  where (X) is the free abelian monoid on one 

generator X. The claim follows from Lemma 2.2.3. [] 

Under the equivalence of (3.1.5) the restriction map P~ annihilates the summands 

where m is not divisible by r and induces maps 

P~,m: j*(T(A)AINAY(Hn;m)[)cr~-+j*(T(A)AIN~Y(H,~;m/r)I) c8 (3.1.7) 

of the remaining summands. This follows from the fact that (3.1.5) is an equivalence 

of cyclotomic spectra, compare [HM1, 7.1 and 8.2]. The Frobenius map preserves the 

splitting and induces maps 

Fr, m: j* (T(A) A I NAY(H~; m) l ) c~8 _+ j ,  (T(A) A I Y~xY(l'In; m) D 68. 
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THEOREM 3.1.8. IrA is a Z /pJ-algebra then TCi( A[X]/ ( Xn ) ) is a bounded p-group, 
i.e. any element is annihilated by pg for some N)O which may depend on i. 

Proof. We recalled in (3.1.4) that the group in question is isomorphic to the group 

TCi (A[X]/(X'~); p). The topological Hochschild spectrum is given by (3.1.5) as the wedge 

s u m  
o o  

T(A[X]/(Xn))~- V T(A)AIN~Y(H,~;m)[ 
m ~ l  

and the splitting being equivariant implies a corresponding splitting of the Cp~-fixed set, 

o o  

T-H(A[X]/(Xn)) cpr ~- V J*(T(A)A[N~Y(IIn;m)[) Cpr. 
m = l  

The restriction map of (3.1.7) fits into a cofibration sequence 

j.(T(A)AIN~Y(II~ ;m)l)hcp~ Yp,m j,(T(A)AtN~Y(II~ ;m)l)c, ~ 

Rp,m j .  (T(A) A Ig~Y(H~; m/p)[)cp~-,. 

Indeed, this follows from [HM1, Proposition 2.1] and the equivalences 

O#cpr m)[)) ~--G Q#cp~C'T(A)AQ~p [ N~y(IIn; m)]CP 

~--c T( A ) A IN~Y(H~; m/p)[. 

In particular, when p does not divide m, the map Np,m is an equivalence. Now recall 

that taking homotopy orbits preserves connectivity. Hence the connectivity statement of 

(3.1.7) implies that Rp,m is an (/(m)-l)-connected map, and if we write m:p~k, with 

(k, p ) :  1, then the obvious induction argument shows that j* (T(A) A [N~Y(Hn; re) I) C~ is 

an (l(pS-~k)-l)-connected spectrum. Hence we may replace the wedge sums above by 

the corresponding products, 

o o  

T-'H(A[X]/(xn))CP~ ~- H J*(T(A)A[N~Y(Hn; m)[)cv~" 
m = l  

Let us write TF(A[X]/(Xn);m; p) for the homotopy limit over the Frobenius maps Fp,m 
of the mth factor in this product decomposition. We then have 

o o  

T~'F(A[X]/(X~);P) ~- H TF(A[X]/(Xn); m;p) 
m = l  

and hence 

T~C(A[X]/(Xn);P) ~- H h~ 
(k,p)=z R 
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Moreover, the restriction map 

Rp,m: TF(A[X]/(Xn); m; p) --~ TF(A[X]/(X~); m/p; p) 

is ( l (m)- l ) -connec ted ,  and therefore, it suffices to show that  the homotopy groups of 

TF(A[X]/(Xn); m;p) are bounded p-groups for every m>~l. 

We fix m=pSk and consider Iri(T(A)AIN~Y(Hn;m)]) C~r for r>~s. We have the fol- 

lowing tower of fibrations: 

j* ( T( A ) A IN~Y(II~; m)I)hCp~ 

j* ( T( A ) A IN~Y(Hn; re~p)I)hC,~-x 

Np,m �9 j,(T(A)AIN~Y(Hn;m)I)cp ~ 

I ap,m 

N~,m/, �9 J* (T(A) A INXY(Hn; re~p)I)% ~-~ 

I Rp,m/p 

I Rp,pk 

j.(T(A)AIN~Y(Hn;k)I)h%~_" g ~  �9 j.(T(A)AIN~Y(Hn;k)DC~ " 

