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Introduction

The notion of convolution (Ger. Faltung, Fr. produit de composition) is a venerable

one in mathematical analysis. The convolution

da

1 [  sin(n+3)(a—2)
2] Y St eon)

is found in Dirichlet’s original memoir [12] on Fourier series, and similar convolutions
are extensively used in the classical literature on Fourier series and integrals (see
for example Riemann [34]. Weierstrass’s original proof [47] of the celebrated approx-
imation theorem bearing his name utilizes a certain convolution. Fractional integration
and differentiation are defined by means of convolutions (see for example Zygmund [51],
pp. 222-225). A perusal of any adequate textbook on Fourier series or integrals
will show the important place occupied by the notion of convolution in the field of
harmonic analysis. The Hilbert transform is of course a convolution. The classical
theory of this transform has recently been extended by Zygmund and Calderon [52].

More recently, it has been recognized that measures and certain classes of abstract
linear functionals can be convolved. For functions of finite variation on (— oo, + <o),
for example, see Bochner [5], pp. 64-74, and, from another point of view, Beurling [4]
and Gel'fand [15]. The notion is discussed and utilized ¢n extensc by Jessen and

Wintner [22]. L. Schwartz has studied convolutions for the class of linear functionals

1 The authors wish to acknowledge financial assistance by the National Science Foundation
U.S.A. during the preparation of this paper.
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called distributions ([35], Ch. VI). Finally, we shall see that the algebras discussed
in Bourbaki [6], pp. 110-115, can be considered to be convolution algebras.

The importance of convolutions in the theory of Lie groups was recognized by
H. Weyl (Peter and Weyl [30] and Weyl [48], Ch. III, §§ 12-15). A very general
description of convolution of linear operators is found in A. Weil’s treatise on topo-
logical groups ([48], pp. 46-48), and it is to this source that the present paper owes
its original inspiration. The notions sketched by. Weil have been utilized and ex-
tended by many writers (see e.g. Segal [39], Godement [16], and Buck [7]).

In studying numbers of examples of convolutions and in particular analyzing
the ideal structure of certain algebras in which multiplication is defined by a con-
volution, the authors have been led to formulate a very general, purely algebraic,
definition of convolution algebra, This definition includes all of the examples of con-
volutions which we have found in the literature.2 A preliminary announcement of a
special case is found in Hewitt and Zuckerman [19]. Our definition includes as non-
trivial cases both infinite and finite dimensional algebras, and in studying these
two classes of convolution algebras, entirely different techniques are called for. In-
finite dimensional convolution algebras are best treated by analytic and topological
methods, while the tools of classical algebra are required in the finite dimensional
case. The present paper is devoted primarily to a discussion of finite or at least
finite dimensional objects, although when a theorem about an infinite situation can
be obtained at no extra effort, we do not hesitate to state it. Some infinite dimen-
sional examples are also included, in 1.4. A second communication will be devoted
to infinite dimensional convolution algebras.

We use the following notation:

K denotes the complex number field;

IR, denotes the algebra of all n><n complex matrices;
Z, denotes the zero algebra over K of dimension p;
A@® B denotes the direct sum of algebras A and B;

K, denotes the direct sum K @P---@ K with » summands.

Throughout this paper, functions and linear functionals are always complex-
valued. Linear spaces and algebras are always over the field K; and homomorphisms

and ideals of algebras are taken in the algebra sense.

2 It does not include the composition of functions of 2 variables discussed in VOLTERRA and
PEREs [45], but this composition in its general form can hardly be called a convolution.
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§ 1. Basic definitions and theorems
We begin with a number of definitions.

1.1. Definition. A non-void set G is said to be a semigroup if there exists a
binary operation defined for all z, y ¢ ¢ (usually written as zy) such that x(y2) = (zy)z
for all z,y,2¢G.3 The cardinal number of a finite semigroup is called its order, and
is often written as o(G).

1.2. We list a few examples of semigroups.

1.2.1. Any group.

1.2.2. Any non-void set ¢, with zy—=y for all =, yeG.

1.2.3. Any non-void set G; a a fixed element of ¢, and xy=a for all x,yeG.

1.24. Any non-void set G completely ordered under a relation =<, with zy=

=max (z, y) for all z, yeG.

1.2.5. The set {a,a-+1,a+2,...}, where a is a non-negative integer, and the
semigroup operation is ordinary addition.

1.2.6. In Appendices 1 and 2, tables of all semigroups of orders 2 and 3 will
be found. Such tables have been computed independently by Carman, Harden and
Posey [8] and by Tamura [44]. Their results for orders 2 and 3 agree with ours.
Carman, Harden, and Posey have an incomplete table of semigroups of order 4. G.E.

Forsythe [14] has computed the semigroups of order 4 by mechanical means.

1.3. Definition. Let & be a semigroup, and let & be a linear space of functions,

with the usual definitions of sum and scalar multiplication, defined on G. We sup-

pose that

1.3.1. for all z¢ @ and fe 3, the function .f, defined by the relation .f(y)= f(zy),*
is an element of .

Now let £ be a linear space of linear functionals defined on . For Le L, e,
and z¢ G, let L,(f(xy)) denote L(,f). We suppose further that

1.3.2. for all LeL and fe{. the function on G whose value at x is L, (f(xy)),
is an element of {;

1.3.3. for all L, MeL, the linear functional N on § defined by the relation
N({f)=M.(L,(f(xy))) is an element of L. Under these conditions, we write N as

3 An extensive discussion of abstract semigroups and related systems may be found in
Dusrein [13], Chapter II.

4 The function f; is defined analogously : it has the value f(yx) at the point y.
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MxL;, and call ML the convolution of the linear functionals M and L. The linear
space L is said to be a convolution algebra.
Definition 1.3 includes all of the notions of convolution which the authors have

found in the literature, whether of functions, measures, or distributions.3

1.4. Examples of convolution algebras. We now give a few examples of both
finite and infinite dimensional convolution algebras, showing the diversity of struc-
tures included under our definition of convolution. A close study of these examples,

however, is not essential for understanding the remainder of the present paper.

14.1. Let G be the semigroup defined in 1.2.3. Let & be any linear space of
functions on G containing the function identically equal to unity (written as 1). Let
L be any linear space of linear functionals on {§ containing the functional 4, such that
Aa(f)=f(a) for all feiF. It is easy to see that conditions 1.3.1-1.3.3 are satisfied
and that L¥M=L(1) M (1), for all L, M L.

1.4.2. Let G be a finite group. The group algebra of @ is often described as the

set of all formal complex linear combinations of elements of &, > a,x, with term-
reG

wise addition and scalar multiplication and with product defined by (Izcazx) *(yzaﬁy y) =

= 2> 2 a;f,xy. This algebra is isomorphic to the convolution algebra consisting of
TeG yeG

all linear functionals on the space of all functions on G. To see this, let A, be the
functional such that A,(f)=f(a), for all aeG. Then A,%1,(f)=/f(ab), as we shall
show in the proof of Theorem 1.7. Hence A, %A, =214,. Since the linear functionals
Ao (@aeG) form a basis for all linear functionals in question, the asserted isomorphism
is established. It may also be noted that zZE:c ygcaxﬂyxy=z‘e§:c(y§cazy—x By) z; this

identity shows the isomorphism of the algebra defined here with the algebra L, (G)
described in 1.4.6 infra.
1.4.3. A quite different example is provided by the algebra of all sequences of

complex numbers {a,}.2;. We write a={a,} 20, b={br}nzo, and so on. The element

a+b is {a,+b.}s20, ta={ta,}20, for all te K, and the product axb of a and b is
defined by the relation a*bz{ > a b,,gk},,"io. This algebra is a convolution algebra
k=0

in the sense of 1.3. Let {§ be the space of all functions on Ny={0, 1,2, 3, ...} which

vanish except on finite subsets of N,. As noted in 1.2.5, N, is a semigroup under

5 Group algebras of finite groups have of course been studied for coefficients lying in arbitrary
fields (see for example v. p. WAERDEN [46], Ch. XVII). Other generalizations are mentioned in BER-
MAN [2] and PaicE [28].
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addition. Let £ be the space of all linear functionals on §. It is clear that for all

A e C, there is a unique sequence {@,}s2¢ as above such that A(f)= 2 a,f(n) for all
n=0

fed. Conversely, every sequence {a,},2 defines a linear functional on {§. It is easy

to verify 1.3.1 for the present function space F. To verify 1.3.2, let f be an arbi-
trary element +0 in , and let p—1 be the greatest integer such that f(p—1)=+0.

o0

Then f(m-+n)=0 for all ne N, and m=p. Therefore 4,f(m+n)= > a,f{m+n)=0

n=0
for all m=>p, and hence 1.3.2 holds. Condition 1.3.3 is automatically satisfied, since
L here consists of all linear functionals on . Let e, be the function such that
en(m)=0nm (n, meN,). Then clearly A (e,)=a,. For elements A and B of C, we there-
fore obtain 4% B by computing A% Bfe,) for all neN,. We have

M8

A% Bley)=Ar (Biea (k+1))=

k=0

I

oC n
Z Ay blan,ku: Z ar b= Z by
1=0 k k=0

+l=n

Therefore the multiplication defined above for sequences {a.}.%, is actually convolu-

tion in the sense of 1.3.

1.4.4." Consider the space £,(7'), consisting of all Lebesgue integrable functions
on the circle group 7. For f,ge&,(T), the integral

2x
frg @)= [ ) g () dy,
0

the convolution of f and g, defines a function which is again in &, (7).

1.4.5. For f,ge& (R), where R denotes the additive group of real numbers, we
have

fxg@ = [flx—y) gy dy,

and this function f*g is again in &, (R).

1.4.6. To show that the operations described in 1.4.4 and 1.4.5 are convolutions
in the sense of 1.3, consider an arbitrary locally compact group G. As ¥, we take
€. (@), the space of all continuous functions on G which are arbitrarily small outside of
compact sets, and normed by ||f||=r:1€ag< |f(x)|. As L, we take the space €. (@), con-
sisting of all bounded linear functionals on €, (G). It is obvious that 1.3.1 holds for
€ (@): if |f(y)|<e for y noneAd, then |.f(y)|<e for y nonea' 4, and z7'4 is

compact if A is compact. To verify 1.3.2 for the present case, we must use
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F. Riesz’s representation theorem for elements L of @w (G): L{f)= f f(x)dA(x), where
G

A is a complex-valued, countably additive, bounded, regular Borel measure on G.¢
Consider the total variation |A| of A (see Hewitt [18] for a definition). Since |4]| is
regular, for every # >0 there exists a compact subset B of ( such that |1|(B’)<7.
For an arbitrary fe€,.(G) and >0, let 4 be a compact subset of G such that
|f(y)| <n for all ye A’. Then we have

[tapdiy) = [f@ydi@) + [fay) diy).
G B B
It is plain that

[y dam|=<|If-141B) <7t
5
If z is not in the compact set AB~!, then we have

[T di®)|<[|f@y|d|il@<nlil@),

since zyed and yeB imply that xe A B '. It follows that f f(xy) dA(y) becomes
G
arbitrarily small outside of properly chosen compact sets. To show that f flxy)dA(y)
G

is continuous as a function of =z, it is necessary only to note that f is uniformly

continuous. To verify 1.3.3 for the present case, we observe that
| M L(H|=|[ [fepdi@)du@)|< [ [If@p]dli]@)d]pl @)
G G G G

<IHHALG) [l @ =1F1I-I1 LN 2L

Hence ML is a bounded linear functional and ||[M»L| <||M|-||L|. The convolu-

tion algebra G, (@) will be studied in detail in a second communication. This algebra
has a subalgebra (actually a 2-sided ideal) consisting of all functionals for which the
corresponding measures are absolutely continuous with respect to right Haar measure
on G. As is well known, for such measures u, we have du(x)=m(x)dz, where
me L, (G) and dx is the differential of right Haar measure. Let u and v be two such
measures, with dv(z)=n(x)dz. Then, writing the functionals in question as M and

N, respectively, we have

¢ For all special terms used in this paragraph, see LooMis [24].
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M*N( = [ [y n@)dym @ de= [ [foy)m@) dznly)dy

G G

:J if(x)m(x!/“l)dxn(y)dy=ff(x)fm(xy“l)n(y)dydx.

That is, the measure corresponding to the functional M * N is absolutely continuous,
and the differential of this measure is f m(ry ')n(y)dydz. This shows that the
é
classical convolutions mentioned in 1.4.4 and 1.4.5 are actually convolutions in our

present sense.

1.4.7. Let the semigroup @ be the additive group of real numbers, R. As the
function space §, we take the space of all continuous functions f on R such that
tlim f() and lim f(f) exist and are finite. Denote these limits by E. (f) and E_(f),
-> 00 t>—o0

respectively. The space ¢ is a Banach space under the usual addition and scalar
multiplication and with ||f||=sup |f(#)]. It is clear that B, and E_ are bounded
teR

linear functionals on . As the space £, we take all bounded linear functionals on .

It is not difficult to show that every LeL has a unique representation of the form

L(f)= [f@) di(@)+aBE_(f)+BE. (),

-

where A is a countably additive, complex-valued, bounded Borel measure on R and
o, e K. Conditions 1.3.1-1.3.3 are established by a routine calculation, which we omit.
Hence we are in possession of another convolution algebra. Interesting features of
this algebra are that is has non-zero Jacobson radical (Jacobson [21]) and is non-

commutative, in spite of the fact that the basic group R is commutative. In fact,

E.*E_(f)= lim (ylzir_nw(f(x+y)))= lim (. (f)) = B-(f),

while
E_xE, (f)=E+ (.

We now give a few simple but basic results.
1.5. Theorem. Every convolution algebra is associative.

Proof. Let L, M, N be elements of the convolution algebra £, and let fe &. Then

Lk (M x N)(fy= Le (M % Ny (f (zy))) = Lz (M (N (f (2 (u))))).
= L. (M (N (f (zu)v))))-
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On the other hand,
(LxM)* N(f)y=LxM,(N,(f(wr)) =L (M, (N, (f((xu)v)))).

