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Introduction 

Thc notion of convolution (Ger. Faltung, Fr. produit de composition) is a venerable 

one in mathematical  analysis. The convolution 

1 t" ~ .  ~(~) 
sin (n+�89162162162 

2sin�89 

is found in Dirichlet's original memoir  [12] on Fourier series, and similar convolutions 

are extensively used in the classical literature on Fourier series and integrals (see 

for example Riemann [34]. Weierstrass's original proof [47] of the celebrated approx- 

imation theorem bearing his name utilizes a certain convolution. Fractional integration 

and differentiation are defined by  means of convolutions (see for example Zygmund [51], 

pp. 222-225). A perusal of any  adequate textbook on Fourier series or integrals 

will show the important  pIace occupied by the notion of convolution in the field of 

harmonic analysis. The Hilbert  transform is of course a convolution. The classical 

theory of this transform has recently been extended by Zygmund and Calderon [52]. 

More recently, it has been recognized tha t  measures and certain classes of abst ract  

linear functionals can be convolved. For functions of finite variation on ( -  ~ ,  + ~ ), 

for example, see Bochner [5], pp. 64-74, and, from another point of view, Beurling [4] 

and Gel'fand [15]. The notion is discussed and utilized in extensv by Jessen and 

Wintner [22]. L. Schwartz has studied convolutions for the class of linear functionals 

1 The authors wish to acknowledge financial assistance by the National Science Foundation 
U.S.A. during the preparation of this paper. 
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called distributions ([3~], Ch. VI). Finally, we shah see that  the algebras discussed 

in Bourbaki [6], pp. 110-115, call be considered to be convolution algebras. 

The importance of convolutions in the theory of Lie groups was recognized by 

H. Weyl (Peter and Weyl [50] and Weyl [49], Ch. I I I ,  w167 12-15). A very general 

description of convolution of linear operators is found in A. Weil's treatise on topo- 

logical groups ([48], pp. 46-48), and it is to this source that  the present paper owes 

its original inspiration. The notions sketched b y  Well have been utihzed and ex- 

tended by many writers (see e.g. Segal [39], Godement [16], and Buck [7]). 

In studying numbers of examples of convolutions and in particular analyzing 

the ideal structure of certain algebras in which multiplication is defined by a con- 

volution, the authors have been led to formulate a very general, purely algebraic, 

definition of convolution algebra, This definition includes all of the examples of con- 

volutions which we have found in the literature. 2 A preliminary announcement of a 

special case is found in Hewitt and Zuckerman [19]. Our definition includes as non- 

trivial cases both infinite and finite dimensional algebras, and in studying these 

two classes of convolution algebras, entirely different techniques are called for. In- 

finite dimensional convolution algebras are best treated by analytic and topological 

methods, while the tools of classical algebra are required in the finite dimensional 

case. The present paper is devoted primarily to a discussion of finite or at least 

finite dimensional objects, although when a theorem about an infinite situation can 

be obtained at no extra effort, we do not hesitate to state it. Some infinite dimen- 

sional examples are also included, in 1.4. A second communication will be devoted 

to infinite dimensional convolution algebras. 

We use the following notation: 

K denotes the complex number field; 

~ n  denotes the algebra of all n>< n complex matrices; 

Zp denotes the zero algebra over K of dimension p;  

AQB denotes the direct sum of algebras A and B; 

Kn denotes the direct sum K O " " O  K with n summands. 

Throughout this paper, functions and linear functionals are always complex- 

valued. Linear spaces and algebras are always over the field K ; a n d  homomorphisms 

and ideals of algebras are taken in the algebra sense. 

It does not include the composition of functions of 2 variables discussed in VOLTERRA a n d  

P~.R~S [45], but this composition in its general form can hardly be called a convolution. 
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w 1. Basic definitions and theorems 

We begin with a number of definitions. 

1.1. Definition. A non-void set G is said to be a semigroup if there exists a 

binary operation defined for all x, ye  G (usually written as xy) such that x ( y z )=  (xy)z 

for all x, y, z e G. 3 The cardinal number of a finite semigroup is called its order, and 

is often written as o(G). 

1.2. We list a few examples of semigroups. 

1.2.1. Any group. 

1.2.2. Any non-void set G, with x y = y  for all x, yeG.  

1.2.3. Any non-void set G; a a fixed element of G, and x y = a  for all x, yeG.  

1.2.4. Any non-void set G completely ordered under a relation _<, with x y= 

= m a x  (x, y) for all x, y~ G. 

1.2.5. The set {a, a-t- l, a + 2, ...}, where a is a non-negative integer, and the 

semigroup operation is ordinary addition. 

1.2.6. In Appendices 1 and 2, tables of all semigroups of orders 2 and 3 will 

be found. Such tables have been computed independently by Carman, Harden and 

Posey [8] and by Tamura [44]. Their results for orders 2 and 3 agree with ours. 

Carman, Harden, and Posey have an incomplete table of semigroups of order 4. G.E.  

Forsythe [14] has computed the semigroups of order 4 by mechanical means. 

1.3. Definition. Let G be a semigroup, and let 3 be a linear space of functions, 

with the usual definitions of sum and scalar multiplication, defined on G. We sup- 

pose that 

1.3.1. for all x e G and /~ 3, the function ~/, defined by the relation z/(Y)= /(xY), 4 

is an element of 3.  

Now let I: be a linear space of linear functionals defined on 3. For L~ 1 : , / e  3,  

and xeG,  let Ly( / (xy))  denote L ( J ) .  We suppose further that  

1.3.2. for a l l  L e l :  and ]e3~ the function on G whose value at x is L~(/(xy)) ,  

is an clement of 3 ;  

1.3.3. for all L, M e  l:, the linear functional N on 3 defined by the relation 

N ( / ) = M x ( L y ( / ( x y ) ) )  is an element of s Under these conditions, we write N as 

a An extensive discussion of abstract semigroups and related systems may be found in 
DUBREIL [13], Chapter II. 

The function ]x is defined analogously: it has the Value ] (yx) at the point y. 
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M , L ,  and call M * L  the convolution of the linear functionals M and L. The linear 

space 1: is said to be a convolution algebra. 

Definition 1.3 includes all of the notions of convolution which the authors have 

found in the literature, whether of functions, measures, or distributions. 5 

1.4. Examples of convolution algebras. We now give a few examples of both 

finite and infinite dimensional convolution algebras, showing the diversity of struc- 

tures included under our definition of convolution. A close study of these examples, 

however, is not essential for understanding the remainder of the present paper. 

1.4.1. Let G be the semigroup defined in 1.2.3. Let ~ be any linear space of 

functions on G containing the function identically equal to unity (written as 1). Let 

l: be any linear space of linear functionals on ~ containing the functional ~a such that 

~ta(/)=/(a) for all )r I t  is easy to see that  conditions 1.3.1-1.3.3 are satisfied 

and that  L*M=L(1 )M(1 )~a  for all L, MeF~. 

1.4.2. Let G be a finite group. The group algebra of G is often described as the 

set of all formal complex linear combinations of elements of G, ~ ~ x, with term- 
x e G  

wise addition and scalar multiplication and with product defined by ( ~ :r ~ flu Y)= 
x s G  y s G  

= ~ ~ ~xflyxy. This algebra is isomorphic to the convolution algebra consisting of 
x e G  y s G  

all linear functionals on the space of all functions on G. To see this, let 2, be the 

functional such that  2, (f) = / (a), for all aeG. Then 2~*2~(/)=/(ab), as we shall 

show in the proof of Theorem 1.7. Hence 2a*~b=)~ab. Since the linear functionals 

~a (a ~ G) form a basis for all linear functionals in question, the asserted isomorphism 

is established. I t  may also be noted that  ~ ~ a x f l u x y =  ~ ( ~ z ~ , f l v )  z; this 
z ~ G  y e G  z e G  y e G  

identity shows the isomorphism of the algebra defined here with the algebra ~:x (G) 

described in 1.4.6 in]ra. 

1.4.3. A quite different example is provided by the algebra of all sequences of 

a ~ ~ b complex numbers { ,~}n=o. We write a =  {a~},=0, b=  { ~},=o, and so on. The element 

a+b is {a~+b~}~o, ta={ta~}~_o, for all t eK ,  and the p r o d u c t a * b  of a and b is 

defined by the relation a * b  b~ k i l o  This algebra is a convolution algebra : oak - j = . 

in the sense of 1.3. Let ~ be the space of all functions on No= (0, 1, 2, 3 . . . .  ) which 

vanish except on finite subsets of N o . As noted in 1.2.5, N O is a semigroup under 

5 Group algebras of finite groups have of course been studied for coefficients lying in arbitrary 
fields (see for example v. D. WAERDEN [46], Ch. XVII). Other generalizations are mentioned in BER- 
MAI'r [2] and PAIGE [28]. 
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addition. Let s be the space of all linear functionals on ~. I t  is clear tha t  for all 

a r162 = A s IZ, there is a unique sequence { .}n=0 as above such tha t  A (]) ~ an/(n) for all 
n = 0  

a o o  ] s ~ .  Conversely, every sequence { ~}.=0 defines a linear functional on ~. I t  is easy 

to verify 1.3.1 for the present function space ~. To verify 1.3.2, let / be an arbi- 

t rary  element ~ 0  in ~, and let p - 1  be the greatest integer such that  / (p-I)=4=0.  

Then ] ( m + n ) = 0  for all n e N o  and m>~p. T h e r e f o r e A , / ( m + n ) =  ~ a ~ / ( m + n ) = 0  
r~=0 

for all m_> p, and hence 1.3.2 holds. Condition ] .3.3 is automatically satisfied, since 

s here consists of all linear functionals on ~. Let  e, be the function such tha t  

e~ (m) = 5 ~  (n, m s No). Then clearly A (e~) = an. For elements A and B of s we there- 

fore obtain A *  B by  computing A * B (en) for all n e N 0. We have 

A*B(e~)=Ak(Bz(e~(k+l)))= ~ ~akbz~,k~,= ~ akb~= ~akb~_k. 
k = 0  l=O k + l = n  k,=0 

a c~ Therefore the multiplication defined above for sequences ( ~}~:0 is actually convolu- 

tion in the sense of 1.3. 

1.4.4. 'Consider the space ~x(T), consisting of all Lebesgue integrable functions 

on the circle group T. For /, g s ~I(T) ,  the integral 

2 ~  

/*g  (x) = f / ( e  ~(~-y)) g(e iy) dy, 
0 

the convolution of / and g, defines a function which is again in s 

1.4.5. For [, ge ~I(R), where R denotes the additive group of real numbers, we 

have 

/*g  (x) = / [ (x - y) g (y) dy, 
- o r  

and this function / * g  is again in ~I(R).  

1.4.6. To show tha t  the operations described in 1.4.4 and 1.4.5 are convolutions 

in the sense of 1.3, consider an arbi t rary locally compact group G. As ~, we take 

~r  (G), the space of all continuous functions on G which are arbitrarily small outside of 

compact sets, and normed by  I I / l l = m a x  I](x)I. As s we take the space ~o~(G), con- 
x e G  

sisting of all bounded linear functionals on ~ ( G ) .  I t  is obvious tha t  1.3.1 holds for 

~o (G) :  if I / ( y ) l < s  for y n o n e A ,  then I ~ / ( y ) l < e  for y n o n s x - l A ,  and x - l A  is 

compact if A is compact. To verify 1.3.2 for the present case, we must  use 
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F. Riesz's representation theorem for elements L of ~:r (G): L(/) = f / ( x )  d2 (x), where 
G 

2 is a complex-valued, countably additive, bounded, regular Borel measure on G. 6 

Consider the total  variation 121 of ~t (see Hewit t  [18] for a definition). Since I~tl is 

regular, for every ~ > 0  there exists a compact subset B of G such tha t  I ~ I ( B ' ) < ~ .  

For an arbi trary [e~r and ~ > 0 ,  let A be a compact subset of G such tha t  

I/(Y)[ <~] for all y e A ' .  Then we have 

I t  is plain that  

f / (x y) d ]t (y) = f / (x y) d ]t (y) + f / (x y) d,~ (y). 
G B B" 

If/(xy) d ~ <y) l ~ I1111. I ~ I(B')< ~ II/II. 
B' 

If  x is not in the compact set AB -1, then we have 

f /(xy)d2(y) ~_fl/(xy)ldlAl(y)~_~121(G), 
B B 

since x y s A  and y s B  imply tha t  x e A B  -1. I t  follows that  f / (xy)d,~(y)  becomes 
G 

arbitrarily small outside of properly chosen compact sets. To show tha t  f / (xy)d~.(y)  
a 

is continuous as a function of x, it is necessary only to note tha t  / is uniformly 

continuous. To verify 1.3.3 for the present ease, we observe tha t  

IM*L(I)I=]f fl(xy)d~(y)~,(x) -< / fll(xy)l~l~l(y)dl,i(x) 
G G  G G  

<-II/ll I]tl (G)I#I  (G)=II/II 'IIL]IIIMll �9 

Hence M * L  is a bounded linear functional and IIM~LII<_IIMll �9 IILll. The convolu- 

tion algebra ~r  (G) will be studied in detail in a second communication. This algebra 

has a subalgebra (actually a 2-sided ideal) consisting of all functionals for which the 

corresponding measures are absolutely continuous with respect to right Haar  measure 

on G. As is well known, for such measures /~, we have d~u(x)=m(x)dx,  where 

m~CI (G)  and dx is the differential of right Haar  measure. Let  /~ and v be two such 

measures, with dr (x )=n(x )dx .  Then, writing the functionals in question as M and 

N, respectively, we have 

F o r  a l l  s p e c i a l  t e r m s  u s e d  i n  t h i s  p a r a g r a p h ,  see  L o o M I s  [24] .  
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M *  N (/) = f f / (x y) n (y) d y m (x) d x = f f / (x y) m (x) dx  n (y) d y 
GG GG 

= f f / ( x )  m(xy  -1) d x n ( y ) d y  : f / ( x )  f m (~y-1) ~ ( y ) d y d x  
G G G G 

That  is, the measure corresponding to the functional M * N  is absolutely continuous, 

and the differential of this measure is f m (xy -1 )n ( y )dydx .  This shows tha t  the 
a 

classical convolutions mentioned in 1.4.4 and 1.4.5 are actually convolutions in our 

present sense. 

1.4.7. L e t  the semigroup G be the additive group of real numbers, R. As the 

function space ~, we take the space of all continuous functions / on R such tha t  

l im/ ( t )  and lim /(t) exist and are finite. Denote these limits by  E+ (/) and E_ (/), 
t--~ e~ t - -~-  ~ 

respectively. The space ~ is a Banach space under the usual addition and scalar 

multiplication and with II/ll=sup I/(t) I. I t  is clear tha t  E+ and E_ are bounded 
t e B  

linear functionals on ~. As the space /:, we take all bounded linear functionals on ~. 

I t  is not difficult to show tha t  every L e 1: has a unique representation of the form 

oo 

L (/) = f /(x) d~ (x) + ~ E_ (1) + fiE+ (/), 
- o o  

where 2 is a countably additive, complex-valued, bounded Borel measure on R and 

g, fle K. Conditions 1.3.1-1.3.3 are established by a routine calculation, which we omit. 

Hence we are in possession of another convolution algebra. Interesting features of 

this algebra are that  is has non-zero Jacobson radical (Jacobson [21]) and is non- 

commutative,  in spite of the fact tha t  the basic group R is commutative.  In  fact, 

E+*E_ (/)= lira ( lim (/(x+y)))= lim (E_ ( / ) )=E_  (/), 
X-.),O0 y =  --00 ~--~ 0o 

while 
E_*E+ ( / ) = E +  (!). 

We now give a few simple but basic results. 

1.5. Theorem. Every  convolution algebra is associative. 

Proof. Let  L, M, N be elements of the convolution algebra C, and let / e  ~. Then 

L* ( M , N )  (/) = Lx (M * N~ (/(xy))) = L~ (M~ (N, (/(x (uv))))) 

= L~ (M~ (N~ (/((xu) v)))). 
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On the other hand, 

(L* M) * N (/) = L *  M w (-Vv ([ (w r))) = L~ (Mu (N~, (! ((x u) v)))). 

This proves the present theorem. 

1.6. Deiinition. Let  G be an arbitrary finite semigroup, with elements Xl, x 2 . . . . .  X n. 

Let  51 (G) denote the linear space of all functions defined on G, and let I: 1 (G)denote 

the space of all linear functionals defined on 51 (G). 
Let ~ be the function in 51(G) such that  ~(xj )=5~j  ( i , j = l , 2  . . . .  ,n)  and let 

;ti be the element of I:I(G ) such that  4 i (~j)=Ji j  (i, j =  1, 2 . . . . .  n). (Note the slight 

change in notation from 1.4.2.) Let  !i, j! be the integer such that  xixj=xc~,j 1 

(i, j =  ], 2 . . . . .  n). 

1.7. Theorem. ~ 1  ( G )  is a convolution algebra. I t  is isomorphic to the algebra 

of all formal complex linear combinations ~ 0r x, where 
.~eG 

( .~ ~x )+(  ~ fl~x)= ~ (~+fl~)~, r( Y ~x)=  =~ (,/~)x.�9 
x e G  x e G  x e G  x e G  x e G  

and 

( ~ ) ( ~ f l ~ y ) =  ~ ~ f l ~ x y .  
x e G  y e G  x e G  y e G  

ProoL The first statement of the present theorem is obvious. To prove the 

second, we observe first that  the functions ~i form a basis for ~I(G):  if !e51(G) ,  

then ! =  ~ ! ( x t ) q i .  Next, the functionals 4i form a basis for I:t{G): if L~s  ), 
i=1 

' then L =  ~ L ( ~ ) 4 ~ .  I t  is clear that  4i([)=[(x~) for all [ e ~ l ( G )  and i = 1 , 2  . . . . .  n. 
iffil 

We shall now show that  4~*4j=4t~,j] ( i , j = l , 2  . . . . .  n). We use the identity 

/ (xy) = ~ / (x~ x~) ~0k (x) 901 (y), 
k , l = l  

which is valid for all / e  51 (G) and x, y e G. We then see that.  

