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Introduction. 

0 . | .  In order to state, in their simplest form, the type of problems to be dis- 

cussed, we suppose, first, that  

(0.1.1) ] (z) = ~ ak z k 
0 

is regular for I z]_< 1; and that ~(z) is regular for [z I_< 1, except for a finite number 

of poles fl~ with [fl, ] < 1. Then 

i f  (0.1.2) J (1) = ~ / ($) [ (r d 
I~1=1 

is the sum of the residues of / (z )  ~(z) at the points fli. If, for instance, f (z)= ~ ck z (k+l) 
0 

n 

then J ( / ) = ~ c ~ a k ;  if ~(z)=n! (z - f l )  -(n+l), I f l l< l ,  then J( / )=fn ' ( f i ) .  
0 

In these and similar cases it is a natural and important problem to determine, 

for a given 'kernel' ~(z), the precise sup [J( / ) l  when the functions /(z) vary inside 

a suitably given class: for instance, the class of all / with 1/] __< 1 in [z] _< 1. 

0.2. In a previous paper [M-R] 2 A. J.  Macintyre and one of the present authors 

studied such extremum problems: for the following classes Hp: Let 1 _<p_< ~ .  If 

p < r then Hv denotes the class of all functions / (z) regular in I z l < 1 for which the 

mean values 

1 Dr. SlIAPIRO'S contr ibut ion  represents  work  done on a doctorate  thesis  at  M. I. T. under  an 

A. E. C. predoctoral  fellowship. 

MACINTYRE and I~OGOSINSKI, quoted as [M-I~] th roughout .  Compare the list of references a t  

the end of this paper .  
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o 

remain bounded for 0_<r< 1. If p =  ~ ,  the class H~ is the class of all ](z) regular" 

and bounded in ]z I < 1 ; that  is, 

(0.2.2) M~ (/, r) = max I/( re~t)] 

remains bounded for 0_< r < 1. 

As for the given kernel f(z) we assumed that  it was regular in I z l < l  except 

for a finite number of poles fii, and that  the mean values Mq (~, r)remained bounded 

for all sufficiently large r < l .  Here _1 + 1 =1,  so that  to p = l  corresponds q = ~  
P q 

and vice versa; to p = 2 corresponds q = 2. 

I t  is well known that  under these assumptions the radial boundary values 

(0.2.3) ](e't) = lim /(re~t), [(e~t) = lim [(re ~t) 
r - - > l - O  r - - > l - O  

exist p.p.  (that is, for almost all t), and that  ](e ~t) EL Y and ~(eit) ELq. Here L Y, for 

1 _< p < ~ ,  is the class of all complex valued functions ~ (t), measurable in (0, 2 ~) ,  

for which I~ (t)[Y is L-integrab]e; L ~ is the class of all essentially bounded measur- 

able ~(t). Also My(l,  r)-+My([, 1) as t - + l - o ,  where My(l,  1) is the corresponding 

mean value for the boundary function when p < ~ .  M~ (], 1) is the ess. sup I](e it) I. 
Again, the integral (0.1.2), taken with these boundary values, is the sum of the 

residues of /(z)~ (z) at the fl~. 

In [M-R] the problem was to determine, for a given kernel of the described 

'meromorphic' type, the sup ]J([)] with respect to all ]EHy for which the mean 

value My(l,  l) is prescribed. A complete theory of these extremum problems was 

obtained. I t  should, however, be understood that  this theory was mainly obtained 

by joining together, and extending to general p, the various methods and results found 

scattered through an extensive earlier literature 1 dealing, as a rule, with the important 

special cases p = l ,  p=2,  and p =  ~ .  Moreover, we freely adopted or quoted the 

heterogeneous and sometimes difficult arguments of algebraic, variational,: and even 

topological character as we found them in this literature. The main interest in [M-R] 

was in the various applications of the theory, and of these we gave a systematic 

account. 

1 Compare the list of references in [M-R]. 
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0.3. In the present paper we propose both to extend the theory of extremum 

problems in Hp to full generality and, at the same time, to give a self-contained 

and uniform account of it, replacing thereby the previous heterogeneous arguments. 

In fact, it is by going to the natural limits of generality that  also the natural approach 

to these problems becomes evident. 

We rewrite (0.1.2) in the form 
2z~ 

, f  ,f (0.3.1) J ( l ) =  2~  / ( g ) ~ ( r  = 2~ ~o(t)~(t)dt, 
I~1~1 o 

where 1 

(0.3.2) q;(t)=- t(e't), ~(t)-dt tt(e't). 

Next, H p denotes the class of all (radial) boundary values ~0 (t) ~- / (e it) where / (z) = H~. 

Thus H p is a subclass of L P : H P c L  p. Let 

,f (0 .3 .3)  J (1) = I (~ )  = ~ ~ (t) ~ (t) d t, 
0 

where ~ E H p and x EL q. It should be noted that we have dropped the assumption, 

essential in [M-R], that •(t) should be obtained, through (0.3.2), /tom a meromorphic 

kernel /unction ~(z). 

We also write, when p < oo, 
2z~ 

0 

while M~ (1, 1) = M~ (~) = ess. sup I~ (t) l. 

Our extremum problem is then as follows: 

M a x i m u m  p r o b l e m  in H ' :  To determine, [or given ~ E L q, the sup [I (q0i] [or all 

qJ E H p with given Mp (q~). 

In general, of course, I (~)  will no longer have a simple interpretation as sum 

of residues or so. There exist, however, quite apart from the intrinsic interest of the 

general problem, many interesting extremum problems not covered by the 'mero- 

morphic' case. Thus we have, when / (z )  EH, ,  

1 

(0.3.5) ] ] (x)dx= - i  f / ( e  ~t) e~tdt, 
- 1  0 

1 ----- denotes equality p. p. 
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by Cauchy's theorem. Here u ( t ) = - 2 ~ i e  ~t for 0_<t_<z, and ~ ( t )=0  for ~ < t < 2 z .  

The corresponding maximum problem in H 1 was discussed by Fej~r and F. Riesz. 1 

0.4. Applying HSlder's inequality to I(~0) we obtain, first, 

(0.4.1) I I (~)1 -< Mp (~v) Mq (z). 

Next, we shall say that  a 'kernel' u* ( t)EL q iS equivalent s (in L q) to another kernel 

u(t) EL q, and we then write u*liu, if 

2~ 2~ 

(0.4.2) f v (t) ~* (t) d t  = f q~ (t) ~ (t) d t  
o o 

for all ~0 E H p. We can then replace (0.4.1) by 

(0.4.3) [I (~)[ _< Mp (~). inf Mq (z*). 
x*ll~ 

The crucial question of the whole theory is then whether this estimate is best pos- 

sible; that  is, whether, 

(0.4.4) sup [I  (~)[= M,  (~0). inf Mq (u*). 

We shall see that  the answer is affirmative in all cases. At the same time, this will 

show that  our maximum problem in H p is equivalent to the following 'conjugate' 

problem: 

Minimum problem in Lq: Given u(t)EL q, to determine the inf Mq (~*) /or all 

If we write u * = u - 2 ,  then 2 E L  q is characterized by 

2z 

(0.4.5) f ~ (t) ;~ (t) d t  = 0 
o 

for all ~0 E H ~. The minimum problem then appears as a problem of best approxima- 

tion of a given • by the ,L 

0.5. A function r E H p with Mp (q~)= 1 is said to be an extremal ]unction (for 

I(~)  in H p) if 

(0.5.1) I(~b) = max Ix(~)l 

1 F E J ~  and  RIESZ. 

s Equ iva len t  kernels were f i rs t  used by  E.  LANDAU in his famil iar  de te rmina t ion  of 

s u p [ a . + a l + ' " + a n l  

for all ](z) regular  in ]z] < 1 w i th  [ / (z ) l  < 1 [subclass of Heal;  LANDAU. 
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for all ~0 E H p with Mp (~) = 1. Note that  we have normalized q), first by normalizing 

the Mp (q~), and secondly by requiring I(~5) to be positive. 1 Clearly, I I ( e  ~ ) ) l=I (q~)  

Similarly, we say that  K ( t ) E L  q is an extremal kernel (for g(t) in L q) if K II u 

and if 

(0.5.2) Mq (K) = min Mq (u*). 
u*llx 

We then have two more conjugate problems: 

E x t r e m u ~  p r o b l e m  in HP: Does an extremal /unction ~ E H p exist and, i/ so, 

is it unique? 

E x t r e m u m  p r o b l e m  in LP: Does an extremal kernel K [[ :~ E L  q exist and, i[ so, 

is it unique? 