This proves the present theorem.

1.6. Definition. Let G be an arbitrary finite semigroup, with elements xy, 2,, ..., T».
Let &,(G) denote the linear space of all functions defined on @, and let £, (G) denote
the space of all linear functionals defined on ,(G).

Let @; be the function in ,(G) such that ¢;(x)=0;; (,7=1,2,...,n) and let
A be the element of £, (@) such that A4(g;)=0i; (5,7=1,2,...,n). (Note the slight
change in notation from 1.4.2.) Let [7,j] be the integer such that xzx;==x;,
(t,=1,2, ..., n).

1.7. Theorem. C,(G) is a convolution algebra. It is isomorphic to the algebra

of all formal complex linear combinations > a,z, where
zeG

(2 o)+ (2 Bra)= 2 (@ +B)x, p( 2 azx)= > (yas)z,
G TeG 2eG zeG TeG

Te

and

(2a:2) (2 Byy) = 2 2 asfyry.
z2eG veG TeG VeG

Proof. The first statement of the present theorem is obvious. To prove the

second, we observe first that the functions ¢; form a basis for &, (@): if feF, (G),

then f= 3 f(z:)¢:;. Next, the functionals 4; form a basis for C;(G): if Le L (G),
i-1

‘then L= ) L(g)A. It is clear that A;(f)=f(x:) for all fe3F,(¢) and i=1,2,...,%.
i1

We shall now show that A%4,=4g, (i,j=1,2, ...,n). We use the identity
fan = 3 @) o) o),
which is valid for all f¢5,(G) and z,yeG. We then see that.
B G (109 = e (3 flo21) 9 (0) 2 )
= ,,:ZJ (@ 1) 2 () &y ) = kz 1) b 8= f (21,

It follows at once that A;%A;=A; ;. Therefore, under the mapping izl o A= 121 & %i,

we have an isomorphism between the algebra C,(G@) and the algebra described in the
present theorem.
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1.8. Remark. It is obvious from the preceding theorem that L, (¢) for a finite
semigroup G is commutative if and only if ¢ is commutative. This property no longer

holds in the infinite dimensional case, as example 1.4.7 shows.
1.9. Theorem. Let ¢/ be a finite semigroup and let f ¢ &, (@), and M, Le £, (G). Then

Ly (f ()= L. (M, (f (xy))).”
Proof. Since
Hxy)= EZf(wzm,)tpz( ) @i (),

we have

M, (@)= 3 3 f ) L) M (@),

On the other hand, we also have

f(yx)= ;;f(xuxv (Pu(y)(pv( x),

and hence it follows that

M. (Ly (f(yx) = Z Ef (@y %2) L (@u) M (@y) = Z Zf(xm])L((pz)M(tp]) L. (M, (f (zy))).

1.10. Theorem. A finite dimensional algebra A is isomorphic to an algebra £, (G)
for some finite semigroup & if and only if A4 has a basis which is closed under multi-

plication in 4.

Proof. If A is isomorphic to £, (&) for some finite semigroup G' under an iso-
morphism y, then the elements u™'(4,),...,u '(4.) are a basis for 4 of the kind
required. Conversely, if 4 possesses a basis which is closed under multiplication, say

@y, Gy, ..., Gy, then the elements a,, a,,... a,, form a semigroup under the multiplica-

tion operation in 4. It is clear that A is the set of all sums Z o; @;, and that

i=1

( > ai) ( > Bi a,->= > a;Bia;a;. Hence A is an algebra of the sort described in
-1 i-1 ;

i,7=1

Theorem 1.7 and is accordingly isomorphic to an C;-algebra.

1.10.1. The preceding theorem shows that the algebras described by Bourbaki [6],
pp. 110-115 are convolution algebras, for finite semigroups. An extension to the infinite

case offers no difficulties.
1.11. Theorem. Every finite dimensional algebra A is a convolution algebra.

Proof. Adjoining a unit to A4 if necessary and using the regular representa-

tion, we obtain a faithful representation of 4 by complex p><p matrices, where

7 This theorem is due to Dr. THELMA CHANEY.
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p<dimA+1. Thus we may regard 4 as a subalgebra of M,. Now, I, is not an
L,-algebra, as we shall show in 4.3, but M, PK is an L,-algebra (this will be shown
in Theorem 4.2). Therefore A is isomorphic to a subalgebra of an L -algebra. De-
finition 1.3 makes it clear that every subalgebra of a convolution algebra is a con-

volution algebra, and this completes the present proof.

1.12. Remark. Theorem 1.11 shows that finite dimensional convolution algebras
are too general to be of any interest from our present point of view. Therefore we
shall limit ourselves here to a study of algebras of the form L, (&) for finite semi-
groups G. These algebras are not nearly so general a class as one might at first
suppose, and a certain amount of success has been obtained in determining their
possible structures. From time to time, we shall permit ourselves to make statements
regarding infinite semigroups, but we shall restrict ourselves to facts which can be

obtained by essentially finite arguments.

§ 2. Finite semigroups

2.1. In spite of the large literature devoted to the algebraic theory of semi-
groups, we have found a number of apparently new theorems (in particular structure
theorems), which are useful in classifying finite dimensional L;-algebras. In addition,
we find it convenient to reformulate a few well-known ideas. The present section is
devoted to this program.

We first give 5 simple theorems showing various methods of adjoining new ele-

ments to an arbitrary semigroup.

2.2. Theorem. Let G' be a semigroup. Let z be an object not in G. Then G U {z}
(also written as @), with the multiplication rules
zy=zy as in G for all =, yeq,

xz=zx=2 for all 2@,
is a semigroup. (@, is said to be obtained from @ by adjoining a zero.)

Proof. If u, v, we@, then u(vw)=(uv)w by hypothesis. If u, v, weG, and at
least one of u, v, and w is 2z, then u (vw)= (uv)w=-=2.

A slight variant on 2.2 is the following.
2.2.1. Let G be a semigroup with a zero a. Let b be an object not in G. Then

G U {b} is a semigroup under the multiplication rules
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~1

FINITE DIMENSIONAL CONVOLUTION ALGEBRAS

zy=xy as in G for all z,ye@;
zb=bzx=0b for all 2z¢@;
B =a.
2.3. Theorem. Let ¢ be a semigroup and let e be an object not in ¢. Then
G U {e} (also written G,), with the multiplication rules
zy=xzy as in G for all z,ye@,
ex=xe=x for all zeG.,

is a semigroup. (¢, is said to be obtained from G by adjoining a unit.)

We omit the proof.

2.4. Theorem. Let G be a semigroup. Let z; be an arbitrary element of @,
and let o be an object not in G. Then G U {a}, with the multiplication rules
xy=xy as in G for all z,yed,
ra=xx, for all xe@,
ax=z,x for all xe@,
aa=x,x,

is a semigroup. (This semigroup is said to be obtained from @ by adjoining a repeat

element.)

Proof. For all ueGQ@U{a}, let u'=u if ue@, and let v =x, if u=a. Then
uv=u'v" for all u,veGU {a}, and consequently u(vw)=u'(vw) =u’ (v w)=(u'v')w’
= (uv)w.

2.5. Theorem. Let G be a semigroup containing an idempotent element x, (x}=uz,).

Let a be an object not in . Then G U {a}, with the multiplication rules
xy=xy as in G for all x,yeG,
rxa=zxzx, for all z¢@,
ax=xx for all ze@,

a’=a,

is a semigroup. (The semigroup QU {a} is said to be obtained from G by idempotent

adjunction.)
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Proof. Let u’ be defined as in the proof of the preceding theorem. Then uv=aqa
if w=v=a, and uv=u'v" otherwise. Since o'=x =2z,2,=0a'a’ and «'v’ ¢ G, we have
(uv) =u'v" for all u,veGU{a}. Then uww)=u (vw) =2 (@ w)= @ v = (uv) v
=(uv)w unless u=v=w=a. Since a(aa)=(aa)a=a, the proof is complete.

The remainder of the present section is devoted to a study of the algebra of
semigroups and of the structure of certain classes of semigroups. A few of the results
set forth here are to be found in one or another form in papers of Clifford [10],
Poole [30], Rees {31, 32], Schwarz [36, 37, 38], and Suskevi¢ [42]. For reasons of nota-

tion and substance, we find it wise to give a complete discussion.

2.6. Definition. Let z be an element of a semigroup. We shall say that x is
of finite order?® if there exist 2 integers k=1 and !>1 such that 2**'=2' It is easy
to see that all elements of a finite semigroup are of finite order. We now list some
simple properties of elements of finite order.

2.6.1. If z is of finite order, the sequence z, 2%, 2%, ... contains at most k+7—1
distinct elements. If r is the smallest integer such that z'=2°, 1<s<r, we let
l;=s, ky=r—s. Then z"=z% p>gq, if and only if ¢=1, and p=q+jk,;, for some
integer j.°

2.6.2. If z is of finite order, then (z™)®*=2" if and only if the conditions
m=jk;=>1; hold, for some positive integer j. This follows at once from 2.6.1

2.6.3. If (#™)>=2" for some m=>1, then x is of finite order.

2.6.4. If (x")2=2" and (x')?=2", then 2™ = (2") =(2")" =2".

2.6.5. If x is of finite order and I, =1, then (z*z)*=x"=.

2.6.6. If G is a semigroup all of whose elements are of finite order and if,
furthermore, @ has a left unit e, and G has just one idempotent element, then @ is
a group. This follows from 2.6.2, since we then have (z™)*=2", ¢*=¢, and hence
2" =e. Then we have ze=az"=z"z=ex=2 and axz®™ '=22" l1xg=2>"=¢; this
shows that the semigroup G is a group. (In the finite case, this follows easily from
Theorem 39 of Schwarz [37].)

2.7. Theorem. Let G be a finite or infinite, commutative, idempotent semi-
group. Then G has a concrete representation as a system of subsets of the clements
of G.

8 For an extensive utilization of this notation, see SCHWARZ [36].
® An interesting theorem concerning certain semigroups in which Iz =1 for all z is to be found
in GREEN and ReEs [17].
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Proof. For each x:G, we let M,={zx; zeG}, the set of all multiples of z. We
have xe M, and xye M, N M,, so that all of the sets M, and all finite intersections
of sets M, are non-void. If M,=M,, then xr=uy and y=vzx for some u,veld. We
thus find 2 =uy=wuyy=uyvr=2vzr=vz=y. Furthermore, if ze¢ M, N M, then
z=ux=vy for some u,veG and we have z=2>=wuvzxyeM,,. Conversely, if ze M,,,
then z=uzxy=(ux)y=(uy)x and zeM,N M, Therefore M., =M.NM, and the
mapping x—>M, is an isomorphism of G onto the semigroup of sets {M,};.c, the
semigroup operation being set-theoretic intersection.

2.9.1. As a converse to Theorem 2.7, we have: If § is any set and G is a set
of subsets of § such that the intersection of every pair of subsets belonging to ¢ is in

G, then @ is a commutative idempotent semigroup under the operation of intersection.

2.7.2. Remark. Theorem 2.7 and its converse provide an interesting sidelight to
Stone’s representation theorem [41] for Boolean rings. Let 4 be a Boolean ring, i.e.,
an associative ring in which 2®=x for all xe¢A. It is an elementary fact that 4 is
commutative. Thus A4, under multiplication alone, forms an idempotent commutative
semigroup with a zero; 4 may or may not have a unit. It is easy to show that if
A contains more than 2 elements, then the zero is not adjoined: A contains divisors
of zero. Stone’s theorem asserts that 4 admits a concrete representation as a ring 4
of subsets of a certain set, the operation ¢ +b of 4 becoming (4N B’) U (4’ N B) in
A and a-b in A becoming AN B in A. Theorem 2.7 shows that if we wish merely
to represent the multiplication operation in 4, we can use the simple mapping
a—>{za; ze A} to obtain a faithful representation of 4 by sets. However, this mapping
shows no tendency at all to preserve the operation +, and we have no hope of ob-

taining by this method an elementary proof of Stone’s theorem.

2.8, Theorem. Suppose that @ is a finite or infinite commutative semigroup,
all of whose elements are of finite order. If I, =1 for all x¢ @, then G consists of

a set of disjoint groups.

Proof. For each idempotent element a¢@, we take S,={z; ™ =a}, the set of
all x¢@ such that 2" =a for some m. From 2.6.4, we see that the §, are disjoint
and from 2.6.2, we see that every z¢@ is in some S,. If z, yeS,, then, using 2.6.5

and 2.6.4, we have
(2y)¥ = s = (¥2)*s (yhs)he =2 o' = a* ~ a

and hence zyeS,. We also have ax=2""1=2 and xa’*s '=2*%s =qa; thus ¢ is the

unit element of S, and 2*¥z7! is the inverse of x in S,.
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If G is a semigroup satisfying the conditions of Theorem 2.8, then the set H of
idempotent elements of G is itself a semigroup. Each « ¢ H is the unit of a group S,.
If the idempotent semigroup H and the corresponding groups §; are known, then G
would be completely determined if the products of elements of different §, were
known. We will not attempt to characterize these semigroups completely’®. However,

the following results will be useful.

2.9. Theorem. If G is as in 2.8 and z&S,, y&S,, then xyeSas.

Proof. We have (vy)*s*v=a*zy*v=ab, and therefore zyeS,s.

2.10.1. If z¢8, and ye&S,, then xy, bx, and ay all belong to S;,. Therefore
we have xy=abxy=(bx)(ay), so that the products xy are determined once we
know the products bx for xe8, and ay for yeS,, together with multiplication in
the group S,».