I Rp,k 

The spectral sequence of (1.3.11), 

E2,j = H,(Cpr ; 7rj(T(A)AIN~Y(H,; m)l) ) ==~ ~ri+j(T(A)AIN~Y(Hn; m)l)hCpr , 

is concentrated in the first quadrant above the line y=l(m)-2 .  Since A is a Z/pJ- 
algebra the E2-term, and hence also the E~- t e rm ,  is a Z/pJ-module. Hence ~ri(T(A)A 

N~Y(Hn; m))hCpr is a p-group and every element has exponent less than or equal to 

j ( i - l (m)+3) .  Finally, the tower of fibrations above shows that  7ri(T(A)AN~Y(Hn; m)l) Cp~ 
is a p-group and the exponents of the elements are bounded by 

( E j ( i - l ( p t k ) + 2 ) < ~ j  ( s+ l ) ( i+2 ) - t  n - 1  p - 1  " 
t=0  

This bound is independent of r ) s  and the proposition follows. [3 

We let A be a Z/pJ-algebra and consider the arithmetic square for K(A[X]/(Xn)),  
i.e. the homotopy cartesian square 

K(A[XI/(Xn))  ~. .~:(A[X]/(Xn)) ^ 

1 ,L 
K(A[XI/(X~))Q ------> (~:(A[XI/(Xn)) ^)Q. 
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Here the decoration ( - )^  indicates profinite completion, i.e. the product of the p-com- 

pletions, where p ranges over the primes. The rationalization is contractible by the main 

theorem of [G]. Indeed, 

_~:,(A[X]/(Xn) )| ~ H'-'-C,_I (A[X]/(Xn) )| 

and it is easily seen that  the cyclic homology of a Z/p  J-algebra is rationally trivial. 

Similarly, a recent result of R. McCarthy, [Mc], recalled as Theorem A in [HM1], shows 

that  the cyclotomic trace induces an equivalence 

K(A[X]/(Xn)) ^ ~_ TC(A[X]/(Xn)) ^. 

The right-hand side is rationally trivial by Theorem 3.1.8 and therefore the spectrum in 

the lower right-hand corner of the arithmetic square vanishes. Hence we have 

THEOREM 3.1.9. IrA is a Z/pJ-algebra, then 

K(A[X]/(xn)) ~__ TC(A[X]/(X~)). [] 

As a corollary of Theorems 3.1.8 and 3.1.9 we get Theorem E of the introduction. We 

note that,  based on work of Jan Stienstra, Chuck Weibel has shown that  Ki(A[X]/(X~)) 
is a p-group, [We]. However, the fact that  it is bounded is new. The bound may very well 

tend to infinity with i. Indeed, the calculation of the groups Ki(Fp[X]/(X2)) in [HM1] 

shows that  as i tends to infinity there are elements of arbitrarily large exponent. 

THEOREM 3.1.10. Let A be a Z/pJ-algebra. Then there is a natural equivalence 

C(A) ~- TR(A) 

and the spectra are p-complete. 

Proof. We have C(A)_~holim ~TC(A[X]/(Xn)) by Theorem 3.1.9, and since homo- 

topy limits commute, 

C( A ) ~- (holim(holim ~tT( A[X]/ ( X~) )c~ ) ) h{ RqreN}. 
F n 

The connectivity estimate in the proof of Theorem 3.1.8 shows that  

oo 

T-'H(A[X]/(X'~))c~ ~- H j* (T(A) A IN~,Y(Hn; m)I) c', 
m ~ l  
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and since homotopy limits commute with products we may take the homotopy limit 

over n one factor at the time. But for a fixed m the limit system is constant equal to 

(T(A)ASi/Cm+) C~ when n>m by Lemma 3.1.6, and hence 

h~ ~- H J*(T(A)AS1/Cm+)c~" 
7% m ~  l 

Since the Frobenius maps Fs preserve the splitting after m, [HM1, Lemma 8.2] shows 

that  

h~176 ~- H (T(A)ASi/Cm+)c~- H ETH(A)Cm" (3.1.11) 
F 7% m / > l  m / > l  

The restriction map P~ induces maps P~,m from a factor m to the factor m/r and 
annihilates the factors where r does not divide m, compare (3.1.7). Moreover, it follows 

from [HM1, Theorem 7.1] that  

P~,m = ERr:  E TH(A) C" ~ E THI(A) Cm/~, 

where P~ is the restriction map associated with T(A). Hence 

/ c~ \ h { R ~ ] r E N }  

holimT~C(A[X]/(X?%))~-E~ml~_I TH(A) Cm) , 
?% 

the homotopy fixed set of the multiplicative monoid of natural numbers acting through 

the restriction maps, see also [HM1, 4.1]. But this is homeomorphic to E TR(A),  and so 

