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In tro d u c t io n  

The theory of pseudodifferentiai boundary problems has been developed to provide a 

larger framework for the study of differential boundary value problems, allowing algebraic 

manipulations with the operators (reflected in a symbolic calculus) and allowing the 

inclusion of non-local terms. The elliptic calculus has its origin in works of Vishik, l~skin 

and Boutet de Monvel (cf. [V-E], [E], [BM1] and in particular the Acta article [BM2]) 

and was further developed e.g. in Rempel and Schulze [R-S1] and Grubb [G1]. The scope 

of the theory was enlarged by the consideration of systems depending on a parameter 

(running in a noncompact set), which can be for example a spectral parameter )~E(~ 

(allowing functional calculus), a time dependence (for parabolic problems) or a small 

parameter c >0 (entering in singular perturbation problems). For operators in L2 spaces, 

such a theory was worked out in the book [G2], and further developed for parabolic 

problems by Grubb and Solonnikov [G-S1], who applied it to give new results on fully 

nonhomogeneous Navier-Stokes problems (cf. [G-S2] and its references). Let us also 

mention the treatment in [R-S2] of resolvent estimates and complex powers for systems 

without the so-called transmission property. 

The purpose of the present work is to extend the parameter-dependent calculus 

to the Lp setting, 1<p<cr  and to a suitable class of unbounded manifolds, including 

exterior domains (complements of smooth compact sets) in R n and ~n  +. 

A fundamental difficulty in the study of parameter-dependent elliptic pseudodiffe- 

rential problems, depending e.g. on a spectral parameter A on a ray in C, is the following: 

Without the parameter, the singularity of the homogeneous symbols at ~=0 is harmless 

(since it is felt in a compact set only), but when A is adjoined, the singularity has an 
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important  influence as I)~1--*oc. This is reflected in a complicated structure of the symbol 

classes, noticeable already for the pseudodifferential operators P in the theory, but even 

more so for the boundary terms (the trace operators T, Poisson operators K,  singular 

Green operators G). 

The book [G2] handles this problem by introducing a version of the Boutet  de Monvel 

calculus with symbols depending on a parameter # ( a suitable power of }~), where It has 

much the same role as the cotangent variables in the ps.d.o, calculus, but  enters with less 

regular estimates. The symbol seminorms for operators on R~  are formulated by use of 

L2(R+) estimates, where x,~ ER+ is the variable normal to the boundary (here one finds 

that  e.g. systems of supremum norms, that  are equivalent with the present choice in the 

non-parametrized case, are far from equally efficient when the parameter  is included); 

and the full calculus is established in this framework. L2 Sobolev space estimates of the 

operators are obtained by use of convenient properties of the Fourier transform. 

For Lp results one might expect that  it would be necessary to work the symbolic 

calculus over again with Lp(R+)  estimates, but we found that  this is neither necessary nor 

very useful. In fact, the results can very well be obtained on the basis of the development 

in [G2]. Mapping properties in Lp(R~)  Sobolev spaces are obtained by use of multiplier 

theorems of Mihlin and Lizorkin with respect to the tangential variable x', valued in 

Hilbert spaces of functions of xn. (The theorems do not hold generally in Banach spaces, 

which is why Lp(R+) symbol estimates are not used.) Our point here is that  we can 

get the desired Lp(R~_) estimates on the basis of certain weighted L2(R+) and H~(R+)  

estimates derived from the calculus of [G2], by use of an interpolation result from Gilbert 

[Gi] together with other results on Bessel-potential and Besov spaces (cf. [T1]). 

In the process, we have revised the results of [G2] and worked out some precisions 

of that  calculus; notably, a certain "loss of regularity" occurring there has been almost 

eliminated. We have also found a simplification in the use of "order-reducing operators", 

namely that  the simple version ( ( D ' I •  t composes in a very good way with the 

boundary operator types K,  T and G, and hence can be used in many places where one 

would think it necessary to use the more refined version of [BM2]. Moreover, we extend 

the calculus to unbounded manifolds with finitely many conical ends, by working with a 

special type of symbols that  are uniformly estimated in x (as in HSrmander [H3, 18.1] for 

ps.d.o.s without p-dependence); and systems of negative class are included (generalizing 

[G3]). - -  Some of our results were announced in [G-K]. 

Contents. Section 1 introduces the appropriate Bessel-potential spaces H~,t'(~) and 

Besov spaces Bp,~(~) depending on a parameter I tER+; and the expected properties 

(interpolation, duality, imbedding and trace theorems) are established, uniformly in the 

parameter. The admissible unbounded manifolds are defined. The needed variable- 



A GLOBAL CALCULUS 167 

coefficient version of Mihlin's and Lizorkin's theorems is presented, and we show some 

particular interpolation results to be used later. 

In Section 2, we introduce a stricter, globally estimated version of the symbol classes 

in [G2], based on [H3, 18.1] (results for symbol classes with local estimates can be re- 

covered from this). An advantage of the global calculus (besides allowing unbounded 

manifolds) is that it gives more precise results: the so-called negligible operators are 

included in the operator spaces instead of forming residual classes, and the compositions 

and inverses on R~_ (when they exist) are defined by precise symbols in the calculus. 

In Section 3, we show how a certain projection estimate from [G2] can be sharpened, 

allowing any E > 0 instead of ~= �89 for (0,2) below. We introduce negative classes and study 

the composition of boundary operators with operators ((D'> +iDn) t, and we prove some 

delicate estimates of the boundary symbol operators in weighted L2 spaces, crucial for 

the later Lp estimates. 

In Section 4, we prove the main theorem on continuity in Hi '"  and B~'" spaces. It 

is found, roughly speaking, that for boundary operators of regularity u, the continuity 

holds with an 0((#> -~+11/2-1/pl +1) estimate of the operator norm, and for ps.d.o.s it 

holds with an O((#)-~+1)  estimate (see the precise statements in Theorem 4.1 below; 

for the necessity, see Remark 4.2). In particular, if u~> �89 the estimates are uniform in # 

for each pE ]1, ec[. 

Finally, Section 5 gives the full proof of composition rules for the present operator 

classes, showing that when ~4~ and ~4~ are Green operators of order d resp. d', class r 

resp. r' and regularity u resp. u !, 

(P. ++c. 
A. \ 'T. S. ' A =k 

(0.1) 

then (when the matrix dimensions match) A,.A~ is again a Green operator: 

! I l l  l!  \ ( P" -L(P,,P;)+G, K~ (0.2) zl I! A fl[! _~ ",+ ) " ' . = "  . T# S; ' 

of order d'=d+s and class r"=max{r',r+d'}, with all terms of regularity S -  

rain(u, u', , + u ' )  except L(P,, P~), that is of regularity u"-E,  any E>0. 

Applications. The above gives the fundamental steps necessary for establishing the 

calculus in the desired generality. In sequels [Gh] to this paper, polyhomogeneous 

parameter-elliptic Green operators ,4, are considered; it is shown that parameter-eUiptic 

operators are invertible (within the calculus) for sufficiently large #, and that an inverse, 

when it exists, belongs to the calculus; and the consequences for parabolic pseudodifferen- 

tial boundary problems (in anisotropic Bessel-potential and Besov spaces) are developed. 
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Moreover, a concrete application of the anisotropic Lp Sobolev space results to the time- 

dependent nonhomogeneous Navier-Stokes problem along the lines of [G-S2] is worked 

out. Further consequences for Navier-Stokes problems with initial data  of low regularity 

have been derived in [G6]. 

1. Spaces and manifolds  

1.1. Besse l -potent ia l  and Besov  spaces wi th  a parameter  

There are many good explanations of the various generalizations of Sobolev spaces in 

the Lp situation, cf. e.g. Stein [St], NikolskiY [Nil, Bergh-L6fstr6m [B-L], Triebel [T1,2]. 

In the present paper we shall use the terminology summed up in [G3] (based to a large 

extent on IT1]), without repeating the full details here, where we shall focus on the 

information on parameter-dependent spaces necessary for our presentation. 

Let l < p < c ~ .  We recall that  a constant-coefficient pseudodifferential operator Q 

with symbol q(~), 

Qu = OP(q(~))u = q(D)u = .~u-1 (q.~?A) 

(where ~" is the Fourier transform), is continuous in Lp, if one of the following criteria 

(derived from the Marcinkiewics multiplier theorem) holds: 

C(q)-  sup lSIl~llD~q(5)l < oo (Mihlin [M]), 

C'(q)-  sup ]~"n~q(~)] < c~ (Lizorkin [L]); 
a l  =0,1 ,  ~ E R  ~ 

(1.1) 

and the norm is ~CpC(q) resp. CpC'(q), where Cp is independent of q. Lizorkin's 

criterion covers a different type of symbols than Mihlin's, since "mixed" expressions 

~iD~q with i ~ j  do not enter. (The total order is higher there, when n>~3, but in many 

situations that  is no problem.) 

In order to state estimates of parameter-dependent Green operators in Bessel- 

potential (Hi)  and Besov (B~) spaces, we introduce for each of these spaces a family 

of equivalent norms depending on a parameter #. The parametrized norms are intro- 

duced first for spaces over R n, then for spaces over R~_ = {x E Rnlxn >10}, and finally for 

spaces over suitable manifolds with boundary. 

Consider first the spaces over a n. Let {~)=(1+1~12) 1/2, and denote OP((~)s)= {D) s. 
Recall that  the Bessel-potential space H~(R n) is defined as the space of f E S ' ( R  n) for 

which (D)Sfeip(R"),  with norm 

[IfllH~(P,.,~) = [[(D)*fIIL,,(Rn) �9 (1.2) 
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For s eN,  H~(R ~) equals the Sobolev space Wp(R n) that consists of the functions f 

with D~f e Lp(R '~) for l al ~< s. For s e R+\N,  another definition is used for the Sobolev- 

SlobodetskiY space W~(Rn); it is taken equal to the Besov space B~(Rn). Here B~(R ~) 

can be described either in terms of an integral formula: 

for se]0,1[, : e B ~ ( R  ~) ~-~ II/IIL,+fR I:(x)-:(Y)IP dxdy<c~, 
~ Ix-y l  ~+p" (1.3) 

fors,  t e R ,  ,+t n t , n .  feB,, (R)  ~-~ (D) feB~(R ), 

or in terms of a norm defined by a partition of unity as follows (cf. e.g. [B-L, Lemma 

6.1.7]): Let ~ e C ~ ( R  n) have the properties 

supp~={~12-1  ~< I~1 ~<2}, 

~ ( r  when 2 -1<[r  

E ~ ( 2 - k ~ ) = l  when[~l~0,  

and define ~0eC~(R ~) by 

~ o ( ~ ) = 1 -  E qa(2-k~)" 
l~<k<c~ 

Then Bp(Rn)=B~,p(Rn), where, for any s e R  and 0<q<c~, the space B;,q(R n) is de- 

fined as the space of tempered distributions f with finite norm 

/ 
IIflIB:~,~(R~) : ~,ll~oo(D)fllq,(R~)+ 

IIflIB:,(R~) = llfllB:o,,(R~)" 

(2"kll~(2-kD)fllLPfW~))q) 1/q; (1.4) 
l~<k<c~ 

Parameter-dependent versions are now defined as follows: Let #ER.+ (we could 

equally well let #ER).  For the Bessel-potential spaces, we simply take the norms 

IIfIIHg''(R~)=I[(D,#)'fIIL~(R-), where 
(D, #)s = OP((r #) ' )  = Z~, (r #) = (1+  Ir +~2)x/2 (1.5) 

(Also (2.2) or (2.3) can be used.) For each fixed #, this is equivalent to II:llH$(a-), by Mih- 
lin's criterion (the functions (r162 #)-1 and (r #)(r satisfy (1.1)), but with estimates 

depending on /z. For s>~0, the functions (~,/z) ' /((r s) and ((~)s+(#)~)/(r 

satisfy Mihlin's criterion with constants independent of #, so 

/l:ll.;,.(a~) = II <D, #)'fIIL.(R~) = II 0P((r #)'/((r + (#)')) 0P((~c)" + </~>~):II Lto(R n) 

<. CI(II(D)" flIL,(Rn) +(IZ)'IIflIL,(R,~)); 
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and similarly ]]<D)~f[[L~ ~<C2[[(D,/Z>~fIIL~ and I{</Z>*fIIL~ ~C3[I<D,/Z)~fIIL.; altogether 
one has a simple comparison 

C-I[[f[[H~,~,(R,,) <~ [[f[[H~(R.,)+(/Z)*[[fI[L,(Ft,,) <<. CI[f[IH;,,(R,,), for s ~> 0, (1.6) 

with a constant C independent of/Z (and depending on s). Observe that with the choice 

of norm (1.5), 

(D,/z)t _-- -z'=t. Hp,U(R.) __% Hp-t,U(R.) isometrically, (1.7) 

for all s, t c R ,  since =t =,' _~,+, '  in general. ~ # ~ I  z - - ~ l z  

To motivate the definition of/z-dependent Besov norms, let us rewrite (1.5) a little. 

Let Mu be the homeomorphism of 8 ' ( R  n) (and Hp(R '~) and Bp(R n) etc.) given on 
S (R  n) by 

(Uuv)(x) = v((#)-Ix).  (1.8) 

Then DM~ 1 =M~ 1 (/Z)D, and hence 

((D,/Z))~ = Mu -1 (((/Z)D,/Z))~M u = (/Z)~M~ 1 (D)*Mu, 

from which follows a simple, precise formula: 

[[fllHg'~(R") = </Z>-n/P§ IIMjIIHg(R~)" (1.9) 

This allows us to make a very convenient choice of the parameter-dependent Besov norms, 

namely, by analogy: 

IlfllB;..(~-) = </Z)-~/P+~ IIM.flIB~(~-). (1.10) 

We conclude from the standard imbedding results that for s E R, e > 0, 

B~'U(R")CHp'U(R'~)CBp-~'U(R "~) f o r p < 2 ,  
(1.11) 

H~'U(R'~) C B;'U(R") c H;-~'U(R ") forp~>2, 

uniformly in #, with H~'~'(Rn)=B~'U(R n) if and only if p=-2. Moreover (cf. e.g. [T1, 

2.8.1]), one has for s and s lER,  p and plE] l ,  oo[, mEN,  

Hp'U(gn)§ ~) C Hp~'U(Rn)NBp~'U(R~), when s -  p ~> s, - ~ ,  Pl >P; 
(1.12) 

Hp'U(Rn)§ when s >  p §  

uniformly in #; here C.m(R n) is the space of m times continuously differentiable functions 

u with D~u(x)---~O for txt--~oo, [at~<m. (S(R ~) is dense in all these spaces.) 
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Observe also the following difference: For s=0, 

II'/IH~ : I['[IL~(R-) for all/z e R§ 

whereas I[.IIBo,.(R~) depends in an essential way on # when pr In fact, we have for all 

f E S ( R  n) in view of (1.4) and (1.10), 

Ilfll~o,-(R~) ~ IIfIIL~(R~) as lZ ~ ~ ,  (1.13) 

where Lp(Rn)=H~162176 ~) when pr  

We need to know that the interpolation, duality and trace theorems valid for the 

usual Bessel-potential and Besov spaces have counterparts for these parameter-dependent 

spaces, with estimates uniform in ~. The statements and proofs will be straightforward 

when we use (1.9) and (1.10). To give an example, recall that real interpolation (-,.)O,p 

(cf. [B-L, Theorem 6.2.4]) of the Bessel-potential spaces H~~ ~) and H~I(R ~) with 

0<0<1 and so~sl ,  gives the Besov space B~(R~), where s=(1-0)s0+0Sl .  In particular, 

for some constant C>0  independent of f we have when fEB~(Rn): 

C -1 IlfllB$(~) < Ilfll(HgO (a~),Hgl (R~))~,~,~ < CIIfilBgR~). (1.14) 

(The precise value of the interpolation norm depends on the method; here we refer to 

the K-method, to fix the ideas.) Since M~, is a homeomorphism in all these spaces, 

and the exponent - p + S  in (1.9) and (1.10) is an affine function of s, we get with the 

same C: 

C--111flIBg'~(R ~) ~ IIfI[(H;~ ~ CIIfIIBg'~(R~)" 

We formulate this result as follows: 

( 1 . 1 5 )  

(H~~ H~,l't'(Rn))o,p ~- B~#'(Rn), uniformly in #, with s = (1-0)So+0Sl. 

(1.16) 

Recall that for f in the smallest of the spaces, 

.< 1-0 o (1.17) IIfIIB~,~(R-) -~ CIIflIH;o,.(R~)I{YllHT'"(rt-)" 

As an application, we see that for each t, sER, 

(D, #)t =_~,._p=t. Rs,~,(Rn~,_ j -% B~-t,~(Rn), uniformly in # (1.18) 

(in the sense that the operators (D, p)t and (D, p)- t  between these spaces have bounds 

independent of/z). Because - 9  +s  is affine in ~ too, all the other interpolation and 

12-  935204 Acta Mathematica 17 I. Imprim6 le 2 f~vder 1994 
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Lmbedding results of [B-L, 6.2 and 6.4] generalize immediately to/~-uniform results for 

the parameter-dependent spaces. The same is true for the duality results, since (.1.10) 

menus that (#}-'qP+sMt~ is an isometry of B~'t'(R n) onto B~I(R'), and thus 

( ( (U}-,~II,§ M ,  }* ) -  ~ = (#~)nl.-~ (p}-n M~ ̀ = (#j)~IP'-* M ,  

is an isometry of B;,~'(Rn) * onto B ; ( R  ) =B; ,  ( R ) ,  where 

; + ~  * = i .  ( I ,19) 

(The notation {1Lig) ~ be. used throughout.)) Thus for alI sER,  

s;,,(R~)*_~ B~""(R~)~ ~ifo, mly in •. (1.20) 

Fkl.MIy, we have: for the restriction operator" ~o: u:(x)~-~u(x',O) (from R ~ to R~-I) ,  

s ince- -~ : t  . - - - T . ~ s - - ~ )  and ~(M~,u)=:M~,'~oU', that the usual trace theorem (cf. 

e,g. [EaL, Ttmorem 6.6.I])impEes: 

" 7 0  " r r  s , , ~  ~ " ~ .  r~ "~, - - +  r ~  - l / p l*  f ' r *  r e  - l; " ~ 

(1.21) 
:0:B;'~(R'~)~--~B~p-i/P"~(R'-:): ~ni$ormIy hi ~ for , > '  

mad,  eammt ~ .  t ~ a  -<-: (el:, e.g: [Ga, Lemma 2.2 D. ~ p  

C~r g sp~ces de~imc[ relative to R~_, one has the tmuaI two variants. On one 

k a ~  there are: the ~ s ~ b s ~  of distributions supported in ~t ~ 

H~, , , , -~  , _  n;, ,~(l lO)l  ~ p i , ,  c R ~ } ;  ,,;~ ( R + ) -  {~  e . . . .  , 
(122) 

that i n ~  the norm from the fu~ spaces; and on the other hand, there are the distri- 

hmion spaces over R ~  obtained by restriction: 

H ~ : ' u ~ "  = r + n g ' " ( R ~ ) ,  B; . 'v(R:)  =r+B.;'V(R'~); (1.23) 

t h w  are provided with the in6mum norms 

Ulf~;,*(~:)=inf{ llgtl.;,,'(R:)lg~H;'V(Rn), r + g = / } ,  etc. (1.24) 

Here r --e demotes restriction to R~_ (and we later also use e +, extending functions on R~ 

by zero on R ~ \ l ~ ) .  The spaces 

8 0 ( R ~ ) = { u e S ( R ' ~ ) [ s u p p u c R . ~ }  resp. , 9 ( R ~ ) = r + S ( R  ") (1.25) 
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are dense in rrH,gr~n-~ and BH'gq~ n ~ resp. H2,U(R~) and ns ,u[~n ~. and the norms in ~ p ; 0  KL~'+] p;0 ~, +1 p U p  K - - + / ,  

the latter equal the quotient norms when we identify 

H s't'(~'~ ~ "~ H s''(~'~lt-r~'~'{~n ~ etc, (1.26) 
p ~ = ~ + ] ~  p k ~ '~  J / ~ p ; O  K ~ ] '  

(There is a detailed analysis e.g. in ~ e b e l  [T1, 2.8, 2.9] of the spaces in the/z-independent 

case; H~;0(R+)~ ~ - n  and B sp;o~.r ~ are ca l l ed /~ (R  +) resp. Bp,p(R~~S +) there.) Now the crucial 

observation is, that since the dilation x ~  (#)x preserves R~, we can conclude that the 

norms are related to the gAndependent norms in the same way as for the spaces over 
Fin: 

I[fllX~, = <l.t)-n/P+SllMufi[x~ for s ER,  with 
(1.27) 

p;0(a+),/~p(P~) or B~o(n+). 
Uniform interpolation, imbedding, duality, trace and extension theorems then follow 

from the case without a parameter just as above. (For an overview of relevant non- 

parametrized statements~ see [G3].) Let us collect some of the resulting statements in a 

theorem. 

THEOREM 1.1. The following identifications hold, uniformly in #: 

(g~ (R+),H~ (R+))o,p-(H;'V(R~),B~'g(R~))o,p 

(1.2s) 
(Z ;  (R+),H$ (R+ ))0,v, " 

[B; (a+) ,  p ( r t + ) b _ :  ~ , . .+ , ,  

[g ;  (R+), ~ (R+) ]o -  where 

s, teR, s#t,  p, qZ]l,~r 0s]0,1[, s,=(1-O)s+Ot, $ - ~ + ~ .  

Here the dual spaces are defined with respect to an extension of the sesquilinear duality 
(u,v)R~ =:frt~ u(x)V(x)dx; and the interpolations that are used are real interpolation 

( ' , ')o,p resp. complex inte~lat ion [., .  ]o. The interpolation statements hold also with 
Hp and B~ replaced by H~o and B~,;o, and the norms satisfy generalizations of (1.17). 

