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Introduction 

In  this  p a p e r  we  s t u d y  the  b a s i c  p r o p e r t i e s  o f  c e r t a i n  ba l l s  and  m e t r i c s  tha t  c a n  b e  

na tu ra l ly  d e f i n e d  in t e r m s  o f  a g iven  f a m i l y  o f  v e c t o r  f ie lds .  A s  an  a p p l i c a t i o n ,  we  t hen  

use  t h e s e  p r o p e r t i e s  to  o b t a i n  e s t i m a t e s  fo r  the  k e r n e l s  o f  a p p r o x i m a t e  i n v e r s e s  o f  s o m e  

non-e l l ip t i c  pa r t i a l  d i f f e ren t i a l  o p e r a t o r s ,  such  as  H O r m a n d e r ' s  s u m  o f  s q u a r e s .  S o m e  
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of the properties that we establish were announced earlier in [NSW]. In that paper, we 

also announced applications of these balls and metrics to problems concerning the 

boundary behavior of holomorphic functions in domains of finite type. We shall give 

details of these applications in a second paper. 
To motivate our discussion, consider the following basic example. Let f2cW v be a 

connected open set, and let X o, X1 . . . . .  Xp be C | real vector fields defined in a 

neighborhood of (2. Suppose that there is an integer m so that these vector fields 

Xo,X1 ..... Xp, together with their commutators of length at most m span R N at each 

point of ~ .  In this case we say that X0, ..., Xp are of type m on f2. Let 

x (x0 . . . . .  xp) 

X ~2)= {[X0,X,] . . . . .  [X,_,,X,]}, etc. 

so that the components of X ~k) are the commutators of length k. Let I11 ..... Yq be some 

enumeration of the components of X ~ .. . ,X (m). If Y~ is an element of X ug, we say Yi 

has formal degree d(Yi)=j. 
Now define a metric • on f~ by requiring that p(Xo, x0<6  if and only if there is an 

absolutely continuous map q0: [0, 1]---,~2 with q~(0)=x0, q0(1)=Xl, and for almost all 

tE[0, 1] 

cp'(t) = ~ aj(t) Yj(cp(t)) 
j=l  

with laj(t)l<6 a(O. There is then a corresponding family of balls on ~ given by 

B(x, 6) = {yEQlO(x,y)<6 }. 

These balls reflect the non-isotropic nature of the vector fields Xo . . . . .  Xp and their 

commutators. A ball B(xo, 6) is essentially of size 6 in the directions from Xo specified 

by X0, ..., Xp, but only of size 6 z in the directions given by commutators of length 2, of 

size 6 3 in the directions given by commutators of length 3, etc. Such balls play an 

important role in the study of boundary behavior of holomorphic functions (see [St2]), 

and, as we shall see, in studying the hypoelliptic operator Xo2+X~Z+...+Xp z. 
Our object in this paper is to study the basic properties of these balls. For example 

we obtain alternate descriptions of these balls in terms of exponential maps, and 

estimates on their volume. We also study the behavior of the balls under suitable 

mappings of the underlying space, and this allows us to estimate kernels for parame- 

trices for XoZ +Xj2 +... +Xp z. 
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We would like to give some explanation for much of the formalism that follows. 

Suppose we have N vector fields, YI . . . . .  YN, on R N such that at every point of  R N, 

YI . . . . .  YN formed a basis for the tangent space to R N. Then it would be natural to 

perform calculations near a given point x in terms of canonical coordinates at x. This 

means that if y is near x and 

y = exp (al YI +..-  + aN YN) (x) 

we assign to y the coordinates (al . . . . .  aN). (See the appendix for a more complete 

discussion.) 

In our situation, we have q vector fields Y1, Y2 . . . . .  Yq where in general q > N  and 

at each point of  R N many different subsets of  { Y~ . . . . .  Yq} form a basis for the tangent 

space to R N. One of  our main difficulties was to find a good choice for a subcollection 

Yi~ . . . . .  YiN of the YI . . . . .  Yq to choose as a basis for performing calculations. Roughly 

speaking, for a given x and Q(x, y ) ~ ,  we choose Yi~ . . . . .  YiN such that 

deg Yi +...+deg Yi 
(i) 6 N det ( Yil . . . . .  Yi,,r) (X) 

is maximal. The motivation for this choice of  Yi, . . . . .  Y~N arises from the fact that the 

volume of the image of  the ball 

deg Y(/ . 
{al  I%1 < ~ , d = I,  2 . . . . .  N ) }  

under the exponential map corresponding to Yi~ . . . . .  YiN is given by (i). 

One feature of  our work is the algebraic nature of our estimates. Suppose we have 

an N-tuple I=( i  I . . . . .  iN) and det(Yq . . . . .  Y i ) * O  near x. Then for any j ,  we may write 

(near x) 

N 

 =Ea ,ri, 
l=1 

P - -  P We shall let A s - A s ,  I denote the submodule of  C ~ functions generated by products 

where k<.s and 

I~ I k aj... % 

p ~< deg Ytl+. . .+deg Ytk-deg Yj + . . . + d e g  YJk 

where !1 . . . . .  lk are arbitrary and j i ,  ...,Jk are in the N-tuple I. We may obtain estimates 

on functions by showing that they belong to appropriate modules AsP. This will require 
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considerable computation. We will need to show first of all that i f / i s  chosen so that the 

quantity (i) is maximal, then 

(ii) ta~kfx)l ~< ccd~ Y:d~g ~. 

We shall want (ii) to hold for y 's  near x. To do this we shall need to estimate 

derivatives of a( at x. Thus we will want to show derivatives of elements of AsP are in Jk 

appropriate modules. It will be particularly important for us to estimate also 

det(Y~ . . . . .  YjN ) for arbitrary N-tuples (Jl . . . . .  iN). Thus we shall also have to see to 

which modules these functions and their derivatives belong. It will also be important 

for us to estimate from below the set on which various exponential maps are one-to- 

one. (This is important, for example, in computing volumes of balls.) It turns out that 

this is quite intricate, but that at least we can get information on the set where the 

exponential map is locally one-to-one by studying det (Yj~ . . . . .  Yj~). 

The study of geometric properties of vector fields and their commutators has a 

very long history. Carath6odory [C] was the first to prove that if commutators of 

sufficiently high order m of a family of vector fields span at every point, then any two 

points can be joined by a piecewise smooth curve whose tangents belong to the family 

of vector fields. (See also the paper of W. L. Chow [Ch].) In proving hypoellipticity of 

certain operators, H6rmander [H] studied differentiability along non-commuting vector 

fields, and used the techniques of exponential mappings, and the Campbell-Hausdorff 

formula. The case of vector fields of type 2 were studied in INS], sections 5 and 14. 

Balls reflecting commutation properties of vector fields have also been studied by 

Folland and Hung [FH], by Fefferman and Phong [FP], and more recently by Sanchez 

[Sa], who has independently obtained some of our results. 

We would like to thank Joel Robbin for helpful conversations about exponential 

maps and the Campbell-Hausdorff formula. 

Chapter 1. Definitions and statement of results 

w 1. The basic metric Q 

Throughout this paper, we shall be concerned with the following situation. Let ~ ' ~ c R  N 

be a connected open set, and suppose Y1 . . . . .  Yq are C ~ real vector fields defined on a 

neighborhood of ~.  We suppose that each vector field Yj has associated a formal 

degree dj~> 1, where dj is an integer. We now make the following hypotheses: 
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(a) For each j and k we can write 

[~, rk] = ~ c~(x) r, (i) 
d:r 

where c~. k 6 C| 

(b) For each x 6 ~, the vectors Yl(X) ..... Yq(X) span R N. 
A basic example is the one discussed in the introduction of a collection of vector 

fields Xo, XI,. i., Xp of finite type m. In that case, property (a) follows from the Jacobi 

identity, and property (b) is immediate. This example will be used to study the dif- 

ferential operator X02+X12+... +Xp 2, and its variants X02+X,2+... +Xp2+�89 Y~j, k Cjk[Xj, Xk] 

considered in [RS]. 

In order to study the modified operator 

x , 2  + x22  + . . . + x , ~  + x o  

we would again let Y~ .. . . .  Yq be some enumeration of the components of 

X (1) . . . . .  X (m). However this time the vectors X1 .. . . .  Xq would have degree 1, while X0 

would have degree 2, and higher length commutators would be weighted accordingly. 

We shall return to these examples later. 

Returning to the general situation of vector fields YI .. . . .  Yq on ~ satisfying (a) and 

(b), we can define a metric on Q in the following way: 

Definition 1.1. Let C(~) denote the class of absolutely continuous mappings 

9: [0, 1]---~f~ which almost everywhere satisfy the differential equation 

9 ' (0  = ~ aj(t) Yj(9(t)) (2) 
j=l 

with 

Then define 

laj<t)l < 6 r (3) 

~9(x, y) = inf {c~ > 0l 3q~ E C(6) with tp(0) = x, tp(1) = y}. (4) 

We then have the following simple 

PROPOSITION 1.1. • is a metric on ~2. I f  m=maxdj ,  and if  K o c h )  is any compact 

set, there are constants C1, C2 so that i f  x, y E K  

Cdx-yl <~ efx, y) ~ C21x-yl I/m. 
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Proof. It is clear from the definition that 0 is a metric. Let K c c ~  be an arcwise 

connected compact set. There is a constant C so that if x, y E K, there is an absolutely 

continuous function q~: [0, 1]--*s with q0(O)=x, q0(1)=y and lg'(t)Nflx-yl for all t. Since 

the vector fields Y~ ..... Yq span at each point, we can write 

cp'(t) = 2 bj(t) Yj(9(t)) 
j=l 

with [bj(t)[<<.C'[q/(O[<.C'[x-y[=C'([x-y[UaoaJ. Since dj~<m it follows that 

O(x, y) <<. Clx-Y[ vm. 