2.10.2. If x¢8,, b>=b, and ab=a, then bxr=b(ax)=axr=x. In other words,
the idempotent & is not only the unit for the group S, but is also a unit for

S= U S, It is easy to see that S is a semigroup.
ab=a

2.11. We now consider a finite or infinite commutative semigroup G all of whose
elements are of finite order. Let us denote the set {x; z¢ G, I, =1} by the symbol G°.
If z,ye @, then, by 2.6.5, we have

(@y)eakut = (zFz)r (y*v)s gy =¥z y*u zy=attlyfrtl =gy,
This implies that I, =1, in view of 2.6.1. Therefore G° is a semigroup and it satis-
fies the conditions of Theorem 2.8. If H denotes as above the set of idempotent
elements of G, then H<=G°. For each ae H, we take T,={z; x¢ @G, a™ =a for some
integer m}. From 2.6.4 and 2.6.2, we see that the sets T, are pairwise disjoint and
that every xze(@ lies in some T,. Each T, is a semigroup and 7T, N G° is a group:
it is simply the S, of Theorem 2.8 applied to G°. If z¢T, and yeT,, then 2" =a,
y =b, and consequently (xy)™ = (x") ()" =a" b =ab. It follows that zyeTq,.

We thus see that 7, is a semigroup containing the group T, N G°. It is of
interest to note that «T,=T,N G°. To prove this, let = be any element of T',.
Then we have z™=a and hence (az)""'=az™"'=aax=ax, so that [, =1 by 2.6.1.

In the preceding few paragraphs, we have dealt only with commutative semi-
groups. We now drop that restriction but add another strong condition. We consider

the effect of imposing a one-sided cancellation law.1® Since it is immaterial whether

Y2 But see CLIFFORD [10], Theorem 3.
10 QOther structural properties of semigroups with a one-sided cancellation law are given in
Tamari, Bull. de la Soc. Math. de France, 82 (1954), 53-96.
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it be left- or right-sided, we confine our attention to the left cancellation law: xy==xz

implies y==z, for all z, y, z¢ G.

2.12. Theorem. If G is a finite or infinite semigroup all of whose elements are
of finite order, and if G obeys the left cancellation law, then @ is the direct product
of a group J and a semigroup H such that xy=y for all x,ye H. 1

Proof. If x¢G and «*"'=4', [>1, then ' '2**'=2' 'z, and we cancel the factor
z'! to obtain the equality z**'=2x. Therefore I, =1, by 2.6.1, for all 2¢@Q.

Next, let a be any fixed idempotent element of G and let J={z; 2@, xa =2},
H={z;2eG, a*=a}. I x,yeJ, then zya=xy and xyeJ. Furthermore, ar=aax,
so that z=az and a is a (two-sided) unit in J. Also zz*r=z"+"'=x=xa. Hence
zFz =gq. It follows that a?¥s lp=2s?*s1=2%*s —~q2=q; hence x has an inverse in J.
Accordingly, J is a group. We next make the following observations.

2.121. If z¢H and yel, then zxy=xy and therefore xy=y. This makes it
obvious that H is a semigroup.

If 2@, we let u;=za and v, =2*

z, Then w,a=zxaa=xa=1u,, so that u,eJ.
We have v, ¢ H from 2.6.5. Since a ¢ H, we can use 2.12.1 to find the following relation:

2.12.2 Uy Ve =xazric =gfztl =g,

We next note that if ueJ, ve H, and w=wuv, then u,=wa=uva=ua=u, by
2.12.1. Also, v, = w"*®» = (wv)*» =y vy by 2.12.1. Therefore uv, = u*»* 'y = (uv)*v*! = yv.
We cancel the factor 4 and obtain v, =wv.

We have now established the existence of a one-to-one correspondence
x> (U, vs) (xe@, uzed, voe H).

If ze(uzuy, v, v,), then, in view of 2.12.2 and 2.12.1, we have z=u, u, v, v, = u; u, v,
and xy=u, v;uy, v, = U, Uy v,. It follows that z=2xy, and hence the one-to-one
correspondence just established is an isomorphism of G onto the direct product J>< H.

This completes the present proof.

2.12.3. Note. According to a theorem of Clifford®, everv semigroup G in
which there exists a left unit ¢ and in which, for all z¢G, an =z’ exists with
xx'=e, is the direct product of a group and a semigroup in which 2y =y identically.

Combining this result with Theorem 2.12, we have the following theorem. Let G be

102 dnn. of Math., 2 Ser., 34 (1933), 865-871.
11 This theorem, for finite semigroups G, follows immediately from results of SuSkevié [42].
His methods are not, however, applicable in the general case treated here.

6 — 543809. Acta Mathematica. 93. Imprimé le 10 mai 1955.
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a semigroup in which every element has finite order. Then G obeys the left cancella-

tion law if and only if @ has a left unit e and right inverses relative to e.

2.12.4. Note. Theorem 2.12 fails for semigroups containing elements of infinite
order, as the non-negative integers under addition show.

We turn now to the case of an idempotent semigroup that is not necessarily
commutative. 12

2.13. If G is a finite or infinite idempotent semigroup, then G consists of a
set of disjoint semigroups, as follows. We take S,={z; z¢(, azra=a, xaz=2z}, for
each ae(. Since aaa=a, we have aeS, so that no S, is void and every el
lies in some §,.

If 2,ye8,, we have xyaz-(zax)yar=x(ayalzyar-za(yax) (yazx)=za(yazx)=
=x{aya)r=xax=x, and hence xyr=ry(xyazr)=(ry)(ry)ar=xyar=z. Then we
also have yxy=y and therefore x¢S,, y&S,. This shows that z¢S, implies S; = S,
and that the sets S, are pairwise disjoint. Also if x,yeS,, we now have z(ry)r=
=ryr=z and (ry)x(ry)=2xyry==xy, so that xyeS,=38,. It follows that S, is a

semigroup.

2.14. Theorem. Let &, S,, and S, be as in 2.13. If z¢S, and yeSp, then
xyeSq and Sy, =S,;.

Proof. If x¢S,, then (ba)(xb) (ba)=bazba=baxb(axa)=(bax)(bar)a=(bazx)a-
=b(axa) = ba. Furthermore, (xb)(ba)(xb) = rbazxb=(xaz)bazb==x(azb)(azb)=
=xz(axb)=(xax)b=xb. Therefore xbeS,,. This implies that abeS,,; since we have
abeS,p, it follows that S,, = S.,.

If 2¢8, and ye&S,, we have beSy=8, and then, from what we just proved
above, we see that zyeS,, and baeS,,. But this implies that zy &S, = Spa = Sas.
This completes the present proof.

We note also that if H is the set of distinct S,, then H is a commutative,

idempotent semigroup under the operation S, S, = Sq..

2.15. Theorem. Each S, of 2.13 is isomorphic with a semigroup of pairs (y, z)
in which the semigroup operation is defined by (yy, 2;) (4,, 2,) = (s, 25).
Proof. We take S,={ra;xe8,}, Sy ={az;xeS,). Then S,<8, and 8/ < S,.

Also yeS; implies that ay=a, ya=y; similarly, z¢ S, implies that az=z, za=a.

If 2¢8,, then y=xaeS, and z=axeS,. Also yz=(xa)(ax)=xar=u.

2 In connection with this topie, see also McLEAN [27] and CLIFFORD {10]
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If yeS, and z&S;, then we have x=yz¢eS, and za=yza=ya=y, ax=ayz=
=az=2z.

We have thus established the existence of a one-to-one correspondence x« (ra, ax)
between S, and the set 7, of pairs (y,z) for yeS, ze8;. If x¢(y,2) and
Xy (Ys, 25), then we have x, a0, =y, 2,452, = (¥, 0) 2, (Y @) 2, = Yy (@ 2, Yy ) 2, = Y1 A 29 = Yy 2.
The correspondence becomes an isomorphism when we define (y,, z;) (¥5, 25) as (y, 2,).
This completes the proof.

It is of interest to observe that for x,,x,¢8,, the equality x, x,=x,2, obtains
if and only if z, =ux,.

The semigroups S, are completely determined by the sets S, and S;. For
example, if S, is finite, we have z (i, §), 1<i<k, 1<j=<!, where k is the number
of elements in S, and ! the number in S, .

If yeS, and ze8;, then y—(ya,ay)=(y,a) and 2 (za, az)=(a,z). We also
have y,y,=vy, if ¥, ¥,e8, and z,2,=2, if 2,, 2, £ S;/. Furthermore, if y¢S; and x¢ S,,
then xye(ra,aw)(y, a)=(xa,a), so that xyeS;. Similarly, we find that zz¢ 8, if
ze S, and xeS,. We will say that S; is a left ideal of S, and 8, is a right ideal of S,.

2.16. Definition. A non-void subset I of a semigroup G is said to be a left ideal
of G if wyel for all xeG and yel. Right and 2-sided ideals are defined similarly.13

§ 3. Representations of semigroups

We use the term representation in connection with a semigroup G to mean a
homomorphism of ¢ into the multiplicative semigroup M, for some n=1. We begin

with a study of l.dimensional representations.

3.1. Definition. Let G be a semigroup. A complex function y defined on & is
said to be a semicharacter of G if y(x)=+0 for some x¢@ and y(zy) =y (x) % (y) for all
z,yel.

We list a few simple properties of semicharacters. Proofs are left to the reader.

3.1.1. If = is an element of finite order belonging to a semigroup G and if y
is a semicharacter of G, then y(x) is either 0 or a root of unity.

3.1.2. If « is an idempotent element and y is a semicharacter, then y (x)=0 or 1.

3.1.3. If @ contains a unit, ¢, and if y is a semicharacter of G, then y(e)=1.

13 This widely used concept goes back at least to SUSKEVIC.

14 8. ScawaRz [38] has used a slightly different definition of semicharacter and has obtained
a number of interesting results paralleling ours. We are also indebted to Dr. Scawarz for personal
conversations on this topic.
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3.1.4. If G contains a zero, z, and if y is a semicharacter of G not identically 1,
then y(2)=0.

3.1.5. A semicharacter of a group is a character in the usual sense.

It is essential for our purposes that a semicharacter be allowed to assume the

value 0. In fact:

3.1.6. Let G be a finite semigroup such that for every pair of distinct elements
z,ye G, there exists a semicharacter y vanishing nowhere such that y(x)=+yx(y).

Then G is a commutative group.

3.2.1. For the moment, we consider a finite commutative semigroup G and sup-
pose that y is a semicharacter of ¢. We will use the notation and results of 2.11.
For some xe¢@, we have y(x)+0. Then 2.6.2 shows that x(¢)=30 for some aecH,
and hence y(a)=1, by 3.1.2. We take ay= [] a. It is clear that y(a,)=1 and

acH x(a)=1
that for ae¢ H, we have y(a)=1 if aya=a, and y(a)=0 if gya+a, For all z¢G,
we have y(x)=y(ag) y(@)=x(aex). If zeT, and aya=a,, then ayxeTs =T, and
agx=ay(ag2) ey To,=To, N G°. M zeT, and aya+a, then z"=a for some m and
hence y(x)"=y(a)=0, which implies that y(z)=0. Now 7, NG° is a group and
% (ay)+0; hence y, with its domain restricted to the group 7, N G°, is a character

of that group. We have therefore proved the following theorem.

3.2. Theorem. If G is a finite commutative semigroup and y is a semicharacter
of G, then there is an element a,¢ H and a character y, !° of the group 7, N G°

such that

0 if aya=+a, for the element a such that x¢7,,

)=
x42) X, (@ %) if aja=a, for the element a such that xeT,.

3.2.2. We point out that Theorem 3.2 remains valid for commutative semigroups

@ in which all elements have finite order and in which H is finite.

3.3. Theorem. If G is a finite or infinite commutative semigroup, all of whose
elements have finite order, if a,¢ H, and if y,, is a character of the group T, N G°,

then the function g, defined by the relations

0 if aja+a, for the element a such that z¢&T,,

r)=
2() Xa, (@o%) if aga=a, for the element a such that reT\,,

is a semicharacter of G.

15 For typographical reasons, we violate here the convention of footnote 4.
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Proof. Since y(a,)30, we have only to prove y(zy)=y(x)x(y). If zeT, and
yeTy, then xyeT,p. If agab=a,, then gqya=ajaba=a,ab=qa, and a,b=a,abb=
=agab=ay. If aya=ayb=aqa, then qyab=a,aa,b=a, Therefore we have y(xy)+0
if and only if y(x)+0 and y(y)+0. If 4 (xr)+0 and y(y) 0, we then have y (z) y (y) =
= Ao (@0 %) Xao (20 Y) = Xa, (@ T Ay Y) = Ya, (@gxy) = 2 (xY).

We have also the following simple consequences of Theorems 3.2 and 3.3.

3.3.1. Corollary. Let G be a finite commutative semigroup. Then the semichar-

acters of G form a linearly independent set of functions.

Proof. If y,,...,xm are semicharacters of @, if o, ...,ancK, and > o;2;=0,
i=1

then consider any idempotent a&G and the group T, N G°. On this group, every
semicharacter y; is either identically 0 or is a character. Since characters of a finite
group are linearly independent, we see that «;=0 for all j such that y,(a)=+0. Since
a is arbitrary, it follows that all «;=0 (j=1,2,...,m).

3.3.2. Corollary. Let G be a finite commutative semigroup admitting m distinct;
semicharacters. Then m <o(G).

3.3.3. Note. Corollaries 3.3.1 and 3.3.2 remain valid for noncommutative finite
semigroups G': one can show this by mapping G homomorphically onto a commutative

semigroup H admitting just the same semicharacters as G. We omit the details.

3.4. Theorem. Let G be a semigroup all of whose elements are of finite order
and having the property that for all z, ye G such that x=+y, there is a semicharacter
x such that y(x)# yx(y). Then G is commutative and I; =1 for all z¢G.

Proof. For all semicharacters y, we have y(xy)=y(x)x(y)=yx(y) x (@) =y (y=).
It follows that 2y =yx. Also y(x)*s 'z =y (x¥27'2) = y (2'z) = y (x)'= and hence y (z)*=*!=
=y (x) for all y: thus we have z*s*'=z, and by 2.6.1, [,=1.

3.5. Theorem. Let G be a finite or infinite commutative semigroup all of whose
elements are of finite order and for which I, =1 for all x¢@G. Then, for every z,ye G

such that x3-y, there is a semicharacter y such that y(x)=+ y ().