C(A)_~E TR(A)~_TR(A). [] 

3.2. The spectrum TR(A) on the right-hand side in Theorem 3.1.10 is a ring spec- 

t rum in a very strong sense: it is a commutative functor with smash product defined on 

spheres, cf. [I-IM1, Proposition 2.7]. On the other hand Bloch defines a pairing on C(A), 
which makes C(A) a homotopy associative ring spectrum. We recall how this is defined. 

For any A-algebra R we consider the exact category Nil(R) whose objects are pairs 

(M, a)  where M is a fig. projective R-module and a is a nilpotent endomorphism of M. 

It comes with an obvious ascending filtration given by the exponent of a. We also write 

P (R)  for the category of f.g. projective R-modules. If Am=A[X]/(X m) and m>n we 

have a biexact functor 

Fil?% Nil(R) x P(Am) --* P(R) ,  ((M, a),  N)  ~-~ M ,  | N, 

where M~ denotes M considered as an Am-module with X acting through a. It induces 

a natural (weak) map of K- theory  spaces 

K(Fil?% Nil(R))  AK(Am) --* K(R) ,  
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cf. [Wa], and since the bifunctors above are compatible as m and n varies we get in turn 

K(NiI(R))  Aholim K(Am) -+ K(R). (3.2.1) 
m 

Here we have also used the natural equivalence K(Nil(R))~-holim K(Filn Nil(R)). Next, 

we recall the localization sequence 

K ( H )  --+ K(n[t]) -+ K(n[t, t -  1]), 

where H is the category of finitely generated t-torsion R[t]-modules of projective dimen- 

sion ~< 1. It is isomorphic as a category to Nil(R). For any M in H is projective as an 

R-module. Hence the boundary map of the localization sequence provides a map 

~K(n[t, t - l ] )  ~ K(Nil(R)) .  (3.2.2) 

Now let R=Ak and let Ak--+Ak[t,t -1] be the map which takes X to Xt -1. We may 

compose the induced map on K-theory with the maps (3.2.1) and (3.2.2) to get a map 

12K(Ak) Aholim K(Am) --+ K(Ak) 
m 

and hence flK(Ak)Aholim 12K(Am)--~K(Ak). Since these are strictly compatible as k 

varies we get 

(holim QK (Ak)) A (holim flK (Am)) --* holim ~K(Ak), 
k m k 

and finally, this lifts to a pairing 

C(A)AC(A)-+C(A). (3.2.3) 

One may show that  this pairing makes C(A) a homotopy associative ring spectrum. 

Hence we get a ring homomorphism from C.(A), with the induced ring structure, to 

the ring [C(A), C(A)]. of cohomology operations in the spectrum C(A). When A is a 

Z(p)-algebra, there is an idempotent splitting of the big Wit t  ring W(A)=Co(A) into a 

product indexed by the natural numbers prime to p of copies of the p-typical Wit t  ring 

W(A), and the ring homomorphism above gives a corresponding set of idempotents in 

the ring of degree-zero cohomology operations in C(A). Hence we get the splitting 

C(A)~- H C(A;p) (3.2.4) 
(k ,p)=l  
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of the curves on K(A) as a product of copies of its p-typical part C(A; p). 
The homotopy groups TR, (A)=~r, TR(A) are given by Milnor's sequence 

0 ---* Fl_mO)rri+lT(A)C" ---) TP~ (A) -=* Yl__mTriT(A)Cn ~ 0, 

so in particular, 

TRo(A) =W(A) .  (3.2.5) 

Indeed, the limit on the right is equal to W(A) by [HM1, Addendum 3.3], and the proof 

of op. cit., Proposition 3.3 shows that the derived limit on the left vanishes. 

LEMMA 3.2.6. The isomorphism C,(A)~-TR,(A) given by Theorem 3.1.10 is 
W(A)-linear. 