4i.~: (4j.~ (/(xy))) = 4t.z ( ~ / (xk xz) q)k (x) 4s (~l)) 
l . k = l  

l , k = l  l , k = l  

I t  follows at once that  4~-4,=4t~,, r Therefore, under the mapping ~ ~ q 4 ~  ~ ~x~, 
t=1 t=1 

we have an isomorphism between the algebra s (G) and the algebra described in the 

present theorem. 
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1.8. Remark. I t  is obvious from the  preceding theorem that  ~] (G) for a finite 

semigroup G is commutative if and only if G is commutative. This property no longer 

holds in the infinite dimensional case, as example 1.4.7 shows. 

1.9. Theorem. Let G be a finite semigroup and let / e ~1 (G), and M, L ~ ~1 (G).  Then 

M~ (Ly (/(yx))) = Lx (My (/(x y))). ~ 

Proof. Since 
/ (xy) = ~ ~ / (x, x s) cfi (x) qJs (Y), 

i j 

we have 

Lx (My (/(xy))) = ~ ~ / (x~ xs) L (cf~) M (Cps). 

On the other hand, we also have 

/(yx)= ~ V~ /(xuxv)~u(y)q~v(x), 
u v 

and hence it follows that 

i x (Ly( / (yx) ) )= Z Z/(xuxv)L(cf~)i(q~v)= ~ ~ /(Xsxs)L(cf~)Mfffs)=Lx(My (/(xy))). 
u v i J 

1.10. Theorem. A finite dimensional algebra A is isomorphic to an algebra s  (G) 

for some finite semigroup G if and only if A has a basis which is closed under multi- 

plication in A. 

Proof. If  A is isomorphic to l: 1 (G) for some finite semigroup G under an iso- 

morphism /~, then the elements /~-1(),1) . . . . .  /~ 1 (),n) are a basis for A of the kind 

required. Conversely, if A possesses a basis which is closed under multiplication, say 

al, a 2 ..... a,, then the elements al, a 2 . . . .  an, form a semigroup under the multiplica- 

tion operation in A. I t  is clear that  A is the set of all sums ~_ cqa~, and that  
i = l  

( ~  ~ a , ) (~ f l sa s )  : ~ ~fljaiaj. Hence A is an algebra of the sort described in 
i=1 j i , j = l  

Theorem 1.7 and is accordingly isomorphic to an l:l-algebra. 

1.10.1. The preceding theorem shows that the algebras described by Bourbaki [6], 

pp. 110-115 are convolution algebras, for finite semigroups. An extension to the infinite 

case offers no difficulties. 

1.11. Theorem. Every finite dimensional algebra A is a convolution algebra. 

Proof. Adjoining a unit to A if necessary and using the regular representa- 

tion, we obtain a faithful representation of A by complex p X p matrices, where 

This theorem is due to Dr. THELMA CHA.NEY. 
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p___ dim A + 1. Thus we may  regard ,4 as a subalgebra of ~l~p. Now, ~ p  is not an 

l:l-algebra, as we shall show in 4.3, but  ~ v O K  is an l:l-algebra (this will be shown 

in Theorem 4.2). Therefore A is isomorphic to a subalgebra of an l:1-algebra. De- 

finition 1.3 makes it clear tha t  every subalgebra of a convolution algebra is a con- 

volution algebra, and this completes the present proof. 

1.12. Remark.  Theorem 1.11 shows tha t  finite dimensional convolution algebras 

are too general to be of any interest from our present point of view. Therefore we 

shall limit ourselves here to a s tudy of algebras of the form 1:1 (G) for finite semi- 

groups G. These algebras are not nearly so general a class as one might at  first 

suppose, and a certain amount  of success has been obtained in determining their 

possible structures. From time to time, we shall permit  ourselves to make statements 

regarding infinite semigroups, but  we shall restrict ourselves to facts which can be 

obtained by  essentially finite arguments.  

w 2. Finite sem|mrou~ 

2.1. In  spite of the large literature devoted to the algebraic theory of semi- 

groups, we have found a number  of apparent ly new theorems (in particular structure 

theorems), which are useful in classifying finite dimensional l:l-algebras. In  addition, 

we find it convenient to reformulate a few well-known ideas. The present section is 

devoted to this program. 

We first give 5 simple theorems showing various methods of adjoining new ele- 

ments to an arbi trary semigroup. 

2.2. Theorem. Let  G be a semigroup. Let  z be an object not in G. Then G U {z} 

(also writ ten as Gz), with the multiplication rules 

x y = x y  as in G for all x, y e G ,  

x z = z x = z  for all xeG~, 

is a semigroup. (G~ is said to be obtained from G by  adjoining a zero.) 

Proot. I f  u, v, weG,  then u ( v w ) = ( u v ) w  by hypothesis. If  u, v, weG~ and at  

least one of u, v, and w is z, then u ( v w ) = ( u v ) w = z .  

A slight variant  on 2.2 is the following. 

2.2.1. Let  G be a semigroup with a zero a. Let  b be an object not in G. Then 

G U {b} is a semigroup under the multiplication rules 
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x y = x y  as in G for all x, y s G ;  

x b - b x = b  for all x s G ;  

b 2 ~ a .  

2.3. Theorem. Let  G be a semigroup and let e be an object  not  in G. Then 

G U (e} (also wri t ten Ge), with the multiplication rules 

x y - x y  as in G for all x, y s G ,  

e x = x e = x  for all xeGe,  

is a semigroup. (G~ is said to be obtained from G by  adjoining a unit.) 

We omit the proof. 

2.4. Theorem. Let  G be a semigroup. Let  x 1 be an arb i t rary  element of G, 

and let a be an object not  in G. Then G 0 {a}, with the mult ipl ication rules 

x y = x y  as in G for all x, y s G ,  

x a = x x  1 for all x s G ,  

a x = x  ix  for all x s G ,  

a a ~ x l x l ,  

is a semigroup. (This semigroup is said to be obtained from G by  adjoining a repeat  

element.) 

Proof. For  all u s G  U {a}, let u ' = u  if u eG, and let u ' = x l  if u = a .  Then 

u v = u '  v' for all u, v e G t3 {a}, and consequently u (v w) - u '  (v w)' = u '  (v' w') = (u' v') w' 

= ( u  v) w 

2.5. Theorem. Let  G be a semigroup containing an idempotent  element x 1 (x~ = xl). 

Let  a be an object  not  in G. Then G U {a}, with the multiplication rules 

x y = x y  as in G for all x, y e G ,  

x a = x x  1 for all x s G ,  

a x = x l x  f o r  all x s G ,  

a 2 ~ a, 

is a semigroup. (The semigroup G U {a} is said to be obtained from G by  idempotent  

adjunction.) 
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Proof.  Le t  u '  be  def ined as in the  proof  of the  preceding theorem.  Then  u v - a  

if u = v = a, and  u v = u' v' otherwise.  Since a '  = x I = x 1 x 1 = a '  a '  and  u' v' ~ G, we have  

(uv) '=u '  v' for al l  u, v e G  tJ {a}. Then  u ( v w ) = u '  (vw) '=u '  (v 'w')=(u '  v ' )w '=(uv) '  w' 

= (uv)w unless u = v = w = a. Since a(aa)= (aa)a = a, the  proof  is complete .  

The  r ema inde r  of the  p resen t  ~ection is devo ted  to  a s t u d y  of the  a lgebra  of 

semigroups  and  of the  s t ruc tu re  of cer ta in  classes of semigroups.  A few of the  resul ts  

set  for th  here are  to  be found  in one or  ano the r  form in papers  of Clifford [10], 

Pee le  [30], Rees [31, 32], Schwarz [36, 37, 38], and  Su~kevi5 [42]. F o r  reasons of no ta -  

t ion and  substance ,  we f ind  i t  wise to  give a comple te  discussion. 

2.6. Definit ion.  Le t  x be an  e lement  of a semigroup.  We shall  say  t h a t  x is 

of f ini te  order  s if the re  exis t  2 integers  k > l  and  l >  1 such t h a t  xk+l=x l. I t  is easy  

to  see t h a t  all  e lements  of a f ini te  semigroup are  of f ini te  order.  We  now list  some 

s imple proper t ies  of e lements  of f ini te  order.  

2.6.1. I f  x is of f ini te  order ,  the  sequence x, x z, x a . . . .  conta ins  a t  most  k + l -  1 

d i s t inc t  e lements .  I f  r is the  smal les t  in teger  such t h a t  xT=x s, l<__s<r, we le t  

lx=s,  k z = r - s .  Then  x €  q, p > q ,  if and  only  if q>_lz and  p = q + ] k ~ ,  for some 

in teger  ~. 9 

2.6.2. I f  x is of f ini te  order,  then  (xm)2=x m if and  only  if the  condi t ions  

m=~kx>_lx hold,  for some posi t ive  in teger  ~. This  follows a t  once f rom 2.6.1 

2.6.3. I f  (x'~)2=x m for some m_> 1, then  x is of f ini te  order.  

2.6.4. I f  (x~)Z=x  m and  (xr)2=X r, t hen  x rn= (xm) r =  (xr)  rn =X r. 

2.6.5. I f  X is of f inite order  and  l~ = 1, then  (x~z) ~ = x  k~. 

2.6.6. I f  G is a semigroup all  of whose e lements  are of f ini te  order  and  if, 

fu r thermore ,  G has  a left  un i t  e, and  G has jus t  one i de mpo te n t  e lement ,  t hen  G is 

a group.  This  follows from 2.6.2, since we then  have (xm)2=X m, e2=e ,  and  hence 

xm=e. Then  we have  x e - x x m = x m x = e x = x  and XX~ th i s  

show's t h a t  the  semigroup G is a group.  ( In  the  f inite case, th is  follows easi ly from 

Theorem 39 of Schwarz  [37].) 

2.7. Theorem. Le t  G be a f ini te  or infinite,  commuta t ive ,  i dc mpo tc n t  semi- 

group.  Then  G has  a concrete  r ep resen ta t ion  as a sys tem of subsets  of the  e lements  

of G. 

s For  an  e x t e n s i v e  u t i l i za t ion  of t h i s  n o t a t i o n ,  see SCHWAaZ [36]. 

a An  i n t e r e s t i ng  t h e o r e m  conce rn ing  ce r t a in  s emig roups  in  which  Iz = 1 for a l l  x is to  be found  

in  GREEN a nd  REES [17]. 
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Proof. For each x ~ G, we let M~ = { zx ;  z ~ G}, the set of all multiples of x. We 

have x e M z  and x y t M ~  f3 My,  so that  all of the sets Mz and all finite intersections 

of sets Mx are non-void. If M ~ = M y ,  then x = u y  and y = v x  for some u, v t G .  We 

thus find x = u y = u y y = u y v x = x v x = v x = y .  Furthermore, if z e M x N M u ,  then 

z = u x = v y  for some u, v e G  and we have z = z ~ = u v x y e M ~ .  Conversely, if z ~ M ~ ,  

then z = u x y = ( u x ) y = ( u y ) x  and z e . M ~ N M ~ .  Therefore M ~ = M z N M ~  and the 

mapping x--->Mz is an isomorphism of G onto the semigroup of sets {Mx}~c, the 

semigroup operation being set-theoretic intersection. 

2.7.1. As a converse to Theorem 2.7, we have: If  S is any set and G is a set 

of subsets of S such that  the intersection of every pair of subsets belonging to G is in 

G, then G is a commutative idempotent semigroup under the operation of intersection. 

2.7.2. Remark. Theorem 2.7 and its converse provide an interesting sidelight to 

Stone's representation theorem [41] for Boolean rings. Let A be a Boolean ring, i.e., 

an associative ring in which x z= x for all x e A. I t  is an elementary fact that  A is 

commutative. Thus A, under multiplication alone, forms an idempotent commutative 

semigroup with a zero; A may or may not have a unit. I t  is easy to show that  if 

A contains more than 2 elements, then the zero is not adjoined: A contains divisors 

of zero. Stone's theorem asserts that  A admits a concrete representation as a ring .,I 

of subsets of a certain set, the operation a + b  of A becoming (A (I B')U ( A ' 0  B) in 

~t and a . b  in A becoming A N B in I4. Theorem 2.7 shows that if we wish merely 

to represent the multiplication operation in A, we can use the simple mapping 

a ~ { z a ;  z e A }  to obtain a faithful representation of A by sets. However, this mapping 

shows no tendency at all to preserve the operation + ,  and we have no hope of ob- 

taining by this method an elementary proof of Stone's theorem. 

2.8. Theorem. Suppose that  G is a finite or infinite commutative semigroup, 

all of whose elements are of finite order. If Ix = 1 for all x s G ,  then G consists of 

a set of disjoint groups. 

Proof. For each idempotent element aeG,  we take Sa = ( x ;  x '~ =a}, the set of 

all x e G  such that x m = a  for some m. From 2.6.4, we see that  the S~ are disjoint 

and from 2.6.2, we see that  every x e G  is in some S~. If x, y e S a, then, using 2.6.5 

and 2.6.4, we have 
(x y)~x~y = (xkx)~, ( y~ )kx  = x~x yky = a 2 = a 

and hence x y e S a .  We also have a x = x k z §  and x x  ~k.~ ~=x2kx=a ;  thus a is the 

unit element of Sa and x 2kx-1 is the inverse of x in S~. 



80 EDWIN HEWITT AND HERBERT S. ZUCKERMAN 

If  G is a semigroup sa t i s fy ing the  condi t ions  of Theorem 2.8, t hen  the  set H of 

i dempo ten t  e lements  of G is itself a semigroup.  Each  a e H is the  uni t  of a group Sa. 

I f  the  i dempo ten t  semigroup H and  the  corresponding groups  Sa are  known,  then  G 

would be comple te ly  de t e rmined  if the  p roduc t s  of e lements  of di f ferent  S~ were 

known.  We will no t  a t t e m p t  to charac ter ize  these semigroups  comple te ly  9a. However ,  

the  following resul ts  will be useful. 

2.9. Theorem.  I f  G is as in 2.8 and  xeS~,  yeSo ,  t hen  x y e S ,  b. 

Proof.  We  have  ( ~ y ) k x % - - x k ~ y % ~ a b ,  and  therefore  xyeSa~.  

2.10.1. I f  x e S a  and  yeSo,  t hen  xy,  bx, and  a y  all belong to S~b. Therefore  

we have  x y = a b x y = ( b x ) ( a y ) ,  so t h a t  t he  p roduc ts  x y  are  de t e rmined  once we 

know the  p roduc t s  bx for x e S a  and  a y  for yeSb,  t oge the r  wi th  mul t ip l i ca t ion  in 

the  group Sab. 

2.10.2. If  x ~ S , ,  b2=b, and  ab=a ,  then  b x = b ( a x ) = a x - x .  I n  o ther  words,  

the  i dempo ten t  b is not  only  the  un i t  for the  group S~, bu t  is also a uni t  for 

S =  (J Sa. I t  is easy  to  see t h a t  S is a semigroup.  
a b - a  

2.11. W e  now consider  a f ini te  or inf ini te  c o m m u t a t i v e  semigroup G all  of whose 

e lements  are  of f ini te  order.  Le t  us denote  the  set  (x ;  x e G, lx = 1} b y  the  symbol  G ~ 

I f  x, y s G  ~ then,  b y  2.6.5, we have  

(xy)k~%:l = (xk~)k~, (y%)% xy=xk~  y% xy=xkX+l yk~+l = x y .  

This implies  t ha t  l ~ y - 1 ,  in view of 2.6.1. Therefore  G ~ is a semigroup and  i t  sat is-  

fies the  condi t ions  of Theorem 2.8. I f  H denotes  as above  the  set of i d e m p o t e n t  

e lements  of G, then  H ~ G  ~ . F o r  each a s H ,  we t ake  T ~ = { x ; x s G ,  x 'n=a for some 

in teger  m}. F r o m  2.6.4 and  2.6.2, we see t h a t  the  sets  Ta are  pai rwise  d is jo in t  and  

t h a t  eve ry  x s G  lies in some T~. Each  T~ is a semigroup and  T a N G  ~ is a g roup :  

i t  is s imply  the  Sa of Theorem 2.8 appl ied  to G ~ If  x sTa and y sTb, t hen  xm=a, 

y~ b, and  consequent ly  (xy)~'~-(x'~)~(y~)'~-a~bm-ab. I t  follows t h a t  xy~T ,~ .  

W e  thus  see t h a t  Ta is a semigroup conta in ing  the  group T ,  N G ~ I t  is of 

in te res t  to  note  t h a t  a T ~ - T ~  N G ~ . To prove  this,  le t  x be any  e lement  of Ta. 

Then  we have  xm--a and  hence ( a x ) m - ~ l = a x m ~ l - a a x = a x ,  so t h a t  / ~ = 1  b y  2.6.1. 

I n  the  preceding few paragraphs ,  we have  dea l t  only  wi th  c o m m u t a t i v e  semi- 

groups.  W e  now d rop  t h a t  res t r ic t ion  bu t  add  ano the r  s t rong condit ion.  W e  consider  

the  effect of imposing a one-s ided cancel la t ion  law. 1~ Since i t  is immate r i a l  whe the r  

~'~ But see CLIFFORD [10], Theorem 3. 
lo Other structural properties of semigroups with a one-sided cancellation law are given in 

TAMARI, Bull. de la Soc. Math. de France, 82 (1954), 53-96. 
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i t  be left- or right-sided, we confine our a t t en t i on  to the left cancellat ion law: x y =  x z  

imphes y = z, for all x, y, z r G. 

2.12. Theorem. If  G is a finite or infini te  semigroup al l  of whose elements are 

of finite order, and  if G obeys the left cancellat ion law, then  G is the direct product  

of a group J and  a semigroup H such tha t  x y = y  for all x, y e l l .  11 

Proof. If  x ~ G  and  x k + Z = x  ~, / > 1 ,  then  x ~ l x k + ~ = x Z  I x ,  and  we cancel the factor 

x l-1 to ob ta in  the equal i ty  x ~ l = x .  Therefore / x = l ,  by  2.6.1, for all x e G .  

