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1. I n t r o d u c t i o n  

A homeomorphism f: f~--*f~' between planar domains fl and fl' is called K-quasicon- 
formal if it is contained in the Sobolev class W~,loe(f~) and its directional derivatives 

satisfy 

maxlO~f(x)l~ <~ Kn~nlO~f(x)l a.e. x e ~ .  

In recent years quasiconformal mappings have been an efficient tool in the study of 

dynamical systems of the complex plane. We show here that, in turn, methods or ideas 

from dynamical systems can be used to solve a number of open questions in the theory 

of planar quasiconformal mappings. 

It has been known since the work of Ahlfors [A] and Mori [Mo] that K-quasiconformal 

mappings are locally H51der continuous with exponent 1/K. The function 

fo(z) =zlzl 1/K-1 (1) 

shows that this exponent is the best possible. In addition to distance, quasiconformal 

mappings distort also the area by a power depending only on K, as shown first by 

Bojarski [Bj]. Since IfoB(r)l =~rl-WKIB(r)IUK , where S(r)={zeC:  Izl <r}, it is natural 

to expect that the optimal exponent in area distortion is similarly 1/K. 
In this paper we give a positive answer to this problem and prove the following result 

which was conjectured and precisely formulated as below by Gehring and Reich [GR]. 

We shall denote by A the open unit disk and by IEI the area of the planar set E. 

THEOREM 1.1. Suppose f:A--~A is a K-quasiconformal mapping with f(O)=O. 
Then we have 

IfEI <~ MIEI UK (2) 
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for all Borel measurable sets E c  A. Moreover, the constant M = M ( K )  depends only on 

K with M ( K ) = I + O ( K - 1 ) .  

B n For the proof of (2) we consider families { i}l of disjoint disks Bi=Bi(A) which 

depend holomorphically on the parameter )~ (in a sense to be defined later). After an 

approximation (2) now becomes equivalent to 

/ - \(1-1~l)/(l+lXl) 
IB~(~)I ~< C(~-~ IB,(0)I) , (3) 

i = I  ~ / = I  

where C depends only on A. ~ r the rmore ,  iterating the configuration one is led to 

measures on Cantor sets and there we shall apply the Ruelle-Bowen thermodynamic 

formalism [Bw]; if we write (3) in terms of the topological pressure, then the proof comes 

out in a transparent way. 

The function fo is extremal in the distortion of area as well as of distance, and 

therefore it is natural to ask [I, 9.2] if for quasiconformal mappings the HSlder continuity 

alone, rather than the dilatation, implies the inequality (2). However, this turns out to 

be false, as shown recently by P. Koskela [K]. 

As is well known the optimal control of area distortion answers several questions 

in this field. For example, in general domains 12 one can interpret (2) in terms of the 

local integrability of the Jacobian J !  of the quasiconformal mapping f .  This leads to a 

solution of the well known problem [LV], [Gel on the value of the constant 

p(K) = sup{p: J f  e L~or ) for each K-quasiconformal f on ~}. 

COROLLARY 1.2. In every planar domain 12, p( K )= K / ( K - 1 ) .  

In other words, for each K-quasiconformal f :  ~-~l'~ p, 

2K 
WP'l~ P <  K - l "  

The example (1) shows that this is false for p ~ 2 K / ( K - 1 ) .  

Theorem 1.1 governs also the distortion of the Hausdorff dimension dim(E) of a 

subset E. 

COROLLARY 1.3. Let f: 12--*~' be K-quasiconformal and suppose ECI2 is compact, 

Then 
2 K d i m ( E )  

d im(rE)  ~ 2+  ( K -  1) dim(E)" (4) 

This inequality, as well, is the best possible. 
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THEOREM 1.4. For each 0 < t < 2  and K>~I there are a set E c C  with d im(E)= t  

and a K-quasiconformal mapping f of C such that 

dim(rE)  = 2K dim(E) 
2 + ( K -  1) dim(E)" 

The estimate (4) was suggested by Gehring and V/fis/ilii [GV]. It can also be formu- 

lated [IM2] in the symmetric form 

1 ( 1 1 )  1 1 (  m~ ~)  < K  . 
dim(E) dim(rE)  - 2 di E) 

(5) 

The results 1.3 and 1.4 are closely related to the removability properties of quasiregu- 
lar mappings, since in plane domains they can be represented as compositions of analytic 

functions and quasiconformal mappings. The strongest removability conjecture, due to 
Iwaniec and Martin JIM1], suggests that sets of Hausdorff d-measure zero, d= n~ (K + 1), 
are removable for bounded K-quasiregular mappings in R n. Here we obtain the following. 

COROLLARY 1.5. In planar domains sets E of Hausdorff dimension 

2 
dim(E) < K+-----1 

are removable for bounded K-quasiregular mappings. 

Conversely, for each K >11 and t > 2 / ( K + 1) there is a t-dimensional set E C C which 

is not removable for some bounded K-quasiregular mappings. 

In addition to [IM1] removability questions have recently been studied for instance 

in [JV], [KM] and [Ri]. 

Finally, we mention the applications to the regularity results of quasiregular map- 

pings. Recall that a mapping 

1 f e 1 < q < 2 ,  

is said to be weakly K-quasiregular, if Jl  >10 almost everywhere and 

max IDf(x)hl ~ K rain IDf(x)h[ a.e. x e 12. 
lh l=l  Ihl=l 

Then f is K-quasiregular in the usual sense if fEWl,  lor i.e. if Jf  is locally integrable. 

We can now consider the number q(K), the infimum of the q's such that every weakly 
K-quasiregular mapping f EWql, loc(f~) is actually K-quasiregular. 
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COROLLARY 1.6. q(K)=2K/(K§ 

Indeed, Lehto and Virtanen [LV] have proven that  the precise estimate on the L p- 

integrability, Corollary 1.2, implies that  q(K)<.2K/(K+I). The opposite inequality 

q(g)~2g/(g+l)  was shown by Iwaniec and Martin in [IM1]. 

