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Introduction

1. In this paper we shall consider hypergeometric series of the form

7 (oc1 g - Oy

Y1V2---VYn1

»=0 'IJ! (‘yl),, ('}/n—l)v ’

where
() =a(a+1)...(a+v—1), (a)y=1.

When the argument z is omitted, it will be assumed that z=1. If n=2, it is usual

to write
L < (), (B) ,
F(@,b,c,z)—vgo VL), 2. (2)

This particular hypergeometric function has played an important role in the develop-
ment of analysis due to the classical works of Euler, Gauss, Riemann and Kummer.
The general case, where n is an arbitrary integer >2, has first been considered by
Thomae [60], who showed that the series (1) satisfy a linear differential equation of
the order n, which in the vicinity of 2=0 has a fundamental system of solutions,
represented by hypergeometric series multiplied by a power of z, provided none of
the differences between the numbers 0, y,, Ys...¥Yn-1 i8 an integer. Goursat [15] has
shown how the definition of the hypergeometric functions by means of their analytic
properties, given by Riemann in the case »=2, may be extended to functions of an
arbitrary order. Furthermore Goursat has considered multiple integrals of the order
n—1, which represent the hypergeometric functions of the order », when the para-

meters satisfy certain conditions. Similar multiple integrals have been used by Poch-
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hammer [54] to represent all solutions y of the hypergeometric differential equation

of the order n. He shows that these may be written in the form
A
y=J -2t dt )

f() being a solution of a hypergeometric differential equation of the order »—1.
Pochhammer’s investigations have been extended and simplified by Winkler [63].
An integral representation of quite another character has been given by Pin-

cherle [48, 50], who has shown, among other things, that the integral

x+ioo
1 el ta)T@+a)...T@+a)(—a) ~
%if( D Tty Tty Tty 0% 07#> 7% @)
o s=1,2,...,n

for |arg (—z)|<m apart from a constant factor represents the function defined by (1).
Furthermore Mellin in several important papers [30-37] has considered a similar more
general class of Laplace integrals extended over a product of gamma-functions and
trigonometric functions. E. W. Barnes [3] has used such integral representations in
the special case n =2, and he has considered [2] the general confluent hypergeometric
function, too. Barnes’ papers have contributed much to make these integrals familiar
in analysis and they are often referred to as integrals of Barnes’ type. A summary
of the results on this subject and references to the literature before 1935 have been
given by Bailey in Cambridge T'racts No. 32.

In recent years Meijer [27-29] has published an extensive investigation of inte-
grals of the Mellin-Barnes type.

A very valuable handbook on the subject is due to Bateman and Erdélyi [11].
This work contains a full account of the results hitherto found.

On the following pages we consider particularly the solutions in the vicinity of
the singular point z=1. If the differential equation is of the order two, the solutions,
as shown by Gauss, may be represented by hypergeometric series having 1—2z as
argument. But if the order of the differential equation is higher than two this is
not the case. We first investigate the solution, singular at z=1, and in § 2 and § 4
we give integral representations of it. In § 1 we consider its expansion in power
series, multiplied by a power of 1-z, which is of a remarkably simple form. For
the solutions regular at z=1 the power series, on the other hand, is complicated, but
in § 5 we show how these solutions can be represented by series of hypergeometric

polynomials. In § 3 we have considered very simple integral representations of the
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solutions with a logarithmic singularity at the origin and we have given a discussion
of the exceptional cases which can occur. In § 6 we consider the case where there
is a logarithmic singularity at the point z=1 and we give new and convenient

representations of the solutions in this case.

§ 1. Solutions in Power-Series by the Method of Frobenius
2. The hypergeometric differential equation of order =

dny n—-1 dvy
1
dzn+,,§0( bz)zdz =0 (1.1)

2" (1—2)

has three singularities 2=0,1, and oo. All of them are regular singularities. If we

d .
use the operator 19y=zl, it may also be written in the form

dz
G—p) @@ —=yo) .. (@ —yn)y—2@+a) @+ a,)... O +on)y=0 (1.2)
because we have
n dv
@@=y @ =) ... (F—yn)y= Zm"dgf-
r=0 z
Putting y=2" we get from this
@ =y (@=ps)... @ —ya)= 2 =y +1),

which shows that v!a, is the difference of order » of the polynomial on the left-hand

side. If we put
Q@) =@—p1) (@—7ps) ... @—yn), (1.3)

RB@)=(@+o)(@+ay)... (x+ay), (1.4)
we may write (1.2) more briefly as

QWy—2R@D)y=0 (1.5)
and (1.1) may be written

'i,d ~0. (1.6)

i [A"Q(0)— 2 A" R (0)]

If we substitute 2?y for y, where g is an arbitrary constant, the differential

equation will get the form
QW+ely—2zB@+0)y=0 (1.7)
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or the equivalent form
S A . 2 dy_
3 (AQe) -2 A R(@)] 5 5 5=0. (18)

»=0

Thus the form of the differential equation does not change by this substitution.
The differential equation (1.2) depends on 2n parameters oy, oy,..., an and
V1> Vas--o> Yn. It 18 symmetric in o, oy, ..., «, and likewise in yy, y5,..., Y. We are
able to choose g so that one of the parameters assumes an arbitrary value, for in-
stance zero, but doing so we lose the symmetry.
If we put
1 a
z=z—1, 01y=z1—d—i/1,
we have
@+a)y=—(}—-a)y.

It follows from this that the differential equation (1.2) does not change, if we replace
z by 1/z and interchange a and p. Thus from any solution one can derive a new

solution by interchanging « and y and replacing z by 1/z.

3. We shall now use the method of Frobenius to find a solution of the form

y= 2 g.(0)*". (1.9)

v=0

If we differentiate this series with respect to z, we get
Ry =2 Qle+"s@#"
R@)y= 2 Rle+)g(@=""

If we substitute these two series in (1.5), we see that (1.9) is a solution of the in-

homogeneous equation

QW) y—2R(D)y=9o(0) @ (0) 2% (1.10)
if g, is determined by
Qe+ 9, (@) =E(e+v—1)g,-1(0)- (L.11)
From this follows
" (o+as)

9.(0)=90(0) ] (L.12)

s=1 (Q_ys+1)v

If we suppose that none of the differences between the numbers y;, y,,..., y» is zero

or an integer, we get by putting p=7, and g,=1 that the hypergeometric series
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oy s G TYs oo AntYs
Ys—p T L ys—yat 1l ys—yatl

ys(z)=z”8F( z) s=1,2,..., (1.13)
satisfy the differential equation (1.2), and as 2=0 is a regular singularity, the series
is convergent for |z|<1. Letting s assume the values 1,2,...,n, we get = linearly
independent solutions.

It we suppose that none of the differences between the numbers oy, oy, ..., s is
zero or an integer, we see in replacing z by 1/z and interchanging « and y that the
differential equation (1.2) has n linearly independent solutions of the form

1

os + Y1 sty oo At Yn _) s=1,2,....n (1.14)

as—oy+ 1l ag—ag+1l.. os—a,+1

4

Js()=2"%F (

and that these series converge for |z|>1. If we put

frn=n—1- Z (o + 1), (1.15)
i=1

it follows from Weierstrass’s test for convergence that the series (1.13) and (1.14)
are absolutely convergent on the circle |z[=1 if R(B,)>0; they converge except at
z=1 if 0=R(B,)> —1, and both series diverge on |z|=1 if R(B,)< —1. The solutions
(1.13) and (1.14) have first been given by Thomae [60] (see also Mellin [36]).

4. If some of the differences y,—y, are integers, some of the series (1.13) coin-
cide or are without meaning. Therefore, following Frobenius, we order the numbers
¥s in groups so that each group comprises all y, the mutual differences of which are
integers. Let 9y, 7¥s,...,7¢ be such a group and R(p,) =R (y,)=---=NR(y,). Putting
o=v; in (1.9) again we get the solution

%+ ety . &ty
Y (z)=z"‘F( 1 z)- (1.16)
! Y1i=vetl yr—ystloy—yatl

Furthermore, when 1<s<gq, differentiating (1.9) with respect to ¢ and choosing
go(0) conveniently, as shown by Frobenius in a more general case, we get the linearly
independent, solutions

oo

-1
s (y) =2 Zo [95“’ (ys) + (8 1 )gis“‘” (ys) log 2+ -+« +¢,(y;) (log Z)s“] 2, (1.17)

p=

where g, (ys), 96° (ps), ..., 96 P (ys) do not all vanish and the series is convergent for
|z|<1.
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It may happen that the terms in (1.17) containing logarithms all vanish. For
this it is necessary primarily that all y, are different, i.e. f(y;) >R (py) > --- >R (y,).
If in (1.11) we put g@=1y,, we may choose g,,, arbitrarily, and if

y1-¥g—1

Il RB(yt+i)=0,
i-0

then ¢,=0 for y<y, —y,. Thus we find again the solution (1.16) so that the solu-

tions belonging to the exponents y, and y, are identical. But if

Ys—1"¥s~1
[I Rys+i)=0 s=2,3,...,¢, (1.18)
i=0
we may in (1.11), when g=1y,, choose g, , Gy,—yg> -+ »¥y,_s-v, 80d g arbitrary. Then

we get a solution containing ¢ arbitrary constants, and the coefficient of each of
them is a solution. This means that besides (1.16) the following by 2s multiplied
hypergeometric polynomials

VYs—1~Ys—1 n

(ai + ys)v
z) =2"s 2]
yS( ) vgo 1131 (73_7i+1)v

§=2,3,...,¢ (1.19)
are solutions of (1.2). These ¢ solutions are linearly independent.

5. The above-mentioned series in powers of z can be transformed into series in

powers of z/(z—1). Euler has given the following transformation:

3 (OC)V a, 2= (1 _z)‘a § (azﬁ A’ @ ( Gl )” . (120)
»=0 ¥: z

»=0 7’! v 1-—
If we put
_ (o) (og)y o (atn)y
(Y1 (Y2)o oo (Y1) ’

v

we get for the difference of order » the hypergeometric polynomial
—V oy Ug...0%p x)

A”ao=(-1)”F(
Y1 V2 . Pn-t

Euler’s transformation then gives the following relation

F(al %otn | =(1—z)‘“‘Z@F Vo Ay | ( 2\ (1.21)
Y1 Y2-e-¥Yn-1 =0 7! Yi Vo eer Pa-1 -1

or, if we replace z by z/(z—1),
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) 2 (—v oy Og...0%p
z—1 v=0 ! Y1 Y2 - Yn-a
This may be proved in the following way. From Weierstrass’s double series theorem

it follows that (1.22) is true if |z|<1/(1+]|z|). The function on the left has the

singularities z=1 and z=1/(1—=x). The power-series on the right-hand side is there-

oy Ay...0n

(1 ——z)’“‘F(
Y1 V2---VYn-1

x) 2. (1.22)

fore convergent if |z|<1 and |z(1—=)|<1. If we suppose that |z—1|<1, it follows
that the series on the right of (1.21) is convergent in the half-plane R (z) <. Putting
2=1 we see that any hypergeometric series in powers of z can be transformed into
a series in powers of z/(z—1) which is convergent for 3 (z) <4, and this in » dif-
ferent ways if the order of the series is n. If n=2, the relation (1.21) reduces to

Euler’s formula

F(a,b, c; z)=(1—z)"“F(a,c—b,c; L) =(1—z)’bF(c—a, b, c; L)
z—1 z—1

(1.22) has been given by Chaundy [6] and by Meijer [29] (cf. also [43] and [43 a]).

6. We shall now consider the singularity at z=1. If we put y=2"y, then y

must satisfy the differential equation

z [A” 1Q (y, + L A”R(yl)]

T = TR} (1.23)

d’V

i

v=1

where R(x)=(x+ o) (x+ ) ... (@ +on) and @ (x)=(x—1y,) (x—73) ... (x—ya).
If we substitute the series

y= %m(g) (L—z)™ (1.24)

in (1.23), we see that it is a solution of the inhomogeneous differential equation

i [AHQ(h +1)_ AR (71)]
Z d

'y
-1 S ~E(n)Y

4 (1.25)
=goolo—1)...(e—n+2)(e—fa) (1 —2)"",

v

provided that g, is determined by

- Ai_lQ(Q+y +v+1) A'R(o+y,+v)
. n i L _ 1

> |t (1.26)
+(=D""R(g+y1+7)9,(0)=0

for y=0,1,2,... and by the n—2 equations, which we get if in (1.26) we put
v= —1: _27“" —Tb+2 a‘nd g—lzg—2:”'=g—(n~2)=0-
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The coefficient of g,.,_; in (1.26) may be reduced as

A" 'R(@+y, +v) A" Qo+y, +v+1)
(n—1)! (n—2)!

=o+tv+n—1-F,,

where f§, is defined by (1.15). If we put p=f,, the right-hand side of (1.25) van-

ishes, and if we assume that §, is not a negative integer, we may put

-
=B +1),

in (1.26). Then we get for the determination of the numbers ¢, the following equa-

tions, which we first write for the case n=3 for the sake of lucidity

6 +[QBs+y)—ARBz+y;—1)]¢e=0
20, +[Q@(Bs+y  + D) —AR(Bs+y)]e,+ B (B3 +y1) cg=0 (L.27)

(p+2) et Q@B+ tv+ ) —ARPBy+y,+9)] i+ B(Bs+y, +9v) e, =0,

and for all values of n we get

n-3 _ n—-2 —
cl+[A Qfrnt+tyi—n+3) A" R(B.+y, n+2)]00=0

(n—3)! (n—2)!
A"2Q[fnty —n+4) A"PR(B.ty —n+3)] 3
2oyt [ n=3)1 (n—2)] “
A" 4QBr+y,—n+4) A" PR(Bn+y,—n+3)
_[ (n—4)! B (n—3)1! ] 0=0 (1.28)
n-2 -1 i
+tn—1)cynyt Z (— l)nAi [Ai Q(,(S): +1);1|+v+1)—A R(ﬂ';:"i'yl'i'v)] Copit
i=1 - : 1

+(=D" 'R(Bn+y,+v)c,=0.