The trace operator q~: u( x ) ~  D~ u( x', O) is continuous for s > j + ~, 

I:[s,~,[~n ~a.ns,ut~n ~ ._+ t~,=J~l/~,t'tl~n-~ uniformly in #, (1.29) 

Note also that in view of (1.6), 

C -~ I[/ll.;,.(a;) 4 lit H;(a~)+(.)" i1 iz.(a~) < 6'll/ll.;,.<a~), for each s ~ O, (1.30) 
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with C independent of #. 

For the spaces over R~_, the following operators are more convenient than the =t.  

Denoting (~1, .-., ~n-1)=~', we let 

x~(~,u)=(<( , . )+i~)  t, teR,  
X~: (~' , . ,  On) = OPt .  (X~=(~, . ) )  = ((~', . ) + i O n )  t, (1.31) 

E~=,u = OP(xt, (~, . ) )  -- (<D', .> +iOn)t; 

then one has for all t, sER: 

(•• (1.32) ~ + , t t ~ •  - -  ~•  - -  ~:F,/~" 

Moreover, the funtions (~, . )- t((~, ,  #)+i~n)t satisfy Lizorkin's criterion (1.1) uniformly 

in # for each tER, and hence the operators 

-u  - •  = OP(<~, . ) - t  ((~,, . )  +i~.~)t) 

are bounded in Lp(Rn), uniformly i n . ,  for any s and t, which implies 

"~t . r _ r s , u t ~ n ~  ~ r . g s - t , u t ~ n ~  (1.33) -• "'p ~ J ~ " p  ~ j, uniformly i n . ,  

with similar statements for B~ ,u spaces. We define as usual 

PR?~ =r+Pe +, also written for short as P+. 

By the Paley-Wiener theorem, the operators F.~_,u map So(R~) onto itself, and .-t =t' 

equals =t+t' there, so by extension by continuity and by duality one gets the homeomor- 

phism properties: 

THEOREM 1.2. For all s, t E R  one has, uniformly i n . ,  

~ t  . L l " s , ~ ( ~ n  ~ _~  l : . 1 s - t , / ~ [ ~ n  "~ ,~t ,~s = ~ t + s  . 
~ + , g "  * 'p ;0  k*~+)  ~*p;0 t ' ~ + ] ,  with ~+, lz ,R_~+, /z ,R~_  ~ + , / ~ , R ~ '  

(1.34) 
s ,p  - - n  ~ 8 - t , ~  - - n  ~ t  ~ s  ~ ~ t + s  =t . :Up  (R+)--*H; (R+), with ~--,Iz,l:t+ --,t~,R+ --,~,R+ ~-,/~,R~" 

(On distribution spaces where e + is not defined, Et_,u,rt~ is taken as the continuous 

extension from S(fft~_).) The analogous statements hold with Hp replaced by Bp. 

Here the results in Besov spaces follow from the results in Bessel-potential spaces 

by interpolation, using (1.28). We note furthermore that the mapping - -~  (")=-,ma~ is 
p ~ s , ~ l ~ n  ~ bounded in ..p ~.~+~ and in B~,~(R~_), uniformly i n . ,  so that for each s~R,  

IlfllH;-~,,,(n.7.) ~< Cs(U)-~ll.fll.~:,,,(n~.), tlfll.g-l,,,(~.7.) ~< C~(.)-lllfll.g,,,(~.~_). (1.35) 

We observe the following simple property of the spaces: 
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LEMMA 1.3. Let m be an integer >0. For each ]~=(~0,f~l,...,f~n) with length 13o+ 
~l+. . .+~n=m there is a linear operator A~,~, that is continuous, uniformly in #, from 
H~_'~(ft~)~ to ..p~8+'~'~(~n~+~ and from B~,~(R~_) to B~_+m,~(~t~_),~ for all s s  1 <p<co ,  

such that any s,~ - n  ~,~ --,~ ueH~ (R+)+B~ (R+) can be represented as the sum over Z 

u= ~ (#>~~ . . .D~'A~,#u. (1.36) 
~o+fh +.. .+~=m 

_ ' ' 1  ~ - - 1  t Proof. Let m = l .  Then we can write U----_,~,R?=_,~,RrU=(D,#)v+iDnv, with 

V==_,~,R?U. Here we note that 

I 2 2 2 ! - - i  <D ,#)v=((#> +DI+.. .+Dn_I)(D ,#> v= (lZ)vo+DlVl+...+nn-lVn-1, 

where vo=(#)(D',#)-lv,  v j=Dj(D~,#)- lv  for l<.j<.n-1. Using Lizorkin's criterion 

D "D p ,-1 j<.n-1 ,  uniformly (1.1), it is seen that the operators (#)(D~,#) -1 and j /  ,#) , are 
r48,~C~n ~ since they bounded in H~,~(R n) for all s and p, and they act similarly on ..~ ~.~+j 

preserve the property of being supported in R~.  Then in view of (1.34), we have the 

desired decomposition for m--1: 

n 

u = (#)Aou+~-~ DjAju,  
j = l  

,,\ -I~--I n " ~_ . with Ao = (#)(D', ~ ---,.,R+, Aj =Dj  (D', ~)-IE-~.,R ~ for l~<j ~<n-- 1, An =z ---~,R~ 

The general result follows by iteration and interpolation. [] 

In one dimension, we often replace # by x=(1+[~'[2+#2) ~/2 containing the (n-1) -  

dimensional parameter ~'; in paxticular we consider 

g~'~' (ft+ ) ~- ( x -  i D ~  )~t+ L2(R+). (1.37) 

Remark 1.4. The operators -• are used e.g. in ]~skin [E], Rempel-Schulze [R-S2], 

and other works on ps.d.o.s of a general kind. An inconvenience of the functions X~= in 

connection with the Boutet de Monvel calculus is that they axe not pseudodifferential 

symbols belonging to the S1,0 symbol spaces over R n, because the higher ~-derivatives do 

not behave well enough (do not fall off for ]~[--+co in the way required for such symbols). 

This difficulty has been overcome by the introduction of operators A t defined from •  

more refined symbols A~=(~, #) for fEZ, cf. [BM2], [R-S1], [G2, 3, 4], [F2], such as 

.,V, = [o-(I (,f', I)) +i,1,,] 
where r E 8(R)  with r = 1, supp~ ' - l r  C R.• (1.38) 

a e C~176 a ( r ) =  [r[ for ]r[/> 1, a(r)= �89 for ]r] ~< 5,1" 
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and a>0  is taken so large that ar177162 for all values of a and ~ (e.g, a>~ 

2supt lr These symbols ave truly pseudodifferential, elliptic, of regularity +oc in 

the terminology of [G2], and have the transmission property. Moreover, they have the 

same mapping properties as the --t listed in (1.34) (fEZ), shown in a similar way, see ~=}:,g 

also [G3, Theorem 5.1]. (The hypothesis s u p p ~ ' - l r  was not always included, it 

assures the extension of the mapping properties as in (1.34) to negative s, cf. IF2], [G3].) 

But in fact we shall show below in Section 2 that the operators in (1.34) are, after 

all, useful in the Sl,o pseudodifferential boundary operator calculus, as long as they are 

only composed with the "singular" operators, i.e. with Poisson, trace and singular Green 

operators, where they do preserve the operator classes. This observation will allow us to 

make some calculations in a simpler way than if the A~= were to be used. We shall even 

discuss some estimates where noninteger powers t are involved. (When t~ Z, neither the 

A~: nor the X~ have the two-sided transmission property that plays an essential role in 

the Boutet de Monvel calculus, so they are rarely considered then.) 

1.2. Admiss ib le  manifolds  

Now let us say a few words about corresponding spaces defined over more general subsets 

of R n and manifolds. Here we shall use the following two fundamental observations: 

(i) When CEC~ n) is bounded and all its derivatives are bounded, the mapping f~-~r 
is continuous from H~'~(R '~) resp. B~,#(Rn) to itself, uniformly in # for any s e R ,  

l < p < c c .  (ii) A diffeomorphism x from R n to R n, for which all derivatives of x and 

x -1 are bounded (we call this a bounded diffeomorphism), induces a mapping f~-*fox 
that sends H~,#(Rn) resp. B~'~(R '~) homeomorphically onto itself, uniformly in #, for 

any sEN, l < p < c c .  These mapping properties are easily shown for H~,~(R n) when 

sE2N, where (1.5) gives an elementary definition of the spaces; and they follow for the 

other spaces by interpolation and duality. In a similar way one gets (i) and (ii) for the 

spaces defined relative to R~_ (here x is a bounded diffeomorphism from R~ to R~., 

and it extends to a bounded diffeomorphism from R '~ to R'~). Note that a bounded 

diffeomorphism ~: R.~_--*R~_ has the property 

c lx-yt < I (x)-,dy)l C:lx-yl, (1.39) 

with positive constants C1 and C2 (for C2 take e.g. sup tx'(x)l and for C11 take e.g, 

sup ](~-l) '(x)t ). In the following, {1, ..., m} x A denotes a disjoint union of m copies of A, 

for an integer m > 0. When x goes from U to V, relatively open subsets of {1, ..., m} x R~, 

we say that ~ is an admissible diffeomorphism if it is a bounded diifeomorphism and (1.39) 

holds when z and y lie in the same copy of R~.  
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These observations allow us to define H~ '~ and B~ ,u spaces over C ~ manifolds 

(with interior f~ and boundary F=Of~) that  are formed of a compact piece and finitely 

many conical pieces. More precisely, we assume that  ~, in addition to being an n- 

dimensional C ~ manifold with boundary, is the union ~=~r  of a conical piece 

~2co,~ and a bounded piece ~Sd with ~bd compact; here, with B '~={x~Rn  I Ixl<l},  

S n - Z = O B  ~, 

f~co , r={x-~ txo[ t>r ,  x o ~ M C { 1 , . . . , m } x S ~ - ~ } ,  for r > 0, (1.40) 

where M denotes a closed smooth (n-1)-dimensional submanifold of {1, ..., m} x S n-1 

with interior M ~ and boundary OM; and we assume that  ~'~co,l~'~bd equals f~o,1\~r 

(i.e. the set where l < t < 2 ) .  Using local coordinates for ~'~bd and for M in a standard 

way, we can describe the structure of ~ as follows: There is a finite cover of ~ by open 

sets f~i C ~ (i = 1, ..., i0) with associated C ~ bijections gi: f~i _7. Ei (coordinate mappings), 

where the f~i and Ei are finite unions of (relatively) open subsets U of ~, resp. relatively 

open subsets V of (1,..., m} • R~_, of the following types: 

U1C~'~bdN~"~ , V1C{1, . . . ,m)xR~_,  U 2 C ~ - ~ b a  , V2C{1,...,m}xR.~_, 

U 3 - - { x = t x o  I t > r ,  x o e w  open c M ~  

V3 = {x = txo t ~ > r, xo e w' rel. open C {1, ..., m} • (S n-1 ~R~_)}, (1.41) 

U4 = {x = tXo [ t > r, Xo ~ w rel. open C M}, 

V4 -~ {x -- txo [t > r, Xo ~ w' rel. open C {1, ..., m} x (Sn-I  ~R~_)}; 

such that  U2NOf~ and u4no~ are mapped into {1 , . . . ,m}xRn-1 ;  and the mappings 

xiox 9 are admissible diffeomorphisms from x j ( f ~ n ~ j )  to x~(f~iN~j) for all i , j .  The 

mappings from sets of the types U3, U4 to V3, V4 can be taken of the form x: txo  H 

~(xo)t)~(xo), where ~ is a positive scalar C ~ function and ), is a C ~ bijection from w 

to w'. We can obtain (by use of linear transformations in R~_) that  the Ei are mutu- 

ally disjoint. (~ can also be described by other finite systems gj :  f~j-*~j,  j = l ,  ..-,jo, 

with these properties, and we say that  two systems are equivalent when the xioK'~ -I are 

admissible diffeomorphisms from ~i (~i N~j) to gi(f~it3~j) for all i, j . )  

For short, we call such ~ admissible manifolds, and we call the finite systems of local 

coordinates describing them as above admissible. By restriction to F they give admissible 

systems of local coordinates for F. 

xi (12i)--_ i with We can assume that  each l~i has an open subset ~ such that  ~ -=~ 

dist(E~, CEi)>0 and {~i: fl~-+E~}~~ is already an admissible system of coordinates. 

Following [G2, Appendix A.5] (to which we refer for more details), we assume more- 

over that  ~ is a closed smooth subset of a neighboring open n-dimensional admissible 
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C ~ manifold ~, and that  a normal coordinate xn has been chosen on a neighborhood 

~ of F in E (and fits together with an admissible system of local coordinates), such that  

~ is identified with F x  [-2, 2], with points (x', xn), x'EF, x ~ e [ - 2 ,  2]. (One can obtain 

by a suitable choice that  x~ is a multiple of the usual xn-coordinate in the patches of the 

type 172 and 174.) Then the trace operators ~/j: u~-~D~u(x', 0) ( jEN)  are well-defined. 

We furthermore consider C ~162 vector bundles E over ~, described by finite systems 

of local trivializations, where the part of the coordinates concerning the manifold form 

an admissible system. Similar requirements are made for vector bundles F over F. We 

assume that  E is the restriction to ~ of a bundle E given on Z, and that  E[r.~ is the 

lifting of E l f  to r x [ - 2 , 2 ] .  For short, we shall call such bundles E and F (and the 

mentioned local trivializations) admissible. 
Now the spaces Hp,U(~) and, more generally, the spaces of sections of E, called 

H~,U(~, E) or just Hp,~(E), are defined by use of a partition of unity as described in 

[G2, A.5] (with the obvious modifications), and so are the B~ '~' spaces. The various 

uniform mapping properties shown above for spaces over R n and R_~ ((1.6), (1.16), 

(1.20), (1.21), (1.28-30)) carry over to this situation. Also (1.33) and (1.34) can be 

generalized, cf. [G2, 3, 5] and [R-S2]; and (1.35) extends. 

A C ~ function on ~ or F will be called an admissible C ~ function when it is 

bounded with bounded derivatives (when considered in admissible local coordinates); 

the multiplication by such a function is continuous in the spaces we are considering. 

The admissible manifolds include compact manifolds and "exterior domains" and 

"exterior halfspaces" (complements in R n or R n of smooth compact subsets), as well as + 

more complicated manifolds. 

In Schrohe [Scl,2] there is introduced a concept of unbounded manifold called 

SG-compatible manifolds, that  contains the present type. We observe however that  our 

definitions of ]unction spaces (and later symbols) are very different from those in [Scl, 2], 

since ours do not involve a weight function for [x[--*oc as in [Scl, 2]. Furthermore, we 

shall not play on compactness or Fredholm properties in the study of elliptic problems 

[G5]; instead invertibility is obtained for sufficiently large values of the parameter #. 

When {gi: ~i ~Ei}~~ is an admissible system of local coordinates, there exists an 
i0 associated partition of unity {~oi}i=l, where the ~i are admissible C ~ functions with 

io s u p p ~ i C ~ i  and ~--~i=1 ~i =1 on ~. It will be convenient to have a more refined partition 

of unity (that is just sub-ordinate to the cover ~i), as used in Seeley [Se3]. 

LEMMA 1.5. When ~ is an admissible manifold, there exists an admissible system 

of local coordinates {gi: - ~ i - ~ i } ~ ~  for which there is a subordinate partition of unity 

{O~jj=llJ~ consisting of admissible C ~ ]unctions Oj with )-~J<~Jo OJ =1, such that for any 
four integers j l , j2, j3, j4 <~jo there is an i<~io (a function i=i(jl , j2,j3,j4) of the four 
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variables) satisfying supp 0jl U supp 0j2 U supp ~Ja U supp Oj, C f~i. 

For given admissible vector bundles E and E ~ over ~, F and F'  over F, one 

can likewise choose a system of local coordinates {xi:~li--%:~i}~~ 1 and trivializations 
{0 . l.Jo • c N, etc., such that there is a subordinate partition of unity 3Jj=l with 

the above property. 

Proof. Consider first the case where ~ is a compact manifold; we can assume that  

it is provided with a Riemannian metric. Consider an admissible system of coordinates 

{.7,t'i: ~'~i-~,.~i}~~ we assume that  the patches "-i are disjoint, and note that  they need not 

be connected sets. By the compactness of ~, there is a number 6>0  such that  any subset 

of ~ with geodesic diameter ~<di is contained in one of the sets 12i. Now cover ~ by a 

finite system of open balls Bj, j = l ,  ...,jo, of radius ~<di/8. This system has the following 

@cluster property: Any four sets Bjl ,  Bj~, Bj~, Bj4 can be grouped in clusters that  are 

mutually disjoint and where each cluster lies in one of the sets f/i. 

The  4-cluster property is seen as follows: Let j l , j2 , j3 , ja<. jo  be given. First adjoin 

to Bj~ those of the Bj~, k=2,  3, 4, that  it intersects with; next adjoin to this union those 

of the remaining sets that  it intersects with, and finally do it once more; this gives the 

first cluster. If any sets are left, repeat the procedure with these (at most three). Now 

the procedure is repeated with the remaining sets, and so on; this ends after at most four 

steps. The clusters are clearly mutually disjoint, and by construction, each cluster has 

diameter ~<5, hence lies in a set ~)i. (One could similarly obtain covers with an N-cluster 

property, taking balls of radius ~t f /2N. )  

To the original coordinate mappings we now adjoin the following new ones: As- 

sume that  Bj~, Bj2 , Bj3 , Bj4 gave rise to the disjoint clusters U~,U",..., where U'C 

f~i', U"Cf~i,,, .... Then use xi, on U', xi,, on U", ... (if necessary followed by linear 

tranformations r  ... to separate the images) to define the mapping ;r U~UU"U ...-% 

~ri, (U') U (b"xi,, (U") U .... This gives a new (admissible) coordinate mapping, for which 

Bj~UBj2UBjaUBj4 equals the initial set U~uU"u  .... In this way, finitely many new 

coordinate mappings, say { ~ :  f~i-%.Ei}~_io+l , are adjoined to the original ones, and we 

have established a mapping (j l ,  j2, ja, j4 ) r-, i =i( jz  , j2, J3, j4 ) for which 

�9 jo i B . ~ J o  Let (OY}j=I be a parti t ion of unity associated with the cover t JJ j=l ,  then it has the 

desired property with respect to the system {xi: f~i-%Ei}~=l. 

Now consider a general manifold ~. Here we can assume that  the system of co- 

ordinates {m: f~i--%Ei}~~ is such that  the f/i for i = l ,  ...,i~o, say, lie in 12co,1 and form 

a cover of ~r and the •i for i=i 'o+l , ...,io lie in ~'~bd\~')co,7/4 and form a cover of 
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�9 ~ i~ U f l  ~o ~ b d \ ~ c o , 6 / 4 ,  L e t  f~=fl~f3~bd for i = l , . . . , ~ .  Now since {12i}i_ 1 { ~}t=i~+1 is a rela~ 

tively open cover of the compact set ~bd, we can choose a cover with small balls {Bj}j~ 
exactly as above, having the 4-cluster property. Here ~ can be taken so small that 

~o,2N~bd is covered by those By that lie in 12co,7/4; let us rearrange so that they have 
the indices j = l  .... ,j~. For j<j~ we define Bj={txol t>~to, toxoeBj}, cf. (1.40). Now 

{BJ)j~l~t-  J~ ~ dB'~'J~ is a cover of ~ with the 4-cluster property relative to {fli}~~ so 
when we adjoin more coordinate mappings as above, a partition of unity associated with 

~j=IU{Bj}j=j~+! will be subordinate to { f l i } ~  in the desired way. [] 

1.3.  Lp m a p p i n g  p r o p e r t i e s  o f  ps .d ,o . s  

A basic tool in the theory is the generalization of the theorems on Lp continuity (1.1) 

to variable-coefficient pseudodifferential operators. Recall the general formula for the 

definition of a ps.d.o, with C ~ symbol q(x, ~): 

( Qu)(x) = (2~r) ~ / eiX'~q(x, ~)~(~) d~ = OP(q(x, ~) )u(x) = q(x, D)u(x), (1.42) 

(defined at least for uC~Y-IC~). Under suitable hypotheses on the symbol, one can 

define ps.d.o.s with a symbol depending on (y, ~) instead (briefly called ps.d.o.s "in y- 
form ), as 

(21r)-~ / ei(X-u)'~q(y, f)u(y) dy d( = OP(q(x, ~))*u(x). (1.43) OP(q(y, 

The relevant operator classes are defined in detail in Section 2 below�9 

THEOREM 1.6. There exist finite index sets J and J ' c N  2~ such that the following 
holds: 

Let Ho and H1 be Hilbert spaces, and let q(x, ~) be an operator valued symbol in 
C~r Rn; ~(H0,//1)) satisfying 

C(q) - sup II(~)I~fD~D~q(x,~)IIL(Ho,H1) < oo. (1.44) 

For each pE]l ,  ov[ there is a constant Cp (independent of q) such that q(x,D)= 
OP(q(x,~)) is continuous from Lp(Rn;Ho) to Lp(Rn;H1) with norm <~ CpC(q). 

A similar result is valid with C(q)<oc replaced by 

C ' (q) -  sup 11(51)~1D~ ~n a , D  e (1.45) ... (~,~) D ~  xq(x,5)tl~(Ho,H,) <oo.  
( a ,~}EJ ' ,  x , ~ R .  ~ 
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The results hold also for operators given in y-form OP(q(y, ~)), when q(y, ~) satisfies 
(1.44) resp. (1.45) with x replaced by y. 