Quasiconformal mappings are also the homeomorphic solutions of the elliptic differ- 

ential equations 

Of(z) =#(z)Of(z); 

here # is the complex dilatation or the Beltrami coefficient of f with 

K - 1  
= < 1 .  

Hence there are close connections to the singular integral operators and especially to the 

Beurling operator 
1 f w(~)dm(~) Sw(z) ' Jo 

see [I], [IM1], [IK] for example. In fact, this operator was the main tool in the work of 

Bojarski [Bj] and Gehring-aeich [GR], cf. also [IM2]. Below we shall use mostly different 

approaches and the role of the S operator remains implicit. Still the area distortion 

inequality has a number of implications on the properties of S. In particular, we have 

COROLLARY 1.7. There is a constant (~1 such that for any measurable set Ec  A, 

/o ~ 
ISXEt dm <~ JE t log ~-~. (6) 

It is for this consequence that  we must show the asymptotic estimate M(K)--I§ 
O ( K - 1 )  and then, actually, Theorem 1.1 is equivalent to 1.7, cf. [GR].(1) 

If we consider general functions w �9 L ~ (A) then the inequality (6) implies the correct 

exponential decay for t(z �9 A : Re Sw > t}i when t--~ cx). As a consequence, for each 5 > 1 

there is a constant M~ < c~ such that  

/ ,Sv, dm<~5/A,V, log(l+M~ 'v' ~dm , vELlogL(A). (7) 
Ivl ] 

Here ]vi~=(1/~r) fa tvl dm is the integral mean of Iv]. It is a natural question whether (7) 

holds at 5=1 as in (6) with characteristic functions. This would also imply the Iwaniec- 

Martin removability conjecture in the planar case. However, in the last section we show, 

again by considering the inequalities arising from the thermodynamic formalism, that  in 

fact (7) fails when 5=1.  

(1) David Hamilton and Tadeusz Iwaniec have pointed out that now (6) holds with a----elf. 
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Further results equivalent to the Gehring-Reich conjecture have been given by 

Iwaniec and Kosecki [IK]. These include applications to the Ll-theory of analytic func- 

tions, quadratic differentials and critical values of harmonic functions. Moreover, by 

results of Lavrentiev, Bets and others the solutions of the elliptic differential equations 

V-AVu=0 can be interpreted in terms of quasiregular mappings f .  Therefore Corollary 

1.2 yields sharp exponents of integrability on the gradient Vu; note that the dilatation of 

f and so necessarily the optimal integrability exponent depends in a complicated manner 

on all the entries of the matrix A rather than just on its ellipticity coefficient. 

Acknowledgements. During the preparation of this manuscript a number of people 

found simplifications to the first preliminary notes. Especially I would like to thank 

Alexander Eremenko and Jos~ Ferns who both pointed out Corollary 2.4. Also, 

I would thank Tadeusz Iwaniec and Michel Zinsmeister for important discussions and 

comments on the topics in this paper and many people, including Alexander Eremenko, 

Fred Gehring, Seppo Rickman, Juha Heinonen and Pekka Koskela for reading and making 

corrections to the first draft. 

2. Ho lomorphic  deformat ions  of  Cantor  sets  

Let us first consider a family {Bi}i~l of nonintersecting subdisks of A. We shall study 

the quasiconformal deformation of such families and, in particular, estimate sums 

n 

Z r ( B i ) t '  t e a ,  (8) 
i : l  

where r(Bi) denotes the radius of Bi. Looking for the extremal phenomena we can iterate 

the configuration {Bi}~l and are thus led to Cantor sets. There one needs measures # 

which reflect in a natural manner the properties of the sums (8). It turns out that such 

measures can, indeed, be found by using the thermodynamic formalism introduced by 

auelle and Bowen, cf. [Bw], [W]. 

To describe this in more detail suppose hence that we are given similarities 7i, 

l<~i<.n, for which Bi=TiA. Since the 7i are contractions, there is a unique compact 

subset J of the unit disk for which 

i : l  

Thus J is self-similar in the terminology of Hutchinson [H]. We can also reverse this 

picture and define the mapping g: [Ji Bi-~A by glB~----7~ -1- Now 

J =  ~ g -k/x, 
k----0 
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and g is a n-to-1 expanding mapping with J completely invariant, j=gj__g-tj.  Fur- 
thermore, g represents the shift on J; in a natural manner we can identify the point 

x E J with the sequence (jk)k~=0 E ( 1, ..., n} N by defining jk = i  if gk (X) E Bi. Then, in this 
�9 O ~  �9 O O  identification, g: (0k)k=0 ~-* (3k+l)k=0- 

In the sequel we use the notation J= J(g) for our Cantor set and say also that  it is 

generated by the similarities 7i. 

Next, let s=dim(J(g)), the Hausdorff dimension of J(g). Then the Hausdorff s- 

measure is nonzero and finite on J(g) and after a normalization it defines a probability 

measure #8 which is invariant under the shift g, i.e. #s(g-lE)=#s(E) for all Borelian 

EC J(g). A general and systematic way to produce further invariant measures is provided 

by the RueUe-Bowen formalism: Given a HSlder continuous and real valued function r 

on J(g) there is a unique shift-invariant probability measure #=]~r called the Gibbs 

measure of r  for which the supremum 

P(r C d # : ~  is g-invariant} 
(g) 

(9) 

is attained, see [Bw] or [W]. Here h~,(g) denotes the entropy of # and the quantity P ( r  

is called the topological pressure of r  

Let us then look for the Gibbs measures that  are related to the sums (8). Recall 

that  s=dim(J(g)) is the unique solution of P(-s  log ]g'l)=O, and this suggest the choices 

Ct=-tlog Ig'l. It then readily follows from [Bw, Lemma 1.1.20], that  

P - r i o  . '. =1o ( g i g l )  r i �9 
~i----1 ~ xi----I 

(10) 

In fact, the functions r162 are in our situation locally constant and therefore it 

can be shown that  the system g: (J(g), # r  pC) is Bernoulli. In other words, the 

numbers pi=#r satisfy n 1 "" ~i=lpi= and on J(g)=(1,...,n) N #0 is the product  

measure determined by the probability distribution {P~}'~=I on {1, ..., n}i This enables 

one to make the dynamical approach more elementary, as pointed to us by Alexander 

Eremenko. We are grateful to him for letting us include this simplification here. 