Proof. If y(x)=yx(y) for all of the semicharacters y described in Theorem 3.3,
we first take ay=2"c and obtain y(x) = yq, (@ %) = ya, (**°2) = y0, (). Since y,, (x)*0,
we have y(y)=y(x)+0 and hence a,y*v=ay, ¥ (y)= ), (x°sy). Thus we have y,, (z)=
= ya,(**zy); but y, can be any character of the commutative group 7, N G° (which

in this case is just 7';,), so we have x =2"zy. This follows from the well-known theorem
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that distinct elements of any commutative group can be separated by characters.
See for example Weil [48], p. 99. We also have xz*zy*s =2*z since ayy*v =«,. Since
2 and y are quite interchangeable in this argument, we also have y=y*vx and
y*va*s = y*v. Therefore 2"z =x*zy*v=4"v and x=z*sy=y"vy=y. This completes the
proof.

3.6.1. Returning to the case of a finite commutative semigroup G, we see by
Theorem 3.2 that all semicharacters of G are given by Theorem 3.3. Each semi-
character of G, is, of course, a semicharacter of G°. In the other direction, it follows
from Theorem 3.3 that each semicharacter of G° can be extended to be a semichar-
acter of ¢ in one and only one way. In fact, if ze7, and « noneg@°, then ax e G°
and 2" =a for some m=>=1. Therefore y(x)=y(a)x(x)=y(ax) if y{a)=1 and ¥ (x)=0
if y(a)=0, or more shortly, y(z)=y(a)x(ax).

3.6.2. We also notice that if G is a finite commutative semigroup, then the
number of distinct semicharacters of G is just the number of elements of G°. This
follows from Theorems 3.2 and 3.3, since the number of characters of a finite com-

mutative group is just the number of its elements.

3.7. Let G be a semigroup. Let G denote the set of all semicharacters of G.
For 4, z/)e(i, the product yw is the function on G such that yy(z)=y(x)y(x) for
all zed.

We list a number of simple results, leaving the proofs to the reader.

3.7.1. The semicharacters of a semigroup either form a semigroup by themselves
or they form a semigroup if an additional element O is supplied. See semigroups 1
and 5, Appendix 2.

3.7.2. If G is a semigroup, then G has a unit.

3.7.3. If ¢ is a semigroup with a unit, then G is a semigroup.

3.74. If ¢ and G are semigroups, then, in the notation of Theorems 2.2 and
2.3, G.=(G), and G, =(G)..

3.75. If y is a semicharacter of a semigroup G and if ¢(z)=1 for y(z)+=0 and
elx)=0 for y(x)=0, then ¢ is a semicharacter of G.

3.796. Let ¢ be a semigroup and let y be a semicharacter of G. Let p(x)=

=[x (x)]"! for y(z)+0 and y(x) =0 for y(x)=0. Then () is also a semicharacter of G.
3.7.7. If ¥ is a semicharacter, then so is 7.

3.8. Let H be a finite commutative idempotent semigroup. If ae H, then we

say that a is a prime element of H if the equality a=bc(b,ce H) implies b=c=a.
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3.8.1. An element @ of H is a prime element if and only if a=ab and be H

imply b=a.

3.9. Theorem. Every finite commutative idempotent semigroup contains at least

one prime element.

Proof. Let a, be any element of H. If @, is not a prime element, then there
is an element a,¢ H such that a,=a,a, and a,=+=a,. Repeating this step, we obtain
a sequence d,, d,, ..., &, such that a;=a;a;.; and a; ;1 Fa; 1<i<m—1). I A<j<m,
we have a,=ana,,105.2...a; and hence apa;,=ay. If h<j<m and a,=a;, then
Ap=QpQAp 1 =a; @y 1 =0y, and this is a contradiction. Therefore the elements a; are
all distinct, and, H being finite, the sequence a,, a,....,a, will evenfua-lly end with
a prime element a,,.

3.9.1. It is now clear that for every element a, ¢ H, there is a prime element
@, of H such that a,=a,a,.

3.9.2. If' H has just one prime element p, then a=ap for all a¢ H and hence
p is a unit of H. It is easy to see that if H has a unit e, then H has just the

one prime element e.

3.10. Theorem. Let G be a commutative semigroup all of whose elements are
of finite order and let H be the semigroup of idempotent elements of ¢. If H is

finite, then G is a semigroup if and only if H has a unit.

Proof. The elements of G are the semicharacters of @, as constructed in Theorem
3.3. Let y, be any of the semicharacters determined by a,=b, y, a semicharacter
determined by a,=c¢, where b and ¢ are elements of H. Then y,y, fails to be a
semicharacter if and only if y, () y,(x) =0 for all x¢@; that is, if and only if ba=+b
or ca*c for every ac¢H. If H has a unit e, then be=b and ce=c and y, %, is a
semicharacter of . If H does not have a unit, then 3.9 and 3.9.2 imply that H
has at least two prime elements. If b and ¢ are distinet prime elements of H, then
ba+b if a#+b and caz+c if a=>, and therefore the product y,x, is identically 0 and

is not a semicharacter of G.

3.11. Theorem. Let ¢ be a commutative semigroup all of whose elements are of

finite order, and let H be as usual the semigroup of idempotent elements of G. If

- Ve
H is finite, thenl® G=@°.

¥ The symbol ''='' is taken to mean the existence of a one-to-one correspondence 7 such
that 7 (xy)= 1 (xr) 7 (y) whenever either side exists.
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Proof. This follows at once from 3.2.2 and 3.3.

3.12. In some of the following paragraphs, we shall restrict the semigroup G a
little more. We shall consider a commutative semigroup G all of whose elements are
of finite order, such that the subsemigroup H of idempotent elements is finite, and
such that the integers k,(xe(G) have a finite upper bound. These conditions are

obviously satisfied by all finite commutative semigroups . Since the k. are bounded,

they have a least common multiple k. Tt is clear from 2.6.1 that we have 2**'s =a'=

for all ze@.

3.13. Theorem. If G satisfies 3.12 and H has a unit, then G satisfies 3.12 and
(G)°=G. Also the set of idempotent elements of G is isomorphic with H.

Proof. Theorem 3.10 shows that G is a semigroup. If yeG@, then y(x)* "' =
=y (@ 'r)=y(a'r) = y(x)'s, and hence x(z)*"'=yg(x) for all zeG. It follows that
x*1=y for all ye@. This, together with 2.6.1, shows that every element of & is
of finite order, that the integers k, have the upper bound k, and that (G)°=G@.
From 3.1.2, 3.2.2, and 3.3, we see that if y*=y, then there is an a,¢ H such that
3.13.1 _ [0 if aga+a, for the element a such that z¢T.,

I x(®)= L1 if aga=a, for the element a such that z¢7,.

If 2 of these semicharacters y are distinct, they take on different values for some
ze¢H. For xeH, these are just the semicharacters of H. This proves the last state-
ment of the theorem and completes the proof of the fact that G satisfies 3.12, since

it is clear that H is finite.

3.14. Theorem. Let G satisfy 3.12 and let H have a unit. For each z¢@, the
function y, (y) =y (¢) is a semicharacter v, of G. Furthermore, the p, are all distinct
if and only if G=G°.

Proof. If 3, y,eG and xe @, then v, (y; 12) = 21 22 (®) = )1 () %2 (&) = vz (1) ¥z (%a)-
Since the function y,(x)=1 is a semicharacter of @, we have . (y,)=1 and y,&G.
Therefore 1, (y) is not identically 0 and hence is a semicharacter of G. The second

part of the theorem follows at once from 3.4 and 3.5.

3.15. Theorem. Let G satisfy 3.12 and let H have a unit. Then the set of all
distinct . of Theorem 3.14 are just those w, for which z¢G°.

Proof. Suppose that x,¢G and x, noneG°. Let ae H be the a such that z,¢7T,
and let z,=ax;. Then x,6G° and x,¢T,. If ye@, we use 3.2 and 3.3 to establish

the equalities
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0 if ajaza,

x () = :

. b
Xa, (@gzy) if aga=a,

0 if ggaza,

o) =
7 (@) {Za. (apz,) if aya=a,

Since ayx,=agax, =a,x, when aya=a, we have y(x,)=y(z,) and therefore y. =,
with x,&Q°. Furthermore, if x,, z,£G° and y,, =4, then y(z,)=y(z,) for all y¢G.

This implies that x, =x,, in view of 2.11 and 3.5.

3.16. Theorem. If @ satisfies 3.12 and H has a unit, then the set of distinct

semicharacters y, of 3.14 is isomorphic with G°.

Proof. Theorem 3.15 shows that the correspondence x<>y. is a one-to-one cor-
respondence between G° and the set of distinct y,. Furthermore, if ;, xszo, we

have y, o, (x) = x (2,2,) = y () ¥ (@) =y, (x) v, (), and therefore this correspondence is

an jsomorphism.

3.17. Theorem. Let G be a finite commutative semigroup. Then G=@ if and
only if @ has a unit and G=G°.

Proof. From 3.7.2 and 3.11, we see that the conditions enunciated are necessary.
From 3.16, we see that we shall have proved their sufficiency as soon as we have

shown that @ has no semicharacters other than the y; of Theorem 3.14. Since, as

Theorem 3.13 shows, (G)°=G, we can apply 3.6.2 to find that @, @, and G all have
the same number of elements. But the number of distinct g, is, in the present case,

the number of elements of G.

3.17.1. It is of interest to note that if G is a finite commutative semigroup,

then G=~G° if and only if H has a unit.

3.17.2. It is also of interest to note that a finite commutative semigroup G is
isomorphic to L for some finite semigroup L if and only if ¢ =G° and G has a unit.

In connection with this problem, see Schwarz [38].

3.18. In the preceding paragraphs, the requirement that H have a unit was
needed to make G a semigroup. If G is not a semigroup, we can make it one if we
supply it with a zero. We suppose that ¢ is a finite commutative semigroup such
that @ is not a semigroup. We let (G be the set consisting of all the y of G and

one other element w. We define multiplication in (; as follows:
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W O=0 Y=g 0=0;
Z1° X2=Z1 %2 if Z1xe is not identically 0 on &'

Y1 SO if %17e Is identically 0 on (.

Here y,y, denotes the function y,y,(x)=7y,(x) 7, (x). Now (; is a semigroup with
a unit. If & is the least common multiple of all of the %, for xeG, we have
Z(Z)klf:x(x k1

k‘lr):z(xl-f):z(r)lf and hence y(x)* '=y(x) and
also have w®=w, we see that (;°=(;. Therefore. according to 3.6.2, (v and (7 have

=y. Since we

the same numbers of elements.

If ze@G, we let y,(w)=0, p.(y)=x(x). Then we have

Yo o) =y (w)=0=p.{(w) p. (),

Yr(w-y) =y (@) =0=y,(w) w:(x).

Yo (e 12) = o (11 72) = 10 (@) 22 (@) =92 (1) ¥ (x2) if X172 18 Dot identically 0,

Y (xy Y2) =¥ (w) =0= X1 (%) X2 (®) = e (1) W (22) if X17e 1S identically 0.

It follows that 4, is a semicharacter of (r if it is not identically 0. But z,,
the function identically 1, is a semicharacter of . Therefore we have wr (o) = xo (x) =1
and y, is accordingly a semicharacter of (. We can produce one additional semi-
character of (7, namely, the function ¥, which is identically 1 on @.

As before, we obtain the set of all distinct y, as x ranges through G°. It is
plain that ¢, is distinct from all of the ye. I G° has n elements, then G has n
elements, by 3.6.2. Then (; and (’; both have n+1 elements. Therefore ( is the set
consisting of y, and the y, with z¢G°.

H ), 2,6 G°, then v, (1) 9o, () = 1 (%;) 1 (%) = 1 (€, 22) = 91,2, (2) and y;, (@) yr, (@) =
=0=1y; 4, (w). Therefore we have y, y. =y, .. We also have y,y. = ., and y,y,= y,.

Bringing these results together, we see that we have proved that if @ is a finite

commutative semigroup such that G is not a semigroup, then (r=(G°),.

3.19. Another possible way to take care of the eventuality that G fails to be a
semigroup is to include the function identically 0 among the semicharacters of G.
Again we suppose that G is a finite commutative semigroup, and we let G be the
set consisting of all the semicharacters of G and the function  such that w(z)=0

for all z¢@. We define multiplication in @ in the usual way.
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If G is not a semigroup, it is easy to show that we have Ge(G. If Gis a

semigroup, we have G=(G),. In both cases, we see that ¢ is a semigroup, and G= (3.

From 3.18, we have a'z(Go)e if G is not a semigroup. If G is a semigroup, we have
N a

G=~@° by 3.10 and 3.17.1. Hence (a)zz(G’)e%(Go)e by 3.7.4. Therefore in both cases,

we have @=~((G°),).. We note, finally, the following equalities:

((Go)e)z = ((GO)Z)e = ((Ge)o)z = ((Gz)o)e = ((Ge)z)o = ((Gz)e)o-

3.20. If @ is a finite commutative semigroup such that 5 =~(, it is natural to ask
about the relation of @ to G. If the semigroup G is a group, then we have G=G.
If @ is the semigroup of order 3 listed as No. 10 in Appendix 2, then @ is the semi-
group No. 8 of Appendix 2. Since G has a zero and G does not, we see that G=~G
is false in this case. Necessary and sufficient conditions for G=@ appear to be quite
complicated ; however, we give a brief sketch of certain conditions which are necessary

for this isomorphism to obtain.