Our main result concerning all these extremum problems is as follows: 

T h e o r e m  A. Let 1 <_ p <_ co. 

The identity (0.4.4) holds in any case. 

I~ l < p _ < ~  ( l < _ q < ~ ) ,  then both the extremal ]unction r  p and the extremal 

kernel K I[ x E L ~ exist uniquely. ~ 

I[  p = 1 (q = ~ ), then at least one extremal kernel K II ~ E L ~r exists, but there may 

be an in/ ini ty  o/ such extremal kernels. A n  extremal ]unction q5 E H 1 need not exist, 

and there may  be an in/ ini ty  o] such extremal ]unctions. 

I t  should be emphazised, once more, that  the main difficulty in all previous 

treatments of extremum problems of our type lay in establishing the identity (0.4.4). 

I t  is, we think, an interesting example of the power of certain results in modern 

'abstract '  analysis that  we shall obtain, at least when l _ < p <  oo, both (0.4.4)and the 

existence of an extremal kernel in a few lines from the familiar Hahn-Banach exten- 

sion theorem for bounded linear functionals on normed vector Spaces2 This is pos- 

sible since (0.3.3) is the general form of a bounded linear functional on the Banach 

space L p, if 1 _< p < ~o. For i0 = co this is no longer true. Nevertheless, the extension 

theorem leads to the same conclusion, though in a rather more delicate way. 

0.6. In any concrete extremum problem of our type it will be desirable to de- 

termine either an extremal function ~b or an extremal kernel K. This, of course, is 

1 W e  exclude,  t h r o u g h o u t ,  t h e  t r iv ia l  case w h e n  I (q0) = 0 for all  q~ E H ~. 

T he  u n i q u e  ex i s t ence  of K was  f i rs t  p roved  b y  DooB who  s t u d i e d  t h e  M i n i m u m  p rob l em in L q. 

a BA~ACH, p. 55. W e  requi re  th i s  t h e o r e m  for complex  v a l u e d  func t iona l s  (BoH~ENBLUST and  

SoBczYK); compa re  ttVuLE, p. 20. 

19--533806. Acta mathematica. 90. Imprimd le 3 d~cembre 1953. 
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usually impossible. One would then wish to have at least some indication as regards 

the possible forms of ~b or K. In certain cases such indication can be obtained from 

the following remark. 

By (0.4.4), and since M,  (q)) = 1, we shall have I (~b) = Mq (K). On the other hand 

2,~ 2~ 

(0.6.1) I ( ~ b ) = ~  qiKdt<_ ~ Ir 
0 0 

A simple discussion of the two signs of equality here shows that  we must have 

(0.6.2) arg ( r  (t) K (t)) ~- 0, ] qb (t)I 'tq -- A I S (t)11/p. 

Now ~5(t) is the boundary function of a certain associated function F(z)EHp. 
If also u (t) is the boundary function of an associated function k (z), regular and with 

bounded Mq (k, r) in some annulus Q < ] z ] <  1, then K (t) will have corresponding pro- 

perties. In this case it is possible to employ the Schwarz principle of inversion and 

to continue the function E(z)K(z)  across I z[= 1. This method was used in the mero- 

morphic case treated in [M-R]. I t  followed then that  F ( z ) K  (z) was a rational func- 

tion. From this we were able to determine the possible forms of F ( z ) a n d  K(z) 
themselves; q~ and K always exist in this case even when p = 1. However, we had 

again to use heterogeneous results and arguments to obtain these forms. In the present 

paper we shall regain all this by a self-contained uniform method. 

1. The classes t ip and H p. 

1.1. Throughout this paper we have l_<p_< ~ .  The classes L p and H~, and 

the mean values therein, have been defined in the introduction. We require the 

following known properties of the functions /(z)E H~: 

(i) The radial boundary values 

(1.1.1) ~ (t) -= ] (e ~t) = lim / (re ~t) 
r--~l- 0 

exist p.p.1 

(ii) 1 If r - + l - o ,  then /(ret~)~'q~(t). By this we mean 

2~ 

(1.1.2) f [](re~t)-v(t)]P dt->O 
o 

1 C o m p a r e  ZY~MUND, p .  1 6 2 - - 1 6 4 .  I f  p < :  o o ,  t h e n  p - c o n v e r g e n c e  is  ' s t r o n g '  c o n v e r g e n c e  o f  

o r d e r  p .  I f  p = c ~ ,  t h i s  is  n o t  t h e  c a s e  s i n c e  s t r o n g  c o n v e r g e n c e  t h e n  m e a n s  u n i f o r m  c o n v e r g e n c e  p .  p .  
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If p = c~, we mean bounded convergence p.p. I t  follows, in both cases, when p < c~. 

that ~v (t) E L" and that  

(1.1.3) M ,  (/, r)---> M ,  (q~) 

as r-->l - o. 

(iii) I /  [(z)e H ,  and i[ cf (t)= 0 in a set oJ positive measure, then j ( z ) -  O. This 

theorem is classical1 in the case p = ~ ,  and it also holds 2 for functions ] (z), regular 

in I z l < 1 and with bounded characteristic 

2zt 

(1.1.4) T ( r ) =  2 ~  l~ ]/(re't)ldt" 
O 

Now, if ](z) E H~, then 

(1.1.5) T(r) ~ log M 1 (j*,  r )  _< log (1 + i I (/,  r ) )  g log (1 + Mp (/, r)), 

where / * = m a x ( I / ] , l ) ,  since the geometrical mean of ]J*l is not greater than its 

arithmetical one. 

1.2. If ~ ( t)EL" we write its formal Laurent expansion 

(1.2.1) q)(t),,~ ~ ck e ~kt 

where 
27t 

1 f e -l~t dt. (1.2.2) c k = ~  q0(t) 
0 

Let H" denote the 

w 1.1 (ii), H" c L". 

The following theorem is certainly not new. 

it and hence add its simple proof. 

class of boundary functions cp(t)=j(e it) where ](z) E H . .  By 

We are, however, unable to quote 

T h e o r e m  t .  The class H" 

Laurent- Taylor expansion 

(1.2.3) 

is the class o] all junctions q ( t ) e L "  with jormal 

q) (t) ". ~ c~ e 'kt. 
0 

1 F: a n d  M. RxEsz; see also ZYGMUND,  p. 145. 
2 R. NEVANLINI~A, p. 197--198.  
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Proof. (i) Let / (z) = ~ c~ z a E Hp. Then, for r < 1, 
0 

2~ 

f { k _o (a) 2z~l ](rett)e_t~tdt= oCa for k < 0 "  
0 

Hence (1.2.3) follows from /(re")-~q~(t). Also q~(t) EL p (w 1.1). 

(ii) Let q~ (t) ~ ~ ca e tat E L p, so that  
0 

2: :  if {ca for k>0 (b) 2--~ q~(t)e-'atdt= 0 k < 0 "  
0 

Hence, for k >  1, 
2~ 2~ 

i f  if  (c) c a = -  (p(t) c o s k t d t = - -  q(t) s i n k t d t .  
7f. 

0 0 

Writing q~=u-iv ,  ca=aa-iba,  we see that  u E L  ~, vELV; that  u has Fourier 

coefficients aa, ba and that  v is conjugate to u. Next, the function / (z )=  ~ ck z a is 
0 

regular in [z]< 1, since ck-+0. Also, with obvious notations, u(reit)-+u(t), v(rett)~v(t) 
p.p., and x u(re~t)Tu(t), v(rett) Tv(t) .  Hence /(reit)~q~(t) p.p.  and /(reit) TqD(t ). 
I t  follows that My (/, r)1' Mp (~) if r J" 1, so that  ] (z)E Hp. 

We note that  ](z) and ~ (t) determine each other uniquely p.p. 

2. Equivalent kernels. 

1 1 
2.1. Let ~ (t)E L e where - + - =  1. A kernel u* (t)E L ~ is said to be equivalent 

P q 
to ~(t) (in L~), and we then write ~* II ~, if 

2~ 2~  

(2.1.1) f q~(t) ~* (t)dt = f q~(t) u(t)dt 
0 0 

for all ~ E H p. The integrals exist, by HSlder's inequality. 

Theorem 2. ~*(t) H~c(t ) (in L ~) i/, and only i], 

(2.1.2) ~* (t) = x (t) + e 't ~, (t) 

where ~ (t) E H a. 

Compare Z I ' G M U N D ,  p. 87. 
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Proof.  (i) If x* II u, then u* - ~ fi L q and hence 7 (t) = (u*(t) - x (t)) e -~t E L a. Le~ 
Oo 

e i t  , - , ~  x ~ e ik t  = e - ! k t ,  7(t) 2. c~ . Putting ~(t) with k ~ 0 ,  into (2.1.1), we see that  ck=0  for 

k < 0. Hence 7 E H a, by Theorem 1. 