We choose ¢,=1. These equations then determine c,, ¢,, ¢5... for all values of the

parameters. It follows that the series

2 (1 — Bn < - Cy
( Z) v=0(ﬁn+1)v

-z (1.29)

formally satisfies the differential equation (1.2) if 8, is not a negative integer, and
as z=1 is a regular singularity, (1.29) is convergent in the circle |[z—1[<1. If we
divide (1.29) by T'(8.+1), we get
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oo

1 ___Cv__ —_ ﬂn‘“’
2 ,,;01"(/3”4-1)4-1)(1 z)fn (1.30)

Thus this series represents a solution for all #, which are not negative integers. If

f» converges towards a negative integer, say f,= —p, it converges to
[} ¢,
2y (1 -2y, (1.31)
v=0 /"'!

and it may be presumed that (1.31) represents a solution of (1.2). This can be
verified in the following way. If we put ¢=0, the right-hand side of (1.25) vanishes,

and therefore (1.2) has a solution of the form

y=2a" zog,,(l—z)”. (1.32)

If 8, is not a positive integer, then g,, gy, g, ..., gn-2 are arbitrary, whereas g, for
y=n—1 is determined by (1.26), where p=0. Supposing that 8, is a negative in-
teger, B,= —p, and putting g,=b,,,/v!, we get from (1.26) a system of equations
for the determination of the coefficients b,, and if we replace » by v — p, these equa-
tions become identical with (1.28). The coefficients b, are determined uniquely when

bps bpr1se..s bpin_o are fixed. Now we choose these so that

by =cp, bpi1=0Cpi1, ouvs bpin_2=Cpin_2.

We then have b,,,=c¢,;, for v>0 and (1.32) reduces to (1.31), which consequently
is a solution of (1.2) regular in the circle [z—1|<1. We shall denote the solutions
defined by the series (1.29) and (1.31) with &, (2) and #, (2), respectively. From (1.28)
it appears that the coefficients ¢, are integral rational functions of the parameters,
symmetric in &y, oy, ..., %, and symmetric in y,, y,, ..., y». In what follows, instead of
¢,» we write more elaborately c{, to indicate that they belong to a differential equa-
tion of the order n. Let ¢, denote that function, which is obtained from ¢S}, when
y; and y; are interchanged. Then we have, when f, is not a negative integer, the

solution
0 c(i)n
En(2)=2"i(1—2)fr 3 ¥

—t—(1—2z)y = cee s T, 1.
v=o(5n+1)v(l 2z 1=1,2,...,n (1.33)

where ¢f’, =1, and when B, is equal to the negative integer — p, we have the solution

(%)
N (2) =2" D, c"—;‘%i(l—z)" i=1,2,...,n. (1.34)

v=0
20— 553810. Acta Mathematica. 94. Imprimé le 16 décembre 1955.
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These series are convergent in the circle [z—~1|<1, and the = series (1.33) all
represent the same solution. This is evident when §, is not integral, because there
is only one solution with the first coefficient 1 belonging to the exponent f,. Thus

we have, when f, is not integral,

% c(i) e c(f)
BE (L) =iV (1 —2)
r=0 (ﬁn+1)v( ) v§0 (ﬁn+1)v( )
v S ah
= 1—2) (1 =2)¥
vgo ""! ( ) vgo (ﬂn—l_l)v( )
Z & Yi—Yidos Cg{)n
= 1—-2) .
12:0( ) sgo (’V—‘S)! (ﬂn“r l)s
It follows from this that
i ’ ('}/1 -7 Dv=s j
(1)n= 2 n 1 -3 ‘(s])n- L.
cy 20 o8 (Brn+st1),_5cl (1.35)

(1.35) is proved if §, is not an integer, but as (1.35) is a relation between integral
rational functions of the parameters «y,..., a, and y,,..., y,, it must be valid for all
values of the parameters, in particular also if §, is an integer or zero. Hence the n
series (1.33) represent the same solution &,(z) also if §, is a non-negative integer.
If f,= —p, the first terms in (1.35) vanish, when »>p, and we get

v

i L4 i
wa)-p,n = Z (s) (')/i""yj)ws ngp,n v=0,1,2,.... (1.36)

§=0
Thus we find that the n series (1.34) represent the same solution 7, (z).

7. Let %, denote the polynomial obtained from c¢{’, when « and y are inter-
changed. If in &,(z) we replace z by 1/2 and interchange « and y, we get a solu-
tion which we denote by &, (z). From (1.33) then follows

_ B e A e o N C et AW
£,(2) =2 ( . ) ”go (,8n+1)v( S ) i=1,2,...,n, (1.37)

and this series is convergent in the half-plane R (z)>1. But £,(z) can only differ
from &,(z) by a constant factor ¢*"'#z, So we have in the half-plane N (z) >4

S LA R O Clnt 2 W 1.38
Sn(z)—z ( 2 ) vgom("—z—) @—1,2,...,1&. ( )
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From (1.33) and (1.38) follows

oo [©))

(1 gyt S B (rl)v i,j=1,2,...,n.  (139)
w=0(ﬁn+1)v sz(ﬂn+1)v 2 57 3 &y enay M. .

(1.38) may also be derived from (1.33) by Euler’s transformation:

< (OC),, v —a he (d),, » 1—2\"
EOV! a,(1—2)=z2 EOFA ao( z ) . (1.40)

If we put a=o;+ S, +7y;, it follows from (1.39) that

. (=1
=2 ———((v %76§f2(ﬁn+1+8)v-s(oci+ﬁn+y,-+8)v_s t,9i=12,...,n (141)
s=0 —38)!

If we interchange o and y, we get the inverse relation

) o= 1)F
Py=> ﬁc‘ﬁ’n(ﬂ,,+1+s)H(oc,.+ﬂ,,+yi+s)v_s t,§=1,2,...,n. (142)
s=0 - ‘

If B,=—p, (1.41) reduces to

v 7
Epn=(—1)? (0 ty), > (—1)° (”)—CS“’-" ii=1,2,..., n. 1.43
+o, (—1)%( Vi) sgo( ) s) (w+7,) 7 ( )
If we apply Euler’s transformation to (1.34), it follows from (1.43) that %, (z) also
may be represented by the series

0 (i

_ A szp.n z— 1} .
a@)=(=1)Pe7% 3 === |- i=1,2,...,n, (1.44)
K o v! z

which are convergent in the half-plane R (z)> 3.
Later we shall see that #,(z) can be identically zero, but only in a very special

case. This can mnever happen to &,(z), because the first coefficient in the series
(1.33) is 1.

8. It is readily seen how ¢, behave asymptotically for large positive values
of ». If we first suppose that no two of the y; differ by an integer, then £, (z) and
N (2) are linear functions with constant coefficients of the hypergeometric series
Y15 Yos .oy Yno As z=0 is the only singularity situated on the periphery of the circle
of convergence for (1.33), it follows! that

(1) n
TG vy~ Sl 0wty (1.45)
s=+i

1 See {39] pp. 21-22 and [47] p. 7.
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where the k; are constants. From (3.44) we see that

H, F(Yr
PR , (1.46)
H 1 Ky '}’s‘)

where the dash means that in the product r=s and r=¢ are to be omitted. Inter-
changing « and y in (1.45) we get, if none of the differences between the parameters

o; is an integer,
@)

Cv n o — &£ —
B ety 2 o) 140
s+
where
IT T (etr — o)
Be=—1t—. (1.48)
H ' —o;-— '}’r)

r=1

I any of the differences between the parameters y; is an integer or zero, it follows
in the same way from a theorem by Perron [46] p. 368 that for large positive » we
have
C(i) n
Pt~ S K 7Y (log v)'s, 1.49
FGatriD” 2 (log ) (1.49)

where 7, are non-negative integers and K, are functions of the parameters indepen-
dent of ». These functions are of a more complicated form than (1.46). If any of the

differences between the «; is an integer or zero, we have in the same way
~(i)

Cy,n & i—0e—1 T
A K, v% %1 (] s, 1.50
TG tvil)” 25 (log ») (1.50)

These asymptotic expressions are valid for all §,, also in particular if 8, is a nega-

tive infeger.

§ 2. The Solution ¢, (2)

9, Let us consider the integral
1

B ()= | 150 (— 1) 0 g, (2t) dt. 2.1)

If 0<z<1, we suppose that arg ¢ and arg (¢ —1) are zero. For simplicity we assume

R(en+yn)<0 and R(Bo_y)>n—1L. (2.2)
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Then the integral (2.1) converges absolutely. Differentiating with respect to z, we get

1

@ (2)= [t (t—1) "%V g, (2t) dt.
1
Integration by parts gives

1
ﬁ@@hiﬁ%a_nwfuiﬁﬁggw

1

1 Z
=[*n(t—1) % "n g, | (zt)]f—i— ft“n“l (t—1) % Ve (o, + put) En_y (22) di.
i

The first term on the right-hand side vanishes in both limits, and so we have

(O + i) @ (2) = (ot + ) | 050 (8 — 1)~ 7n g, (at) dit
1

(D —ya) @ (2) = (2n +7’n)ftun41 (t—1)"%n"7n" L, (2t) dt

From this we get by continued differentiation

1

(@ =) (@ —ys) ... @ —yn) Pl2) —2 (P + o)) (F+aty) ... (F+ o) P(2)

=) [ L= 1) I O3 (B = pa) Ens ()

2t (B Fay) ... (FFdn_1) En_y (28)] 1.

If in (1.2) we substitute n—1 for =, then &, ,(z) satisfies the resulting equation
and so the squared bracket under the sign of the integration vanishes. @ (z) there-
fore must be a solution of (1.2). Substituting ¢/z for ¢ we get

1
D()=2"n [t Lt —2) "% n g, () dE.
We have now

(2.3)
b= 3 S (e 2.4
»=0 (ﬂn—l+l)v

* —_— _— :
ninio 5 Li:l_ﬁ)v 1ty (2.5)
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The product of these two series is given by

oty — 1 — it  f\Ba_1+7 v(l—“n"}’i)v‘s cg,)n—x .
Tt E, 1 (#) 20(1 t)Pn-1 20 TR ATy (2.6)

Furthermore

1 1
2¥n J‘ (t— z)—ocn—Vn (1 —t)ﬂn—1+" dt=z'n (1 —-z)ﬂn“’ J‘ (1 —t)'“n—’yn Pr1tr 3t
2

0
F(l—an—yn) T (Brstr+1)
C(Bn+v+1)

=z¥n (1 —z)Pn*?

We now assume that |z—1|<1, insert (2.6) in (2.3), and integrate term-by-term,

which is evidently justified. Then we get

F(,Bn~1+11+1) d (1_“n“")/i)v~s C‘(si,)n—l .
P(ﬂn+v+l) s=0 (’V‘S)! (ﬂn»1+1)s

D)= T (1—an—yn) 5 (1 —2)fn*
»=0

From this follows @ (z)= A&, (2), where 4 is a constant, and as ¢, =1, we have

F (1 "‘O(n-"}/n)]:‘(ﬂnfl"_l)

4= T (f.+1)

and

4 1"' n T Yilv-s i .
= SUZ@ TPl g L e im12, . n— 1 @.7)
s§=0 (’V—-S)! ’

Therefore equation (2.3) may be written

T+l A
) I gy T | A S0 (28)
The last integral converges if
R (Ba) >R (Bar)> — 1. (2.9)

By analytic continuation it is seen that the relation (2.8) holds when the condi-
tion (2.9) is satisfied. The recurrence formula (2.7) is a relation between polynomials,
and so it is valid for any values of the parameters. It is very convenient for sue-
cessive calculation of ¢f"). As & (z)=2"(1—2)"%", we have ;=0 when y>0, and
we get from (2.7)

oot 0mn ), 06—y (=), 2.10)
! 2!

6(3)3:(“1"'/33'*'7’3)1’(“2+ﬂ3+73)vF (—1’ I—ag—n 1”“3_?’2)
' v! a + s+ ys oty + Py + s
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___(“1+/33+'}’3)v(O€3+/33+'}/3)v1;,(“1’ T—ay—y 1‘“2_72)

v! o+ B+ v, oyt sty
=(°‘2+53+'}’3)v(“3+/33+V3)VF(_1’ 1—oa—m 1““1_72).
v! wyt Byt ys ay+ st ys

By induction it is shown that for all positive =

(n) é E § (51+1)s.(ﬁ2+81+ 1)52—33'” (,Bn~1+8n42+ I)”"sn—2H (2 11)
Con = ves y .
" Sp_g=0 5=0 8,=0 811 (89— 87) 1 (83— 83) ! ... ( —8n_2)!

where

H=(1—0ay—y1)s, (1 —otg—ya)s,—s, (1 =4 — p3)s,~5,-.. (1 —tn — Vn~1)v4n—2'

10. If B, 1 is a negative integer, say f, = —p, the first terms in (2.7) vanish,
and we get
= > (:) (I —atn—Pios €2p ny 1=1,2,...,n—1. (2.12)
s=0

If n>2, we have

o0 ()

EYig g (f)= S 2ERnml gy,

»=0 p!

Multiplying this series by (2.5) and using (2.12), we get

0 (1)

Cyip.n » c
fn = 3 2y (2.13)

y=0

We now assume that ?R(ocn-l-'yn)< 1 and consider the integral

1

Jent (g —2) oYy, (t) At (2.14)
If in this we substitute the series (2.13) and assume that |z — 1| <1, we may integrate
term-by-term, and we find that the integral (2.14) equals
°§°: v nn (1—z)t = ntr = (B, 4+ 1) < _ca(fr}»)p, m (1 —z)fatPt
»=0 (l_an_'}}n)v i pv:O (ﬂn+ 1)v+p ’
From this it follows that if f, 1= —p but B, is not a negative integer and
R (otn +yn) <1, (2.8) must be replaced by

1
p-1  ,m ¥n
En (z)=2"n (1-2)n go @:%1—)—(1—2)’#1_% ftun‘l(t—z)*“n"’"nn_l(t)dt. (2.15)

v
-4
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1
11. Let us now consider the integral [2°"'&,(2)dz. As &,(z) is a linear func-
0
tion of the solutions y,, ¥s, ..., y» considered in § 1, the integral converges if R(8,)> —1
and R(zx+y;)>0, s=1,2,...,n. If n=1, it reduces to the Eulerian integral

1

fz”""l (1—2) % "dz

0

_F(x'*'Vl)P(l‘“l_‘}ﬁ)
B I'x—o,+1)

R@E+p)>0, R(a,+7,)<1. (2.16)

Assuming that R(B,_1)> —1, R(an+y2) <1, and R(z+9,)>0, s=1,2,...,n, we get
from (2.8)
1 P ﬂ 1 1 1
-1 - <"+ ) ("H’n‘lJ‘ =1 (f __H)"%n"Vn
fz EAz)dz_P(ﬁnd—l—l)l"(l~ocn—yn)~ 2 t t—2) En_1t)dtdz.