Indications of proof. (1.44) and (1.45) are generalizations of, respectively, Mihlin's 

and Lizorkin's criteria (!.1). For (1.44), the proof of Hbrmander [HI, Theorem 3.5], 
although formulated for the L2 case, applies to the abovementioned Lp case by use of 
Mihlin's theorem in a Hilbert space valued variant (cf. [B-L, Theorem 6.1.6], IT1, 2.2.4]); 

this shows that one can take J={{a,/3}cN~'~l [ a l , [~ l~n+l  }. Statements requiring 
fewer values of ~ (and of a, when p~  2) can be found e,g. in Nagase [Na], With J replaced 

by N 2~, the Lp continuity of polyhomogeneous ps.d.o.s is shown in Seeley [Se2], and Beals 
[B] includes the S~ case. - -  For (1,45), let us first observe that Lizorkin's constant 
coefficient result generalizes to Hilbert space valued operators e.g. by the argument given 
in Shamir [Sh] for reducing Lizorkin's result to a version of Mihlin's result. The present 

authors have worked out a generalization of the proof of [HI, Theorem 3.5], that shows 
that one can take J'={{a,~}eN2nlai<2 for j = l  .... ,n, I~l~<n+2} in (1.45) (for lack 
of space, we shall not include the details here). Yamazaki [Y] shows that one can take 

J' ={ {a,/~}eN2~]a={~jaj}i=l,..,,n with aj<n+ l, for j=l ,  ...,n, ]/~1<1}, 

Finally, when an operator is given in y-form OP(q(y,~)), we simply use that  its 
adjoint satisfies OP(q(y,~))'=OP(~(x,~)) (cf. (1.43)), where q(x,~) has the required 

estimates (1.44) resp, (1.45) as an operator from/-/1 to H0 for each (x, ~). Then, by 
the preceding results, OP(q(x, ~)) is continuous from Lp(R~; H1) to Lp(l:tn; H0) for all 

pE ]1, c~[ with a bound CpC(q) resp. CpC'(q), so it follows by duality that OP(q(y, ~)) 
has the asserted continuity properties. [] 

Remark 1.7. The theorem does not extend to the general case where H0 and/ /1  are 
replaced by Banach spaces. As a simple illustration, we mention the fact that the Poisson 
operator K with symbol (~'):/P((~')+i~) ~1 (and symbol-kernel (~')l/PH(xn)e-(~')z", 
H(xn)=I{~>o}) is not continuous from Lp(R n- l )  to Lp(R~_) when p<2  and n > l ,  just 
continuous from the strict subspace B~ n- l )  to Lp(R~), cf. [G3, Remark 3.3]. For 

n=l, K is continuous from C to Lp(R+), and if Theorem 1.6 (in dimension n - 1 )  could 
be used for the mapping q(x',~'):v~(~')l/Pe-(r with Ho=C, HI=Lp(R+), the 

Lp-continuity of K for n >  1 would follow. 

In our approach to L v estimates for the boundary operators in the parameter- 
dependent calculus, we apply the above theorem to symbols depending on the tangential 

variables, valued in spaces of functions (or distributions) in the normal variable. A fun- 
damental idea is to choose these spaces, that must be Hilbert spaces, in such a way that 
they give spaces contained in Lp by interpolation. Here we use the L2 Sobolev spaces 
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over R+ ,  and the weighted L2 spaces: 

L2(R+,x~)={veD'(R+)tx~v(xn)eL2(R+)}, 5 e R .  (1.46) 

Note that the dual space of L2(R+,x~)  (in relation to the sesquilinear duality 

fR+ u(xn)O(xn) dx,,) is 

L2(R+, x~)* = L2(R+, x;~). (1.47) 

More precisely, we shall use: 

T H E O R E M  1 .8 .  (1)  / ]  1 <p<~2 andS' < ~ 1 - 1 < 6 ,  thenwith 0 = ( ~ - -  ~ - - 5 1  1 ' ) / ( 6 - - 6 ! ) ,  

5 t 
(L2(R+, x,~ ), L2 (R+,  x~))O,p C Lp(R+),  

(1.48) 
(H~; o (R+),  H~;~(R+))o,p D Lp(R+).  

(2) / ]  2 ~ p < c ~  andS'<�89 -1~<5, then with O=( �89 -5')/(5-5'), 

(Hi' (~t+ ), H~(~t+ ))o,v C Lv(R+), 
(1.49) 

(L2 (R+, x~'), L2(R+, x~))e,v D Lp(R+). 

(The inclusions are identities when p=2.) 

Proof. The identities are classical for p=2;  it is the case p r  that  demands a special 

argumentation. 

The first line in (1) follows for general 6' from Gilbert [Gi]. By HSlder's inequality, 

p -- IIflIL,(~+) -- k-,<=~'-~<~k xnpe' Jx~ f(xn)l p dxn 

, "[p/2 

The last expression gives by [Gi, Theorem (3.7)0)] a norm on the interpolation space on 

the left hand side of the first line in (1.48), and hence this inclusion follows. (We observe 

that in the result of Gilbert, 2 k-1 <w(x) ~< 2 k should have been written 2 k-1 <w(x) -1 < 2 k, 

cf. [Gi, Theorem (3.3)].) The second line in (1.49) follows by duality. When 5'=0, 
a simpler argument suffices, where R +  is just  divided into ]0, a[ and [a, oo[, HSlder's 

inequality is applied, and a is chosen so that  the two terms balance. 

To show the first line in (1.49), we use that 

51 - -  (H~ (R+), H~(~+))0,v = B~/~-~/P(~t+ ) c H~ ) = Lv(R+), 
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where the first identity is accounted for in IT1, 2.10.1], and the inclusion (which is an 

identity for p--2) follows for p>2  from [T1, 2.8.1 (18)], cf. also [T1, 4.6.1]. The second 

line in (1.48) follows by duality. [] 

As an immediate consequence we get (using e.g. [B-L, 5.8.6]): 

COROLLARY 1.9. (1) I l l<p<.2 and ~,<~1�89 then with 8 = ( ~ - � 8 9  

(4(R~-1; L2(R+, z~ )), Lp(R~-~; L2(R+, x~)))e,p c 4(R~), 
(1.50) 

(Lp(R~-~; H~.o~'(K+)), Lp(R~-~; H~;6o(~t+)))o,~ �9 L~(R~). 
1 1 1 1 ~ / (2) / f  2~p<c~ and ~ ' < ~ - ~ < ~ ,  then with O = ( ~ - ~ - ~ f  ) / (~ -~  ), 

(L~(R~-~; H~ (R+)), 4(R~-1; H~(R+)))~,~ c 4(R~), 
(1.51) 

(Lp(Rn-i;'L~(R+, Xn~')) , /v(Rn-1; 52(R+, x~)))e,p �9 Lv(R~). 
(The inclusions are identities when p=2.)  

2. Uniformly estimated symbols 

2.1. Symbol  spaces 

We shall now supplement the symbol spaces introduced in [G2] with spaces of symbols 

satisfying estimates that are uniform in x resp. x', following the pattern set up for ps.d.o.s 

in HSrmander [H3, Chapter 18]. Besides that this leads to operators with convenient 

continuity properties in global Sobolev spaces relative to R~_, this has the advantage that 

the rules of calculus can be stated in a more exact form than for the symbols satisfying 

local estimates: To take an adjoint or to compose two operators leads to an operator with 

a precisely defined symbol in the appropriate space, not just defined modulo so-called 

negligible operators. (Recall from [G2] that there are many different kinds of negligible 

operators involved in the local parameter-dependent calculus: one for each regularity 

number and for each operator type, and some additional ones.) 

The symbols will depend on a space variable generally called X E R  nl and later 

specialized to be x E R  ~, x' E R  ~-1, (x, y) E R  2n or (x', y ' )ER  2n-2, etc. 

To avoid lengthy repetitions, we simply use the notation from [G2] and refer the 

reader to the details there, recalling only a few conventions, such as 

Dxj = -iO~j ; Dx~ = +iO~ ; 

(~-f)(~) -- 
d d (2.1) 

a• =max{+a,0}; (~, g) = (1~12+g2+1) '/2, 
~,(~,~)=(~)/(~,~), dg,~)=(g)/(g,~), ~<(g,~)=(g,~). 
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Occasionally, it can be useful to redefine (~, #) as 

(~, ~) ~-- (i~I2d-l-#2d-{- 1)1/2d (2.2) 

or  

u) = (l U+u2d) TM for u)i 1 (2.3) 

(extended to be smooth positive), where d is a fixed positive integer; these are useful for 
holomorphic extensions in/~ and homogeneous symbols, e.g. in connection with resolvent 
studies ([G2, 5]). Observe also: 

(()v(~'#)d-u+(~'#)d=(g(~'#)V+l)(~'#)d~-- { (~)~ (~, #)d-v (~, #)d whenWhen u~0,u~>0' (2,4) 

We shall use the conventions: ~ (resp, >/) means "4 (resp,/>) a constant (indepen- 
dent of the space variable) times", Moreover, -" means that both ~ and ) hold, The 
constants vary from case to case. 

Recall (e.g. from [G2, 2.2]) that for rEZ, 7~-1 is the space of functions f(~n)E 
C~162 that have an asymptotic expansion ~ _ ~ < j ~ _ ~  s j ~  for I(~l-ooo; and 7~= 
~J~ez 7/~-1. Moreover, 7i + is the subspace of H-1 consisting of functions extending 
holomorphically into C_ ={~n E C Jim ~n <0} with the same asymptotics there, and 7/- 
is the direct sum of the space of complex conjugates of 7/+ and the space C[~.] of polyno- 
mials. For a simple formulation of symbols of negative class it is conwenient to introduce 
the notation 

We recall that 7-/=7"/_1A-C[~], 7-/=~/+47~- (direct sums) and 7/_1=7/+ @7/=1 (ortho- 
gonal direct sum in L2(R)); the projections onto ~/-1, 7/+, 7/- and 7/- 1 being denoted 

h- l ,  h +, h-  resp. h-- 1. 
We denote by S~o(Rn• n) the space called S d or Sd(RnxR n) in [H3, Chapter 18]~ 

consisting of symbols p(x, ()EC~(R~x R n) satisfying the estimates (on Rn• Rn): 

for all 

The subspace of polyhomogeneous symbols (called 8vdhg(R"xRn ) in [H3, Chapter 18]) 
will here be denoted Sd(RnxR"). The definitions generalize immediately to the case 
where xER n is replaced by by X ER m . Now let us define parameter-dependent symbols: 

DEFINITION 2.1. Let d and uER, 
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r t~,~l .. ~n+ ~ ~ of X-uni formly  estimated (or just: uniformly esti- (1) The space ~,1,0,.~ ^ ~ +  ) 

mated) pseudodifferential symbols of order d and regularity u consists of the C ~ functions 

~n~+n+ l satisfying the estimates p ( x , ~ , i t )  on + 

tD~ O? D~p(X, ~, U)t ~- ( (~V -I~ (~, U) d-~-~ + <~, ~>d- t~l-J) 
(2.7) 

= (0(~, It)~-lal + 1)(~, p)d-lal-#, 

for all indices a E N  n, 13EN n~, j E N .  

(2) The space Sd,~ tR '~x l~  +~'~ + j of uniformly estimated polyhomogeneous ps.d.o. 
d,v n1 - - n + l  symbols of order d and regularity ~ consists of the symbols pESx,0(R •  ) that 

moreover have asymptotic expansions P ' ~ I ~ N  Pd-l, in the sense that P - - ~ t < N  Pd-l be- 

lo~g~ to ~ ~,~- ~ (it"~ • ~t~ + ~ ) for an N e N ,  and Pd-~( i ,  ~, It) ~ homogeneous of d ~ e e  

d -  l in (~, It) for [~t >11. 

(3) A symbol p(x,  y, ~, it) E sd~  (R2nx ~.~_+1) is said to satisfy the uniform two-sided 

transmission condition at xn=yn=O,  when p and its derivatives at xn=Yn=O are in 

TI as functions of ~n, m such a way that the estimates required in connection with the 

asymptotic expansions in ~n (el. [G2, Definition 2.2.7]) hold with constants independent 

of (xr,~r). This can also be expressed as the property that for all indices j,  N,  NV E N  and 

a,13, "yEN '~, the restrictions to zn E P ~  of  the inverse Fourier transforms, 

4- N N '  --1 ~ 7 a " t t ri  z ,  D~. ~ _.r D ~ D u D  r 1T~p(x , O, y ,  O, ~',~,~, It), (2.8) 

are bounded functions of ( x~, y~, z ,  ) E R n -  I • R n -  l x R •  (hence extend to C ~ functions 

of (x',o~ z ~eR~, " - ~  . , . ,  • ,. The space of  such symbols is denoted S~:~,utt,(R2'~• and 
d ,u  2n - - n + l  the subspace o] symbols that moreover are polyhomogeneous is denoted Suttr(R xl~+ ). 

Similar definitions are made when p is independent of y or x (then R ~n is replaced by 

It"). 

The definitions (I) and (2) are straightforward generalizations of the definitions in 

[G2, Sections 2.1 and 2.21. As for the transmission condition, a further analysis is given 

in Grubb and HSrmander [G-H] and [G4, 1.3]. In order for a ps.d.o. P=OP(p(x,~))  

to have what was originally called the transmi~ion property (on R~_), namely that 

P ~  preserves the property of being C ~ on ITS_, it is necessary and sufficient that 
r + ~ N T - - 1  D ~ D a ~ ' J q d  C o o  z,'.n - r  ~ ,0,~) is for (x~ ,zn)ERn- lx f f {+,  for all indices (no require- 

meat is needed for zn <0). However, the full IXseudodifferential boundary operator cal- 

culus needs the preservation of C ~ property for both P and its adjoint, or equivalently, 

the preservation of C ~ property for P on both R_'~ and R~_. But here, when d is integer 

and P is polyhomogeneous (the case mainly considered in [G21), one can show that the 

two-sided preservation of Coo property (on R~_ and It,,_) is equivalent with the one-sided 
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preservation of C ~ property ion R~). The transmission condition used in [G2] was 

indicated there by a subscript 'tr'. In [G-HI, spaces of symbols with the one-sided (resp. 

one-sided uniform) transmission property were indicated by a subscript 'tr' (resp. 'utr'). 

In the present work, we allow noninteger d in the study of mapping properties, and we 

indicate the spaces of symbols satisfying the uniform two-sided transmission condition by 

the subscript 'uttr', to avoid conflict with earlier conventions. Since this is the condition 

used from now on, we often just say that such symbols satisfy "the uniform transmission 

condition". 

For fixed #, Definition 2.1 (3) gives the space d 2,~ ,~ S1,0,uttr(R x t t  ) of parameter-inde- 
pendent ps.d.o, symbols of order d satisfying the uniform two-sided transmission condi- 

tion. 

Now let us define the uniform versions of the boundary operator symbol spaces. 

DEFINITION 2.2. Let d, v e R  and f e Z .  The spaces S~:~(itn~xR~_,K:) (]C=7-/+, 

~ - 1  resp. 7-l+@7-lr_1) of X-uniformly estimated Poisson, trace resp. singular Green 
symbols of degree d, class r and regularity v consist of the symbols in qd,~(~n~ ~n  K.) ~ i , 0  k ~ "  , " '~+, 

(cf. [G2, Section 2.3]) satisfying the estimates listed there with constants independent of 
X E R  TM . 

Expressed in detail, with 0=0(~',~), '~=(~',~) (4. (2.1)): 

(1) The space Sf:~ (R n' x R.~_, 7-i +) of uniformly estimated Poisson symbols of order 
d + l  (degree d) and regularity v consists of the functions k (X , ( ,# )  lying in 7-I + with 

respect to (n and satisfying estimates 

+ r ~ "~ "~' J ( 0 ~ - I ~ I - [ ' ~ - m ' ] + + l ) x  a + l / 2 - 1 ~ l - ' ~ + m ' - j ,  (2 .9)  

for all indices. 

(2) The space Sld:~'(R'UxR._~,7-/~-_x) of uniformly estimated trace symbols of order 
and degree d, regularity v and class r consists of the functions t(X, ~, #) of the form 

t(x,r (2.10) 
0<~j<r+ 

where sj(X,~',#)Esd~J'~(R'UxR~_) and t ' (X , ( ,#)  is in 7-/~i~{_i,~_I} as a function of 

~n, with estimates 

{]h-I D~x D~,D~ ~ ' D ~  t' ( X, ~, ~)IIL2.,. ~- (0 ~-I~t-[m-~']+ +1) xd+ l/2-1~l-m+m'-~, 
(2.11) 

for all indices. (The space Sla:~(it'UxR~, 7-/+_1) is defined similarly.) 
(3) The space Sd:~'(R'UxR~_,7-/+@?-/~-_l) of uniformly estimated singular Green 

symbols of order d + l  (degree d), regularity v and class r consists of the functions 
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g(X, (, ~. ,  It) of the form 

g(X,r it)= E kj(X'r +g'(X'~'r]"'it)' (2.12) 
0<~/<r+  

s d - J , v r R n l x ~ l y  7-~+~ wherekj(X,{, i t )e 1.o ~ +, j andg'(X,~,7?n,it) isinT-t+@n2~in{_l,r_l} asa 
function of (~n, ~?n), with estimates 

+ - r a k k' m m'  j , 
[lh~. h_l,~. Dx D~, D~. ~n Do. ~n D,g i X, ~, ~ ,  It)I[ L2.,..,. (R~) (2.13) 

(ev-Ial-[k-k'l+-[rn-m']+ + 1)xd+l/2-la[ -k+k'-m+m'-j, 

for all indices. 
(4) The spaces Sd'V(R"lx fitS_, E) of uniformly estimated polyhomogeneous ps.d.o. 

symbols of degree d and regularity v consist of the symbols feS~(R'~•  that 
moreover have asymptotic expansions f " ~ t e N  fd-t, in the sense that f - -~ t<N fd-t E 
S d ~ o N ' V - N ( I : I , n l •  for all NEN,  and f d - l ( X , ~ , i t )  resp .  f d _ l ( X , ~ , ? T n , i t )  i s  homo- 
geneous of degree d - l  in (~,it) resp. (~ ,~ ,#)  for I~'1>~1. 

(5) There is a similar convention for the associated spaces of symbol-kernels k= 
J:~kz  k, { = ~ k z  t and ~=f fr ( lx  ~';l__,u,g (cf. (2.1)) when r~<0; here/C=7"/+, 7"~: 1 

resp. 7-t+@7-t-~ is replaced by S(~t+), S(~t+) resp. S(fft2++) (with R~_+=m• and 

the estimates are replaced by the following, where f =[~ or t~, 

j3 m m'  a j~ ! llDxxn 9=. DuD.f(X , xn, ~ , It)llL~,~. (rt+) ~ (e ~-t~-m'l+-l~1 +I) M+~n-'~+m'-l~l-j, 
I l " ~ I  IID~xxkOk y~D~ D~,D~g (X,x,,y,~, ' . . 2 ~, It)l L2 . .  u.(R++) (2.14) 

(t)v- [k- k'l+ -fro-re'f+-[al +l)~d+l--k+k'--m+m'-[aI-j. 

The parameter-independent boundary symbol spaces (generalizing [BM2]) have a 

simpler definition, without the powers of ~ and without reference to a v. To save space 

we just write: 

DEFINITION 2.3. The spaces of uniformly X-estimated boundary symbols of degree 
d and class r are defined as in Definition 2.2, considered for a fixed It. 

For the uniformly estimated symbols there axe the same inclusions of the parameter- 

independent spaces in the parameter-dependent spaces as described in [G2, Proposition 

2.3.14]. The definition of symbols of negative class is consistent with that of [G3, 4]. 

We now have to show that the calculus for operators defined from these symbols 

works in a precise way, as indicated in the introduction. In principle, this requires going 

through the whole development of [G2, Chapter 2] for the new symbol classes; however, 

much of what has to be done is so close to the development there that it suffices to give 

some indications, drawing also on the presentation in [H3]. 

13 - 935204 Acta Mathematica 171. lmprim6 le 2 f~vrier 1994 
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2.2. Composition rules for ps.d.o.s 

Let p(x,~,#)Esd~(Rn• n+l~+ /. For each #El=t+ it follows from [H3, 18.1] that P~= 

OP(p(x, ~, #))=p(x,  D, #), defined by 

~, #))u(x) = (2r) -'~ f eiX'r ~, #)fi(~) d~, (2.15) P,u(x) OP(p(x, 

maps S (R  ~) into itself, extending to a continuous mapping of S ' (R  n) into itself, with 
Schwartz kernel tgp(x, y, #) related to p(x, ~, #) by 

)~p(x, y, #) = (2~) -~ ./e~(~-Y)'~p(x, ~, it) d~ 
(2.16) 

(identifiable with Jr~zp(x, ~, it)tz=~-~); 

The integral in (2.16) is an oscillatory integral, cf. [H3, 7.8], it is the limit for e--*0 of the 
expressions obtained by multiplying the integrand by a function X(e~), x E C ~ ( R n )  with 

X=I on a neighborhood of 0 (cf. also (2.22) below). Operators and symbols of order -00 
will be called negligible. 