(if) Suppose that  u* is of the form (2.1:2). Then, clearly, ~t*fiL a. Now, let 

/ (z)  E Hv and g(z )E  Ha be the functions associated, by Theorem 1, with ~(t)E H v and 

~(t) E H a, respectively. By w 1.1 (if), it is possible to apply Cauchy's theorem to the 

function ] ( z )g ( z )  on the unit circle I~]= 1. This gives 

2~ 

(a) ] q ( t ) 7 ( t ) d t d t  = - i  ~ / ( ~ ) g ( ~ ) d ~ = O ,  
o I r  

which is equivalent to (2.1.1). Hence u* II ~. 

2.2. Let  u ( t )~  ~ c k e  ~kt E L  a. For some applications it is of 
- - ' O o  

0 

whether z 1 (t) E L a, where u 1 ~ ~. cke tkt. 

interest to know 

(i) z~(t)II ~(t) #,  and only i/, Ux( t )EL  a. This is obvious. 

(if) i I] 1 < q < c~ then ul (t) ]I u (t). 

We sketch the proof the formal details of which are easily verified. If u = u - i v ,  

then u E t  a, V E L  q. If ~ and $ are the conjugate functions of u and v, respectively, 

then it is known 2 that  ~ t E i  a, $ E L  e. N o w ,  putting co=ao- i /~o,  one verifies tha t  

~1 = U - i V where 

(b) U=�89 V=�89 

Here U E L a, Y E L a, so that  ~1 E L e. 

(iii) Suppose that 

(2.2.1) k(z)  = ~. en z ~ 
- - O O  

is regular in some annulus ~ < I z [ < 1. Then ~ (t) [[ ~t (t). 

For, kl (z) = ~ c, z "  is r6gular for [ z ] > ~ and hence n, (t) = k (e't) is bounded, so, 

that  ~1 E L ~ c L e. 

x Compare C ~ . S O N .  

2 See ZYGMUND, 10. 147. 
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2.3. I t  is convenient to use geometrical language. We consider the equivalence 

classes of functions Z E L p as 'points' in a 'space' L": if ~1 ~ - Z 2 ,  then Z1 and Z2 de- 

termine the same point in L p. This space becomes a Banach space on introducing 

as metric the norm 

(2.3.1) [I Z [[ = ][ Z lIT = i v  (Z). 

The 'triangle inequality', that is H Zl + Z211-< II Zl II + II Z2 II, is here Minkowski's inequality 

(2.3.2) My (Z~ + Z2) -< My (Zl) + Mp (Z2). 

Convergence in the space L v is 'strong convergence' according to the norm: Z , ~ Z  

is Ilzn-zb- 0. If l _ < p < o o ,  this is also Zn~Z" If p = o o ,  however, it is z~(t)-+z(t ) 

uniformly p.p.  and not just boundedly p.p., as Z n ~ g  denotes. 

T h e o r e m  3. The set S~ o[ all z* ]1 u is closed and convex in i q. 

Proof .  From the definition (2.1.1) of equivalence it is clear that  unllu and 

~ - + ~ *  imply u*]]~. Hence S~ is closed. Again, by  (2.1.1), if ~i][u, ~2Hu, then 

A x x + ( 1 - A ) ~ 2 H z  for any complex A, and, in particular, for 0_<A_<I. Hence S~is 

convex. 

2.4. Let ,~*][ ~. By (2.1.2), u * = u - 2  where )~EH q. The 2 form a linear sub- 

space A ~  H q, which is characterised by the property 

2~ 

(2.4.1) ] ~(t)2(t) dt=O for all ~ EH p. 
0 

We call, therefore, A the annihilator subspace of H p (in Hq). 

3. Extremal kernels and extremal functions. 

3.1. Given ~ E L q, our integral 
2~  

i f  (3.1.1) 1(90)= f ~  q~(t) u(t)dt  
0 

is a bounded linear functional on the subspace H p of L p. I ts  norm, on H p, is de- 

fined as 

= s u p  (3.1.2) IIII1.,=11III 

I ts  determination is (after an obvious normalization to M p ( ~ ) =  I1 11 = 1) exactly our 

maximum problem in H p. 
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We also write, with the notation in w 2.4, 

(3.1.3) (~ = inf i q  (u*) = inf [I ~* He = inf II x - 2 IIq, 

so that  ~ is t h e  distance of the given kernel ~ from the annihilator space A. 

By Hhlder's inequality 

(3.1.4) II ~r II -< ~ -  

Our main aim will be to establish equality here. 

We shall, usually, exclude the 'trivial' case [[I[[=0; that  is, I ( q ) = 0  for all 

EH p. In this ease e - f t z E H  a , as we see on putting q~=e -ikt for k_<0. Hence~[[0 

and 6~=0. Conversely, (~=0  implies [[I[[=0, by (3.1.4). Thus, in the trivial case, 

we have equality in (3.1.4). 

3.2. A kernel K [[ ~ is said to be an extremal kernel (associated with ~) if 

(3.2.1) IIKllq=o~, 

so that  the inferior in (3.1.3) is a minimum attained at  K. In the 'trivial' case 

(~ = 0, K-~ 0 is an extremal kernel. 

Th eorem 4. The set S ~  o~ all extremal kernels K H ~ is either empty, or convex 

and closed in i q. 

Proof.  The sphere IIZIIq-<(~, with centre 0, is convex (by (2.3.2)) and closed 

in L q. Hence S~,  the intersection of the convex and closed set S~ with this sphere, 

is either empty, or convex and closed in L q. 

We shall later see that,  actually, S~ is not empty. 

3.3. A function ~5 E H p is said to be an extremal function (for l )  if [[ q~ {{ = 1 and 

(3.3.1) I ( q i )  = I l I II .  

Theorem 5. ? / I lz l l>0,  then the set E o~ all extremal /unctions q~ is either empty, 

or closed and convex in H p. 

Proof. (i) If C n e E  and Cn-+~ (in LP), then, clearly, r  ~, [[ ~ .  ]]-+l] ~ ]] 
and I ( r  Thus II~l l=l ,  and C e E :  E is closed. 

(ii) Let r  ~B, r ~E, and 

(a) ~ = A  @ 1 + ( 1 - A )  @2, O_<A_<I. 
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Then �9 E H v and 

(b) 

while 

(e) 

W. W. Rogosinski and H. S. Shapiro. 

I (q)) = A I (q)l) + (1 - A) I (~,) = II 1 II, 

IIr II ahll+ O-A) II r I. 

also II r > o, because otherwise q~ = O, I ( r  = II I II = o. Hence II r II = a where 0 < v q < 1. 
I t  follows that  O - l C e H  p, 118-'+11=1, and 

(d) IIZ11>-1I(8 -lr162 
so that  8 =  1 and @ E E:  E is convex. 

We note that,  in the trivial case Ilzll=0, I ( ~ ) = 0  for all ~0EH p. E is the 

sphere [] ~ [ ] =  1 which is closed but not convex. 

4. E x t r e m u m  problems in normed l inear spaces. 

4.1. The situation we are dealing with becomes clearer when we consider it as 

an instance of a more general one.  

Let  X be a normed linear space over the field of complex numbers. The norm 

for any z e X  is denoted by IIZII; it satisfies, in particular, the triangle inequality 

[I;~1 + Z~ ][ < [I gl ][ + ]l Z~ [[. If B is a (bounded) linear functional on X, its norm is 

defined as 

(4.1.1) ][BH= supx[B(x)] , z f iX .  
Ilxll- 

With this norm the B form the 'conjugate' normed linear vector space X* of X. In 

particular, IIBII satisfies the triangle inequality. 

Now let @ be a linear subspace of X, and let I be a linear functional on @. 

Its norm, on r  is 

(4a.2) I l l l l+= sup Iz(~) l ,  ~ e r  
II~II-I 

In particular, a B on X becomes an I on qi by 'restricting' it to the ~ E ~ .  Clearly, 

(4.1.a) IIBII+-<IIBII. 

A functional B*EX* is said to be equivalent to I if B * ( r  for all CE@; 

we then w~te m i l l ,  C1~rly, IIB*II+=II/II- ~ that, by (4.1.3), 

(4.1.4) IIiI1+_< "~,llmll. 
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T h e o r e m  I. The set $I of all B* I[ I is closed and convex in X*. 

The proof is like that  of Theorem 3. 