Next,  let a be any  fixed idempoten t  e lement  of G and let J =  ( x ; x  ~ G, x a = x} ,  

H = ( x ; x ~ G , x ~ = x ~ .  If x,  y e J ,  t hen  x y a = x y  and  x y e J .  Fur thermore ,  a x = a a x ,  

so t ha t  x - a x  and  a is a (two-sided) un i t  in J .  Also x x k x = x k x + l = x = x a .  Hence 

x k x = a .  I t  follows tha t  x ~ l x = x x 2 ~ x - l = x 2 k z - - . a 2 = a ;  hence x has an inverse in J .  

Accordingly, J is a group. We next  make  the following observations.  

2.12.1. If  x ~ H  and  y e G ,  then  x x y = x y  and  therefore x y = y .  This makes it  

obvious t ha t  H is a semigroup. 

If  x e G ,  we let u ~ = x a  and  v ~ = x  ~ .  Then U x a = x a a = x a = u x ,  so tha t  u x e J .  

We have v~ e H from 2.6.5. Since a e H, we can use 2.12.1 to find the following re la t ion : 

2.12.2 Ux vx = x a x  kx = x k x + l  ~ X. 

We nex t  note  t ha t  if u e J ,  v e H ,  and  w = u v ,  t hen  u w = w a = u v a = u a = u ,  by  

2.12.1. Also, vw = w kw = (uv)  kw = u ~w v by  2.12.1. Therefore UVw = u ~w+~ v = (uv )  ~w+~ = uv .  

We cancel the factor u and  obta in  Vw = v. 

We have now established the existence of a one-to-one correspondence 

x~(u~,v~) (xeG, u~eJ, v~eH). 

If  z ~ ( u z u y ,  v~ v~), then,  in view of 2.12.2 and  2.12.1, we have z = ux u~ vx vy - ux uy v~ 

and  x y =  Ux v ~ u ~ v y  = u ~ u y v ~ .  I t  follows tha t  z = x y ,  and  hence the one-to-one 

correspondence jus t  established is an  isomorphism of G onto the direct product  J X H. 

This completes the present  proof. 

2.12.3. Note. According to a theorem of Clifford l~ every semigroup G in  

which there exists a left un i t  e and  in  which, for all x eG, an  x'  exists with 

x x ' = e ,  is the direct product  of a group and  a semigroup in which x y = y  identically.  

Combining this result  with Theorem 2.12, we have the following theorem. Let  G be 

lo~ Ann.  o/ Math., 2 Ser., 34 (1933), 865-871. 
11 This theorem, for finite semigroups G, follows immediately from results of SUw [42]. 

His methods are not, however, applicable in the general ease treated here. 

6 - 5 4 3 8 0 9 .  Acta Mathematica. 93. Imprlm~ lo 10 mai 1955. 
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a semigroup in which every  e lement  has  f ini te  order.  Then G obeys  the  left  cancella- 

t ion law if and  only  if G has  a left uni t  e and  r igh t  inverses  re la t ive  to e. 

2.12.4. Note. Theorem 2.12 fails for semigroups  conta in ing e lements  of inf ini te  

order,  as the  non-nega t ive  in tegers  under  add i t i on  show. 

W e  tu rn  now to the  case of an  i d e m p o t e n t  semigroup t ha t  is no t  necessar i ly  

commuta t ive .  12 

2.13. I f  G is a f ini te  or inf ini te  i d e m p o t e n t  semigroup,  then  G consists of a 

set of d is jo in t  semigroups,  as follows. We t ake  S~ = { x ; x e  G, a xa= a, x ax=x} ,  for 

each a e G .  Since a a a = a ,  we have  a e S ~  so t h a t  no Sa is void  and  every  x e G  

lies in some Sa. 

I f  x, yeS~, we have  x y a x - ( x a x ) y a x = x ( a y a ) x y a x = x a ( y a x ) ( y a x ) = x a ( y a x ) =  

= x ( a y a ) x = x a x = x ,  and  hence x y x = x y ( x y a x ) = ( x y ) ( x y ) a x = x y a x = x .  Then we 

also have  y x y = y  and therefore  xeSy ,  yeS~. This shows t h a t  xeS~ implies  Sx=S~ 

and  t h a t  the  sets S~ are  pairwise  dis joint .  Also if x, yeSa, we now have  x(xy)x= 

= x y x = x  and ( x y ) x ( x y ) = x y x y - x y ,  so that xyeS~=S~ .  I t  follows t h a t  S~ is a 

semigroup.  

2.14. Theorem. L e t  G, S~, and  S~ be as in 2.13. I f  XeSa and  yeS~, then  

x y e S~b and  S~a = S~o. 

Proof.  I f  xeS~, t h e n ( b a ) ( x b ) ( b a ) = b a x b a = b a x b ( a x a ) - ( b a x ) ( b a x ) a = ( b a x ) a =  

= b(axa) = ba. Fur the rmore ,  (xb)(ba)(xb) = x b a x b = ( x a x ) b a x b = x ( a x b ) ( a x b ) =  

= x ( ax  b) - ( x a x )  b = x b. Therefore  x b e Sb~. This  implies  t h a t  a b e S0~ ; since we have  

abeS~b, i t  follows t h a t  S~a--S~0.  

I f  x e S ,  and  y e S b ,  we have  b e S 0 = S y  and  then,  from wha t  we jus t  p roved  

above,  we see t h a t  x y e S , ~  and  b a e S ~ .  But  this  implies  t h a t  xyeSy~=So~=S~b. 

This completes  the  presen t  proof. 

We note  also t ha t  if H is the  set of d i s t inc t  S , ,  then  H is a commuta t ive ,  

i d e m p o t e n t  semigroup under  the  opera t ion  Sa So = So0. 

2.15. Theorem. Each  S~ of 2.13 is i somorphic  wi th  a semigroup of pairs  (y, z) 

ill which the  semigroup opera t ion  is defined b y  (Yl, zl)(Y2, z2)--(YD z.). 

Proof.  We  t ake  ,~"a = (xa; xeSa},  "' ' " Sa ={ax xeS , } .  Then S a c S a  and  S~ c S ~ .  

Also ye,~,"~ implies  t h a t  ay=a ,  y a = y ;  s imilar ly ,  zeS ' j  implies  t h a t  az=z,  za=a.  

If  xeS~, then y=xaeS'a  and z=axeSa ' .  Also y z = ( x a ) ( a x ) = x a x = x .  

12 In com}ection with this topic, see also MCLEAN" [27] and CLIFFORD [10] 
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~s ~tl I f  ys  a a n d  zs  a ,  t h e n  we  h a v e  x = y z s S a  a n d  x a = y z a = y a = y ,  a x = a y z =  

= a z : z .  

W e  h a v e  t h u s  e s t ab l i shed  t h e  e x i s t e n c e  of a o n e - t o - o n e  c o r r e s p o n d e n c e  x+-*(xa, a x) 

b e t w e e n  S~ a n d  t h e  .set Ta of pa i r s  (y,z) for  y sSa, z sS' j .  I f  x l ~ ( y  1,z,) a n d  

x 2 ~  (y~, z2), t h e n  we h a v e  x 1 x 2 = Yl zl Y2 z2 = (Yl a) z I (Y2 a) z 2 : Yl (a z 1 Y2 a) z 2 = YI a z2 - Yl z2" 

T h e  co r r e spondence  b e c o m e s  an  i s o m o r p h i s m  w h e n  we de f ine  (Yl, zl)(Y2, z2 )a s  (Yl, z2)- 

Th i s  c o m p l e t e s  t h e  proof .  

I t  is of i n t e r e s t  to  obse rve  t h a t  for  xl, x2~Sa, t h e  e q u a l i t y  xlx2=x,zx 1 ob t a in s  

if and  on ly  if x I - x 2 .  

T h e  s e m i g r o u p s  S~ a re  c o m p l e t e l y  d e t e r m i n e d  b y  t h e  sets  S'~ a n d  S ' j .  F o r  

e x a m p l e ,  if S~ is f in i te ,  we h a v e  x ~ ( i , ] ) ,  l<_i<_Ic, l<_]<_l, where  k is t h e  n u m b e r  

of e l e m e n t s  in S"  a n d  l t h e  n u m b e r  in  S " .  

I f  ysS'a a n d  zsS ' j ,  t h e n  y+-~(ya, ay )=(y ,a )  and  z~-~(za, az)=(a ,z ) .  W e  also 

h a v e  Yl Y~ = Yl if Yl, Y2 s S'~ a n d  z lz~ = z 2 if z 1, z 2 s S ' j .  F u r t h e r m o r e ,  if  y s S~ a n d  x s S~, 
t ~tt 

t h e n  x y o ( x a ,  a x ) ( y , a ) = ( x a ,  a), so t h a t  x y s S ~ .  Simi la r ly ,  we f ind  t h a t  z x s  a if 

z ~ S ' j  a n d  x e S~. W e  will  say  t h a t  S~ is a lef t  idea l  of S~ and  S~' is a r i gh t  idea l  of S~. 

2.16. Def in i t ion .  A n o n - v o i d  s u b s e t  I of a s e m i g r o u p  G is said to  be  a le f t  idea l  

of G if x y s I for  al l  x s G a n d  y s I .  R i g h t  and  2-s ided ideals  a re  de f ined  s imi la r ly .  13 

w 3. Representations of semigroups 

W e  use t h e  t e r m  representation ill c o n n e c t i o n  w i t h  a s e m i g r o u p  G to  m e a n  a 

h o m o m o r p h i s m  of G in to  t h e  m u l t i p l i c a t i v e  s e m i g r o u p  ~ for  s o m e  n>_ 1. W e  beg in  

w i t h  a s t u d y  of 1 -d imens iona l  r e p r e s e n t a t i o n s .  

3.1. Def in i t ion .  L e t  G be a semigroup .  A c o m p l e x  f u n c t i o n  Z de f ined  on G is 

s a id  to  be  a s e m i c h a r a c t e r  of G if Z (x) :~ 0 for some  x s G a n d  Z (xy) = Z (x) Z (Y) for  al l  

x, ysG.  1~ 

W e  l is t  a few s imple  p rope r t i e s  of s emicha rac t e r s .  P roo f s  are  lef t  to  t h e  r eade r .  

3.1.1. I f  x is an  e l e m e n t  of f in i t e  o rde r  be long ing  to  a s e m i g r o u p  G a n d  if Z 

is a s e m i c h a r a c t e r  of G, t h e n  Z(x)  is e i t h e r  0 or  a roo t  of un i ty .  

3.1.2. I f  x is an  i d e m p o t e n t  e l e m e n t  a n d  Z is a s e m i c h a r a c t e r ,  t h e n  Z ( x ) - 0  or  1. 

3.1.3. I f  G con ta ins  a uni t ,  e, a n d  if Z is a s e m i c h a r a c t e r  of G, t h e n  z ( e ) - 1 .  

13 This widely used concept goes back at least to SUSKEVIC. 
it S. SCHWArtZ [38] has used a slightly different definition of semicharacter and has obtained 

a number of interesting results paralleling ours. We are also indebted to Dr. SCHWA~Z for personal 
conversations on this topic. 
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3.1.4. I f  G conta ins  a zero, z, and  if Z is a semicharac te r  of G no t  iden t i ca l ly  1, 

then  Z (z) = 0. 

3.1.5. A semicharac te r  of a g roup  is a charac te r  in the  usual  sense. 

I t  is essent ia l  for our  purposes  t h a t  a semicharac te r  be a l lowed to assume the  

va lue  0. I n  fac t :  

3.1.6. Le t  G be a f ini te  semigroup such t h a t  for eve ry  pa i r  of d i s t inc t  e lements  

x, y eG,  there  exis ts  a semicharac te r  Z vanish ing  nowhere  such t h a t  g ( x ) : # Z ( y  ). 

Then G is a c o m m u t a t i v e  group.  

3.2.1. F o r  the  momen t ,  we consider  a f ini te  c o m m u t a t i v e  semigroup G and  sup- 

pose t h a t  g is a s emicha rac te r  of G. We will use the  no t a t i on  and  resul ts  of 2.11. 

F o r  some x ~ G ,  we have  Z ( x ) # 0 "  Then  2.6.2 shows t h a t  x ( a ) # 0  for some a e H ,  

and  hence z ( a ) =  1, b y  3.1.2. We t ake  % =  1-[ a. I t  is clear  t h a t  Z(ao)= 1 and  
aeH, x(a)=l 

t h a t  for a e H ,  we have  z ( a ) = l  if a o a = a  o and  z ( a ) = O  if a o a # % .  F o r  all  x e G ,  

we have  g(x)=z(ao) )~(x )=y , (aoX) .  I f  xeT,~ and  aoa=ao,  then  a o x e T a . , ~ = T a  ' and  

aox=ao(aox)eaoT,~o=Ta.  NG ~ . I f  xeT,~ and  aoa:#a o, then  x m = a  for some m and  

hence Z(x) m = Z ( a ) = 0 ,  which impl ies  t h a t  :~ (x )=0 .  Now T ~ . N G  ~ is a group and  

g ( a 0 ) # 0  ; hence Z, wi th  i ts  doma in  r e s t r i c t ed  to  the  group  T~, N G ~ is a charac te r  

of t h a t  group.  We have  therefore  p roved  the  following theorem.  

3.2. Theorem. I f  G is a f ini te  c o m m u t a t i v e  semigroup and  Z is a s emicha rac te r  

of G, then  there  is an e lement  % e l l  and  a charac te r  :~a. 15 of the  group  T~. N G ~ 

such t h a t  

0 if a 0 a # a  0 for the  e lement  a such t h a t  x ~ T ~ ,  

Z ( x ) =  g a . ( % x )  if a o a = a  o for the  e l emen t  a such t h a t  x s T ~ .  

3.2.2. W e  po in t  ou t  t h a t  Theorem 3.2 r emains  va l id  for c o m m u t a t i v e  semigroups  

G in which all  e lements  have  f ini te  order  and  in which H is finite.  

3.3. Theorem. If  G is a f ini te  or  inf in i te  c o m m u t a t i v e  semigroup,  all  of whose 

e lements  have  f ini te  order,  if a 0 e H,  and  if Xa. is a cha rac t e r  of the  group Ta. N G ~ 

t h e n  the  funct ion  :~, def ined b y  the  re la t ions  

X (x) = { 0 if a o a # a  o for the  e lement  a such t h a t  x e T a ,  

Za.(aox ) if a o a = a  o for the  e lement  a such t h a t  x e T a ,  

is  a semicharac te r  of G. 

is  F o r  t y p o g r a p h i c a l  r e a s o n s ,  w e  v i o l a t e  h e r e  t h e  c o n v e n t i o n  o f  f o o t n o t e  4.  



F I N I T E  D I M E N S I O N A L  CONVOLUTION ALGEBRAS 85 

Proof.  Since Z(ao)~=0, we have  only  to  p rove  24(xy)=24(x)24(y) .  I f  x e T a  and  

y e T b ,  t hen  x y e T a b .  I f  a o a b = a  o, t hen  a o a = a o a b a - - a o a b = a  o and  a o b = a o a b b =  

= a  o a b = a  0. I f  a 0 a = a  o b = a 0 ,  t hen  a o a b = a  0 a a  o b = a  o. Therefore  we have  24(xy) 4=0 

if and  on ly  if Z (x) 4= 0 and  24 (y) ~: 0. I f  24 (x) :~ 0 and  24 (y) 4 0, we then  have  24 (x) 24 (y) = 

= 24~0 (a o x) 24~. (a o y) = z~, (ao x a o y) = Za, (ao x y) = 24 (x y). 

W e  have  also the  following s imple consequences of Theorems 3.2 and  3.3. 

3.3.1. Corollary. Le t  G be a f ini te  c o m m u t a t i v e  semigroup.  Then  the  semichar-  

ac ters  of G form a l inear ly  i ndependen t  set  of functions.  

Proof.  I f  241 . . . . .  24~ are  semicharac te r s  of G, if ~1 . . . . .  r162 and  ~ ccs g j = 0 ,  
j - 1  

t hen  consider  a n y  i d e m p o t e n t  a s G  and  the  group Ta fl G ~ On this  group,  every  

semicharac te r  24j is e i ther  iden t ica l ly  0 or is a character .  Since charac te rs  of a f ini te  

g roup  are l inear ly  independen t ,  we see t h a t  ~ j = 0  for all  ?" such t h a t  z j ( a ) 4 0 .  Since 

a is a rb i t r a ry ,  i t  follows t h a t  all  a t =  0 (~= 1, 2 . . . . .  m). 

3.3.2. Corollary.  L e t  G be a f ini te  c o m m u t a t i v e  semigroup a d m i t t i n g  m d i s t inc t  

semicharacters .  Then  m_< o (G). 

3.3.3. Note. Corollaries 3.3.1 and  3.3.2 r ema in  val id  for n o n c o m m u t a t i v e  f ini te  

semigroups  G:  one can show this  b y  ma pp ing  G homomorph ica l ly  onto  a c o m m u t a t i v e  

semigroup H a d m i t t i n g  jus t  the  same semicharac te r s  as G. W e  omi t  the  detai ls .  

3.4. Theorem. Le t  G be a semigroup all of whose e lements  are  of f ini te  order  

and  having  the  p r o p e r t y  t h a t  for al l  x, y e G such t h a t  x=#y, there  is a semicharac te r  

Z such t h a t  Z (x)~=X (Y). Then G is c o m m u t a t i v e  and  Ix = 1 for all x e G. 

Proof.  F o r  all semicharac te r s  Z, we have  Z (x y) = Z (x) Z (Y) = Z (Y) g (x) = X (yx) .  

I t  follows t h a t  x y  = y x .  Also X (x) k~: +ix = Z ( xkx ~Zx) = 24 (xl'~) = X (x) ix and  hence Z (x) ~x+l = 

=24(x) for all  24: thus  we have  x~x+l=x ,  and  b y  2.6.1, l x = l .  

3.5. Theorem.  Le t  G be a f ini te  or inf ini te  c o m m u t a t i v e  semigroup all of whose 

e lements  are  of f ini te  o rder  and  for which l~ = 1 for all  x e G. Then,  for eve ry  x, y e G 

such t h a t  x : # y ,  the re  is a semicharac te r  24 such t h a t  24(x)=#24(y). 