0 0 2

From a theorem of W. A. Hurwitz! it follows that we may interchange the order

of integration on the right-hand side. This integral then equals

r (ﬂn~1+ I — On = Yn)

0

1 t
Tiate ft“n-lsmu)fz“yn*(t~z)‘°‘”"dzdt
0

1 1
- v —y )ft’*lsngl(t)dtfz”“*(l—z)-“n%dz.
n 0 S

T (Bra )T —ay,

The last integral on the right-hand side is an Eulerian integral and so this equation

reduces to
1
.+ T+,

fz"1§n (z)dz=l_‘(ﬂn4+ DT (o, + 1)0 27N, () de. (2.17)

0

Assuming that N (B;)> —1 for s=1,2...,n, we get from (2.17) and (2.16)

1

[#a@az—r@a T 5 =07

- 2.18
1 (x — g + ].) ( )

0

As mentioned above, the integral on the left converges if M (B,) > —1 and

R(x+yp)>0, s=1,2,...,n. Analytic continuation shows that this is also the condition

of the validity of (2.18). Hj. Mellin ([30] p. 147 and [32] pp. 83-85) has given a

similar formula, leaving a constant factor undetermined.

1 Annals of Mathematics (2), 9 (1908), 183-192.
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If in (2.18) we interchange a and y and replace z by 1/z and z by —=, we get

oo

fZ’“‘En(z)dz=1‘(,3n+1) I I (x; — =)

IS (2.19)

1
provided that N (B,)> —1 and R(z)<R(xs), s=1,2,...,n. Naturally this relation
may also be derived from the equation

T'(Bn+1)z"n

TTQ—tn—pn) T (Bart 1) ) gz — )" E () dt (2.20)

£ (2)

by a similar way of reasoning as used above.

12. If the series (1.33) is substituted in (2.18) and term-by-term integration

performed, the justification for which is easily seen,! we get

§ cﬁ,i,),, =F(x+'}’i+/3n+l) r P(x‘!"}/s)
y=0 (@+yi+pa+1), I'(xz+w) g1 N —oas+1)

i=1,2,...,n (2.21)

From (1.49) it is seen that the series on the left-hand side converges absolutely
when R(z+y;)>0, s=1,2,...,n. Consequently the polynomials ¢, are the coeffi-
cients in the factorial series expansion of the fraction on the right-hand side, the
nominator and denominator of which are products of gamma-functions. Interchange

of o and yp together with substitution of x by —ax gives

& éb, D+ Bn+1—2) 2 T'(x;—2)
Z =
v=o (i +fn+1—2), I'(a; — ) sm1 D'(1—ws—x)

i=1,2,...,n, (2.22)

where using (1.50) we see that the factorial series on the left-hand side converges
when R (o, —2)>0, s=1,2,...,n. From this the points x=o; +f,+1, i+ B, +2,...
must be excluded when they are situated in the half-plane of convergence. The same
remarks apply to (2.21). The relation (2.22) naturally may also be derived from (2.19)
by substitution of (1.37) for &, and integration term-by-term. In the proof for
(2.21) and (2.22) we have supposed that R (8,)> —1, but by analytic continuation
it is seen that the relations are valid for all values of ..

Taking (2.21) as a definition of the ¢, it would also be possible to prove (2.7)
by the rule for multiplication of two factorial series, [41] p. 382. This proof is a
little longer than the proof given above, but it is valid without any restriction upon

the parameters.

! BromwiIcH [5], p. 497.
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If none of the differences between the numbers y; are integers, it follows from
(1.45) that the series on the left-hand side of (2.21) converges provided R (z + y,)>0,
s=1,2,...,¢—1, ¢+1,...,n. If none of the differences between the numbers «; are
integers we see from (1.47) that the series on the left-hand side of (2.22) converges
when R (x—a)<0, s=1,2,...,¢—1, i+1,...,n

Assuming that R(y,—9:)>0, s=1,2,...,¢—1, i+1, ..., » and putting x= —y, in
(2.21), we get

3 pm T i )
LU VY , (2.23
v=0 (Bn+1)y

(BxF 1), T (-a-n

provided that f, is not a negative integer, and, if 8,= —p,

w0 HIP('}’S—%’)
Z vipn 5=l , (2.24)

n

|
=0 Y [T —a—y)

where the dash signifies that s=14 is to be omitted in the product.
If n=2, (2.23) with modified notation reduces to Gauss’s theorem

T'(e)T{(c—a-0b)

Te—a)T(c—b) Ric—a—0)>0

F(a,b,c;1)=
Thus if »=2, the sum of the coefficients in the expansion of the hypergeometric
function in powers of z may be expressed by gamma-functions, in case the para-
meters satisfy a certain inequality, which involves the convergence of the series.
But we may equally well say that the sum of the coefficients in the expansion of
this function in powers of 1—2z may be expressed by gamma-functions, because this
series is a hypergeometric one when n=2. So far (2.23) may be regarded as a

natural extension of this important theorem.

13. In (2.18) we have supposed that N (8,)> —1. But if we relate the above
integral with a contour integral, this supposition will be unnecessary, and we get

1+)

]' z— lt
2nif n@)dz=g

ﬂn 3131 I'(z—as+1) Rz +y:)>0 (2.25)
0 s=1,2,...,n

when §, is not an integer or zero. In the same way (2.19) may be written in the

form
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ntioo
_1_ z-1 i F((X,g— )
27'5@'_!‘2 E.(2)dz= F(—ﬂn SI;[ F(I—7—2) 0<x<l (2.26)

it R(x)<R(x), s=1,2,...,n and B, is not an integer or zero.

1
14. Let us now consider the integral [z*"'7,(z)dz. Inserting the series (1.34)
0

and integrating term-by-term, which is evidently justified, we get
1
- U+p) - Tx+y:)
-1 . dz= 1(,i) . L 4 1(:l)n
Jz M@ A= 2 Tt yetr 1 1) S Tty Ty —pt 1)

0

(2.27)

where the integral as well as the series converge for R(z+9:)>0, s=1,2,...,n.

From this, putting f,= —p in (2.21), we get

[#tm@aa- 1 587 g, (2:28)

s=1 _O(s+1
0

g (x) being a polynomial in z of the degree p—1

p-1 . + 1’:1 .
(@)= 3 @ N0y, im12..,m (229)
»=0

"T+y+v—p+1l) 5

From (1.44), integrating term-by-term, we get in the same way

S i) Lo —2)

fz"’lnn ()dz=(—-1)? > ¢

J e p”"I‘(oci—w—i—v—p-i—l)

(2.30)

where both the integral and the series converge if MN(zx—ow)<0, s=1,2,...,n
Putting f,= —p in (2.22) we see that

(1 [ T g

1

—7(x), (2.31)

where g(z) is the following polynomial in z of the degree p—1

=1 T (o — ) -1
— — (1) _ =) i — O — ) = . Z.
q (x) Zoc”»"l"(oci~x+v—p+ 1) vgocp—l—v,n(‘xl x=v), 1=12..,m (2.32)

Let us now assume that N(w+y;)>0, ¢,5=1,2,...,n. The integral [z""'9,(z)dz
0

then converges in the strip

—Re)<R@)<R(w) 4,7=12,...,n (2.33)
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Adding (2.28) and (2.31) we get

o

fzr-lnn(z) dz= H M+(_1)p H I (oes — )

i D(@—oas+1) o m—q(w)— (—1)Pg(x). (2.34)

0

But this formula may be reduced. From (2.21) and (2.22) we get for f,=—p

o Dx+ys) oo Llxs—a)
1 e vk A E Uy g
+ 1 )+ Z Cg-t)—pn 1)? % 65'211 7 (2:35)
(x) ( sz( +7’1)v+1 ( ) »=0 (ui x)v+1
The left-hand side of (2.35) equals
T(x+ys)
g(x)r'(x—-ots—i- 1)’
where
_ " sin g (ys + x)
g(@)=1+( gsmn(as—x)
Putting x=0+47t we have
n
n e Tl 2 (Ggt+y)
s1n ﬂ(”“")’s) 5=1 . n-1+p
=(— ) 2.
12111100 SHI sin 7 (x — a) —¢ (=1 (2:36)
Consequently
lim g(x)=
T-r+ 00
But as g(z) is a rational function of €2"'%,
g(x)=0(e2"1"). (2.37)

The left-hand side of (2.35) is a meromorphic function of z, which is regular in the
strip (2.33). In this strip it tends towards zero when t— f oco. The two factorial
series on the right-hand side of (2.35) both converge in the strip (2.33) and they
tend there uniformly towards zero when 7—>+ co. From this it follows that the

polynomials g(x) and g(z) satisfy the relation

g(@)+(~1)"7(x)=0 (2.38)
and so (2.34) reduces to
r _m Tety) o Te—2)
[#ime@as = D= B+ 0 Deg 505 (239

0

From this relation we get, using Mellin’s theorem of inversion,
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x+ioo
_ 1 o Tlx+ys)
mE)=g 5 | [EII T@—os+1)

x—i00

= Das—a)
+(=1) F:I T — _ys_x)] dz, (2.40)

where oy, o, ..., &, must be to the right and —v;, —v,,..., —y, to the left of the
contour of integration. Consequently s is situated in the strip (2.33). From (2.37)

it follows that the integral (2.40) converges for 2x> arg z> —2x. Putting z=1 in
(2.40), we get

»x+ioo
1 t T(z+y,) r I'as—2x) .
o - L @YD gy T ) (g =1,2,...,n. (241
s, 2me [I;I s+1)+( ) sI:II (1“'}’3"'37) v m )
From this it is seen that c{, is symmetric in o, &y, ..., %, and yy, ¥y, ..., Yn. Multi-

plying both sides of (2.40) by 27" and differentiating v times with respect to z and
then putting z=1, we get

+1 00

o) f [ x+71+v)r(x+72) F(”“'Yn) +
vepn T MNz—-a,+)De—ay+1)...T'@z—a,+1)
T(t,—2) T (g~ ) ... T (aty, — 2) ]
4+ (—=1)"*" 1 2 dzx.
(=1) Fl-y-v-2)T(l-pp—2)... (1 ~yn-2)
If B,=—p, we thus get ¢, from ¢, when we replace y; by y,+w.

If we suppose none of the differences between the parameters y, to be integers
and |z|<1, then by putting the integral (2.40) equal to 2x¢ times the sum of the

residues of the integrand at the poles x= —9y,—+% on the left of contour, we get
g p 4
. II'T
Nn (Z) =1 s F ( oy + Ys 0(2‘*“)/3 ves (Xn'l'ys Z) , (2'42)
f‘l 1—0,—py) Ps—p1+ 1 ps—ye+l o ys—yat+l

where |arg z| <2x. Supposing none of the differences between the parameters o, to
be integers and |z|>1, then by interchanging « and y and replacing z by 1/z in
(2.42), we get

n

ﬁ I' (o, — o)
7o ()= (— 1>DZ !
Inr

z—asF( s+ Y1 %t Yz .. Xs TV
o

1
2.43
s—og+1 as—oay+ 1. as—apt+1 ) ( )

(1 — % — %)

15. Next we consider the function &,(z). We suppose R (8,)>—1 and
R@+y)>0, s=1,2,...,n. Then the integral on the left-hand side of (2.18) con-
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verges absolutely and &, () is regular in the interval 0 <z<1. We may imagine the
integration extended from 0 to oo of a function which vanishes for z>1. The condi-

tions for application of Fourier’s integral formula are satisfied; hence from (2.18)

we get
x+ioc
_F(Ign'l‘l)f —z i P(x""}’s)
fae) =g | - 8131——(96_“8“)@, 0<z<l, (2.44)

and the integral is vanishing for z>1. Here R (x+7y,) must be >0,5=1,2,3,...,n.
The contour must be chosen in such a way that all the poles are on the left. From
the factorial series (2.21) follows

ﬁ Tz + ;) _ 1 u () ’
il (@—as+1) (@)™ (x+yp)rt?

where |u(x)| is bounded in the half-plane 3 (x)>x. The integral on the right-hand
side of (2.44) therefore converges in the usual sense and exists not only as Cauchy’s
principal value as in the general Fourier formula (see e.g. Doetsch [7] p. 115).

If we assume that N(B,)> —1 and R(z)<N(x), s=1, 2, ..., n, then the integral
on the left-hand side of (2.19) converges absolutely and &, (z) is regular for 1 <z < oo.

Hence by Fourier’s integral formula we get from (2.19)

T T L T(a—a)
§n(z)——2ni fz s];[l F—A—(l—ys—x)dx z2>1, (2.45)

and the integral is vanishing if 0 <z<1. Here we must have x <R (as), s=1,2,...,n.
Therefore the contour must be chosen so as to make all the poles lie on the right.

If the z-plane is cut from 0 to — oo and from 1 to + oo and if arg z and
arg (1 —z) vanish for 0 <z<1, then &,(z) is uniquely defined in the cut plane by the
series (1.33) and its analytic continuation.

If we cut the z-plane from 1 through the origin to — oo and suppose arg z=arg (z—1)=0
for z>1, then &, (2) is defined by the series (1.37) and its analytic continuation.

We have &, (z)=e*™'Fn ¢, (2), where the upper (lower) sign is to be applied if 2z
is above (below) the real axis.