For the readers convenience let us recall the proof of the variational principle, the 

counterpart  of (9), in the elementary setting of product measures. Then also the entropy 

of ~- -~r  attains the simple form 

n 

h~,(g) = - Z p ,  log p,. 
1 
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L E M M A  2 . 1 .  

tribution { qi } i~= l . 
Let v be a product measure on J(g) determined by the probability dis- 
Then for each tER,  

(~ ) hv(g) - t  L loglg'ldv<~log ~_r (B i )  t 
(9) " i = 1  " 

with equality if and only if 

r(Bi)t 1 ~< i ~< n. 
qi  = n , , 

~i=l  r(Bi) 

Proof. Since the logarithm is concave on R+,  

hv(9)-t L log Igl d,, = ~ q, log = ~ q, log 
(g) i=l qi i=l 

r( Bi )* <. log r( Si ) t 
qi  - i = 1  * 

where the equality holds if and only if qir(Bi) -t  has the same value for each l<.i<.n. 

Remark. In this setup one can use (10) as the definition of the pressure P ( - t  log Igtl). 

Note also that  if S=dim(J(g)), then ~$_lr(Bi)S=-l, or PC-s log  Ig'l)=O, and the ex- 

tremal measure in Lemma 2.1 is again the normalized Hausdorff s-measure. 

We shall next consider holomorphic families of Cantor sets or pairs (g~, J(g~)), 
)~EA. By this we mean that  each set J(gx) is generated as above by similarities 7i,x(z)= 
ai(~)z+bi(~), l<~i<~n, where the coefficients a~(X)#0, bi(~) now depend holomorphicaUy 

on the parameter A. On the other hand, we can also consider the Bi()~)='yi,xA and say 

that  {B~(),)}~ is a holomorphic family of disjoint disks in A. 

Both of these configurations can be described as holomorphic motions; recall that  a 

function r A • A ~ C  is called a holomorphic motion of a set A c C  if 

(i) for any fixed aEA, the map A~-*~(A, a) is holomorphic in A, 

(ii) for any fixed ~eA, the map a~-*~x(a)=~()~,a) is an injection, and 

(iii) the mapping r is the identity on A. 

In fact, (global) quasiconformal mappings and holomorphic motions are just different 

expressions of the same geometric quantity. For instance, according to Slodkowski's 

generalized ~-lemma ([SI], see also [AM, 3.3]) the correspondence ~i,0(z)~+Ti,~(z) for 

zEA and l<.i<~n, extends to a quasiconformal mapping r C - + C  with 

g(,I,,x) ~< I+I,Xl 
1-I,XI" 

Therefore the estimate 

( ~  \(*-I~,1)/0+1,~1) 
IS,()~)l ~ C IBdo)l) 

i = l  " i = l  

(11) 
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is a special case of the Gehring-Reich conjecture. But after simplifying arguments, given 

later in Lemmas 3.1 and 3.3, we will see that the conjecture is in fact equivalent to (11). 

Expressing this inequality now in terms of the topological pressure (10) we end up 

with the following formulation. 

THEOREM 2.2. Suppose that (g~, J(g~)) depends holomorphically on the parameter 
A C A. Then 

1 -I,Xl P ( - 2  log Ig; I)- ? I A I  P ( - 2  log Ig~l) ~< P ( - 2  log Ig~l) ~< 1 - ~  

Proof. By the variational inequality 2.1 for each A there is a unique (product) mea- 

sure #a such that 

P ( - 2  log Ig~l) = hu~ (g:~)- 2 f log Ig~](z) dl.t~(z) (12) 
JJ (9~) 

and clearly log Ig'~l(z) is harmonic in A. To use Harnack's inequality we "freeze" the 

measure #~. In other words, given a probability distribution {p~}~ on {1, ..., n}, define 

for each )~EA a product measure #~ on J(gx) by the condition fit~(J(g~)MBi(A))=pi; 
this is possible since the disks Bi(A) remain disjoint. By the construction, h#~(g~) is 

then constant in A. 

Moreover, we have that P ( - 2  log I g~ l)< 0, since P(-s  log Ig~l)is strictly decreasing 

in s and it vanishes for s=dim(J(g))<2. Alternatively, we may also use here the identity 

(10) to P ( - 2  log Igil)=log(E~_l r(Bi(A)) 2) <0. 

If now the numbers {pi} are so chosen that/2o=#o (the maximizing measure in (12) 

when the parameter/k=0), then Harnack's inequality with 2.1 implies that 

1+')'1 l +l~' (hF, o(go)_2 fj(9o) log [g~[ dfito) l _ l~  I P ( - 2  l~ Igol)= l_i)~i 

~< h~.~(gx)-2 f j  log Ig~l d~;~ ~< P ( - 2  log Ig~l) 

which proves the first of the required inequalities. The second follows similarly by sym- 

metry in ~ and 0. 

When t>2 the same inequalities hold for P ( - t l o g  Ig~l) as well. However, smaller 

exponents must change with I~1 and we shall later see how this reflects in the precise 

distortion of Hausdorff dimension under quasiconformal mappings. 