4.2. A functional B~e X* is called an extremal functional, associated with I ,  if 

B~'[[ I and 

(4.2.1) IIB~II = rain IIB*II. 
B*III 

T h e o r e m  II. The set S~ of all extremal functionals'B ~ II 1 is convex and closed 

in X*. 

The proof is like that  of Theorem 4, (2.3.2) being replaced by the triangle in- 

equality in X*. That S~ (and hence $1 in Theorem I) is not empty, is part of the 

following theorem, which expresses a general '~rrineiple of duality' connecting a maxi- 

mum problem in X with a minimum problem in the conjugate X*. 

T h e o r e m  III.  There exists at least one extremal functional B ~ [[ I. Moreover 

(4.2.2) I l I I l . =  sup I x ( ~ ) l =  rain IB*II--IIB~II. 
I1~11 <1 B* II 

Proof.  By the Hahn-Banach extension theorem for a normed linear space over 

the complex field 1, every I on �9 is the restriction of some B* 6 X* : B*  III. More- 

over, there is at least one such B~l l t ,  for which l iB* II--Ilzll , .  

We note that,  if B~ is a particular linear functional equivalent to I ,  then the 

B* II l are exactly the linear functionals B* = B~ - L, where L (~0) = 0 for all ~0 6 ~ .  

The L form a linear subspaee A of X*, the annihilator space of ~ .  We thus have 

(4.2.3) II B ~ II -- m m  U B~ - L II = ~,, 
LEA 

SO that  dt is the distance of any B~ from A. Again, Sz is a 'parallel' at distance 

dr, to A. 

4.3. The space X is said to be 'strictly convex' if 

(4.3.1) If Z, § x, II = II z, II + II z, II 

holds if, and only if, a t Z, = as Z~ where a,  ~ 0, a2 > 0, a~ + a ,  > 0. 

T h e o r e m  IV. l /  X* is strictly convex, then there exists exactly one extremal June- 

t io~t B ~ II Z. 

* Compare HXLLE, p. 20. For 'separable' spaces, like L~, the proof of the extension theorem 
does not require transfinite induction. 
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Proof. Let BY and B~ be extremal functionals. Then, by Theorem II, 

B1 ~ = �89 (BY + B~) is also extremal. Hence 

1[ �89 (B~ + B~)[[ = [[ I[[~ = �89 ([[ BY[[ + [[ B~ [[). 

Since X* is strictly convex, it follows that, say, B ~ = 2 B ~  where ~t>~0. But 

iiB ti=liB lD=liIif  so that 

4.4. A point ~ E  �9 is said to be an extremal point, for I, if [[~0~[[ = 1 and if 

(4.4.1) I ( ~ )  = max II  (~o) 1. 

We note that, if [[I[[~>0, and if ~0fi~, ][~[[_<1, and I(q~)=[[I[[v, then ~0 is extremal. 

For, certainly, ~0#O where O is the zero point of X. Now, if [[~0[[=2, 0<2_<1, 

then [[~t-l~0]]=l and thus [I(2-1q)[_<[[I[[v. On the other hand, I(2-1q)=~-1I(~0)= 
= ~ . - l l l [ [ l ~ l [ I l l  ~.  ~ e n c e  ~ = 1  and. I [ ( p l l = l .  

T h e o r e m  V. I /  [[I[[ ,>0, then the set E~ o/all  extremal points ~o ~ /or I is 

either empty or convex in X. 

The proof is like that of part (ii) of the proof for Theorem 5. 

We also note that, if ~ is a closed subspace of X, then g ~  is also closed. 

T h e o r e m  VI. I /  X is strictly convex and i/ [[ I [[~ > 0, then there exists at most 

one extremal point qJ~ ]or I. 

The proof is like that of Theorem IV. 

4.5. The space X is said to be (locally) weakly compact 1, if, given any sequence 

{Zn} in X with [[Xn[[-< 1, there exists a subsequence {Z,k} and a Z E X such that 

(4.5.1) B (Z~z)-->B (g) 

for every B E X*. 

I t  follows that  I[ :~ II <- 1. For, [B (gnk)[ -I[ S [I [I Z~k tl -< II B II, and hence, by (4.5.1), 
[B(z)[<[[B[[ for all BeX*.  Now, if g:#O, there exists" a B such that B(;~)=I and 

[[B[[=[[Z[[ -1. Hence ][g[[_<l. 

T h e o r e m  VII. I /  X is weakly compact, and i] �9 i~ a closed subspace o /X,  then 

there exists at least one extremal point q~ ]or I. 

1 Such a space is reflexive, and vice versa; compare HILLE, Theorem 2.11.2; BOURBAKI, 
EBERLEII~. 

s Compare BANACH, p. 55 and 57. 



On certain Extremum Problems for Analytic FunctiOns. 301 

Proof. We may assume that  H/Hv>0. Then there exists a sequence of ~0~ E 

such that  I I~nl l=l  and for all B'HI. Since X is weakly 

:compact, there exists a subsequence ( ~ k )  and a g E X  with HzI]_<I such that  

B(q~n~)-~B(z ) for all B E X *  and, in particular, for all B*I[I. Hence B*(y,)=llli]v 

for all B* II I. 

On writing B * = B ~ - L ,  we see that  L(X ) = 0  for all L s  where A is the 

annihilator space of ~b. Hence g E ~5. For, otherwise and since ~5 is closed, g would 

have a positive distance from ~,  and hence there would exist 1 an L E A such that  

L(Z):V0. I t  now follows, from our remark after (4.4.1), that  g is extremal for I. 

5. Existence theorems in Hp.  

5.1. The Banach spaces X = L  ~ have the following properties: 

(i) If 1 _< p < ~ ,  then the general linear functional B on L p has a unique repre- 

sentation 2 
2 g  

(5.1.i) B(Z ) = ~ z(t) u(t) dt, 
0 

where ,~EL q and ]]BII=]]u]] q. Hence, if l _ < p < ~ ,  the conjugate space X* of L" is 

the space L Q, in the sense that  X* and L q are isomorphic and isometric under the 

mapping B<-~ x. 

(if) If p =  ~ ,  the formula (5.1.1) does not represent the most general linear 

functional on Lr162 the form of the latter is rather complicated. 

If C is the subspace of the continuous functions c(t), then the general functional 

B on C is of the form 2 
2z 

(5.1.2) B(c)= ~ c(t) dtt(t J, 
o 

where the complex-valued function /~ (t) is of bounded variation in (0, 2 ~}, and 

2~ 

(5.1.3) IIBIIc = Id (t)l. 
0 

'This representation through /~ is unique, apart from an additive constant to /~. 

1 Compare BANACH, p. 55 and 57. 
2 Compare BA~ACH, p. 61--65, for real L~. The generalization to complex L~ is easy .  



302 W.W.  Rogosinski and H. S. Shapiro. 

(iii) If 1 < p <  ~ ,  then L p is (locally) weakly compact X; that  is, given any 

sequence {Zn} in L v with ]]2;-I] -< 1, there exists a subsequence {2;nk} and a 2; e LY 

with II X II < 1 such that  
2~ 2~z 

(514) f f z dt 
0 0 

for every u EL q. 

If p =  ~ ,  (5.1.4) still holds, but  is no longer equivalent to weak compactness 

since (5.1.1) is not the form of the general linear functional on L ~. 

If p =  1, (5.1.4) does not hold. 

5.2. The class H v is a closed linear subspace of L ~. 

For, let ~ , E H  ~ and let ~ , -+g  in X;  that  is, ~ , - ~ Z  if l < p < ~ ,  and ~--~Z 

uniformly p.p. when p = ~ .  Then 

2~ 2:~ 

(5.2.1) f cpn (t)e-'n dt--~ f g(t)e --'n dt 
O O 

for all r. On taking r = - 1 , - 2 , . . . ,  we see that  2;EH v. 

The integral 
2~ 

if (5.2.2) I ( ~ ) =  ~ q~udt, of e l l ' ,  ueL",  
0 

we are discussing here, is a restriction to H" of (5.1.1). If l _<p<c~ ,  then, con- 

versely, the restriction of every B on L ~ yields an I .  

Our maximum problem is the determination of II I I1~v- 

5.3. T h e o r e m  6. I[ 1 <p_<oo,  then there exists at le, ast one extremal ]unction ~.  

Proof.  If 1 < p <  ~ ,  this follows from Theorem VII. 