For a moment we suppose N(w;+7;)>0, 4,§=1,2,...,n and choose » in such

a way that
-Ry)<we<R(w) 4,7=12,..,n

The integrals (2.44) and (2.45) only converge if z is positive and R (8,)> —1. By
addition of these two integrals we get
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x+ioo

B L[ T@tr) g fp Do)
2 [S=H1F(x—~ocs+l)+e p sI__.IlF(l_'J/s_'x)]dx, (2.46)

T'(fat+1) 2mi

%—1i00

where for z>1 £,(z) is to be taken on the upper (lower) edge of the cut from 1
to oo if we choose the upper (lower) sign in (2.46). Equally we have the equivalent

formula
_ x+i o0
£, (2) 1 - [ o Da+y) n —x)

+mify,
¢ sITlP(x “s’*‘l) s=1 I'( 1 Vs — % x)

I'(B.+1) T 2 )

®—100

] dz, (247)

where for 0<z<1 £,(z) is to be taken on the upper (lower) edge of the cut line
from O to 1 if the upper (lower) sign in (2.47) is chosen.

Now we have

" Tty s o D(oas—x) ro e+ y,)
L Frify, i A AN, _— —
ODre—arnte ST (I—y—a) AR Y y ey
where
ia sl + )
—1geratha ] SR TEEYS) 2.48
9 () e SEII sin 7t (ats — ) ( )
If we put x=x+17, then
. +7i (n— > (asgtys
Yim Losin w (@4 ys) ( s:l( g ))= _ otmibn,
T>+00 g=1 sin 7'5(0(3—'.'17)
Hence
lim g(z)=0 if the upper sign is chosen
and
lim ¢g(z)=0 if the lower sign is chosen.
g(r) is a rational function of 7%, consequently
g(x)=0(e**I")) (2.49)

for large positive (negative) values of 7 if the upper (lower) sign is taken. Putting

z=re®’ we have

[27%|=r""e"".
Then the integral on the right-hand side of (2.46) is convergent in the angle
0<argz<2n if we choose the upper sign. If the lower sign is chosen, then the
integral converges in the angle 0>arg z> —2s. Therefore the equations (2.46) and
(2.47) are valid in these angles, respectively, when the upper or lower sign is chosen.
From this the point z=1 must be excepted if 0=R(B,)> —1.
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We have chosen the path of integration in such a way that all the poles «; +v
are situated on the right and the poles —y;—v» on the left. This will always be
possible because we have assumed that R(e;+9;)>0. If «; and vy, are permitted to
vary in such a way that this condition is not satisfied, then (2.46) and (2.40) retain
their wvalidity if the rectilinear path of integration is deformed so as to make the
poles oy +v lie on the right and the poles —4;—v» on the left. Consequently the
numbers o; +7; must not be negative integers or zero.

If 2 is positive and different from 1 the integral (2.46) is convergent when
R(Br)> —1. But if we suppose O<arg z<2m or 0>arg 2> — 2, respectively, then
the condition M(B,)> —1 is unnecessary, because the function under the sign of
integration in this case tends to zero of an exponential order in both directions.

If n>1 and B, is an integer or zero, the two expressions (2.48) are identical
and (2.49) is valid for both positive and negative values of 7. Then the equations
(2.46) and (2.47) are valid in the angle 2 >arg 2> —2x. If 8, is a negative integer,
we have proved (2.40), which may be looked upon as a special case of (2.46) and
which may be derived by analytic continuation.

If n=1, (2.44) reduces to

nti oo
T@ [, T@
27 I'x+ )

%—i00

(1 —z)** dr x>0, R(x)>0, (2.50)

where 0 <z <1, while this integral vanishes for z>1. (2.46) then reduces to Mellin’s
formula [34] p. 21

(1F+(o;))“=% f M@ E-gde 0<x <@, (2.51)

where m>arg z> —n. If z is negative and different from —1, (2.51) is valid when

0<M(x)<1, (1+2)"* having the meaning mentioned above.

§ 3. Solutions at the Origin and the Point at Infinity

16. Again we suppose that none of the differences o;—a; and y;—y; is an
integer and that the numbers o; +y;, t=1,2,...,n, are not negative integers or zero.
Furthermore we suppose that R (B.)>0. Then it is easy to establish relations be-
tween the solutions y,(2) and ¢,(z) defined by (1.13) and (1.14). These series are

convergent on the circle [z|=1. Consider the function
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zl’ e—nll‘ n F (x_{_av)

sin 7 (€ —vs) 5-1 F(erl_Vv),

p(x) = (3.1)
where z=¢'", 27>v>0. @(z) is a meromorphic function of x having poles of the

first order at the points
ys+v and —oy—w, ¢=1,2,...,n, »=0,1,2,.... (3.2)
Now we have

T'(x+a,) 1
I'z+1-7y) T

H n—e>|arg z|.

Cutting out the points (3.2) by circles having these poles as centres and very small
radii, we see without difficulty that x¢(x) converges uniformly towards zero when
Z—>oo in the cut plane. From this it follows (see Lindeltf [22] chap. II) that the
sum of the residues of ¢(x) equals zero. But the residues give us the series (1.13)

and (1.14) multiplied by a constant factor. Thus we get

n
4
71 (0 +9g) H I'(x

n
mo T (o, +ys) . e o ’
H oo o Y (B = E?/f (@) = ; (3.3)
G (ys—y,+1 sin 7t (o + vs) =
o—r+)” £ (o V)UII,(I_%_%)
where s=1,2,...,n and 2x>argz>0. If we cut the z-plane along the real axis

from O to oo, this relation is valid in the cut plane. It may often be convenient to

multiply the solutions y,(z) and ¢, (z) by certain constant factors. If we put

* = D t+ys) T (ats +9,)
s ST T =Ys T 34
pE=p@ Il Fo =05 HE=7 (Z)H T~ 1) (3.4)
we get from (3.3)
Z oY) H sin 7w (o + 9,) 5.5)
sin 7 (; + ys) IT sin n(ay_aj)’ ’
y=1
and interchanging « and y we get the inverse relation
B=Nyre S Il sinm(aty) (3.6)
ys Z?/J : 7 . .
sin 7t (ots -+ 95) 1 .
i=1 (o 1) 1:]1 sin 7z (y, — ;)

These interrelations have first been given by Thomae [60] (see also Mellin [36],
Winkler [63] and F. C. Smith [57]).
21— 553810. Acta Mathematica. 94. Imprimé le 17 décembre 1955.



314 N. E. NORLUND

If «;+y;=—p, p being a positive integer or zero, the above proof is not valid,
because two of the rows of poles partly coincide. (3.3) is without meaning becatse
both sides of it contain the factor I'(a«. +7,), which is infinite. But in this case ¥,
and ¢, contain only a finite number of terms, and except for a constant factor they

are identical, only written in reversed order. Consequently we have
Ys (2) =C §r (z) (3.7)

By identification of the coefficients to the highest power of z we find

n

(°‘v+78)p
O=T] XX T¥sle |
1’131 (ys—y+ 1)

17. We shall now consider the integral representations for the solutions. We put
y@)= [ y()da. (3.8)

If y(x) is such that we may differentiate under the sign of integration, we get
@ =y) @ =pa) . @=yn)y @) = [ @—y) @=ps) ... @=pa)p@)da (3.9)
(F+o) (@+a)... F+a)y(z)= I{z'(x—l—ocl) (o) ... (x+a,)pE)de.  (3.10)

We shall take v (r) as a solution of the difference equation

(x+ o) (@F+og) ... (x+ o)
@+l—yp)@+l—9p,)...(@+1—9py)

px+1)= p (). (3.11)

Then from (3.10) we get
2@ +o) (@ +oy)... (Ftan)y@R)= [z @+l—y) ... (e+1—p)p+]1)dz (3.12)
L
If (3.9) and (3.12) are inserted in (1.2), it is seen that the integral (3.8) is a solution
of the differential equation (1.2) if
[#@—p) @y ... G~y p (@) da
=[N @+l-p)@+1—p) ... @+1—p)p+l)dz.  (3.13)
L
This condition may also be written

{z’(erocl) (@+ay) ... (@+o) p(x)da
= iz"l(x—Focl—l)(eraz—l)... (ztoa,—Dyple—1)da. (3.14)
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The difference equation (3.11) has the solution

1 getits—o
p(x) =3 Sin 72 (ye— ) f (=), (3.15)
where
o LTet+e)
flx)= EII I — (3.16)

Now we assume that none of the numbers ot ys, =1,2,...,n, i3 a negative integer
or zero and none of the differences y,—y; is an integer. (3.15) has poles at r=y;+v,
v=0,1,2,... and at the points —oa;—v, i=1,2,...,n. We choose a path of integra-
tion from »—¢oo to x+ico in such a way that all the poles ys +v are on the right
and all the poles —o;—» on the left. The integrand on the left-hand side of (3.13)
has no pole at ys and the condition (3.13) is satisfied. Therefore the differential
equation (1.2) has the solution

»+ico

1 e s
T(2)=— A S —— 17
VO3 | # @4 (3.17)
this integral being convergent for 27> arg z>0.
It as+ys=—p, p being a non-negative integer, while none of the numbers

oty t=1,2,...8—1, s+1,...,n is a negative integer or zero, then the above inte-
gral representation cannot be used, because in this case it is not possible to find a
path of integration with the property mentioned. But denoting by ! a closed contour
traversed in the positive sense, which encloses the poles v, y.+1,...,y,+» and no

other poles, we get the solution

ye(2) =ﬁ;fz’f(x) dz
; (3.18)

= Vs

(=1? 2% T+, F( G FYs Mt Ys ... antys
Pl v Ds=+ 1) \ps—pi+1 po—pp+ 1.y =y, +1

)

Next we assume that none of the numbers as+y, 1=1,2,...,n, is a negative-

where the dash signifies that » =s is to be omitted in the product.
integer or zero and that none of the differences between the numbers o; is an in-
teger. Putting

Ty = TT L =2 3.19
o= I1 g o2 (3.19)
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and choosing a path of integration such that all the poles —o;—v» lie on the left
and the poles y,+v, i=1,2,...,n on the right, we see in the same way that (1.2)

has the solution

%+i oo .
—nl(r+¢xs)

me

=3 zl“_—_

7 (@) 27m sin gz (z + o)
#—io0

f(x)dz, (3.20)

which converges for 2m>arg 2> 0.
If «;+y;=—p and none of the numbers a;+y;, ¢=1,2,...,8—1, s-+1,...,n is

a negative integer or zero, this integral is not applicable and must be replaced by

1 -
- . T
S(Z)—27zi 2° f(x) dax
I (3.21)
=z“°‘s(_1)pﬁ T (s +9,) (ocs+'y1 astyy o Ut Yn l)
p! T (s~ +1) —oy+1 as—ayt+ 1. os—a+1]2/’

vEs

1 being a closed contour traversed in the. negative sense and enclosing the poles
—os, —os—1, ..., —ot;—p and no other poles.

The integral representations (3.17) and (3.20) are due to Pincherle [50] and
Mellin [32, 36], who furthermore have proved, that if |z|<1, then (3.17) equals minus
the sum of the residues at the poles to the right of the path of integration and
when |z|>1, (3.20) equals the sum of the residues at the poles to the left of the
path of integration. From this it follows that y; and §; have the same meaning as

in (3.4). Putting s equal to 1,2,...,n we get two fundamental systems of solutions.

18. If v, v ...,y form a group, then the integrals (3.17) corresponding to
s=1,2,...,q are identical. In this case they must be chosen differently Let us sup-
pose R(p)=NR(yy) = =R (y,) and that none of the numbers o +y,, i=1,2,.
is a negative integer or zero, s being one of the numbers 1,2,...,q. Let L,,s_c>c> de-
note a (not necessarily rectilinear) path of integration from x —i¢ oo to %+ 14 oo chosen
such that the poles v;, ys+1, y,+2,... lie on the right, the remaining poles on the
left. Then we have the following solution of (1.2)

vt s) fzf( B A (3.22)

18in 7 (y, — )

because the condition (3.13) is satisfied. This integral converges for 2ms>arg z>0.

It may also be written in the form
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)d
o) = f [lz LI “;,] (3.23)

or, more explicitly,

ni(% ) ﬁ F'ip,—2) [I T (x+a,)

1 p= v=
¥t (z)=—(2m.)s f e Lo ! dx. (3.24)
Lo Hlf‘(x-ﬂ/ﬁl)
=5+

Putting s equal to 1,2,...,¢, we get ¢ different solutions. We shall now show that
these are linearly independent. Let us suppose

VM=Pe= "=V =01 Va1 =Va+e="" =Yri0 =0
and generally

Vatdot - tde 341 = Phitdat A 3427 " =Vt det -+ 4, = Or r=12,.., M

where A, +A,+---+24,=¢q. Then we have R(o)>NR (o) >-+->NR(0.). The solutions
may then be arranged in subgroups in such a way that we get the first subgroup
by putting s equal to 1, 2, ..., 4;, the second by putting s equal to A, +1, 4, +2,..., 4, + 2,
etc. The function f(x) then has the form

n

HI‘(x—}—rx,,)
f@)=— = .
(=g + ) [T P—pt1)

For the first subgroup the integrand is

-

£ @D T —2))° TI T (z+a,)
v=1

n S=l,2:---,2'1’
(C(z—o,+ 1) T1 F'ae—y,+1)

v=A+1
for the second

2 ni @Dt @D (D (g — ) ([ (g — ) TI T (o+ )
v=1

n b
C—ge+ 1)) [] T'z—p+1)
v=2 +4+1
where s=1,2,...,4,, etc. If (3.24) is expanded in powers of z, we get a series of
the form (1.17). If only the first term in this series is calculated, we easily see that

for the solutions in the first subgroup is
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hm —25% 4w — A
zlmo 2 (log o)L A s=1,2, M

for the solutions in the second subgroup is

*
Ya+s (z) [0}
e T =1 s
20 2% (log z)° ™! 45 s=1.2,...%

and for the solutions in rth subgroup

y:;+lx+-~+lr~1+s(z) ) §= 1’ 2) [ERS zvr
im ———— = 3.2
121_13(1’ 2% (log z)*~* 4s r=1,2,..., u, (3.25)
the A being constants different from zero. From this it follows that of, v3,..., v}
are linearly independent.
19. If ay, a,...,, form a group, then the solutions (3.20) corresponding to
s=1,2,... p are identical. We suppose that R (x;) =N (ay)>--- =R (x,) and that none
of the numbers «,+y;, 1=1,2,...,n, is a negative integer or zero, s being one of the

numbers 1,2, ..., p. In the same way as in art. 18 we see that the differential equa-

tion (1.2) has the following linearly independent solutions

»+io0 x+i 00

_ (— 1)1 J‘ 8 ome D Zf(x)dx

s ()= o e = — — 3.26

Y (2) 2ni) I;-[ sin 7z (z + o) x 1 _62n1(z+a.>]s ( )
x—1ioco x—ico

where s=1,2,...,p and the path of integration is chosen in such a way that the

poles —a;, —os—1, —a;—2,... lie on the left and the remaining poles on the right.