Recall from [G2] the simple inequalities: 

(~)~(~,#)-~'~. (~)~+l~'l(it)-v'; (~),,{it}-u'~ (~)~+lv'l(~,it)-v'; (2.18) 

showing how a decrease for litl--*~ carries over to a decrease for I((, it)l --*~ and vice 
versa (with a certain loss of precision in the ~-variable). They can be used, together with 

elementary properties of the Fourier transform, to show the following characterization of 
the present negligible symbols of regularity v ~ in terms of kernel properties: 

--~o,~/--oe n - - n + l  __ - - N ,  v ~ - N  n 
LEMMA 2.4. I fp(x ,~,u)ES (R x R +  ) - - O N S l , 0  (R xR~_+I), i.e., 

}D~D~DJp(x,~,it)l ~ (~)--N(#)--u'--j for all (~,~eN '~, j, N E N ,  (2.19) 

then 

"~ J X ' ' " ]D~D~Dut:p(x, - z ,  it)i~(z) - y  (it)-~-~ f o r a l l % B e N  ~, j , N ' E N .  (2.20) 

Conversely, if ]Cp(x, y, it) is a function satisfying (2.20), then the function p derived 
from it by (2.17) satisfies (2.19), hence is a symbol in S-~ ' " ' -~ (R~•  +1) defining 
the operator with kernel ]Cp. (For fixed it, this characterizes the negligible ps.d.o.s in the 
standard uniform calculus.) 

The proof is straightforward and consists of showing that each estimate in (2.20) 
follows from a certain finite set of estimates (2.19) and vice versa, where the number of 
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estimates grows with the size of the indices. Note the advantage of the present calculus: 

The operators with C ~ kernels (satisfying suitable estimates in x, y and #) belong to 

the calculus, and do not have to be treated as residual classes as in [G2]. 

Proposition 18.1.3 in [H3] extends readily to the parameter-dependent situation, 

showing that for any sequence of symbols Pd-I E S~o l'~'-l(R '~1 x ~_+1) (i �9 N) there exists 
a symbol pE S~l~(anix R.~ +1) such that P--~I<M ~d-Z- ~c"d-M'~'-MIRn'XI{.n+l~ol,O ~ + j for any 

MEN.  We then say that p N ~ l e N  Pd-*~ 
Now it is also of interest to consider ps.d.o.s represented by formulas (as in [H2]) 

(27r) - '~//ei(~-~t)'~p(x, y, ~, #)u(y) dy d~ = OP(p(z, y, ~, #) )u(x), 

uE$(Rn),  where p(x, y, ~, #)�9 ~_+1). When p is not integrabte in ~, this is 

interpreted, via oscillatory integrals (cf. [H3, 7.8])) by a weak definition as follows: For 
u, vES(R n) we set 

( P~,u, v) = ~(2~r )  - n / / f  ei(~-v)'~p(x, y, ~, #)u(y)~(x)x(v~) dx dy d~ 
(2.22) 

= lim(P,,,u, v), P,,~ ~ OP(p(x, y, ~, #)X(e~)); 
e~--.0 

this defines P~ as an operator from S(R")  to S'(Rn), The formulas imply 

Pv,, = OP(q,(x, ~, #)), where qe(x, ~, , )  -- e 'Du'~ (p(x, y, ~, ~u)X(*~))I~=,, 

as defined in [H3] before Theorem 18.1.7; and the results on convergence of symbols 

there ([H3, Theorem 18.1.7 and Remark]) show that q~(x,~,p) converges weakly in 

Sld, o (RnxR a) for each ~ to 

q(x,~,t~)=e~D~.Dcp(x,y,~,p)]~= x,., ~ 1 ~,~DC,~r 
~eN" (2,23) 

with OP(p(x, y, ~,/~)) = OP(q(x, ~,/~)). 

That q,(x, ~) ---*0 weakly in Sl~,o(Rnx R n) for ,--*0, ~E ]0, 1], means that the set {q,},e ]0,1] 

is bounded in S~,0(Rnx R '~) and q,---,0 in D~(R2n); the latter convergence can be sharp- 

ened to uniform convergence of D~D'~q~(x, ~) for all a, B~N" on the compact subsets of 
R 2~. 

To avoid repetitions, we have a ]~ in the notation here, but up until Theorem 2.7, it 

should be considered as a fixed number. 

For the special case of (2.21) where p is independent of x, (2.23) implies 

OP(p(y,~,p))=OP(ql(x,~,l~)), with 

ql(x,~,l.~)=eiD~'D'p(y,~,l~)]~=~,'.~ ~ ~0~1 ,XD,~p(y,~,#) ~=~" (2.24) 
h E N "  
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We observe furthermore that ,  by (2.22), the adjoint of Pg=OP(p(x , ( ,#) )  is P ~ =  

OP(p(y, (, It)), which may be reduced by (2.24), so that  we get: 

OP(p(x, ~, It))* = OP(/~(y, ~, It)) = OP(q(x, ~, It)), with 

q(x,~, It) = e 't)~'DCp(x, ~, It) ,.~ E ~O~D~p(x,~,it),l a •- . (2.25) 
~ c N  n 

cf. also [H3, (18.1.9)]. Note that  then P~=OP(q(x,~,it))*=OP(~-l(y,~,it)), so that  we 
also find (by conjugation of the formula for q, cf. (2.1) for D~): 

OP(p(x, ~, It)) = OP(q2(y, ~, It)), with 

q2(Y'~'it)=e-iD~'Dcp(x'~'it)[z=u'" E ~O;D~p(z,~, i t)]x:y.  (2.26) 
h E N  '~ 

This prepares for the formula for the composition of two operators, cf. [H3, Theorem 
18.1.8]: 

OP(p~ (x, r It)) OP(p2 (x, r It)) = OP(q(x, r It)), with 

q(x, ~, It) = e iD~''o" (Pl (x, ~1, It)P2 (Y, ~, It))]u=:~,,/=~ 

'~ E l~aDa"  (2.27) h-?.,% n kPl (x, ~?, It)P2(Y, ~, It))ly=z,n=~, 
a E N  n 

denoted q(x, ,~, It) ---pl(x, ~, It)op2 (x, ~, It). 

The formula can (as in [H2] and [G2]) be derived from the preceding rules, by first using 

(2.26) to construct q2(Y, ~, It) such that  OP(p2(x, ~, It))--OP(q2(y, ~, It)), next observing 
that  one has the simple product  formula 

OP(pl  (x, ~, #)) OP(q2 (y, ~, #)) = OP(pl  (x, (, #)q2 (Y, ~, #)), 

and finally reducing Pl (x, ~, It)q2 (y, ~, It) to q(x, ~, #) by use of (2.23) and a certain formula 
for simplification of binomial expressions. 

Finally, we have to discuss coordinate changes. Here [H3, Theorem 18.1.17] is only 
formulated for symbols with compactly supported kernels, but  the hypothesis of com- 

pactness can be removed when admissible diffeomorphisms are considered, cf. Section 
1.2, as follows: Let U and U~, be open sets in R n, and let x: U---*U~ be an admissible 

diffeomorphism. Let Pu=OP(p(x,  ~, #)) be a ps.d.o, with distribution kernel supported 
in a subset of U • U with positive distance from O(U x U). Then it induces a ps.d.o, on 

V by 
(Pu,~,u)ox=Pu(uox) for ueC~(U,~) ,  with 

p,~(x(x), 7, #) = e-i~'(~)'n Pt,( ei~'(x)'n) (2.28) 

,x~ E 1 D,~ "x t , ~, iox(y).,1 , , p t  , I t ) o ;  e 
a E N  n 
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where Qx(y )=g(y ) -g (x ) -~ (x ) (y -x ) .  This is seen by a generalization of the proof of 

[H3, Theorem 18.1.17]: Let X(x)EC~(R n) with x = l  near 0, and write the distribution 

kernel ]Cp(x, y, #) of P~ as a sum of two terms/C 1 =(1 -X(x-y))lCp and ~2 =X(x-y)ICp. 
Here/~1 is the kernel of an operator of order -oc ,  and the estimates assuring this ((2.20) 

with fixed #) carry over to the corresponding kernel ~ in view of (1.39). Concerning 

]C 2, we note that the estimates in [H3, Theorem 18.1.17] are valid, uniformly in a E R  n, 

when ]C 2 is replaced by ~o(x+a)r 2 with ~o and CEC~.  Taking ~o and r equal to 1 

on a sufficiently large neighborhood of 0, we can obtain that for any (x, y) Esupp X(x-y)  
there is an a so that ~o(x+a)r there, so the desired estimates hold for ]C 2. 

(These arguments were kindly supplied by L. HSrmander in a personal communication.) 

We say as in [G2], with a somewhat loose terminology, that Pu is in x-form, (x, y)- 

form, resp. y-form, when it is defined as in (2.15), (2.21), resp. (2.21) with p(x, y, ~, ~) 
replaced by p(y, ~, #). We shall also sometimes need a mixture of these concepts; e.g. 

an operator defined by (2.21) with p(x, y, ~, #) replaced by p(x', yn, ~, #) is said to be in 

(x', y,~)-form. One changes an x-form to an (x r, yn)-form by a variant of (2.26), namely 

OP(p(x, ~, #)) = OP(q(x', y~, ~, #)), with 

q(x',y~,~,]z) =e-iDv~De~p(x,~,#),.~ ~ 70~D~,p(1 " - j  x, ~, #)]~=y~. (2.29) 

jEN 

The above considerations describe the basic rules of calculus for ps.d.o.s when # is 

fixed. For the parameter-dependent calculus, we moreover have to justify the asymptotic 

cd,~/~n~ ~+~). This will expansions (2.23) etc. with respect to the symbol spaces ~1,0 ~-~ 

be based on the following general rule inferred from [H3, Theorem 18.1.7 ft., Theorem 

18.4.11]: 

LEMMA 2.5. Let B be a Banach space, and let S~,0(RnxRn)|  be the space of 
C ~ functions a(x,~) from a n x R  n to B satisfying [[D~D~a(x,~)[[s~(~) d-I"], for all 
a , ~ E N  n. Then a(x,~)~-~eiD,'Dea(x,~) extends from a mapping in S(RnxR'~) |  to 
a weakly continuous mapping from Sd,o(Rn• R n) |  to sd,0(Rnx R n) | B; and for each 
kEN, the mapping Rk defined by 

Rk: a(x, ~) H eiD~'Dea(x, ~)-- ~ ~O~D~a(x, ~) 
I~l<k 

is weakly continuous from Sax,o (R'~x R")  | to sd~k(R"x R '~) | 

Remark 2.6. For AES(Rnx Rn) |  the Fourier transform A=~'(~,r is de- 

fined by the usual formula and . 4ES(RnxRn) |  by the standard proof. This allows 

us to define e~D"DcA(x,~)ES(R~xRn)| in the usual way, cf. [H3, Volume I, p. 207]. 
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- -  As in [H3, Definition 18.4.9], we say that a mapping from sd~,o| to sd:,o| is 

weakly continuous when it is continuous in the ordinary sense (with respect to  the Fr6zhet 

topologies) and, in addition, the restriction to a bounded subset is continuous in the C ~ 

topology. 

Proof of Lemma 2.5. For AES(R'~xRn) |  b*EB*, one has that (b*,A)ES and 

(b~, e iD~'D' A(x, r l = eiD~'D' (b*, A(x, ~) ). (2.30) 

Define the seminorms on Sd, o@B, IAik,s=supt~l+l~l<k sup~,r I](r162 
(This can also be reformulated in the notation of [H3, 18.4].) The proof of [H3, (18.4.17)] 

gives for aE Sld,0 (with the special partition of unity ~v E C ~  used there): For any N there 

is an M and a C (depending only on the dimension and the choice of metric and partition 

of unity) such that 

< 

~ 0 m  this we get by use of (2.30) for AESd, o| with the same constants: 

II eio~'Dr ( w A  )(x, 5) I[- ~< C( l + d~(x, 5) )-N (5)dlAIM, B. 

Hence we have for AESdl,o| 

II er162 (v~A )(x, ~)[l" ~< C '  (5)dIAIM,B �9 
V 

We can therefore define (eiD~'DcA)(x, ~ ) = ~ v  eiD~'Dr (~pvA)(x, ~) as a weakly continuous 

mapping from Sal,o| to B (cf. [Ha, Theorem 18.4.10]). Estimates of derivatives and 

remainders follow easily, and give [H3, Theorem 18.4.11] for Sdl,o| [] 

The lemma will be used with B=f~(H1,H2) for Hilbert spaces /-/.1 and/-/2 in the 

study of ps.d. boundary operators. For the ps.d.o.s we use it with B = C  to obtain: 

d,v  2 n  THEOREM 2.7. For p(x, y, ~, #) E $1, o (It x ~ + 1 ) ,  the asymptotic expansion (2.23) 

holds in ~'l,0r . . . .  + j. Moreover, when p(x,~,~)ESdl[o(l:tn• the asymptotic 
expansions (2.24), (2.25) and (2.26) hold in 8!, o (It x 

When It xR , ( ;~ .+ ) ]or i=1 ,2 ,  the asymptotic expansion (2.27) 
~dl+d2,m(Vl,V2),'~n ~ . n + l -  holds: in i,o (I t  • ), where 

m(,1,  v2) = rain{v1, v2, v, +"2}- (2,.31) 

Hence when Pi,,  (i = !, 2) are parameter-dependent ps, d. o.s of order di and regularity 
~i, with uniformly estimated symbols, then the adjoint P{,, and the composition Q~= 
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Pl,uP2,u are parameter-dependent ps.d.o.s with uniformly estimated symbols, of order dx 
resp. dl+d2 and regularity ul resp. rn(ul, u2). Here Qu satisfies the uniform transmission 
condition when Pl,u and P2,u do so. 

The operator classes are invariant under admissible coordinate changes, satisfying 
rules as in (2.28). 

Proof. We first treat (2.23), from which the statements on (2.24), (2.25) and (2.26) 

follow. Let q'(x, y, ~, ~)----eiDuDcp(x, y, ~, #), then q(x, ~, ~)=q'(x, x, ~, #). Since (x, #)~--~ 

p(x, . , .  ,#) is C r162 with values in Sd, o(RnxRn),  the same is true for (z,#)~-*q'(x, .,. ,#). 
In particular, q' and q are C ~ .  

Now we shall show that  q satisfies the first seminorm estimate for the space 
s d , v  (l:~ 2 n v  ~ n +  1 "~. 

1,0 k ~ ' '  ~" "~ - I -  ] "  

Iq(x,C ~)1 ~ (~, ~)d+(~, p)d-~(~)~. (2.32) 

Note that for large 7 (]71> ~) and general c~,fl one has that  

cf. (2.18). It follows that  (y, ~)~-}D'~p(x, y, ~, #) belongs to S~+la-'l-I~ll,0 ~(Rnx R '~) with 

seminorms that  are O((#) d-~) uniformly in x. According to Lemma 2.5, we have for 

kCN if I~/l>v, 

but also for general f~ if k>d, 

1 a D O  x 

- , 0  a s  

Choosing k>21dI-t-21ul+l, we get by h'l integrations of the radial derivatives of q' along 

rays from 0% using (2.33) and (2.34), that 

I~l<k 

which implies (2.32). 



194 G. G R U B B  AND N. J. K O K H O L M  

Since Dx,~,~,~ commutes with e iD~'Dr and b~D~, all other estimates of q in 

sd~(R~• ~_+1) follow immediately, and the expansion in the full asymptotic series (2.23) 

follows by taking k even larger in (2.33). This implies the first part of the theorem. 

For the second part we proceed as indicated after (2.27) above. The rule for (2.26) 

proved above implies that the expansion of q2(Y,~, #) holds in sd2'~2twn• +1) Now 1,0 k~*" 
~, d l+d" ,m(~ ' l , v " ) / ' ~2nvDn+l~  [G2, Proposition 2.1.5] shows that pl(x, ~, ~)q2(y, ~, e06S1,0 ~ . . . . .  + ~ with 

m(~'l, u2) defined by (2.31). Then by the rule for (2.23), the expansion of q(x, ~, #) holds in 
s d l  Td2,m(Ul,U2) []:~n v ]~ n + l ~  

1,0 \ . . . .  ~+ ,'" 

The third statement is an immediate consequence, and the rules for coordinate 

changes follow by an extension of the proof described after (2.28) including the #- 

dependence. [] 

2.3. B o u n d a r y  opera to rs  

Recall from [G2] the defining formulas for a Poisson operator Kg, a trace operator T~ 

of class 0 and a singular Green operator G~, of class 0, in terms of symbol-kernels (cf. 

Definition 2.2 (5)): 

K~v(x) = OPK ( k(x', ~, # ) )v(x) = OPK (/r ~', #) )v(x) 

= (27r) 1-n . / , ,_ ,  e ix''r fc(x', xn, {', #) 0({') d{', 

T~u(x') = OPT (t'(x', ~, #))u(x') = OPT ({'(x, ~', #))u(x') 
(2.35) 

= (21r) 1-'~ e i#'r t'(x',xn,~',#)d(~',xn)dxnd~', 
n - 1  

G~u(x) = OPG(g'(x', ~, y~, #))u(x) = OPG(~'(x, Yn, ~', #))u(x) 

= (2~) 1-n J ~ '  ~'(x', ~n, y.~, ~ ' , . )  aft ' ,  ~ )  dy~ d~'; 
n - I  

here ~(()=7~_~u(x),  ~((')=~'~,_~,v(x'), and a(~',x,~)=~'~,__.~,~(x',x,~). (See e.g. 
[G2, 2.4] for the definitions in terms of symbols.) When the class r is />0, the trace 

and singular Green symbols are of the form 

t(~',~,.)= ~_. ~Ax',r 
o~<j~<~-I (2.36) 

g(~',~,~,~)= ~ kAx',~,~)~+g'(x',~,~n,~), 
o<<.j<<.~-I 

cf. (2.10), (2.12). 

by 
T.= 

Then we define T~=OPT(t(x', ~, #)) resp. G~ =OPG(g(x',  ~, ~n, #)), 

E Sj,,Tj+T~, resp. G,= E KJ,,~/J+G~ , (2.37) 
0 ~ j ~ r - - 1  O~j~r--1 
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where Suj  =OP'(s j (x ' ,  ~', #)) and Kj, ,  =OPK(kj(x ' ,  ~, #)). 

When the operator definitions are applied with respect to the x~-variable only, the 

operators are denoted OPK~ etc. and called called boundary symbol operators (one can 

also use a notation where ~,~ or (~,~,~) is replaced by the indication Dn). We use OP' 

to denote application of the pseudo-differential definition w.r.t, the x'-vaxiable. OP may 

be written OP= when we want to underline that it is applied w.r.t, the x-vaxiable. 

The main object now is to show continuity properties and composition rules for all 

the operator types, but before we go on to that, we insert a section with some technical 

improvements of results in [G2]. 

3. Refinement of  L2 symbol estimates 

3.1. An improved estimate for ps.d.o.s 

In [G2], there were shown a number of estimates in L2 Sobolev spaces for pseudodiffer- 

ential boundary operators depending on a parameter #, where the behavior with respect 

to # is expressed in terms of the so-called regularity number u. In some cases, the regu- 

laxity was lowered in the passage from an operator to a derived operator. We show in the 

following how this loss of regularity can be avoided in most cases (or even improved), by 

more delicate applications of estimates from [G2]. Next, we study the compositions with 

the simple order-reducing operators ((D 1, #)• n)~?~, t EZ, and include operators of 

negative class in the calculus. Finally, we analyze the effect of applying ((~', # ) -  iD~ n)t+ 

6 to a symbol-kernel, for t and hE]0, 1[, in preparation for the Lp estimates in and x n 
Section 4. From here on, we write PR~ and PR+ as P+ (e.g. =t~+,~,R~ _-t_=• 

By a refinement of the proof of [G2, Theorem 2.2.8] we shall show an improvement 

of the regularity by essentially x ~, in the application of the projection h-1. 

PROPOSITION 3.1. Let d and uER,  and let p(x', ~, #) be an xn-independent pseu- 
cd,v (l:~nv ~ + 1 ) .  Then h-ap satisfies dodifferential symbol belonging to the space ~l ,0 ,u t t r~  . . . .  

{(Q ' + I / 2 + I ) x  d+l/2 if lz# 1 ;  (3.1) 

Ilh-lplli:'r ~ ( l logol l /2+l)x  d+1/2 if v = - ! 2 .  

Similarly, the Laguerre series estimates in [G2, Theorem 2.2.8] can be improved by a 

replacement of ~ y by ~ . + 1 / 2  if , r 1 8 9  and by Ilogol ~/z if u=- �89 

Proof. The proof of [G2, Theorem 2.2.5] shows that 

Ih-~p(x', 5, U)l ~ { (~'' u)d+Xir when 1~-1 ) (~', U); (3.2) 
(~),(~,#)d-~+(~, ,)d when [~{ ~< (~',#). 
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v 1 Thus if r  we get 

+ 

(~,)v+1/2(~, ,  # ) d - v  + (~t p ) d + l / 2  = (Qv+l/2 + l)avd+l/2 

which is (3,1) in this case. The case v = - � 8 9  follows easily from this computation too. [] 

With analogous considerations for the derivatives of p, one finds the following im- 

proved version of [G2, Corollary 2.3,5]: 

THEOREM 3 2. Let p(x~,~,#) be as in Proposition 3.1. I f  v ~ - � 8 9  then h+p 

satisfies, for  atl a and ~ E N  '~-1, m, m' and j E N ,  

t �9 I r t �9 + D  ~ a m m ~ + )lh X,Dr162 n Dhh p(x  ,~,l.t)llt2,en ~ (p~'+l/2--t~t--m+m +l)>rd+l/2--1,~l--m+~ --~; 

(3.3) 
in particular, h + p E S ~ + ! / 2 ( R = - l x R ~ ,  ?-l+). I f  v E - � 8 9  the estimates (3.3) hold 

when m < m  t or lal+m-m'#~+�89 and in the remaining cases one has: 

h + ~ ~ ,~ m + ~(l logol~/U+l)~d+l/2-1~l-m+m-~; (3.4) 

so h§ itS_, 7-I +) for any e>0. Similar statements hold for h-~p. 

tn applications of the theory, the ps.d.o.s where v is integer are of primary interest, 

so. we shall not analyze the ps.d.o.s with half-integer v any further. 

tn the above results, and also in the results below concerning the (xn, ~u)-behavior, 

the parameter x" cax~ of course be replaced by a more general parameter X running in a 

space R TM (in particular by y'~R~-~).  

a.2. Composition of houndary operators with simple order-reducing opera- 
tora~ negative class 

We sh~-t now show how the order-reducing operators defined in (1.3t) can be used in 

compositions with boundary operators. This will first be formulated in terms of the 

one.dimensional variant ( x • i D=, )t = X~ ( ~', #, D~. ), cf. also (1.37). 