Conversely, if x, y 6 K  and O(x, y)=6, there exists q9 E C(26) with cp(O)=x and q0(1)=y, 

and q0'(t)=Eq=l aj(O Y~(q0(t)) with [aj(t)[~(26) aj. Since the components of every Yj are 

uniformly bounded on ~ ,  it follows that 

liP'(t)[ ~< C 2 (26)d(r) ~ C'6.  
j=l 

Hence 

Ix-yl=lfo' O'(t)dt  C'6. Q.E.D. 

It follows from the proposition that the metric O: f~ x f~-->[O, oo) is continuous. We 

can define a family of balls B(x, 6) on ff~ by 

B(x, 6) = {y 6 f~l e(x, y) < 6}. (5) 

w 2. General families of balls 

In studying families of balls, we are primarily concerned with those properties that are 

essential for the covering lemma used in the proof of the Hardy-Littlewood maximal 

theorem (see [Stl], Chapter 1). We begin by listing these properties for a family of balls 

defined on an open subset f~cR N. 

For each x6  • and each 6 with 0<6~<6o suppose we-are given a set B(x, 6)cf~, 

called a ball with center x and radius 6. We are then concerned with the following 

properties: 

(i) B(x, 6) is open, and if 0<6-.<60, B(x, 6)=tJs<oB(x, s). 
(ii) Ns>oB(x, s)={x}. 
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(iii) For  every compact  set K~_cf~ there is a constant C so that if xI,X2EK, if 

61-.....<62"~.<(1/C) 60, and if 

B(Xl, 61) NB(x2,  62) =~= 

then B(xl, d)cB(x2, C62). 

(iv) For  every compact  K c c Q  there is a constant  C so that if x E K  and if 6<~60 

]B(x, 20)1 ~< C]B(x, d) I. 

Here,  and in the rest of  the paper,  JE] denotes  the Lebesgue  measure of  a measurable 

set E c R  N. 

No w to any family of  balls satisfying (i), (ii), and (iii), we can associate a quasi- 

distance Q: t2• ~]  defined by  

f inf{6>OI yEB(x, d)} if yEB(x, 6o) 
0(x, y) = ~ [ .  + ~ if y q. B(x, 6 o) (6) 

and the family of  balls {B(x, d)} can be recovered from this quasi-distance, since 

B(x, 6) = {y E ~J 0(x, y) < 6}. (5) 

The function 0 satisfies the following conditions: 

(i') For  every x 6 f~ the set {y 6 f~l O(x, y)<6}  is open. 

(ii') O(x, y)=0 if and only if x=y. 
(iii') For  every compact  set K c = f ~  there is a constant  C so that if x, y, z 6K, 

O(x, y) <~ C[o(x, z)+O(Y, z)l. 

(Note that by choosing z=x, (iii') implies O(x, y)<--Co(y, x).) 
Conversely,  if 0: f 2x f~ - . [0 ,  oo] is a function satisfying (i'), (ii'), and (iii') then the 

balls defined by equation (5) satisfy conditions (i), (ii), and (iii). In particular this is true 

if O is actually a metric. 

We next introduce a notion of  equivalence of  families of  balls. We say that two 

functions 01,02: f2x~2--~[0, oo] are equivalent if for every compact  set K c c f 2  there is a 

constant C so that if X1, X2 E K 

01(Xi, X2) ~ C02(X1, X2) , and 
(7) 

02(X1, X 2) ~ C01(X 1 , X2). 

We say that 01 and 02 are locally equivalent if for each Xos f2 there is an open 

neighborhood U containing Xo so that 01 and 02 are equivalent on U. 
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If  ~1 and Q2 are quasi-distances, and B~, B2 are the corresponding families of  balls, 

then equivalence means exactly that for every compact  set K c c Q  there is a constant  C 

so that for x E K 

Bl(x, 5) ~ B2(x, C5), and 

B2(x, 6) ~ Bl(x, C5). 
(8) 

It is clear that if a family of  balls satisfies conditions (i), (ii), (iii), and (iv), so will any 

equivalent family of  balls. 

w Volumes of balls 

The function ~ defined in w 1 is a metric, and so the corresponding family of  balls 

{B(x, 6)} satisfies conditions (i), (ii), and (iii) of  w 2. One of  the main goals of this paper 

is to show that the balls defined by the metric ~ also satisfy condition (iv), the 

"doubling property'" for volume. In fact, we can give very explicit estimates for the 

volumes of the balls B(x, 6) in the following way: 

For  each N-tuple of integers l=(i l  . . . . .  iN) with l<~ij<~q, set 

At(x) = det (Y/, . . . . .  YiQ (x). (9) 

( i f  _ N . . .  Yii--Zkflajk(X)(O/aXk), then det(Yiz YiQ(x)=det(ajk(x)). We also set 

d(/) = dil +.. .  + diN 

and then we define 

0o) 

A(x, 5) = E [2,(x)l 6d(/) (11) 

where the sum is over all N-tuples. With this notation we can now state our main result 

on the volumes of  the balls B(x, 6). 

THEOREM 1. For every compact  set K c c s  there are constants C l and C2 so that 

for  all x E K 

0 < Q <  [B(x'6)l ~< c 2 <  +oo. 
A(x, 6) 
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Since A is a polynomial in 6 of  fixed degree, it follows immediately from Theorem 

1 that there is a constant  C so that for x E K 

IB(x, 26)1 ~< cIn(x, 6)1 

and thus condition (iv) is satisfied. 

w Equivalent pseudo-distances 

It seems difficult to compute or estimate the distance Q(x, y) directly from the defini- 

tion. Thus a major ingredient in the proof of  Theorem 1, and another major object of the 

paper, is to understand the relationship between the metric t~ and various other metrics 

or quasi distances which may be easier to estimate. 

Our first alternative pseudo-distance is similar to Q except that we allow only 

constant linear combinations of  the vectors Yl . . . . .  Yq. Thus for 6>0  let C2(6) denote 

the class of  smooth curves q~: [0, 1]--->fl such that 

qo'(t) = ~ aj Yj(qo(t)) (12) 
j = l  

with laJ<6 . 
Define 

Q2(X, y) = inf{d > 0l 3~  E C2(O) with ~(0) = x, q~(1) = y}. (13) 

It is not necessarily true that Q2(x,y) is finite for every (x,y)E s (For example, 

~)2(x, y) can be infinite if f2 is a non-convex subset of  R E, and Yl=a/aXl, Y2=a/ax2.) 
We shall prove however: 

THEOREM 2. 02 is locally equivalent to Q. 

While the curves of  class C2(6) are somewhat easier to study in that only constant  

linear combinations of  Yl, . . . ,  Yq are allowed, there is still the disadvantage that the 

number q is in general much larger than the dimension N. We would like to single out N 

of the vector fields YI ..... Yq, say Yil . . . . .  Yi~, so that the exponential mapping 

(u I . . . . .  us) E R ~ ~ exp u i (x0) (14) 
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is appropriate for performing calculations. (The definition and basic properties of such 

exponential mappings are recalled in the appendix, Chapter 4.) Roughly, we would like 

the ball B(x, 6) to be essentially the image under the mapping (14) of the set 

{(u, . . . . .  u N) E RNI [uj[ < 6d~). 

It turns out that one cannot make a single choice of vector fields which works for all x 

and 6, or even for a fixed x and all 6. Rather one must choose the N-tuple depending on 

both x and 6. 

Thus for each N-tuple I=(il ..... iN), let C3(6,1) denote the class of smooth curves 

q0: [0, 1]--->Q such that 

N 

qg'(t)= ~ aj Yij(qg(t)) (15)  
j=! 

with layl<6 d~U. Set C3(6)=tJtC3(6,1), and define 

03(x, y) = inf{6 > 01 3tp E C3(6) with tp(0) = x, tp(1) = y}. (16) 

In studying Q3, we choose an N-tuple I depending on both x and 6. Roughly, the idea is 

to choose I so that 

6d<~lA~(x) [ 

is as large as possible. Then (14) will be an appropriate exponential mapping. We will 

be able to prove 

THEOREM 3. 03 is locally equivalent to O and 02. 

We will also show that with the appropriate choice of N-tuple, the mapping (14) is 

one to one on a sufficiently large set, and this will finally enable us to obtain the volume 

estimates of Theorem 1. 

In the case that the family of vector fields Y1 ... . .  Yq is simply an enumeration of 

the commutators of Xo .. . . .  Xp with the degree of I", equaling the length of the 

commutator, there is another natural metric which we can define. 

Thus let C4(6) denote the class of absolutely continuous mappings q0: [0, 1]--->f~ 

which almost everywhere satisfy 

9'(t) = ~ aj(t)Xj(q~(t)) with laj(t)l < 6. (17) 
j=l  
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Note that curves in the class C4(~) point only in the directions of the original vector 

fields Xo . . . . .  Xp. Define 

04(x, y) = inf{6 > 01 3q0 E C2(6) with q0(0) = x, q0(1) -- y}. (18) 

04: f i x  f2-->[0, oo) is again a metric, although it is not clear a priori that O4(x, y) is finite 

for every (x, y)E Q x t).  The fact that ~4 is finite follows because the commutators of  

the vector fields )to . . . . .  Xp span R N at each x E if/. This was first proved by Carath6o- 

dory. We shall prove: 

THEOREM 4. 04 is equivalent to Q. 

w 5. Estimates for certain kernels 

The balls and metrics we have defined can be used to estimate the sizes of  certain 

kernels and their derivatives. These kernels were constructed by Rothschild and Stein 

in [RS]. Le t  us briefly describe the setting. Given vector fields Xo . . . . .  X,  on Q of  type 

m, then according to [RS] we can add additional variables (tl . . . . .  ts) E R s and form new 

vector fields 
8 

0 (19) Xj = Xj+ ~ aft(x, t) 
Ot I " /ffil 

These vector fields will again be of  type m on an appropriate set in RNxR s, but in 

addition, they are " f ree  up to step "" m , i.e. their commutators of  length at most m 

satisfy no linear relations except those dictated by ant isymmetry and the Jacobi 

identity. 