More explicitly we may write

8

Ly ~ni(%°‘y+”) [T @+o) [T (=)

—x (— ]-)s ! T v=1 r=1
x—1i00 H F(l—oc,,—x)
v=5+1

These integrals all converge for 2m;s>arg z>0. Forming the difference 73,1 — s,
we get
x+i00 .
o 7 (x) e2ni@ta) 7.

37?+1(2)—§§‘(2)=— j -[l——?m]sT s=1,2,...,p—-1. (3.28)

®—100

This integral converges for 2;s>arg 2> —2x. The point z=1 is then situated in

the interior of the region of convergence and the integral represents a function regular
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at the point z=1. Thus the solutions (3.26) in our group has the remarkable pro-
perty that the difference between two consecutive solutions is a solution regular at
the point z=1. Likewise we see from (3.23) that y;,, () — ¥ (z) is regular at z=1, and

is represented by an integral convergent for 2z s> arg z> — 2.

20. Now we consider again the case where y, y,, ..., y, form a group. In art. 2
we have seen that the form of the differential equation does not change if we
multiply y by a power of z. Therefore without loss of generality we may suppose
V1> Ygs -..» Vg to be integers. We use the same notation as in art. 18. Then g,, ..., g,

are integers and g, >p,> ‘- >g, Again we consider the integral

. ? d
L

(3.29)
If L=L, . and none of the numbers «; is an integer < —p,, it represents the solu-
tions in the first subgroup for 0 <s<J4,. These solutions belong to the exponent g,.

If L=L,, . and none of the numbers «; is an integer < —g,, (3.29) represents the

r—1 T

solutions in the rth subgroup for > 2, <s< > A;. These solutions belong to the ex-
=1 11

ponent g,, and this is true for r=1, 2, ..., u.

If some of the parameters o; do not satisfy the condition just mentioned, the
condition (3.13) is not satisfied for some of our integrals. In this case we must
choose them in a different way and allow s to take negative values. |

Let » be a positive integer or zero. Let us assume that » of the «; are in-
tegers situated in the interval —g,_; <o < — g, and that this is true for r=1, 2, ..., ix
Here g, shall be an integer >p,, such that none of the «; is an integer < —g,.

The function f(z) is then regular and different from zero at the point p,. Let us put

i
g= 2 {(h—») j>0 and g=0.
i-1

The function

f (=)

W r=1,2,...,,u,

is regular and different from zero at the point g,. Let L, where p<r, denote a

oy op?
closed contour traversed in the positive sense and enclosing the polesg,, o, +1,... ,0p— 1
and no other poles. If g —4 <s<g, the integrand in (3.29) has a pole of an order

<A at x=p,. If s<¢, z=p, is a pole of an order <], or a regular point. It
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follows that the condition (3.13) is satisfied for L= Le, ey, 0<p<r, and the integral
belongs to the exponent p,.
We get the solutions in the rth subgroup, when in (3.29) s is put equal to all
integers in the interval g — A, <s<eg,.
Let ¢, be the greatest of the numbers g, &, ..., & 1.

If ep=e, we put L=1L, , for all solutions in the rth subgroup.

If ep<ég, we put L=1L, , for &—4 <s=<¢g,

r @p
and L=1L,, . for g<s<g.

As &—A =&_1—» and as g, =g, at least », solutions having a finite path of
“
integration belong to the rth subgroup. The entire group contains at least > y; solu-

tions having a finite path of integration. -

Thus in all cases we can find ¢ linearly independent solutions of the form (3.29)
belonging to the group and thus form a fundamental system in the vicinity of the
singular point z=0. The integral y; (z) is of the form (1.17), which more briefly

may be written
Ys (2) =2" (g (2) + @1 (2) log 2+ -+~ + 5 1 (2) (log 2)°77). (3.30)

In the general case considered in art. 18, @ (z), @, (2), ..., @s_1(2) are power series
convergent for |z|<1. But if any of the parameters assume the here-mentioned
exceptional values some of these power series reduce to a finite number of terms or

to zero. Let us consider some particular cases.

Examere 1. If v,=4, r=1,2, ..., y all solutions are of the form

¥ (2) = 5—71:5—@ Jz”f(x) (1—e** %) du. (3.31)

We get the rth subgroup by putting sequalt00,1,2,...,4, ~land L=1L, , ,,r=1,2,...,u.
These g solutions are linearly independent and regular at z=1. Especially, if 4,=1,

i1=1, 2, ..., u, the solutions in our group are

1 o ;-1
yr (2) = — f Zfaydx= > A,?,

271 v=g,
L
oror—1

A, being the residue of f(x) at the point x=».

Examrre 2. Now we assume that all the numbers v, »,, ..., v, are zero ex-

cept one, say v, which is positive. The first » —1 subgroups are determined as in
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the initial part of this article. The solutions in the rth subgroup are found by
putting s equal to all integers in the interval

r—1 T

~h+ D h<s< —n+ DA
1 1

If v,>4,, we put L=L for all solutions in the rth subgroup. If », <4,, we put

Cr Or.-1

r—1

r—1
L=1L for —w+ 2 Ah<s< DA
1 1

Orer_1

and
r—1 T

L=L, ,  for ?Ai<ss—vr+§li.

Next we consider the mth subgroup, where r<m<gu. In this we get all solutions
by putting s equal to all integers in the interval

m—1 m

—»+ z A<$< —p + le
1 1

m-1

If < > A, we put L=L, . for all solutions.

m
If =>4, we put L=Leye_; for all solutions.

If
m-1 m m-1 r—1

Sh<v<>h,weput L=Lene_; for —o+ > Ai<s< 2 A
T i 1 1

r—-1 m

and L=L, for > h<s< —v+ Dk
1 1

In vparticular, if r=1 and v»,=g¢q, all solutions in our group are of the form (3.31),

where s=0,1,2, ..., ¢g—1. The function f(z) is regular at z=g, and at the point
"
o it has a pole of the order > 4, r=1,2, ..., p.

We get the first subgroup by putting s=¢—1, ¢—2, ..., ¢—4,, and L= 1L, ,; the
second subgroup by putting s=¢—14, -1, ¢—4, -2, ..., ¢g— A — 4, and L=1L,,, etc.,,
the uth subgroup by putting s=0,1,2,...,1,—1 and L= Ly,
These solutions are linearly independent and all regular at z=1, which is an

apparent singularity.

Exampre 3. If ay+yp;,=1, ¢=1,2, ..., n, then f(x)=1 and the differential

equation (1.2) has the following n solutions all linearly independent



322 N. E. NORLUND

0 = s
2 (log) s=1,2, ..., A&

i=1,2, ..., u

This holds whether all 9, belong to the same group or not.

What has been said here concerning the solutions at the origin, is also valid
for the solutions at z=oco. If a &, ..., ®, form a group, and any of the para-
meters y; do not satisfy the conditions in art. 19, then the solutions mentioned there
reduce in the same way as above. It is only necessary to interchange « and y

together with z and 1/=.

21. The relations between the solutions about z=0 and z= oo can be found
in the following manner. We suppose first that no two of the o; or y; are equal
or differ by an integer and that «;+y, is not zero or a negative integer. Let us

consider the decomposition into partial fractions

1 sinzw(y,—x) b;
. .32
sin 7 (y; — EI sin 7 (x+o,) 57 sin @ (x + ;) (3:32)

If we multiply both sides by sin 7z (x4 «;) and then put x= — a;, we get the following

expression for the constants b,

n
IT sin 7 {a; +,)
1 y= 1 .

= v (3.33)
sin 7 (e + s H sin 7t (o, — o)
Multiplying both sides of (3.32) by nf (x) we get
T2 [IT @) 2, Data)[ITG-2)
__en - Z b, r-1 , (3.34)
I_TIF(erl—yv) =1 HII‘(l—ocv—x)
vESs :;J’

where s is one of the numbers 1, 2, ..., ». If we multiply both sides of this rela-

; 1 . . .

tion by E——z’ e ™% and integrate from x—ico to x+ioo in such a way that all poles
7

Yos ¥+ 1, 9, +2, ... lie on the right and the poles —o,, —o,—1, —,—2, ... (v=1,
2,...,n) on the left of the path of integration, we get (3.5), which may be written

e~ Ys gt (2) = Zb gl (z)  s=1,2, ..., m, (3.35)

and this relation is valid for 27> arg z>0.
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22. We now suppose that o, %, ..., &, form a group and that the same is

the case for v, 95, ..., ¥, We assume them to be ranged in a descending order of

the real parts. Further we suppose that «;+7y, is not zero or a negative integer.

Let r be one of the numbers 1,2, ..., qg. By decomposition into partial fractions

we get
I1 sin gz (y,—x)

—mirz v=r+1
n

[Isin 7 (z + o)
v=1

e

i (2 o,—$ r)

(17 S) (p,—2mioy 1
_(22) Z (e )e T

(p—8)! (2¢)° H sin 7 (x + )

v=1

n
n H sin 7 (as + 'yv) e—ﬂi(f‘*‘“s)
+ y=r+1 grires
m sin 7t (% + o)

.
S TT sin 7 (o, — o)
y=1

where ¢ (z) is the rational function

i (St Ny 1] @)
ply=(-1)"Te 1 et T .

Multiplying both sides of (3.36) by (f (@))r, we get

r

—mirz H r ()’v_m)HF (IE‘*‘O(,,)
[Z 1 1

2 N\ n
@) TIJ:IlI‘(n:-}—l-—y,,)
zi I (o) Hr(xm)gr<y,-x)+
Y s
ST (P9 (2m) T {1 —a,—)
s+1
) » T 1sin 7t (ots + 9,) e T (z+ ocs)HI‘ (y,—2)
y=r+ mir o .
2'1’*1 n € . n
B9 S TTsinm (e — o) 275 P (1-a,—a)
»=1 p=1

vES

(3.26)

(3.37)
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If we multiply both sides of this equation by 2z and integrate from » —ioo to x +éco

in the same way as above, we get, using the notations in art. 18 and 19,

r
-ni Yy, . » 0-5) (g-2mia .
e 1 ?/r (z) — z (_ l)s—l ‘P (p( 8)' )eZnisa. ?73 (z) +
s=1 - .
. (3.38)
) ] n [T sin & (o +9,)
y=r+1 niT g o
+ @iy €M% s (2),

n
St T sin 7 (o, — o)
r=1

and this relation is valid for 2x> arg z>0.

Especially, if we put r=1 and interchange y, and y;, where j>gq, we get the
relation between y; (z) and §i (z), #2(2), ..., n (2). If the o or the y; form several
groups, we may treat each of these groups in the same way.

To get the inverse relation we only need to decompose

n
1 sin 7 (% + o)
g nire r+1

[1sin = (y,—=)
1

into partial fractions, where r now is one of the numbers 1, 2, ..., p; let ¢, (z) de-

note the rational function
n

,,i(g“ + %.,v) [T (x— e 2™%)
g @)=(-1"e 1 1 . (3.39)
IT (—e*™*)

q+1

Thus we find

r
E2D))Y-7 (2-3) (e2niy,)

(__l)r—le 1 ”g:(z)zsgl(_l)s(pl(q_s)!

n

I1 sin 7 (e, + Vs)

1 v=r+1

@)1

6"2””7‘ y: (z) 4
(3.40)

-+

e syl (2),

S l’{ sin 7z (y, — ys)

where 27> arg z>0.

The interrelations of the logarithmic solutions about the origin and the point
at infinity have been considered by Lindelof [21] and Mehlenbacher [26] in the case
n=2; further by F. C. Smith [69] in the general case; but the above demonstration

is much simpler.
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23. Now we shall consider the relations between &, (z) and the above-mentioned
solutions. We suppose, first, that no two of the y; are equal or differ by an integer
and that o;+y; is not zero or an integer. By decomposition into partial fractions

we get

. n +mi(ys—2)
sin 7 (x+o,) — ey S B et s

I;I sin 7 (y, — ) < P sinmly, —2)’ (3.41)

where

I sin 7 (e, + s)
B="" . (3.42)
1_11' sin 7 (yv - yg)

Multiplying both sides of {3.41) by f(x), we get

eXT i Ws— )

F@)+esnf@)= 5 B,

s—1 sin 7 (s —x)

f ().