Proof. We recall that any element in W(A) may be written uniquely as an infinite 

s u m  
"OO 

where w: A=-*W(A) is the Teichmiiller character, [Mu]. Therefore, to show that a map 

is W(A)-linear it suffices to show that it commutes with the Verschiebung maps and 

with multiplication by w(a) for all a6A. In the case at hand, the Verschiebung V ~ 

on C,(A) is induced from the A-algebra map v,: A,~--+A,,n, vn(X)=X n, and similarly, 

multiplication by w(a) is induced from the A-algebra map Ca: Am ~Am,  ca (X)=aX. We 

claim that the same holds for TR, CA). Given this the lemma follows from the naturality 

of the equivalence in Theorem 3.1.10. We recall from (3.1.11) the equivalence 

h~ H J*(T(A)AS1/C"+)c~-- H ~TH(A)C" '  
F , k m >/1 rn  >~ l 

from which we get 

holim TvC( A[X]/ ( Xk) ) ~- ~ TR(A) 
k 

upon taking homotopy fixed sets for the action of the restriction maps. It follows from 

Lemma 3.1.6 that v,~ maps the factor m to the factor mn by the map 

vn,,,: j*(T(A)AS1/Cm+) G --+ j*(T(A)AS1/Cm,~+) c 

induced from the projection mn 1 1 7r n :S/Cm--~S/Cmn. By [HM1, Lemma 8.1] the diagram 

ETH(A) C~ -~ �9 j*(T(A)AS1/Cm++) G 

TH(A) C'~ -~ �9 j*(T(A) AS1/Cm~+) G 
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is homotopy commutative, and hence the claim for V~ follows. 

The case of ca is more involved. Consider the map 

~: holim T-H(A[X]/(xk))CrAA --. holim T-H( A[X]/ ( Xk) ) C~ , 
F,k F,k 

which is adjoint to the map which takes aEA to the map induced from ca. Obviously, 

preserves the splitting of (3.1.11) and we shall prove that  on the factor m it is given 

by the composite 

Z TH(A)C~AA ,~,~ E TH(A) C~ e22 E TH(A) C~. 

Here ~ is adjoint to the map which takes aEA to multiplication by w(a) and ~22 corre- 

sponds under the equivalence 

F,T(A) cm _~ (T(A)C'~AS1/Cm.)G/C'~ 

to the map induced from the map ~ of (1.3.2). Since we already proved that  ~22 is homo- 

topic to the identity in Lemma 1.4.5, it follows that  Ca induces multiplication by w(a). 
To verify the offered description of c we will need to recall precisely how the equi- 

valence (3.1.5) is obtained. For details we refer to [HM1, w and w We shall use the 

same notation as used there. For any ring B and any G-space Y one has a G-equivariant 

and associative pairing 

Ul,o: THH(B; Y)A INkY(B). [ ---* THH(B; Y), 

where B is viewed as a pointed monoid in the multiplicative structure. When B= 
A[X]/(X n) the subset HnCB is a sub-pointed monoid and A c B  is a subring, so the 

pairing induces a map 

f(Y): THH(A; Y)A [N~Y(H,~). [--* THH(B; Y). 

Now let VC 1A be a G-representation and let S v denote its one-point compactification. 

We get in particular 

f(V):  t(A)(V)A [g~Y(IIn). ] --. t(B)(V), 

and as V varies these form a map of G-prespectra indexed on L/. 

(3.1.5) is the induced map of associated G-spectra. 

Next, we note the pairing of cyclic sets 

The equivalence of 

9.: AAN~Y(Hoo). --+ N~Y(A)., 
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which is adjoint to the map which takes aEA to the map induced from ia: Hoo--*A, X~--~a. 
The wedge summand N~Y(Hoo; m) is equal to N~Y(Hn; m), provided that m<n, which we 

henceforth assume. It follows immediately from the definitions that the diagram 

THH(A;Y)AIN~Y(Hn;m).[AA f(Y)Aid> THH(B;Y)AA 

l id A t w  

THH(A; Y)AAA [ N~Y(Hn; m). [ 

lid A id) ( 0, 

THH(A; Y) A INkY(A). I A [N~Y(H~; m). [ 

l vl,oAid 

THH(A;Y)A[N~Y(Hn;m).[ l(v) - THH(B; Y) 

commutes, and since the maps are equivariant the corresponding diagram of Cm-fixed 

points is also commutative. Let us write C=C,~. We consider the simplicial (but not 

cyclic) map 
r A___. N~Y(A). zxc (sdcN~Y(A).)c 

and note that ~ is induced from 

THH(A;y)CAA idADo~ THH(A;y)CAIN~Y(A).[c ~,1,o THH(A; y)C, 

where D is the equivariant (non-simplicial) homeomorphism of [BHM, w 

D: I(sdc N~Y(A).)c[ ---* ~[NCY (A).I C. 