Proof.  I f  24 (x)=24 (y) for all  of the  semicharac te r s  24 descr ibed  in Theorem 3.3, 

we f irst  t ake  a o = x ~x and  ob ta in  24 (x) = 24a~ (% x) = 24a0 (x kxx) = 24a~ (x). Since 24a~ (x) 4= 0, 

we have  24 (y) = 24 (x) 4 0 and  hence a o y~v = ao, 24 (y) = 24a, (x k3: Y). Thus  we have  Za~ (x) = 

= Zao (xkxy)  ; b u t  Za, can be any  cha rac te r  of the  c o m m u t a t i v e  group T~, fl G ~ (which 

in th is  case is j u s t  Tao), so we have  x = x k x y .  This follows from the  wel l -known theorem 
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t h a t  d i s t inc t  e lements  of any  c o m m u t a t i v e  group can be sepa ra t ed  b y  characters .  

See for example  Wei l  [48], p. 99. W e  also have  xk::ykY=x kz since %y~Y=%. Since 

x and  y are qui te  in t e rchangeab le  in th is  a rgumen t ,  we also have  y=y~yx and  

yky x~x = y~y. Therefore x kx = x ~x y ~  = y~y and  x = x k~ y = yk~ y = y. This  completes  the  

proof.  

3.6.1. Re tu rn ing  to  the  case of a f inite c o m m u t a t i v e  semigroup G, we see b y  

Theorem 3.2 t h a t  all  semicharac te r s  of G are  given b y  Theorem 3.3. Each  semi- 

cha rac te r  of G, is, of course, a semicharac te r  of G ~ In  the  o ther  direct ion,  i t  follows 

from Theorem 3.3 t h a t  each semicha rac te r  of G ~ can be ex t ended  to be a semichar-  

ac te r  of G in one and  only  one way.  In  fact ,  if x ~ Ta and  x non e G ~ then  axe  G ~ 

and  xm=a for some m>_l .  Therefore  Z ( x ) = z ( a ) z ( x ) = z ( a x )  if z ( a ) = l  a n d z ( x ) = 0  

if Z (a) - 0, or more shor t ly ,  Z (x) = Z (a) :~ (a x). 

3.6.2. We also not ice  t h a t  if G is a f in i te  c o m m u t a t i v e  semigroup,  t hen  the  

number  of d i s t inc t  semicharac te r s  of G is jus t  the  n u m b e r  of e lements  of G ~ This  

follows from Theorems 3.2 and  3.3, since the  n u m b e r  of charac te rs  of a f inite com- 

m u t a t i v e  group is just  the  n u m b e r  of i ts  e lements .  

3.7. Le t  G be a semigroup.  Let  G deno te  the  set of all semicharac te r s  of G. 

F o r  Z, ~PeG, the  p roduc t  Z~0 is the  funct ion  on G such t h a t  Z~(x)=z(x)~f(x) for 

all  xeG. 

We list  a n u m b e r  of s imple  results ,  leaving the  proofs to  the  reader .  

3.7.1. The semicharac te r s  of a semigroup e i ther  form a semigroup b y  themse lves  

or t h e y  form a semigroup if an add i t i ona l  e l emen t  0 is suppl ied.  See semigroups  1 

and  5, Append ix  2. 

3.7.2. I f  G is a semigroup,  t hen  0 has  a uni t .  

3.7.3. I f  G is a semigroup wi th  a uni t ,  then  0 is a semigroup.  

3.7.4. I f  G and  G are  semigroups,  then,  in the  no t a t i on  of Theorems 2.2 and  

2.3, 0 ~ -  (G)z and (~ = ((~)~. 

3.7.5. I f  Z is a semicharac te r  of a semigroup G and  if e ( x ) - 1  for Z ( x ) + 0  and  

e ( x ) - 0  for Z ( x ) = 0 ,  then  e is a s emicha rac te r  of G. 

3.7.6. Le t  G be a semigroup and  le t  Z be a semicharac te r  of G. Le t  ~p(x) 

= [Z (x)]-I  for Z (x) ~ 0 and  ~f (x) = 0 for Z (x) = 0. Then ~f (x) is also a semicharac te r  of G. 

3.7.7. I f  Z is a semicharac te r ,  then  so is 2.. 

3.8. Le t  H be a f ini te  c o m m u t a t i v e  i d e m p o t e n t  semigroup.  I f  a e H ,  then  we 

say  t h a t  a is a p r ime  e lement  of H if the  equa l i t y  a = b c ( b ,  c e H )  implies  b = c = a .  
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3.8.1. 

imp ly  b = a. 

3.9. Theorem.  

one pr ime  element .  

An  e lement  a of H is a p r ime  e lement  if and  only  if a = a b  and  b e l l  

E v e r y  f ini te  c o m m u t a t i v e  i d e m p o t e n t  semigroup conta ins  a t  least  

Proof.  Le t  a 1 be any  e lement  of H. I f  aj is no t  a p r ime  element ,  then  there  

is an e lement  a s ~ H  such ~hat a l = a l a  2 and  a 2 ~ a  1. Repea t ing  this  step,  we ob ta in  

a sequence al, a 2 . . . . .  am such t h a t  a~=a~ai~l  and a~+l~=a~ ( l < i _ < m - 1 ) .  I f  h<_]<_m, 

we have  a h = a h a h + x a h ~ 2 . . . a j  and  hence a h a j = a ~ .  I f  h < ] < _ m  and  a h = a j ,  t hen  

ah = ah ah+~ = ai ah ~1 ~ ahel ,  and  this  is a cont radic t ion .  Therefore  the  e lements  a~ are  

all  d is t inc t ,  and,  H being finite, t he  sequence a~, a 2 . . . . .  am will even tua l ly  end wi th  

a p r ime  e lement  a~. 

3.9.1. I t  is now clear t h a t  for every  e lement  a~ ~H,  there  is a pr ime e lement  

a~ of H such t h a t  a l = a l a m .  

3.9.2. I f ' H  has  jus t  one p r ime  e lement  p, then  a = a p  for all a e H  and hence 

p is a uni t  of H.  I t  is easy  to see t h a t  if H has  a uni t  e, t hen  H has jus t  the  

one pr ime  e lement  e. 

3.10. Theorem.  Le t  G be a c o m m u t a t i v e  semigroup all  of whose e lements  are  

of f ini te  order  and  le t  H be the  semigroup of i d e m p o t e n t  e lements  of G. I f  H is 

finite, then  G is a semigroup if and  only  if H has a unit .  

Proof.  The e lements  of G are  the  semicharac te r s  of G, as cons t ruc ted  in Theorem 

3.3. Le t  X~ be any  of the  semicharac te r s  de t e rmined  b y  a o = b ,  Z2 a semicharac te r  

de t e rmined  b y  a 0 - c ,  where b and  c are e lements  of H.  Then  X1Z2 fails to  be a 

semicharac te r  if and  on ly  if Z1 (x)X2 ( x ) =  0 for all  x e G;  t h a t  is, if and  only if b a 4 b 

or c a m c  for eve ry  a ~ H .  I f  H has  a uni t  e, t hen  b e = b  and  c e = c  and  Z1X2 is a 

semicharac te r  of G. I f  H does no t  have  a uni t ,  then  3.9 and  3.9.2 i m p l y  t h a t  H 

has  a t  leas t  two pr ime  elements .  I f  b and  c are  d i s t inc t  p r ime  e lements  of H,  t hen  

b a r b  if a : # b  and  c a 4 c  if a = b ,  and  therefore  the  p roduc t  X1X2 is iden t i ca l ly  0 and  

is no t  a semicharac te r  of G 

3.11. Theorem.  Le t  G be a c o m m u t a t i v e  semigroup all  of whose e lements  a re  of 

f ini te  order,  and  le t  H be as  usual  t he  semigroup of i d e m p o t e n t  e lements  of G. I f  

H is finite,  t hen  16 ~ G  ~ 

la The symbol " ~ "  is taken to mean the existence of a one.to-one correspondence ~ such 
that T (x y) = v (x) v (y) whenever either side exists. 
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Proof. This follows at once from 3.2.2 and 3.3. 

3.12. In some of the following paragraphs, we shall restrict the semigroup G a 

little more. We shall consider a commutative semigroup G all of whose elements are 

of finite order, such that  the subsemigroup H of idempotent elements is finite, and 

such that the integers kx(xeG)  have a finite upper bound. These conditions are 

obviously satisfied by all finite commutative semigroups G. Since the kx are bounded, 

they have a least common multiple k. I t  is clear from 2.6.1 that we have x k+zx = x  zx 

for all x sG.  

3.13. Theorem. If  G satisfies 3.12 and H has a unit, then G satisfies 3.12 and 

(G)~ G. Also the set of idempotent elements of G is isomorphic with /t.  

Proof. Theorem 3.10 shows that G is a semigroup. If  z s G ,  then y,(x) k§ 

=Z(xk=Zx)=z(xZx)=Z(x) zx, and hence Z(x)k+l=Z(x) for all x sG .  I t  follows that  

Xk+~=): for all 7eG.  This, together with 2.6.1, shows that  every element of ~ is 

of finite order, that  the integers /c x have the upper bound k, and that  (G)~ 

From 3.1.2, 3.2.2, and 3.3, we see that if Z2=Z, then there is an a o s H  such that  

3.13.1. 
z ( x ) = t ~  if a o a 4 a  o for the element a such that  xeT~,  

[1 if aoa=a o for the element a such that  xsT~.  

If  2 of these semicharacters Z are distinct, they take on different values for some 

x e l l .  For x e H, these are just the semicharacters of H. This proves the last state- 

ment of the theorem and completes the proof of the fact that  C~ satisfies 3.12, since 

it is clear that  /~ is finite. 

3.14. Theorem. Let G satisfy 3.12 and let H have a unit. For each x eG, the 

function ~0x (Z)= Z(x) is a semicharacter ~x of G. Furthermore, the y)x are all distinct 

if and only if G = G  ~ 

Proof. If  Z1, :~2 e G and x e G, then yJx (Z1 •2) = ZJ Z2 (x) = Z1 (x) •2 (x) = y~x (X1) YJ~ (Z2). 

Since the function Zo(X)= 1 is a semicharacter of G, we have yJ, (Z0)= 1 and Z0 e G. 

Therefore ~'x (Z) is not identically 0 and hence is a semicharacter of G. The second 

part of the theorem follows at once from 3.4 and 3.5. 

3.15. Theorem. Let G satisfy 3.12 and let H have a unit. Then the set of all 

distinct Y~x of Theorem 3.14 are just those ~x for which x e G  ~ 

Proof. Suppose that  x~eG and x I n o n e G  ~ . Let a e H  be the a s u c h t h a t x  1eTa 

and let x 2 = a x  1. Then x2eG ~ and x2eTa. If  Z e ~ ,  we use 3.2 and 3.3 to establish 

the equalities 
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0 if ao a ~= a o 

Z ( X l ) =  ~,a,(aoXl) if a o a = a  o 

0 if ao a :~ a o 

Z(X*)= Z~.(aox2) if a o a = a  o 

Since a o x  ~ = a o a x  1 = aoX  1 when a o a  = ao, we have  X (xl) = Z (x2) and  therefore  ~ ,  = ~f~, 

G ~ G ~ wi th  x~ e Fu r the rmore ,  if xi, x 2 e and  ~ = ~x,, then  Z (Xl) = i~ (x2) for al l  Z e G. 

This  implies  t h a t  x l = x 2 ,  in view of 2.11 and  3.5. 

3.16. Theorem. I f  G satisfies 3.12 and  H has a uni t ,  t hen  the  set  of d i s t inc t  

semicharac te rs  Fz of 3.14 is i somorphic  wi th  G ~ 

Proof.  Theorem 3.15 shows t h a t  the  correspondence x ~ F x  is a one- to-one cor- 

respondence  be tween  G ~ and  the  set  of d i s t inc t  y~,. F u r t h e r m o r e ,  if x l ,  x 2 s G  ~ we 

have  y~ . . . .  (Z) = Z ( x l x 2 )  = Z (xl) Z (x2) = Y~xl (Z) YJx~ (Z), and  therefore  this  correspondence is 

an  isomorphism.  

3.17. Theorem. Le t  G be a f ini te  c o m m u t a t i v e  semigroup.  Then G ~ G  if and  

only  if G has a un i t  and  G = G  ~ . 

Proof.  F r o m  3.7.2 and  3.11, we see t h a t  the  condi t ions  enunc ia ted  are  necessary.  

F r o m  3.16, we see t h a t  we shall  have  p roved  the i r  sufficiency as soon as we have  

shown t h a t  G has no semicharac te rs  o ther  t han  the  Fx of Theorem 3.14. Since, as 

Theorem 3.13 shows, ( ~ ) o =  G, we can a p p l y  3.6.2 to  f ind t h a t  G, G, and  G all  have  

the  same number  of elements .  Bu t  the  n u m b e r  of d i s t inc t  ~Px is, in the  presen t  case, 

the  number  of e lements  of G. 

3.17.1. I t  is of in te res t  to note  t h a t  if G is a f ini te  c o m m u t a t i v e  semigroup,  

t hen  G ~ G  ~ if and  only if H has a uni t .  

3.17.2. I t  is also of in te res t  to  note  t h a t  a f ini te  c o m m u t a t i v e  semigroup G is 

i somorphic  to L for some f ini te  semigroup L if and  only  if G = G ~ and  G has  a unit .  

I n  connect ion with this  p roblem,  see Schwarz [38]. 

3.18. I n  the  preceding paragraphs ,  the  requ i rement  t h a t  H have  a un i t  was 

needed to make  G a semigroup.  I f  G is no t  a semigroup,  we can make  i t  one if we 

supp ly  i t  wi th  a zero. We suppose  t h a t  G is a f ini te  c o m m u t a t i v e  semigroup such 

t h a t  G is not  a semigroup.  We let  0 be the  set  consist ing of all  the  Z of G and  

one o ther  e lement  c~. We define mul t ip l i ca t ion  in 0 as follows: 
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to �9 t o  = t o  �9 Z : Z "  t o  = t o  ; 

Z~'Z~=Z~Z2 if ZxZ~ is not  ident ica l ly  0 on G 

Z~'Z.2 = to if Z1Z2 is iden t i ca l ly  0 on G. 

Here  Z~ Z2 denotes  the  funct ion Z1Z~(X) = Z~(x) z~(x)" Now (~ 1s a semigroup wi th  

a unit.  I f  k is the  least  eommon mul t ip le  of all of the  k~ for x ~ G ,  we have  

Z(X)~+~,~=Z(Xa:~x)=z(xt. ' ,)=Z(X)~ and  hence Z(X) ~ ~=Z(X) and  Z ~ ~=Z.  Since we 

also have  of f=  o9, we see tha t  ()~162 Therefore.  according to 3.6.2, (~ and ('~ have  

the same numbers  of e lements .  

I f  x e G ,  we let  y ~ ( t o ) = 0 ,  ~v~(Z)=Z(x).  Then  we have  

~ (oJ .  7.) = ~ ( to)  = o = Wx ( to)  ~ ( z ) ,  

~f~ (ZI" Z~) -- v/~ (Z1 Z',) - Zl (x) Z2 (x) = ~x (Zl) ~f~ (X2) if ZI Z2 is not  ident ica l ly  O, 

~Vx (Zl" Z2) = ~'~ (r = 0 = ;6 (x) Z2 (x) = ~v~ (Zx) Y~x (Z2) if 7.1 Z2 is iden t i ca l ly  O. 

I t  follows t h a t  y~x is a s emicha rac te r  of (~ if i t  is not  iden t ica l ly  0. But  Zo, 

the  funct ion iden t ica l ly  l ,  is a s emicha rac te r  of G. Therefore  we have  ~ .  (Zo) = Zo (x) = 1 

and ~vx is accordingly  a semicharac te r  of 0 .  We  can produce  one addi t iona l  semi- 

charac te r  of 0 ,  namely ,  the  funct ion  u which is iden t ica l ly  1 on (~. 

As before,  we ob ta in  the  set of all  d i s t inc t  ~vx as x ranges t h rough  G ~ . I t  is 

p la in  that. Y~0 is d i s t inc t  from all  of the  ~'x. I f  G ~ has n e lements ,  t hen  G has n 

e lements ,  b y  3.6.2. Then  (~ and  G bo th  have  n +  1 elements .  Therefore  (~ is the  set  

consis t ing of ~v 0 and  the  yJ~ wi th  x e G ~ 

If  xj, x 2 e G ~ then  ~'x, (Z) Y)~ (Z) = Z (Xl) Z (X2) = Z (XlX2) = ~1) . . . .  (Z) and  ~x, (to) ~ :  (to) = 

= 0 = ~  ..... (to). Therefore  we have  yJ~,~ = ~  . . . .  . We  also have  y,0~p~ = ~p~, and  V/or/0 = Y~0. 

Br ing ing  these  resul ts  together ,  we see t h a t  we have  proved  t h a t  if G is a f ini te  

c o m m u t a t i v e  semigroup such t h a t  G is not  a semigroup,  then  ( ~ ( G ~  

3.19. Ano the r  possible way  to t ake  care of the  e v e n t u a l i t y  t h a t  G fails to be a 

semigroup is to include the  funct ion  iden t ica l ly  0 among the  semicharac te r s  of G. 

Again  we suppose  t h a t  G is a f ini te  c o m m u t a t i v e  semigroup,  and  we le t  G be the  

set consis t ing of all  the  semicharac te r s  of G and  the  funct ion to such t h a t  to ( x ) =  0 

for all x e G. We define mul t ip l i ca t ion  in G in the  usual  way. 
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G = ( , .  I f  r is a I f  G is not  a semigroup,  i t  is easy to show t h a t  we have  ~ "' 

semigroup,  we have  G~(G)~. I n  bo th  cases, we see t h a t  Cr is a semigroup,  and  G =  (GL- 

?, o F r o m  3.18, we have  G~=(G )e if C~ is no t  a semigroup.  I f  (~ is a semigroup,  we have  

G~=G ~ b y  3.10 and  3.17.1. Hence  (G)~(G)e~-(G~ b y  3.7.4. Therefore  in bo th  cases, 

we have  G~-((G~ W e  note,  f inally,  the  following equa l i t i es :  

((G~ = ((G~ = ((Ge)~ = ((Gz)~ = ((Ge)z) ~ = ((Gz)e) ~ 

3.20. I f  G i s  a f inite c o m m u t a t i v e  semigroup such t h a t  G ~ G ,  i t  is na tu r a l  to ask 

a b o u t  the  re la t ion  of G to G. I f  the  semigroup G is a group,  then  we have  G ~ G .  