If we multiply by 2°/2xi and integrate from x—ico to x+ioo, we get by (2.46)
and (3.17)

Enfl2) 13
T (B, +1) 3—12 s s (2) (3.43)
2 TTT (g —yps)
— Z B —. (3.44)
s=1 I;IIP(I_OCV—YS)

If we suppose that no two of the o«; are equal or differ by an integer, we may

interchange o« and y and we get

Enle) 1 25
TB+1) = sgl B; s (2) (3.45)
2 T T (e, — as)
= Z e §.(2), (3.46)
s=1 I;IIP(I s — ’}’v)

where

(3.47)
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24. Next we suppose that y,, y,, ..., v, form a group. If we put

ﬁ(x_ e—2niac,,)
pl)=—e ™ — (3.48)
H (x_ e2niy,,)

g+1

we have by decomposition into partial fractions

sin 7 (2 + a,) . n s

n
I —e " hn By ——— <+
,o18in 7w (y, —x) s=§+1 sin 7 (ys — ) . (3.49)
ni (D y,-se
ki (_ l)s w(q—s) (e‘Zniy,) e~2nisy. e (1 )
" Z (g—o)t @3y : '
= = Hlsinn(yv—W)

Multiplying by f(x), we get

_ n 7i(yg—2)
f@rethf@= 3 B @)+

1)t oo (@t gzaton 7 (Ent) [IT (= [T @ )
+$‘(~ )e e r=1 y=1 .

n

= [IT 0=y, +1)

s+1

If we multiply both sides of this equation by z* and integrate from x —ico to x+4oo

in the same manner as above, we find

F.+1)

( . l)sw(q-s) (e2rzi'yl)e—2nis'yl

. 1 3 .
s - Bs . 350
) (sl 2mi y (2)+ns=qZ+1 Ys (2) (3.50)

Me

ll

If we finally suppose that «;, «y, ..., x, form a group, we have in the same way

Enlz) 2 (— 1)y (e 2ntm)g2aion - 1
I'Brt+l) < (;—s)! 27i (z)+—s ;HBS 7s (2), (3.51)

where

H (x . e2aziyv)
v (@) =etfn 1 (3.52)

H (x . e—2nia,,)

»+1

Thus all these relations between the different solutions follow immediately from the

elementary formula for decomposition of a rational function into partial fractions,
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§ 4. New Integral Representations of the Solution &, ()

25. Let us suppose R (B,)> —1 and choose a number « so that R (« + f, +ys) >0
(s=1,2,...,n). Then the integral

fltH (1—t)*""1E, () dt (4.1)

0
is convergent in the strip
— Ry <R@)<R(@+pn) s=1,2 ..., n (4.2)

If we expand (1—¢)* *' by the binomial theorem, term-by-term integration is per-

missible (see Bromwich [5] p. 497), because the integral

(x+1—a), ,

—t
p!

[l &, (t)[§ di
0 [}

is convergent. Then we have by (2.18) that the integral (4.1) is equal to

I'f.+1)

L@ty F(m—aﬂ TEyy whys o @y ) (4.3)

1 T (@ —os+1) z—a;+1 z—oy+1 ... z—op+1

and this series converges in the half-plane R (z) <R (x+B,). Putting t=2z/(1+2) in
(4.1), we get

fz’”‘l(l t2) g, (1;) dz
[t}

=P(ﬁ +1)ﬁ—MF(x—“+l x+y1 x—}—yz ves x+Yn).
n 1 De—as+1) r—a+1 x—ay+1 o+ z—oay+1

(4.4)

The right-hand side is regular in the strip (4.2) and the integral on the left-hand
side is absolutely convergent in this strip. The integrand is regular for all finite
values of z, different from 0 and —1, and from (1.33) we know how it behaves in
the vicinity of the point at infinity. It is easily seen that the integral on the left
does not change if we rotate the path of integration and integrate from 0 to coe'?,
where 7w>9®> —a. It follows that we can apply Mellin’s inversion theorem (see

Doetsch [7] p. 115) and we get from (4.4)

&n(2) =
%+ico B (45)
1"(;3,,—!—'1)27oc [ (l—z) I T (z+ ) F(x—oc+l z+y, x+y2...x+'yn> iz,
27 z 1 Pe—a+1) \e—o+1 a—ayt+l...2—a,+1

x—io0
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where — R (y;) <2 <N («+ B,), and this integral is convergent for 7z > arg (i—— 1) > —7,
2
i.e. in the z-plane cut from 1 to + co and from 0 to — oo.
If in the integral (4.1) we substitute the series (1.33), term-by-term integration

is permissible because the integral

i
P

(Bn+1),

1
f Itz+yi—1 (1 _ t)a+ﬂn—z-1I z (1— t)v di
0

v=0

is convergent, as is easily seen from (1.49). Thus we get

" Tztys) x~a+l z+y; x+y, ... 2+
Il =&—~—F

il @—as+1) \g—o +1 a—og+1 ... 2—0ty+1

4.6
_F(x‘l"yi)r(“‘i_ﬂn‘x) > cg.)n (OC‘{‘,B,,—.’;U),,. *9)

T B+ DT (@t Bat71) S0 Bat 1) (a0t fat+ i)

The series on the left is convergent in the half-plane N () <N («x + f,), and the series
on the right is convergent in the half-plane R (x+7y;)>0 (s=1, 2, ..., n), thus both
series are convergent in the strip (4.2). This remarkable transformation formula gives
the analytic continuation in the entire plane of any hypergeometric series with z=1,
and it shows that the hypergeometric series on the left-hand side has poles of the
first order at the points z=a+pf, a+fa+1, a+p,+2,.... In the special case
n=2 (4.6) reduces to a formula given by Thomae [61] p. 33 and later by Barnes [4].

o is a parameter, which we have introduced to secure the convergence in all
cases. The right-hand side of (4.5) only apparently depends on «. If we put a=oay,
then F reduces to a hypergeometric series of the order =, but in that case we must
assume that the parameters satisfy the inequalities i (o +f8n+7:)>0,s=1, 2, ..., a.
If we give ¢ the values 1, 2, ..., n, from (4.5), we get n equivalent integral repre-

sentations valid under the last-mentioned assumption.

26. Now we choose a number y so that R(x;+f.+9)>0 (s=1,2,...,n) and
assume R (8,)> —1. The integral

oo

f 7 =1y E () di= f t(l—%)s ()t
1

1
is convergent in the strip
—Ros) <RE@Z)<RB+y) s=1,2,...,n 4.7)

Expanding by the binomial theorem and integrating term-by-term we get by (2.19)
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1),

i

v=0

ft”’(t—l)"""lf-n(t)dt 2
' (4.8)

d s - 1 ozt
,3n+1)H P(x+a) F(ac y+1 z+a 2+oy ... 2 an)’
(—ps+1) \&—p+1l z—p,+1 ... 2—py,+1

where the series on the right-hand side is convergent in the half-plane 0 (z) <R (8. + 7).
Putting t=(1+2)/z we get in the strip (4.7)

fz"“l (1+2)y7E, (1 :—z) dz
o

(4.9)

Tzt as) (a:—y+l Tto, THoy ... x+ocn)
a1 _ .
(Bt )I;IF(x—ys+l) x—y;+1 2=y, +1 . -y, +1

The right-hand side is regular in the strip (4.7) and the integral on the left-hand
side is absolutely convergent in this strip. The integrand is regular for all finite z
different from 0 and -—1; from (1.37) we know how it behaves in the vicinity of
the point at infinity. The integral on the left-hand side does not change if we rotate
the path of integration and integrate from the origin to oce'® where 7> > — 7.

It follows that we can apply Mellin’s inversion theorem to (4.9) and we get

én (2)=
x-+ico (4‘10)
I‘(ﬂn+1) f (e 1y ,,H I (x4 a) (x—y4-1 Tto, xto, ... z+an)d
274 T@— ys-i—l) g—p+l a—py+1 . a—yp,+1)

x—ioo

where — % (a;) <x <N (B» +y), and this integral is convergent for 7> arg (z—1)> — .
If we cut the z plane from the point 1 through the origin to — co, then the integral
(4.10) is convergent in the cut plane.

If we substitute the series (1.37) into (4.8) and integrate term-by-term, we get

T T(x+a,) (x—y+1 x+oy x+oc2...x+ocn)
s D@—ys+1) \z—p+1 z—p,+1 ... 2—p,+1

_F(x-l-ozi) F(ﬁn"-y—x) o0 é,(;i)n (ﬂn"’)/—x),, (4.11)

TT B+ )T+ Bnt7) %0 Bat1) (it futyp)’

where the series on the left is convergent in the half-plane i () <R (8, +y) and the
series on the right is convergent in the half-plane R (z+a;)>0, (s=1, 2, ..., n).
Thus both series are convergent in the strip (4.7) and one of them gives the ana-
lytic continuation of the other.

22 — 553810. Acta Mathematica. 94. Tmprimé le 19 décembre 1955.
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If we put p=y; in (4.10), then F reduces to a hypergeometric series of the order
n, but in that case we must assume that the parameters satisfy the inequalities
R(as+Pnty)>0, (s=1,2,...,n). If we give i the values 1,2, ..., n, we get n
equivalent integral representations for &, (z).

Naturally we may obtain (4.11) from (4.6) by interchanging the o; and the y;.
In the same way (4.10) may be obtained from (4.5) by interchanging letters.

We have supposed N (8,)> —1. By analytic continuation we see that (4.5) and

(4.6) are valid for all #, which are not negative integers.

27. If B, is a negative integer, say f,= —p, we may for the solution 7, (z)
regular at the point z=1 repeat the preceding argument. Then we must use the
relations (2.28) and (2.31) instead of (2.18) and (2.19) and take into consideration
that the series

< (@

2

v=1 ’V! ’

convergent in the half-plane R (x) < —r, where r is a non-negative integer, is identi-

cally zero for all z in the half-plane of convergence (see [42] p. 105). Then we get

1

ft“ A=ty (t)dt

0

(4.12)

" Dx+ys) 7 rx—at+l z+y, 2y, ... x+yn)'
saal'(@—as+1) \z—o;+1 2—a+1 ... 2—0op+1

This relation is valid in the strip (4.2). The integral on the left-hand side converges
in the wider strip —N(y.) <R (x) <N (a), but the series on the right-hand side is
only convergent for R (x) <R (x—p). Likewise we see that in the strip (4.7) we have

o0

(—l)pJ‘t"’(t—l)””‘lnn () dt
' (4.13)
-1 I (x4 as) (z~y+1 x+ oy x+o:2...x+ocn)

scaD@—pys+1) \e—p+1 x—py+1 .. x—p,+1

where the series on the right is convergent in the half-plane R (z) <% (y—p). It
follows that when one omits the factor I' (8,4 1), the right-hand side of (4.5) re-
presents the function 7, (z) and the right-hand side of (4.10) represents the function
(—1)" 5 (2). The relation (4.6) reduces to
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" Tx+ys) z—o+l x+y, xFy, ... Ty,

1 +——*=F

saal@—as+1) \@z—oy+1 2—0p+1 ... 2—a,+1 @.14)
T@ewT(@=2) 2 dlpn (a=2)

B I’ (o +y3) o v! (oc+yi),,’

where both series converge in the strip (4.2). The series on the left-hand side con.-
verges in the half-plane R (x) <M (x —p) and the series on the right-hand side con-
verges in the half-plane R (x+9,)>0, s=1,2, ..., n. The function represented by
these two series has poles of the first order in the points z=«, a+1, a+2, ..., but
it is regular in the points z=a—1, «a—2, ..., a—p. Thus we see that when f, is
not a negative integer, there is always a singularity situated on the line, which bounds
the half-plane of convergence for the series on the left-hand side of (4.6), but when
B. is a negative integer this is not true. Then there is a strip of the width p to
the right of the half-plane of convergence, in which the function in question is
regular.

If we suppose that none of the differences between the y; is zero or an integer,
the condition of convergence of the seriés on the right-hand side of (4.6) and (4.14)
may be given a little more precisely. From (1.45) it appears that these series then

converge if R (x+95)>0, s=1,2,...,¢—1, i+1, ..., n

§ 5. The Solutions Regular at z=1

28. We suppose now that none of the differences between the 4; is zero or an

integer. If we form the difference between two solutions of the form (3.17), we get

x-+ioco
sin 7z (yn — ¥s) f Zf(x)dx )
21 sin 7 (ys — ) sin 7 (Y — )

Ys (2) —yn (2) =

x—io0

This integral is convergent for 2> arg 2> — 2z and therefore represents a solution

regular at z=1. For the sake of brevity we put

Yn,s (). (6.1)

i () —yi () = T2

Then we have
x+ico

_ 1 7t f(x)dx (6-2)
?/h,s(z)_gym‘ sin 7 (ys — z) sin 7 (y5, — )

n—ico

and consequently y, , is symmetric in y, and »,. Here we may give & and s any
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two distinct of the values 1, 2, ..., n. All these solutions are not linearly independent.

It is immediately seen that there exist between them relations of the form

Sin 7t (Yu — yi) Yn,s + S0 7 (yi — p3) 4,5+ sin (Y;—ya) ¥5, =0, (5.3)

but the solutions ¥ ; (7=1,2,...,i—1,4+1, ..., n) are linearly independent and to-
gether with &, they form a fundamental system if 8, is not an integer.
If no two of the «; are equal or differ by an integer, we see in the same way,

if we form the difference between two solutions of the form (3.20) and put

sin 7 (oty — o)
=—h—y

- s (2); (5.4)

gs &)= n (2)

that ¢y s (2) is regular at z=1, and we have

x+ioo
_ 1 7" f (x)da (5.5)
Gn,s () = By ; - .
A sin 7 (x + &) sin 7 (x + or)
x—ioo

Consequently 5 , is symmetric in «, and o, and we have the relations
8in 7 (atp — o) Gu, 1 + Sin 5w (o — o) G, ;+ sin 7w (a;—ap) §y, o =0. (5.6)

vThe solutions %, ; (j=1,2, ...,t—1,¢+1, ..., ») are linearly independent and together
with &, they form a fundamental system, if . is not an integer.

It is sufficient to consider one of these solutions regular at z=1, for instance
¥1,2(2), as the others may be derived from this by interchanging letters. Thus we
have for 27> argz> — 2=

x+io0 n
1 T —2)Dyy—2) T[Tz + o)
Y1,2(2) = Smi n ! dzx, (6.7)
[T (x+1—9,)
x—ioo 3

where the contour is curved to separate the increasing and decreasing sequences of
poles. We shall give a representation of these solutions in series of hypergeometric

polynomials. By this we shall need the following lemma.