Suppose, then, that 6%& This implies that @° =@ and that G has a unit. For
elements a,, @, in H, the subsemigroup of idempotent elements of G, we write a, <,
if a,a,=a,. It is easily seen that H is a lattice under the partial ordering just de-
fined, that the meet a, A @, is @,a,, while the join a,V a, is the product of all @ ¢ H
such that a,a=qa, and a,a=d, Since H has a unit, the product defining a, Va, is
never void. If y is any semicharacter of G such that y®>=y, then, by 3.13.1, we find
that y(x)=0 if a<e* and y(x)=1 if a<a”, where k is the least common multiple
of all of the integers k, (x & ), and where a is some element of H. If we call this semi-
character y,, we see that the y, are all distinct, even over the subsemigroup H. Tt is
now clear that the set {y,} of all idempotent elements of G is isomorphic with the
dual H of H.V7

Now, ¥a,<ya. if and only if y,, xa,= xa,; this equality is equivalent to the asser-
tion y,, (x)=1 implies y,, (x)=1, which, in turn, is just a,<a,. Therefore the lattice
H is isomorphic to the lattice obtained from H by inverting the relation <. If the
relation G=~@G is to obtain, we must have H=~H, or, in other words, H must be
lattice-isomorphic with the lattice obtained by inverting it. The semigroup of order
5 with the table

17 This idea has also been used by Scuwarz [38].
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1 2 3 4 5
1|1 2 3 4 5
212 2 3 4 5
3(]3 3 3 &6 b
4.4 4 5 4 5
53/ 5 5 b5 5

has the properties G=H and azG, but it does not have the property that G=~@,
as a sketch of the lattice H will show.

Even if G has the property that H is isomorphic with its inverted lattice, the
isomorphism G=~@ can still fail. An isomorphism between G and G implies an iso-
morphism 7(a)<>y,+>a between H and its inverted lattice. It can be proved that
G=~(@ then implies an isomorphism between T, and T, which are groups in the
present case. The semigroup No. 10 of Appendix 2 fails to satisfy G=~@ because
t(1)=3 and 7', ={1,2}2=T,={3}.

It is, finally, possible to have T,~T,,, for all ae¢ H and still to have G=~@ fail
because of the way elements from different T, multiply. The relationships appear to
be quite involved. The semigroup of order 6 with the following multiplication table

will serve as an example.

p—
o
w
e~
ot
[~

T
(o1

<t
St

() BN RN ) B~ S = N =

S Ot o W N e
S Gt o W =N
S Ot oA W W W
Tt DD W o R e
(=B

6 6

Finally, we make some remarks concerning general representations of semigroups.

3.21. Theorem. Every semigroup G of finite order », commutative or not, has

a faithful representation by matrices of order not exceeding n +1.

Proof. Let G={z,, x,,...,2n}. We adjoin a unit x, to G and consider the
matrices M, =(cl;), k=1, 2, ..., n, where the element in the i-th row and j-th column

is o=@ (xr2;). (46,7=0,1,...,n). If M, M,=(d;;) and z,2,=x,, we have
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dij= hZO Ci'n Chj= hZOQ?i (i n) @r (X1 25) = @i (T 11 25) = @i (X X5) = €1,

and hence M, M, = M,. Furthermore, if M, = M, then g (z.2;) = ¢i(nz;) for
t=0,1,...,n. This implies that z,x;,=x,x; for j=0,1,...,n; but we have x,x,=1x;
and x,x,=ua;, and hence k& =1I. Therefore the correspondence x> My is an isomorphism.

The adjunction of a unit to G is done to assure that the correspondence x;— M,
be one-to-one. It can be omitted if @ contains no pair of elements %, x; such that
xyx; = x; for all x;6G. If G contains no pair of elements z,, #; such that z,x, =z,

for all z;¢@, then the adjunction can be omitted if ¢f; is taken to be ¢, (x;xx).

3.22. Theorem. Let z—B(z) be a homomorphism of a finite semigroup & into
the semigroup IN;. Then the set of matrices {B(x)},.¢ is irreducible if and only if
there are exactly s* linearly independent matrices in the set {B(x)};.¢-

This is essentially Burnside’s theorem (v.d. Waerden [46], p. 197).

3.23. Irreducible representations of a finite semigroup by matrices need not be
unitary. In fact, a semicharacter y of a semigroup @ such that y(r)=0 for some
xe@ is a l-dimensional representation of G which is plainly not unitary. As another
example, consider the semigroup described in Theorem 4.2 infra. The mapping which
sends each sequence 4.2.1 into its ¢-th coordinate ((¢=2,3,...,p+1 and s,>1) is an
obviously irreducible representation of the sem‘igroup in I, in which no image

matrix can be made unitary under -any inner product.

3.24. Note. Extensive discussions of representations from another point of view
are found in Clifford (9] and Suskevié [43]. See also the very general notion of

representation introduced by Lyapin [25].

§ 4. L, Algebras

In the present section, we apply the structure and representation theory for
finite semigroups developed in §§ 2 and 3 to a study of algebras L, (). We remark
first that all £, algebras of dimensions 2 and 3 are listed in Appendices 1 and 2.

4.1. Theorem. Let G={z, x,,...,2,} be a finite semigroup. The algebra L, ()

has a faithful representation as a subalgebra of IN,, where p<n+1.

Proof. By Theorem 1.7, L, (@) is isomorphic to the algebra of all formal linear

combinations > a;2;. Adjoining a unit z; to ¢ and defining M; as in 3.21, we con-
j=1
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n n
sider the mappin owxi— > oa; M;. It is easv to see that this produces an isomor-
P “ SRad ] /_b J j A
i= j=

phism of C,(G) into M,.,. (It is in fact the regular representation of L, (G.).)

4.1.1. Remark. The algebras G and H (Appendix 2), which can be shown to
have no isomorphs contained in i, show that Theorem 4.1 cannot be strengthened.
The algebra E (Appendix 2), on the other hand, shows that in some cases, L&)

has an isomorph contained in X, with ¢ <o(G).

4.2. Theorem. Let A be a finite dimensional semisimple algebra over K. Then
4 is isomorphic to £,(G) for a finite semigroup @ if and only if, in the representation

of A as a direct sum of full matrix algebras, at least one summand is 1-dimensional.

Proof. Suppose that 4 is isomorphic to the algebra 4’ =K ®N;, @M, D+ D M;
where s,,8,...,8, are positive integers. Then, writing e{” as the element (04 d:)x,i-1

of I, we see that the elements

121 [({1,0,0,..., 0
1{1,0,...,0,¢°,0,...,0}  (i,5=1,2,...,80 k=1,2,...,p),

form a basis for A’ which is closed under multiplication. We then apply Theorem 1.10.

To prove the converst, we note that the mapping L— L (1) (where we denote by 1
the function identically 1) ¢f £, (G) onto K is obviously a linear functional on L, (¢} and
furthermore that M*L(1)=M_(L,(1(xy)))=M(1)L(1). Hence £, (Q) admits at least
one homomorphism onto K, and if £,(() is semisimple, this property is reflected in
the fact that some direct summand of C,(G) is isomorphic to K. This completes

the proof.

4.3. Remark. Let G be a finite semigroup. Then L, (G) is not isomorphic to
M, for any integer p>1, nor is £, (G) a radical algebra. These observations follow
at once from the fact, noted in the proof of Theorem 4.2, that £, (G) admits a homa-
morphism onto K. The fact that £,(G) is never a radical algebra is also a simple
consequence of the existence of at least one idempotent in (. If a is an idempotent
in @, then the functional A, is an idempotent in C,(G), and clearly L, () is not a
nilpotent algebra. However, the radical of C,(G) can have any dimension from 0 to
0 (@)1, inclusive (see Theorems 4.2, 4.9, and 4.11).

4.4. Remark. It follows from 4.3 that no s* linearly independent s><s complex

matrices (s>1) can form a semigroup; if so, their linear combinations would be an
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L, algebra isomorphic to ;. It follows from 4.3 and Theorem 3.22 that no semi-

group of linearly independent complex s><s matrices (s>1) can be irreducible,

4.5. Example. We see from 4.3 that not all finite dimensional algebras are L,
algebras. Consider also the algebra over K with basis {e,, e,, 4} and the multiplication
table

ey € U

e, e, O
el 0 e
w10 u

(v. d. Waerden [46], p. 144). It is a routine matter to prove that this algebra is not

an L, algebra.

4.6. The algebras 9, (p=2,3,...) are not L, algebras (4.3) but they do admit
bases such that the product of 2 basis elements is either 0 or another basis element.

The algebra over K with basis {y, ¥, ¥} and the multiplication table

| 0y O
Y2{—ys 0 O
Y| 0 0 0

fails to have this property. We omit the verification.

4.7. Remark. Algebras having the property mentioned in 4.6 can be used to
construct £, algebras, as follows. Let 4 be an algebra with basis {y, ¥5, ..., Ym} such
that g 9;,=0 or some y, (i,j=1,2,...,m), and let B=L, (), where G ={x), x,, ... ¥,}

is a semigroup, and xf{=wx,. Then the direct sum 4@ B has a basis
{(.’/1, x]): (?/2’ xl)’ very (?/m, x]), (Oa x])’ (07 xz): vy (07 ‘ln)}

This basis is a semigroup and hence, by Theorem 1.10, 49 B is an L£; algebra.

4.8. Remark. An important class of algebras are those which are linear space
sums of their minimal left ideals (see for example Hopkins [20] or Dieudonné [11]).

L, algebras need not have this property. Consider, for example, the L, algebra formed
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with semigroup 9 of Appendix 2. As noted in Appendix 2, this algebra is isomorphic
to the algebra of all 2><2 matrices of the form

a a
4.8.1 4- ( 1 12) .
0 ay

This algebra is not the sum of its minimal left or right ideals. A simple calculation
shows that if a,,40, for a matrix 4 of the form 4.8.1, then every left ideal con-
taining 4 must contain all matrices of the form

o b
482 ( 12);
0 by,

and the left ideal of all matrices of the form 4.8.2 is not minimal, the set of all

matrices of the form
0b
483 ( ‘2)
00,

being a proper sub-left ideal. A similar argument shows that no element 4.8.1 with
a,;+ 0 is contained in a minimal right ideal.

We next give concrete representations for L, (G) for a few finite semigroups G.

4.9. Theorem. Let o(G)=n and let xy=y for all x,yeG. Then L (G) is iso-

morphic to the algebra of all n><n matrices (a;;)i ;. such that a;;=0 for 2<i<n.

Proof. Let e¢; (i,7=1,2,...,n) be as in the proof of Theorem 4.2, and let
Xy, Xoy ..., Tn be the elements of G, written in any order. Then the mapping z, ey,
xi—>e +e; (1=2,3,...,n) is an isomorphism of G into the multiplicative semigroup
M., with the image matrices linearly independent. The linear combinations of the
matrices ey, e;; €y, ..., €, + €1, being just the matrices («;;), 2, with a;;=0 for ¢>1,

the theorem follows.

4.10. Theorem. Let G ={x,,z,,...,%,} and let x2;,=2, (:,7=1,2,...,%2). Then
L, (@) is isomorphic to K@Z, ;.

Proof. We first represent G faithfully by linearly independent elements of Mo
as follows (notation analogous to that in 4.2): z,—>e;, zi—~e; +e2:. (0=2,3,..., n).
It is easy to see that this mapping has the properties required. It follows that L, (@)
is isomorphic to the algebra of all linear combinations of the matrices ey;, es 3, €54, ...,

e2,n:1 0 MWy.q; and this algebra is obviously isomorphic to KPZ,_,.
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4.11. Theorem. Let G be a finite semigroup with a single generator x, for which
I:=1 and k,=k (see 2.6.1) are arbitrary. Then L, (G) is isomorphic to the direct

sum A@K,, where A4 is an algebra of dimension /—1 having a single generator »

for which u, «%, ..., 4'~! are linearly independent and ' =0,

Proof. Consider the mapping of @ into A@PDK, defined by

¥ — {uj; 1,exp (2%-72”), exp (27!]227), .e.s €XP (2———7” (I;c_ 1)7)}

for j=1,2,...,1—1

(2ni27') ox (Qni(khl)j)}
e B A

for j=11+1,..., 1+k~1

and by

2 {0; 1,exp (%%u), exp

(¢*= —1). It is clear that this is an isomorphism of ¢ into ADK,, and that the
images of z, % ...,2""*"' are a linearly independent basis in A@K,. This establishes

the present theorem.

4.12. Theorem. Let G={z,x,,...,%,} with the operation ;%;=mayxa - The
algebra C, (G) is isomorphic to K,.

Proof. The mapping z;-+{0,0,...,04_1, Li, ..., Ly} (¢=1,2,...,n) is an isomor-

phism carrying & onto a basis for K,.

4.13. Remark. The semigroup described in the preceding theorem is a simple
example of a non-group whose L, algebra is isomorphic to that of an Abelian group
of order n. In Theorem 5.21 infra we shall determine all finite semigroups having
this property.

We next consider an arbitrary finite semigroup G={x,, z,,...,z.}. We wish to
discuss the effect upon L, (@) of certain adjunctions of an element to . We make

use of the fact that there is a representation z;—>7v(z;) of G by linearly independent
n

matrices 7(z;) and a corresponding representation L—>t(L)= Y L(gi)t(z:) of £, (G)
i=1

(see Theorem 4.1). We will form new matrices v’ (x;) and v’ (a) to represent G U {a},
and these will determine a representation of £, (G U {a}), from which we shall be able

to determine the structure of L,(GU {a}) in terms of the structure of C,(G).
7~ 543809. Acta Mathematica. 93. Imprimé le 10 mai 1955.
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4.14. Theorem. If G is a finite semigroup, then L, (G.)=L,(G)DK.

Proof. If z is the adjoined zero, we take

“={g e 0=l o)

0
where b ) we mean the matrix v(x;) bordered above by a row of 0’s and
Y0 v(x) y

on the left by a column of 0’s. It is clear that the matrices T’ (23}, 7' (2) are linearly
independent and that they represent (,. Taking linear combinations of the matrices
7' (), 7' (2), we see that £, ((,) is isomorphic to the set of matrices

(:1 0

0 r(L))’ weK, Le L (Q).

4.15. Theorem. If (U {a} is obtained from G by idempotent adjunction (see
Theorem 2.3), then L, (G U{a})=L, (F)DK.
Proof. If axy=x,2;, ra=x2, (i=1,2,...,n), and a®*=q, we take

1 0

4.16. Theorem. If U {«} is obtained from ¢ by the adjunction of a repeat
element (see Theorem 2.4), then £ (G U {a})=L,(DZ,.