I f  G is the  semigroup of order  3 l i s ted  as No. 10 in A p p e n d i x  2, then  G is the  semi- 

group No. 8 of A p p e n d i x  2. Since G has  a zero and  G does not ,  we see t h a t  G ~ G  

is false in th is  case. Necessary  and suff icient  condi t ions  for G ~ G  appea r  to  be qui te  

compl i ca t ed ;  however ,  we give a br ief  ske tch  of cer ta in  condi t ions  which are  necessary  

for th is  i somorph i sm to obta in .  

Suppose,  then,  t h a t  G~=G. This impl ies  t h a t  G ~ = G  and  t h a t  G has a unit .  F o r  

e lements  al ,  a S in H,  the  subsemigroup  of i d e m p o t e n t  e lements  of G, we wri te  a I <e~e 

if a l a 2 = a  J. I t  is easi ly  seen t h a t  H is a l a t t i ce  under  the  pa r t i a l  order ing jus t  de- 

fined, t h a t  the  meet  a 1 A a S is ala~ ,  while the  join a~ V a S is t h e  p roduc t  of all  a s H  

such t h a t  a l a  = a  1 and  a 2 a = d  2. Since H has  a uni t ,  the  p roduc t  def ining a l  V a 2 is 

never  void.  I f  • is a n y  semicharac te r  of G such t h a t  : ~ = Z ,  then,  b y  3.13.1, we f ind 

t h a t  i ~ ( x ) = 0  if a . ~ x  k and  Z ( x ) =  1 if a < x  k, where ]c is the  leas t  common mul t ip le  

of all  of the  integers  k~ (x ~ G), and  where a is some e lement  of H.  I f  we call  th is  semi- 

cha rac te r  Z~, we see t h a t  the  Z~ are  all  d is t inct ,  even over  the  subsemigroup  H.  I t  is 

now clear t h a t  the  set (Za) of all  i d e m p o t e n t  e lements  of G is i somorphic  wi th  the  

dua l  /~ of H.  iv 

Now, Z~ < Z,_. if and  o n l y  if ~a~ Za~ = ~a~ ; th is  equa l i t y  is equ iva len t  to  the  asser- 

t ion  X~,(x)= 1 implies  Za~(x )=  l ,  which, in turn ,  is jus t  a~ < a  1. Therefore  the  la t t i ce  

/ t  is i somorphic  to  the  la t t ice  ob ta ined  f rom H b y  inver t ing  the  re la t ion  < .  I f  the  

r e l a t ion  G=~G is to  obta in ,  we mus t  have  / t=~H,  or, in o ther  words,  H nms t  be 

la t t i ce - i somorphic  wi th  the  la t t i ce  ob ta ined  b y  inver t ing  it. The  semigroup of order  

5 wi th  the  t ab l e  

1~ This idea has also been used by SCKWARZ [38]. 
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1 2 3 4 5 

1 2 3 4 5 

2 2 3 4 5 

3 3 3 5 5 

4 4 5 4 5 

5 "5 5 5 5 

has the properties G = H  and G~=G, but it does not have the property that G~G, 

as a sketch of the lattice H will show. 

Even if G has the property that  H is isomorphic with its inverted lattice, the 

isomorphism G-~G can still fail. An isomorphism between G and G implies an iso- 

morphism T(a )~-*g~a  between H and its inverted lattice. I t  can be proved that  

G==-G then implies an isomorphism between T~ and T~(,), which are groups in the 

present case. The semigroup No. l0 of Appendix 2 fails to satisfy G~G because 

v ( 1 ) = 3  and T~= {1, 2} ~i~ T a= {3}. 

I t  is, finally, possible to have T ~ = T , ( , )  for all a e H  and still to have G~-G fail 

because of the way elements from different T~ multiply. The relationships appear to 

be quite involved. The semigroup of order 6 with the following multiplication table 

will serve as an example. 

1 

2 

3 

4 

5 

6 

1 2 3 4 5 6 

1 2 3 4 5 6 

2 1 3 4 5 6 

3 3 3 4 5 6 

4 4 4 3 6 5 

5 5 5 6 5 6 

6 6 6 5 6 5 

Finally, we make some remarks concerning general representations of semigroups. 

3.21. Theorem. Every semigroup G of finite order n, commutative or not, has 

a faithful representation by matrices of order not exceeding n + 1. 

Proof. Le t  G = { x l ,  xo . . . . .  xn}. We adjoin a unit x 0 to G and consider the 

matrices Mk = (c~j), k =  l, 2 . . . . .  n, where the element in the i-th row and j-th column 

is c~j = ~i (xk xj). (i, ~ = O, 1 . . . . .  n). If  M~ Mz = (dij) and xk x~ = xm, we have 
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c k c j: i h  ~], 
h = 0  h = 0  

and hence M k M l  = M,,. Furthermore ,  if Mk = Mz, then q)~(xkxj) = q~(xzxj) for 

i=O, 1 . . . . .  n. This implies tha t  xkx j=xzx j  for ? '=0,  1 . . . . .  n ;  but  we have x~xo=x~ 

and xz x 0 = xl, and hence k = l. Therefore the correspondence x ~ M k  is an isomorphism. 

The adjunct ion of a unit  to G is done to assure tha t  the correspondence x~--->Mk 

be one-to-one. I t  can be omit ted if G contains no pair  of elements xk, x~ such tha t  

xkxj=x~xj for all xj~G. I f  G contains no pair  of elements xk, xz such tha t  x/xk=xsx~ 

for all x/~G, then the  adjunct ion can be omi t ted  if c ~,~ is taken to be V~(xjxk). 

3.22. Theorem. Let  x--->B(x) be a homomorphism of a finite semigroup G into 

the semigroup ~))~. Then the set of matrices (B(x)}x~G is irreducible if and only if 

there are exact ly  s ~ linearly independent  matrices in the set (B(x)}z~c. 

This is essentially Burnside 's  theorem (v. d. Waerden [46], p. 197). 

3.23. Irreducible representations of a finite semigroup by  matrices need not  be 

uni tary.  I n  fact, a semicharacter  Z of a semigroup G such tha t  Z (x)= 0 for some 

x~ G is a 1-dimensional representat ion of G which is plainly not  uni tary.  As another  

example, consider the semigroup described in Theorem 4.2 in/ra. The mapping  which 

sends each sequence 4.2.1 into its t-th coordinate ( t=2,  3 . . . . .  p §  1 and st > 1) is an 

obviously irreducible representat ion of the semigroup in ~J~t in which no image 

matr ix  can be made un i ta ry  under  any  inner product .  

3.24. Note. Extensive discussions of representations from another  point  of view 

are found in Clifford [9] and Suw [43]. See also the very  general notion of 

representat ion introduced by  Lyapin  [25]. 

w 4. Ci Algebras 

I n  the present section, we apply the s tructure and representat ion theory  for 

finite semigroups developed in w167 2 and 3 to a s tudy  of algebras l:j {G). We remark  

first tha t  all l: 1 algebras of dimensions 2 and 3 are listed in Appendices 1 and 2. 

4.1. Theorem. Let  G = {xl, x 2 . . . . .  xn} be a finite semigroup. The algebra s (G) 

has a faithful representat ion as a subalgebra of ~ p ,  where p_< n + 1. 

Proof. B y  Theorem 1.7, l :  1 (G) is isomorphic to tile algebra of all formal linear 

combinations z- ~ ~jxs. Adjoining a unit  x 0 to G and defining M i as in 3.21, we con- 
j = l  
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n 

sider the mapping ~jxi-> ~ ajMj.  I t  is easy to see tha t  this produces an isomor- 
j=0  )~0 

phism of IZ 1 (G) into ~J~:l .  (I t  is in fact the regular representat ion of I~I(G~). ) 

4.1.1. Remark.  The algebras G and H (Appendix 2), which can be shown to  

have no isomorphs contained in ~ s ,  show tha t  Theorem 4.1 cannot  be strengthened. 

The algebra E (Appendix 2), on the other  hand, shows tha t  in some cases, I~ 1 (G) 

has an isomorph contained in ~ q  with q < o(G).  

4.2. Theorem. Let  A be a finite dimensional semisimple algebra over K.  Then  

A is isomorphic to C1 (G) for a finite semigroup G if and only if, in the representat ion 

of A as a direct sum of full matr ix  algebras, at  least one summand  is 1-dimensional. 

ProoL Suppose tha t  A is isomorphic to the algebra A ' =  K Q~)~,(~ ~)~ ,O""  O ~)~p, 

where sl, s z .... s v are positive integers. Then, writing el ~) as the element (Skiblj)~/~_l 

of ~)~, we see tha t  the elements 

i {1 ,0 ,o  . . . . .  oi 
4.2.1 

[ { 1 , 0  . . . . .  0, e ~k), 0 . . . . .  0} (i, j =  1, 2 . . . . .  sk; k = l , 2  . . . . .  p), 

form a basis for A '  which is closed under  multiplication. We then apply Theorem 1.10. 

To prove the converse, we note tha t  the mapping  L - + L ( 1 )  (where we denote by  1 

the function identically 1) ~f C1 (G) onto K is obviously a linear functional on CI(G) and 

fur thermore tha t  M *  L (1) = Ms (L~ (1 (xy)))  = M (1) L (1). Hence C1 (G) admits  at  least 

one homomorphism onto K, and if I~ 1 (G) is semisimple, this proper ty  is reflected in 

the fact  t ha t  some direct summand  of IZ 1 ( G ) i s  isomorphic to K. This completes 

the proof. 

4.3. Remark.  Let  G be a finite semigroup. Then C1(G) i s  not  isomorphic to  

s)j~p for any  integer p >  l, nor is CI(G) a radical algebra. These observations follow 

at once from the fact, noted in the proof of Theorem 4.2, tha t  IZ I(G) admits  a homa-  

morphism onto K. The fact  t ha t  l~ 1 (G) is never a radical algebra is also a simple 

consequence of the existence of at  least one idempotent  in G. If  a is an idempotent  

in G, then the functional  ;ta is an idempotent  in ~1 (G), and clearly IZ 1 (G) is not  

ni lpotent  algebra. However,  the radical of IZl (G) can have any dimension from 0 to  

o ( G ) - l ,  inclusive (see Theorems 4.2, 4.9, and 4.11). 

4.4. Remark.  I t  follows from 4.3 tha t  no s ~ linearly independent  s X s complex 

matrices ( s > l )  can form a semigroup;  if so, their linear combinations would be an  
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s algebra isomorphic to ~FJ~. I t  follows from 4.3 and Theorem 3.22 tha t  no semi- 

group of linearly independent  complex s X s matrices (s > l) can be irreducible. 

4.5. Example. We see from 4.3 tha t  not  all finite dimensional algebras are s 

algebras. Consider also the algebra over K with basis {e I, e2, u} and the multiplication 

table 

el  

s e l  

e 2 0 

u 0 

e 2 U 

0 u 

e 1 0 

u 0 

(v. d. Waerden [46], p. 144). I t  is a routine mat te r  to prove tha t  this algebra is not  

an 121 algebra. 

4.6. The algebras O)~p (p=2,  3 . . . .  ) are not  I:  1 algebras (4.3) bu t  they  do admi t  

bases such tha t  the product  of 2 basis elements is either 0 or another  basis element. 

The algebra over K with basis {YD Y~., ?/3} and the multiplication table 

Yl Y2 Y3 

Yl 0 Y3 0 

Y.) - Ya 0 0 

Y3 0 0 0 

fails to have this property.  We omit the verification. 

4.7. Remark.  Algebras having the proper ty  mentioned in 4.6 can be used to 

construct  121 algebras, as follows. Let  A be all algebra with basis {Yl, Yz . . . . .  y,,} such 

tha t  y iy j=O or some ye ( i , ~ = 1 , 2  . . . . .  m), and let B ~ s  ), where G={xl ,  x 2 . . . .  x , }  

is a semigroup, and x~--x~. Then the direct sum A @ B  has a basis 

{(Yl, xj), (Y2, Xl) . . . . .  (Ym, Xl), (0, xj), (0, x2) . . . . .  (0, a'n)~. 

This basis is a semigroup and hence, by  Theorem l,lO, A @  B is an s algebra. 

4.8. Remark.  All impor tan t  class of algebras are those which are linear space 

sums of their minimal left ideals (see for example Hopkins [20] or Dieudonnd [l l]) .  

121 algebras need not  have this property.  Consider, for example, the 121 algebra formed 
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with semigroup 9 of Appendix '2. As noted in Appendix 2, this algebra is isomorphic 

to the algebra of all 2 X 2 matrices of the form 

4.8.1 
(/22 

This algebra is not the sum of its minimal left or right ideals. A simple calculation 

shows that if a22=~0 , for a matrix A of the form 4.8.1, then every left ideal con- 

taining A must contain all matrices of the form 

4,8.2 5121 . 

and the left ideal of all matrices of the form 4.8.2 is not minimal, the set of all 

matrices of the form 

b12~ 

being a proper sub-left ideal. A similar argument shows that no element 4.8.1 with 

a l l # 0  is contained in a minimal right ideal. 

We next give concrete representations for l~ I(G) for a few finite semigroups G. 

4.9. Theorem. Let o ( G ) = n  and let x y = y  for all x, yeG. Then s is iso- 

morphic to the algebra of all n X n  matrices (aij)~.j~ such that a i j = 0  for 2~i<_n. 

Proof. Let e~j ( i , j = l , 2  . . . . .  n) be as in the proof of Theorem 4.2, and let 

x 1, x~ . . . . .  xn be the elements of G, written in any order. Then the mapping xv-->ell, 

x~-~-en§ ( i=2 ,  3 . . . . .  n) is an isomorphism of G into the nmltiplicative semigroup 

~2~,, with the image matrices linearly independent. The linear combinations of the 

matrices en, e n + elz . . . . .  ell + el,  being just the matrices (~j)~,~-i with aij =: 0 for i > 1, 

the theorem follows. 

4.10. Theorem. Let G = ( x  l ,x  2 . . . . .  x~} and let x~xj=x 1 ( i , i = l , 2  . . . . .  n). Then 

s is isomorphic to K•Z,_I .  

Proof. We first represent G faithfully by linearly independent elements of ~J~n+ 1, 

as follows (notation analogous to that in 4.2): Xl->ell, x~--->ell+e2,i§ ( i=2 ,  3 . . . . .  n). 

I t  is easy to see that this mapping has the properties required. I t  follows that I: 1 (G) 

is isomorphic to the algebra of all linear combinations of the matrices ell, e2,s, e2,4 . . . . .  

e2,~1 in ~Jtn+l; and this algebra is obviously isomorphic to K Q Z , _ I .  
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4.11. Theorem.  Le t  G be a finite semigroup w i t h a  single genera tor  x, for which 

l~=l and kz = k  (see 2.6.1) are a rb i t ra ry .  Then  l : l (G ) is isomorphic to  the  direct  

sum A~K~,  where A is an algebra of dimension l - 1  having a single genera tor  u 

for which u, u 2 . . . . .  u z-~ are l inearly independent  and  uZ=0.  

Proof.  Consider the mapp ing  of G into A@Kk defined b y  

and  b y  

~2zei 2j~ . 
xJ--> {uJ; 1, exp ( ~ ) ,  e x p \  k ] '  .., exp k 

for j = l , 2  ..... l - 1  

. . . .  exp k 

for ] = l , / + l  . . . . .  l + k - 1  

(i2= _ 1). I t  is clear t ha t  this is an isomorphism of G into A@Kk, and t h a t  the  

images of x, x 2 . . . . .  x l+~ ~ are a l inearly independent  basis in A@Kk. This establishes 

the present  theorem.  

4.12. Theorem.  Le t  G = {x 1, x z . . . . .  x~} with the operat ion x, xj = xm~ (~.j). The  

algebra 1:1 (G) is isomorphic to Kn. 

Proof. The  mapp ing  xF~{0,  0 . . . . .  0(~_~), 1(~) . . . . .  I(n)} ( i =  1, 2 . . . . .  n) is an isomor- 

phism carrying G onto a basis for Kn. 

4.13. Remark .  The semigroup described in the preceding theorem is a s imple 

example  of a non-group whose /:1 a lgebra is isomorphic  to t ha t  of an Abelian group 

of order n. In  Theorem 5.21 in/ra we shall de termine  all finite semigroups having  

this proper ty .  

We nex t  consider an a rb i t r a ry  finite semigroup G = {x 1, x 2 . . . . .  xn). We wish to 

discuss the effect upon 1:1 (G) of certain adjunct ions  of an e lement  to G. We make  

use of the  fact  t h a t  there  is a representa t ion  x~-~v(x~) of G b y  l inearly independent  
n 

matr ices  z(x~) and a corresponding representa t ion  L - + v ( L ) =  ~ L(q~)v(x~) of / : I (G) 
t= l  

(see Theorem 4.1). We will form new matr ices  v '(xt)  and z ' ( a )  to represent  G U {a}, 

and  these will de termine  a representa t ion  of /:~ (G U {a)), f rom which we shall be able 

to determine the  s t ruc ture  of 1:1 (G (J {a}) in t e rms  of the s t ructure  of /:1 (G). 

7--  543809, Acta Mathematica. 93. I m p r i m 6  le 10 mai  1955. 
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4 . 1 4 .  

P r o o f .  

where by (~ 0 ) 
�9 z ( x d ,  

EDWIN HEWITT AND HERBERT S. ZUCKERMAN 

Theorem. If G is a finite semigroup, then 121(G,)~Ct(G)@K. 

If z is the adjoined zero, we take 

we mean the matrix ~(xi) bordered above by a row of O's and 

on the left by a column of O's. I t  is clear tha t  the matrices z'(xi), z ' ( z )a re  linearly 

independent and that  they represent G~. Taking linear combinations of the matrices 

z'(x,), T'(z), we see that  I~ I(G~) is isomorphic to the set of matrices 

(0 0) , v ( L )  ' o ~ e K ,  L e s  

1.15. Theorem. If G U r s~ is obtained from G by. idempotent adjunction (see 

Theorem 2.5), then ~1 (G U { ( / } ) ~ 1  (G)@K. 