The vector fields ~'1 . . . . .  .~p give rise to a metric 0 and a family of  balls/~((x, t), 6). 

Ifk(x, t;y, s) is a kernel in (x, t) space, we can form a kernel Rk(x, y) on t ) x f / b y  setting 

Rk(x, y) = f k(x, 0; y, s)q0(s) ds (20) 
J 

where q0(s) is C | supported in Isl<~l, and identically 1 near the origin. We want to be 

able to make estimates on the size of  Rk and its derivatives in terms of corresponding 

estimates on k. We have, for example 

THEOREM 5. Suppose 

[k(x, t;y, s) I ~< C IO(x, t; y, s)l a 
I/~[(x, t); O(x, t;y, s)] I " 

8-858288  Acta Mathematica 155. Imprim~ le 28 aofit 1985 
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Then 

fO 1 r a-I  
IRk(x, y)] <~ C' ]B(x, r)] 

(x,y) 
dr. 

Moreover, i f  in addition 

t; y,s)] ~-i 
t, s)]] '  Y, 

then 

]Xi . . . XijRkl < C r ~-j-' <~,y) B(x, r-----) dr" 

The above estimates hold uniformly on compact subsets of Q x f~. An interesting case 

arises when we consider 

A =Xo~+. . .+X,  ~ 

o r  

~e= xo+x~2+. . .+xf  

on ft. Let D(x, y) and H(x, y) denote the fundamental solutions of A and ~respectively 

constructed in [RS]. We then have 

C O R O L L A R Y .  l f  N>~3 

ID(x, y)[ ~ C 
o2(x, y) 

IB(x, O(x, Y)I" 

l f  N>~2 

IXi ,.. X6 DI ~ C 
Q2-J(x, y) 

]B(x, o(x, y))]" 

I f  N>~2 

IH(x, Y)I ~ C 
02(x, y) 

]B(x, O(x, y))]' 

and i f  is4=O, l<.s<.j, 

~2-j-21 
Xi, ... XijX~oH <~ C [B(x, ~(x, Y))I" 
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The above estimates hold uniformly for x, y in compact subsets of f2x f2. The 

corollary follows from the estimates of [RS], where the estimates for D and H are 

derived in the case of the free vector fields. 

Remark. The assumption N>~3 in the corollary is necessary as we can see by 

considering the ordinary Laplacian in R 2. 

Chapter II. Structure of the balls 

w 1. Algebraic preliminaries 

Our object in this section is to develop some algebraic machinery associated to a family 

of vector fields. Thus suppose f~cR N is a connected open set, and suppose {Y~} is a 

(possibly infinite) collection of real C ~ vector fields on f2. We suppose that each vector 

field Yj in this list has associated a formal degree dj~ 1, so that dj is an integer. We also 

suppose that the number of vector fields with dj<<.M is finite for every M. Our 

fundamental hypothesis is that for all j and k we can write 

Yk]-- v, 
d~.aj+d~ 

l oo - where the sum, of course, is finite, and CjK E C (f~). 

For any s-tuple of positive integers J=(Ji  . . . . .  Js) we let 

(1) 

a (~  = aj,+... +ctj~ (2) 

be the "degree" of J. We also let 

be the corresponding sth-order differential operator, and we let 

(3) 

rt -- c 2, c.,., 1, (4) 

be the corresponding commutator of length s. If I=(i~ . . . . .  iN) is an N-tuple of positive 

integers, we let 

and 

21(x) = de t  ( Yi~ . . . . .  Y i )  (x) 

f~i = (x e Q I ~(x)  �9 0) .  

(5) 

(6) 
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~'~I is then a possibly empty open subset of Q, and on Qt, the vectors Y~t . . . . .  YiN are a 

basis for the tangent space at every point. 

LEMMA 2.1. For every s-tuple J of  positive integers, we can write 

Yt~ = Z c[~(x)YI (7) 
dl <~d(dO 

where the sum is finite, and c[jq E C| 

Proof. This follows from (1) by induction, and the formula 

IX,, fX2] = (X, f )  x2 +f[X,,  X2] , 

if Xl,  X2 are vector fields, and f E  C| 

Now let I=(il ,  ..., iN) be an N-tuple of  positive integers, and suppose QIar Then 

since Y~I .. . . .  Yi,r form a basis, on Q1 we can write for any j 

N 

YJ= Z a~.,l(x) Yi, (8) 
l=l 

w h e r e  al, l E C|  Usually the N-tuple I will be understood, and we will write 

N 

XaJ(x) r,, 
I=l 

(8') 

More generally, for any s-tuple J =  ( J l  . . . . .  i s )  of positive integers, we can write 

N N 

= a',(x) r,,-- Z 4(x) r,, (9) 
I=l I=! 

where a~ E C~(flt). 

The coefficients a~ can be expressed in terms of the determinants {2j}. In fact, if 

we solve equation (8) or (8') for the aJ by using Cramer's rule we obtain 

LEMMA 2.2. On the set f2t we haoe 

a~(x) = Aj(x)/2t(x) (10) 

where the N tuple J is obtained from I by replacing Yit by Yj. 
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We shall have to deal with sums of products of the coefficients {aJ}, and we 

formalize this by introducing certain finitely generated modules of functions. For each 

N-tuple I, we can regard C| as a module over the ring C| For every integer p 

and every positive integer s, define: AP, t=A p is the C| submodule of C| 

generated by all functions of the form 

|1 12 Ik ~,.~. . . . .~ 

where k<~s, and 

P ~ ( d i  +di + ' " + 4  )-(dj  +dj +...+dA). 
I 1 12 I k 1 2 

There are clearly only finitely many such functions, so A~ is finitely generated. We 

also have inclusions 

aPs'=a~ 2 ifpl<~p2 (11) 

A~Ir'A~ ~ if  st<~s2. (12) 

_l ,- ,t di,-dJ t_  1 E A ~ . Also note that , j~. ,~ , and since a,.t- 1, 

We will obtain estimates for various quantities by showing that they belong to the 

modules AP, r To obtain some idea of this, note that if I is an N-tuple such that 

~.l(xo ) (~d(l)>~supj,~j(Xo) (~d(J), then from (I0) we see that 

d,-d~ 

LEMMA 2.3. I f  f E  A p, then Y r av-d' i J "  "cis+ 1 " 

Proof. By Leibnitz's rule, it suffices to show that 

l di - d k - d  i 1 Yi(ak) E A 2 . 

From equation (1) we have 

dj<~di+d ~ 

= 2  2 ~ik(x)aJ (x) Y,," 
1= 1 dj~di+d k 

(13) 
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On the other hand, we can also write 

[ Y,, Yk] = Y,,Eat(x)Y,, 
/ffil 

N 

= E (Yi(at) Yi,+at(x)[Yi, Yi,]) 
lffil 
N N 

= E Yi (at)  Yi, + E  at(x) E cirit (x) Yr 
Iffi I l= 1 dr~di+dit 

N N N 
= E Y,(at)Yit "1- E E E at(x) tit, i, (x)asr(x) Yi," 

l=l l=l dr<~di+d~ I" s=l 

(14) 

Since Yi~ . . . . .  YIN are a basis on f i t  we can equate coefficients of  Yit in (13) and (14), and 

obtain 

N 

Yi(at)= E ~ik(x)aJ(x)-E E aSk(X)Ciri,(x)atr (x)" 
dj<~d~+d k sffil dr<~di+dis 

(15) 

In the sum on the fight hand side of  (15), we have 

d i , -  dj >~ d i t -  d i - d k 

for the first sum, and 

dis+di-dk-d,>~ di +di-dk-di-di, 

= di~- d i -  d k 

for the second sum. Thus the lemma is proved. 

We can now use induction to prove: 

LEMMA 2.4. If  J=(Jl ..... A) is a k-tuple 
~- --  p-d(J) Yjye A~+ k . 

of positive integers, then if fEA~, 

We also can obtain information about the coefficients a / of the commutator  Ytn of 

equation (9). 

I dil-d(J) 
LEMMA 2.5. ajEA 1 . 
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Proof. According to L e m m a  2.1, 

Yt~ = 

with ~ E C| 

and so 

dj~d(Z 

Hence on f~t we can write 

Y,~=~ (x)4x) Y,, 
I=l \ dj~d(J) 

a~= Z c~(x)aJ 
dj~d(J') 

and since di--dj>~di-d(J), the lemma is proved. 

We shall also need to estimate derivatives of  the determinants {;t j ) ,  and we begin 

with the following general formula. Let  _ N Zj--Ekflajk(X)(a/aXk), j = l  . . . . .  N be N C I 

vector fields, and let T= E N1 fit(x) (a/axt) be another. 

LEMMA 2.6. 

N 

T(det ( Z ,  ..., ZN)) = (V" T) det (Z 1 . . . . .  ZN) + Z det (Z~ ..... Zj_~, [ T, Zj], Zj+~ ..... Z N) 
j= l  

where V. T-El= 1 -  N af/axt" 

Proof. 

iT, Zj] = ~ ~ ft(x) , ajk(x) 
l=l k=l 

" / r  a { ..af,'\ 
k=l \ l=l  I / Xk l=l k=l 8Xl" 

Hence 

( ) de t (Z ,  . . . . .  Zj_,,[T, Zjl, Zj+, ..... ZN)---- det  Z, ..... Zj_I, ~ ,  T(%) ~S---',Zj+,, ...,ZN 
k= 1 OXk 

( . . . . .  . . . . .  ) - d e t  Z 1 Zj_,, Z ctJ k k'ZJ +1 ZN 
k=l 
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~ aa, ~,,z.,, ) - d e t  Z 1 ..... ZJ-l' E aJk OX k .... ZN 
1=1 
I:#k 

=Aj-Bj-Cj. 