The simplical map r induces a cyclic map 

Fr  FA. ---* (sdc N~Y(A).) C, 

where FA~ is the free cyclic set generated by the (constant) simplicial set A, cf. [H, w 

One verifies easily that 

FA. ~- A A (sdc N~Y(H~; m).)c,  

such that F r  0.) c. Moreover, [FA.I~-AAG+ and the realization of Fr  is equal 

to the composition 

AAG+ CAid [(sdcN~Y(A).)ClAG+ ~ [(sdcgCy(A).)c[, 

where # is the action. Now the claimed description of 5 follows since vl,0 is G-equi- 

variant. [] 

3.3. In this section we give a splitting of the spectrum TR(A) into copies of its 

'p-typical' part TR(A; p) and prove Theorem A of the introduction. 
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PROPOSITION 3.3.1. Let A be a Z(p)-algebra. Then there is a natural equivalence 

TR(A)-~ I ]  Wa(A;p), 
(k,p)=l 

where the product ranges over the natural numbers prime to p. 

Proof. Let ~" be the category of natural numbers ordered after division and let ~p 

and ~p, be the full subcategories of natural numbers which are a power of p and prime 

to p, respectively. Then ~ = ~ p  • ~p,, and hence 

TR(A) -- holim TH(A) C~ = holim (holim TH(A)C~z), 

where, we remember, the limit runs over the restriction maps. We claim that  when A is 

a Z(p)-algebra, the map 

~ I  Rl/kFk: TH(A) C~ ~ 1-I TH(A)Cp~ (3.3.2) 
klZ 

is an equivalence. Given this we get 

holim TH(A)Cp'~ _ 1-~ TR(A; p) 

from which the proposition follows. To prove the claim suppose first that  l=q t where q 

is a prime. From [HM1, Proposition 2.3] we have a cofibration sequence 

* Cp8 N (Qc~8 TH(A) )hCqr TH(A) c~q~ R%TH(A)Cp~-I ,  

where, if t=l ,  the spectrum on the right is a trivial spectrum. Moreover, we have a 

homotopy commutative diagram 

(Q~pTH(A)Cp,)hCq~ g ~ TH(A)Cpsq~ Rq ~ TH(A)Cp, q~_I 

1 trf 1 Fq 1 Fq 
(QS~TH(A) C' ' )hC~-I  N TH(A)C~.~_I R~ ) > TH(A)Cp'q ~-2 ' 

where trf  is the transfer of the projection going in the opposite direction. It is an 

equivalence because TH(A)Cp 8 is a ring spectrum and 1/qEWs+I(A)--~oT(A) Cp~ , and 

hence the right-hand square is homotopy cartesian. Now the obvious induction argument 

proves (3.3.2) in the case where l=q t. The general case follows by a further induction 

over the prime divisors in I. [] 
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ADDENDUM 3.3.3. On homotopy groups the map VdFd multiplies by d on the factors 
k with dlk and annihilates the remaining factors. 

Proof. Let T be a G-spectrum indexed on L/and let CcG be a finite subgroup. We 

recall from [HM1, w that there is G-spectrum p#c Tc indexed on/4 such that j*(Q#c TC) = 
p~(j*T) C. In particular, if 

TR(A; p) -- holim P#cp, T(A) Cp~ 
Rv 

then j*TR(A; p) =TR(A; p). It follows that we have Verschiebung maps Vd: TR(A; p) 

TR(A; p). Now, from (3.3.2) we have the (non-equivariant) equivalence 

H nt/kFk: TR(A; p)CL __, H TR(A; p). 
kit 

(3.3.4) 

Evidently, Fd: TR(A;p) C~ --~TR(A;p)C~/~ corresponds to the projection which sends a 

factor k divisible by d to the factor k/d and annihilates the remaining factors. We shall 

next show that when k is not divisible by d, the composite 

TR(A;p)C,/d vd TR(A;p)C~ n~/kfk TR(A;p) 

is null homotopic. We note that there exists a prime q which both divides d and 1/k. 
We may assume that q does not divide l/d. Indeed, if 1/d=qtl'/d with (l'/d,q)=l 
then RukFkVd~_RI,/kFkVdRq,. Therefore the spectrum ~#c~,,T(A)C~'~/~ is q-cyclotomic 

by [HM1, Proposition 2.3], so we have a cofibration sequence 

(Q.cp,~/ TH(A)C~z/~)hC~ N TH(A)Cp~/d R% TH(A)Cp,~_~/d" 

We take the homotopy limit over Rp and obtain the cofibration sequence 

(P~/d TR(A;p)C'/d)hCq~ g TR(A; p)Cq~,/~ R% TR(A;p)Cq~-I~/~. 