Proof. If ax i=x lx i ,  xia=~'ixl 

(0 
~'(x~) = 0 

4.16. Theorem. If GU [a~ is 

element (see Theorem 2.4), then s 

Proof. If (I 3"i - -  X l  ;;gi, "Ti ( t  = .?l; i X 1 

t.17. Theorem. Let (; 

obtained from t; as in 2.2.1. 

( i=  1, 2 . . . . .  n), and a 2 =a ,  we take 

0 ), , ( a ) = ( 1 0  0 ) .  
(X,) T (Xl) 

obtained from G by the adjunction of a repeat 

(G [J -r -= s (G)@Z r 

( i= l, 2 . . . . .  n), and a ")-x~, we take 

0) (!,!) 
0 0 , ~' (a) = 0 �9 

0 T (Xt) 0 "F ( '1) 

be a finite semigroup with a zero, a.  

Then s U {b))~s (G)@K. 

Proof. We take (' " ), o) 
r ' ( ' r i )= 0 z(xi) 0 T(a) " 

( ) Let G u t b s  be 

The relation of I:j if;e) to s ((;) is different from the foregoing. We can take 

T'(r~) 0 ~ ( x d  ' ~ ' ( e ) =  I ' 
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where I is the  un i t  m a t r i x  of the  same order  as the  mat r ices  r(x~), b u t  this  in  

general  does no t  al low us to wri te  s as a d i rec t  sum. W e  see t h a t  E l (G)  is 

i somorphic  to the  set of all  l inear  combina t ions  of v' (xi), and  hence El (Ge) is the  

a lgebra  ob ta ined  by  ad jo in ing  a un i t  to  s (G). 

4.18. Theorem.  I f  E,(G) has a uni t ,  then  s163 

Proof.  L e t  U be the  uni t  of CI(G).  Le t  E be the  uni t  ad jo ined  to CI(G) to  

ob ta in  EI(Ge). F o r  all L s s  we have  U*L:=L*U=E*L=L*E=L,  and  we 

also have  .E*E:E. I f  M e s  we have  M=~E+N for some ~ E K  and  some 

N s s (G). We can wri te  M = ~ (E - U) + (N + zr U). Now N + ~ U s s (G), ( E -  U) * (E - U) = 

=E-U,  (E-U)*L=L*(E-U)=O if L s E I ( G ) .  This  implies,  c lear ly  enough,  t h a t  

E1 (Ge) ~ C1 (G)(~K. 

4.19. Theorem.  If  IZ 1 (Ge) ~.,4(~)B, where A c E 1 (Ge) and B c E 1 (Ge), then,  excep t  

for a possible in te rchange  of ~4 and  B, we have  A ~ E I ( G ) ,  A has a unit ,  and  

E 1 ( e )  = A o r  E 1 (G)~=A(~ (B ~ s (G)). 

Proof.  I f  E is the  uni t  ad jo ined  to E I(G), we have  E = A  1 + B  l for s o m e A  l e a  

and  B, e B ;  fur thermore ,  A I = ~ E  + M  and  B 1 = (1--:r E - M  for some ~ e K  and  some 

MeC1 (G). Now A 1 * B ,  = 0, so we have  :r (1 - ~) E + (1 - 2 ~) M - M e = 0 and  hence ~ (1 - g) = 0. 

Af te r  a possible in te rchange  of .,1 and  B, we can suppose ~ = 0, and  we thus  have  

AI=M and BI=E-M.  I f  f iE+LeA, where LeCI(G), we h a v e 0 = B l * ( ~ E + L ) =  

=(E-M)*( f lE+L)=f lE+L-[ IM-Mr from which i t  follows t ha t  /~=0  and  

L - M * L .  Therefore  we have  A c E , ( G )  and M*L=L for all L ~ A .  If  L e A ,  we 

also have  O = L * ( E - M ) = L - L * M ,  so we see t h a t  M is a uni t  of A.  I f  -N e EI (G), 

then  N e l 2  l(Ge) also, and  we have  N = A  2 + B  e for some A 2 ~ A  and  B e~B.  Since 

B ~ = N - A ~ e I ~ ( G ) ,  we have  /2~(G)=~4 if B f / E ~ ( G ) = 0  and E~(G)=~A@(BNIS~(G))  

otherwise.  This completes  the  presen t  proof. 

4.20. Theorem. I f  I : ~ ( G ) ~ , , t @ B ,  where AcF.I(G ) and Bc~(G),  and  i f A h a s  

a unit ,  then  ~I(Ge)~.,4@C, where C is an a lgebra  descr ibed below. 

Proof.  I f  U is the  uni t  of A and  E is the  uni t  ad jo ined  to 121(G) to ob t a in  

E~ (G~), then  an a r b i t r a r y  e lement  of/~1 (Ge) can be wr i t t en  as L + ~ E = A 1 + B~ + ~ E  = 

= ( A ~ + ~ U ) + ( B ~ + ~ ( E - U ) ) = A ~ + ( B ~ + ~ ( E - U ) ) ,  where Le~(G),~eK,  A~eA, 
B 1 e ~, and  Ae e .A. I f  C consists of all  e lements  of the  form B,  + fi (E - U) wi th  B~ e ~ 

and fleK, then  i t  is easy  to ver i fy  t h a t  C is an a lgebra  and  t h a t  E I ( G e ) ~ A @ C .  

4.21. I f  G~ and Gz are  f ini te  semigroups  and  G~G~XGe, we can ob ta in  a 

m a t r i x  r ep resen ta t ion  of G from m a t r i x  represen ta t ions  of G~ and  G z. Le t  x~-->v~(x~} 
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be a matr ix  representation of G 1. We write Tl(xi) = (a,s(xi)), where ar,(xi) is the 

element of 31(xt) in the r- th row and 8-th column. I f  yj~v2(ys) is a matr ix  

representation of Gs, we consider the matr ix  3(xt: y~)= ( a ,  (xt)vs(yj)), meaning by this 

the matr ix  whose order is the product of the orders of v 1 (xt) and 38(yj), formed by  

replacing each element ars (xt) of 31 (xi) by the block of elements given by a,~ (xt) 38 (yj). 

For all xg, x t eG  1 and Yh, y j e G  2, we have 

3 (xg, y~) 3 (x, yj) = (a,, (xg) 38 (Yh)) (a,s (x,) 38 (Yj)) = (~ a~k (xo) 3~ (yh) ak, (x,) 32 (yj)) = 
k 

= (~  ark (xg) a~, (xt) 3~ (Yh) 38 (yj)) = ( a ,  (xo xt) 38 (yh Yi)) = 3 (xg x ,  yh yj). 
k 

The elements of q can be taken to be (x,  yj) with (xo, yh) (x~, yj) = (xg x~, Yh yj), 

so we see from the above computation tha t  the mapping (x, y~)~v(x, yi)is a matr ix  

representation of G. 

I f  the matrices 3(x, yj) are linearly independent, then they generate in the usual 

fashion a faithful representation of I:z(G ). Since we can find representations of both 

G 1 and G 8 by linearly independent matrices (Theorem 4.I), we want  to show tha t  

the matrices 3(xt, yj) are linearly independent if the matrices 31 (xi) are linearly in- 

dependent and the matr ices  38(Ys) are linearly independent. We establish this fact as 

follows. I f  ~ ~tj3(x~,yj)=O, then we have .~. atjar~(xi)38(yj)=O for all r , s .  I f  the 
t , j  z,.~ 

matrices 38(yj) are linearly independent, the last equality implies tha t  ~ ~ijc1~(xi)=O 

for all j, r, s. However, this equality is equivalent to the equality ~ ~qj3x(xi)=0 for 
i 

all j. I f  the matrices 31 (xt) are linearly independent, the last equality implies tha t  

at j = 0  for all i, j. 

The algebra s (G) is the Kronecker product s (G~) A i:~ (Gs) of E~ (G~) and ~1 (G2)- 

4.22. I f  G is a finite semigroup with the left cancellation law, then, as shown 

in Theorem 2.12, we have O ~ O x X G ~ ,  where xox~=x~ for all x~, x~eGx and where 

G 8 is a group. From the proof of Theorem 4.9, we see tha t  we can take 

3z(xx)=e~, 3z(x~)=e~ +e~, for i ~ 2 .  

Since G 8 is a finite group, it admits a matr ix  representation of the form 

0 0 ...0 \ 

\ 0 0 0... A,,(y:) 

where the Ak (yj) represent square blocks of elements and the O's represent rectangular 
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blocks of zeros. Fu r the rmore ,  if B1, B 2 . . . . .  Bm is an  a r b i t r a r y  set  of mat r ices  such 

t h a t  the  order  of Bk is equal  to  the  order  of As (y j )  for l_<k_<m,  then  there  exis t  

complex  number s  ~j such t h a t  

( 81 0 0 0 \  
0 B2 0 . . . 0  | .  

) 

";" .... o .... ; ' i ; i ' ; b  1 

(See for example  v . d .  W a e r d e n  [46], p. 182.) 

I f  we let  { B ~ , l < h _ < p = o ( G 1 ) , l _ < k ~ < m }  be an a r b i t r a r y  set of mat r ices  such 

t h a t  the  order  of B~ is equal  to the  order  of A k(yj), then  i t  is no t  ha rd  to  see t h a t  

eve ry  m a t r i x  T (x,, Yi) is of the  form 

t 2 p B1 0 0 . . . 0  B1 0 0 . . . 0  B1 0 0 . . . 0  

0 B~ 0 . . . 0  0 B~ 0 . . . 0  0 B~ 0 . . . 0  

4.22.1 1 2 p 0 0 O . . . B m  0 0 O...Bm 0 0 O ' " B m  " 

0 0 . . .  0 

0 0 . . .  0 

I t  is also not  ha rd  to see t h a t  every  m a t r i x  of the  form 4.22.1 can be ob ta ined  as 

a l inear  combina t ion  of the  mat r ices  ~(x~, yj). Therefore,  if G is a f inite semigroup 

wi th  the  left  cancel la t ion  law, then,  for some m and  p, F~ (G) is i somorphic  to the  

a lgebra  of all  mat r ices  of the  form 4.22.1. 

W e  now t a k e  up uniqueness  theorems  for s  under  wha t  condi t ions  does 

s (G) de te rmine  G ? Tha t  l :  1 (G) as an  a lgebra  does no t  de t e rmine  G, in general ,  is 

p roved  b y  the  fact  t h a t  for all  Abel ian  groups G of order  n, 121 (G) is i somorphic  to  

K n  (see also Theorems 4.12 and  5.21.) ~s Never theless ,  an analogue of K a w a d a ' s  theo- 

rem [23] can be proved,  as follows. 

4.23. Defini t ion.  A funct ional  L ~ 121 (G), where G = {x 1, x 2 . . . . .  x~} is a f ini te  semi- 

group,  is said to be non-nega t ive  if L(cpj)_> 0 for j =  1, 2 . . . . .  n. I f  some L(q~j)is pos':- 

t ive  and  L is non-negat ive ,  then  L is said to  be a posi t ive  funct ional .  

4.24. Theorem.  Le t  G and G* be f ini te  semigroups,  G - { x l ,  x 2 . . . . .  x~} and 

G * =  {Yl, Y2 . . . . .  ym}, and  suppose t h a t  there  exis ts  an  i somorphism A of l :  I(G) onto  

18 For discussions of uniqueness in rather different contexts, see BERMAN [3] and PERLIS and 
W_~LIC~R [29]. 
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~I(G*) such tha t  A L  is positive if and only if L is positive. Then G and G* are 

isomorphic semigroups. 

Proof. Consider the set ~ ( G )  consisting of all non-negat ive L ~ C I ( G ) .  Let  ~(G) 

be the set of elements M e  7)(G) which are extreme in ~)(G) in the sense tha t  if 

L 1, L 2 r ~) (G) and M = ~ L  1 + (1 - ~r L 2 (0~  ~__< 1), then L 1 and L 2 are both non-negative 

real multiples of M. 19 I t  is simple to show tha t  a functional M is in E(G) if and 

only if it has the form 0r for some 0r >_0 and x~eG. We leave the details of this 

a rgument  to the reader. The analogous set E ( G * ) c ~ ) ( G * ) i s  characterized in just  

the same way. The isomorphism A being a linear space isomorphism carrying ~ (G) 

onto ~(G*),  it follows tha t  a set of o(G) linearly independent  elements of ~(G) 

mus t  map  onto a set of o(G) l inearly independent  elements of E(G*) under  the iso- 

morphism A. Using the a rgument  set forth above, we see tha t  any  set of n linearly 

independent  elements of ~(G) mus t  have the form (~r ~r 2 . . . . .  ~ x~), where all 

~j are positive. (By a slight abuse of notat ion,  we write ~j 2j as ~r xj; similarly with 

elements of ~:1 (G*).) I t  is clear tha t  m = n and tha t  A (~i xj) = / ~  y~ for 1 _< j _  n, some 

r such tha t  l _ < r _ < n ,  and fl~>0. Thus A(xj)=~,ry~ (y~>0)- Since A is an algebra 

s t then we have isomorphism, we have A (x~)=7~y, for all positive integers s. I f  x~ =x j ,  
r~ z y~ = 7r k y~, and consequently l k yr=y~, and ~,~=l.  I t  follows tha t  A(xi )=y~.  The 

mapping  A of G onto G* is obviously an isomorphism. 

For  a few finite semigroups G, the algebras C1 (G) determine G completely,  as we 

n o w  s h o w .  

4.25. Theorem. Let  G be as in Theorem 4.9. Suppose tha t  E1 (G) is isomorphic 

to 1:1 (H) for a semigroup H. Then G is isomorphic to H.  

Proof. I f  C~ (G) is isomorphic to E1 (H), then the algebra of all n X n matrices 
a n ( ~j)~.J=i with a~ j=0  for i > 1  admits  a basis A, B, C . . . .  forming a semigroup isomor, 

phic with H under  matr ix  multiplication. Using an obvious abbreviation,  we write 

k 1 .. a~-~a~} ( k = l , 2  . . . .  ). The elements A,  A = {a D a,~ . . . . .  a~}. Then A ~= {a~, a, a ~ , . ,  

A ~,A a, . . .  are only finite in number  and none of them is 0. Hence a~ is a root  of 

unity,  say a lP=l  and a~4=l for 0 < j < p .  Then  the elements A , A  * . . . . .  A ~ are all 

distinct and hence must  be linearly independent.  However,  we have 

A+A~+Aa+ ".+A~={a~+a~+ ...+a~, a~ (1 +a~+ ... + a f  ~) . . . . .  an (1 +a~+ ... +a~-~)} = 0  

if p > l ,  since in this case we have l + a ~ + a ~ + . . . + a l r  - ~ = 0 .  Hence a t = l .  This being 

19 This notion was suggested to us by Dr. V. L. KLEE. 
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SO, we have A B = B ,  and so on, and the basis A, B, C .. . .  under multiplication is 

isomorphic to the semigroup of order n in which x y = y  for all x and y. 

4.26. Theorem. Let G be the semigroup of Theorem 4.10. If H is a senti- 

group such that  C, (G) is isomorphic to C~ (H), then G is isomorphic to H. 

Proof. By Theorem 4.10, El(G) is representable as KGZ,~ ~. If El(H)  is iso- 

morphic to K(~Zn_,, then K(~Z,~ ~ has a basis isomorphic to H under multiplica- 

tion. Let (a, b) ( a e K ,  b e Z ,  1) be any element of this basis. Since (a, b) 2-(:r 0), 

it is clear that  ~4=0. Since (~,b)k=(ak, 0) ( I t>l) ,  it is established, just as in the 

proof of Theorem 4.25, that  ~(= 1. Therefore (1, 0) is an element of the basis, and 

the product of any two elements of the basis is (1, 0). 

4.27. Remark. Let G be a finite group such that  o(G)> 1. There exists a non- 

group H such that  EI(G)~EI(H). We construct H by the device used in Theorem 

4.2, in connection this time with the semisimple algebra E1 (G), which of course has 

a 1-dimensional direct summand. The semigroup H is obviously a non-group. 

w 5. Ideals in C1 algebras 

Much of the preceding work culminates in the present section, where we identify 

certain classes of ideals in C1 (G), characterize the radical of 1:1 (G) (Theorem 5.20), 

and obtain a particularly simple criterion for semisimplicity of E l (G)for  commutative 

G (Theorem 5.21). We begin with 3 relevant definitions. 

5.1. Definition. For 91 ~ 51 (G), let ~1 (~[) be the set of all L s Ej (G) such that  

L ( [ ) = 0  for all / ~ / .  

5.2. Definition. For ~ c E I ( G ) ,  let 9~(~) be the set of all / e~ l (G  ) such that  

L ( [ ) = 0  for all L e B .  

5.3. Delinition. For [e~l (G ) and xeG, let [, and z/ be as in 1:3.1. A linear 

subspace ~I of ~I(G) such that  [ e 2  implies (z/e~l; [~ e~{; x],/.~ e2)  is said to be a 

(left, right, 2-sided) invariant subspace of 51 (G). 

5.4. Theorem. Let  Y be a (left, right, 2-sided) ideal in El(G), where G =  

={x  1, x, . . . . .  xn}. Then ~(Y) is a (left, right, 2-sided) invariant subspace of ~I(G). 

Proof. Changing slightly the notation introduced in 1.7, we write ~tu for the 

element of E1 (G) such that  ~tu ([) = [ (u) (u e G, [ e ~j (G)). If Y is a right ideal in E1 (G), 

Me:l ,  ueG, and /e .~(3) ,  then M * ; t u ( / ) = 0 .  That  is, we have Mx(~u.y(f(xy)))=O 

To compute ~t,,~ ([(xy)) as a function of x, we have 
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~ ,  ~ ( / (x  ~)) = ~ ,  ~ ( E / (x, ~)  q~, (x) q~ (y)) = E / (x, x~) ~, (x) ~ (u) 
t , i = l  t,]=l 

n 
--- ~ / (x, u) ~ (x) = 1 (x u). 

i=1 

I t  follows that / ,  e9~(Y) if 

~ (G), the theorem follows in 

If :~ is a left ideal in 

this equality gives us 0=2u,  

as above, and it follows that  

/ e ~ ( 3 ) ,  and as ~( : / )  is trivially a linear subspace of 

this case. 

l:l(G), then we have ~ t~*M(/ )=0;  using Theorem 1.9, 

( i ~  (1 (x y))) = M,  (~. v (1 (x y))). Now 2~, ~ (/(y x)) = / (u x), 

~(Y) is a left invariant subspace. 