Now X~=lAj= T (det (Z 1 . . . . .  ZN)),  according to the standard formula for differentiating a 

determinant. 

Next, by expanding by minors we see that 

N '+k ~ k  
nj= E ( - l y  aJk~xkM~, k 

k=! 

where Mjk is the (j, k)th minor of the matrix (Zl . . . . .  ZN). Hence 

N N a~ k N 

j f lEBJ=  E ~kXk E (--1)J+kcLjkMj k 
k=l j=l 

= (V. T) det (Zt ..... ZN). 

Similarly, 

N N ~ 
E E �9 Cj = (--  1) j+k ajl aXI 
k=l /=1 

14=k 

So 

N N N "P~~ N 

E c,= E E ~ E (- 1)-,~.,g.~ 
j=! k=l l=l j=l 

l~k 

= E E det(Z, . . . . .  Zk_l,Zt, Zi+ l ..... ZN) 
k=l l=l UXl 

14.k 

= 0  

since each determinant has a repeated row. This proves the lemma. 

Remark. The formula is just the Lie derivative of 

d e t  (Zt . . . . .  ZN) = ( Z  1 A. . .  A ZN, dx 1 A.. .  A dXN) 

with respect to the vector field T. 

We can now use Lemma 2.6 to obtain formulas for derivatives of 21 on the set ~'~I" 
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LEMMA 2.7. For every s-tuple J=(Jl  . . . . .  Js) o f  positive integers, there 

fjEA-~ d(j) so that 

Yj~.1=fj.~.l on f~t. 

Proof. If s= 1, Lemma 2.6 shows 

N 

Yj2,= (V-Yj.)2,+ Z det (Yq ..... [YJ, Yik] ..... YiQ. 
k=l  

On the other hand, Lemma 2.5 shows that 

with 

N 

r,,] = aJ,,,{x) r,, 
l= !  

exists 

EA  ! aJ, it d i t -d j -d i t  

Making the substitution, and noting that a determinant with repeated rows is zero, we 

obtain 

k 4, 
J, i, 

k=l  

on ~l,  which proves the lemma in this case since I and hence V. gj is an element of 

A-~ aj. We can now use induction, Leibnitz's rule, and Lemma 2.3 to complete the proof 

in general. 

We also need formulas for derivatives of the determinants 2j when J ~ I .  

LENNA 2.8. For every N tuple J=(Jl . . . . .  iN) and every s-tuple K=(kl ,  ...,ks) 
there ,,;~ r ~ aa(t)-aO)-a(to e ' ~ ' a ' ~  d g ,  J " ~ N + s  SO  that 

YK~J =fK, JgI 

on the set ~21. 

Proof. First note that 

2j= det(Y 4 . . . . .  YjN) 

IN 
= d e t  aJl Yil  I . . . . .  Z ajN YitN " 

l u l l  
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Expanding this determinant, we see that 

~'J =fJ~'l 

with f j  E A~ o-a~. We now obtain the lemma by using Leibnitz's rule, and Lemmas 2.4 

and 2.7. 

w 2. Estimates on the balls B2(x, b) 

In w 1, we made no hypothesis about the collections of vector fields { Yj} which 

guarantees that 2z(x)4=0 for any x E f2 and any N-tuple I. We now return to the basic 

hypotheses of Chapter 1, and assume that the family { Yj} is finite, say YI . . . . .  Yq and 

that for each x E f~ Yl(x) . . . . .  Yq(x) span R N. Then of course for each x E f~ there is an 

N-tuple l=(il  . . . . .  iN) SO that Az(x)4=0. 

Our first object is to obtain estimates on elements of the modules AsP at a fixed 

point Xo E f~. We have 

LEMMA 2.9. Let  E c c f ~  be a compact subset. Let  xoEE and let I be an N tuple 

satisfying 

IA,(xo)l ~ar ~ t sup IAj(xo)l ~d<~ (16) 
J 

where 0<t~<l, 6>0, and the supremum is over all N tuples. Then: 

(a) I f  K and L are s- and r-tuples respectively, then 

Ct s 16dil -a(K)-d(L) 
I Y ,  ca~(Xo)l  <- - - 

where C depends on K, L, l, I, and the compact set E, but not on t or 6. 

(b) l f  K and J are s- and N-tuples respectively, then 

I Y~Aj(xo)l ~ ct-s-N~a<~-a~-a<~lA,(xo)l 

where C depends on K, J, I and E, but not on t or 6. 

Proof. According to Lemma 2.2, aJ(xo)=2j(xo)/21(x o) where J is obtained from I by 

replacing il by j. But then (16) gives 

laJ(xo)l ~< t -1 ~ dCdj. 
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Now Lemma 2.5 shows that 

dil-d(L) atz E A l 

and hence Lemma 2.4 shows that 

dit-d(L)- d(lO 
Yx atL E As+ l 

It follows that 

Ct s 16dil -d(lO-d(L) 
I Yxa~(xo)l <- - - 

where the constant C depends on the supremum over E of a finite number of elements 

of C| This gives (a). 

Similarly, Lemma 2.8 shows that YrAj(xo)=fx, s(xo)At(xo) wnere . . . .  JK, J ~ttN+sd(I)-a(J)-d(K), 

and in the same way, this yields (b). 

Remark.  Since there are only finitely many N-tuples, if we fix an integer no, and 

restrict r and s in Lemma 2.9 to be no bigger than no, we can then choose a constant C 

in Lemma 9 which depends only on the compact set E, and is independent of the 

particular tuples we choose. 

In Lemma 2.9 we obtained estimates for various functions at a fixed point Xo. We 

now want to obtain similar estimates holding on appropriate "balls".  Recall from 

Chapter 1 that we defined a pseudo-distance 02, which gives rise to a family of "balls" 

{B2(x, 6)}. In terms of  exponential mappings, the balls B2 are given by 

B 2 ( x , d ) = { y E f ~ . l y = e x p ( ~ u j Y i ) ( x )  with lujl<6d~}. 

We begin by studying the behaviour of the function 21(x) on the balls B2(xo, 6) if  I 

satisfies (16). 

LEMMA 2.10. Let  Ec-T-f~ be a compact  set and let t>0. There exists eo(t)>0 so that 

i f  x o E E  and i f  l is an N-tuple satisfying 

I,t (x0)l 6 I> t sup I,Zj(x0)l 6 (16) 
J 

then i f y  E B2(xo,  Co(t) 6)  

< �89 I ,(x0) l. 
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In particular A~y)~0, so B2(xo, Eo(t) ~)c-~/. 

Proof. Set Fx(u I . . . . .  Uq)=g~(exp(Sq=l uj Yj) (x)). T h e n F  x is C | on the set {uERN[ 

lu[<6o}, and Fx also depends smoothly on x. In particular, given E and an integer n, 

there is a constant An so that for [u[<6o 

1 aaFxf0)ua ~<Anluln+l. (17) Fx(u)- ~'. ~ ! 
lal<~n aU a 

Now infx~esuPjl;D(x)l--,7>0, where the supremum is over all N-tuples J=(J l  . . . . .  JN) 
with l<~jk<~q, since the vectors YI . . . . .  Yq are assumed to span R N at each point. If we 

let n=supj, Kld(J)-d(K)[ where J and K run over all such N-tuples, it follows from (16) 

that 

l~,(xo) l I> ,it  a n. ( I  8) 

If we use this choice of n in (17), then if [ujl<(%(t)a)r 

A.lul "+' < ~ IXAxo)l (19) 

if to(t) is small enough, depending only on the compact set E. Thus in order to prove 

the lemma, it suffices to show 

,-<IoI--, �9 au  ~ (o) -<llX,(xo)l. (20) 

But (see the appendix, Proposition 4.2) 

_,:-.o, )s E (0) = ~ 2t(Xo). (21) 
lal •s Ou a ~t  

A typical term from the right hand side of (21) is 

1 
-Vf. u j  . . .  u:, r j ,  . . .  r j .~ , (Xo) .  

If lujl<(eo(t)a)9, Lemma 2.9 (13) gives the estimate 

C 1 eo(t)d~,-,-Ul~,(xo)l" 

Thus we can choose eo(t) sufficiently small, depending only on the compact set E, so 

that (20) is satisfied, and the lemma is proved. 
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A similar argument, again using Lemma 2.9(b), shows that we can obtain esti- 

mates for [2Ay)[ if y 6B2(xo, to(t) 6) if J4=l. We do not repeat the proof. 

LEMMA 2.11. There is a constant C depending only on the compact set E~x::~ so 

that if to(t) is sufficiently small, i f  (16) is satisfied, and if  y 6 B2(xo, to(t)6) then 

I~,~y)l-< Ct-N 6d(n-d(J)IAt(Xo)I" 

If we now use Lemma 2.2, and the estimates of Lemmas 2.10 and 2.11 we see that 

if (16) is satisfied, if to(t) is sufficiently small, and if y 6B2(xo, to(t) 6) then 

laJ~y)l-< Ct-N d '-r 

where C depends only on the compact set E. But then we can repeat the proof of 

Lemma 2.9 to obtain estimates on B2(xo, to(t) 6). 