The following similar argument holds also for p = ~o: 

There exists a sequence {~.} in H p with I1~-II = 1 such that  

2~ 

if (a) l(cp,,)= ~ 
0 

Hence, by w 5.1. (iii), there exists a subsequence {q-k} and a X E L~ with Ilxll-< 1 such 

tha t  (5.1.4) holds. In particular, (5.2.1) holds for the ~ k -  I t  follows that  X E HP 

and hence that  X is extremal, since Z(x)=llIIl.  by (a) and (5.1.4). 

a C o m p a r e  BANACH, p .  1 3 0 - - 1 3 1 .  
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T h e o r e m  7. I[ 1 _< p < ~ ,  then there exists at least one extremal kernel K I1 ~. 

IIII1,,= sup  I ( 9 o )  = rain I1~*11. = IIKII.- 
I1'~ I -  ~* I I~ 

This is an immediate consequence of Theorem I I I  1, since I is the restriction to H p 

of a general linear functional B on L p. 

5.5. In the case p = ~o, Theorem I I I  is not immediately available. For, it is 

not obvious that  the extremal functional B ~ of that  theorem should be of the special 

form (5.1.1). 

We shall require the following result due to F. and M. RieszZ: 

Suppose that  # (t) is of bounded variatiop in (0, 2 zt). If 

2~t 

(5.5.1) f e 'kt d p ( t ) = O  (k=0,  1, 2 ...), 
0 

then # (t) is absolutely continuous. 

T h e o r e m  8. I f  p =  ~ ,  then there exists at least one extremal kernel K II ~, satis- 

/yina (5.4.1). 

Proof.  (i) Let C be the space of continuous functions c(t), and F the subspace 

of continuous r ( t ) e l l %  By Theorem III ,  there exists an extremal B ~ on C, such 

that  ]lB~li=HIIIr and B ~ ( r ) = I ( r )  for all r e / ' .  By (5.1.2), B ~ is of the form 

2~t 

(5.5.2) B~(c) = ~ c(t) d~(t). 
0 

Now, e m E/"  for all k = 0, 1, 2 . . . .  Hence 

2~ 2~ 

(a) f e 'kt dlx (t) = f e 'kt ~ (t) dr, 
0 0 

o r  
2~ 

(b) f e 'ktd ({# - ~tx} (t)) = 0, 
0 

t 

where ~u 1 (t) = f ~ (3) d v. 
0 

Since ~t 1 is absolutely continuous, /x itself is so. 

K (t) E L t and 

I t  follows, from (5.5.1), that  # - / ~ t  is absolutely continuous. 

On putting ~t '( t)= K(t), we have 

t C o m p a r e  f o o t n o t e  o n  p .  299.  

s C o m p a r o  ZYGMUND, p .  ]58 .  
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2xg 

(5.5.3) B~(c) = ~  c ( t ) K ( t ) d t ,  
o 

so that  K l] u ill F. Also [I S Ill = I] I [[r, and hence K is ex~remal in F. 

(ii) If  we put K = u + ~ ,  then A EL t and it follows, from (a), that  

27t 

(c) f e 'kt2( t )dt=O (k=0,  1, 2 ...). 
o 

Hence, by Theorem 2, K II ~ in H ~ itself. I t  follows that  III II-= < II K II~ = III IIr- 

On the other hand, clearly, II I I1~_< II I I1.~. Hence II I I1.= = II K II,, and K is the 

required extremal kernel in H ~. 

6. Uniqueness theorems. 

6.1. We assume, /rein now on, that I[ I II > 0. 

If 1 < ~ < ~ ,  then L r is 'strictly convex'. This expresses a familiar fact concerning 

the sign of equality in Minkowski's inequality (2.3.2). 

T h e o r e m  9. I] 1 < p < oo, then there exist exactly one extremal ]unction q~ lot I ,  

and exactly one extremal kernel K [I u. Moreover 

(6.1.1) /@)=IIKIIr 
This follows from Theorems 6 and 7, and from Theorems IV and VI. 

o [3 
T h e o r e m  1 0 .  I ]  p = 2 ,  a n d  u ( t)  ~ ~.  ck  e '~t ,  t h e n  [[ I ][3 = ~. [ca a n d  

- - ~  - - 0 0  

o 0 3 =~/z 5 �9 e tkt  (6.1.2) K (t)~ ~ c~ e'kt; q) (t) = { 5 I ck I } ~ -~ �9 
-oo - ~  O 

Proof.  First, by w 2.2. (ii), K II ~. Also any u* II ~ is of the form u* = K + ~*, 

where ;t* ,,~ ~. ck e t~t e H 2. Hence 
1 

o 13 = "13 o 13= (a) II~*ll 3=_=21c~ + ~ [ e ~  _>_:Ylc~ IIKII 3, 

so that  K is extremal. Clearly, I] + II = 1 and 
2n 

(b) I(q5)= ~ q, Kdt={~lc~lq'l,=llK][,_.. 
o 

so that  + is the extremal function. 

This theorem shows that  all extremum problems in H 2 are of elementary nature. 1 

1 Compare  [M-R], p. 297. 
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6.2. T h e o r e m  11. I] 1 <_p < ~ ,  let q5 E H v with t] qb lip = 1 and let K ]] ~ in Lq. 

Then q) is an extremal /unction /or I,  and K is an extremal kernel i/, and only 

i], ]or almost all t 

(6.2.1) q) (t) K (t) >_0 

and 

(6.2.2) ] K (t)[~P ~- A [ ~ (t)[]~q, 

where 

(6 .2 .3)  A = II z II TM. 

I /  p =  1, then (6.2.2) means 

(6.2.2)1 ]K (t) l-: II III; 

i/ p = ~ ,  then 

(6.2.2)~r I q' (t) l -  1 

/or almost all those t /or which K (t)#O. 

Proof .  Extremal functions ~ and extremal kernels K are characterized by their 

satisfying (6.1.1), and this equation can be written as 

2zt 2 ~  

(a) 2 =  ~ I ~ K  l a t= l l  ~ l l ,  II K IIq= IlK I1o. 
o 0 

The first equality here is equivalent to (6.2.1), and the second to (6.2.2). 

If 1 < v < ~ ,  we have [ K (t) I q -~ A vq I 0 (t)I v and hence 

(a) II I H q = II U I1' = A II II p = J 

This gives (6.2.3). Similarly, with p = 1, q =  ~ ,  we obtain (6.2.2)1; one should observe 

that, by w 1.1. (iii), ~ ( t ) # 0  p.p.  If p = ~ ,  q = l ,  we obtain (6.2.2)~r 

T h e o r e m  t2.  I] 1 <_p < c~, and i/ an extremal /unction qb exists, then the extre- 

real kernel K is unique. 

Proof .  The theorem is new only for p = 1 [see Theorem 9]. We have r ( t )#  0 

p.p. ,  by w 1.1. (iii). Hence (6.2.1) determines arg K (t), and (6.2.2)[or (6.2.2)1] deter- 

mines I K (t)] p.p. 

T h e o r e m  13. I] 1 <p  <_ ~ ,  then the extreraal /unction qb is unique. 
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Proof.  ~5 and K both exist, and the theorem is new only for p = ~o [Theorem 9]. 

Now HKI[a=HI[ I>0 .  Hence K ( t ) # 0  in a set E of positive measure. I t  fol- 

lows that  (6.2.1) determines arg ~b (t), and (6.2.2) [or (6.2.2)r162 determines ] ~b (t) I P.P. 

in E, when some K has been chosen. By w 1.1. (iii), r (t) is then determined almost 

everywhere. 

6.3. T h e o r e m  t4:. 11] 1 <-p <_ ~ ,  and i] an extremal function q5 exists, then the 

extremal kernel K is unique. In  particular, i] 1 < p <_ ~o, then the extremal kernel is 

unique. 

Proof.  The theorem is new only for p = oo [Theorem 12]. Let K (t)--=-~ (t)+e~tA (t) 

where A E H a. Then 

(a) r (t) K (t) -= ~b (t) ~ (t) + e ~t r (t) A (t), 

where ~b A EH 1 since ~ EH p. Hence e ~t �9 (t) A (t) are the radial boundary values 

G(e ~) of a function G(z) EH 1 for which G(0)=0.  If  we put G ( z ) = U ( z ) + i V ( z ) ,  

then, by (6.2.1), 

(b) V (e 't) - - 3 (4  (t) u (t)). 

Now, since G (0)= 0, a classical formula by Schwarz gives, for 0 < r  < 1, 

(c) G( rz )=  2 z t i l f v ( r c ) ~  dC 
ICI=I 

Again, by (1.1.2), V ( r ~ ) T V ( ~ )  as r ~ l .  Hence, by (b) and (c), 

(6.3.1) G(z)= 1 f ~ + Z d ~  ' ~=e~t, ~ (~  (t) ~t (t)) $ -  z 
IClffil 

so that  G(z) is determined, and hence G(eit)=-e ~t q ) ( t )A  (t) is determined p.p. Since 

~b ( t )#0  p.p. ,  A (t) and thus K (t) are also determined p.p.  by ~b. 

