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1. Introduction.

The study of holomorphic sections of the Teichmiiller curves =,: V(p, n)—T(p, n)
was initiated by John Hubbard [8] for the case n=0. The existence of such sections would
be important because each such section would allow us to choose a point on every Rie-
mann surface of genus p in a way that depends holomorphically on the moduli. Unfor-
tunately, Hubbard showed in [8] that 7, has no holomorphic sections if p>3.

In our paper [5] we studied the holomorphic sections of 7, for n>1, but we were un-
able to obtain complete results. Now we are able to describe all the holomorphic sections
of 7, for every genus p >2. We also study sections of z,: V(p, 0)—T'(p, 0) over subspaces
of T'(p, 0) that correspond to Riemann surfaces with automorphisms. We state our theo-
rems in § 2, and prove them in §§ 5, 7, and 8. Since our proofs require some unfamiliar facts
from Teichmiiller theory, we develop the facts we need in §§ 3 and 4. Much material in
these sections, especially in § 3, is expository in nature. Both of our main theorems have
generalizations, which we give in §§ 10 and 11 with indications of their proofs. We have
chosen to focus our attention in the body of the paper on the most important cases.

The remaining two sections of the paper deal with projections of norm one in certain
Banach spaces. In § 6 we prove two general propositions about the existence of such pro-
jections. In § 9 we establish the non-existence of such projections in certain spaces of
quadratic differentials. Most cases of Theorem 9.1 were proved already in [5] and [8],

and we prove the remaining cases by the methods indicated in [5].
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While this research was completed, the first author was a John Simon Guggenheim Memorial Fellow
visiting Stanford University.
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2. Statement of results.

2.1. Recall that the Riemann surface X has type (p, n) if and only if there exist a
closed Riemann surface X of genus p and » distinct points z,, ..., z, on X, called the

““punctures of X”’, such that X = X\{z,, ..., #,,}. Suppose
2p—2+n>0. 2.1)

Then the Teichmiiller space T(p, n) is a complex analytic manifold, of dimension 3p —3 + =,
whose points represent the Riemann surfaces of type (p, ). The Teichmiiller curve V(p, n)

is a complex manifold of dimension 3p —2 +n with a holomorphic projection
7y: V(p, n) > T(p, n) (2.2)

onto 7(p,n) such that for every = in T(p, n), 7, (v) is the closed surface X of genus p
determined by the surface of type (p, n) represented by 7. We shall describe these spaces

in more detail in § 3.

2.2, The map =z, in (2.2) has local holomorphic sections. The problem of describing
the (global) holomorphic sections was first raised by John Hubbard. He showed in [8]
that 7z,: V(p, 0)— T(p, 0) has no holomorphic sections if p >3 and six if p=2.

Tf n>1, then every fiber m; (1) in V(p, ») contains » distinguished points, the punc-
tures, and 7, has n canonical holomorphic sections s;: T(p, n)—>V(p, n), 1 <j<n, such that
s,(7) is a puncture for every v in T'(p, n). We describe them more fully in § 3.5. In our ear-
lier paper [5] we found all holomorphic sections s: T(p, n)— V(p, n) which are disjoint
from the canonical ones; there are none if 2p +72>5. (Recall that two sections are called
disjoint if their images are disjoint sets.) Our first theorem is a substantial improvement on

our earlier results, since we describe all holomorphic sections of (2.2), provided that p >2.

THEOREM. The Teichmiiller curve m,: V(p, n)—>T(p, n) has exactly n holomorphic

sections ¢f p =3 and exactly 2n + 6 holomorphic sections if p=2.

The n sections for p >3 are the canonical sections. For p =2 there are six Weierstrass
sections, discovered by Hubbard [8] for n=0. For n>1 we shall describe them in §4.7.
In addition to the Weierstrass sections there are the canonical sections sy, ..., 8,. The re-
maining sections have the form Jos,, ..., Jos,, where J: V(2, n)—>V(2, n) is the holo-
morphic involution whose restriction to each fiber is the hyperelleptic involution (recall
that each fiber is a hyperelliptic Riemann surface). We refer to § 8.3 for a fuller descrip-
tion of J and to §§ 5 and 7 for the proof of the theorem.