THEOREM 6. Let  Ec-_c-Q be a compact set, t>0, and no a f ixed integer. There are 

constants C, and t(t) with the following properties: let xo6E  and let I be an N-tuple 

satisfying 

IXAxo)l 6 a(~ I> t max [Xs(Xo) 16 a(~. (16) 
J 

Then i f  y fiB2(xo, e(t) 6) 

(a) I f  K and L are s- and r-tuples with s and r at most no, then 

Ct s 16d~t -d(K)-d(L) 
I Y g a i ( y ) l - <  - - 

(b) I f  K and J are s- and N-tuples with s<~no then 

I YKAJ(Y)[ ~ Ct -N-s6d(l)-d(JO-d(K)l't,(xO)l. 

w 3. The Main structure theorem 

Before proceeding, we introduce a simplification of notation. If x 6 E and I=(il . . . . .  iN) 

are fixed, we shall relabel the vector fields { Yj} by setting Uj= Yij, I<<.j<~N, and by 

letting Vj, l<~j<~q-N, be some enumeration of the remaining 

u=(ul .... , UN) E R N and v=(vl . . . . .  Vq-N) E R q-N, we let 

N 

u . U + v . V = E u j U j +  vjVj (22) 
j=l j=l 

vector fields, ff 
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and we set 

For  v E R q-N, we let 

~o(u) = exp (u- U+ v. V) (x). (23) 

B(x, 112 O) C: B1(x, Z, 1116) ~ B2(x, t~) c- B(x, 6). 

Our first goal is to establish (3). We show that if x E E, and I is an N-tuple with 

12t(x) [ 6dtO >I tmax  I~j(x)l ~ (16) 
J 

then ~o is nonsingular, and hence locally one-to-one on the box 

provided that [vjl<(e(t)6) d(v), l<~j<~q-N, and provided that eft) is sufficiently small, 

depending only on the compact  set E ~  and t. To do this, we must compute the 

Jacobian of ~o. 

Z = exp (v. V) (x) 

and we introduce one more family of  balls 

Be(x, z, 6) = {y E f~ lY = exp (u. U+v. V) (x), with [uj[ < 6d(~)}. (24) 

Thus B~(x,z, 6) is exactly the image, under the map ~o of  the box 

{u E RNI lujl<~ a<%)} =O(6). 

We can now state our main result on the structure of  the balls {B(x, 6)}. 

THEOREM 7. Let Ecc[2  be compact. There exist constants 0<112<111<1 so that if  

x E E  and 6>0 there exists an N-tuple l=(il . . . . .  iN) with the following properties: 

( 1 ) I)[/(X)I 0d(/) ~ 112 max IAj(x)[ 6 dt~ . 
J 

(2) If Ivjl<11zo d~vj), l<.j<~q-N, dP o is one-to-one on the box Q(rh 6). 

(3) I f  1vj1<112o a<wj), l<.j<~q-N, dp o is nonsingular on the box Q(11~6), and i f  IJe~o I 
denotes the Jacobian, then on Q(1116), 

~IAAx)I ~< IJ~ol <- 4lAt(x)l. 

(4) Iflojl<112oa~vL l<.j<~q-N, and z=exp(v  �9 V)(x) 
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More generally, let W 1 . . . . .  Wq be any q vector fields on f~, and set 

LEMMA 2.12. Let E c ~ Q  be compact. Then for any integer n there are constants 

6o, c~2 ... . .  an, and C,, so that if  xoEE 

dOxo ~ (Oxo(S))- Wj+ ak[S" W, [... [s" W, Wj]... ]] ~< C~lsl ~+' if Isl < 60 

(26) 

where the commutators on the left hand side o f  (26) are o f  length k. 

Proof. If  we could write 

exp (s. W + tWj) (x) = exp ( tZj) o exp (s- W) (x) 

the definition of the exponential  map would give 

= 

\ 0 s j /  

To compute Zy, we use the Campbell-Hausdorff  formula, as in Proposition 4.3 of the 

appendix. For  any positive integer n, and any x E E we have 

lexp (s. W+tWj) o e x p ( - s .  W) (x)-expRn(x)[ <~ Cn(ISln+'t+~) 

where Rn=tWy+E~=eak[s" W, [s" W, ... [s" W, Wj] . . .]].  We now let x=exp( s .  W)Xo), 

and the lemma is proved. 

Now let Wi = Ug for i= 1 . . . . .  N, and Wi = Vi-N for i=N+ 1 . . . . .  q. We can then 

prove 

LEMMA 2.13. Let E c c Q  be compact, let u>0,  and let t>0. There exists e(t)>0 so 

that if  xo E E and if  l is an N-tuple satisfying 

I,~xo)l 6 dt~ I> t sup I,lj(xo)l 6 a~ (16) 
J 

then i f  [ujl<(e(t) 6) d~v), I<~j<<.N, and ]vjl<(e(t) 6) a~v), l<~j<.q-N, then on B(xo, e(t) 6) 

N 
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where Ibj l x 6 a<U')-d<Uj). 

Proof. According to L e m m a  2.12, for any integer n 

dOv (r U j = ~  ak[u" U+v. V . . . . .  [u. U+o. V, Uj] ...]+O((lul+lvl)n+b. 
k=2 

Arguing as in L e m m a  2.10, we can choose n so large that the term O((]u]+]v]) n+i) 

has the right form if e(t) is small enough. On the other hand, we can use Theorem 6 (a) 

to estimate each term in the finite sum, and again the sum has the right form if s(t) is 

small enough. 

We can now complete the proof  of part (3) of Theorem 7. 

LEMMA 2.14. Let E==f~ be a compact subset and t>0.  There exists e(t)>0 so that 

if xo E E, if l is an N-tuple satisfying 

Igt(xo)l 6 a~O >I t sup IAj(x0)l c~ d<~ (16) 
J 

if [ujl<(e(t) 6) ate), I <~j<~N, and Ivjl<(e(t) 6) atvj), l ~j<-q-N,  then 

IA,(x0) l lJ v(u)l 41A (x0)l. 

Proof. 

However 

Idet (U~ . . . . .  UN) (q~o(u))l = I2~(q'o(U))l 

with �89 o(u))]<.2121(Xo)[ if e(t) is small by L e m m a  2.10. But n o w  Lemma 2.14 

follows from L e m m a  2.13 if we choose x small enough. 

Ifluj]<(E(t)d) d~vj) and i fy=~o(u),  we have two N-tuples at y: the set (U1 . . . . .  UN), 

and the set d~Po(OlOuO .. . . .  ddPo(OlOUN). If  we let Zj=ddPo(O/Ouj), then Lemma 2.13 

says 

N N 

Zj-- Uj+ ~ bjlUi--- ~ (r U I (27) 
/ffil I=l 



BALLS AND METRICS DEFINED BY VECTOR FIELDS I: BASIC PROPERTIES 129 

then 

where Ibjll<x6 d(vt)-a(v?. We can, of course, solve for the Ul in terms of the Z i. Let Mil 

be the (j,/)th minor of the matrix {6jr+bit). If we set 

Ct, k= (-1)/+k detMkt 
det(6o+b o) 

N 

Ul = 2 Clk Zk" (28) 
k=l 

But it is easy to see that if x is sufficiently small, uniformly in 6, then Idet (6~+bu)l--->�89 

while ]det M~l<.-.C 6 a(vp-a(vt). Thus 

IClkl <. C 6 dtU~)-dtU'). (29) 

We can reinterpret equation (29). Since J~v(U):~O, there is an open neighborhood 

of y=~v(u) on which ~ v  has an inverse map ~ = 0 P l  . . . . .  ~PN), so that locally 

~ < ~ v ( u ) )  = uj. 

We can regard ~1 . . . . .  ~ON as coordinate functions near y, and relative to these coordi- 

nates, the coefficient Ctk is just the kth coordinate of Ut; i.e. 

Ctk = U~V/k). (30) 

Thus we have proved 

LEMMA 2.15. Let Ec f~  be compact, and let t>0. There are constants C and e(t) so 

that if xo E E, if  l is an N-tuple satisfying 

IA~(Xo)l 6 ar I> t max I;tj(Xo)l 6 ar (16) 
J 

if lu~l<(~(t) 6) ar l<~j<~N, if Iv~l<(~(t) 6) dr l<~j<<.q-N, i fy=exp (u. U+v. V) (Xo), and 

ifW=O/'l . . . . .  V21v) is locally the inverse map to ~ v  then 

I u,(~)l ~< c 6 ~(~)-~'). 

We now turn to the proof of part (4) Of Theorem 7. Let E c f l  be compact, let x E E, 

let 6>0, and suppose I is an N-tuple such that 

I,~(x)l 6 a~o t> t max I~j(x)l 6 a~. 
J 

9-858288 Acta Mathemat ical55.  Imprim(~ le 28 aofit 1985 
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It is obvious from the definitions that if Ivj[<6 dcv~) for l<~j<.q-N then we have the 

inclusions 

BI(x, z, 6) ~- B2(x, 6) c B(x, 6) 

where z=exp(v �9 V)(x). Thus the difficulty in part (4) is proving inclusions of  the form 

B(x, ri26)cBt(x, z, rh 6). We begin with the following result. 

LEMMA 2.16. There exists r/>0 so that i f  xoEE, i f  I is an N-tuple for which 

IAAx0)l 6 ~<~ ~> t sup IAj(x0)[ 6 dr J) (16) 
J 

/f  Ivjl<(e(t) 6) and if  z=exp (v. V) (Xo) then 

B(z, fie(t) 6) c B~(xo, z, e(t) 6). 

Proof. Let  y 6 B(z, tie(t)6). Then there is an absolutely continuous map qg: [0, 1]--->~2 

with rp(O)=z, q~(1)=y and 

~'(t) = ~ bjft) Yj(~(t)) (31) 
j=l 

with ]bj(t)]<(~le(t)6) aj. We can also assume that the map 9~ is one to one. 