Proof. If ax,=x,7;, v;a=x2, (1=1,2,...,n), and a®=1x}, we take
0 0 0 0 1 0
T'(L’)*(” 0o 0 ), 1’(!1):(0 0o 0 )
0 0 1(x) 0 0 7(x)

4.17. Theorem. Let ¢/ be a finite semigroup with a zero, «. Tet G U {b} be
obtained from ¢/ as in 2.2.1. Then L, (G U {b})>L, (()DK.

Proof. We take

"o z(fi))’ T'(h)z(n(]) r‘()ﬂ))'

The relation of L, () to L, () is different from the foregoing. We can take

@ (o gl T O={o )
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where I is the unit matrix of the same order as the matrices z(z;), but this in
general does not allow us to write L, (G,) as a direct sum. We see that £,(G) is
isomorphic to the set of all linear combinations of 7'(z;), and hence £, (G.) is the

algebra obtained by adjoining a unit to L, (G).

4.18. Theorem. If C,(6) has a unit, then £, (G.)>L, (H)®K.

Proof. Let U be the unit of C,(G). Let E be the unit adjoined to L, (¢) to
obtain C,(4.). For all LeL (@), we have UxL=L*xU=E#«L=L%F=1L, and we
also have ExE=E. If ML, (G,), we have M=o £+ N for some xe K and some
NeL (). We can write M =« (BE-U)+(N+aU). Now N+aUe L, (), (BE-U)%(E-U)=
=E-U, (E-U)xL=L%(E-U)=0 if LeL£,(G). This implies, clearly enough, that
£ (Ge)=L, (HDK.

4.19. Theorem. If £, (G.)>A®B, where 4= L, (G,) and B L, (G.), then, except
for a possible interchange of A4 and B, we have Ac L (¢), A has a unit, and
L, (G)=A or L, (H=A®D (BN L, (G)).

Proof. If E is the unit adjoined to L, (G), we have E =4, + B, for some 4, ¢ A4
and B, ¢B; furthermore, 4, =a £+ M and B,=(1—a) E —M for some « ¢ K and some
MeL,(G). Now A, % B;=0,so wehave a (1 —a) £+ (1 ~2) M ~ M*~0and hence o (1 -«) = 0.
After a possible interchange of 4 and B, we can suppose a=0, and we thus have
A, =M and Bj=E—- M. If BE+LeA, where LeL (G), we have 0=B x(fE+L)=
=(E-My*(pE+L)=BE+L—~fM-—M%L, from which it follows that f=0 and
L=Mx%L. Therefore we have AcL,(@) and MxL=L for all LeA. If LeA, we
also have O0=Lx(E—-M)=L—L%M, so we see that M is a unit of 4. If Ne L, (),
then NgL,(G.) also, and we have N=d,+ B, for some 4,64 and B,eB. Since
B,=N—-A4,cL,(G), we have L, ()=A if BN L, (G)=0 and L, (@)=AD(BN L, (F))
otherwise. This completes the present proof.

4.20. Theorem. If L, ()=APB, where 4= L, (G) and B<= L, (F), and if A has
a unit, then £, (G.)~A4@C, where C is an algebra described below.

Proof. If U is the unit of 4 and E is the unit adjoined to L,(G) to obtain
L, (G.), then an arbitrary element of L, ((,) can be written as L+a £ =A,+ B, +a k=
= (A, +al)+ B+ a(E—-U))=Ay,+ (B, + w(E — U)), where LeL ((),aeK, 4,¢ A,
B,eB, and 4,eA. If C consists of all elements of the form B,+ (£ — U) with B, B
and feK, then it is easy to verify that C is an algebra and that L, (G.) =2ADC.
4.21. If G, and G, are finite semigroups and G=G,><{),, we can obtain a

matrix representation of G from matrix representations of &, and G,. Let x;—> 1, (x;)
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be a matrix representation of G,. We write 7, (x;)=(0vs(z:)), where o, (z;) is the
element of 7,(x;) in the r-th row and e-th column. I y,—>7,(y;) is a matrix
representation of G,, we consider the matrix 7 (i, y;) = (0,5 (2:) 7, (y7)), meaning by this
the matrix whose order is the product of the orders of 7, (z;) and 7,(y;), formed by
replacing each element o, (2;) of 7,(x;) by the block of elements given by o, (%) 7, (y;).

For all z,, x,¢ G, and y,, y;¢G,, we have
T{(Zg, Yn) T{Zi, Y5) = (015 (25) Ty (Y1) (00 (1) T2 (9))) = (g Ori (€) Ta (Yn) oxs (@) T2 (y5)) =

= (% Ori (Zg) Oks (1) To (Yn) T2 (¥5)) = (0vs (X5 1) T3 (Yn ¥5)) = T (2o T, Yn Yy)-

The elements of G can be taken to be (z;,y;) with (x,, y») (i, ¥;) = (&g 21, Yn ¥;),
80 we see from the above computation that the mapping (x;, ;) > (%1, ¥;) is 2 matrix
representation of G.

If the matrices v (z,y;) are linearly independent, then they generate in the usual
fashion a faithful representation of C,(®). Since we can find representations of both
G, and G, by linearly independent matrices (Theorem 4.1), we want to show that
the matrices 7(x;,y,) are linearly independent if the matrices 7,(z;) are linearly in-
depéndent and the matrices 7,(y;) are linearly independent. We establish this fact as
follows. If i}; ;T (21, ¥;) =0, then we have iZioq iOrs () T, (y;) =0 for all r,s. If the

matrices t,(y;) are linearly independent, the last equality implies that > o0, (i) =0
i
for all §, r, s. However, this equality is equivalent to the equality > o;; 7, (x;)=0 for
i
all j. If the matrices 7, (x;) are linearly independent, the last equality implies that

o;;=0 for all ¢, 4.
The algebra L, (G) is the Kronecker product £, (G,) A £, (G,) of £, (G,) and L, (Gy).

422, If ¢ is a finite semigroup with the left cancellation law, then, as shown
in Theorem 2.12, we have G=G,><@G,, where z, 2y=1z; for all z,, 2,6 G, and where

@, is a group. From the proof of Theorem 4.9, we see that we can take
T (2) =e5y, T1(x) =€y, +ey;, for ¢22,
Since ¢, is a finite group, it admits a matrix representation of the form
Ay 0 0 ...0
0 d,(y) 0 ...0

Y~y ly) = 2 )

..............................

where the A, (y;) represent square blocks of elements and the 0’s represent rectangular
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blocks of zeros. Furthermore, if B, B,,..., B, is an arbitrary set of matrices such
that the order of B, is equal to the order of A4, (y;) for 1<k=<m, then there exist

complex numbers o; such that

; o, To (¥)) =
0 0 0..B,
(See for example v.d. Waerden [46], p. 182.)
If we let {Br,1<h<p=0(G,),1<k<m} be an arbitrary set of matrices such

that the order of B} is equal to the order of Ay (y,), then it is not hard to see that

every matrix 7 (x;, y;) is of the form

B0 0..0 B 00..0 B 0 0...0

0 BYO..0 0 B:o0..0 0 B2 0..0

4.22.1 0 0 0---BL, 0 0 0..DB 0O 0 0--- B
0 0 0
0 0 0

It is also not hard to see that every matrix of the form 4.22.1 can be obtained as
a linear combination of the matrices 7(x;,y;). Therefore, if (¢ is a finite semigroup
with the left cancellation law, then, for some m and p, £, (@) is isomorphic to the
algebra of all matrices of the form 4.22.1.

We now take up uniqueness theorems for L, (G): under what conditions does
L, (G) determine G? That £,(G) as an algebra does not determine @, in general, is
proved by the fact that for all Abelian groups G of order =, £, (@) is isomorphic to
K, (see also Theorems 4.12 and 5.21.)'® Nevertheless, an analogue of Kawada’s theo-

rem [23] can be proved, as follows.

4.23. Definition. A functional Le L, (G), where G ={z,, ,, ..., &,} is a finite semi-
group, is said to be non-negative if L(g;)>0 for j=1,2,...,n. If some L (g;) is posi-

tive and L is non-negative, then L is said to be a positive functional.

4.24. Theorem. Let G' and G* be finite semigroups, G'={z,, %,,..., z,} and
G* ={¥1, ¥s> ..., Ym}, and suppose that there exists an isomorphism A of £, (@) onto

18 For discussions of uniqueness in rather different contexts, see BErRMaN [3] and PErLIs and
WALKER [29].
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L,(G*) such that AL is positive if and only if L is positive. Then G and G* are

isomorphic semigroups.

Proof. Consider the set P (@) consisting of all non-negative L¢ L, (G). Let £(@)
be the set of elements M e PD(GF) which are extreme in P (G) in the sense that if
L,L,eP(@) and M=a L, + (1 —-a) L, (0<a<1), then L, and L, are both non-negative
real multiples of M.1® It is simple to show that a functional M is in £(G) if and
only if it has the form « 4, for some «>0 and 2;¢G. We leave the details of this
argument to the reader. The analogous set &€ (G*)< P(G") is characterized in just
the same way. The isomorphism A being a linear space isomorphism carrying P (G)
onto P (G%), it follows that a set of o(G) linearly independent elements of & (@)
must map onto a set of o(G) linearly independent elements of £ (G*) under the iso-
morphism A. Using the argument set forth above, we see that any set of » linearly
independent elements of &(G) must have the form {«, z,, a,,, ..., &, 2,}, where all
oy are positive. (By a slight abuse of notation, we write oy 4; as a;2;; similarly with
elements of £, (G*).) It is clear that m =7 and that A («;z;)=f,y, for 1 <j<n, some
r such that 1<r<n, and §,>0. Thus A(z;)=9ry- (y»>0). Since A is an algebra
isomorphism, we have A (z})=yiy for all positive integers s. If 2 =z}, then we have
viyr =y yf, and consequently ! =y¥, and y,=1. It follows that A(x;)=y,. The
mapping A of @ onto G* is obviously an isomorphism.

For a few finite semigroups G, the algebras £, (G) determine G completely, as we

now show.

4.25. Theorem. Let G be as in Theorem 4.9. Suppose that L, (@) is isomorphic
to L, (H) for a semigroup H. Then @ is isomorphic to H.

Proof. If C,(G) is isomorphic to L, (H), then the algebra of all »><=»n matrices
(@i;);, /=1 with a;;=0 for 1>1 admits a basis 4, B, C,... forming a semigroup isomor-
phic with H wunder matrix multiplication. Using an obvious abbreviation, we write
A={ay,a,,...,a,}. Then A*={af, af 'a,, ...,a " a,} (k=1,2,...). The elements A,
A?, A43,... are only finite in number and none of them is 0. Hence a, is a root of
unity, say a’=1 and a+1 for 0<j<p. Then the elements 4, A%, ..., A" are all

distinct and hence must be linearly independent. However, we have
A+ A2+ A%+ + AP ={a,+ai+ - +af, ag(L+a;+--+al "), ...,an (L +ay+ - +al ")} =0

if p>1, since in this case we have 1 +a, +aj+ ---+a} '=0. Hence a, =1. This being

1% This notion was suggested to us by Dr. V. L. KLEE.
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so, we have AB=B, and so on, and the basis 4, B, C,... under multiplication is

isomorphic to the semigroup of order n in which zy=y for all  and y.

4.26. Theorem. Let G be the semigroup of Theorem 4.10. If H is a semi-
group such that £, (@) is isomorphic to L, (H), then @ is isomorphic to H.

Proof. By Theorem 4.10, L£,(G) is representable as K®Z, ;. 1f L (H) is iso-
morphic to K®Z, ;, then K@Z, , has a basis isomorphic to H under multiplica-
tion. Let (x,b) (xeK, beZ,_;) be any element of this basis. Since (a«, b)®= (a2, 0),
it is clear that «==0. Since (x,b)*=(a", 0) (k>1), it is established, just as in the
proof of Theorem 4.25, that «=1. Therefore (1, 0) is an element of the basis, and

the product of any two elements of the basis is (1, 0).

4.27. Remark. Let G' be a finite group such that o(G)>1. There exists a non-
group H such that £, (G)=L,(H). We construct H by the device used in Theorem
4.2, in connection this time with the semisimple algebra £, (), which of course has

a l-dimensional direct summand. The semigroup H is obviously a non-group.

§ 5. Ideals in C, algebras

Much of the preceding work culminates in the present section, where we identify
certain classes of ideals in (@), characterize the radical of £, (@) (Theorem 5.20),
and obtain a particularly simple criterion for semisimplicity of L, (@) for commutative
G (Theorem 5.21). We begin with 3 relevant definitions.

5.1. Definition. For AcF, (G), let N(A) be the set of all LeL,(GF) such that
L(f)=0 for all fe.

5.2. Definition. For B L (@), let N(B) be the set of all fe3;(GF) such that
L(f)=0 for all LeB.

5.3. Definition. For f&,(¢) and ze@, let f, and .f be as in 1.3.1. A linear
subspace U of {F,(G) such that fe implies (feW; freW; of, f-eU) is said to be a
(left, right, 2-sided) invariant subspace of ¥, (G).

5.4. Theorem. Let J be a (left, right, 2-sided) ideal in L,(#), where G=
={2,, %y, ..., n}. Then N(J) is a (left, right, 2-sided) invariant subspace of g, (Q).

Proof. Changing slightly the notation introduced in 1.7, we write A, for the
element of C,(G) such that A, (fy=f(u) (ue@G, feF, (@). If T is a right ideal in £, (),
Med, ue@, and feN(J), then M*1,(f)=0. That is, we have M, (., (f(xy)))=0

To compute A, 4 (f (xy)) as a function of z, we have
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n

huos @) =y (5 fam) p@p )= 3 1 @) 5 @9 @)

= 3@ g (0)=f wu).

It follows that f,eN(J) if feN(J), and as N(J) is trivially a linear subspace of
%1 (G), the theorem follows in this case.