COROLLARY 2.3. If (gx, J(ga)) is as above and 0<t~<2, set 

t( l+l)q) 
t(A)= 1-1~l-t-tlAl" 
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Then 
1 1-1A I 1 P ( - t  log Ig01). 

t(A) P(- t (A) log  Ig~l) ~< I+IA---- i 

Proof. If {~x}~e~ is a family of product measures on J(g~), all defined by a fixed 
probability distribution {p~}~ like in the previous theorem, then by 2.1 

1 .fj ( 1  ~)  1 h ~j t(A) hp~(9"~)- l~ t~) +~ p~(ga)- loglg~ld#x 

1-I~1/h / 1 1--~[ L po(go)~-~-~) l h <~ +-~ po(go)- fa(go)l~ ) 

1-1AI 1 P( - t l og  IgGI) < 

and taking the supremum over the product measures on J(g~) proves the claim. 

The above estimates for the topological pressure hold actually in a much greater 

generality. We can consider, for instance, polynomial-like mappings of Douady and 

Hubbard [DH]. More precisely, suppose we have a family of holomorphic functions fA 

defined on the open sets U~, AcA, such that U;~cf;~U;~. We need to assume that 

OO 

N 
n : 0  

is a mixing repeller for f~. That is, f ~ 0  for zEJ(f~) and J(f~) is compact in C with 

no proper f~-invariant relatively open subsets. Then the fx are expanding on J(fa) and 

the thermodynamic formalism extends to fa: J(f~)-~J(fa), see [Bw] or [Ru]. 
To consider the dependence on the parameter, let Ua depend continuously on A and 

let (A, a)~-* f~ (a) be holomorphic whenever defined. Because the functions are expanding, 
we have a holomorphic motion of the periodic points ([MSS], p. 198). Since these are 
dense in the repeller J(fx), by the A-lemma of Mafi~, Sad and Sullivan we obtain a 

holomorphic motion �9 of J(fo) such that J(f~)=O~J(fo) and f~o~x=O~of0. 
Combining these facts we conclude that 

l-[A[ 
} P ( - t  log (13) 1 P(-t(A)log If~l) ~< If~l)- 

t(A) x+IA I 

Namely, since the variational principle generalizes to this setting, the proof of (13) is 
as in Lemma 2.3. In this case to show that P(- t (A)log Is  we may use Manning's 

formula [M] 

dim(#) = h~, (f~) 
fj(f~,)log If~,l d/z 
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and the fact [Su] that  dim(#)- inf{dim(E):#(E)=l}<.dim(J( f~))<2.  These hold for 

any ergodic f~-invariant measure on J(f~). Especially, starting from a measure # on 

J(fo) we can take the images #x=(b~p under the holomorphic motion, and since the 

entropy is an isomorphism invariant, (13) follows. 

On the other hand, if one looks for the minimal approach to the quasiconformal area 

distortion, then the above leads also to a proof for ( l l )  that  avoids the thermodynamic 

formalism. In fact, this was shown to us by A. Eremenko and J. Ferns who inde- 

pendently pointed out the following result on the (nonharmonic!) function log [If(z)[I- 

COROLLARY 2.4. Let B n = { z 6 C  n : [[z[[ < 1}. If  f: A - * B  n is a holomorphic mapping 

such that all of its coordinate functions fi are everywhere nonzero, then 

l+lzl log IIf(0)ll, 1 -  Izl log IIf(0)ll -< log Ill(z)II "< , . z l  I 

Proof. If f = (f l ,  ..., fn),  consider numbers Pi > 0 with ~ p, = 1 and set 

n 

u ( z ) = Z p i l o g  Pi 
Ifi(z)l 2 

i=1 

Then u(z) is harmonic and by Jensen's inequahty, e -=(*) <~pi[ f i ( z ) [2 /p i  < 1, u is also 

positive. Hence using the concavity of the logarithm and the Harnack's inequality we 

may deduce 

Tt n 

log IIf(z)ll 2/> ~--~p, log Ifi(z)[2 >~ l+lzl ~p, log If~(~ 
,=1 p----?- ,=  1 p-----S- 

Choosing finally p~=lfi(O)12/llf(o)lt 2 proves the first inequality. The second follows by 

symmetry. 

3.  D i s t o r t i o n  o f  a r e a  

We shall reduce the proof of the area distortion estimate If El ~ MtE  11/K into two distinct 

special cases. In the first, where we use the inequalities of the previous section, let us 

assume that  E is a finite union of nonintersecting disks B, = B (zi, ri) C A, 1 <~ i <<. n. 

LEMMA 3.1. Suppose that f: A-- ,A is K-quasiconformal with f(O)=O. If f is con- 
formal in E=U~ Bi, then 

n (~=l,1/K 
Z l f B i I < ~ C ( K )  IBi]) , 
i=1 
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where the constant C(K) depends only on K. Moreover, C(K)=I +O(K-1). 

Proof. Extend f first to ~2 by a reflection across S 1 and assume without loss of 

generality that f (1)=1.  Then we can embed f to a holomorphic family of quasicon- 

formal mappings of C. However, in order to control the distortion as K ~ o o  we need to 

modify f near oo. Thus, if # is the Beltrami coefficient of (the extended) f , define for 

each A E A new dilatations by 

A K + I  ~(z)= ~L--~ lz(z), Izl-< 2, 
0, Izl>2. 

By the measurable Riemann mapping theorem there are unique #x-quasiconformal 

mappings f~: ~2--~ ~2 normalized by the condition 

A ( z ) - z = O ( 1 / I z l )  as Izl--*oo. 

Then f~ is conformal in E, f~(z) and its derivatives (when z E E) depend holomorphically 

on A lAB, Theorem 3], fo(z)=z and if Ao=(K-1)/(K+I), then 

f~o : Co f, (14) 

where r is conformal in fB(O, 2). 