Let  b ~ be the set of  numbers  SoE[O, 1] such that there exists an absolutely 

continuous mapping O: [0, So]-*R N such that ]Oj(s)l<~(�89 6) d(oj) and 

tp(s)=exp (E~l Oj(s) Uj+ v. V)(x0), O<.s<~so. 

Since the mapping 

(Ul . . . . .  UN) ~-> exp (u . U + v . V) (Xo) 

is locally one to one on {u E RN[ [ujl<(e(t)6) d<t:j)} it follows that the components  Oj are 

unique. In fact if we had two such O's, say 01 and 0 2, the set where 0~=0 2 would be 

open and closed, and would contain a small neighborhood of  the origin. We let 

g = sup {So E 5r 

We want to show that if q is sufficiently small, g= 1, for then 

y =  cp(1) = exp ( ~ Oj(1) Uj.+v" V)  (xo) 
j=l 
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with IO~(1)l<(e(t) 6) d(v) and so y E B1(x o, z, e(t) 6). 

The mapping ~o(ul . . . . .  UN)=exp(u �9 U+v" lO(xo) is locally one to one, and since 

the map q0 and 0 are one to one on [0, S], and 

9(s)  = *o(O(s)) 

it follows that Do is actually globally one-to-one on some small neighborhood of  the 

image 0[0, g]. Thus we can think of  the components of the inverse map 0Pl . . . . .  ~PN) as 

being well defined functions in some neighborhood of 0([0, g]). 
6)d(Uj0 ) 

If  g< 1, for some Jo we must have ~pjo(g)=(�89 e(t) . On the other hand, for any Jo 

we have 

V:jo(S) = ,/:jo (S)-,/,:o(O) 

fo ' a  ( 
= s )  ds 

= b,(s) Yj(9(s)) (*pjo) ds 
j= l  

fo':  = E bj(s)atj(cP(s))Ut(cP(s))(~PJo)as" 
j=l 1=1 

a~ujo)-d~V,) 
But IUtOpjo)~C6 by L e m m a  2.15. Thus 

i~pjo(g ) <~ (rle(t) 6)aJCt - 16d(Ut)-dJc 6d(Ujo )-J(U`) 

. ~.d(Ujo) 
< (�89 o) 

if r/ is small enough. Thus g= 1, and the proof is complete. 

Note that if we choose v=0,  we have shown that 

B(xo, tie(t) 6) c B~(xo, e(t) 6). (32) 

We can easily take care of the case v4:0 if v is sufficiently small. We have, with the 

notation of  the previous lemma 

LEMMA 2.17. Suppose Ivjl<(~rle(t) 6) a(vj). Then 

.(xo 
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Proof. Let  y E B(x o, ~rle(t) 6). Thus 0(x o, y)<~rle(t) 6. But 0(x 0, z)<~ie(t) 6 by hy- 

pothesis, so 0(Y, z)<]tle(t) 6. Hence B(x o, ~rle(t) 6)cB(z, {~le(t) 6). 

Finally, we turn to the proof  of  part (2) of  Theorem 7. Let  Ec:x:: f2 be compact and 

let xoEE. Let  lo=lo(x) be an N-tuple such that duo) is minimal among all N-tuples I 

with 21(Xo)4=0, and such that 

I2/o(X0)l = max I~t~(x0)l. (33) 
d(O=d(t o) 

Then there exists 6o depending on Xo such that 

I&,0(x0)l 6 a('~ t-- I~,(x0)l 6 a(~ (34) 

for all 6, 0<6~<6o, and all N-tuples I. Also, by choosing a smaller 6o if necessary, we 

can find an open set W in f~ containing Xo so that the mapping 

(ul . . . . .  uN) s-* ~v(ul . . . . .  uN) = exp (u. U + v. V) (x) 

is globally one to one on lul<6o for all x in W, Ivl<6o. This is true since the Jacobian of 

the exponential map is the identity at the origin. (See the appendix.) We may also 

assume 

I~,o(x)l 6o ~r176 > �89 I~,(x)l 6g (~ (35) 

for all N-tuples I, and all x E W. 

Let  K be a compact  subset of  W containing Xo. For x E K, we can choose a 

sequence of N-tuples I1 . . . . .  I , ,  and real numbers 6 o > 6 ~ > . . . > 6 , > 0  so that for 

[~.6(x)l 6a(tj) >1 1 sup I~j(x)l 6 q(̀ 0 (36) 

while for 

0<6<~6,, 

(37) 1 6,t(.0 I~., (x)l 6 d('n) t-- T sup I~,(x)l 

We may clearly assume d(Ij+O<d(I~). In particular, no N-tuple occurs twice, and n is 

at most the total number  of  allowable N-tuples. The choice of the particular N-tuple of  
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course may depend on x. According to Lemma 2.17 there is a function e(t) so that if for 

some x E E, 0<6<60,  and N-tuple I, IAt(x)l 6afOOt sup s I&r(x)l 6 a<~, then if Io:l<(e(t) 6) a~v:), 
B(x, e(t)6)=Bt(x, v, 6). We now prove: 

LEMMA 2.18. Suppose for  some 6 

for  j = 0 ,  1. 
< ~.d(V/ Iv~l (~2o~ 

IZ~/x)l 6 a(z~) ~ -~ sup IZ,(x)l 6 a(~ 

n 0 Put r/l=e(�89 and r/2=e(�89 ) r/l where n0=supt, J Id(l)-d(J)[. Then i f  

B11(x, v, ~12 6) c Blo(X, 111 6) ~ Bt,(x, v, 6). 

Proof. Bx,(x, v, 6)~B(x,  e(�89 6)~Blo(X, r189 6) by the theorem, and the definition. On 

the other hand 

IAio (X)l 01, 6 ) a(t~ >~ �89 (/71 6) d(J) 

~> �89176 (7, 6) a(') 

for any N-tuple J.  Hence we can apply Lemma 2.17 again, with t=l"n~ and 6 '=q~6.  " ~ 1 1  

We get 

B,o(x, ,~ 6) ~ B(x, e(�89 ~ '71 6) = B,1(x, o, '72 '~) 

which proves the lemma. 

Now we know that the mapping 

(Ul,..., uN) ~ exp (u . U + v. V) (x) 

is globally one-to-one ifx6K, ]ul<6o, Ivl<6o. In particular, it follows that the image of 

any simply connected set is simply connected. Let cI, L ~) be the mapping (23) associated 

to the N-tuple 1 I. If cl,~ I) were not globally one-to-one on ]u;l<(r/2 6) d(t:'), there would be 

a line segment L in the box 

{u 6 RNI lu:l < (,72 6) d(')} 

which (I,~) maps to a closed curve in BII(X, z, 7] 2 6), where z=exp (v. V)(x). However, 
this curve can be deformed to a point in Blo(X, r]~ 6) and hence it can be deformed to a 

point in Btt(x, z, 6), which is impossible. Thus cl,(o ~) is globally one-to-one. 
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By repeating this argument n times for successive series of N=tuples lj+1 and lj, 

we prove 

LEMMA 2.19. Let  E c c Q  be compact .  There exist 0<)72<)71<I so that i f  x E E  and 

0<6<6o there exists an N-tuple I so that 

IA,(x)l 6 d(~ I> 1 max )~j(x)l 6d(J) 

and so that if 10j1<()726) d(Vj), l<~j<~q--N, the mapping 

(ul . . . . .  UN) ~-> exp (u" U+v.  V) (x) 

is globally one-to-one for  luj[<()?! 6) dtuj). 

We have now completely proved Theorem 7. 

w Proofs of Theorems 1, 2, and 3 

As immediate corollaries, we can now prove Theorems 1, 2 and 3 of Chapter 1. First, 

since Bl(x, z, )?l 6) is the image under the one to one mapping Ov of the box Q()?I 6), 

and since the Jacobian of this mapping is bounded between two constant multiples of 

2~(x), it follows that 

IBl(x, z, )?l 6)1 "~ ~l(x)l IQ()?l 6)[ 

IZAx)l 6 dr 

Moreover, since B(x, )?26)cBl(x, z, 1716)cB(x, 6) it follows that 

Ie(x, 6)1 = ~ I~Ax)l 6 ~(~ 
1 

which proves Theorem 1. 

Theorems 2 and 3 are immediate from part (4) of Theorem 7 since for x E E and all 

small 6 there is an I so that 

B(x, )?2 6) c Bl(x, O, )716) c BE(X, 6) ~ B(x, 6). 

w 5. Proof of Theorem 5 

In this section, we prove that Q and ~4 are locally equivalent. It is clear from the 

definitions that ~)~<~4. Thus we must show that for any z in f2 there is an open set U 
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containing z so that there exists a constant C with 

~)4( x ,  Y) ~ CO(X, Y) 

for any x, y in U. 

Our proof is a modification of an argument of HOrmander [H]. The main work is to 

establish the following result: 

LEMMA 2.20. Let  w E f~ Then w has a neighborhood U so that i f  xl and x| are in 

U with Q(Xl, x| then the fol lowing two conclusions hold: 

(a) There exists x2E U with Q4(xl,x2)<Ce, and ~(x2,x| l+l/m. 

(b) Given y E U there is a number  r/(y)>0 so that i f  Iz-Yl<r/(y), o4ty, z)< 
Clz-y[ l/m. 

We first show that Lemma 2.20 implies that 0 and Q4 are locally equivalent. Given 

w E fl choose U a neighborhood so small that the preceding lemmas apply. Let x=x~, 

and y be in U with O(x, y)=6. We apply Lemma 2.20 with x~=x, x| and obtain a 

point x2 with 

Q4(xi,x2)< C(~ a n d  Q(x2, Y)< ff~l+llm <�89 

if C61/m<�89 We can then apply Lemma 2.20 again with e=�89 to obtain x3 so that 

Q(XE, X3)<�89 Q(x3,y)<]6. In general, given x = x l , x  2 . . . . .  xj we can find xj+ 1 so that 

Q4(xj, xj+1)<C(6/2 j- l )  and Q(xj+ l, y)<6/2 j. Moreover ~4 satisfies the triangle inequality 

so ~4(x, xj)<C6. 