If J is a left ideal in C,(G), then we have A, %M (f)=0; using Theorem 1.9,
this equality gives us 0=2, ; (M, (f(xy))) = Mz (Au, (f(xy))). Now Ly, (f(y2)) =] (uz),

as above, and it follows that M (J) is a left invariant subspace.

5.5. Theorem. Let & be a (left, right, 2-sided) invariant subspace of &, (¢). Then
N(S) is a (left, right, 2-sided) ideal in L, (G).

Proof. If € is left invariant, and if MeMN(S), then M, (f (xy))=0 for all ¢S
and all zeG. Hence, if LeL, (@), we have LxM(f)=0 for all f¢S; as H(S) is
trivially a linear subspace of L, (G), the theorem follows in this case. If & is right
invariant, M¢MN(Z), and LeL,(G), then we have, using Theorem 1.9 again, that
MxL(f)=L, (M, (f(yx)))=0. This completes the proof.

5.6. Theorem. Let 4 be a linear subspace of £, (G). Then A=H (N(A)).

Proof. It is clear that A4 <M (M (A)). Conversely, suppose that L none 4. Then
there exists a linear functional w on L, (G) such that y(N)=0 for all ¥ eA and
yp(L)=1. Since 3, (&) is finite dimensional, we have y(M)=M (f) for some fed (&)
and all MeL,(G). Hence feN(A) and L(f)+0: hence L none (I (A)).

Combining Theorems 5.4, 5.5, and 5.6, we have the following result.

5.7. Theorem. A subset A of C,(G) is a (left, right, 2-sided) ideal in C, (&) if
and only if A4=MN(3), where & is a (left, right, 2-sided) invariant subspace of ¥, (G).
In the remainder of the present paper, the word “ideal” means 2-sided ideal,

and the term ‘‘invariant subspace” means 2-sided invariant subspace.

5.8. Theorem. A subset J of C,(G) is a maximal ideal if and only if J=N(Z),

where & is a minimal invariant subspace of F,(G).

Proof. This assertion follows at once from Theorem 5.7 and the fact that the
correspondence 4N (4) for subspaces of £, (G) inverts inclusion: A4, <A, if and
only if N (A4,)>N(A,).

We now consider in more detail homomorphisms of L, () onto simple algebras.
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5.9. Theorem. A linear functional y on £, (G) is a homomorphism of L, (G) onto
K if and only if p(M)=M(y) for a semicharacter y of G and all ML, (G).

Proof. The sufficiency of the condition stated being obvious, we consider only
its necessity. Any linear functional y has the form y(M)=M(f) for some fed (@
and all MeC,(G). If p is a homomorphism onto K, then MxL(f)y=M(f) L(f) for
all M, LeL,(G). This equality may be rewritten as 0= M. (L, (f(xy)))— M (f) L(f)=
=M, [L,(f(xy))— L, (f(y) f(x)] = M. [L, {f () — f @) f (y)}]. Since M is an arbitrary
linear functional, it follows that L, {f (xy)—f(x)f(y)} =0 for all z¢G. Since L is an
arbitrary linear functional, it follows that f(zy)—f(z)f(y)=0 for all #,ye@G. Since
f=+0, the theorem follows.

5.10. For a finite semigroup @, let T (G) denote the subspace of J, (G) consisting
of all f such that ,f=0 for all xeG. It is clear that T(G)=+0 if and only if there
are elements w e G such that no product xy is equal to u. Then T (G) consists of all

f which vanish except at these elements u.

5.11. Theorem. A linear functional y on L, (@) is a homomorphism of L, (G)
onto Z, if and only if p(M)= M (0) (M eL,(G)), where ¢ is a function in T(G).
The proof is similar to that of Theorem 5.9 and is omitted.

5.12. Theorem. Let S be a l-dimensional invariant subspace of {; (@). Then &

is spanned by a semicharacter or by a funection ¢& 2 (G).

Proof. The maximal ideal 7 (&) being (n — 1)-dimensional (r =0 (()), the difference
algebra, Ci(G)—‘I’l(@) is 1-dimensional and is isomorphic to K or to Z;. The mapping
of £,(G) onto this difference algebra is in any case a linear functional L—L(f), for
some fe& i, (G). The kernel N (&) consists of all Le L, (G) for which L(f)=0; and it
remains only to apply Theorems 5.9 and 5.11.

5.13. Theorem. L, (#) admits a homomorphism onto K, if and only if there

are m distinct semicharacters of G.

Proof. If y,, %5 ..., xm are distinct semicharacters of @, then, in view of Theo-
rem 5.9 and Corollary 3.3.1, the mapping L—{L (),), L(x,), ---, L (m)} is a homomorphism
of £,(G) onto K,,. Conversely, given a homomorphism L—{a, (L), ay(L), ..., an (L)} of
L£,(G) onto K,, the mappings L-a;(L) (j=1,2,...,m) are homomorphisms onto
K and are generated by (necessarily distinct) semicharacters, in accordance with
Theorem 5.9.

5.14. Theorem. £, () admits a homomorphism onto the algebra Z, if and only
if T(G) has dimensionality >m.
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Proof. If 2 is any m-dimensional subspace of I (@), choose an arbitrary basis
{fife --os fm} in Y. The mapping L—>{L(f,), L(f,), .--» L(f»)} is a homomorphism of
L,(G) onto Zy, if we define {a;, %y, ..., &m} - {B1s Bas ---» Bm} 88 {0,0, ..., 0} (a;, Bje K):
since M L (f;)= M, (L, (f;(xy))) = M, (L, (0))=0 for all M, Le L, (G), and the functions
fis f2 -+, fm are linearly independent.

Conversely, given a homomorphism L—A(L) of C,(G) onto Z,, let u,, ..., un
be a basis in Z,. Then we have L—A(L)= Y «;(L)u;, and the mapping L—a; (L)
i

is a linear functional on L,(G). We can therefore write «;(L)=L(f}) for some
i€ ¥, (6). Since the numbers «; (L) are capable of assuming arbitrary values, the func-
tions f; are linearly independent (j=1, 2, ..., m). Since o; (L* M)=0 for all L, M £ £, (G),

and 1=<j<m, it follows from Theorem 5.11 that f; e I (G).

5.15. Theorem. Let £ be a minimal invariant subspace of ¥, () with the pro-
perty that €NI(F)=0. Then Z admits a basis {Bi;};].; such that 8 (xy)=

:}Zlﬂik(x) Bii(y) (x,ye @) and the matrices B(x)=(fi;(x))i.j-1 form an irreducible set
in M (all z¢G).

Proof. By Theorem 5.8, M(Z) is a maximal ideal in L, (). The difference
algebra D= L, ()~ N(Z) must accordingly be isomorphic to Z,, K, or M, (s=2,3,...).
The case D=Z, is ruled out by the construction given in the proof of Theorem 5.14
and the hypothesis SN 3 (¢)=0. If D=~ K, we may appeal to the construction used
to prove Theorem 5.13. It remains to consider the case D~ (s=2,3,...). The
natural homomorphism of £, (G) onto IMM; with kernel N(Z) may be denoted by A.
For all LeL, (), we have A(L)=(a;;{L)) 21eM;; and the mapping L—a; (L) is
clearly a linear functional on L£,(G) (i,5=1,2, ..., s). Hence we have a;;(L)=L{(f;)
for some fi;e;(F), and we have, for all xe @, A.—(Bi; (*)),-1. Since A, x4, =2

s
and since A is a homomorphism, it follows that fi;(xy)= > Bu (x) Bi; (y). Since A is
k=1
a mapping onto IN;, the functions f;; are linearly independent. Since every matrix
in A(C,(6)) is a linear combination > «, B(x), it follows that the set {B(%)};.c is
zeG
irreducible. Since Le N (S) if and only if L(8;;)=0for ¢, j=1,2,...,s, it follows that
the functions f§;; form a basis for €.

5.16. Theorem. Let (8;;); ;.. be a matrix of functions in g, (¢) such that the
mapping z->B(x) = (Bi;(®));j~1 is an irreducible representation of @ in the multiplica-
tive semigroup ;. Then the mapping L— > L(g;) B(x)=A(L) is a homomorphism

TeG
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of £,(@) onto MM;, and the functions fi; are a basis for a minimal invariant sub-
space of &, (@) which intersects T () in O alone.20

Proof. It follows from Theorem 3.22 that every matrix in IR, is a linear com-
bination of the matrices B(z) (x&@), and the fact that the mapping A is a homo-

morphism is obvious.: The last assertion follows readily from Theorem 5.8.

5.17. Theorem. A subset J of £,(G) is a regular maximal ideal if and only if
J=N(S), where © is a subspace of $,(G) spanned by functions f;; (¢,7=1, 2, ..., s),
with the properties set forth in Theorem 5.16.

This assertion is obvious from the foregoing discussion.

If T(G) has dimension >1, then ,(GF) admits a continuum of 1-dimensional
and hence minimal invariant subspaces; these, however, produce only homomorphisms
of L£,(G) onto Z, (see Theorem 5.14) and are of negligible interest. Minimal invariant
subspaces intersecting T(F) in 0 alone, on the other hand, exist only in finite num-

bers, and have other special properties as set forth in the following theorem.

5.18. Theorem. There are only a finite number of minimal invariant subspaces
@ of F, () such that EnT(G)=0: we call them &, S,, ..., S;. These subspaces
are all linearly independent in the sense that €, n (&, + &, + - +E;,)=0 for
1+, -+, jx. Furthermore, (€,+ &, -+ + &) n T(G)=0.

Proof. Consider a maximal set of linearly independent minimal invariant sub-
spaces & for which &N T (F)=0. Plainly there are only a finite number of subspaces
in such a maximal set: say, ©,,S,, ..., €,;. Let U be any minimal invariant sub-
space such that UnT(@) =0. If Un(S, 4+ &, + - + &) =0, then the family
{€,,8,,...,&} is not maximal. If UN(S,+&,+ - +E)+0, then UcE, +E&,+

!
4 -+ +&,, since 1l is a minimal invariant subspace. This implies that H(11)> N N (S).
-1
Let J denote the radical of L, (G); as is well known, this is the intersection of all
1
regular maximal (2-sided) ideals. It is clear that H(l)—F> N [N(€)—F]. In the
i=1

semisimple algebra £, (G)—F, N(U)—~F and M (S;)—J are again regular maximal
ideals, and the last inclusion written down implies that H(ll)—F is actually one of
the ideals M(€;)—F. To see this, compute the maximal ideals in a semisimple

algebra (over K) and their intersections: it is easy to see that the intersection of a

20 Here ¢ is the function in %l (@) such that @ (y)=0zy for all y ¢ G; this notation violates
for typographical reasons the convention of footnote 4.
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family of maximal ideals completely determines the maximal ideals used in forming it.
1

Since J is a subset of H(I1) n (N N (), it follows that N (U)=N(S,). Thus the
i=1

first 2 assertions of the present theorem are established. To prove the last one,
suppose that fe (S, +S,+ - + &) n T(G). Let {B¥ L6 (k=1,2,..,1) be a basis in

E, of the kind described in Theorem 5.15, and let f= > a;;x p5. Then
17k
0=f(x?/):”zkaijk i?)(xy)::”%:maijk pim () Ba) ().

Since the functions g%) are linearly independent, we infer that the coefficient of each
B%)(y) is 0. As these are linear combinations of functions f{%)(z), it follows that all

a;;c are 0. This completes the present proof.

5.19. Theorem. The set of all functions on G which are coefficients of irreduc-
ible matrix representations of @ (only one representation being admitted from each
equivalence class) are linearly independent elements of §, (G).

This generalization of Corollary 3.3.1 follows at once from Theorems 5.16 and 5.18.

5.20. Theorem. Let €,, S,, ..., S, be as in Theorem 5.18. The radical of L, (G)
consists of all L such that L(f)=0 for all f¢S,+S,+ - +&,.

Proof. This result follows readily from Theorems 5.15, 5.17, and 5.18, and the

fact that the radical of C,(G) is the intersection of all regular maximal ideals of

L, (G).

5.21. Theorem. Let G be a commutative semigroup of order ». Then £, (G) is
semisimple (and hence isomorphic to K,) if and only if I, =1 for all ¢ G (see 2.6.1).

This condition is equivalent to the equality G°=G.

Proof. It follows from Theorem 5.20 that C,(G) is semisimple if and only if
S, +8,+ - +G,=F(G). Tt is easy to see that every &, must be l-dimensional if
G is commutative, and in this case &; is generated by a semicharacter, y;. Hence
there are = distinct semicharacters of @ if and only if C,(G) is semisimple, and
I;=1 for all xe@ is a necessary and sufficient condition for this to occur, as 3.6.2
states.

The radicel of £, (@) can be very simply characterized if ¢ is commutative, as
follows.

5.22. Theorem. Let G be a finite commutative semigroup such that £, (@) has
a non-zero radical. For each z;&G such that z; noneG°, let m be a positive integer
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such that (x")?==z]", and let a["*!=ux;4. Then the radical of L, (G) consists of all

functionals L=7X a; (A; — 4;4,), where the sum is taken over all ¢ such that z; noneG°.

Proof. TFor simplicity, we can suppose that m has been determined so that

a™¥ =z™ for all xe@. For x; noneG° and j—7(i), we have af* = " =a, 2]t =
1=17 7
=gl it — g and zal =2l " =x;,. Now
m(m+1
Gomiyra=apte 3 (M) o a
n=1
but
x{"“zx, and xlh x}n+1—h:xilt x}zm+m+1—h:(xix]m)h x](n+1—h:
=t a V= =g for 1<h<m,
so we have
Z(m+1 .
(= 2"t =2+ hzl( 5 (=)™ L+ (=) =1 -1 4 =0.

Therefore 4,—4; is a nilpotent element of C,(G).

Since "' =ux;, we see that every a; is an element of G° while no x; is. There-
fore the functionals A, —4; are linearly independent and span a space of dimension
0(@)—0(G°). However, this is just the dimension of the radical of £, (@). This
follows from Theorem 5.20 and the fact that there are exactly o(G°) distinct semi-

characters on (. Thnerefore this space is the radical of L, (G).