Let tEZ. It is: easily verified that x ~ E S t , = ( R ~ - l x F t  n 7-/~); note also that for t<0,  - §  , 

)~t e S t  oo{Rn-1 X S t '~176  n 7-l+). The X~= do not lie in our pseudo- 

differential symbol spaces S~,0 over R n, since (~', p) does not lie there (does not fall off 
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in the (,,,direction when derived w.r.t, (t); so a composition of our ps.d,o.s with Op(Xt, ) 

will generally !end outside of our ps.d.o, classes. However, the crucial observation we 

shall make now is that  the  X~: do satisfy, not only the L2 estimates for boundary symbol 

classes derived in [G2, Lemma 2.3.9], but  also the sup norm estimates that  were shown 

to be valid for decompositions of pseudodifferential $1,0 symbols with the transmission 

property in [G2, Theorem 2.2.5]: 

LEMMA 3.3. Let tEZ. For any o4EN n, k and jEN,  

~ k ~ . ~ l N  ' t s , t k ~ ~ , . 

O~l<~t-t-k--lo~l--j 

where Is~,k,~,j [ ~. (~', #)t-z+k-1':,1-3 (3.5) 

k a j t " , t + l + k -  ~ - j  - 1  

Proof. For t~>0, there is no h-1 part, and the estimates of the coefficients s~,k,~,j 

are straightforward to see. When t < 0, we write the functions ~nD~k ~Du((~ , j  ~ #)4-z~n)" t as 

sums of terms of the form 

et t/3~ j~ t "~ ~ ( ~ , ,  , t '~ l  ,,-,~' ~",~, , t " , , . ,  , ~t ~ or c ~ # k~,/~] kk~,#]•  , 

where 
f,l>~O, Ifl'[+f +t '+l=t+k-[(~[- j ,  resp. 

j">~O, t'" <O, I~f ' l+j"+t"+t" '=t+k-Ial- j;  

these terms obviously satisfy the desired estimates. It is used here that  terms containing 
m , (~ (({ ,  #)4- i~)S with m > 0 > s  can be reduced away by insertion of formulas 

~m = (:t:i)m({~,, # ) . + i ~  _ (~,, #))m : Z Cm,m' ((~', #):t:i~n) m' (~', ~)m--m'. 
,~, 

(The estimates of the Sl,k,~,j follow also from [G2, Lemma 2.3.9].) [] 

This leads to the following results on products: 

LEMMA 3.4. Let t and t' EZ, and let tEN.  
(1) W h e n  k ( z ' , ~ , # ) e S f ~ o l ' ~ ( R ~ - l x f : t P r , 7 - l + ) ,  t h e n  

dTt-- l , •  n--1 h+(x~k(x',r e $1,  0 ( R  x R-_~, ~~I-) .  ( 3 . 6 )  

(2) When t (x ' ,  ~, . ) esd ;~ (P~n- I xR .~ ,  ~1~7_1) , then 

! ' c Q d + t '  b'(l:: ln--lx'~n "!4-- ~ (3.7) h -  ( t (x ,  ~, ]z)X~) ~ ~ t*r *~'+, ' ~[r+t']+-lJ" 
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(3) When g(x', ~, ~n, P ) � 9  Sd,ol'V(R n- ix  R~-, ~-~+~'~r--1), then (with all combinations 

of choices of + and - for -4-) 

+ - -  t ! ' ! ~ o d + t + t ' - - l , v l D n - - I  . ~ n  d L 4 + ~ q Z - -  h~ .hv . (X•  ,~,TIn,#)Xt~(~ ,7/'~,#))=~ ~'" ^ " + , ' ~  ~'~[r+t']+-l'" 
(3.s) 

The projections h + and h -  can be omitted when Xt~ is taken as Xt+ with t <~O and 
t ~ t ~ ~• is taken as X-;  then moreover, the indication 7-l + vesp. T/~r+t,]+_l can be replaced by 

?-l + resp. ?-l~+t, 1. 

Proof. This is seen by carrying out the proof of [G2, Lemmas 2.6.2 and 2.6.3] with 

X~: (~, #) playing the role of p there, using the estimates from Lemma 3.3 above, followed 

by an application of [G2, Lemmas 2.3.9 and 2.3.10]. [] 

The lemma implies that the full operators Kg=OPK(k) ,  Tt,=OPT(t ) and G , =  

OPG(g), by composition with operators =t to the left and right in a similar way, ~ •  

give Poisson, trace resp. singular Green operators belonging to our calculus and having 

the same regularity. This is seen first for the cases where K ,  is given in y'-form, Tg is 

given in x'-form, and Gg is given in y'-form resp. x'-form for compositions with =t ~ •  

to the left resp. to the right of G,  only. In each of these cases it follows from the operator 

definition that the full symbol of the resulting operator equals the projected product in 

formulas (3.6)-(3.8), without further terms. For more general symbols, we get the result 

by changing from x'-form to y'-form or vice versa (cf. (2.26) and [G2, Theorem 2.4.6]); 

in the treatment of Gg, one composes first on one side and afterwards on the other side 

using these techniques. 

Let us also observe that for tER,  the operators OP ( (~ ' , g ) t )=(D ' , g )  t, although 

they are not ps.d.o.s with symbol in Sst,0(RnxR n+l~ + j, compose very well with Poisson 

operators, trace operators and s.g.o.s. More precisely, the restrictions OP((~', #) t )+= 

(D', #)~_ = r  + (D', #>re + are wen-defined on S (R~)  since the (D', #)t preserve the property 

of being supported in R~ (but their mapping properties in H~" (R~)  spaces are not 

convenient for t<0). Now, when T~ =OPT(t(x ' ,  ~, #)) and G,  =OPG(g(x' ,  ~, 7/,~, #)) are 

of order d, class r and regularity u, then a direct calculation shows that 

P t T , ( D ,  #)+ = OPT(t(x',  ~, #)(~', #)t), 
(3.9) 

t t G, (D,  #) + = OPG(g(x', ~, '1~, #) (~', #>t); 

these are operators belonging to the calculus, of order d-f-t, class r and regularity v. 

(D', #)~_G, and (P' ,  #)~Kg are likewise of order d+t  and regularity v when G,  and Kg 

are given of order d and regularity v, with slightly more complicated symbol formulas. 

Before collecting all this in a theorem, let us extend the results to operators of 

negative class (cf. Definition 2.2 (2)-(3) and (2.36)). Note that one has for any r e Z ,  
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that T~=OPT(t(x' ,  ~, #)) is of class r precisely when its symbol t(x', ~, #) is O((~n} r - l )  

for each (x t, ~', #), and G~=OPG(g(x',~, ~/,~, #)) is of class r precisely when its symbol 

g(x',{,rb~,#) is O((rb~) ~-1) for each (x ' ,{ ,#) .  Since for m e N ,  

OPT(t(x ' ,  {, #))D~ m = OPT(t(x ' ,  {, #){~) ,  

OPG(g(x' ,  {, r/,~, #))D= m = OPG(g(x' ,  ~, r/., #)rlm), 

we find in particular that 
T,  is of class - m  r T ,D~.  is of class 0, 

(3.m) 
Gu is of class - m  ~==:> G~,D,~ is of class O. 

For fixed/z we get the corresponding observations for parameter-independent operators. 

The class concept is important for the mapping properties the operators on Sobolev 

spaces: T u resp. G~ is well-defined on H~(R~_) (for each fixed #) if and only if it is of 

class ~<r. This was shown for r/>0 in [BM2], [G2], and the negative classes were included 

in [F1,2], [G3, 4]. [G3, 4] moreover introduced the class concept for operators P++G, 

leading to very complete results on the mapping properties of elliptic systems. Since P+ 

is well-defined on Lz(R+),n it is generally assigned the class 0; and when G is of class 

r/> 0, P+ + G  is said to be of class r. The same holds for parameter-dependent operators. 

We define negative class as in (3.10) and show below that it is consistent with [G3, 4]: 

DEFINITION 3.5. Let m E N .  Then P~,+ +G,  is said to be of class - m ,  when 

(P~,+ +G~)D~ is of class O. 

For fixed #, this defines the concept for parameter-independent operators. The 

definition applies in particular to G~ or Pro+ alone. Operators that are of class - m  for 

all m E N  are said to be of class -c~ .  

Let us see how the class of Pro+ +G# is reflected in the symbols of P ,  and G~. Since 

there are generally two different types of symbols involved, it cannot be quite as simple 

as the condition O ( ( ~ )  ~-1) mentioned above. In the sequel we drop the explicit mention 

Recall from [G4, 2.4] and [G3] the formulas valid for general T, P of #-dependence. 

and G: 
j--1 

T D J  n = ~ S(Tk)"~j-l-k ..~-T(J); 

k=O 

j - 1  

(P+ +G)DJ~ = ~-~(K~) + K (k)' , + p(+J) +a(J) �9 G } l j - l - k  
k=0 

where 

T 0) = O P T ( h -  1 [~Jnt(x', ~)]), 

p(J) = OP({anp(x, ~)), 

G (j) = OPG(h_-lm" [~(~g(x', ~, rb~)]), 

(3.n) 

= oP' ( i  lira S - : k  e)), 
Xn'*4-O n e,n Xn 

K(,,%(x ') = ir+ p n L  (,,(x') | 

K (k) =OPK( iu~moDk~;s~u .g (x ' ,~ ,~? , ) )  , 
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cf. (2.1). We see from the first line in (3.11) that  TD'~ = O P T ( t ) D m  is of class 0 if and 

only if S (~ . . . . .  S(T m-l) =0; and that  when this holds, TD~. is of class 0 for j = 0 ,  ..., m - 2  

also (the latter properties need not be mentioned explicitly in the condition for T being 

of class - m ,  as in [G3, 4]). It then follows also that  TD~ ~ ~' =TD~= D~, is of class 0 for 

In] ~m,  since D ~  does not interfere with the class. The analogous considerations apply 

to P++G. Then we find altogether, for m E N ,  

T is of class - m  -: :. S(T ~ . . . .  =S(T m-l) = 0  

< :. TD~ is of class 0 for all ]a[ ~< m; 
/C(0) .1_/C(0) (m--l)  (m--l)  P+ + G is of class - m -.' " ~  P ~ ~ ~ G ', . . . . . .  K p  -5 K G = 0 

(P++G)D~ is of class 0 for all ]a[ ~<m. 

(3.n) 

Let us moreover note that  in view of (3.10) and (3.12) one has for any rEZ, that  T.  
)-G = - r  is of class r -: :- u__,~,+ u__,u,+ T = - r  is of class 0; and G .  is of class r -' is of class 0. 

For P.,+ +Gu one can show that  it is of class r if and only if its composition with A-F.,+ 

(cf. Remark 1.4) is of class 0. 

We recall from [G3, Theorem 3.10] that  when an operator is of class r for some r 6 Z, 
8 - - n  then it is defined on Hp(R+) and Bp(R~_) for s > r + ~ - l ,  but it cannot be well-defined 

HS(ftn ~ ~ - n  1 By(R+) for an unless it is actually of class r - 1 .  on p~ + j o r  s ~ r + ~ - I  

Now we can sum up the results on compositions with .-t and (D',#)t:  ~ : k , . , +  

THEOREM 3.6. Let K , ,  T~, and G~, be Poisson, trace and singular Green operators 

of order d 6 R ,  regularity u 6 R  and class r 6 Z  (for T ,  and Gu), and let t and t ' 6 Z .  

When r=O, then =t -+,u,+K u is a Poisson operator of order d+t and regularity v, 

TuE~,,,+ is a trace operator of order d+t', regularity u and class [ t '+1 ]+-1 ,  and 

=~ G =t' is a singular Green operator of order d+t+t ' ,  regularity u and class , . ,+ # ~ •  

[ t '+1]+-1  (with all combinations of choices of + o r - / o r  +). 
~t  I "~t' When r 6 Z ,  T,-_ ,u ,+ and E~,u,+ Gu ~_,u,+ are trace resp. singular Green operators 

of order d+t'  resp. d+t+t ' ,  regularity u and class r+t' .  

' ~ "D' "~ G and G,(D',#)~_ are trace, Pois- F o r a n y s 6 R ,  T , (D  ,#)+, (D',#)~+Ku, ( ,#)+ . 

son resp. singular Green operators of order d+s, regularity u and class r. 

The symbols are determined by the usual formulas for composition of the operators 

with ps. d. o. s. 

3.3. Symbol-kernel estimates in H~'~'(R.+) and L 2 ( R + ,  x~)  spaces 

When t is not integer, the symbols X~= are not in 7-/(although they do have the property of 

extending holomorpically for Im ~n <0 resp. Im ~n > 0). Nevertheless, we can obtain some 
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special results concerning application of (x-iDx~)t+ to the symbol-kernels (recall Defini- 

tion 2.2 (5)), that show how some compositions with =t have good properties�9 This ~ - - , ~ , +  

implies estimates of the corresponding boundary symbol operators in H2t'"(R+) spaces, 

which will be useful in the study of Lp estimates later. The estimates are convenient 

since there is no loss of regularity when one applies D = .  

THEOREM 3�9149 Let d and vER, let t , t  ~ and t 'ER.+, and let h E N  n-1. When 

Q d - - l , v ( l ~ n - - 1 .  ~ n  ,t~+~ p k ( X t , ( , . ) e ~ . l ,  0 ~,=~. x l r t + , n  ) and g ( x , ~ , ~ n , . ) e s d ; l ' v ( R n - l x R ~ , n + @ ' ~ - ~ = l )  , 

then the associated symbol-kernels and boundary symbol operators satisfy: 

la[ a �9 t' - I t 

= II OPK,~(<~) De,(x-,D..)+k)llz(c,G,.(rt+)) (3.13) 

.~ ( ~  + 1)xd+t+e- 1/2; 
i i  i ! 

�9 t ' D  t t l ~  I ~ ~ �9 t - II(x-zD=.)+(x-z y.)+ ( ( )  O~,( -~D~. )+9(x , yn , (  ,#)IIL2 .... ,.(a2++) 

(0 ~ + 1)xd+t+t' +t"-l/2; (3.14) 

I I ~ l  a �9 t '  II OPG~((~ ) Dr163 ) 

4 (0~ + 1),~ ~+~+~'+~''-'/~. (3.15) 
�9 t I (3.14) ~nd (3.~5) hold ~l~o ~th (,~-~D,~ ,~p~ccd by (~-~D,~ 

Proof�9 Consider (3.13) in the case a=0.  The operator OPK,~(k): C--*S(R+) acts 

simply as multiplication of vEC by the symbol-kernel k(x~,x,~,~P,#); it is also called 

OPK~(k), and the application of (x- iD=,) t+ to k corresponds to composition of 

(x - iD~, ) t+ with OPEn(k). (We recall that k=:F~-~, k is in e+S(R+) as a function 

of x,~, usually identified with its restriction to {x,~>0}.) Hence, in view of (1�9 and 

(1.37), 

�9 t ~ , t ~ ~ II (,~-~D=.)+ OPK,dk)vll G , ~ ( n + )  = II (x-~D:.)~+ kltL:(R+)IVl = Ilkll H~+,',~(a+)Ivh 

and we may assume that t~=0. The symbol estimates for 1r show that for all mEN,  

liklIHF.~(~+) = }l(x--iD~,)'~k]]L:(rt+) ~ (0~+l )x  a+~-1/2. 

Applying this with some m > t and with m replaced by 0, we find by a simple interpolation, 

taking 1 - O = t / m  (cf. (1.17)): 

tiitl.:,~(u+) 4 Itill~:d ~(~.)llitt~o,~(~+) 
~. ((o~ + 1)~d+m-~/~)~/m((0 ~ + 1)~d-~/~)l-~/'~ < (0~ + 1)~+~-~/~, 



202 G. GRUBB AND N. J. KOKHOLM 

showing (3.13) in this case. For lal--1, say c~=(1, 0, ..., 0), we note that  

(~'} D~ [r+ (x-iD~)t 'e+ k(x ', x~, ~', #)] 

= {~r + OP~(t'(g-i~)t'-lD~,x)e+k+(~'}(x-iD~)~D~,k 

= (~')t'(De~)(~-iD~.)e(~-iD,,)+lk+(~')(~-iD~.)+De, k, 

cf. (1.34). The latter two expressions are similar to those we have already treated, for 

(x- iD~)+l~ is a Poisson symbol-kernel of order d - 1  and regularity v: 

~ - ~ . r +  ( x - iDz . ) - l  e+ Ic= h +[(~-i~n)-l k(x',~, #)] e S d-2 , v ( R  n - 1  )~ l_L+, ~ . ~ + ) . ~ n  

by Lemma 3.4, and D~j k is a Poisson symbol-kernel of order d - 1  and regularity v - 1 ;  

moreover, the factor (~')Dr >r is ~ (~'). Since one has in general (cf. (2.1)) 

((')l-I(e~-I-I + 1)~--I-I  ~ (e~+ 1 )x ' ,  (3.16) 

we conclude that  (3.13) holds for a= (1 ,  0, ..., 0). The general estimate (3.13) follows by 

iteration of this argument. 

The proof of (3.14) is very similar. Again we begin with the case a = 0 ,  and use 

that  (g-iD~,)t+(x-iD~,)~ equals (x-iD~)~+ +t', so we may assume t'=O. In view of 

the symbol rules, we only have to account for the cases where t and t" E [0, 1]. Here we 

depart from the inequalities, valid by the definition of S d-l,", 

II~(~',~,y~,~',~)IIL~ .... ~o(R~+)~(~+I)~ d, 

II(----iO~,~)~llL~(R~+)+ll(x--iOu.)~llL~(rt~+ ) ~ (Q" + 1)x d+x, (3.17) 
II(x-iD~,)(x-iny,)~l[i~(a~++) ~ ( e ~ + l ) x  d+2, 

which show (3.14) for t and t" equal to 0 or 1 (and t'=O, a=0) .  Since one has for 

functions f :  R + - + X  when X is a Hilbert space, 

II(x--iD~,~)~f(xn)llL=(a+;X) = IIf(xn)llHg'"(~+;X), 

we can read the statements in (3.17) as Sobolev space estimates of vector valued functions. 

Then we obtain (3.14) (with t '=0 ,  c~=0) by application of interpolation, first between 

the spaces L2,z~(R+;Y) and H21'"(R+;Y), with Y equal to L2,y~(R+) or H~ '" (R+) ,  

and thereafter between the spaces n2,v~(R+; X) and H~'"(R.+; X) with X=Ht'"(rt+). 
The factors (~')I~1D~, are included in a similar way as for/r by use of the Leibniz formula 

and Lemma 3.4. 

For the explanation of (3.15), we let (~---0; the general case can afterwards be included 

by a calculation using the Leibniz formula. Then we can also assume that  t'=O. The 
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estimates (3.14) can be read as Hilbert-Schmidt norm estimates of the family of operators 

OPG.(g')  from L2(R+) to L2(R+) (parametrized by (x', ~', #)) with the integral operator 

kernels 

~l[X! 32 g t , n ,Yn ,~ ' ,# )  ( x - iD=, , ) t+ (u - iDy . )~ 'O(x ' , xn ,Yn ,~ ' , / z ) .  

One has a fortiori that the operator norms of OPG,~(g') in s axe 

bounded with the same bound as in (3.14). This carries over to Sobolev space estimates 

of OPGn(g) itself, as follows: Let uEH~;~"'"(R.+) and set v = ( x + i D = , ) - t " f i .  In view of 

(1.34), v identifies with a function in L2(R+), and moreover, by duality, 

/o ( x - iD=. ) t+  OPGn(g)u ( x - i D ~ . ) t +  - ' x ' �9 t,, = g ( x ,  . , y . , ~ , # ) ( x + , D v . )  v (yn)dyn  

~0 ~ " t . ~,t~ ~ ! = [ ( x - t D = . ) + ( ~ - ~ D u . ) + g ( x  , x . , y n , ~ ' , # ) l ~ ( Y , O d y .  

= OPG.(g')~. 

Then the L2 operator norm estimates of OPG.(g')  imply 

,, " u d+t+t" II OPG~(g)II~:~H-, ,"'K ' H ' " K  " ~< (0 +1);~ . 
t 2;0 k +), 2 I. +)) 

(3.1s) 

For the last assertion, one uses that the adjoint OPGn(~(x', x . ,  yn, ~', #))* equals 

OPG.(~(x',  y. ,  x. ,  ~', #)), which is of the same kind as above. [] 

We shall also need to analyze the effect of multiplication of the symbol-kernels by a 

fractional power of xn, or rather, the study of the norms of boundary symbol operators 

in L2(R+, x~n) spaces, cf. (1.46). This is more delicate than the preceding study, since 

the multiplication by xn lowers the regularity by 1, and the regularity concept does not 

always interpolate well. 

Let k(x ' ,  ~, ~)Esd- l 'U(Rn-lx  R_~, "1-~+); then k(x, ~', ~t) satisfies, by definition, 

II~:[IL~,=.(R+) ~ (0 "+ I )x  a-1/2, I[x,~k[[L~,=.(R+) ~ (8~'-1+1)x a-3/2. (3.19) 

Let 0< 6 <  1, and recall the interpolation inequality 

6 X 1-6 X 6 ]lXnf( n)][L2(R+) ~ IIf(Xn)HL2(R+)]]Xnf( n)HL2(R+); ( 3 . 2 0 )  

it gives for k: 

u 1 6 u 1 6 d 1/2 6 HkllL~,. IIx.kll~.~,=. ~(Q + 1 )  - (Q - + 1 )  x -  - 
(3.21) 

<~ (1 + 0 ~'(1 -~) + 0 (~'- 1)~ + 0,,-~)>~,~- 1/2-~. 