By part (b) of Lemma 2.20 we see that i f j  is sufficiently large, O4(xj, y)<6. Using 

the triangle inequality again for Q4 completes the proof. 

The main step in the proof of Lemma 2.20 is the following generalization of the 

Campbell-Hausdorff formula. Let S1 .. . . .  St be l vector fields. We define 

Cl(a, Sl) = e as, 

C2(a ,  S 1, S 2) e as1 eaS2 e-aSl -aS 2 = e , 

and in general 

Cl(a, SI . . . . .  S t) = eaSl Cl_l(a , $2 .. . . .  Sl_ 1) e-aSl(Cl_l(a, $2... St ) )  -1  . 
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Note that when C t or C~ -~ is written out as a composition of mappings exp+aSj there 

are n t=3 .2 t -1-2  such terms. According to the CampbeU-Hausdorff theorem, if 1=2, 

C2(a, $1, $2) = exp (a2[$1, S2]+R) 

R= Z aJSj 
j=3 

where Sj is a commutator of length j. The above formula implies that if one replaces R 

by Rk= E3~j~ k aJSy 

[C2(a, Sl, S2) x - e x p  (a2[Sl, S2]+ RD x I ~ c[a[ k+l. 

(See the appendix.) By induction on I we obtain: 

LEMMA 2.21. Ct(a, SI, Sz . . . . . .  S3=exp {at[S1, [$2, [... St].. .]+R} 

R = Z ek akxe~176 of  length k. 
k>t 

Here ek are constants independent o f  a, S~ . . . . .  St. 

We shall now use Lemma 2.21 to prove the second part of Lemma 2.20. Let 

T~ ... . .  T~v be commutators of the Xo .. . . .  Xp spanning the tangent space of ~ at y. Let 

di= deg Ti. 
If 

set 

T , = [ ~ , [ ~ ,  ~,a, ~')1 
�9 .. t ,~ j~,_, , .~ j~,  1 . . . .  ] ,  

Then b y  Lemma 2.21 

containing the origin onto a curve in fl through y, and 

dCi(t) 
-~ ,=0 is L. 

Now define 

c,(o = c ,(t . . . . .  (38) 

and Proposition 1.1 C,{t) is a C ~ map of an interval of t 's 

(39) 

C(tl . . . . .  tN)y=Cl(tl)C2(t2) ...CN(tN)y. 
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Then from (39) we see that the Jacobian of C is non-singular at t=0. So C is locally a C 1 

map from a neighborhood of  the origin in R N onto a neighborhood of  y in f~. In view of 

(38) and the definition of  04, the second part of Lemma 2.20 is proved, To prove the 

first part of  L e m m a  2.20 we need a further lemma. We let ~?t=dimension of the space of  

lth order commutators  and set 

m 

~? = Z rlt nr  
/=1 

(nt recall was the number of  terms e +-'sJ in Ct(a, S 1 . . . . .  St).) q is some fixed but unimpor- 

tant number. 

LEMMA 2.22. S u p p o s e  a O), a (2) . . . . .  a r are  g iven  c o n s t a n t  vec tors  w i th  

laO)[<6 j, j =  1 . . . . .  m .  T h e n  t h e r e  ex i s t s  c o n s t a n t s  c~,, I t= 1 . . . . .  ~1 w i th  [c~,l<~c6, so  tha t  

l exp + . . .  + x -  I~I exp (c u X )~) )x  <<- 
(a ( l ) .  x(l) a(m) . ~,.)) C 5  m+ 

1~=1 

Lemma 2.22 is implied by Lemma 2.21 as follows. First we take care of a(~).X ~ by 
a(l) X aO) X ea~l) Xp writing a product of  e o o e i 1 . . . .  That is 

e,,"), x(') + n = ea[') Xo ea?) Xl . . . ea~I) xp 

where R = Eke>2 ~(6k)• commutators  of  length k. Next  by using Lemma 2.21 when l=2,  

we can match up commutators  of  second order giving 

eaO).Xtl)+a(2).X(2)+R ea(ol)Xo a(pl)Xp blXJl bn2~12Xjn2rt2 
= . . . e  e . . . e  

where R=Ek~>3 o(6k)xcommutators  of  length k, etc. This proves Lemma 2.22. 

We now show that L e m m a  2.22 implies the first part of L e m m a  2.20: if 

Q(Xl ,X~)<e ,  Q2(XI ,X~)<Ce.  Thus there are a w ,  laWl<(Ce) j such that 

x= = exp (a (1) . X ( 1 ) + . . .  + a  (m) "x (m))x l .  

By Lemma 2.22 we can find x2 so that 94(Xl ,X2)<Ce  and I x 2 - x ~ [ ~ c e  re+l, so 

O(x2, x ~ )  <. ce 1+ l/m 

which concludes the proof  of  L e m m a  2.20 and so of Theorem 4. 

10-858288 Acta Mathematica 155. Imprim~ le 28 aoQt 1985 
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Chapter 3. The estimation of certain kernels 

We begin by studying the behavior of our families of balls under suitable mappings of 

the underlying space. The situation we study is motivated by the process of freeing of 

vector fields in Rothschild and Stein [RS]. 

Suppose as before that { Yj}, 1 <~j<~q is a family of C | vector fields on a connected 

open set f~cR N. Assume that the vector field Yj has formal degree dj, that for any j  and 

k we can write 

[YJ'Yk] = E cJ'k(x) Y~' cJ kEC| (1) 
dl<~dj+d k 

and that the vector fields span the tangent space at each point of Q. 

Suppose in addition there is a connected open set V c R  M (with coordinates 

sl . . . . .  SM) and C | vector fields I7"1 . . . . .  IT"q on f~ • V with the following properties 

(1) For each j ,  l<~j<~q, 

M a 
s) = rp)+  aj (x, s) as " 

k=l 

(2) The formal degree of ~ is dj and we can write for any j and k 

d,<-aj+dk 

where c~k E C| • V). 

(3) The vector fields I7"1 . . . . .  IT"q are linearly independent, and span the tangent 

space at each point of  • • V. 

The vector fields Y1 . . . . .  Yq give rise to a metric p and a family of balls {B(x, 6)} on 

[2. In the same way, the vector fields I7"1 . . . . .  IT'q give rise to a metric ~ and a family of 

balls (B((x, s), 6)} on f2x V, We want to study the relationship between these metrics. 

Let :r and :r2 denote the projections from f~ x V to f~ and V 

:r(x,  s )  = x 

:r2(x, s )  = s .  

If d:r is the differential of this mapping, then condition (1) on the vector fields }7"1 . . . . .  ]~'q 

is equivalent to 

rj, 
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This implies that if q3: [0, 1]--.s V is a curve satisfying 

~'(t) = ~ aj(t) ~(q~(t)) 
j=l 

and if we let q0: [0, 1]---~f~ be the composite 

qo(t) = zr(q~(t)) 

then 

rp'(t) = ~ aj(O Yj(qg(t)). 
j=!  

This observation leads immediately to the following. 

139 

LEMMA 3.1. (a) :t: B((x, s), 6)--~B(x, 6) and this mapping is onto. 
(b) ~r (exp (E aj 3) (x, s)) = exp (E aj Yj) (x). 

(c) I f  xl, x2 E s and sl, s2 E V then O(xl, x2)~<0((xl, Sl), (x2, s2)). 

Now fix ~ECo(10.  As in Rothschild-Stein [RS], we can define a restriction 

mapping from functions on f l x  V to functions on fl by the formula 

RF(y) fvF(Y, s) ~(s) ds 

for y E Q, Fly, s) a function on f~x V. In order to estimate these restrictions for suitable 
F we need 

LEMMA 3.2. Let Ec:x=:~ be a compact set. There is a constant C so that if x E E and 
if yEB(x, 6) then 

fvXa((x,o),~)(y, s) dp(s) ds <~ C I/~((x' 0), 6) I 
18fx, 6)1 

Proof. By Theorem 7, we can choose an N-tuple of vector fields I",. . . . . .  Y;N with 

the following properties: Let Ui= Y;~ for I<<.j<<.N and let V 1 ..... Vq_N denote the remain- 

ing vector fields. For u E R N, v E R q-N, define 

*o(u) = exp (u' U + o .  V) (x). 
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< ~d(v) 
Then if vj r12o , l<~j<~q-N the mapping 

u ~ cI ,~ (u)  

< -e(t~) 
is globally one to one for luj[ rl~ o , and the image of  this map contains the ball 

B(x,  ri: 6). 

We also consider  the map 4): Rq--->R q given by 

4)(u, v) = exp (u" U +  v. V) ((x, 0)). 

Note  that 

sto 4)(u, v) = r 

Let  y E B(x,  O) and let 

q ~d(~J Zy = {(U, V) E R [[ujl < r/t o , Iv~l < r]z 6 d(vj), and (I)o(u) = y}. 

Since the mapping cI, o is globally one to one, for each v there is a unique O(v)E R N so 

that 

(O(v), v) = Zy 

i.e. dPo(O(v))=y. 

If  we differentiate this last equation with respect  to vj and use the fact that the 

Jacobian of  r  is bounded between two positive multiples of  ;tAx), it follows that 

IJO(u)l ~ clZ~(x)l -~. 

Next  consider the map Z: Rq-N'-">Rq-N given by  

X(v) = zl2 4)(O(v), v). 

Since 4) is a diffeomorphism 

[Jz[ < C'lJOl < c"{At(x)l-'. 