To apply Theorem 2.2 note that by Koebe's �88 

1 r Di(A) =- B(f~(zi), zr~l~(z,)l) c AB(zi, r~) 

and similarly f~B(O, 2) C B(0, 8). Also Di (A) =r (0), where 

r = f '~(z~)(z-z , )+ A(z~), 

and thus {D~(A)}~ is a holomorphic family of disjoint disks contained in B(0, 8). There- 

fore we need only choose extra similarities r B(0, 8)--~Di(0), l<<.i<<.n, set 7i,~=r162 
and note that these generate a holomorphic family of Cantor sets J(g~)CB(0, 8). By 

Theorem 2.2 
1 - 1 ~ 1  . P(-2 log Ig~,l) ~< 1 - - ~  P(-L log lg~l) 

or, in other words, by (10) 

r [Z ~ 2r2  j ~  ij i ~324J~l/(l+lXl) 2~(1-1~1)/(1+1~1) 
i=1 \ i - - 1  r i  ) " 
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The lemma will then be completed by simple approximation arguments. Since the 

images of circles under global quasiconformal mappings have bounded distortion, 

min IA(z)-A(z~)l ~ lABel ~< ~r max IA(z ) -A(z~) l  2 ~< ~Co(IAI) z~oB, zEOB~ 

where the last estimate follows from the Schwarz lemma. Moreover, the correct expression 

for the constant C0([A[), see [L, p. 16], shows that C0([A[)=I+O([A[). If we choose A0= 

(K-1) / (K+I) ,  it then follows that [f.xoE[<.Cl(g)[E[1/g with C l ( g ) = l + O ( g - 1 ) .  
It remains to show that the function (I) in (14) satisfies 

[(I)'(z)l >/C2(K)=(I+O(K-1)) -1 for all z e A .  

First, since the diameter of f~oB(0, 2) is at least four [P, 11.1], the basic bounds on the 

circular distortion, see [L, 1.2.5], imply that 

B(Ao (0), e(K)) C Ao A = ,I,A 

for a 0(K)>0 depending only on K. As above, I~'(0)I~>~(K) by the Schwarz lemma. 

Yet another application of the Schwarz lemma, this time to the function AHf~(z)--z, 
gives 

I A ( z ) - z l  ~< 101~l, z �9 B(0, 2). 

This shows that we may choose o(g)=( l+O(g-1) )  -1. 
Fhrthermore, as f S l = S  1 and f -1  is uniformly Hhlder continuous with constants 

depending only on K, fB(O, 2)DB(O, R) for an R=R(K)> 1. Then Koebe's distortion 

theorem combined with Lehto's majorant principle [L, II.3.5] proves that 

, ( ( 1 - [ z / R ] ) 3 )  (K-1)/(K+I) 
Ir ~> Ir (0)l i % l ~ - ~  , z �9 z~, 

and the required estimates follow. 

Remark 3.2. The above proof gives us the following "variational principle" for planar 

quasiconformal mappings: 

Suppose we are given numbers Pi > 0 with EiL1 Pi = 1 and disjoint disks Bi C A. Then 
for each K-quasiconformal mapping f: A--,A for which f (0 )=0  and 

flt3": B, is conformal, (15) 
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we have the inequality 

n n 

Z p i  log If B~l ~< 1 y~p~ log IBiI +C( K) (16) 
i=l Pi "~ K i=1 Pi 

where C ( K ) = O ( K - 1 )  depends only on g .  

In fact, choosing p~ = I fBi  I / ( ~ =  1 I fBi  I) shows that (16) generalizes Lemma 3.1. 

Somewhat curiously, the variational inequality (16) is not true for general quasi- 

conformal mappings, for mappings which do not satisfy (15); we shall return to this in 

w where it will have implications to the estimates of the L log L-norm of the Beurling 

operator. 

To prove the complementary case in the area distortion inequality we use therefore 

a different method. We shall apply here the approach due to Gehring and Reich [GR] 

based on a parametric representation. 

LEMMA 3.3. Let f: A--+A be K-quasiconformal with f (0)=0.  If E c  A is closed and 
f is conformal outside E, then 

IrE I <<. b(g)lE I 

where b (K)=I+O(K-1 )  depends only on K. 

Proof. As in [GR] define the Beltrami coefficients 

ut(z)=sgn(#(z))tanh ~ arctanh I~(z)l , t e e §  

where # is the complex dilatation of f ,  T = l o g K  and sgn(w)=w/Iw I if wr with 

sgn(O)=O. By the measurable Riemann mapping theorem we can find ut-quasiconformal 

ht: A---~A with ht(O)=O. 

If A(t)=lhtEI, then Gehring and Reich show that 

~A( t )  = r dx dy + c(t)lhtE I (17) 

where S is the Beurling operator and Ic(t)l is uniformly bounded. The function r depends 

only on the family {ht}, not on E, and from [GR, (2.6) and (3.6)] we conclude that 

I1r ~< 1 and that r  whenever P(ht l (w))=0.  

Suppose now that f is conformal outside the compact subset E c A .  Then #-=0 in 

A \ E  and, in particular, we obtain 

Ir < Xh, E(Z). 

4-945203 Acta Mathematica 173. Imprim6 le 5 oetobre 1994 
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But S: L2--+L 2 is an isometry and therefore for any set F c C ,  

/F ,SXF, dx dy <<. IF,1/2 ( / c  ISXF,2 dx dy)I/2 ---- ,F ,. 

Thus 

(18) 

~A(t)d <.CoA(t), 0 < t < c r  

and an integration gives IhtEl-=A(t)<~eCotA(O)=eCotlE I. Taking t = l o g K  shows that 

ifEi <eGO log KIE I=b(g)lEI ' where b(g)= I + O ( K -  1). 

Remark. On the other hand, as kindly pointed out by the referee, if one considers in 

the solution f(z)=z+O(]z1-1) of the Beltrami equation f ~ = # h  where # is supported 

on E, then in that situation the following argument gives a direct proof for a very precise 

estimate 

If(E)l <~ KIE I. 

Namely, for w=f~ we h a v e / z = l + S w  with w=#(I+Slz+S(#S#)+...). In view of IISll2 = 

1 we obtain 

I I ( E ) I  = fE II+S 12-1"12 IEI+2Re fE 

where for the kth iterate fE IS, S,... S,l <, II,II IEI as in (lS). Thus 

[ 2 \ 

I -  l]-#Hoo \ / 

The area distortion inequality is now an immediate corollary of the two previous 

Lemmas 3.1 and 3.3. 