The point of this is that [HM1, Lemma 3.2] shows that Vq~ factors through N such that 

RqVqT is null homotopic. Since RUkFkVd~--FkRukVd~--RuqkVd/qTRqVq~ the claim follows. 

Next recall that FdVd induces multiplication by d on homotopy groups. It follows 

that on homotopy groups Vd: TR(A; p)C~/a ~TR(A;  p)C~ maps the factor k/d to the factor 

k by multiplication by d. Finally, 

TR(A) = holim TR(A; p)C~ 
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and the limit system on the right induces a Mittag-Leffler system on the level of homotopy 

groups. Therefore we get the same description of Fd and V d o n  TR.  (A). [] 

Recall that  under the idempotent decomposition of W(A),  preceding (3.2.4), the 

projection onto factors k divisible by d is given by (1/d)VdFd. Hence the projection onto 

the factor k is given by 

Prk= I I  (~VkFk--~-~VdkFdk). 
(d,~)=l 

It follows that  the product decompositions of TR.  (A) induced from Proposition 3.3.1 and 

from the idempotents in W(A)  are equal. This proves Theorem A of the introduction. 

3.4. The differential defined by Bloch, [B1], on the symbolic part of SC. (A)C C. (A) 
for certain rings was extended to a degree-one operator on all of C. (A) and all rings by 

Stienstra, [St]. The basis of the construction is a map 

g ( z [ t ,  t - l ] )  ~ K(Nil(Z[t]/(t~))) (3.4.1) 

which we now descibe. In the localization sequence 

K(H) --~ K(Z[t,  y]) --* K(Z[t ,  y, ( 1 - t y ) - l ] )  

the right-hand map is split by the map induced from the ring homomorphism mapping 

t and y to zero, and moreover, the resolution and devissage theorems show that  K(H) - -  ~ 

K(Z[t,  t - l ] ) .  In particular, we get a map 

g ( z [ t ,  t - l ] )  --* f lK(Z[t ,  y, ( 1 - t y ) - l ] ) .  

We compose this with the map 

12K(Z[t, y, ( 1 - t y ) - l ] )  -* 12K(Z[t, u, u-1]/(t~)) 

given by the ring homomorphism which maps t to t and y to u -1, and finally, we compose 

with (3.2.2) to get the required map. 

We may combine (3.4.1), the map on K-theory induced from Z[t]/(t~)-~A[t]/(t ~) 
and the pairing (3.2.1) to get a pairing 

K(Z[t,  t - l ] )  Aholim K(Am) ~ K(An). 
m 

For varying n these are compatible, so we get a pairing into the homotopy limit of the 

spaces on the right. Finally, this factors to 

K(Z[t,  t-1])AC(A) -~ C(A). (3.4.2) 
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We have KI(Z[t,t-1])~--Z$Z/2 generated by t and -1 .  Let us note that  t and - 1  

correspond to a and 7; under the isomorphism rS(sZ+)~-gl(Z[t, t - l ] )  given by the unit 

of the spectrum K(Z)  and the assembly map, compare (1.4.1). Now Stienstra defines a 

degree-one map 

d: C,(A) --* C,+I(A) (3.4.3) 

as the pairing with t. However, little is known about this map except that  it extends 

Bloch's differential on the symbolic part and Stienstra's differential on K ,  (End(A)).  We 

leave it as an open question whether 6=d under the isomorphism of Theorem 3.1.10. 

3.5. In this section we evaluate the complex of p-typical curves for the ring k[E] of 

dual numbers over the perfect field k and prove Theorem D of the introduction. 