5.5. Theorem. Let  ~ be a (left, right, 2-sided)invariant subspace of ~i (G). Then 

(@) is a (left, right, 2-sided) ideal in 1:1 (G). 

Proof. If ~ is left invariant, and if M e ~ ( ~ ) ,  then M~(/(xy))=O for all r e@  

and all xeG. Hence, if L e s  we have L , M ( / ) = 0  for all / e ~ ;  as T/(~) is 

trivially a linear subspace of •1 (G), the theorem follows in this case. If ~ is right 

invariant, M ~ ( ~ ) ,  and LeCI(G) ,  then we have, using Theorem 1.9 again, that  

M*L(/)=L::(M~ (/(yx)))=O. This completes the proof. 

5.6. Theorem. Let A be a linear subspace of s Then A = ~ / ( ~ ( A ) ) .  

Proof. I t  is clear that A c ~  (~)~(A)). Conversely, suppose that  L none A. Then 

there exists a linear functional yJ on 1: i(G) such that  ~f(N)=0 for all N e.,4 and 

yJ(L)= 1. Since 51(G) is finite dimensional, we have ~ ( M ) = M ( / )  for some /s 5i(G) 
and all MsCI(G). Hence /s9~(A) and L ( / ) 4 0 :  hence L non e T/ (O~ (A)). 

Combining Theorems 5.4, 5.5, and 5.6, we have the following result. 

5.7. Theorem. A subset A of I:~(G) is a (left, right, 2-sided) ideal in l: l(G) if 

and only if A ~/(~)~ where ~ is a (left, right, 2-sided)invariant subspace of ~i(G). 

In the remainder of the present paper, the word "ideal" means 2-sided ideal, 

and the term "invariant  subspace" means 2-sided invariant subspace. 

5.8. Theorem. A subset ~ of I: I(G) is a maximal ideal if and only if ~ =  T/(~), 

where ~ is a minimal iuvariant subspace of ~1 (G). 

Proof. This assertion follows at once from Theorem 5.7 and the fact that the 

correspondence A~)~(A) for subspaces of l : l ( G ) i n v e r t s  inclusion: A~cA2 if and 

only if ~ (Ai)  ~ .~ (A2). 

We now consider in more detail homomorphisms of I: l(G) onto simple algebras. 
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5.9. Theorem. A hnear functional yJ on s (G) is a homomorphism of s (G) onto 

K if and only if v2(M ) = M(Z ) for a semicharacter Z of G and all M e  s (G). 

Proof. The sufficiency of the condition stated being obvious, we consider only 

its necessity. Any linear functional ~ has the form ~ ( M ) =  M(f) for some ! e ~1 (G) 

and all Mes If ~ is a homomorphism onto K, then M * L ( ] ) = M ( ] ) L ( ] )  for 

all M, L e s This equality may be rewritten as 0 =  Mx (L~, ( ] ( x y ) ) ) - M ( ] ) L ( f ) =  

= Ms [L~ (] (xy)) - L~ (] (y)) ] (x)] = Mx [L~ {! (xy) - ] (x) ] (y)}]. Since M is an arbitrary 

linear functional, it follows that  L~, {] ( x y ) -  ](x)/(y)} = 0  for all X e G. Since L is an 

arbitrary linear functional, it follows that  ] (x y) - ! (x) ] (y) = 0 for all x, y e G. Since 

] 4  0, the theorem follows. 

5.10. For a finite semigroup G, let ~(G) denote the subspaee of ~1 (G) consisting 

of all ! such that  ~ ]=0  for all xeG.  I t  is clear that  ~ ( G ) # 0  if and only if there 

are elements u eG such that  no product x y  is equal to u. Then ~(G) consists of all 

] which vanish except at these elements u. 

5.11. Theorem. A linear functional y~ on s  a homomorphism of s 

onto Z 1 if and only if vJ(M)=M(a) (Mes where a is a function in ~(G). 

The proof is similar to that  of Theorem 5.9 and is omitted. 

5.12. Theorem. Let  | be a 1-dimensional invariant subspace o f  ~1 (G). Then | 

is spanned by a semicharacter or by a function a e ~(G). 

Proof. The maximal ideal ~/(6) being ( n -  1)-dimensional (n = o(G)), the difference 

algebra s (G) - ~ (| is 1-dimensional and is isomorphic to K or to Z 1. The mapping 

of s onto this difference algebra is in any case a linear functional L-+L(]), for 

some ]r The kernel ~/(| consists of all Les for which L ( / ) = 0 ;  and it 

remains only to apply Theorems 5.9 and 5.11. 

5.13. Theorem. s (G) admits a homomorphism onto Km if and only if there 

are m distinct scmicharacters of G. 

Proof. If Z1, Z2 . . . . .  Zm are distinct semicharacters of G, then, in view of Theo- 

rem 5.9 and Corollary 3.3.1, the mapping L-+ {L (Z1), L (Z2), ".', L (Zm)} is a homomorphism 

of s (G) onto Kin. Conversely, given a homomorphism L-+{a 1 (L), a~ (L), ..., a,n (L)} of 

s onto K~, the mappings L-*as(L ) ( j = l , 2 ,  . . . ,m)  are homomorphisms onto 

K and are generated by (necessarily distinct) semicharacters, in accordance with 

Theorem 5.9. 

5.14. Theorem. 1:~ (G) admits a homomorphism onto the algebra Zm if and only 

if ~(G) has dimensionality ~>m. 
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Proof. If  ?[ is any  m-dimensional subspaee of ~(G),  choose an arb i t rary  basis 

{fl, f~, . . . , /m} in ~.  The mapping  L-~{L(] I )  , L(]e) . . . .  , n(fm)} is a homomorphism of 

s (G) onto Zm, if we define {:r ~ . . . .  , acre}" {ill, fl~ . . . . .  tim} as {0, 0, ..., 0} (:r s K) :  

since M *  L ([j) = Mx (Ly (/s (x y))) = Mx (Ly (0)) = 0 for all ~/, L e I~ 1 (G), and the functions 

] l , /2 . . . . .  /m are linearly independent.  

Conversely, given a homomorphism Lo&(L)  of 1~ 1 (G) onto Zm, let u 1 . . . . .  um 
m 

be a basis in Z .... Then  we have L ~ A ( L ) =  ~':9(L) uj, and the mapping L-~gj(L) 
J- - I  

is a linear functional  on I~I(G ). We call therefore write :9(L)=L(/s) for some 
t fj s (~1 (G). Since the numbers  :r (L) are capable of assuming arbi t rarv  values, the func- 

tions [s are linearly independent  (j = 1, 2 . . . . .  ~n). Since aj (L*  M ) =  0 for all L, .1/s IZ 1 (G), 

and 1 G j G m ,  it follows from Theorem 5.11 tha t  f i e f ( G ) .  

5.15. Theorem. Let  ~ be a minimal invariant  subspace of ~1 (G) with the pro- 
f ~  8 pcr ty  tha t  G N U ( G ) = 0 .  Then ~. admits  a basis {fl, j}~.j=~ such tha t  fl~j(xy)= 

s 

= ~flik(x) fl~s(y ) (x, ysG) and the matrices B(x)=(flij x s ( ))~.J~l form an irreducible set 
k = l  

in ~ s  (all x sG) .  

Proof. By  Theorem 5.8, ~ (~ . )  is a maximal  ideal in s The difference 

algebra O = s ( G ) -  7//(~) mus t  accordingly be isomorphic to Z~, K, or ~)~ (s = 2, 3 . . . .  ). 

The ease O ~ Z t is ruled out  by  the construct ion given in the proof of Theorem 5.14 

and the hypothesis  ~ ~ ~ ( G ) =  0. I f  O ~ K, we m a y  appeal to the construct ion used 

to prove Theorem 5.13. I t  remains to consider the case D ~ J ~ s  ( s = 2 ,  3 . . . .  ). The 

natural  homomorphism of s (G) onto ~YJ~ with kernel ~ ( ~ )  m a y  be denoted by  A. 

For  all Lss we have A(L)=(a~(L))i,~s~J)~; and the mapping  L ~ a ~ ( L ) i s  
clearly a linear functional  on s (i, j =  1, 2 . . . . .  s). Hence we have ai~(L)= L(fl,~) 
for some fl,~S~l(G), and we have, for all xeG, ~x---~(fl,~(x)h,~:~. Since ) , z ' 2 ~ = 2 ~  

and since A is a homomorphism,  it follows tha t  fl~(xy)= ~fl,~(x)fl~(y). Since A is 
k ~ l  

a mapping  onto ~J~, the functions fl~ are linearly independent.  Since every mat r ix  

in A (s (G)) is a linear combinat ion ~, r162 B(x), it follows tha t  the set {B(x)}x~z is 
x e G  

irreducible. Since L s ~t (~) if and only if L (fl,~) = 0 for i, j = 1, 2 . . . . .  s, it follows tha t  

the functions fl,~ form a basis for c~. 

5.16. Theorem. Let  ( f l~) , ,~  be a mat r ix  of functions in ~ I ( G ) s u c h  t h a t  the  
s mapping x ~ B ( x ) =  (fl~())~.~_~ is an  irreducible representat ion of G in the multiplica- 

tive semigroup ~ .  Then  the mapping  L---~ ~ L(q),)B(x)= A (L) is a homomorphism 
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of l: 1 (G) onto ~rJ~s, and the functions fl~s are a basis for a minimal invariant sub- 

space of ~I(G) which intersects ~(G) in 0 alone. ~~ 

Proof. I t  follows from Theorem 3.22 that  every matrix in ~J~ is a linear com- 

bination of the matrices B(x) (xe G), and the fact that  the mapping A is a homo- 

morphism is obvious: The last assertion follows readily from Theorem 5.8. 

5.17. Theorem. A subset Y of ~1 (G) is a regular maximal ideal if and only if 

Y= ~/(~), where 6 is a subspace of ~ I ( G )  spanned by functions flij (i, ] - 1 ,  2, ..., s), 

with the properties set forth in Theorem 5.16. 

This assertion is obvious from the foregoing discussion. 

If ~(G) has dimension >1,  then ~I (G) admits a continuum of 1-dimensional 

and hence minimal invariant subspaces; these, however, produce only homomorphisms 

of CI(G) onto Zj (see Theorem 5.14) and are of negligible interest. Minimal invariant 

subspaces intersecting ~(G) in 0 alone, on the other hand, exist only in finite num- 

bers, and have other special properties as set forth in the following theorem. 

5.18. Theorem. There are only a finite number of minimal invariant subspaces 

| of ~I(G) such that  | A ~ ( G ) = 0 :  we call them 61, 62 . . . . .  61. These subspaces 

are all linearly independent in the sense that  6~ n (~i, + 6j~+ . . . .  F 6 j ~ ) = 0  for 

i #  ?'1, "", ]k. Furthermore, (61  ~- 6 2 -~ "'" ~ (~l) n ~ (G) = 0. 

Proof. Consider a maximal set of linearly independent minimal invariant sub- 

spaces 6 for which 6 N ~ ( G ) =  0. Plainly there are only a finite number of subspaces 

in such a maximal set: say, 61, 62 . . . . .  6z. Let  11 be any minimal invariant sub- 

space such that  l I N d ( G ) =  0. If 11fi (61-F 62 + "'" ~ - 6 z ) = 0 ,  then the family 

{61,  6 2 . . . . .  61} is not maximal. If 1~[ N (61 ~- 62 + . . .  ~- 6z) # 0, then 11~ 61 ~- 62-F 
l 

~-"'" -]-6l, since 11 is a minimal invariant subspace. This implies that  ~/(11)~ n ~/(6~). 

Let  y denote the radical of s (G); as is well known, this is the intersection of all 
l 

regular maximal (2-sided) ideals. I t  is clear tha t  ~/(11) - ~ D n [~/(6i) - ~]. In the 
t=1 

semisimple algebra s (G) - ~t, ~ (11) - y and ~/(6,)  - ~ are again regular maximal 

ideals, and the last inclusion written down implies that  H ( 1 I ) - ~  is actually one of 

the ideals T/(6~~ ~. To see this, compute the maximal ideals in a semisimple 

algebra (over K) and their intersections: it is easy to see that  the intersection of a 

~0 Here  ~x is t h e  func t i on  in ~ j  (G) such  t h a t  Cx (Y)=~zy for all y e G; t h i s  n o t a t i o n  v io la tes  

for  t y p o g r a p h i c a l  r easons  the  c o n v e n t i o n  of foo tno te  4. 
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family of maximal  ideals completely determines the maximal ideals used in forming it. 
1 

Since ~ is a subset of ~/(1I),~ (['] ~/(~i)), it follows tha t  ~(11) = )~ (~t,). Thus the 
i = l  

first 2 assertions of the present theorem are established. To prove the last one, 

~k)~  8k ( k = l , 2 , . .  l) be a basis in suppose tha t  / e (61 -~ 62 ~- .-. ~- 6~) N ~: (G). Let  ~ t  st. j ffil " 

~k o f  the kind described in Theorem 5.15, and let / =  ~ - a (k )  Then t ~ i j k  ~ i j  �9 
i , j , k  

O=/(xy )=  ~ a, jgE~)(xy)= Z a~j~fli~(x)fl~)(y). 
i,1, k t , j ,  k , m  

Since the functions fl(~) are linearly independent, we infer tha t  the coefficient of each 

fl(k).(y) is 0. As these are linear combinations of functions f l~(x),  it follows tha t  all my 

a~sk are 0. This comp]etes the present proof. 

5.19. Theorem. The set of all functions on G which are coefficients of irreduc- 

ible matr ix  representations of G (only one representation being admit ted from each 

equivalence class) are linearly independent elements of ~1 (G). 

This generalization of Corollary 3.3.1 follows at  once from Theorems 5.16 and 5.18. 

5.20. Theorem. Let  61, 62 . . . . .  6~ be as in Theorem 5.18. The radical of I:I(G) 

consists of all L such tha t  L( / )= 0 for all [ e 61 ~-62 4 ... 4 6 l .  

Proof. This result follows readily from Theorems 5.15, 5.17, and 5.18, and the 

fact tha t  the radical of s (G) is the intersection of  all regular maximal  ideals of 

J~l (G) .  

5.21. Theorem. Let  G be a commutat ive semigroup of order n. Then I: 1 (G) is 

semisimple (and hence isomorphic to Kn) if and only if l z=  1 for all xeG  (see 2.6.1). 

This condition is equivalent to the equality G ~ G. 

Proof. I t  follows from Theorem 5.20 tha t  C1 (G) is semisimple if and only if 

61 ~-6~ ~- .--~-~z = ~I(G). I t  is easy to see tha t  every 6 t  must  be 1-dimensional if 

G is commutative,  and in this case 6~ is generated by a semicharacter, Z~- Hence 

there are n distinct semicharacters of G if and only if I: 1 ( G ) i s  semisimple, and 

lx = 1  for all x e 0 is a necessary and sufficient condition for this to occur, as 3.6.2 

states. 

The radical of I: 1 (G) can be very simply characterized if G is commutative,  as 

follows. 

5.22. Theorem. Let  G be a finite commutat ive semigroup such tha t  s  (G) has 

a non-zero radical. For each xt e G such tha t  x~ non e G ~ let m be a positive integer 
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such tha t  (x'~)2=x~, and let x~ n+l = x  j( o. Then  the radical  of I~I(G ) consists of all 

functionals L = E c q  (; t i-~j(o),  where the  sum is t aken  over  all i such t h a t  xi n o n e G  ~ 

Proof. For  simplicity,  we can suppose t h a t  m has been determined so t ha t  

(x'n)~=x m for all x~G. For  x~ n o n e G  ~ and  j = j ( i ) ,  we have  x~n=x~'+m=x'~,x~n+I= 
=x{n'+2m+I=x~-I=x] and X~X'~=x~+m=xj. NOW 

but  
x'~+l=xj and xh x~ n~l h=xh xhm+m+l h:(xix~l)h x~n+l h= 

=x~x~ +1 h = x ~ + l = x j  for l<h<_m, 
SO ~ve } ] a v e  

(J~i--~])m+l=~]+ h=l~ ~" h ( tJ § ( - 1)m ~' ;tJ = (1 - 1)m~')tJ = 0' 

Therefore  ~ -  2j is a n i lpotent  e lement  of 1~ 1 (G). 

Since x~ n+1=xi,  we see t ha t  every  xj is an e lement  of G ~ while no xi is. There- 

fore the  functionals  ; t~- ~j are l inearly independent  and span a space of dimension 

o(G)-o(G~ However ,  this is just  the dimension of the radical  of I~I(G ). This 

follows f rom Theorem 5.20 and  the fact  t ha t  there are exac t ly  o(G ~ distinct  semi- 

characters  on G. Therefore this space is the radical  of IZ 1 (G). 

5.22.1. I t  m a y  be of interest  to  note  t ha t  Theorem 5.21 can be p roved  wi thout  

the use of the  appa ra tus  in t roduced in w 5. As in the proof of Theorem 5.22, we see 

t ha t  ~1 (e) contains a ni lpotent  element,  and hence is not  semisimple,  if lx > 1 for 

some xr I f  l x = l  for all xeG, then  o(G~ Writ ing the  semicharaeters  of 

G as Z1, Z2 . . . .  , Z~, we see t h a t  the mapp ing  L->{L(z1) ,  L(:~2) . . . . .  L(Z~)} is an iso- 

morph i sm of L I(G) onto K~. 

5.23. Theorem. The algebra ~1 (G) is semisimple if and  only if coefficients of 

irreducible ma t r ix  representa t ions  of G span the space ~1 (G). 

This follows a t  once f rom Theorem 5.20. 