5.22.1. It may be of interest to note that Theorem 5.21 can be proved without
the use of the apparatus introduced in § 5. As in the proof of Theorem 5.22, we see
that L, (¢/) contains a nilpotent element, and hence is not semisimple, if I, >1 for
some zeG. If I,=1 for all xe@, then 0(G°)=0(G). Writing the semicharacters of
G as ¥y, Xa ---> gn,» We see that the mapping L—{L(y,), L(x,), ..., L()a)} is an iso-
morphism of L, (G) onto K,.

5.23. Theorem. The algebra L, (G) is semisimple if and only if coefficients of
irreducible matrix representations of G span the space 3, (G).

This follows at once from Theorem 5.20.

5.24. Examples. We now give some examples to illustrate the preceding theorems.

5.24.1. Let I' be an arbitrary field, and let ¢ be the semigroup of all matrices

(a 0) (a,bel"). The elements (O

b1 O) form a 2-sided ideal H in G, and in fact

b 1

0y (0 0 00
(Z 1) (c 1) = (c 1). Let u be an irreducible representation of G in IN,. Suppose
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that p (h)=+0 for some ke H. Then, for any s-dimensional vector & such that u (k) £=0
and any xeG, we have pu(x)u(h)E=pu (k)& and we see that the vector u (k)& spans
a 1-dimensional invariant subspace of the s-dimensional representation space. Hence
s=1, and it is easy to show that pu(x)=1 for all e G. Thus an irreducible repre-
sentation u with s>1 has the property that s (k)=0 for all k¢ H; on the set Gn H’,
which is a group, u can be an arbitrary representation. For I' finite, we have of
course o (I')=p™ for a prime p and a positive integer m; and the subspace of §, (&)
spanned by coefficients of irreducible representations is easily seen to be PP —p™ + 1.

Hence the radical of L, (¢) has dimension p™ —1.

5.24.2. In dealing with irreducible measurable representations of compact groups,
it suffices to know that these representations are capable of distinguishing between
arbitrary pairs of points in the group, in order to show that coefficients of these
representations span the space of all continuous functions under the uniform topology.
This is, basically, because all such representations are unitary. (See Stone [40] for a
complete discussion.) In finite semigroups G, on the other hand, it is quite possible
for irreducible representations to separate points and yet for the dimensionality of
the space spanned by coefficients of these representations to be less than o(G); in
this case, £,(G) fails to be semisimple, by Theorem 5.23. Consider as an exam~'

the matrices
10 1T -2 10 1 -2
Al_(o 0)’ AZ‘(l ~2)’ ‘43:(1 0)’ A4_(0 0)’
together with A,,;= —A4; (i=1,2,3,4). These matrices form a semigroup G under
multiplication, and the identity mapping is evidently an irreducible representation of
G in M,. However, this and the mapping 4;->1 (i=1, ..., 8) are the only irreducible
representations of G. Accordingly, the radical of L£,(G) is 3-dimensional. It is an

elementary, if lengthy, exercise to show that the radical of L, (G) consists of all

linear functionals of the form
(A +A5) + B A+ 2g)+y A+ 4y) — (e + S +p) (Ag+ )
(@, B, ye K; di=24, (i=1,...,8)).
5.24.3. Let G be the semigroup described in 4.2, whose elements are {1,0,0,..., 0}
and all {1,0,...,0, e?ik’, 0,...,0}. As noted in 4.2, £ (G) is semisimple, The irre-

ducible representations of G are the mappings which carry these sequences into their

r-th components (r=1,2,...,p+1). Plainly the coefficients of these representations
span g, (G).
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5.24.4. Appendices 3 and 4 list the semigroups of orders 5 and 6, respectively,
having semisimple £, algebras. In each case, it is easy to see that the coefficients
of irreducible representations span the space .

We close with 2 rather special theorems.

5.25. Theorem. If G and H are finite semigroups, then L,(G><H) is semi-
simple if and only if £,(&) and C,(H) are semisimple.

Proof. Suppose that L, (@) and C, (H) are semisimple. We then have the following
one-to-one correspondences:

x,-<—>{rl (@), T2 (), --vr T (X)),

Yio{o1 ), 02 @), - 0m ()},

where x ¢ G, y;¢ H; the 7, ()= (o7 (2;)) are matrices of order, say, a,; the gy (y;) are
matrices of order b,; the {z,(x), ..., 7, {z;)} for i=1,2, ..., 0(G) are linearly independ-
ent; the {o,(¥), ..., om(y;)} for j=1, 2, ...,0(H) are linearly independent; and
Yaj=0(Q), Zb;=0(H). These facts follow from Wedderburn’s theorems and the fact
that the functionals 1 form a basis in £,. Now the mapping z;—7,(z;) is a repre-
sentation of (¢ by matrices, and the mapping y,—px (y;) is a representation of H by
matrices. From 4.21, with a slight change of notation, we see that the mapping
(i, Y)) > 7o (x:) Aon (y;) is a representation of G'><H by matrices. Here 7, (x;) A gn (¥;)
denotes the Kronecker product of the matrices 7, (x;) and gy (y;). Therefore

5.25.1 (xi, y) > {r (@) Aoy (#), Ty (@) A@a()s +ns To (@) Aon (@), --or T (@) A om (41)}

is a representation of G'><H. As in 4.21, we can show that the expressions on the
right hand side of 5.25.1 are linearly independent for 1 <i<o(@), 1<j<o(H). There-
fore the representation of L, (@ ><H) defined in 5.25.1 is faithful. Furthermore, the
algebra L, (G'>< H) has dimension o(Q) - o(H)= (X a?) (Zb%)= = (a, bx)?, which is
the same as the dimension of the space of all sequences {M,,, M,,, ..., Mgn, ..., Min},
where each M,, is an arbitrary matrix of order a,b, (note that a,b, is just the
order of the matrix 7, () A ps (y;)). Therefore the faithful representation of £, (G >< H)
generated by 5.25.1 yields an isomorph of L, (G ><H) which is a direct sum of full
matrix algebras; i.e., C, (@ ><H) is semisimple.

We now suppose that £, (H) is not semisimple; let R be its radical. Let L->7 (L)
be a faithful representation of L,(G) by matrices, and let M—o (M) be a faithful
representation of L, (H) by matrices. Then, by 4.21, £, (G><H) is isomorphic to
the set £ of all Kronecker products (L) Ao (M) (Le L, (Q), Me L, (H)). Let S be the
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set of all sums Z1(L)Ap(R) with LieL,(G) and R;eR. Then if L, Lie C,(G),
R;eR, and MeL,(H), we have?!

L) Ao(M) (B (L) ho(R)=Z (v (L)t (L)) ANe(M) o(RB))=Zv(L*L;)Ao(M*Ry),

and this is in & since LxL;e £,(G) and M*R;eR. It is now clear that & is a left
ideal in & We now show that < is nilpotent. Any product of k elements of & has

the form
¢ @f a, a, ay k
( T(Li.j)/\Q(Ri.i)) =2 2> [MeLy)ne(By,)
j=1 \i=1 i1 i=1 =1 j=1
a, ap k k
= Z Z T(HLI';,I') /\Q(H Rih'h)'
=1 dg=1 \j=1 n=1

k
Since R is nilpotent, we have [] R;, »=0 for k>k, and therefore the above product
Bl

is 0 for k>k, Therefore < is a non-zero, nilpotent left ideal of ¥, and hence is
contained in the radical of ¥. This completes the present proof.

For our final theorem, we require a lemma.

5.26. Lemma. Let G be a finite semigroup such that L, (@) is semisimple, and

let B be an ideal in . Then L,(B) is semisimple.
Proof. Let 4 be the set of all L= > a; A, such that «,=0 for x none B. Tt is
reG

plain that 4 is isomorphic to £, (B) and that A4 is an ideal in the algebra L, (G).
It is easy to show that every ideal in a semisimple algebra is itself semisimple, and

hence L, (B) is semisimple.

5.27. Theorem. Let G be an idempotent finite semigroup. Then L, (G) is semi-

simple if and only if @ is commutative.

Proof. We use finite induction to prove that if £, (G) is semisimple, then G is
commutative. If ¢ is of order 1, this is trivial, but true. We suppose it is true for
0(G)<n and consider a G of order n. Using the notation and results of 2.13 and
2.14, we consider the commutative semigroup H whose elements are the distinct
sets S, (ae@). If be@, we take J, = {S,; S, e H, S8, Sy =S,} and I, ={x; xe G, S; £ J,}.
It is clear that J, is an ideal of H. If xel, and ye¢@G, then zyeS;, =88y,
yreSy,; =8,8,, and 8;8,¢eJ,. Therefore I, is a two-sided ideal in G. Since C, (@)

2l We use the formulas (4 A B)-(C A D)= (4AC)AN(BD), (A+ BJAC=ANANC+ BAC,
ANB+C)=ANB+ANC, (aA)AN(BB)=aff (A A B), where 4, B, C, and D are matrices and
o, e K.
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is semisimple, so is £, (I,), as Lemma 5.26 shows. Since §,< I, and since S, is itself
a semigroup that is not commutative if 0(S,)>2 (see Theorem 2.15), we can use the
induction hypothesis to see that o(8,)=1 for all b such that o(l,)<n. However, if
o(I)=mn, then I,=G, Jy,=H, and 8,8,=8, for all S,¢H; that is, S, is a unit of H.
If H does not have a unit, then we have 0(S,)=1 for all b¢ G and G is commutative.

There remains the case in which 8., say, is the unit of H, and o(S,)=1 if
8, +8,. We can number the elements of G so that S,={x,, z,, ..., Zn}, Where m is

an integer such that 1<m<n. Then we have 8, ={x} for m <i<n. Now, if

3

L=73%0kd and > a;=0,
3 i1

1

then
Z]’*L: Zoci/lj*li= Zailjzo and L*}.j’: Zocil,-ZO,
=1 i=1 o1

for m<j<n, since x;2;e8,8;,=8;,={x;}. Also, for 1<j<m, we have
7 7 y 4 7 7

BxL= 3 aidykdi= 3 o n,
i=1 =1

where

In like fashion, we see that

m m
Lxi;= 3 ay 4, where 3 a, =0.
s e}

Therefore the set J of all these L is, if not zero, a proper 2-sided ideal in C,(G).

If %y, x;, xS, then x,x;2; =, 2; (Theorem 2.15) and hence
m m
}.h*L*Aj= zailh*li*).,-= Zailh*}bjzo if 1<h<m, 157Sm
i1 71

From this it is evident that J*=0. Since @ is semisimple, £, (@) contains no proper
nilpotent ideal, so we have J=0, m=1, 0(S.)=1, and, finally, @ is commutative.

If @ is commutative and idempotent, it is obvious that G=G°, and, by Theo-
rem 5.21, C,(G) is semisimple.

Appendix 1

Semigroups of order 2. Except for isomorphisms and anti-isomorphisms, the fol-
lowing is a complete list of the multiplication tables of all semigroups of order 2.
8 — 543809. Acta Mathematica. 93. Imprimé le 10 mai 1955.
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The letter in the upper left hand corner of each table designates the corresponding
L, algebra, to be found below.

1. A}l1 2 2. B|1l1 2 3. Ci11 2 4. 4|1 2
1|11 2 1({1 2 1{1 1 1|1 2
212 1 211 2 211 1 212 2

We express each L, algebra as a matrix algebra and display its general element.
The letters represent arbitrary, independent, complex numbers. These three algebras

are easily seen to be non-isomorphs.
A. (a O‘) B. (a b) C.ja 00
0 b 00 (O 0 b)
000

Appendix 2

Semigroups of order 3. Again, isomorphs and anti-isomorphs are omitted. The

letters A, ..., I refer to the corresponding £, algebras, which are listed below.

1. 411 2 3 2. Bil1 2 3 3 c|1 2 3
1({1 2 3 111 2 3 11 2 3
212 3 1 211 2 3 2|2
313 1 2 3|11 2 3 312 2 2

4 c|1 2 3 5 A1 2 3 6 D1 2 3
111 2 3 111 1 1 1|1 1 1
213 2 3 211 2 1 21 1 1
313 2 3 311 1 3 3i1 1 2

7 411 2 3 8 A1 2 3 9 E|1l1 2 3
1(1 2 3 111 2 1 111 2 1
212 2 3 212 1 2 211 2 2
313 3 3 311 2 3 3|1 2 3
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1
1

11.

2
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1

12.

15.

18.

C
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1
2
3

1
1

2
2

2
2

The L, algebras of dimension 3. These 9 algebras are written in the notation

of Appendix 1. It can be shown that no 2 of these algebras are either isomorphic

or anti-isomorphic. Furthermore, algebras D and F cannot be written as matrix

algebras of any order in which all non-zero entries are independent. Finally, none of

the algebras A-I has an isomorph which is a matrix algebra in which the order of

the matrices is less than the order appearing in the representation shown. The proofs

of these assertions are of only minor interest for our present purposes, and so are

omitt~1.

y

D.

a
0
0

OO O R

O O O 8

0
b
0

S O OO
S OO
S O o O

S oo Q9
S o2

o © O
\—/

SO o 2

S O o8

b ¢
00
00

J

(Rl )

S oo o

S o O @

C. [a O
<0b
00

F a 0
(Ob
00
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Appendix 3

All semigroups of order 5 whose L, algebra is semisimple. In this table, we write

the 2 semigroups in question as subsemigroups of K @ I, under multiplication.

00)
10/

)
)

ool (50 o)) 110
-

)
)

00
1
{’(00

—

Lol

01
00

A

Appendix 4

00
01

10
00

00
00

|

&

In this table, we write

All semigroups of order 6 whose C, algebra is semisimple.

the 13 semigroups in question as subsemigroups of K @ K @ M, under multiplication.

The number w in 1. is a primitive cube root of unity.

Y A E R e A L E IR

0 0
00
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ool 2ol fun
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o
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o e oll
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090

o
|

00 00
ool 1110 s

o

ol e G

v

FIRERE

oo

Bt
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(e
ey
o | 1o

o f ool { el
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) { o

o 1060
Y

o
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