29. In (3.3) we replace » by n+1 and let z—1 on both edges of the cut from
0 to oco. Then we get two equations between which we eliminate the last term on
the right-hand side. If in addition we replace «,,; by —=z, we get the following
relation
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I:IIF (ot 1)
n+1_

EP('}’I—'}’v+])

F(ocl—i—yl ot Y en O+ yl—x)
i—=Vatl =+l yy—yatl
(5.8)
=ZAiI‘(x—y1+l)F( wty, wtyYr .. Gt Yas ),
=1 D@to+1) ow—oy+1 . ay—a+1 xta+1

where the A; are independent of x and have the following values:

n

Hl F (dp v #1
=1

A;=T (o + ’}’1) n-:l

—
ﬂ
_
|
8
<
<

Here all series are convergent if the real part of z is greater than the real part of
n n+l

—n+ Y o;+ > . The hypergeometric series on the right-hand side are factorial
1 1

series in 2z, which converge uniformly towards 1, when z increases towards infinity

in the half-plane of convergence. Therefore (5.8) shows immediately how the func-

tion of x defined by the series on the left-hand side behaves asymptotically in the

half-plane of convergence. This may be expressed more briefly in the following way.

For any hypergeometric series with z=1 we have

F(ocl Oy «ve Olp —x)N z %’ (5.9)
Y1 Y2 ... Yn i=1 &

where C; are constants independent of z. This series converges if the real part of
n

x is greater than the real part of D (a;—y;) and the asymptotic expression is valid
1

when z approaches the point at infinity in the half-plane of convergence. By this
we must suppose that none of the differences between the o; is zero or integers and
that the a, and the 9, are not zero or negative integers. Moreover, it can easily be
proved that for the analytic continuation of the function of x defined by the series
we have the same asymptotic expression in the angle m — ¢> arg x> —m + ¢, but here
we do not need this extension.

One may derive a similar and in a certain respect more general theorem from
the transformation formula (1.22), which can be written
1 oy ... oy zi)=§F(a1 Oy oo Oy — ¥
z—=1) S \y1v2 v ¥a

(l—x)‘lIf’(
YiVz .oV




334 N. E. NORLUND

Here we think of z as a fixed number which satisfies the inequality [z—1]|<1. Then
the point z=1 is the singularity nearest to the origin, and the left-hand side may
by (3.3) be represented as a sum of n+1 power series in 1—x with the first ex-
ponents 0, o, — 1, ay—1, ..., @y — 1. From a previously proved theorem ([39] pp. 21-22)

it follows that for large positive values of v we have

F(ocl Oy vve Oy — ¥
Y1 V2 e Yn

z) =é Civ %+ 0 (|v%1)), (5.10)

where C; does not depend on ». This relation is valid under the assumptions men-
tioned above for (5.9). But if any of the differences between the «; is zero or an
integer, it is seen in the same way by (3.38), using the theorem of Perron [46]

p- 368 already mentioned in art. 8, that

F(ocl Oy evv Oy —
1%z -0 Vn

z) ~ > ;v % (log »), (5.11)
i=1

where r; are non-negative integers and |z—1|<1.

30. We suppose now that no two of the y; are equal or differ by an integer and

we shall, for n>2, consider the solution z; ;(2), regular at z=1. If =2, we have

:)-

the well-known relation

[ +y) T (o3 +75) 2T (“1““?2 %y T Yo

Dya=yit1) 2=y tl ‘
I' (g +y) I' (g +91) ¥ (0‘1+71 °‘2+‘}’1( )
- = U nE 2 5.12
Fy—v.+1) Yi—7vatl (5:12)
- sin 7w (yy —y2) I (o + ) T (g + 1) T (o +90) T (2 + y5) zylF(al+y1 %+ Y1 l—z)
7 ['(1-8,) 1-5,

given by Gauss in a non-symmetric form [14] p. 213.
The relation (2.19) can be written

-4
N VT T _Dleta)

Oft §n(t)dt Z F(ﬁn+1)sl;ll C@+1—ys)’ (5.13)
where R (B,)> —1 and R(x+«;)>0, s=1,2, ..., n. The function £, (z) depends on
the parameters «, ..., «, and 9y, ..., ¥, and we can more elaborately write

£ (ocl %y v U z)
Y1 V2o Yn
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If in (5.13) we replace = by n—p, where p<mn, we get

2

= o e a2 L AN P
Oj‘tzl Enp (V:ii e P 2) dt=2*T (ﬂn _ﬁp)pljrll I‘(x(+ 1 _s;s) ’ (5'14)
where N (Bn—B,)>0 and R(x+a;)>0, s=p+1,p+2, ..., n
We shall now consider the integral
2
fﬁ,ﬁlF( oty e optyy t) E (ocm.l e O 'E) i, (5.15)
Yi—Yetl .o yy—yp+1 Vo4t oee Yl l

0

where we suppose |z|<1, R(Br—p)>0 and R(xs+79,)>0, s=p+1,p+2, ..., n.
Then the integral is convergent. We expand the hypergeometric function under the
sign of integration in powers of ¢. This series is uniformly convergent in the interval
of integration and the integral (5.14) is absolutely convergent for x=+9,. Therefore
we can integrate term-by-term, and if for the sake of brevity we denote the integral
(5.15) by g¢(2), we have by (5.14)

P T (o )

D'(Bn=po)y1 () =TI

. .16
s:ll‘(yl—yﬁl)g(z) (5.16)

If we put p=2, interchange y, and v, and form the difference between the two

expressions thus obtained, we have by (5.12)

N g (%1 Y1 de Ty
yl,g(z) Kft F( 1—*[32
0

z)dt (6.17)
t)t’

l—t) gn_2(oc3 -
ys tee yn

I (o, + 1) r (“2"‘71) I« +y) T (@ + ) .
r (ﬁn —/32) r (1 “ﬁz)

where

K=

We suppose now that
[z2=1]<1, R(Br—Fa)>0, Rpy)>Ry)> —R(ae), s=1,2,...,n (5.18)

We expand the hypergeometric function under the sign of integration in powers of
1—¢. This series is convergent for t=0 and consequently uniformly convergent in
the interval of integration and the integral (5.14) is absolutely convergent for z=1y,.
Therefore we can integrate term-by-term and we get

2

?/1,2(Z)=K§ (Oc_lj-_yl)_v_(w_{)_"ftyrl (l_t)stn~2 (OC3 cee Ap
0

sm0 v {L1=Fy), Vs - Vn

z}) i (5.19)
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From (5.14) follows now

f tV‘*(l—t)”én_z(i) dt=3 (_s,”)s f t’*”‘ls'n_z(‘f;) dt
§=0 .
0 0

T T+ y,) (—v a3ty % FYr ... oty

— V1 —
Z* T (Bn ﬂz)I;IF(V1_Vs+1) y1—Pstl yi—yatl. o yr—yatl

Substituting this expression in (5.19) we get

A R AN (—v atyr %ty o Oty )
2)=0C, 2" F z), (5.20)
Y12 (2) 1 v;)v! (0 + &+ 91 +92), Yi—Vs+1l pr=yatl . yi—yatl
where
IT T (xs+yy)
0, = L (a3 +5) U (g +95) 51 . (5.21)

T Dy t+ag+y+ i

(o + g+ +y5) H3F(71—7/s+1)
s=
From (5.11) it follows that the series on the right-hand side of (5.20) is convergent if
|z—1|<1 and R(xs+79,)>0, s=3,4, ..., n. By analytic continuation it is seen that
(5.20) is valid if these conditions are fulfilled and none of the numbers «; +y,, ty+ ¥,
sty 8=1,2, ..., n is zero or negative integers.

Putting p=1 in (5.15) we have in the same way

l—t) E-na(% e g
Y2 .o ¥Yn

na@=K [oip (] B
]

oty +1

%) i
:

=Kjty.—1F(a1+71 71_}’2—1—1]1_1:)5%1(0(2 e O
0

z
?)a,
oty +1 Vo eee Yulil

where

_ Play+y) (i —9e+ 1)
(0, +y) T (Bn—B1)

Expanding in powers of 1—¢ and integrating term-by-term we get in the same way

as above the following two new expansions

3 (“1+71)v_F(_7’ %t 1 gty .- dnt Yy

= 1
ho () =Ca?" 2 1 yy=ys+l yi—pa+l .o pp—yatl

z (5.22
v0 (0 + Ya)vi1 ) )

[

(71_72+1)v (_V “2+'}’1 a3+’y1 e (Xn+'}/1
(2)=C2" > ——=—+= " F
b2 () =Gy Eov!(aﬁyﬁw yr—vetl pr—vs+1l .y —yatl

z) , (6.23)

where
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H r (ots + ’}/1)
Co=T(ya—y:+1) ns=1 (5.24)
[131‘ (y1—ys+1)
[T (as+yy)
Co=T (&, +9y) 7> . (5.25)
I:I?)I‘ (y1—ys+1)

These series are convergent and represent y;s(z) if |z—1|<1 and R (e +y,) >0

, n is zero or a negative integer.

$=2, 3, ..., n. Furthermore we must assume that none of the numbers o, +,, a; -+ 9y,
s=1,2, .
Next we shall consider

&

- at
1, (2) =,
f $ (t)l—t
0

where |z|<1, R(B.)> —1 and R(x;+9,)>0, s=1,2, ..., n. Then the integral is

et

convergent and if we replace (1—¢)"! by > ¢ term-by-term integration is permissible
0

for the same reason as above and we get from (5.13)

2
™

1 - (2 dt
* — y—1 - . 2
1@ I‘(ﬂ,,+1)Jt 5"(t)1—t (5.26)
0
From this follows again

T 1 r—t - (2\dt
= o e . 2
Y12 () sinn(yl—yz)l"(ﬁn+l)! = ¢ () t (5'7)
We assume now in (5.27)

[z=1]<1, RBa)> -1, Rp)>Rp)> — R (xs)

s=1,2, ..., n
From the binomial theorem we get

(5.28)

g — S Y=Y

—— =" > e (1 -t 5.29
= =" 2 et 7Y (5:29)
The series on the right-hand side is uniformly convergent in the interval of integra-
tion and the integral (5.13) is absolutely convergent for x=+v,. Inserting the series

(5.29) in the integral (5.27) we are allowed to integrate term-by-term and we get
23 — 553810. Acta Mathematica. 94. Imprimé le 19 décembre 1955,
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2z

= 4 1 e ('}’1—72)v+1f 11w E (f)
y1,2(2) sinn(yl—yz)l’(ﬂnJrl)Eo 1) ) (1 —1)" & ; dt. (5.30)

From (5.13) it now follows

fty,—l (l_t)vgn (é)dt= Zvo(—s;”)sftyﬁs—l 5-?; (%)dt
H - o

" T (s +94) F(~v o + 91 dyFpr . oty

=T (B +1
21 (p )EF(%—%H) I yi=yat1l py—ps+l oy —yatl

Inserting this expression in (5.30) we get

2 ()’1“)’2+1)v ('—7" “1+')/1 052+‘}/1 O!.n+’y1 )
2)=C2" 2 == —— z), (531
.2 ¢) ’go (»+1)! 1 yy—yet+l yy—ys+l o yp—yat1l ( )
where
mlyn =y oy Llestys) (5.32)

- sin 7{('}’1'—})2) s=1 F (V1_78+ 1)

Thus this relation is proved when the conditions (5.28) are fulfilled, but from (5.11) it
appears that the last series converges when |z —1|<1 and R (a;+9,)>0,8=1,2, ..., .
By analytic continuation we see that (5.31) is true when the last-mentioned condi-
tions are fulfilled and none of the numbers «;+y,, s=1, 2, ..., », is zero or negative
integers.

As y;5(z) is symmetric in y, and y, we can interchange y; and y, in these
four series of hypergeometric polynomials. We then get new series which represent
#1,2 (2). Furthermore we may permute the o, and still the series represent the same
solution.

If we interchange « and y and replace z by 1/z, we get the series which re-
present the solution #, »(2) regular at z=1. These series are convergent in the half-
plane N (z) >1.

. In this connection we shall in addition mention a remarkable expansion. The

transformation formula (1.22) can be written

x ) E(a)vF(~v 0y Olg e On

o o Uy ... Gn _
r—1 Y1 Y2 eee Vn

Y1 V2 - ¥

2

1- x)’“F( z) 2. (5.33)

r=0 7’!

It |z—1|<1 and N(x)<R{x), s=1,2, ..., n, the series on the right-hand side is
convergent for z=1 and from (3.3) it follows that the left-hand side converges to-
wards a limit when z—1. Then this limit is equal to the sum of the series in virtue

of Abel’s theorem on continuity of power-series and we have
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T (e—al ()
z)‘z I 5o, —a) T () (5:34)

3(&),F(—v %y &g .er K
y=0 ¥! Yi V2 e Vn

This series can then be evaluated in terms of gamma-functions. In particular if «

is a negative integer —p, we have the elementary relation

o P —% O g ... On o (os)p
-1 F P
vgo( ) (1’) ('}’1 Y2 cee Yn 2) # 31;11 (ys)o

It is easily seen that all these relations may be obtained by convolution, but

the above proof is simpler.