Proof of Theorem 1.1. 

proving the estimate 

Suppose that f :  A--.A is K-quasiconformal and f(O)=O. In 

If EI ~ MIE[ 1/K 

it suffices to study sets of the type E-~U~B~, where the Bi are subdisks of A with 

pairwise disjoint closures. The general case follows then from Vitali's covering theorem. 

To factor f we find by the measurable Pdemann mapping theorem a K-quasicon- 

formal mapping g : A ~ A ,  g(0)--0, with complex dilatation #g=XA\E#I" Then g is 

conformal in E and f=hog, where h: A--.A is also K-quasiconformal, h(O)-=O, but now 

h is conformal outside gE. Since quasiconformal mappings preserve sets of zero area, 

Ih(OgE)l=lOgE]=O, and then Lernmas 3.1 and 3.3 imply 

]f E I = [h(gE)[ <<. b( K)[gE I <~ b( K)C( K)]E[ l/K, 
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where M(K)-b(g)c (g )= 1 + o ( g -  1) as required.(2) 

One of the equivalent formulations of Theorem 1.1 is the statement that  for a K-  

quasiconformai f the Jacobian J f  belongs to the class weak-L p, p=K/(K-1).  

COROLLARY 3.4. / f  f :  A-- ,A is K-quasiconformal, f(0)----0, then for all s>0 ,  

I{z E A : Jy(z) ~ s}l ~ ( M ;  ~(K-l), 

where M depends only on K. Moreover the exponent p=K/ ( K -  1) is the best possible. 

Proof. If Es={zeA:Js(z)>~s }, then by Theorem 1.1 

s[Es[ <~ f_ J/dm = [fE~ I <~ M(K)[Es[ 1/K. 
s 

No p larger than K/(K-1)  will do, since [E~]=r(Ks) -K/(K-I) for f(z)=z[z[ 1/K-1. 

Proof of Corollary 1.2. If D is a compact disk in the domain f~ and f :  f l u f f1  is 

K-quasiconformal, choose conformal r  r which map neigbourhoods of D and fD, re- 

spectively, onto the unit disk. As r and r are bilipschitz, applying Corollary 3.4 

to r -1 proves that  JfGL~oc(fl ) for all p<K/(K-1).  

4. D i s t o r t i o n  o f  dimens ion  

In the previous section we determined the quasiconformal area distortion from the prop- 

erties of the pressure P ( - 2  log Ig~ I)- Similarly Corollary 2.3, or the variational inequality 

(16) with a suitable choice of the probabilities Pi, admits the following geometric inter- 

pretation: 

If f :  A--~A is K-quasiconformal with f (0 )=O and if, in addition, f is conformal in 

the union of the disks Bi C A 1 ~i ~n7 then 

(~. t'l/(1-l-t (K-- 1)) 
EIfB~ItK/(:+t(I':-I))<-.C(K) IBil ) 7 0 < t ~ < l ,  

i 

where the constant C(K) depends only on K.  

Since the complementary Lemma 3.3 fails for exponents t<2 ,  in the general case we 

content with slightly weaker inequalities. 

(2) David Hamilton has informed us that the same methods can also be used to obtain good bounds 
for the constant M in [fE[~MIE[ 1/K if one considers instead of the case f: A---,A those mappings f 
which are conformal outside A with f(z)-z=O(1/Izl). 
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LEMMA 4.1. / f 0 < t < l ,  f: A--~A is K-quasiconformal, f (0)=0 and {Bi}~ are pair- 
wise disjoint sets in A, then 

E <<" CK(t'P)(~i [Bi[t)l/(l+t(K-1)) 

whenever ( l + t ( K -  1))-ltK<p<~ 1. 
Proof. We use the integrability of the Jacobian J / a s  in [GV]. Since p ( l + t ( K -  1)) > 

tK we can choose an exponent l<po<K/(K-1) such that 

1 l + t ( K - 1 )  (19) 
-~qo < P tK ' 

where qo=Po/(Po - 1) is the conjugate exponent. Then using Hhlder's inequahty twice 

one obtains 

~ 'f Bi'P = ~ (/B Jl dm )" <<. ~ (/B JfP~ dm)'/P~ v/q~ 

~ ( ~  /B JlP~ dm)P/P~ (~i [Bi,(P/q~176176176176 

~ (/A JfP~ dm)P/P~ (~i [Bi,(P/q~176176176176 

On the other hand, as po(K-1)/K<l<p(l+t(K-1))/tK, it follows that Po/(Po-P)> 
l + t ( K - 1 ) .  Combining this with Corollary 3.4 (or 1.2) yields 

( ~  ,1/O+t(K-l)) 
EtfB,]P <<.M ]Bi] (p/qO)(l+t(K-1))) 

i 

where M depends only on Po and K. Since by (19 ) also t < (p/qo) (1 + t ( K - 1)), t he claim 

follows. 

Proof of Corollary 1.3. If f:  f~--~[21 is K-quasiconformal, let ECft be a compact 

subset with dim(E)<2. Choose also a number �89 dim(E)<t~<l and cover E by squares 

B~ with pairwise disjoint interiors. 

According to [LV, Theorems III.8.1 and III.9.1], dia(fB~)2 ~< ColfBi[, where the con- 

stant Co depends only on K, E and ~. Hence we conclude from Lemma 4.1 that 

/ \l/(l+t(K--1)) 2tK 
E i  dia(fB~)~ ~< C1 ~ .  dia(Bi) 2t) , 5 > l + t ( K - 1 ) "  



AREA DISTORTION OF QUASICONFORMAL MAPPINGS 53 

With a proper choice of the covering {Bi} the sum on the right hand side can be made 

arbitrarily small and thus dim(f E)~<a. Consequently, 

dim(fE) ~< 2K dim(E) (20) 
2 + ( g -  1) dim(E) 

which proves the corollary. 