7. The case p = ] .  

7.1. We have now proved all the clauses of Theorem A (of the Introduction) 

e x c e p t  those relating to the non-existence of extremal functions �9 and the non- 

uniqueness of the extrema] kernels K, in the ease p = 1. 

Before we turn to these clauses, it is of importance for applications to state a 

case in which at  least one ~ exists. By Theorem 12, the extremal kernel K is 

then unique. 
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C ~ikt Given a kernel ~ (t)'~ ~ ~ , we associate with it, formally, the Laurent-function 

(7.1.1) k (z) ~ E c~ z ~. 
- - O 0  

T h e o r e m  15. I /  p = l ,  z r  ~, and if theassociated /unction k(z) is regular in 

some annulus ~ < t z l <  1, then there exists at least one extremal ]unction q9. Also the 

extremal kernel K ][ ~ is then unique. 

--1 OO 

Proof .  The function kl (z) = ~ ck z ~ is regular for [ z I > ~, and ks (z) = ~ ck z ~ is 
- - o o  0 

--1 
regular for ] z ] < l .  Also, as r ~ l ,  k l ( re~ t )~ l ( t )=  ~cke  ~kt uniformly so that  xl(t) 

- - r162  

OO 

is continuous. I-Ience u2 (t)~ ~cke  ~kt E H ~, k~ (z)cHor and k~(re it) ~Z ~2 (t). Finally, 
0 

(a) k (re 't) -~ ~ (t). 

Now let ~ r H t and let [ (z)(ell1) be associated with ~;  that  is, ~ (t)=-/(e't). Then 

2~ 2~ 

if (b) I @)= ~ q~(t)~(t)dt= ~ l(re~t)k(re't)dt 
0 0 

holds for Q < r < l ,  since /(z) k(z) is regular in ~ < l z ] < l  and because of (a) and 

/ (re 't) ~ '~  (t). 
Next, there exists a sequence of functions .~m ~.H 1, with ][ ~m ][ = 1, such that  

(c) I (w)-~  [[ I II. 

The associated functions /m (z), plainly, are uniformly bounded in every fixed circle 

[ z ] _< r ( < 1), and hence are 'normal' in [z ] < 1. There exists, therefore, a subsequence 

{mn} and a function F (z), regular in ]z I < 1, such that  ]m k (z)-+F (z) uniformly in 

every fixed circle ]z]<r (<1) .  I t  follows that  

(d) M 1 (F, r) = lira M 1 (Ira k, r) _< 1, 
k--~OO 

so that  F (z) e l l1  and II �9 II ~ 1, where r (e H 1) is the boundary function of F (z). 

Now, by (b), 

2~ 2~ 

( e )  / ((pink) = f [ m  k (re't)]c (re it) dt  ---> ~--~ f F (reit)]c (re it) dt=I(ep), 
0 0 

so that, by (e), I ( ~ ) =  ]] I I[. Hence r is extremal. 
2 0  -- 533806. Acta mathematica. 90. I m p r i m d  lo 3 d( tcembro 1953. 
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7.2. In the 
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following example, which was first discussed by L. Fej~r and 

F. Riesz 1, there exists no extremal ]unction ~b. 

Let ] ( z )e l l ,  with [I ~ II = l, where ~ (e H 1) is the boundary function of ]. We 

consider the integral 
1 

(7.2.1) J (/) = f / ( x )  dx.  
- 1  

Since ](re~t)-~9~(t), we can apply Cauchy's theorem and obtain 

(7.2.2) J (/) = - i f p (t) ett d t = I (99). 
0 

Here the given kernel is u ( t ) = ( - 2 g i e  ~t, 0>; that  is u ( t ) = - 2 7 e i e  ~t for 0_<t_<g, 

and u ( t ) = 0  for g < t _ < 2 g .  An equivalent kernel is K(t )=u( t )+:~ie~ t ;  that  is 

K =  < - g i e  ~t, gie~t>. I t  follows tha t  

(7.2.3) [ J (/) [ <_ u. 

I t  was shown by Fej4r and Riesz that  this estimate is best possible, so that  ] I IH=~  

and K is an extremal kernel. 

We shall now show that  equality in (7.2.3) is impossible. Suppose that  r were 

an extremal function, so that  I ( r  By (6.2.1), we would have 

Ys 7~ 
(t) = <~- - t, - ~ - t>. arg 

Since 4~ E H 1, we have for all k >  O, 

2:z ; 2:T 

(a) 0= - i f  ~}(t)e'(~+l)t dt = I q~(t)le'~t dt - f [ {~(t)]e'kt dt. 
0 O 

On taking conjugate complex values, we see that  this holds for all k. Thus the two 

functions of L 1, ~1 = <1 {b [, 0> and ~ = <0, ~> would have the same Laurent coef- 

ficients. I t  follows that  ~l-vp2 and ~ - 0 ,  which is impossible. 

7.3. In our second example the extremal kernel is not unique By Theorem 12, 

again no extremal function can exist. 

We consider 
:t/2 

if (7.3.1) I(~o)= ~ ~ o ( t ) a t - ~  ~(t)dt  
0 ~12 

with 

1 L.  F~.J~R a n d  F.  RIESZ; s e e  r e f e r e n c e s .  
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Clearly, 111 II ~ 1. 
extremal kernel. 
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~ 

j 7~ 1 O<t<~ 

~(t)= - 1  for ~ < t < ~  

0 zt<t_<2zt. 

We shall show that II I II = 1, so that  u (t) ,  for which II ~ II = a, is a n  

/s 

I I 

I 

(7.3.2) 

Fig. 1. 

0~ 

- i :  

Fig. 2. 

R 

R - i  

Let R >  0, and let /(z) be the function that maps the semi-circle [z t__< I, ~z_> @ 

schlicht onto the rectangle with vertices - i ,  R - i ,  R and 0 in such a way that 

1.~-+ - i ,  i+-'.R, and - i*-~0 [Figures 1 and 2]. The whole circle I z]< 1 is then mapped 

onto the rectangle with vertices - i ,  R - i ,  R+i, i, and - l + + i .  Also there is an 

7~ 
y=e t~, 0 < t ~ < ~ ,  such that ~*--~R-i; and there is an y*=e ~*, ~*=~t-O, such tha~ 

~* +-->R +i. 
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Le t  q~it)-i~/'(~) where ~ = e  '~. Then  lm(t)Idt=ll'(t:)Idt is the element  of arc 

a long the rectangular  map  of [ $ [ =  1, while arg ~ (t) determines the  direction of the 

tangent ia l  vec tor  to  this map.  Hence  ~0 (t) > 0 for 0 < t < 0, ~0 (t) < 0 for ~ -  0 < t < ~, 

while ~0 (t) is purely imaginary  on the  remaining arcs of I~1 = 1. I t  follows tha t  

0 e~ ~12 ~ - ~  

'(f J f } (a) 1 (~ )=~-~  + l/'(r + ~  - I/'(r 
0 n -O '  ~' ~12 

(b) 

On the other  hand,  

f, }R I I ( ~ ) l > _ ~  + l '(~)ldt = - .  
0 ~ - 0 '  

2 ~  

(c) 2~11~11= f I/'(~)ldt=2R+4, 
0 

the  total  length of the rectangle. On replacing ~ by  ~* = ~-[[ ~0 I[ -1, we have II w* tl = 1 

and I I (~*) I>  RR+---2" Hence,  on le t t ing R--> ~ ,  we find II I II >- 1", and thus  II I II = 1. 

:Next, it  is easy to  ver i fy  t ha t  the funct ion 

(7.3.3) w = g (z) = - , e = e i";4, 

where  the root  has the principal value,  maps I z l <  1 schlicht onto the circle I wl< 1 

slit along the real interval  - 1 < w _< 0, in such a way t ha t  1 ~ - I, i §  - 1 §247  - 1. 

Now, we may  add to  our  ex t remal  kernel  u in ( 7 . 3 . 2 ) t he  boundary  values 

~g($) ,  $ = e  ~t, to obtain an equivalent  kernel u*. If  we can prove tha t  I lu*l l= 

= Max I n* (t) l = 1, then  ~* is also un ext remal  kernel ;  we have then  an infinity o'f 

ex t r ema l  kernels, by  Theorem 4. First ,  I u* (t)[ ~ 1 for ~ < t < 2 ~, since [ g (~) [-= 1 and 

-=0 there.  So we have to  prove t h a t  [u* (t)[_< 1 for 0_<t_<z~. For  reasons of sym- 

T~ 
met ry ,  we may  assume tha t  0_<t_<~-  

Now, for these t, 

1 - r  
(d) 1 + ~ i t an  t 12, 

so t ha t  

(e) + ~ I  
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say ; and u* (t) = 1 - e it h 9 (t). Hence 

(f) [ ~* (t) 12 = 1 - 2 cos t h 2 (t) + h 4 (t) = 1 + h 2 (t) [h 2 (t) - 2 cos t]. 