14--935204 dcta Mathematica 171. Imprim6 le 2 f~vtier 1994 
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Here m i n { v ( 1 - ~ ) , ( v - 1 ) & v - 6 } = v - ~ f  if v < 0  and is >/0 if v~>l, so that  (3.21) implies 

(recall that  p ~ + 1 - 1  when a~>0, cf. (2.1)) 

t]x~n]~ltL2.~ ~ ( ~ - ~  + 1)x d-1/2-~ when v e R \  ]0, 1[; (3.22) 

which is as good as one could hope for; note that  u and L,-6 have the same sign. But 

when ~ ]0, !~, we only get 

]IX~HL2,= n ~ (g~L,-6 _~_ 1)xd-1 /2-~f ,  V E ]0, 1[, (3.23) 

where S v - 6 = v - ~ - ( 1 - 6 ) v  is <0 and < v - &  Note however that  (3.21) is fine in the 

region 1~'[ >~(#), for here (~'),.~ (~', H), so (3.21) is equivalent with 

llzZ ll =,=. r z when ]~'t >/(H). (3.24) 

~ e n  n > l  (the case of principal interest for applications), we can use (3.24) together 

with a consideration of derivatives to extend (3.22) to all v r  with just a logarithmic 

loss when v=6.  The proof is given in the following theorem, where we also collect facts 

shown above. 

THEOREM 3.8. Let d and ~ER,  6E]0, 1[, a E N  '~-~, and assume that n > l  if v~ 

]0, 11 . Let k(x',~,H) be a Poisson symbol in Sd-"~'(R~'-'xf{.~_,'tt+). Then 

i,x~,.,, ~ Da[c" , . ,  { ( ~ - ~ + 1 ) ~  -~/~-~ when v r  (3.25) 
' ( l logel ' /2+l)~ -1/=-~ when ~,=5. 

Proof. Consider first the case a = 0 .  The result is proved above when u E R \ ] 0 ,  1[, 

so we let vE ]0, 1[. For ]~']~>(H) we have (3.24) which shows the desired estimate in that 

region; it remains to consider I~ r] < (H)- Let ~ '#0,  then the basic trick is to integrate the 

following inequalities along the ray in ~'-space from ~' to ((#)/]~r])~,, using (3.24) at one 

endpoint. For l<~j<~n-1 we have (with norms in L2,=,(R+)): 

5 ID~ IIx~.~:lt 2 ] 42 x~]k(x,~',#)D~jk(x,~',H)ldxn (3.26) 

<211xJcllllx~-~D~jkll for 6~ 1 

ID~llx~klt~l <211x~%1111D~kll for 6 > 0 .  (3.27) 

First we treat the values v,6 with 5>v.  Here we prove by induction on I that  for 

l=O, 1, ...,lo, where 2-1~ <L,, 

[]x~[r ~. ( Q " - a + l ) x  d-1/2-a, when 6 > u  and 2 -1-1 < 6 < 2  -t .  (3.28) 
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The induction start is based on (3.26). When �89 then 0~<2b- l< l  and we can 

apply (3.22) (with ~, and b replaced by v - 1  and 2b-1)  to the second factor in (3.26), 

which gives 

I Dr IIx Yr k + + 
~02v--26--1X 2d-2-25 ; 

in the last inequality we used that b>~u. ]t follows that 

IIx  tl = k x2d-1-25-b f(/z)(t> 2v-25-1 (/~>2d-2v-1 dt 
Jlr 

k (~ l }2u -2g( I .~ )2d - l -2 r ' J f - ( / .~}2d-1 -25  k (~Ov-~iJ'cd-1/2-lY) 2, 
(3.29) 

which proves (3.28) for/--0. Since k is smooth and the estimate is uniform in (~', #) for 

~'r it extends to all (~',#) ERY+. Now we have when b>u and 2-q'+1)-1 ~<b<2-q'+l) 

that 2b>u and 2 -(z'+~) <~.2b<2 -z'. So if (3.28) is proved for l=l', (3.29) gives 

IDr IIx  ll [ ~ ~'-2~fxd-1/2-21f~ v-11"~d-3/2 k ~ 02t~-2tf-lx2d-2-2~, (3.30) 

and then (3.28) follows for l= l '+l  by integration. By induction (up to l=Io), (3.25) 

is obtained for any b>u. An inspection of the proof shows that the case b--u can be 

included, giving (3.25), when the estimate of the integral in (3.29) is replaced by a 

logarithmic estimate. 

Finally, the values b<u are treated as follows: If 0 < u / 2 < b < # ,  then 2b>u and 

2 u - 2 ~ i - 1 > - 1 ,  hence (3.30) holds and gives (3.25) by integration. The remaining bE 

]0, u/2] can be included by interpolation of the estimates for b=0 and b=3u/4, much as 

in (3.20) ft. 

When a~0 ,  (~')laID~,[r is of order d and regularity min{u, ]aI} (cf. [G2, Lemma 

2.1.6]), so the preceding result applied to (~'}l~lD~,[r implies (3.25). [] 

Note that the trick in Theorem 3.8 also improves [G2, (2.2.90)] when n > l .  

We shall now consider singular Green symbols. Here one can study the effect of mul- 

tiplication of the symbol-kernel with x~ as well as y~, corresponding to letting OPGn (g) 

end in or start in a weighted L2 space over It+. What we shall need later is a mixture 

of this with the applications of (x-inz~)t+ and ({')I-ID~, studied in Theorem 3.7, and 

we go directly to the needed result. Recall the notation (1.46). 

THEOREM 3.9. Let d and uER, bE [0, 1], t and t' E~l~+, a E N  n-l ,  and assume that 
t d l v  n l n n > l  ifuE]O, 1[. Let g(x ,~,~7~,#)ES - ' (R - xR+,7-/+@7-/_-l). Then the associated 
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symbol-kernel 9(x', xn, yn, ~', #) satisfies: 

Iix~(x_iD~,)t+ , I~l ~ �9 t'~ <~ ) Dr .... , ,(R~+) and 

Hy~(~-iD=,~)t+(~ )lalD~,(x--zDz.)t+gHL2 . . . .  v,~(R~_+ ) are 

{ (Qv-5-4-1)xd-5+t+t' when v#5 ,  or S=O or1; 

(llogvll/2+l)x d-~+t+t' when v=~iE]0 ,1[ .  

(3.31) 

The operator OPGn(g')  with symbol-kernel ~ '=/ r  I,~ID2 ( x i D =  ~t' ~l satisfies: 

H OPG~(g')IIL(H~,x(K+),L~(R+,=~)) and II OPG~(g')H~(L2(R+,=~),H~'X(~+)) are 

.~ f (~)~-~+1)~ d-~+~ whenu#~f, or~f---O or1; 

(llog ~lz/2q-1)~ "d-6+~ when u = $ E ]0, 1[. 

(3.32) 

Proof. Consider the estimate of the first norm in (3.31). Since xn~ is of order d -  1 

and regularity v - l ,  it follows from Theorem 3.7 and considerations like (3.11) that  the 

estimate is valid when ~i is 0 or 1. Then we apply a version of the preceding considerations 

on ~c (the interpolation in (3.20) and the lifting from lower regularities in the proof of 

Theorem 3.8), now for vector valued functions. This gives the estimate of the first norm 

in (3.31), and the estimate of the first norm in (3.32) follows from this as in the passage 

from (3.14) to (3.15) in Theorem 3.7. 

For the estimate of the second norm in (3.31), we just  have to interchange the roles 

of xn and yn, then the estimate of the second norm in (3.32) follows by variant of the 

explanation in Theorem 3.7, where we use the duality (1.47). [] 

Remark 3.10. We shall not burden the exposition with more detailed conclusions 

based on (3.23) for u e  ]0, 1[ and n=l ,  that can be worked out when needed. Instead, let 

us mention another technique giving adequate resolvent estimates: 

In the resolvent construction for normal elliptic boundary problems, the symbols of 

the boundary operators are of integer or half-integer regularity (cf. [G2, 3.3]), so it is 

only symbols of regularity �89 that axe not covered by (3.22). But here one has additioi ~1 

information, namely e.g. that  the Poisson symbol-kernels of regularity �89 and order d 

satisfy estimates 

II(Lx,+)~k(x',x,~,~',#))IL~,(R+) ~ x  d-1/2, for ~ie [0, �89 (3.33) 

where L,,,+ is the Laguerre operator on R+,  L,,,+=-x-lO=.xnO=, + x x , ~ + l .  We recall 

from [G2, (2.2.15)] that  IIL~,+IClIL2(R+) is equivalent to the g2 norm of the Laguerre 
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expansion of/r Estimates like (3.33) hold both for the terms in the direct operator .At,,�9 
and its inverse B,,e; see [G2, Remark 2.6.16, Theorems 3.2.3 3 ~ and 3.3.1]. Now 

(L>,,+u, ~t)L2(R+) ~- 24 - 1  ( X n O x . U ,  Ox,~U)"}-24(XnU, ?.t)-}-II~t]] 2, 

for u � 9  since 7o(X,~O~u)=0. The terms are/>0, so one gets the operator inequality 

L,~,+ > / x x , + l ,  in the sense that  (L,,,+) -1 ~< ( x x n + l )  -1. 

By an operator-theoretic monotonicity theorem (cf. e.g. Donoghue [D]), this implies 

(n , , ,+ ) -~<(xxn+l )  -~ for a6]0, 1[, and hence, by (3.33), 

IJ (xx,~ + 1)~: H L 2 (1%+) --~-- ( (XXn -{- 1) 2~:, ~:) 1/2 
(3.34) 

< k)1/2 = ijLi+ ll < 24d-1/2, for �9 [O, 1[. 

Thus (3.25) holds for ~6 [0, �89 [ and n=l also, in this case. Similar estimates hold for 
the trace symbol-kernels of class 0 entering in the resolvent construction. The arguments 

likewise apply to the singular Green symbol-kernels ~ entering into the resolvent con- 
1 struction, of class 0, regularity ~ and order d, say. Here one finds by application of the 

above method for the xn-vaxiable and straightforward Sobolev space interpolation for 
the yn-variable: 

I I ( x x n + l / ( x - - i D y , , ) t + ' l l L 2  . . . .  ,=(a~+) ~< I[(L,,,+/(24--iDy,~)t+gllL2(R~_+) (3.35) 

Z d+t for 6 �9 [0, 5 

Such estimates hold also with x,, and y,~ interchanged, so (3.31)-(3.32) holds for 66 [0, 1 [ 
and n = l  in this case. 

The methods also allow an improvement of [G2, Theorem 2.6.6], concerning the sym- 
bol g+(p) of the special s.g.o. G+(Pt,)=r+Pue-J (recall that J: u(x', x,~)Hu(x',-x,~)). 

THEOREM 3.11. Let p be as in Proposition 3.1, with u ~ - � 8 9  and let n > l  if 
u>-�89 If uCN, then [t+(p) satisfies for all indices a , ~ � 9  n-l, k, k ' ,m,m' , jEN: 

I t , ! [3 o~ k k m m j ~ + I 
I]D~,Dr n y n ,  g (p)(x ,x,~,y,~,~ ,#) L2 . . . .  un(R~_+) (3.36) 

( @ u - l a l - k + k ' - m + m '  + 1 ) 2 4 d - l a l - k + k ' - m + m ' - j ;  

in particular, g+(p) belongs to sd-I,~(R'~-lxR~_,T/+@T/_-t). 

If u �9  (3.36) holds for all indices except those satisfying 

k>~k', m ~ m ' ,  l a l + k - k ' + m - m ' = u ,  (3.37) 
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for which one has 

a k k' m m' j -+ t 
IIPx, D~,xnD~,~yn Dy,~ Dt, g (p)(x ,x,~,yn,r .... ,n(R~+) (3.38) 

<~ ([log Qil/2+l)xd--I~l--k+k'--m+m'--J; 

SO g+(p)ESd-l,v-~(an-l•163 7-/+@7-/_-1) for any ~>0. 

Similar estimates hold for g- (p). 

ProoL It is shown in [G2, Theorem 2.6.6] that ~+(p)=(.~(~Lzh+p)l~=x.+u. for 

1 Then we get by application x~,y~>0. By Theorem 3.2, the regularity of h+p is v+~.  

of (3.25) with 5=�89 to/~+=~'~-Lzoh+p: 

(fs ' J'l/  = IP ( .+Y. , r  Ilg+(p)(x',xn, yn,~',#)]lL2(R2++) -+ X' X ' 

= (2 fR+ dz=) 
(~u+l/2--1/2-~-X)xd - -  (Q" + 1 ) ,  d, 

where Q~ is replaced by [log ~[1/2 if u=0. In a similar way, we get improvements of the 

estimates in [G2, Theorem 2.6.6] of the derived symbols. For example we have, since 

D~.p is of order d -  1 and regularity v -  1: 

IIXng+(p)(x/'Xn'Yn'~/'")IILz(R2++) ~ ( f R  (Xn-~-yn)21p+(xt'Xn-~-Yn'~t'")12 dxndyn)  1/2 

= ( 2 JR+ Z.W I oh + ( Dr dz@ 1/2 
(ev-1+1/2-1/2 + 1)xd-1 = (Q~-I + 1).d--l, 

with Q~-~ replaced by Ilog011/2 if u = l .  - -  The result for g-(p) follows since g - (p )=  
g+(p*)*. [] 

This result permits an improvement of the regularity numbers in the general para- 

metrix construction from [G2, 3.2], see [G5]. 

Remark 3.12. The logarithmic loss in case uEN in Theorem 3.11 can be removed 

in some special cases, for example when p is a rational function of ~ and # of the form 

(f(x',~)g(x~,~)-i+#l) -1 with f and g polynomial in ~ of degree k+l resp. k (here k 

and 1EN, and d=-l) .  The proof is somewhat long, and will be left out since it is 

not necessary for the resolvent estimates taken up [G5], where the loss of regularity is 

eliminated by other methods established in [G2]. 
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Remark 3.13. Let us note that when v=0, and d=0, say, then the L2(R+) operator 

norm of OPG~ (g+ (p)) is .~ 1 (without a logarithmic loss), simply because the operator 

equals r + OPn(p )e -J ,  where the L2(R) operator norm of OPt(p) is ~1. One can extend 

this to uniform bounds in f..(H~ (R+),H~ (R+)) and s  by 

use of formulas such as (4.25) below and a related version containing the multiplication 

by x,~. But these estimates are far from the generality covered by Theorem 3.9, and we do 

not see how to obtain the estimates in Theorem 3.9 for g+(p) with general independent 

values of 5, t and t' (or just those values that enter in the proof of Theorem 4.1 below) 

without using Hilbert-Schmidt norm estimates, such as the estimates of the symbol- 

kernel in Theorem 3.11. 

4. Lp estimates of parameter-dependent operators 

4.1. Es t ima tes  on Euclidean space 

We shall now extend the L 2 mapping properties shown in [G2, Section 2.5] to Lp spaces, 

l<p<c~ .  The basic result is the following theorem on mapping properties for operators 

with x-uniformly resp. x'-uniformly estimated symbols (cf. Definition 2.1). 

THEOREM 4.1. Let d and v E R ,  let pE ]1, c~[, and let rEZ .  
d,~ n - - n + l  (1) Let p(x,(,g)eS1,0(R xR+ ). Then Pg=OP(p(x ,~ ,# ) )  is continuous for all 

sER: 
P,:H;'~(R'~)--~ H ; - g " ( R  '~) and 

(4.1) 
P, :Bp'g(R n)-~B;-d ' t ' (Rn),  with norm O({#}-~+1). 

(2) Let with n > l  il el0,1[ andp<2. Then 

Kg=OPK(k) is continuous for all sER: 

Kt~:B~-I /P"(R'~-I)  --~ r-r~-d't'l~n~ ~'v ~,~+jMB v ~-d,g (R+),-'~ 

with norm O((#)-~'+[1/P-1/2]+ + 1), 
(4.2) 

i l  1 unless O < v - - ~ - 5 ,  where the norm is 0((]~) ~) for any ~>0. 
(3) Let t (x ' ,~ ,# )  d,~ ~-1 --~ - ESI,o(R xR+,?-/~_l) (of class r), with n > l  /f rE]0,1[ and 

p>2. Then T ~ = O P T ( t )  is continuous for all s > r + l - l :  

Tg: H i~'€ (R+) + B y - =  ~'g (R+)-~ --* Bp-d-I/v't'(R'~-l), 
with norm 0 ( ( # )  --~+[1/2--1/pl+ -~- 1), 

(4.3) 

unless 0<u=�89 1 --~, where the norm is O((p} ~) for any e>0. 
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d~b' n (4) Let p(x,G#)ESLo,utt~(R xR~_+I), with n > l  if uE]- �89189 and p<2. Then 

Pro+ =OP(p(x, ~, #))+ is continuous for all s> ~ - 1: 

P/z,+: s,tt --n Hs-d,u(~n H i (R+)-~ p , +, 
. .,~, - n  ~B;-d,/z(fft~),  Pro+" Bp (a+) 

and 
(4.4) 

with norm 0( (# ) - "+1) .  

(5) Let g(x',~,rl.,#)eSdl~l'v (R"- lxf f~_, 7~+ ~'kl~r_l) (of class r), with n > l  if vE 

]0,1[ and pr  Then G,=OPG(9)  is continuous for all s > r +  1 - 1 :  

G /z : B;'/z (fft ~_ ) ~ n,-a,/z (U,~ 

and 
(4.5) 

with norm 0(  (#) -~+li/p-t/zl +1), 

unless 0 < u = 11 ~-�89 where the norm is O((#)')  for any ~>0. Moreover, if  P~,,+ is as in 

(4) and P,,+ +Gu is of class - m  for some m E N ,  then (4.5) holds with G/z replaced by 

P,,+ +Gu, for all s > - m + ~ - l .  

(6) Let p(x, ~, #) be as in (4). Then the s.g.o. G+(P/Z) is continuous for all s >  1 y - l :  

G+(G): G-d,. 
and 

(4.6) 
with norm O((#)-~+1).  

0,v  n - - n + l  Proof. (1) We shall apply Theorem 1.6. Since symbols p(x ,G#)ESI ,o (R  •  ) 

satisfy (1.44) with C(p)=O((#)-~+l)  (H0=Hx=C),  the first statement in (4.1) follows 

immediately for the case d=s=0 .  When s and d are general, one reduces to this case, 
.qO,u cf. (1.5), by replacing Pu by (D, #)s-dpu(D, #)-s,  which is a ps.d.o with symbol in ~t,0, 

hence is bounded in Lp(Rn), uniformly in #. The statement for B~ ,# spaces follows by 

interpolation, cf. (1.16). This proves (1). 

(2) For the boundary operators, results for fixed # were proved in [G3] and [F1, 2]; 

and we shall to some extent follow [G3] in the argumentation. In view of the for- 

mula (2.35), K# can be considered as a vector valued #-dependent ps.d.o. Q(x', D', #) 

in the x' variable, such that the symbol takes values in a space of linear mappings 

c~->[r ~, xn, ~,  #)c from C to a function space over R+. Here [r ~, xn, ~', #) is in S(~.+) 

as a function of x~, on which many different norms can be used. 

For one thing, 1r satisfies, by hypothesis, the estimates for all c~ and flEN n-1 (recall 

that x =  (~', #)): 

II (C>l t D~,D~, (Ir x . ,  #)x  -d+1/2) + 1, 

~' R "-I, i>0, for x', E # 
(4.7) 



A GLOBAL CALCULUS 211 

Then since OPz,(;,r d-l/2) is an isometry of Hdp-1/2'~(l:~ n- l )  onto Lp(R n- l )  (cf. (1.5)), 

we find by application of Theorem 1.6: 

K~:Hd-1/2'~(R'~-I)---*Lp(Rn-1;L2(R+)),  with norm O((lz>-~+l). (4.8) 

When 2~<p<oo, we also use that 

"-'~,~z,~xn (k(x', xn, ~', #)x-d-1/2)II,'(C;L2(R+ ) ) ~ (#)-~ +1, 

which gives, by use of Theorem 1.6 and (4.8), 

K~,: d+1/2,~ n-1 H;  (1t )-~Lp(11~-l 'H~(R+)) ,  with norm O((#}-~+1). 

Using Corollary 1.9 (2) we then find by application of real interpolation (. ,-)l/2-1/p,p 
(cf. (1.16)) the boundedness of: 

K,:  Bd-1/P'"(11 '~-1) ~ Lp(11_'~), with norm O((/~)-~+1). 