In the special case of K-quasicircles F, i.e. images of S 1 under global K-quasicon- 

formal mappings, Corollary 1.3 reads as 

K - 1  2 
dim(F) < I+ K+I  - 2 -  K+--~" 

This sharpens recent results due to Jones-Makarov [JM] and Becker-Pommerenke [BP]. 

On the other hand, Becker and Pommerenke showed that if the dilatation K~ i, then 

0 K - 1  2 1§ . 0 9 ( ~ - - ~ )  ~ < d i m ( F ) < ~ l + 3 7 ( K - l ~  2. 
\K+I] 

These results suggest the following 

Question 4.2. If F is a K-quasicircle, is it true that 

dim(F) ~< 1+ \ K + i - ]  " 

In the positive case, is the bound sharp? 

Let us next show that the equality can occur in (20) for any value of K and dim(E). 

Note first that in terms of the holomorphie motions Corollary 1.3 obtains the following 

form. 

COROLLARY 4.3. Let O:AxE--+C be a holomorphic motion of a set E c C  and 

write d(A)=dim(O~(E)). Then 

2d(0) (21) 
d(A) ~< (2-d(0)) (1-I~l ) / ( l+l~l )+d(0)"  

Proof. By Slodkowski's extended A-lemma (I)~ is a restriction of a K-quasiconformal 

mapping of C, K ~< (1+ I AI)/(1 - I AI), and hence the claim follows from 1.3. 

For the converse, we start by constructing holomorphic motions of Cantor sets such 

that the equality holds in (21) up to a given s>0. Thus for each, say, n~> 10 find disjoint 

disks B(zi ,  r )CA all of the same radius r=r~,  such that �89 ~<nr2<~l. If 0< t<2 ,  let also 

/3(t) = log(nl/tr) .  (22) 
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For n large enough, f~(t)>0 and 

�89 ~< log r 
log r - ~ ( t )  

Set then 

<~ �89 (23) 

at( A ) = exp ( -~ ( t )~ -~  ) . 

Clearly at is holomorphic in A with a t (A)=A\{0} .  Therefore we can consider the holo- 

morphic family of similarities 

7i,X(z) = rat()~)z+zi. 

Since the disks ~/i,~AcB(zi,r) are disjoint, the similarities ~/i,x generate Cantor sets 

(ga, J(g~)) as in w Furthermore, the derivatives 17~,~1 do not depend on i and so the 

dimension d(s is determined from the equation n(rlat ()Q I) d(x) = 1. By (22) 

n(rlat (0)1) t-- 1 and therefore 

d(0) = t .  

Similarly, if 0<)~<1, it follows from (23) that 

d(0) log(rlad,~)l) logr-~(t)(1-)Q/(l+A) 
d()Q log(rlat(O)l ) l og r -~ ( t )  (24) 

~< �89 (1 -  �89 1-)~ 1 - ~ +  E- 

Proof of Theorem 1.4. Choose a countable collection {B~}~ of pairwise disjoint 

subdisks of A and define, using the argument above, in each disk Bk a holomorphic 

motion O of a Cantor set Jk with Ox(J~)cBk. If d()~)=dim(Ox(Jk)), we may assume 

that d(0)=t and that for each k (24) holds with e=l/k. 
Clearly this construction determines a holomorphic motion ko of the union J =  U~ Jk. 

Writing still d ( )~)=dim(~(J) )  we have 

2d(0) 0 ~< )~ < 1. 
d(~) = (2-d(O))(1-~)/(l+)~)+d(O)' 

Now Slodkowski's generalized )~-lemma applies and �9 extends to a K-quasiconformal 

mapping f of C, where K - - ( I + ) Q / ( 1 - ~ ) ,  0 ~ < 1 .  In other words, if E=J, then 

dim(E) = t  and dim(fg)=2K dim(E)/(2+(K- 1) dim(E)). 

Finally, Corollary 1.5 is an immediate consequence of 1.3 and 1.4 since K-quasireg- 

ular mappings f can be factored as f=r where r is holomorphic and g K-quasicon- 

formal; for holomorphic r sets E with dim(E)< 1 are removable by Painlev~'s theorem 

while those with dim(E)> 1 are never removable [Ga, III.4.5]. 



AREA DISTORTION OF QUASICONFORMAL MAPPINGS 55 

Therefore in considering the removability questions for K-quasiregular mappings, the 

dimension d g = 2 / ( K + l )  is the border-line case and there we have the Iwaniec-Martin 

conjecture that  all sets of zero Hausdorff dg-measure are removable. More generally, it 

is natural to ask whether the precise bound on the dimension 

d im(rE)  2K dim(E) 
<~ 2 + ( K - l )  dim(E) 

given by Corollary 1.3 is still correct on the level of measures. 

Question 4.4. Let 0 < T < 2  and ~----~K(T)=2Kr/(2+T(K--1)). If f is a planar g -  

quasiconformal mapping, is it true that  

H~(E)=O ==~ H~(fE)=O. 

If not, what is the optimal Hausdorff measure Hh or measure function h such that  

f*gh <<W? 

5. Est imates  for the  Beurling operator 

As we saw earlier quasiconformal mappings have important connections to the singular 

integrals and in particular to the Beurling operator, the complex Hilbert transform 

Sw(z) = _lTr/c  w(C)(C_z) 2am(C) 

There are even higher dimensional counterparts, see [IM1] and the references there. 

In fact, many properties of the S operator can be reduced to the distortion results of 

quasiconformal mappings. We shall here consider only the operation of S on the function 

space L log L and refer to the work of Iwaniec and Kosecki [IK] for further results. 