If we put  4 =  tV~a-nant/2, then  0 < 2 < 1 ,  c o s t = l - 4 ~  1 + 4 4' and 

{1 - 4~ 2 1 - 4' P (4) 
(g) h 2 ( t ) - 2  cos t =  \ i ~ ]  - 2 1 + 4 ~  (1+ 2)2 (1+ 4') ' 

where 

(h) 
P (4) = (1 - 4) 2 (1 + 4 4) - 2 (1 + 2) ~ (1 - 4 4) 

= - [(1 - 4 a) (3 4 + 4 ~) + (1 - 4 5) (1 + 3 4)] < 0. 

Hence In* (t) l~< 1, by  (/). 

7.4. The following simple example shows 1 t ha t  there m a y  be a n  i n f i n i t y  o/  

extremal  /unc t ions  r  by  Theorem 12, K will be unique in this case. Consider 

2it 

I f  (7.4.1) I (q~) = ~-~ q ~ ( t ) e - ' t d t .  

o 

Clearly, III H = 1 and r ( t ) = e  tt is an extremal function. 

real kernel. 

However, any  of the functions 

(7.4.2) r  ( t )= {1 +[0~ ] '}- '  e ̀ t ] e .t - ~ I ~, 

is also extremal. For,  ~b, ( t ) E H  1, as boundary  function of 

F~ (z) = {1 + I ~ 12} -1 (z - :r (1 - d z). 
Also 

27t 

' f  (a) 2-~ l e ' t - ~ ] ' d t = l + l ~ r '  

o 

Also u ( t ) = e  - i t  is the extre- 

I 1<1, 

so tha t ,  clearly, ]1 r II = 1 and I (r = 1. 

8 .  R a t i o n a l  k e m e l s .  

8.1. In [M-R/ integrals of the form 
27t 

(8.1.1) J ( / ) =  2 ~ t i  / ( $ ) l ( ~ ) d ~ =  ~ q ~ ( t ) z ( t ) d t f I ( q ~ )  
I~I- I  o 

Compare  [M-R],  p .  307. 
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were discussed, where / E H v  with boundary function ~ E H p. The kernel function 

~(z) was supposed to be meromorphic in I zl <1  with a finite number of. poles fi~ 

there, each pole counted according to multiplicity. Moreover, Mq (~, r) was to remain 

bounded for sufficiently large r < 1, so that  the boundary kernel 

(8.1.2) ~ (t) =- e' ' r (e")  

belonged to L q. 

The function ~ (z) can be replaced by a rational kernel function ~* (z), which is 

the sum of the principal parts of ~ at the fl~. For, :if ~* is associated with ~* as in 

(8.1.2), then, clearly, u* 11 ~. 

Our general theory shows that,  in this rational case, the following holds: 

I. q5 always exists. For, in the only problematic case p = l ,  we may apply 

Theorem 15. 

However, if p = 1, ~ need not be unique as the example in w 7.4 shows. 

II. K always exists uniquely. For, in the case p = l ,  we may apply I and 

Theorem 12. 

8.2. If r (EH p) is extremal, we write F (z) for the associated extremal function 

of H~. Similarly, if K II u (E Lq) is extremal, so that  the associated function K (z) is 

meromorphie in I z l <  1, we put ,  in view of (8.1.2), 

(8.2.1) ~ (z) = z -1 K (z) 

and speak of the extremal kernel function ~ (z). 

The main theoretical result in /M-R/ wast :  

T h o o r o m  i6.  Let 1 <_ p <__ ~ ,  and let ~ (z) have n poles ~ in ] z I < 1, each counted 

according to multiplicity. Then there exist n - l  numbers :r with local<_ 1, such that 

(i) ~ (z) has a unique representation 

z-o~,_ ~,--~z ~':~"lI - z) TM " l - ~ , z  z)_2/q, ((8.2.2) ~ (z) = A 1-I' 1 (~ - a, H ~ (1 - ~, 

where I I '  is extended over all, some, or none O/ the ~, with Ir162 ]< 1. 

For no other /unction o~ the /orm (8.2.2) is K II ~. 

(ii) F (z) is extremal i/, and only i/, M~ (F, 1) = II ~b I[ = 1, J (F) = I (r  > 0, and 

i /  it is o~ the /arm 

1 [M_R] ' formulae  (1.3.5) and  (1.3.6), p. 277.  
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n--I  n 

(8.2.3) F (z) = S 1--[" ~-S ~ z  LI~ (1 - 5, z) ~/p H1 ( 1 ,  f~,z) -~/p. 

Here 1-[" is complementary to 1-[' with respect to the ~, with [a, I< 1. 

The powers, occurring in both /ormulae, are principal determinations, having value 1 

a t z = O .  

We note that, when p >  1 (q< co), then all the ai are determined, through 

(8.2.2), by  the unique function ~(z). Hence F(z) ,  in (8.2.3), is then also fully 

determined, in accordance with our general theory. If, however, p = 1 (q= ~ ) ,  then 

only the ~t in 1-[' are determined by ~ (z). If their number m is less than n - 1 ,  

then n - 1 - m  of the parameters ~ in (8.2.3) are arbitrary, and we obtain an in- 

finity of extremal functions F (z) (and ~b). 

8.3. If we write 

(8.3.1) H ( z ) =  f i  . z - f l ,  I1 1 - (z)' 

then H (z) is regular in [z{< 1 and belongs to Hq. Moreover, if ~ (z) has a pole of 

order p~ at 8,, then the values of H (z) and of its first p~-  1 derivatives at 8, are 

prescribed. For, ~ (z) has the same principal parts at the 8, as has the given kernel 

[ (z). Formula (8.2.2) now appears as a unique interpolation /ormula 1 

z - - ~  ~ [1  
(8.3.2) H (z) = A 1-I' 1 _ - - - ~  z ~1 ~ (1 - 5, z) TM 

for a function H (z)E Hq with n prescribed 'values' at the fl~. For p = 2, q = 2, this 

is exactly the classical interpolation formula of Lagrange. For q=oo (p= 1), we have 

]rl[- ~ Z - - ~  
(8.3.2)~ H (z)= A I I  : - '  

1 - a,z 

and for q = 1 (p = oo) the polynomial interpolation formula 

(8.3.2)~ H (z) = A H '  (z - a,) (1 - 5, z) l-I* (1 - 5~ z) 2, 

where l-I* is complementary to 1-I' with respect to all the n - 1  parameters ar 

Io 1-<1: 
The interpolation formula (8.3.2)1 was first obtained by  I. Schurl;  and (8.3.2)~ 

by  Kakeya 1. 

By  Theorem 16, the solution of the interpolation problem (8.3.2) is equivalent 

to the determination of ~ (z) and F (z), that  is, to our original extremal problems. 

1 Compare  [M-R], p.  278-279. 
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8.4. In [M-R], Theorem 16 was obtained, partly by quoting results of previous 

writers, partly by generalising their methods of proof, and often only in a sketchy 

way. 1 We now propose to give an independent and complete proof for Theorem 16. 

We first require the following 

Lemxna.  I /  F (z) and ~ (z) are some extremal ]unction and the extremal kernel 

]unction, respectively, then there exist n - 1  numbers ~,, with I ~, ] <_ 1, such that 

n--1 

l - [  (z - ~,) (1 - ~, z) 
(8.4.1) L ( z ) = F ( z )  K ( z ) = z F ( z ) ~ ( z ) = C z  1 

1 

Proof.  As we remarked in w 8.1., we may assume that  the given kernel [(z)is  

rational. Also, by Theorem 2 and (8.2.1), 

(a) K (z) = z (~ (z) + G (z)), 

where G eHq. I t  follows that  K ( r J t ) ~ * K ( t )  as r - + l - o .  Also F(rg~)~q~( t ) ,  since 

F E Hr. Hence 

(b) L (re 'c) T A (t) - r (t) K (t). 

Again, by (6.2.1), for almost all t, 

(c) A (t) > 0. 

We can now apply the Schwarz principle of continuation. For, because of (b), the 

usual proof for this principle is here available. We conclude that  L (z) is a rational 

function, satisfying L (z) = L (1/~). 