31. If in (5.7) we differentiate s times with respect to z and then put z=1,
we get

x+ioof

Ty —2)D(y+s—a)[[T(x+a)

ooy (T ) L J ,, 1 L
“ e 2 [T @ +1-9,)
3

x—ic0

The integral on the right-hand side is equal to the series which is obtained from

(5.20) by replacing y, by y,+s and putting z=1. From Taylor’s formula we then get

S (g Fy)s (aatye)s s
Ve s (1--2)°, .35
Y2 () =0y Z o 8! (0 + &g+ y1 +Ya)s As 2 (6.35)

where C, is the constant (5.21) and

3 (g + y1)v (2 + 1) F(“V gty ot Yr ... Xat Yy )

A, =
ygov! (g totg Tyt yat8) —ys+l =yt iy =yl

The power series (5.35) is convergent if [2—1|<1 and R(as+9,)>0, s=3,4,...,n
From (5.22) we get in the same way

yl,z(z)=02z%z (ra = ”IH) Bs (1 —2), (5.36)

s=0
where C, is the constant (5.24) and
B, — Z (ag +91)s F(_” oyt 1 a3ty . @Yy )
ooy + Yt 8l L oyi—ys+l yy=yatl ooy —yatl

The last series is convergent if 9 (o +7y,)> —s, i=2,3, ..., n. 4, and B; converge
towards 1 and zero respectively when s—>oco. The series (5.36) is convergent for
|z—1]<1. If we multiply both sides of (5.7) by 2* and differentiate with respect

to 1/z, we get in the same way from Taylor’s formula
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- (o +91)s (g + 3)s (z—l)s
2)=0C,z7% B, , 5.37
?/1,2( ) szos' (0(1+0t2+y1+72)s 2 ( )
where () is the constant (5.21) and
W S (g Tyt ) () F(—w gt Yy Oty .. Yy )
oo ¥ (o top+y -yt 8), Y1i=Vetl yr—yatl . yy—yntl

The series (5.37) is convergent in the half-plane 3 (z) > if R +9,)>0,i=3,4,...,n
The series (5.35), (5.36) and (5.37) have the remarkable property that we are able
- to interchange y, and y, and permute all the «; without changing the sum of the
geries. If n=3, then (5.37) reduces to

C z“a.i(“l_*_yl) (“1"‘72)8 ( o —Ys—8 l—ay—yp, 1_“3_7’3) (z_l)s
* s=0 s (1—Bs)s Yi—vstl yy—ys+1 Z

and (5.35) reduces to

Y1,2(z)=

(o + Y1)s (%3 +91)s (g +91)s (1 —oy—ys l—ay— 73 73) s
2 (2)=Cy2" F —2),
¥1.2 (%) g0 P =Ba)s (y1—ys+1)s Yi—ys+l+s 73+1 (1-2)
3
IT(T (@ +p) T (o +92))
where Cy= s

FA—B)T(y—ys+ )T (ya—ps+1)

Here we must assume that R (8;)<1.
32. From (5.26) we get for all values of z which are not positive and >1

* 2Vs r I dt
Ys(2)= mft Vs &n (2) . (5.38)

where M (w;+9:)>0, ¢=1,2, ..., n and R(B.)>—1. We can get rid of the last
condition by relating the above integral with a contour integral. Thus we find, if

B= is not an integer or zero,

.

x+ioo
2rs En( )
Ys (2 —Br) 2me f L4t 0<x<l, (5.39)
x—ico

where z lies on the left of the path of integration. Letting z pass through this
we get
Y5 () =T (= Bn) &n (@) + ¢ (2), (5.40)

where @ (z) is a solution regular in z=1, which may be fepresented by the integral
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x+ioco

(ps(z)=P(—ﬂn)§% f t’%@dt 0<x<l, (5.41)

where z lies on the right of the path of integration.

If we assume

0

@s (2)=2" 2 b, (1), (5.42)

v=0

this series is convergent for |z—1|<1, and for the coefficients we have the following

simple expression

~ F (_/3") x+ico N En (t)
b= =5t f ¢ 7“_1)”1(11:. (5.43)

Putting the expressions (3.17) and (2.46) into (5.40), we get the following integral

representation of the solution ¢; (z)

s+io0

=2isinn,8,, sin 7 (s — )

which is convergent for 27> arg 2> —2x. We have assumed that the poles y, are
on the right and the poles —a; on the left of the contour. The solution ¢; (2) is of
course a linear function of v, i1, ¥s 2, ..., ¥s,n- If we give y, ; the meaning zero, we
easily find from (3.43) and (5.1)

n
n Sin Fer 4 (ys — yl) H Sin T (av+7}i)
r=1

s (2) = Ys, 1 (2). (5.45)

n
=7 @ sin af, [ sin @ (y, — )
v=1

§ 6. Logarithmic Singularities

33. We shall now consider the case where the number 8, defined by (1.15) is
an integer. For the sake of brevity we omit in what follows the index and write
p for B,. If £=>0, the integral (5.38) is applicable, when R (o; +y5)>0,i=1, 2, ..., n.
We have now

12 -1y (z—1)?

t—z SS(—1)* (t—-1)7 (t—2)

Putting p=4, we get
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[ frrEo e [ EEO
J‘t En(t Z (z—1) (tﬁl)w—ldt—*—(z l)ﬂf(t_l)ﬂ(t_z)

1

dt.

From (4.8) we see that the first term on the right-hand side equals

pl T T (e +ys+v)
rep+1 -1y .
(BrD 2 =m0 5T
F( oy F s+ Aty o An Tty )
—pr Ly ys—yt 14w oy —yat 14y

If this is substituted in (5.38), we get

pg-1

ys (2)—2"s > (z—1) I:I

=

T (o + s +7) ( ot ys Ty ocn+ys+v)

Ts—yi+1+9) \ps—p+1+y oo ps—patlty
(6.1)

21 [ e
ST ) =D (E-2)

dt.

If we replace the integral on the right-hand side by a contour integral, we get

»-+ioo

z”S(z—l)ﬁ 1
I'g+1) ) 2m1

ftwwl—ﬁﬁmga—nifgdt 0<x<l,

x—ico

where z is to the left of the contour. If we let z cross the contour, we get

»n-+i00

thqlwn*h%(l—niﬂ?du

x—ioo

( 1)
I'(g+1)

iﬂz—lf 1
[ B+1) 276

————=£&,(z) log (1 —2)—

where z is on the right of the contour. If this is substituted in (6.1), we get the

remarkable equation

s1 to T (ot ys+9) w Fyst+ tn s+
X — 7. . 1 1 3 F 1 S veo n 8 _
¥s (2) ZSZ(Z lznlI‘ (ys—yi+1+w) ( —y1+1+v...y—yn+l+v)
(—1)f (6.2)
TrTfn (2) log (1 —2)+ ¢ (2),

@s (2) being a function regular at z=1 and having the integral representation

(~1p* L & ()

- 14

—_ Vs Y] —Vs _ B _ n

@s (2) P(ﬂ+1)z (1—=2) 2mi f s (1—1¢)7" log (1 —1) 2 dt O0<x<l. (6.3)

@s (z) may be expanded in a power series convergent in the circle |[z—1|<1 and

having the form
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_ (—-]')}S Vs o A
‘Ps(2)~r(/3+1)7« (1"‘2)’3205v(1 z)’s (6.4)

where the coefficients b, have the simple integral representation

x+i oo

b, =2—7% (%——18:;;—;3% log (1 -t)dt. (6.5)
We have supposed
Ru+y:)>0 1=1,2,...,n. (6.6)
But the integrals (6.3) and (6.5) converge for
Ry +p+y)>0 =1,2,..., n (6.7)

By analytic continuation it is seen that (6.6) may be replaced by the less restricting

condition (6.7) provided none of the numbers o; +7, is a negative integer or zero.

34. Now we suppose § to be a negative integer, say —p. From (2.31) and
(2.38) we get

2

o T+ L
(=1)” ft“nn (%) dt=2" 3 F“(x(fy °°”+)1) +(—=1)P2" go 1 wn(ys—ax—),, (6.8)

0

where R(zx+o;)>0, 1=1,2,... n. Now we consider the integral

Ys—1 z _‘ﬂ_
ft 77”(t)l—t
0

supposing R (ow; +y)>0, ¢=1,2,...,n. The integral is convergent and if we suppose

|z] <1, we get, using (6.8),

F-4 2
dt had
[ (3) 52 5 [ () a
3 = (6.9)

p-1 0
=(—DPyf ) +2% 3> (=1Y ¢S, 2 G+1),2.
»=0 i=0
But as '
z . ; v!
Zo(z—l-l),z ——(1 —z)”*_l’

(6.9) reduces to

2

# 2 e vp 1, N dat
2 <z>=P<p>z“Eo(1c—p»“—z> +(=1) f”s " (‘Zi)i:'

[
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Replacing p by —f we get

-p-1 (s) >
PE=D(-p7 -2 3 5 (1—z)”+(~1)ﬂz78ft w14 6a0)

1

This expression represents our solution y¥(z) for all values of z which are not posi-

tive and >1. The integral on the right-hand side may also be written

»+ioo
Vs ” t
(—l)ﬂH;_ﬂ_i f t7s log (l—t)lzf;(—z)dt 0<x<l,

%—100

where z is on the left of the contour, or

—1 ﬂ+1”+i°° \ Vs e
(=17 ) log (I_ZH'( 2n)i f(%) log (l—t)z_(z)dt,

x-—-io0

where z is on the right of it. If this is substituted in (6.10), we get

(s)

81
PO =T (=A7(=2f 3 2 (=2 + (=1 g (a) log (L=2) 49 (2), - (611

where @ (2) is a function regular at z=1 having the integral representation

s +i00
_(—1)ﬁ+1 f (E Vs 7 (®)
@s (2) = i ; log (1 -t) i dt  0<x<l, (6.12)

x-too

z lying on the right of the contour. The function ¢,(z) may also be represented by

a power series convergent in the circle |z —1]<1 having the form

gi () =(— 127 3 b (12, (6.13)

r=0

where the coefficients are given by

#+i00
1 Vs ya (t) .
b”_2—nif(1—t)”” log (1-—-¢)d¢. (6.14)

#—100

If, as we suppose, no two of the y, are equal or differ by an integer, we can
give s the values 1,2,...,n. Then if 8 is an integer, we get n linearly independent
solutions having logarithmic singularities at the point z=1. These are of the form
(6.11), when $<0, and of the form (6.2) when f=0. The difference between two of
these solutions is regular at the point z=1 and of the form y;;(z) considered in § 5.



HYPERGEOMETRIC FUNCTIONS 345

Therefore we may also say that we have one solution logarithmic at the point z=1
and n—1 solutions y;;(z) regular at the same point, which together form a funda-
mental system.

It may happen that the logarithmic term vanishes in all these solutions. If
p<0, n(z) must be equal to zero and all solutions have a pole of the order —§
at the point z=1. In this case the coefficient of y;(z) in (2.42) must be zero for
s=1,2,...,n, because ¥,(z),...,¥n(2) are linearly independent. It follows that the

necessary and sufficient condition of vanishing of #,(2) is
-B
[1R(y:~4)=0, s=1,2,..,n, (6.15)
i=1

R (x) being the polynomial defined by (1.4). Thus (6.11) reduces to

-B-1 ()
¥ =T (=f2 (12 3 (ﬂci"l) 1—2f s=1,2,...,n. (6.16)

These n solutions are linearly independent. From (6.15) it follows that it is possible

to number the parameters in such a way that a;+y,=p;+1 for s=1,2,...,n, p

being a non-negative integer, and we have = —1~— > p;. Interchanging « and y,
1

we see that (6.16) may also be written in the form

* () = A - N C 2 A
yS(Z)—‘F(“‘Ig)Z ( > ) vgo(ﬂ—‘FE(_Z—_) s=1,2,...,n. (6.17)

If we omit the factor I'(—pf), these solutions have the same form as £, (z) and they
satisfy the relations of art. 13. From (2.7) it follows that ¢, =0, if »> —f—p,,
and that c{, may be represented by the hypergeometric series

IT (@~ +1)
cﬁl)n=(—1)ﬂ+p‘+"“ i g F(“l“‘)’l"’ﬁ'*"" ot Y 4 TYs e 0T YR ),

p! T (~B—p—v) o — o+ 1 oy —oy+1l oo+l
if ¥<—f—p,. From this we get ¢, by interchanging «, and w«, y, and y, together
with p, and p,.
If these expressions are substituted in (6.16) and (6.17), we get for the solutions
defined by (1.14) and (1.13) the following expansions

Dyt e +Dy
_ +9 —p oy + vee 0t
=i (g — 1) P! P F 17 Y2 17 Yn 1—2)"
hE =21 ,Zo ( v ) (rxl—ocz+1 o —dn+1 (1-2)

Dyt Ay _ v
g @) =2 (L=z) 71 S (pl-l-v)F( | y U+ Y1 e Gty ) ( z ) )
»=0 v yi—y.tl .. M—yat+1l/\z—1
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These relations may also be derived by the transformation formula (1.21). The

equation (2.21) reduces in this case to a special case of (5.34) and we have

i1 . .—(wl)”F( —v Xty Yy Ty, \)

.‘ﬁzv—ocrkl) - z—oy+1  z—a,+1l ...x—o,+ 1)
; Py

n
In particular for v= > p, we get
1

T+ wtyyotys 2ty Y i oo Fe—a+1)
F(x—a1+1 r—a,+1 .., x—oc,,+1)_( A ﬂ)g I'(z+ )

35. Finally we suppose that $>0. Then we have (6.2) which in a better way

may be written

Sy (et s )
= Vs -1y J] ——=
Ys () =2 vgo(z 1 iI:Il(Vs—]/t+1)vF Ysoytldvo oy —yatlty (6.18)
e IR AR R
+[¢s(2) I‘(ﬂ—{—l)én(z)bg(l Z)jlégl T (o +ps) ’

s=1,2,...,n. These relations are valid when the condition (6.7) is satisfied. If the
logarithmic term vanishes, the coefficient of &,(z) must vanish, because &,(z) can
never be identically zero. Especially, it may happen that the logarithmic term

vanishes in all n solutions. The condition of this is

f-n+1
I[1 B(y;+4)=0 s=1,2,..., n (6.19)
i=1
In this case we may number the parameters o, in such a way that o, +y,= —p,,

n
§=1,2,...,n, p; being a non-negative integer, and we have f=n—1+ > p;. This
1

case only occurs when f>n—1. Then the equation (6.18) reduces to

¥4
i (ot oy ( Ty tr . antysty )
s (2) =275 z— 1) — 2 , 6.20
v (2) Zo( ) ils_Il {ys—yi+ 1) \ps—p+1l4y o ops—pa+lty (6.20)
where s=1,2,...,n. All solutions are then regular at the point z =1, which is an apparent

singularity. From (1.21) it is seen that e.g. y, (z) may also be represented in the forms

D, _ J— v
) =z S (pl)F( V=P1 %ty agtyr.. oty )(1_2)
v=0 \ ¥ Yi—yetl  y—ystl Ly —pa il z

_ ﬁ (& + Y1) s %‘: (pl)F( V=P G T Yy Oy T Ys... 0t Ya )(z—l)v.
=yt 1), JS\w G+l g —agtl a1l
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