In case of the characteristic functions w=XE we have then by Corollary 1.7 that  

B o~[B[ (25) [SxE[ dm <. [E I log [E---I- 

for all Borel subsets E of a disk B c C :  the constant a does not depend on E or B. This 

translates also to the L ~ setting: 

COROLLARY 5.1. Let B c C  be a disk. If w is a measurable function such that 
]~d(z)[~XB(Z ) a.e., then 

[{z E B:  [ReSw(z)[ > t}[ ~< 2a[Ble -t.  (26) 
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Proof. Let E+={zEB :ReSw>t}. Since S has a symmetric kernel, 

tlE+l<.Re[ S~dm=Re fjSx~+dm<.lE+llog ~lB---! 
JE+ IE+I 

by (25). Thus [E+I <~ a lB [e -t and since by the same argument E_ = {z e B : Re S~v < - t }  

satisfies [E-I .<~[Ble -~, the inequahty (26) follows. 

The estimate (26) is sharp since for ~v=(z/Z)XA(z) we have 

Sw = (1+2 log Izl)xA(z). 

For the modulus IS~I Iwaniec and Kosecki [IK, Proposition 12] have shown that (25) 

implies 

I{z C B :  ISw(z)l > t}l ~< a(l+19t)lBI e-t. (27) 

It remains open if the linear term 19t can be replaced by a constant. 

COROLLARY 5.2. For each 6>1 there is a constant M ( 6 ) < e e  such that 

s 'Sv' dm <~ 6 fB 'V(z)' log(l + M ( 6 ) ~  ) dm(z) 

whenever v is supported on B. 

Proof. Let co be a function, unimodular in B and vanishing in C \ B ,  such that 

V s f ~S, am=lvl. s S~ l-~am. 

We apply then the elementary inequality ab<.a log(l+a)+e b- 1. Since by (27) 

elS~l/6-1dm<<.tBIx2- i 1+5_1] =MI(~)IBI, 

it follows that 

fBISvldm~ Ml(5) fBIvldm+6 fBIVllog(l+611V@B) din" 

Define now Eo={zeB: Iv(z)l<(1/e)lvlB}. As tHtlog(1/t) is increasing on (0, l / e ) ,  

-e s lVl l~ ( l~l l ) dm <~ lvl" lEol <~ fB lvl din, 
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where we use the convention 0log0=0. Thus 

fB 'vl l~ (e+6)) din+lEo Iv, l o g ( l + ~ ) d m  
(28) 

<" fBIvll~ ~dm' \ MB] 

where M2 =e 2 +e6. In conclusion, if M=M2 exp(Ml (6)), 

fBlSvldm<<- ~ fBMl~ dm<~ ~fBlvll~ dm, 
which completes the estimation. 

Since the variational inequality (16), 

n n 

E p i l o g  [fB/I ~< 1 E p i l o g  [Bi[ +C(K) 
/=1 Pi g / = 1  Pi 

with C(K)=O(K-1) and f lu  B, conformal, was the key in the area distortion Theorem 

1.1 it is of interest to know whether the inequality is valid without any conformality 

assumptions. Another natural question is whether Corollary 5.2 still holds at 6=1; for 

characteristic functions this is true and (25) with [IK, Proposition 19] implies that for 

nonnegative functions v, 

/B\ElSV, dm<~/E,v(z),log(l+o~)dm(z), if supp(v) C E. 

Indeed, it can be shown that these two questions are equivalent (if v~>0 in Corollary 

5.2). However, it turns out that the answer to them is the negative. We omit here the 

proof of the equivalence; instead we give first a simple counterexample to the general 

variational inequality and then show how this reflects in the L log L estimates of the 

complex Hilbert transform. 

Example 5.3. Choose 0 < p< 1. For 1 ~<i ~< n consider the disjoint disks B/= B(p/, aQ/) 
where 0 < a < ( 1 - p ) / ( l + p ) .  Let also pi=l/n and fo(z)=zlzl UK-a. Then 

~2 

E Pi log ~ = (n + 1) log 6+ log n + log 71-a 2 

i=1 

while 
n 

E p i l o g  If0B/I /> n + l  1 ~ IB/I K - 1 .  /:1 p/ ~ -  log o+logn+Co = -ff 2.,P/log -~-  +---if- Jog n+c'~, 
i=1 

where Co, C1 depend only on K and a. Letting n ~ o o  shows that the variational inequal- 

ity fails for fo- 



58 KARI ASTALA 

PROPOSITION 5.4. For each M<oo there is an e>0 and a nonnegative function 
vELlogL(A) such that 

fA ISvl dm > (l +e) fA IV(z)l log(l + M ~  ) dm(z) �9 

Proof. By inequality (28) it suffices to show that for no M<oo  does 

f lSvldm<~falv(z) l l~  (29) 

i=1 ]htDi] dr [htDi[=- r 

where [c(t)[ is uniformly bounded. Thus if (29) holds, then r162 and after 

integration r ~< e t r  etf~ c(s)e -8 ds = ere(0) +ct  (t). Taking t=log g we obtain 

Z p i  log P' ~< K Z p i l o g  P' +C(K), 
i=1 i-----1 

where C(K)= (K-  1)log M+cl (log K). 

FinaLly, if Bi,pi are as in the previous example with f-l(z)----fo(z)----z[zlUK-1, we 

can choose Di=foBi. But this would mean that 

" " I B , [ ,  C(K) ~-.~p, loglfoB, l<~ 1 Z p i l o g . . ~ _ i .  K- , 
i=1 Pi -g i-~l 

contradicting Example 5.3. Therefore (29) cannot hold and so the estimate of Corollary 

5.2 is sharp. 

hold for all nonnegative functions v E L log L(A). 

We argue by contradiction. Hence consider first the mapping f (Z)~-Z[Z[ K - 1  a n d  

imbedd it to a one parameter family of quasiconformal mappings ht: A~A ,  as in the 

proof of Lemma 3.3. Thus for t=log K, ht=f. 
Suppose next that we have disjoint open sets {Di}~cA and numbers pi>0 with 

n ~1 Pi =1" Set then 
P' 

~=1 [htDi[ Xh'D'(Z)" 

Clearly fzxvt dm=l and if r log(Mvt)dm then by Jensen's inequality r 

for M~>~r. Furthermore, we can deduce from the Gehring-Reich identity (17) that 
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