Let W~cR[Cs] denote the maximal complex subrepresentation and let S Ws be the 

one-point compactification. We shall write T(k)w, for the smash product G-spectrum 

T(k) AS W.. Recall from [HM1, 8.2] that  there is a cofibration sequence of G-spectra 

V T(k)w=r AS'/Cr+ s q  T(k)Y V T(k)ws AS1/Cs+ -~ T(k[r 
r~l  8>11 

(3.5.1) 

where the map sq takes the summand r to the summand s=2r by the map which is 

the identity on the first smash factor and the projection on the second. In fact, the 

spectra in (3.5.1) are cyclotomic in the sense of [HM1, 2.2], and the maps preserve the 

cyclotomic structure. It follows that  we may apply the construction T R ( - ;  p) and still 

have a cofibration sequence of G-spectra, 

TR( V T(k)w2~ AS1/Cr+;p) ~ TR(T(k)Y V T(k)w, A S1/Cs+;p) ~ TR(kH;p) .  
r/>l 8/>1 

(3.5.2) 

We evaluate the map sq on homotopy groups. As in the smooth case the homotopy 

groups turns out to be rather big, so we first introduce some notation. 

Consider the differential graded algebra 

E* = Wf~[x] | Sw(k){a}, (3.5.3) 

which is the tensor product of the de Rham-Wit t  complex for k[X] and a polynomial 

algebra over W(k) in one generator a of degree 2 (with zero differential). Based on 

Theorem 2.1.3 we have the following alternate description: every element w E E ~  may be 

written uniquely as either 

w= E aiJ aiXj or w= E bijaiXJdl~ 
jeN[1/p] jEN[1/p]-O 
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depending on whether m is even or odd. The coefficients aij, bij cW(k)  and are subject 

to the requirement that  den(j)lai j and that  for every N, Vp(aij) and vp(den(j)bij) are 

N for all but finitely many j .  Here Vp (a) denotes the p-adic valuation of a. 

We next define DG-ideals I~, JoCE~. For i E N  and jEN[1/p]-O let 

1, i fnum( j )  is even or p = 2 ,  

( J )=  0, else, 

and let re(i, j) be the unique integer such that  pm(i,j)-lj ~ 2i+ 1+r We also 

set m ( i , 0 ) = l  for i>0  and m(0,0)=0.  We define 

I m = {w C E~[ Vp(aij >~ re(i, j) or vp(den(j)bij) >~ m(i, j) ,  for all j E N[1/p]} 

and 

J~  = {w E E~lvp(aih) >1 re(i, 2h) or vp(den(h)bih) >1 re(i, 2h), for all h E N[1/p]}. 

One may check that  this defines DG-ideals of E*. However, it would be desirable to have 

a more conceptual description. Also let E* CE* be the augmentation ideal, i.e. the series 

with ai,0=0, and let J~*=/~NJ*.  

PROPOSITION 3.5.5. Let k be a perfect field of positive characteristic p. Then the 
map sq in (3.5.2) is given on homotopy groups as 

sq, :/~*/ff* ---~E*/I~, 

where sq, is the DG-map given by s q , ( X ) = X  2. 

Proof. We refer the reader to [HM1, w for the notion of a eyclotomic spectrum. 

For any cyclotomic spectrum T, 

TR(T;p) h li . . . . . .  cp, : ( o m Qc~ (3 l) . 

R 

So we must evaluate the Cp~-fixed points of the spectra in (3.5.1). Let us write v :  

v(n, s)=min{n,  Vp(S)}. Then we have from [HM1, w that  

O#c,,~(T(k)w, AS1/Cs+)c"~ ~-c Q# cp~ 1 c,v T(k)w, AS/Cs/p~+. (3.-5.6) 

The cyclotomic structure on the spectra in (3.5.1) is given by the remark preceding [HM1, 

Theorem 7.1]. We recall that  the map R takes a summand with s (or r) divisible by p 

to the summand sip by a map 

R(S) : # Cpv ] 0~: Cpv--1 1 Oc,.T(k)w. AS/C~lp~+--* c, T(k)w./ ,  AS/C~Iv.  + 
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and annihilates the remaining summands. Moreover, R (8) =Rw~ Aid and there is a co- 

fibration sequence of non-equivariant spectra 

j*(T(k)ws)hCp~ N--~j*(T(k)ws)CP" Rw8 j,(T(k)ws/p)cp~_l, 

see [HM1, w It is convenient to reindex the wedge sums in (3.5.1) such that  R 

preserves the index. So let j = s / p  n and h=r/p n, respectively. We may then rewrite 

(3.5.6) as 

O~cp~ (T(k)w~ AS1/Cs+) C~" ~-a ~# T[l~Cvn/den(J)^'r " ' "  
f fCpn/den(j) 'L k~U]Wpnj ' ' ~  i ~ n u m t 3 ) + ,  

and similarly we have 

O~c,,~(T(k)w2~ AS1/C"+)c"~ ~-a # '~'''-'Cvwae'(h)" el / f"  "-" 
O C p W d e n ( h ) l l , ~ ) W p ~ , 2 h  ~ '  / t -~num[n)+.  