5.24. Examples.  We" now give some examples  to i l lustrate the  preceding theorems.  

5.24.1. Le t  F be an a rb i t r a ry  field, and let G be the  semigroup of all matr ices  

(b 0 1 ) ( a ,  beF). The elements  (~ ~ ) f o r m  a 2-sided ideal H in G, and  in fact  

(b  ~ ) ( ~  ~ ) = ( ~  ~)"  Le t  # be an irreducible representa t ion  of G in ~l~s. Suppose 
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tha t  /~ (h) 4 0 for some h e H. Then, for any s-dimensional vector ~ such tha t  ~u (h) ~ 4= 0 

and any x~G, we have f~(x)p(h)~=fe(h)~, and we see that  the vector # (h )~  spans 

a 1-dimensional invariant  subspace of the s-dimensional representation space. Hence 

s = l ,  and it is easy to show tha t  # ( x ) = l  for all x e G .  Thus an irreducible repre- 

sentation /z with s >  l has the property that  p (h)=O for all h E H; on the set G N H', 
which is a group, # call be an arbitrary representation. For F finite, we have of 

course o (F)=pro for a prime p and a positive integer m; and the subspace of ~1 (G) 

spanned by coefficients of irreducible representations is easily seen to be p ~ m  pro+ 1. 

Hence the radical of 1~ 1 (G) has dimension p m  1. 

5.24.2. In dealing with irreducible measurable representations of compact groups, 

it suffices to know that  these representations are capable of distinguishing between 

arbi trary pairs of points iu the group, in order to show that  coefficients of these 

representations span the space of all continuous functions under the uniform topology. 

This is, basically, because all such representations are unitary. (See Stone [40] for a 

complete discussion.) In finite semigroups G, on the other hand, it is quite possible 

for irreducible representations to separate points and yet  for the dimensionality of 

the space spanned by  coefficients of these representations to be less than o(G); in 

this case, s (G) fails to be semisimple, by Theorem 5.23. Consider as an exam ~ 

the matrices 

together with A4§ -A~  ( i=  1, 2, 3, 4). These matrices form a semigroup G under 

multiplication, and the identity mapping is evidently an irredueible representation of 

G iu ~J~. However, this and the mapping A~--1 (i = 1, :.., 8) are the only irreducible 

representations of G. Accordingly, the radical of IZI(G ) is 3-dimensional. I t  is an 

elementary, if lengthy, exercise to show tha t  the ra.dieal of l~ 1 (G) consists of all 

linear functionals of the form 

~ ()l~ + ;ts) + / / ( '~2  § ;t~) + ~, (~3 + ~7) - (~ + r + ~') (;h + ,ls) 

(e, fl,~,eK; ~ A ~  ( i - -1  . . . . .  8)). 

5.24.3. Let G be the semigroup described in 4.2, whose elements are {1, 0, 0, ..., 0} 

and all {1,0 . . . .  0, e (~k) 0, 0}. As noted in 4.2, I~I(G ) is semisimple, The irre- 
�9 i j  ~ " ' "  

ducible representations of G are the mappings which carry these sequences into their 

r-th components (r=l, 2 . . . .  , p +  1). Plainly the coefficients of these representations 

span ~1 (G). 
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5.24.4. Appendices 3 and 4 list the semigroups of orders 5 and 6, respectively, 

having semisimple I:~ algebras. In each case, it is easy to see that  the coefficients 

of irreducible representations span the space ~ .  

We close with 2 rather special theorems. 

5.25. Theorem. If G and H are finite semigroups, then F ~ I ( G X H  ) is semi- 

simple if and only if i:x(G ) and l: 1 (H) are semisimple. 

Proof. Suppose that  i:j (G) and C1 (H) are semisimple. We then have the following 

one-to-one correspondences: 

x , ~ { ~ l ( X ~ ) ,  ~ ( x ~ )  . . . .  , ~ (x~)}, 

Y,~(e~ (YJ), e~ (Y,) . . . .  , e~ (Y,)}, 

where x~eG, y j e H ;  the vg(xi)=(a~s(X~)) are matrices of order, say, ao; the eh(yi )are  

matrices of order bh; the {~1 (x~) . . . . .  Tz (x~)} for i = 1, 2, ..., o(G) are linearly independ- 

ent;  the {el(YJ) . . . . .  em(YJ)} for j = l ,  2 . . . . .  o(H) are linearly independent; and 

Zag2 = o(G), Z b~ = o(H). These facts follow from Wedderburn's theorems and the fact 

that  the functionals ~t form a basis in I: 1. Now the mapping xi->vg(x~) is a repre- 

sentation of G by matrices, and the mapping YJ-+eh (YJ) is a representation of H by 

matrices. From 4.21, with a slight change of notation, we see that  the mapping 

(xi, yj)-->v~ (X~) A eh (YJ) is a representation of G X  H by matrices. Here Tg (x~) A eh (YJ) 

denotes the Kronecker product of the matrices rg (xi) and eh (YJ). Therefore 

5.25.1 (xi, yj)-->{v x (xi) A el (Yi), 31 (Xi) A e2 (Y]) . . . . .  Tg (x,) A Oh (y]), ..., Tl (Xi) A ern (y/)} 

is a representation of G X H .  As in 4.21, we can show that  the expressions on the 

right hand side of 5.25.1 are linearly independent for 1 <~ i <_ o(G), 1 <_ j <_ o (H). There- 

fore the representation of 1:1 (G X H) defined in 5.25.1 is faithful. Furthermore, the 

algebra C I ( G X H )  has dimension o ( G ) . o ( H ) = ( Z a ~ ) ( Z b ~ ) = v Z ( a g b h )  2, which is 

the same as the dimension of the space of all sequences (M11, M12 . . . . .  Mgh, ..., Mira}, 

where each Mah is an arbitrary matrix of order a~bh (note that  agbh is just the 

order of the matrix ra (x~) A Qh (yj)). Therefore the faithful representation of I: 1 (G X H) 

generated by 5.25.1 yields an isomorph of s (G X H) which is a direct sum of full 

matrix algebras; i.e., E 1 ( G X H )  is semisimple. 

We now suppose that  I :I(H ) is not semisimple; let ~ be its radical. Let L.-->v(L) 

be a faithful representation of I:I(G ) by matrices, and let M--->Q(M) be a faithful 

representation of s by matrices. Then, by 4.21, s ( G X H )  is isomorphic to 

the set o of all Kronecker products z(L)/~ e (M) (L e CI (G), Me  i:j (H)). Let  ~ be the 
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set  of all sums Z v ( L ~ ) A o ( R t )  wi th  L t e l :  I (G) and  R t e R .  Then if L, L i e l :  I(G),  

Ri e R, and  M e •1 (H), we have  21 

(v (L) A 9 (M)) (Z T (L~) A o (R~)) = ~ (3 (L) r (L,)) A (o (M) e (R,)) = Z "r (L*Lz) A e (M*R~), 

and  this  is in ~ since L*L~eCI(G)  and  M * R i e ~ .  I t  is now clear  t h a t  G is a left  

ideal  in ~. W e  now show t h a t  ~ is n i lpo ten t .  A n y  p roduc t  of k e lements  of ~ has 

the  form 

T(L,.j) A~(R~.j) = ~ 5 "'" ~ • T(L,j.j) A~(R~i.j) 
j = l  \ i = 1  iL=I /z=l ik=l j = l  

~ a (h ) ( h ) = ~ "'" ~ r Lij.j A~o R%h �9 
/ l= l  ik=l ]=1 

k 
Since ~ is n i lpotent ,  we have  I-[ Ria.a = 0 for k _  > k 0, and  therefore  the  above  p roduc t  

h : l  

is 0 for k_>k 0. Therefore  ~ is a non-zero,  n i lpo ten t  left  ideal  of ~, and  hence is 

conta ined  in the  radica l  of ~.  This  comple tes  the  presen t  proof. 

F o r  our  final theorem,  we require  a lemma.  

5.26. Lemma.  Le t  G be a f ini te  semigroup such t h a t  l :  I(G) is semisimple,  and  

let  B be an ideal  in G. Then  l :  I (B)  is semisimple .  

Proof.  Le t  A be the  set of all  L =  ~ a ,  Xx such t h a t  a~ = 0 for x non E B. I t  is 
x t G  

plain  t h a t  /~ is i somorphic  to l :  1(B) and  t h a t  A is an ideal  in the  a lgebra  l :  1(G). 

I t  is easy  to show t h a t  eve ry  ideal  in a semis imple  a lgebra  is i tself  semisimple,  and  

hence l :  1 (B) is semisimple .  

5.27. Theorem. Le t  G be an  i d e m p o t e n t  f inite semigroup.  Then 1: t (G) is semi- 

s imple if and  only if G is commuta t ive .  

Proof.  W e  use f ini te  induct ion  to  p rove  t h a t  if ~ 1  ( G )  is semisimple,  t hen  G is 

commuta t ive .  I f  G is of order  1, this  is t r iv ia l ,  bu t  t rue.  We suppose i t  is t rue  for 

.o(G)<n and  consider  a G of order  n. Using the  no t a t i on  and  resul ts  of 2.13 and  

2.14, we consider  the  c o m m u t a t i v e  semigroup H whose e lements  are  the  d i s t inc t  

sets Sa(aeG).  If  beG, we t ake  gb={Sa;  SaeU, SaZo=Sa} and  I ~ = { / ;  xeG,  SzeJb} .  

I t  is clear t h a t  Jb is an  ideal  of H. I f  x~Ib  and  y~G,  then  xyeS::~= S::S~,, 

yx  e Syx = S~, Sx, and  S~ S~ e Jo. Therefore  I~ is a two-s ided ideal  in G. Since I~ 1 (G) 

21 We use the formulas (A /\ B) ' (C  A /~) = (AC) A (BD), (A + B) A C =  A AC + B A C ,  
A A (B+C)=A A B + A  AC, (~A) A(f lB)=~f l (A /\B),  where A, B, C, and D are matrices and 
cr t i cK.  
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is semisimple, so is s (I0), as Lemma 5.26 shows. Since So c I0 and since So is itself 

a semigroup tha t  is not commutat ive if o(Sb)_>2 (see Theorem 2.15), we can use the 

induction hypothesis to see tha t  o(So)= 1 for all b such tha t  o(Io)<n. However, if 

o(Ib)=n, then Ib=G, Jo=H, and SaSb=Sa for all SaeH; tha t  is, So is a unit of H. 

I f  H does not have a unit, then we have o (So) = 1 for all b e G and G is commutative.  

There remains the case in which Se, say, is the unit of H, and o(Sb)= 1 if 

So#Se. We can number the elements of G so that  Se={x 1, x 2 . . . . .  x~), where m is 

an integer such that  l_<m_<n. Then we have S~ 5={xi} for m < i ~ n .  Now, if 

then 

L = ~i,~5 and ~ 5 = 0 ,  
5~1 5=1 

5=1 5=1 i=1  

for m < ]_< n, since x5 xj e Se Sxj = Sxj = {xj}. Also, for 1 ~< ?" _< m, we have 

where 
5=1 h = l  

h = l  h = l  ~ 5~1 
,t i * h i = h 

In  like fashion, we see tha t  

L * 2 j =  ~ ' ~ h ,  where ~ a ; ' = 0 .  
h ~ l  h = l  

Therefore the set 3 of all these L is, if not zero, a proper 2-sided ideal in s  (G). 

If  xh, xs, xseSe, then xhxsxj=xhxj (Theorem 2.15) and hence 

; t h * L * ; t j =  ~ i 2 h * ; h * ) . j =  ~ : r  if l<<_h<_m, l<j<_m. 
t=1  i = l  

From this it is evident that  33= 0. Since G is semisimple, ~1 (G) contains no proper 

nilpotent ideal, so we have 3 = 0 ,  r e = l ,  o(Se)=l, and, finally, G is commutative.  

If  G is commutat ive and idempotent,  it is obvious tha t  G =  G ~ and, by Theo- 

rem 5.21, I :I(G ) is semisimple. 

ApFendix 1 

Semigroups of order 2. Except  for isomorphisms and anti-isomorphisms, the fol- 

lowing is a complete list of the multiplication tables of all semigroups of order 2. 

8 - -  5 4 3 8 0 9 .  Acta Mathematlca. 93.  I m p r i m 6  le 10 m a i  1955.  
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The letter in the upper left hand corner of each table designates the corresponding 

IZ t algebra, to be found below. 

2. B 1 2 

1 1 2 

1. A 1 2 

1 1 2 

2 1 2 

3. C 1 2 

1 1 1 

2 I 1 2 2 1 

4. A l l  2 

1 1 1  2 
2 2 2 

We express each ~1 algebra as a matrix algebra and display its general element. 

The letters represent arbitrary, independent, complex numbers. These three algebras 

are easily seen to be non-isomorphs. 

A. (0 ~), B. (0 ~) C. (~ 0 a 0 ! ) 0  

Appendix  2 

Semigroups o/ order 3. Again, isomorphs and anti-isomorphs are omitted. The 

letters A . . . .  , I refer to the corresponding ~1 algebras, which are listed below. 

1. A 1 2 3 

1 1 2 3 

2 2 3 1 

3 3 1 2 

2. B 1 2 3 

1 1 2 3 

2 1 2 3 

3 1 2 3 

3. C 1 2 3 

1 1 2 3 

2 2 2 2 

3 2 2 2 

4. C 1 2 3 

1 1 2 3 

2 3 2 3 

3 3 2 3 

5. A 1 2 3 

1 1 1 1 

2 1 2 1 

3 1 1 3 

6. D 1 2 3 

1 1 1 1 

2 1 1 1 

3 1 1 2 

7. A 1 2 3 

1 2 3 

2 2 3 

3 3 3 

8. A 1 2 3 

1 1 2 1 

2 2 1 2 

3 1 2 3 

9. E 1 2 3 

1 1 2 1 

2 1 2 2 

3 1 2 3 
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A 1 2 3 

1 1 2 3 

2 2 1 3 

3 3 3 3 

l l .  F 1 2 3 

1 1 1 1 

2 1 1 2 

3 1 2 3 

12. C 1 2 3 

1 1 2 3 

2 1 2 3 

3 3 3 3 
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13. G 1 2 3 

1 1 1 1 

2 1 1 1 

3 1 1 1 

14. H 1 2 3 

1 1 1 1 

2 1 2 1 

3 1 1 1 

15. H 1 2 3 

1 1 1 1 

2 1 2 2 

3 1 2 2 

16. H 1 2 3 

1 1 2 2 

2 2 1 1 

3 2 1 1 

17. H 1 2 3 

1 1 2 1 

2 2 1 2 

3 1 2 1 

18. 1 2 3 

1 2 2 

1 2 2 

1 2 2 

The I~ 1 algebras o/ dimension 3. These 9 a lgebras  are wr i t t en  in the  notatiol~ 

of A p p e n d i x  1. I t  can be shown t h a t  no 2 of these  a lgebras  are  e i ther  i somorphic  

or  ant i - i somorphic .  Fu r the rmore ,  a lgebras  D and  F cannot  be wr i t t en  as m a t r i x  

a lgebras  of a n y  order  in which al l  non-zero  entr ies  a re  independen t .  F ina l ly ,  none of 

the  a lgebras  A - I  has an i somorph  which is a m a t r i x  a lgebra  in which the  order  of 

the  mat r ices  is less than  the  order  appea r ing  in the  r ep resen ta t ion  shown. The  proofs  

of these asser t ions are  of only  minor  in te res t  for our  presen t  purposes,  and  so a r e  

omitt,-,~. 

A. (i~ B. (!b!)oO c. (iOl)ob 
o b (o ~) b 
0 0 0 

O O c  0 

( oo000b i) ( OOoobO !) i 
0 0 0 0  0 0 0 0  

t ~ oO 
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Appendix 3 
All semigroups of order 5 whose I:~ algebra is semisimple. In this table, we write 

the 2 semigroups in question as subsemigroups of KO ~J~ under multiplication. 

1. {1,(0 0 00)}, {1,(10 ~)}, (l:(~ 10)}, {1,(~ ~)}, ll,(~ 00). 

2. [1,(~ ~)}, (1,(10 ~)}, ll,(~ ~), I1, (~ 10) }, {1,(~ ~)}. 

Appendix 4 
All semigroups o] order 6 whose ~1 algebra is semisimple. In this table, we write 

the 13 semigroups in question as subsemigroups of K ~ K O ~J~ under multiplication. 
The number o~ in 1. is a primitive cube root of unity. 

~'o~it coo (~ {1-1,  (~ 10) } {1-1,  (:'0)} {1,-1, \r 

2. {1,-1, (~ ~)}, {1, 1, (~ 00)}, {1, 1, (~ ~)}, { 1, 1, (10 ~)1 { 1, 1, (01 ?)} { 1, 1, (~ ~)1 

3. (1, - 1, 

4. {1, -- 1, 

5. { 1, O, 

6. { 1,0, 

7. { 1,0, 

8. { 1, O, 

9. { 1, O, 

(~ ~)} (11 (~ o)} 

(o o)} I1 ' 1 (o oO)} 

(o ~ ~)} (11 (~ o)} 

{11 (~ ~)} 111  (o ~)} 

(11 (~ o)} ( 11 (~ ~)1 

I ~~ (~ ~i/I  ~ o (~ ~I/ 

I ~ ~ (~ o~ I 1 ~ (~ ~t/ 

( 11 (o ~)} 

~1 1 (~ ~)~ 

l o  (~ ~)} 

~o  ( o ~)1~ 

~1 1 (~ o)} 

l o  (~ ~)} 

lo (o ~)} 

~ ~ (o oi} 

1 o  (o oO)} 



10. 

11. 

12. 

13. 
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1,0, (00 ~)}, {1,0, (10 ~)}, {1, 1, (10 10)}, { 1,0, (10 10) }, { 

1,0, (~ ~)}, (1, 1, (~ ~)}, {1,0, (~ ~)}, { 1,0, (~ ~)}, { 

1,0, ( ;  ~)}, {1, 1, (10 ~)}, {1,0, (10 0)}, { 1,0, (~ (;)}, { 
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, 0  0 (0 ;)1 

1, 1,(0 10)}, { 1, 1, 00) ). 
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