Now in the integral 

f vX ~C (x, o), ~) (Y , s) r ( s ) d s 
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we are just integrating �9 over the image of the map X. The change of variables formula 

for multiple integrals now gives 

fV dE d(Uj)+d(Vj) 
z <- <- c I21(x)l ~d(V) 

-< c 0), 
IB(x, 

We turn now to the proof of Theorem 5. 

Choose e so small that Lemma 3.2 holds. We then write 

where 

Thus 

k(x, O;y, s) = E k(x, 0;y, s)~j(x, 0;y, s) 
J 

)~J(X' O; y' s) = { lo otherwise.ife2-J<'O(x'0;y's)<2e'2-J 

[k(x, 0;y, s) I ~< C E (2e2-J)~ 
2_j>~Q(x,y)/2e Vol B(X, 0,  e2 -i) Z B(x, o, 2,.2-~) (y' s) 

where ZB is the characteristic function of/~. Now we apply Lemma 3.2 to obtain 

�9 Vol (B(x, 2-J)) " 
2 -J>~Q(x, y)/2e 

We then obtain the estimate for Rk  by comparing the sum to an integral. The estimation 

of Xil ... Xbgk  is similar. (See the discussion of X i g k - R X j k  in [RS] p. 302.) 

Appendix: Exponential mappings and the Campbell-Hausdorff formula 

In this appendix we briefly recall the basic properties of exponential mappings induced 

by vector fields. Thus suppose that f~cR N is an open set, and that Y is a C ~ real 

vector field defined on f~. Y then induces a local one parameter group of transforma- 

tions on f~ as follows: for each x El i  let Er(t, x)=E(t, x) be the unique solution to the 

initial value problem 

OE (t, x) = Y(E(t, x)), E(O, x) = x (1) 
Ot 
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This unique solution always exists for Itl sufficiently small. In fact, if Kc:c:fl is 

compact, there is a number 60>0 so that E:(-6o,6o)XK-->f2 is a Coo mapping. 

Moreover, if the vector field Y= Y(u~ . . . . .  up) depends in a C ~ manner on a parameter 

u=(ul . . . . .  up) E U c R  p where U is open, then if Kcc f~  and L c c U  are compact, there 

is a constant 6o>0 so that the solution 

g(u  I . . . . .  Up, t, X) = E: L x  (-60, 6o) x K--> f/ 

is a C ~ mapping. (A discussion of existence and uniqueness of solutions of (1), and of 

smoothness of dependence on parameters can be found in Dieudonn6 [D], Chapter X.) 

The uniqueness of the solution to (1) shows that 

and 

E(s ,E( t ,x) )=E(s+t ,x)  if x E K ,  Isl+ltl<6o (2) 

Er(2t, x)=E~r(t ,x)  if xEK,  12t1<6o. (3) 

Equation (2) shows that the mapping 

x~--~ E(t,x) 

is a diffeomorphism on compact subsets of f~ if t is sufficiently small. Equation (3) 

shows that Ety(1,x) is well defined on compact subsets for all t sufficiently small. We 

define 

exp (Y) (x) =Ey(1,x) 

whenever the right hand side is defined. In particular, exp (tie)(x) is always defined for 

small Itl. 
If f is a C ~ function defined near a point x0 E Q the function 

F(t) = f(exp (t Y) (Xo)) 

is defined and C ~ near t=0, and the differential equation (1) shows that 

F'(t) = (Yf) (exp (tY) (x0)). 

This shows that the Taylor series expansion o f  F at t=0 is given by 

F(t) ~ ~ 1_~ (y~f) (Xo) t" = etrf(Xo), (4) 
n~O n! 

where the last expression is thought of as a formal power series in (tY). 
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Now suppose that Y~ . . . . .  Ye are real C | vector fields on ~ .  I f  

u=(ul  . . . . .  Up) E R P, then X~= 1 uj Yj is again a real C | vector field on Q, and we may 

consider exp (Xje=l uj Yj.) (x) for x E f~, u E R e. It is clear that this is well defined for 

sufficiently small. In fact if K c c f ~  is compact,  there exists 6o>0 so that exp (E uj Yj)(x) 

exists for x E K and lu]<do. Moreover the mapping 

(u, . . . . .  u,;x)~-~exp ( E  uj Yy) (x ) 

is infinitely differentiable. For  x E f~, we may define 

Then expx is a C ~~ mapping of  a neighborhood of  0 in R p to f~ with expx (0)=x. This 

induces the differential mapping d(expx): ToRP---~TxQ between tangent spaces. It 

follows easily from the differential equation (1) that 

In particular, if P = N  and Y1 .. . . .  YN is a basis for the tangent space Tx g2, this shows 

that d(expx) is a bijection. The inverse function theorem, together with the smoothness 

of the mapping (ul . . . . .  UN; X)~--~exp (E Uj Yj) (x), proves: 

PROPOSITION 4.1. Let Yl . . . . .  YN be C ~ real vector fields on an open set ~ c R  N. 

Suppose Y1 .. . . .  YN are linearly independent at each point o f  if2. let K c c t )  be com- 

pact. Then there are finite positive constants 61, 62, and C so that: 

(a) For x EK, expx is a diffeomorphism o f  {u E RNI lul<61} onto a neighborhood 
Vx o f  x in f2. 

(b) For x E K, {y E RNI Ix--y] <62) t"- Vx" 

(C) For xEK,  if  ujER N with lujl<61forj=l,2, 

]eXpx(uO-exp~(u2)] <<. Cluru21. 

COROLLARY 4.1. Let XoEQ. Then there is an open neighborhood U o f  xo and 

constants 60>0, C<oo so that 
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(a) I f  xE  U, exp,~ is a diffeomorphism o f  (u E RN[ [ul<6o} onto an open set in if2 

containing U. 

(b) I f  x, y E U and y=expx(u)  with lul<Oo then expx(tU) E if2 for  0~<t~<l. 

(c) I f  xE  U, u jER N with [u j i<bofor j=l ,2  then 

lexpx u l - e x p x  uzl ~< ClUl-Uz[. 

We shall need a generalization of (a) which is proved in the same way: 

COROLLARY 4.2. Suppose VI . . . . .  Vr are some additional vector fields. Then i f  

U=(Vl  . . . . .  Or) with Ivjl<ao 

expx (ul YI+...+UN YN+vl Vl+,..+UrVr) 

is a diffeomorphism o f  ]ul<6o onto an open subset o f  a neighborhood o f  

expx (vl V1 +. . .  + v, V,). 

We shall call U a normal neighborhood of Xo. If  U is a normal neighborhood of  Xo 

then for each xE U we can introduce coordinates in U via the mapping (expx)-~: 

U---~R N. We call these the canonical coordinates at x, relative to the linearly indepen- 

dent vector fields Y1 . . . . .  YN. 

Next,  we return to the more general situation of P (not necessarily linearly 

independent) vector fields Yi , . . . ,  Ye on g2. Ifxo E g2 a n d f i s  a C ~~ function defined near 

Xo the function 

is defined and C ~ near 0 E R N. As a generalization of equation (4) we have 

PROPOSITION 4.2. The formal  Taylor series o f F  at 0 E R  e is given by 

1 u F(u, ..... ue)-- ~ ~ jYs f(xo)=-eE'rSf(Xo). 
n=O 

Proof. Define 

G(t, ul . . . . .  ue) = F(tui . . . . .  tUB). 

Then G(t, Ul . . . . .  ue)=f(exp t(Z uj Yj)(Xo)), and from equation (4) we have 

O"___GG (0, u I . . . . .  Up) = uj f(Xo). 
at n 
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On the other hand 

n! a aaF,. , ,  a"G (o , . , ,  u,,) = 7 - -  . . . ,  U -~ua (U) 
a f  lal=n 

SO 

.jr  f(x0). 
ral=n aU a 

Q.E.D. 

We have seen that if K = c Q  is compact, there exists 6o>0 so that the mapping 

K---~f2 given by 

is a diffeomorphism if ]ul<60. We shall often have need to compose two such diffeo- 

morphisms. Let Xo E fl and let f be a C ~ function defined near x0. Then the function 

F(s 1 ..... se, t l , . . . , t e ) = f ( e x p ( E s j Y j ) o e x p ( E t  j Yj) (x0)) 

is defined and C = near 0 E R 2P. According to Proposition 2, for Itl sufficiently small 

lalfn a! ~ (tl, t) = ~ Sj Yj exp tj Yj (Xo) . 

Applying the proposition again we have 

a~n satfl alal+Ls[ F 1 1 ( E ) m ( E  )n  
I = av-~! asaOt-------~ ( 0 , 0 ) -  m'-. nt tjYj sjYj f(Xo). 
L81 =m 

Thus the formal power series of F at (0, 0) is given by 

F(sl ..... Sp, t I ..... te)~ ~ 1 ( E  y j . ) m ( ~  yj)n m ~ n ~ tj 5 f(Xo)" 
t r / ,  n = 0  " " 

But the right hand side, viewed as a formal series in t and s is exactly e E5 rj e~Sj rJf(xo)" 
ESrj e~Sj~ According to the Campbell-Hausdorff formula, the formal series e can be 

written as e z where 
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Z=~__l(-1)n+ln-l ~ . o ( a ' f l ' ( c t + f l ) ) - ' ( a d ( ~ t j Y j ) ) a Z ( a d ( ~ s j Y j ) ) # ~  

\~.-1 s) 
(5) 

(see H6rmander  [H], p. 160, or  Hochschi ld  [Ho], Chapter  X). I f M  is a positive integer, 

let ZM be thefinite partial sum of  the formal series for  Z so that Z-Z~=O(lsIM+ltlM). 
We now have 

Since f is arbitary, we also have: 

PROPOSITION 4.3. Let Kc:z:t2 be compact, and let M be a positive integer. There 

exists a constant C so that for  x E K 
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