With this indexing the map sq in (3.5.2) takes the summand h to the summand j=2h 
by a map 

s q ( h )  . #  r p f l ~ C p n / d e n ( h ) ^  c l / , ~  - #  T [ ] ~ C p n / d ~ ( J ) A S 1 / C  
: ~Cpn/den(h)~ tkrv )Wpn2h I \ D  / W n u m ( h )  + ~ ~Cpn/den( j  ) k } W p n j  / n u m ( j ) + ,  

and [HM1, Lemma 8.1], shows that  

sq(h ) = ~ idApr, i fp  is odd, or p = 2  and den(h) = 1, (3.5.7) 

t V2Aid, if p = 2  and den(h) >1.  

It remains to take wedges over j and h and then homotopy limit over R. However, we 

have already shown in the proof of Theorem 3.1.8 that  the wedge sums in (3.5.1) and 

(3.5.2) may be replaced by the corresponding products. Therefore, we may instead first 

take the homotopy limit over R and then wedges over h and j .  The canonical map 

1 1. rIn[L~Cpn/den(j) . ~ ~m[l~Cpm--1/den(j)  
71"2i n O l l m  .L /r~p,,~ n ---, n 2i.Lkr~lTxr ( x IVVp j ~VVpm--l j  

R 

is an isomorphism provided that  2 i<dim Wp,,j. Indeed, this follows from the cofibration 

sequence above. On the other hand, [HM1, Proposition 9.1] shows that  

Ir TIk ~ C~'~-~/a~ 2i t ]w,~_~j ~-W(k)/(Pm/den(j)) ~-den(j)W(k)/pmW(k),  

when dim Wpm- U <~2i. Similarly, we have an isomorphism 

71"2i h o l i m  r [ L~ cpn/den(h)  ----> 7r . Z [  k ~ Cpm-1/den(h)  
~l~)Wpr~2 h 2~ ~ ) W p m _ 1 2  u , 

R 
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whenever 2 i<dim Wp,~2h , and 

rc "~l~C~'~-~/d~ ~- W(k)/(p'~/den(h)) -~ den(h)W(k)/pmW(k),  2~.L ~rVJWpm_12h 

if dimWp.~-l:h<~2i. Finally, d i m W s = s - 1 ,  if s is odd, and d i m W s = s - 2 ,  if s is even. 

This shows that  the homotopy groups of the middle and left-hand term in (3.5.2) are 

as claimed in the statement of the proposition. The map sq is given by (3.5.7) since 

pr induces the identity in even dimensions and multiplication by 2 in odd dimensions, 

respectively, while V2 corresponds to the map V2 on Wit t  vectors, cf. [HM1, Proposi- 

tion 9.1]. [] 

When p is odd, sq. is injective and so we have 

COROLLARY 3.5.8. If char k is odd, then there is a short exact sequence of complexes 

~ .  - .  8q. ~ *  i t *  0 ~ Eo/J~ - - ~  z~ / l~  --* C.(k[c];p) ~ O. [] 

Proof of Theorem D. First note that  if d en ( j )>  1 then the differential induces an 

isomorphism 

den(j)W(k)/pm(i, j)W(k)(aixJ ) d> W(k)/(pm(iJ)/den(j))W(k)(aiXJdlogX),  

so we may disregard the summands in E*II* and -* -* E*/J~ generated by a iXJ  or 

a iXJd logX  with den( j )>1 .  So we only have to consider the summands where j is 

a natural number. 

Suppose now that  p is odd. Then sq. maps E~/J* onto the summands in E*/I* 

with j >0  and even. So we only get a contribution in the cohomology from the summands 

j--O and j~>l, odd. The differential on such a summand is given by 

d: W(k) /p  "~(i'j) W(k)(~ixJ> w(k)/pm(i,J)(o x  d log X), d(aiX j) = j a i X  j d log X. 

This finishes the proof for p odd. The proof for p=2 is similar. [] 
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