2.3. Our second theorem is about closed Riemann surfaces with automorphisms. Let

X be a closed Riemann surface of genus p=>2, and let H be a non-trivial (finite) group of
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conformal automorphisms of X. The group H acts in a natural way on the Teichmiiller
space T'(p, 0) as a group of biholomorphic maps (see § 8). The fixed point set T(p, 0) rep-
resents Riemann surfaces of genus p which admit H as a group of automorphisms. Indeed,
H acts also as a group of fiber-preserving biholomorphic mappings of V{(p, 0), and the fiber
over each point of T'(p, 0) is mapped onto itself by H (see § 8).

The action of H on V(p, 0) allows us to distinguish certain points, the fixed points
of non-trivial elements of H. In general these points account for all holomorphic sections
of mm,: V(p, 0)—>T(p, 0) over T(p, 0).

THEOREM. Let s: T(p, 0)¥ >V (p, 0) be a holomorphic section of my: V(p, 0)—=T(p,0).
Let p' be the genus of the closed surface X|H, and n' the number of points in X/H over which
the projection from X to X|H is branched. If

2p" +n' >4,

then s(t) is fized by some non-trivial h in H for every T in T(p, 0.

We shall prove the theorem in § 8. As a special case of the theorem, take X to be
hyperelliptic and H to be the group of order two generated by the hyperelliptic involution.
Then T'(p, 0)¥ is a branch of the hyperelliptic locus, and the theorem tells us that the only
holomorphic sections over T'(p, 0)¥ are Weierstrass sections. When p =2, the hyperellip-
tic locus is the entire Teichmiiller space T(2, 0) and we recover Hubbard’s theorem (8]
about the sections of 7z,: V(2, 0)—T(2, 0).

3. The Teichmiiller curves V(p,n).

3.1. In this section we shall review the definitions and some well known properties of
the spaces T'(p, n) and V(p, n). More details can be found in [2] or [5].

Let I' be a Fuchsian group operating on the upper half plane U, hence also on the
lower half plane L. We require I' to have a compact fundamental domain, so that the
quotient space U/T" is compact. As usual we denote by L®(I") the space of Beltrami dif-
ferentials for I'. Recall that L*(I") consists of all y in L®(U, C) satisfying

(poP)y'ly' =p, all y€l. (3.1)
The open unit ball M(I") of L®(I") is the set of Beltrams coefficients for I,

3.2. For each y in M(I") there is a unique quasiconformal map w# of the plane onto
itself which fixes zero and one, is conformal in L, and satisfies the Beltrami equation

wz=pw, in U.
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We say that u and » in M(I") are equivalent (and write u ~ ») if and only if w#=w” on
the real axis. The Teichmiiller space T(I') is the set of equivalence classes in M(I"). We
denote by ® the projection of M(I") onto T(I'), so that ®(u) is the equivalence class of u
for each u in M(I").

TrrorEM (Bers [2]). T(I) is a complex manifold and the map ®: M(I')—T(I') is holo-

morphic with local holomorphic sections.
Denote by Zy(I") the group of all quasiconformal maps w of U onto itself such that
woy =yow, all yel. (3.2).
It is not hard to verify that u~» in M(T") if and only if w” =wrow for some w in Xy(T").

3.3. Let Ur be the set of z in U which are not fixed by any elliptic element of I'. We
define the type of I" to be the type of the Riemann surface Up/I'. There is a group of type
(p, ») if and only if (p, n) satisfies (2.1). A theorem of Bers and Greenberg (see § 2.1 of
[57) says that T(I") and T(I) are biholomorphically equivalent if I' and I have the same
type. The Teichmiiller space T'(p, n) is defined to be T(I") for some group of type (p, »).