The poles of L (z) in ]z ]<  1 must be amongst the fl,, and with each such pole 

there is also the pole f]/-1, of the same order .  Similarly, w i t h  every zero ~, in I z[:< 1 

there occurs also the zero ~(1, of the same order: Moreover, the zeros cr on Izl = 1 

must be of even order, because of (c). From this follows that  L (z) is of t h e  form 

(8.4.1). 

Suppose, for example, that  all fl, ~ 0. Then L (z) has a zero at z = 0, and hence 

has one, of the same order, at z = cr If this order is k, then exactly k - 1  of the 

a, are nought; and, in order that  there be a zero of order k at z=  ~ ,  we see that  

L (z) must be of the form (8.4,1). The discussion in the general case is similar. 

1 Compare  [M-R], footnote  3 on p. 293. 
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8.5. To prove Theorem 16, we proceed in several steps. 

(i) Given F (z) and ~ (z), the function L (z) = z F (z) ~ (z) = F (z) K (z), and hence 

C and all the :r in (8.4.1), are given. By w 8.4. (c), 

(8.5.1) I A (t) l -  = A (t) = ~b (t)K (t) = I cl  

Also, by (6.2.2) and (6.2.3), 

(8.5.2) I s (t)] =- II II] ~p A (t) TM, 

(ii) The st in (8.4.1), for which 

n - 1  

1-I l e t ' - a ,  l ~ 
1 

1 

[ ~ (t) l -II  I I1-1,~ A (t)~'v. 

] st] < 1, divide themselves into the zeros of 

F (z) and ~ (z) in [z I< 1. Those of ~ (z) are, because of the uniqueness of this func- 

tion, fully determined, even in the case p =  1, where there may be several F (z). 

Also they do not coincide with any of the fit, since ~ (z) must have the same poles 

as ~(z). 

Consider the functions 

(a) ~ * ( ~ ) = ~ ( z ) I - [ "  1 - ~ , z ~ r  z - ~ ,  - -  - l J  - - ,  F* (z)=~v(z) I I "  1 -~,___z 
z - s t  1 1 - f l t z  �9 z - s t '  

where ]-I '  is extended over the zeros of R (z), and 1-I" over those of F (z), in ]z I < 1. 

These functions have the following properties: 

(a). R* (z) and F* (z) are regular, and # 0, in ] z ] < 1. 

(~). ~* (z) E Ho, F* (z) E Ha. 

(V). L* (z) = F* (z) ~* (z) is regular in ] z ] _< 1. 

(8). [ K* ( t ) ] -  = ]] I ]]'~P A (t) TM, ] ~ *  (t) ] ----- ]] I ]]-I/V A (t) l/n, where K* and ~* are the 

boundary functions of $~* and F*, respectively. 

(iii) If we can show that  any pair of functions ~* ( z ) and  F* (z), satisfying 

(a)--(8), is determined, apart from constant factors of modulus 1, then our theorem 

is proved. For, the functions 

(8.5.3) 

and 

(8.5.4) 

where 

(8.5.5) 

n - 1  n 

~* (z) = A I I  (1 - a, z)"' I I  (1 -/~, ~)-,,o 
1 1 

F* (z)--B ~ (1 - 5, z) 2/p f l  (1 - f l ,  z) - 'p,  
1 

IAI=IIIIII'~ICI% I B I = U / I I - I ' ~ I C l  * ' ,  
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satisfy these conditions. 

(8.5.1), 

W. W. Rogosinski and H. S. Shapiro. 

This is evident for (~)--(y). As regards (~), we have, by 

n--1 lllq 
(b) I K* (t) l=  i A I - = II i I11~', I C I1/, I c I -z,q A (t) l~q 

and 
n--1 ~l/p 

i ' l-I- I | . l .L ] e i t - -  0Ct 12 / H-1/p II/PlCI-I/p (t)i/p 

I t  will then follow that  ~* (z) and F* (z) are of the forms (8.5.3) ~ and (8.5.4); and 

these are equivalent to (8.2.2) and (8.2.3), respectively. 

(iv) I t  suffices to consider ~* (z), the proof for the determination of F* (z)being 

analogous. Alternatively, once the form (8.2.2) for ~ (z) has been established, that  

for F (z) follows from (8.4.1). Now, by (e), the principal determination of log ~* (z) 

is regular in [zJ< 1. Hence, by the formula of Schwarz, 

2~ 
1 / ~ .  ett +z  ~ ,  

(8.5.6) log ~* (rz) = ~ log ] (re it) ~ dt +i arg (0), 
0 

for all 0 < r < l .  If we can prove that  this Iormula'sti l l  holds for r - - l ,  then the 

function ~* (z) will be determined, apart from a constant factor of modulus 1, since 

I~* (e~t) l=-IK* (t)[ is determined by (~). It,  clearly, suffices to show that  

(8.5.7) log I~* (re't) l 5" log I K* (t)I. 

(v) We, first, note that  

2~ 2~ 
(d) f l log I K* (t)H dr= f I log {111 [[1~ A (t)l/q}]dt ~ ~ ,  

0 0 

since, by (8.5.1) and (8), the integrand involves at most logarithmic infinities. Hence 

log l K* (t) l e L 1. 
Next, by (a) and (y), the function L* (z) = F* (z) ~* (z) is regular in I z I-< 1, • 0 

in I z l < l ,  and has at most a finite number  m, say, of roots 7~ on I zl = 1. Each of 

these roots is, by the way, of even order; anyhow, we count them according t o  
m 

multiplicity. Now the function L** (z) -- L* (z) 1-[ (z - 7~) "1 is regular and + 0 in I z I -< 1. 
1 

Hence [ L** (z) l > d > 0 in I z I -< 1. I t  follows that,  for i z I < 1, 
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,e, 

m 
F *  (z) H (2; --  ~2i) -1  

1 
L** (z) 

I<l[ 1 [-1[' --d F*(~)l~I lz-~,, 
and hence, for r < 1, 

i + 1 F* e it) 1 e t t -  (f) lOg+l ~, (r e, t) [_<log d +l~ (r [+log+(r-"l-V[I r,1-1} 

since Irr162 I 
We now make the points t~, where },t=e iq, centres of a set I~ of intervals of 

equal length and total length 5 < 2 s .  By the argument, used in (1.1.5). 

1 log+I~*(re~t)Idt<_log 1 + ~  [$~*(r Idt 
(g) 2 

Similarly, and on account of (f), 

(h) 1 + 1 5 . + 1  {1+ ~ flF*(re") 2~flog ~ l d t _ _ _ ~ - ~ l o g  ~ + l o g  1 idt} + 

+ ~  

By (~), F* (re ~t) ~" ~* (t) and ~* (re ~) ~ e -~t K* (t). Hence the right hand sides of (g) 

and (h ) t end  with r - + l - o  to the corresponding expressions for r =  1. But then these 

expressions, and hence their sum, are small for small 5, since ~b* and K* are inte- 

grable. Since, by (d), log IK* I is also integrable, we conclude that, given s>0 ,  

(i) li-m 1 f ~ .  r-~l-o ~ II~ (re't) l - l~  

provided that 5=  5 (e) has been fixed sufficiently small. 

Finally, we consider the complement l~ of I6. Here we use the elementary 
inequality 

In--hi 
(j) I log a - l o g  b I_< Min (a, b)' 

and note that ]L*(re't)]>d*>O on lo for all 0_<r<l .  Hence, if I~*(re'~)l>_[K * 
(t) I, then 

(k) [log[~*~'e~t)[-log[K*(t)l[<_ I~*(re't) l - IK*( t ) l  < Igi*(re~t)-~*e~t)llqb*(t) [~ 
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and if I K* (t) I >- I ~* (r e ~t ], then, similarly, 

(1) ]log I R* (r e't) I - log I K* (t) 11 < I ~* (r e't) _ ~ ,  (e t t) II F* (r e' t) I 
- d *  

I t  follows that  

2-~ I log 
5 

~* (rgt) l _ log I K* (t)II dt 

~2?i 

1 f g* F* +] ~* (m) < - 2 ~  I~*(re't)- (e't) I {I (re't) l (t) l}dt 
0 

] * i t  <_ ~ [ [ g  (re)-g*(e't)[[q(M,(F*,r)+i[q~*l[,} 

-< ~. II ~* II. II ~* (r e") - ~* (e '~) II.- 

Here the right hand side tends to zero as r - ~ l - o ,  since ~ * ( r e i t ) - ~ * ( e i t ) .  1 The 

interval set I0, in (i), can, therefore, be replaced by the whole interval (0,2~z). 

Since e > 0  was arbitrary, (8.5.7) follows, and Theorem 16 is proved. 
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