By composition to the left with operators =t t 6 Z  (cf. (1.31-34)) we get moreover, ~--,/~,+, 

since =t K is a Poisson operator of order d+t  and regularity v by Theorem 3.6, ~--,/~,+ 

K ,  =-t  =t ,I ,-,t+d-1/p,,,,-.n-1, , , t , , ~ n ,  O((#}-V+l).  = n , : D p  t*t )--+rip' t , t+),  with norm 

The mapping property is extended to arbitrary t 6 11 by complex interpolation (cf. (1.28)); 
and by real interpolation we furthermore get 

K~,: ,~t+d-1/p,,,--,~-l, n t ,u ,~n ,  O((#}-~ + 1). Dp ~*t )--*Z~ v (*t+), with norm 

This shows (4.2) for p>~2. 
When l < p < 2 ,  we choose a ~6] 1 1 1 y - ~ , ~ [ ,  $#v,  and apply Theorem 1.6 to 

k(x', x~, ~', # )x  -d-1/2+6, considered as a ps.d.o, symbol in (x', ~') for each/~ with values 

in s  L2(11+, x~)); it acts as in (4.7) with right hand side O((#)-~+~+1) by Theorem 
3.8. This gives 

g~, r r d + l / 2 - - 6 , 1 ~ r  r [* ' *n - -1  :np t*t ~-~.pt . t  ;L2(11+,z~)), with norm O((~u)-~+6+l). (4.9) 

Here the interpolation ( . , .  )(1/p-1/2)/6, p applied to (4.8) and (4.9) gives, by use of Corol- 
lary 1.9 (1), (1.16) and (1.17): 

K~,: Bd-1/P'"(11 n- l )  ~ Lp(11~_), 
(4.10) 

with norm O(((]z)-~ + 1)1--(1/p-1/2)/6((~)--v+6 "Jr 1)(1/p-1/2)/~). 
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When v~0, this is estimated by 

0({#) [vl(1-(1/p-1/2)/l~)+(ivl+5)(1/p-1/2)/5) : O({#)]vI+I/p--I/2), (4.11) 

and when ~> ~ -  �89 we can take 5<~, getting O(1); this shows the desired result if v~0 
1 1 __1 1 or v > ~ - ~ .  If ~ - ~ - ~ ,  we get the estimate O((#) ~) by taking 6 arbitrarily close to 

1 1 [, we replace the above interpolation argument by one where v. Finally, if vE ]0, ~ - ~  

we interpolate between two versions of (4.9) with 5' resp. 5, where ~<5 '<  ~ -  �89 <5, and 

use (1.50); this gives the desired estimate. Lp(R~) is replaced by H~ 'g spaces and B~,it 

spaces in the same way as in the case p~>2; and this completes the proof of (2). 

(3) If r~>0, we are dealing with operators and symbols as in (2.37), (2.36). For the 

terms Sj,g~j, the result follows from (1.29) and (1). For the term T~ of class 0, the 

result follows, for ~ - l < s < ~ ,  from (2) by duality, using that T~* is a Poisson operator 
1 1 1 of order d§ 1 and regularity v; here ~ - �89 is replaced by ~ - ~, since the Poisson operator 

•  1 By composition to the right with operators is considered in Lp, spaces with p , -  ~. 
1 1 =t one gets (4.3) for t + ~ - l < s < t + ~ ,  tEN, and the exceptional values s E ~ + N  are ~ - , # , +  

included by complex resp. real interpolation. If r=-m<O (cf. Section 2.2), we can write 

- -  T ~ m  ~ , - m  
T i t - -  tt ~ - , t t , +  ~ - , i t , - { - ,  

where Tit~m, it,+ is a trace operator of class 0, order d§ and regularity v according 

to Theorem 3.6. Then in view of (1.34), the region where (4.3) holds extends down to 

s > - m + ~ - l .  This proves (3). 

(4) Here we use the scheme of [BM1] in the same way as in [G3, Theorem 3.4], so 

the explanation can be brief. In view of the formulas 

D~ne+u = e+D~, u~=i(~ou)(x')Qh(xn), 

Dx~e• = e• for j < n; 
(4.12) 

one has, setting Kuv--r+P~(v(x')| 

Dx, Pit,+u = P~,+D~, u+ [Dx,, P~]+u-iKit~/oU, 

D~jP~,+u=P~,+D~ju+[D~,P~,]+u, for j <n .  
(4.13) 

K~ is a Poisson operator of order d-t-1, and its regularity is v+ 1 except when ~ E -  �89 §  

where the regularity of K~ is v+ �89 - c ,  any e>0; these assertions follow from Theorem 3.2, 

when we use that Pt, can be written on (x', yn)-form (cf. (2.29)): P~--OP(q(x ~, Yn, ~, #)), 

and then the symbol of Kit equals h+q(x r, O, ~, #). 
When ~ - l < s < ~ , l  1 (4.4) follows directly from (1) in view of (1.28), first line. Next, 

it is proved for t § 2 4 7  1 by induction in t e N  using (4.13). Here we apply (2) 
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to Ko, noting that  the norm in the various spaces will be O((/Z) -~-1/2+~+[1/p-1/2]+ + 1), 

which is O((/z)-V+l) for small ~. The full range of s, and the generalization to Besov 

spaces, is obtained by interpolation as in [G3, Theorem 3.4]�9 This shows (4). 

(5) If r>~0, we are considering operators and symbols as in (2�9 (2.36), with G~ of 

class 0. The terms Kj,o~ j are handled by (1.29) and (2). The result for a case r=-m<O 
�9 �9 _ . ~ m  ~ - - m  is derived from the case r = 0  by writing G o-Go~_,o ,+~_,o ,+ ,  similarly to the treatment 

of T o in the proof of (3); here G ~m is of class 0. Thus we may assume that  the class O~-- ,O,+  

r is zero. 

In view of (2.35), G o can be considered as a vector valued /z-dependent ps.d.o. 

Q(x ~, D t,/Z) in the x' variable, with the symbol valued in a space of linear mappings from 

a function space over R+ to another, v(x~)~-~(g(x j, ~',/Z, Dn)v)(xn). Here g(3J, ~',/Z, Dn) 
R2 is an integral operator with kernel 9(x', xn,y,~, ~',/Z) lying in S ( + + )  as a function of 

x,~, y,~, so many different norms can be used. 

Let p~>2. Consider first the case d=0.  Here we have by Theorem 3.9 with t=~,  

t '  = 0, that  for any ~ e [0, 1] such that  5 ~ u if u E ]0, 1 [, and any a,/3 E N n-  1, 

]1 (~')I'~lD'~,D~,g(x', ~', #, Dn)I]s 

<<. I[(~')l~'lD~,O~,g(x',r (4.15) 
((~')/(~',/z))~-a + 1 ~ (/z)-u+a + 1, 

since II ~11 Hg (a§ <~ II ~11 Hg" (~+)" It  t hen follows from Theorem 1.6 that  G o is continuous 

Go: Lp(Rn-1; Lu(R+, x ~ ) )  ~ Lp(Rn-1; H26 (R+)), 
(4.16) 

with norm O((/Z)-~+~+I). 

If p=2,  we get the continuity of Go:L2(R~)~L2(R'~.), with norm O((/Z)-~+I) 

directly from this, taking 5=0. Here in fact the estimates (4.15-16) follow directly from 

the symbol properties, and one need not appeal to Theorem 3.9. 

Now let p>2.  When u r 1 8 9  we use (4.16) with ~=~1 and ~ = ~  satisfying 0~<(51 < 
1 1 1 --~ < ~ < 5 and u~ [~, 5~]; then we get by interpolation using Corollary 1.9 that  

�9 n n O ( ( / Z ) - v + I / 2 - 1 / P q - 1 ) .  ( 4 . 1 7 )  G o. Lp(R+) ~ Lp(R+), with norm 

When _ 1 1 v - 7 - ~ ,  we get the estimates with a loss of e>  0 as in (2). 

=-d  G which is a s.g.o, of If d is integer r  we apply the same treatment to - - ,o ,+  o, 

order and class 0, and regularity v, by Theorem 3.6. Then we get in view of (1.34), 

m 

L n (4.18) Go: p(R+)-~Hp-d '~  w i t h n o r m 

O(</z>-~+l /~ - , /p+ l )  for , 1 1 1 ~ r  O((/z>~) for ~ =  ~ - ~  > 0 .  (4.19) 
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When d is noninteger, -_-d G is not a standard s.g.o., but  some formulas can be ~--,#,+ # 

used anyway. Assuming as we may that Gu is given in y'-form, Gu---OPG(g(y', ~, ~?n, #)), 

we can write 

_--u G =t' ~k G - - - t '  G I - G "  (4.20) 

~k where t'>0, kEZ, G~, is the s.g.o. __ u,+Gu of order d+k, class 0 and regularity u by 

Theorem 3.6, and G~ is the generalized s.g.o. 

G~=OPG(g")- -OP ," "" ' ~' x Lg LY,~ ,# ,Dn)) ,  where 
�9 _ ,  , 

=(x-,D,~)R+g (y ,xn, Yn,~',#) 

~'(y',x~,y~,~',#) = (~<-iD~)k+~l(y',x~,yn,~',#). 

Theorem 3.9 applied to g' shows that g"(y', ~', #, D~) satisfies 

]l (~')I~1D~ D~,g"(y', ~', #, D~)]]s (4.21) 

<~ [{(~ ) Dr (y ,~ ,~,Dn)[{f_.(L,(R+,:~V,~),H~,"(~.+)) { </~) -u+~+l ,  

for all 6~[0, 1] with 6 r  if u~]0 ,1[ ,  all a and ~@N n- l ,  and hence it follows as in the 

first part of the proof that  

G~: Lp(R~.) ~ Lp(R~) ,  with norm (4.19). 

Then by (4.20), we get (4.18) using (1.34). 

We have hereby obtained (4.18)-(4.19) for all dER,  when p~>2. 

In order to generalize this easily to more general H~ ,~ spaces and to p<2 ,  we shall 

prove an auxiliary result that  may be of some independent interest. The result is that  

the restriction of G u to r+So(R~) (cf. (1.25)) has a continuous extension 

G~:H~;~(~t~)-* H~-d'"(Ft~), for all t e R ,  l < p < c ~ ,  with norm 
(4.22) 

1 1 for I�89 O(<,>~ for >0. 

We have up to now shown (4.22) for t=0 and p~2. When rnEZ, G =-m ~+,~,+ can be written 

in a unique way as 
[-m]+-1 

G ~,-rn ~ I . -+ ,~ ,+  G . +  ~ ~J,~"(m)7) 
j = 0  

with G~ s.g.o, of class 0 and suitable Poisson operators Ir ('~) and then (cf. (1.25)) 

G , - + , . , + i r + S o ( ~ )  = G ~]r+ So(~ ). 
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Now =m maps r+30(R~_) homeomorphically onto r+~0(R~_) (see the statements be- ~ + , / ~ , +  

fore Theorem 1.2), so when p~>2, an application of (4.18) to G~ shows in view of (1.34) 

that for fer+So(I:t~_), 

= l i e . - §  flIH~-~..r I I G j I I H ~ - ~ , . < ~ )  , =m 

.< IIa;  Hs 
-IIa'llc(L,,(rtT.),,r_~.,,(~t~.))llYltH;;V(rt~.). 

Thus G,  on r+S0(R.~_) has a continuous extension G,  satisfying (4.22) when tEZ and 

2 ~<p < cr The validity for general t E R follows by complex interpolation. The remaining 

values of p are included by duality, when we use (1.28), second line, and the fact that 

the adjoint of G t, is another s.g.o, of order d, class 0 and regularity t,. 

The estimate (4.22) implies in view of (1.28), first line, that when ~ - l < t < ~ , l  1 

~.p t.~+j, with norm as in (4.22), (4.23) 

for any p. Writing Gg as 

G G =-k =k k E N ,  (4.24) ~t : / ~ - - , ~ t , + ~ - - , / ~ , + ,  

where G =-k is a s.g.o, of order d - k ,  class 0 and regularity 1., according to Theorem t t~ - - , /~ ,A - 

3.6, we extend the validity of (4.23) to all t > ~ - I  with t - ~ N ,  by use of (1.34). The 

exceptional values of t>~ b are included by complex interpolation, cf. (1.28). Finally, a 

version of (4.23) with Hp replaced by B n fonows by real interpolation, cf. (1.28). 

For the statement with P~,+ + G ,  of class - m  <0 we observe that in view of Lemma 

1.3, we just have to prove that (P~,++G,)(#)~oD~ ' ... D~,  is continuous from H~#'(R~) 

to ..pT4s-d-m'~/~tn'~+j for s > ~ - - l ,  with norm as asserted, for all j30+/~l+...+fl,~=m. But 

here 

( P , ,  + + G , ) D~I 1 ... D~ ~ = ( P ,  D~' . .. D~n~ ) + + G (;h ..... ~ ) 

w:*~ f ' (~  ..... ~ )  of order d+f~l +... +~,~, class 0 and regularity t~ (since the other terms are J b u  tgr/.t 

so), and multiplication by (/z) '~ is uniformly bounded from Ht'"(fi~_) to Hpt-~~ 

for any t (cf. (1.35)), so the result follows from the case already treated and (4). 

This completes the proof of (5). 

(6) These estimates are generally better in their dependence on # than what (5) 

would give, and can be obtained by treating G+(P~,) analogously to P,,+ in (4). In fact, 

since 

G+ ( P~, )u = r+ P , e -  Ju ,  
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one has by (4.12), 

D,~G+( P~)u-- r+ DnP~e- Ju 
(4.2~) 

= -G+(P~)D,~u+G+([Dn, P~])u+iK~/ou, 

with the same Poisson operator K~ as in (4); and one also has 

D=jG+(Pt,)u=-G+(P~)D=~u+G+([D=~,Pt,])u, for j <n .  (4.26) 

Then G + (P~) has the desired continuity property for 1 1 < s < ~ in view of (1), and this 

is lifted to all s > ~ - i  by induction (using (4.25-26)) and interpolation as in (4). [] 

Remark 4.2. The augmentation of - ~  in (4.2) for p<2  and in (4.3) for p>2,  hence 

in (4.5) for p~2,  cannot be avoided in general. For example, let p<2  and a~�89 and 

consider the Poisson operator K with symbol k=(~')~((~')+i~n)-l; as a #-dependent 

symbol it belongs to Sa-l'a-1/2(Rn-l• ~+) (see [G2, (2.3.51)] or make a simple 

direct calculation). Since --a-~-~-[-~l 1--1=--a-hi>0, (~>-a+I/P"FI,~#-a+I/P for # ) 1 .  

Here we have for veS(R~-~)\{0}: 

HK]Is HK(D', #)I/P-~VHL,(R?~ ) 

IIK((D', ~)/~)~/~-'~lln.(~_) 
= C  

II~ll~o,.(Ro-i) 
IIK~II~cR~_) 

il >0 for ~ ,  

cf. (1.13), so the exponent on (#) in (4.2) cannot be lowered in this case. 

For arbitrary p, the exponent on (#) cannot in general be less than -~.  As a simple 

example for Poisson operators one can take K ,  with symbol 

k(~', ~, ~) = (.,'>~ ((~,', ~)+ i . , . )  -1 e s~- i '"(R~-lx P~, ~+) ;  

the symbol-kernel is k=(~')~e -<~',~>=-. Here we have for vES(Rn-1) \{0},  when #--*oo: 

IJK~JJC(B~-,/p,u(I:tn_I),Lp(R~.)) >/C ( f  l f (~')" e~="e'-"="~/P-"9(~') d~'lp dx)~/p 
#-" ~-"11~11.o,.r 

= c (flf(~')"e'"'~'-"'"/"(=/#)l/P-"s d~'lp dx)l/p 
Ilvll~o,.ca.-,) 

.--, c ( f  l f (~')" e'="e'-="~'(~') d~'[. dx) '/p 
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For trace operators, the related example T~=(D')V(D',#)I-WP-~7o with symbol 

t(x', ~, #)= (~')~(~', #)1-1/p-~ of order 1 - 1 ,  class 1 and regularity v, is seen in a similar 

way to have the property 

IfT, Hc(H~,~(ft?~),BO,,(rt~_,)) >1 Ct~ -~ for tz/> 1, 

with c > 0. 

The analysis in [G3] of the parameter-independent case implies that the estimates 

(4.3) and (4.5) cannot be extended to lower values of s unless T t, resp. G~ is of a lower 

class than r. Therefore the information on the extension d~ in (4.22) is of interest; and 

we cart add that (4.22) is valid also for operators of class >0, since terms of the form 

Kj,~" b vanish on r+S0(R~_). There is a similar result for trace operators, derived by 

duality from (4.2), applied to the adjoint of the part of T t, of class 0. Altogether, we have 

COROLLARY 4.3. Let T~ and G t, be as in Theorem 4.1. Their restrictions to 
r+So(R..~) have continuous extensions Tt, and Gt, with the continuity properties, for 
all tEl:t: 

- -  t , l ~  - - n  T•: H~;0 (R+) --* Btp-d-1/P'•(Rn-1), (4.27) 

with norm O( (tt) -~+[ll2-Upl+ +1) for v r  �89 ~ or ,<~0; O((p) ~) for v=�89  

( n -  (4.28) ~ p ; 0  k~'~+ / 

11>0. (Here Hp can with norm 0((#)-Y+I1/2-1/P{-~- 1) for v~l  �89 - ~l, 0((#) ~) for v= 1�89 - 
be replaced by Bp.) 

Remark 4.4. In some cases in (2)-(6) we had to assume n > l  when rE]0, 1[ in order 

to apply Theorems 3.8 and 3.9 in the proofs. Note however that for n = l ,  the estimates 

needed in the proofs for K~, T~ and G t, are furnished by Remark 3.10 in the cases with 

regularity �89 and certain Laguerre estimates described there. Thus Theorem 4.1 extends 

to n = l  in these cases. This suffices to get uniform mapping properties for all n>_.l for 

the operators entering in the resolvent construction (cf. [Gb]), where the ps.d.o, part 

has regularity /> 1 and the other operators have regularity ~> �89 and satisfy the needed 

Laguerre estimates. (For the remaining cases we note that regularity in ]0, 1[ implies of 

course regularity 0; the results may be improved slightly by a discussion departing from 

(3.23).) 

4.2.  E s t i m a t e s  o f  o p e r a t o r s  on  m a n i f o l d s  

Let us first make some observations on negligible operators. By (2.18) with ~ replaced by 

~' (cf. also [G2, Lemma 2.4.3]), a singular Green symbol-kernel ~?(x', Xn, y,~, ~', #) belongs 
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to 
S - o o , v ' + l - o o [ l ~ n - l v ~ n  _~[~2  ~ N q d - l ' v ' + d ( ~ n - l v ~ n  _ ~ ( ~ 2  ~ 

1,0 \x~, ~ ~ + ,  ~ \ ~ + + ] 1  = L,1, 0 k~.~, A.~,,.+,t.~ka.t.++l] 
d ~ Z  

if and only if 

I I " I B k k m m o 3 ~ IID=,xnDx~y~ DvD~,D,g(x ,  x, ,  y~, (', #)1 L2 .... ~.(R~.+) 
+I , , , - - , ' l - -J  

for all indices a,/~ E N ~-I,  k, k', m, m', j, N E N; 

(4.29) 

with constants depending on the indices and on ~. These symbol-kernels (and corre- 

sponding operators and symbols) will be said to be negligible of regularity v '+ 1 (within 

the uniform symbol spaces); they are of degree - N ,  order 1 - N  and regularity v '+  1 -  N 

for any N. The operator kernels corresponding to these symbol-kernels, 

 G(X, y, ---- ( ,  (4.30) 

are characterized by the conditions: 

fl ~ k k ' m m '  j t I f IID=,Dz,x~D~.y n Dv Dz)~G(x , x~, x - z  , Yn, tz) L2 .... ~.(R?~+) 

for all indices 7, ~ E N n-l ,  k, k', m, m', j, N' E N. 

(4.31) 

The passage between the set of estimates (4.29) and the set of estimates (4.31) is worked 

out in a similar way as in the study of ps.d.o.s in Lemma 2.4. As usual, symbol sequences 

can be assigned symbols in the appropriate asymptotic sense. 

For the #-independent case, a similar (simpler) characterization holds with p omitted 

from the formulas (see (4.34 i) below). 

When Pz is a negligible ps.d.o, of regularity d ,  the kernel K:p,+(x, y, #) of Pz,+ 

satisfies, cf. (2.20), 

Nt )(x-y) D~D~D~ICp,+(x,y,~)] ~ (#)-~'-~ 

for all ,~ ,~EN n, N ' , j E N ,  when x, yER~.  
(4.32) 

Conversely, let /C(x, y, #) be a function in C~[R  ~ , + xR.~_ xR+)  satisfying (4.32). Then 

we observe that in the region {x, yER~I xn ~ 1 or y,, ~< 1}, (4.32) implies in fact 

! t . k m  t N  B ~ j Ixny~ (x - y  ) D, DvD, IC(x,y,#)I ~ (#)-~'-J 

for all 7,/~ E N", N ' , k , m , j e N .  
(4.33) 
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Hence, by the extension procedure described by Seeley in [Sel], used first from x,~ER+ 

to x ,  E R  and next from y n E R +  to ynER, we can find a C ~ function )Cl(x,y,#) on 

R n x R n • such that  (4.32) holds in the whole space. Then by Lemma 2.4, /C1 is 

the kernel of a ps.d.o. Pu that is negligible of regularity u', and/C(x, y, #)=/Cp,+(x, y, #). 

Thus (4.32) characterizes the kernels of negligible operators Pu,+ of regularity u'. 

Similar considerations hold for/z-independent symbols, where we drop all reference 

to # and to regularities. 

Note in particular that  for /z-independent operators, the negligible singular Green 

operators G resp. negligible pseudo-differential operators P+ in the uniform calculus are 

those with kernel/Ca resp./Cp,+ satisfying, on R ~  x R~_, 
! i ~N x k mDa ,." [x sup II(x'--Y ) nY~ ~.~,~a~ ,y) L2 .... ~ . (~+)  ~ 1 for an indices, (4.34i) 

xs,y'qRn -I 

N' a resp. sup I{x-y) Dx,JCp,+(x,y)l~l foral l indices.  (4.34ii) 

Here the set of estimates (4.34 i) implies the set of estimates (4.34 ii), since 

sup [f(x,~,yn)[4~ [If[[ IlD~Jll IlDy.fl[ [ID~.Dv.fl[, 
:gn ~Yn 

for f E S ( R ~ + ) ,  with norms in L2(R~_+). (One cannot conclude the other way.) 

Remark 4.5. In the local parameter-independent calculus (of IBM2]), there is no 

distinction between the two types of integral operators/CG and K:p,+. In the local/Z- 

dependent calculus of [G2], the negligible ps.d.o.s of regularity ~,' are a subset of the 

negligible s.g.o.s of regularity # +  1, since sup-norm estimates over bounded sets imply L2 

estimates; whereas the above shows that  a converse inclusion holds in the/z-independent 

uniformly estimated case. In the cases with both/z-dependence and uniform estimates, 

the two types of integral operators differ in a complicated way, so one should avoid using 

them at the same time. 

Negligible trace and Poisson operators axe characterized in similar ways. For exam- 

ple, in the /z-independent uniform calculus, the negligible trace operators of class r~>0 

are of the form T=~,o<<.j< r Sj"Tj+T I, where the Sj are negligible ps.d.o.s on R '~-1 and 

T ~ has a kernel/CT, (x', y) satisfying 

i IN '  m /~ I sup lllX --y > y,~ D=,,JCT,(x ,Y)llL2,~.(~+) ~- 1 for all indices; (4.35) 

and the negligible Poisson operators have similar kernels, only with yn replaced by xn. 

In the/z-dependent calculus, (4.35) is replaced by 
I I P " I 

sup II{x'-Y >N D~,,~,ymD~ D~ICT,(X ,Y,/Z)IIL2,,.(R+) 
*',Y 'eR"-~ (4.36) 

(/z)-~'+[m-m']+-j for all indices. 

15 - 935204 Acta Mathematica 171. Imprimd le 2 f6vrier 1994 
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We find as in [G2]: 

THEOREM 4.6. The spaces of parameter-dependent uniformly estimated Poisson, 

trace and singular Green operators of a given order, class and regularity, are invariant 

under admissible coordinate changes that preserve the set {xn=0}. 

Proof. One goes through the proof of [G2, Theorem 2.4.11], now with global es- 

timates, using the arguments given around (2.28) for the coordinate changes in x ~, yr. 

variables, and using the above characterizations of negligible operators. For the xn, Yn- 

variables, one passes via symbols of the form in [G2, Remark 2.4.9]. [] 

Also the uniform transmission condition for ps.d.o.s is preserved under admissible 

coordinate changes. 

For an admissible manifold ~ (cf. Section 1.2), the various types of operators are 

now generalized to mappings between sections of vector bundles over ~ and F in the 

way explained sketchily in [G2, end of Section 2.4]. For precision, we assume that  a 

system of local trivializations has been chosen with the properties listed in Lemma 1.5, 

for given admissible vector bundles E and E1 over ~, F and F1 over F. Then, for exam- 

ple, �9 ~ - G, .  C(0 ) (f~, E) --* C ~ (~, El)  is a uniformly estimated, parameter-dependent singular 

Green operator, when each term in the decomposition G~-~-~jl,j2~jo ~Jl G~J2 gives such 

an operator in the local coordinates, i.e., when (cf. also [G2, A.5]) 

(Oil G ~oj2 ).,i = ~ol,i ~ (Oil G ~ QJ2 ) or ~1 (4.37) 

is an N l x N - m a t r i x  formed s.g.o, on {1,. . . ,m}xR~_, where ~ o i : E l a ~ i x C  N and 

~1,i: El  la,--~F-i x C N~ are the local trivializations associated with a coordinate set f~i 

containing supp Ojl U supp Oj2. The other types of operators are similarly described. 

Then the continuity properties for scalar operators on R~_ imply the continuity 

properties for general operators: 

COROLLARY 4.7. Let ~ be an admissible (cf. Section 1.2) manifold of dimension 

n > l  with boundary F, and let E and El, F and F1 be admissible vector bundles over 

resp. F. Let P~ be a ps.d.o, going from a bundle E to another El, where E and E1 

extend E resp. E1 to a an admissible neighboring boundaryless manifold ~, Pu having 

the transmission property at F; and let K~ be a Poisson operator going from F to El, 

T~ a trace operator going from E to F1, G~ a singular Green operator going from E to 

El, and S~ a ps.d.o, going from F to F1, all operators being parameter-dependent with 

uniformly x-estimated symbols when considered in the local coordinates, of order dER,  

class r E Z and regularity ~ E R.  Then the mapping properties in Theorem 4.1 hold with 

the H~ ,~ and Bp ,~ spaces over R~_ and R n-1 replaced by Hp '~ and B~,~' spaces of sections 

of the bundles over ~ resp. F. 
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For n-- l ,  the result also holds when the symbols in local coordinates have the 

properties described in Remark 4.4. 

5. Composi t ion of  Green operators 

For the operators other than the ps.d.o.s, the establishing of rules of calculus for the 

uniformly estimated symbol classes is new even in the parameter-independent case. (In 

the studies of Lp mapping properties in [G3] and [F2], symbol classes with uniform 

estimates were considered, but the general composition rules were only used for operators 

on compact manifolds, where the rules from [BM2], [G2], [R-S1] suffice.) So here we must 

include full explanations of the parameter-independent case. Sometimes this will be in 

the form of a specialization of the (usually more complicated) parameter-dependent case, 

to save space. 

Theorem 4.1 shows the continuity of systems -4~ (also called Green operators): 
g t  t T_TS, t t {~n ~ N  T 4 " s - d , t t { R n  ~N1 

. ~1  ~ = : X ~ X , 

T. S. (5.1) 

with norm O({#)-"+l'/v-1/21)+l, for s > r + } - l ,  

when Pt,, G~, K~, T~ and S~, are, respectively, a ps.d.o, in R n satisfying the uni- 

form transmission condition, a singular Green operator on R~_, a Poisson operator from 

R ~-1 to R~,  a trace operator from R~_ to R n-l ,  and a ps.d.o, in R ~-1, all parameter- 

dependent with uniformly x-estimated symbols, of order dER, class rEZ and regularity 

vER.  Here A~ can be composed with another Green operator A~ to the right, when the 

dimensions N and M fit with the range dimensions for ,4~. (No precautions concerning 

compact support are needed, as in the local calculus.) 

The composition rules we shall show, are summed up in the following theorem: 

THEOREM 5.1. Let -4~ and -4~ be Green operators as in (5.1), of order d resp. d', 
class r resp. r' and regularity u resp. v', 

Kt' ~ ' , ( e. + +a. ( •,++a. K; (5.2) 
-4"= k 'T. S. . ' -4"=\  r j  S'. ] " 

Then (when the matrix dimensions match) -4.-4~ is again a Green operator: 

.4; ' ,+ +G,  K ,  where P'~' = P,P~, = A,-4,  = \ 7~' _,~" ' 

G /~=-L(P. ,P '  P ' P' ' +K.T'., ~,)+ ~,+G~+Gt~ .,++G~G~ (5.3) 

K'.'= P.,+K'~ +G.K'.  + K.S'.,  
! ! ! !! ! ! 7'~'=T.P'.,++T.G.+S.T'~, S . = T . K . + S . S . ,  
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of order d"=d+d' and class r"=max{r ' ,  r +d'}, with L(Pu, P~) of regularity re(u, u')-r 
(any r and all the other terms of regularity m(u, u') (cf. (2.31)). The same asymptotic 
symbol formulas as in [G2, 2.7] are valid. 

The proof is continued through the major part of this section. 

For the composed terms without Pu or P~, the proof is a straightforward generaliza- 

tion of that in [G2, 2.6-2.7], where the rules for the boundary symbol operators shown 

in [G2, 2.6] are combined with the pseudodifferential arguments established in Theorem 

2.7 above, applied (in suitable vector valued form) with respect to the x' variable. 

For the operator (P,P~)+, the result follows directly from Theorem 2.7. 

It remains to treat L(P~,, P~)=(PuP~)+-Pu,+P~,+ and the compositions 

p j  I . p I  I u,+Gu ' Guu,+' Pu,+K'u ' TuPu,+" (5.4) 

For L(Pu, P~) we recall the formula, shown in [G2, (2.6.23)], 

L(Pu,P~)= ~ Km,u'ym+G+(Pu)G-(P~), with 
O<~ r n < d  ~ 

G+(P,) = r+P,e-J, G-(P ; )  = Jr-P;e + --[G+(P;*)I *, 

d '  

K~,uv=- i  Z r+P"S[,u p~-l-'~(v(x')| 
l = m - { - 1  

(5.5) 

where Ju(x', xn)=u(x',-xn), and the S[, u are tangential differential operators such that 
I d '  t the symbol of P~-~t=o St,u(x,D')Dt~ is O((~,~)-1). For the Poisson operators K,~,~, 

one gets the desired statement by a straightforward generalization of [G2, Lemma 2.6.4 

and Theorem 2.7.5]; in the present situation we have the advantage that PuS[,u can be 

transformed to y-form in an exact way, so that Lemma 2.6.4 applies directly. For the 

term with G +, we make the following considerations. 

When Pu=OP(p(x', ~, #)) is of order d and regularity u, with symbol independent 

of x~ and satisfying the transmission condition, we have from [G2, Theorem 2.6.6] that 

the symbol-kernel of G+(Pu) equals 

' for (5.6) 

and hence (with H(xn)=l(~:,,>o}) 

g+ (p)(x', ~, ~n, #) = Yrxn--.~ ~y~-~n~H (xn )H (yn )[Yr(.~z,P(X ', ~', ~n, #)]lz,=~+yn 

~ , X n ~ n + Z y n ' q n W ' $ ( X n + y n ) ~ n  t 
_ _  1 e -  " " H(xn)H(Yn)p(x ,~',~,~,#)dCnd~nd~Tn; - Y4 

(5.7) 
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and we see from Theorem 3.11 above that it belongs t o  Sd-l,u-e(Rn-lx a~_, 7-~+~'~'~--1), 

with e = 0  in some cases. 
d,~ n ~+~). Now let p(x, ~, #) be a general element of Sl,o,uttr(R x It is seen as in [G2, 

(2.3.6)] that for u e S ( R + ) ,  

r+OPn(p)e-Ju= 9+(p)(x,y,~,(',#)u(yn)dyn, where 

[t+(p)(x, yn,f ' ,#) =fi(x, zn,f',#)lz~=x,+y~ for xn,yn >0;  (5.8) 

with/5(x, z,~, f ' ,  #) = ]:(,~z~p(x, ~, #); 

here r+~(x, zn, 4', #) is in S ( R + )  as a function of zn, in view of the transmission property. 

Then we can show the following precise version of [G2, Theorem 2.7.6]: 

d~lz n THEOREM 5.2. Letp(x,f,#)6Sl,o,~tt~(R xR~+l ) ,  and let P~=OP(p) .  Then [1+(p) 
v! dCned by (5.8) belong~ to S~13 ~' ( r t ~ - ~ •  with ~ ' = .  if d -  �89 a n d .  are non- 

integer, and with u '=u-e  (any e>0)  in general; and G+(Pu)=r+P~e- J is the singular 
Green operator with symbol-kernel 9+ (p). It has the asymptotic expansion: 

0 + ( p ) ( x , y ~ , ~ ' , . )  ~ ~ ~ xJ - ' ' ~. ,~[03~p(x , O, zn, ~ , #)]lz~=x~+~, (5.9) 
jEN  

and the associated symbol has the asymptotic expansion 

g+(p)(x',~,~,~)~y:~ 1~  +.a 'x' ~og ~ ~ p ~  ,0 ,4 ,~ ) ) ,  (5.10) 
j 6 N  

where (5.7) is applied in each term. 

Proof. Consider a Taylor expansion of p(x, f, #), 

p(x,~,#)= y~  ~.xJO~p(x',O,~,lz)+xMrM(x,~,#), where 

j<M (5.11) 11 rM(x,~,~t) = ~ 1  I'l -- h'M-IoM) ~Pi'X' , hx,~,~,~t)dh; 

,-r (*~ ,~ , .~+h  For each of the terms ~x~O~p(x', 0,4, #), the proce- clearly r M ~ l , 0 , u t t r t . , . ~  ^~+ 2. 2. 

dures of [G2, 2.6], improved as in Theorem 3.11 above, apply directly to show that 

G+ ( ~x~ OP(O~ (p(x', O, f, U) )) = OPG( ~.D~ g+ (t~p(x' ,  O, f, ~))), (5.12) 

1 I 
with symbol in d- ,~ ~-1 $1, 0 (R  x R~ ,  7-/+@7-/-1); it corresponds to the symbol-kernel 

9~_l_j(  x, Yn, ~t , )  : ~.xjg+(OJxnP(Xt ' O, ~, ~t)), 



224 G. G~UBB AND N. J. KOKHOLM 

defined as in (5.6). 

Now consider the remainder. Here we have as in (5.8) that  

r+x M OPn(rM(x, ~, I~))e-Ju = . ~  xM~M(X, x,~+yn, ~', #)u(yn) dye, 

for uES(R+) ,  with r+z ~M - + -1 - - r z ~ n _ . z r  M in 8 (R+)  as a function of z~. Let ~(M)= 

XMn r M  (:~, Xn +Yn, ~',  ~ )  for xn, y~ > 0; then we shall show that  it satisfies better estimates, 

the larger M is taken. First we note that  for xn,Yn>O, 

<<. I(I+x2)-!(X,~+y,~)M(I+(x,~+y,~)2)S~.~, rM(X,~,#)I,.=~.+y.[ 

1 x 2 --I --i ~ M  ~ 2  r =1( + .) si~-~.. ~o(1+ r162 
Since rM is in sd:~, rIM=D~(I+D~.)rM belongs to Sd(~ M'~-M, and hence 

- X t X t 2 [Ig(M)( , ,~,Y,~,~,tt) JiL~(R~.+ ) 

-< f f 1 x 2 -1.7:-1 ' ~ j j  l( + .) ,.~+,.rM(x,{,#)],.=~.+v~}adx~dy~ 

/o /? = ( l + x 2 )  - 2  dxn Iss r~(x, r #)1 ~ dz. 
n 

sup/ IS~L~r~M(X,~,g)12dz, - supl l r~(x  , 2 
x JR x ' 

(({,)~+l~-~l-M+~/2(g)~-~)~, whenM~>.+ld-.t+l. 
D ~ ~knk' ~ , m o m ' D a  n j  ~. For the derived functions x '~n~x.un y. ~ , ~ ( M ) ,  one finds in a similar way (more 

details are given in the calculation [G2, (2.7.28)]) that  for large M, 
,~ k k t m rn' er j ~  ! - M '  d--v 

where M' for each fixed set of indices a, 13, k, k', m, m' , j  goes to cr for M--+cr 

Now let N ~ N .  For M>~Y+v+21d-v]+l , H~(M)H~(~')~-N(~',#) d-~ in view of 

(2.18). Then we find, using the information on the symbols in (5.12) for j<~M, that  

~+(~)(~, ~ ,  ~ ' , , ) -  y]~ -+ x ' j < N g d _ l - j (  ,Yn , r  , # )  L~(R~_+) ~'~ (~ t )u ' - -N(~ ,  g )d - - v ' ,  

for any N e N .  The derived functions are similarly estimated, with the correct orders, as- 
d-l, ~ n--i --n -- suring that  ~+(p) does indeed belong to  S1, 0 ( R  x R + ,  ~S(R+)) with asymptotic ex- 

pansion (5.9). It follows moreover that  OPG(g + (p)) = OP' OPG,~ (g+ (p)) is well-defined, 

and equals G+(P~) in view of (5.8). This completes the proof. [] 

G-(P~) can be treated in a similar way, or one can use the above together with the 

following result on adjoints, that  is shown as in [G2, Theorem 2.4.6] (now based on the 

present Theorem 2.7): 
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THEOREM 5.3. One has, with symbol formulas as in [G2, Theorem 2.4.6]: 

(1) The adjoint of a uniformly estimated singular Green operator of order d, class 
0 and regularity u, is a uniformly estimated singular Green operator of order d, class 0 
and regularity u. 

(2) The adjoints of uniformly estimated Poisson operators of order d and regular- 

ity ~, are precisely the uniformly estimated trace operators of order d - l ,  class 0 and 
regularity u. 

Using the composition rule for s.g.o.s one then finds the desired statement for 

L(P~,P;~). 

A typical case of the remaning terms to be treated (cf. (5.4)) is the following one. 

d,v n - - n + l  THEOREM 5.4. Let p and k' be symbols with p(x,~,p)ESl,O,uttr(R •  ) and 
" " d ' - l ' U ' ( R n - l x - -  "]~+). Then k' (y', ~, #) �9 ~1,o R~_, 

OP~(p(x, ~, #))+ oPgu(k ' (y ' ,~ ,#) )=OPK~(k"(x ' ,y ' ,~ ,#) ) ,  (5.13) 

where k" ' -~d"- l '~"~R2n-2xR ~ 7-/+), with d" "--1,0 ~ +, =d+d', u"=m(u ,  #) ;  and k" and the as- 
sociated symbol-kernel k" have the asymptotic expansions 

k " ( x ' , y ' , ~ , # ) ~  1Dj h + , ~  "x' O"  "k" ' 

jeN (5.14) 
[~"(x, y', r It) ~ ~ 1 x j rr + (w ~(~, z ' 

j ~ N  

It follows that K"=OPK(k")=OP(p)+ OPK(k')  is a uniformly estimated Poisson oper- 
ator of order d" and regularity re(u, # ) .  

Proof. Consider the Taylor expansion (5.11) ofp. For the j t h  term we have, accord- 

ing to [G2, Theorem 2.6.1, Lemma 2.4.2], 

OPn (~.O~,,p(x', 0, ~, #))+ OPK~(k'(y' ,  ~, #)) = OPKn(k~_l_ j (x', y', ~, #)), 
(5.15) 

" 1 ~ j  h4- (~,~p(x' ,  O, ~, t~)]g'(y', ~, ~)) where kd_l_j(x ' ,y ' ,~ ,# ) .  ~. ~ , ~  

d It 1 " v H " 
belongs to S - -J '  -J/R2~-2xR.'~ ?-/+). 1,0  ~ 4 - '  

Now consider the contribution from the remainder x nMrM. We omit the dependence 

on x' and y'  from the notation. Since a Poisson operator in the xn-variable acts simply 

as the multiplication of c � 9  by the symbol-kernel, we can write (cf. [G2, (2.7.5)]): 

OP~(xffrM(xn,r OPK~(k'(~,#)) c = xUrn M(' Xn,~*' , / ~ ,  Dn)+(k'(Xn,~' ,Iz)  c) 

= Z (M) Op,(D~rM(X,~,~,#))+(xM_,~,(X~,~,,#)c). 
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Assume that M>~d, and let N(d, l) be the smallest integer ~max(d- l ,  0}, then M-l>~ 
N(d, l) for all tel0, M], and hence e+xM-'kteH2N(d't)(R). Since D~rM is of order d - l  
and regularity v- l ,  it satisfies (cf. (2.1)) 

D m i~ ~m'Dm'z~l  r Zx 

for all m,m'EN.  Then we have in view of (5.1), that OP=(D~nrM ) maps H2d-l'~'(R) 

into L2(R) with norm O(~-1+1) .  This gives: 

lit+ - l  + M - l ' ,  OPn(D~ rM)(e x n k )IIL2(R+) ~ (e~'-l§ 

�9 v--l d - l -N(d  l) N(d l) - -M- l  t =(~, + l ) l l f fn ,~)  , (5,~,~) 'nr k(SP)IIL~(R) 
N(d,l) 

~(Qt~--IW1)xd--l--N(d'l) Z xN(d' l)-J J M - l - ,  IID~,,.(z= k )IIL.,(R+) 
j=O 

J 
<~ ( e v - l  _4_ 1 ) ( ~ v ' - M + l  + 1)xd"-M-1/2 ~ (et/ '--M .~_ 1 ) z d " - M - 1 / 2 .  

�9 �9 ;~ m m '  a j Apphcatmn of D~,,y, x,~ D ~  D~, Dg gives expressions that can be treated in the same way, 

showing that for M sufficiently large (depending on the indices), one gets the correct 

estimate. The proof of (5.14) is completed by taking this together with the information 

on the symbols in (5.15). The composition rule for the full operators now follows as in 

[G2, Theorem 2.7.9]. [] 

This proof is a little simpler than those in [G2, Lemmas 2.7.1-2, Theorem 2.7.3], 

because we can use the global properties of p. When Theorem 5.4 is used to treat the 

term P~,+K'~ in Theorem 5.1, one first brings K~ on y'-form. 

The other compositions in (5.4) are treated in a very similar way, and this ends the 

proof of Theorem 5.1. 

By restriction to a fixed value of p, we get the corresponding (simpler) rules for 

compositions and adjoints of parameter-independent systems: 

COROLLARY 5.5. For p-independent systems with x-uniformly estimated symbols, 
the statements of Theorems 5.1 and 5.3 are valid when p and the regularity numbers are 
disregarded. 

The rules are easily carried over to the situation of operators between admissible 

vector bundles over manifolds, by use of the coordinate systems and partition of unity 

described in Lemma 1.5. In fact, when we write 

, - , -  = (  ) '  A,A~ = Z ~j~ A ,  ~J20j3 A ,  Oj4, where ~j 0j 0 0 o Qy = ~j  I t ,  ( 5 . 1 6 )  

Jl,j2,J354 ~<Jo 0 Qj 



A GLOBAL CALCULUS 227 

the study of each term carries over to a study of compositions of operators on (1, ..., m} • 

R~,  where Theorem 5.1 can be apphed. Likewise, taking adjoints can be localized in 

this way. Thus we can conclude: 

COROLLARY 5.6. Theorems 5.1 and 5.3 extend to operators on admissible mani- 

folds. 

The calculus is hereby ready for the consideration of paxameter-elliptic Green oper- 

ators in global Lp spaces, the consequences for parabolic problems, and the applications 

to Navier-Stokes problems, established in continuations of this article [G5, 6]. 
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