3.4. The domain w#(U) depends only on the equivalence class ®(u) of u in M(T'), so

we form the Bers fiber space
F(I) = {(P(u), 2) ET() x C; p€ M(T") and z€wr(U)}.

F(I') is a complex manifold on which the group I' acts discontinuously as a group of bi-

holomorphic mappings (see Bers [3]) by

P(D(u), 2) = (D), y#(z)) (3:3)
where € M(T"), z€ws(U), v€T", and
pHOWH = whoy. (3.4)
(Notice that # depends only on ®(u) because if g~ v then w* =wrow for some w in Zy(T').)
The quotient space V(I')=F(I')/I" has a canonical complex structure, and the map
(®(u), 2) > D(u) induces a holomorphic projection of V(I') onto T(I"). The inverse image of
@(u) under that projection is the closed Riemann surface w#(U)jw+I'(w#)~1. The Teich-
miiller curve V(p, n) is defined to be the space V(I') for some group I' of type (p, #) with
the above projection m,: V(p, n)—>T(p, n). For p=>2 we shall verify in §4.6 that V(I)
depends only on the type of I, as it should.

3.5. The canonical sections s;: T(p, n)— V(p, n) of m,, 1 <j<n, arise as follows. Let z,
in U be fixed by the elliptic transformation y in I". Then w#(z,) is the fixed point of y#
in w#(U). The map O(u) — (O(u), wk(zy)) from T(I') to F(I')is well-defined and holomorphie,

inducing a section s;.
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3.6. The considerations of § 3.5 help to prove the following.
ProrositioN. V(I), with its canonical complex structure, is a complex manifold.

Proof: Since V(I') is the quotient of the complex manifold F(I') by the discontinuous
group I' of biholomorphic selfmaps, it is a normal complex space. We need to show that
it is a manifold. If y in I' is hyperbolic, we see from (3.3) that » has no fixed points in F(I).
If y in I is elliptic, the fixed point locus of y in F(I) is

{(D(w), wi(zy)); w€ M(T')},

where z; is the fixed point of  in U. That locus is a closed complex submanifold of F(I"),
of codimension one. It follows that V(I') is a manifold (see [6, Satz 1]).

4. The map from ¥V (p,n) to V(p,0).
4.1. There is a well-known holomorphic map f,: 7'(p, n)—>T(p, 0), for p>2, which

arises by “forgetting the punctures.” We are going to construct that map and an analog-
ous map ¢,:. V(p, n)— V(p, 0). These maps will lead us in § 4.6 to a useful alternate descrip-
tion of the spaces V(p, n) for p=>2 and n>1.
To begin, we choose a closed Riemann surface X of genus p >2 and Fuchsian groups
I'" and T, of types (p, n) and (p, 0) respectively, so that U/I"=U/T'=X. Let n": U~X
and z: U—~X be the projection maps associated with the groups I and I'. Since I' has
type (p, 0), 7z is an unbranched covering map, and there is a holomorphic map 4: U—U
such that
7' =moh. 4.1)

Hence there is a homomorphism 6: IV -1 satisfying
hoy =0(y)oh forall y€I". 4.2)
LemMA. bt U~U and 0: TV T are surjective.
Proof. Set D=h(U)<U. Tt is easy to verify that U is the disjoint union of the open
sets D and {y(z); 2€ D and y €T"\G(I")}. Since U is connected, D =U and O(I")=T".
4.2. For pu in M(I) define h,(u) by
ha(p)oh = b’ i (4.3)
It is easy to verify that h,(u) is a well-defined member of M(I") and that k,: M(I")—>M(T)

iy bijective. Mareover,
h# =woho(wr)™t, o= hy(u), (4.4)

is a holomorphic map of w4(U) onto w°(U). We need to study the dependence of A# on u.
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LeEMMA. For any fixzed uy tn M(IV) and £ in w*(U), h#({) depends holomorphically on
u in a netghborhood of u,.

Proof. Choose an open disk D<C centered at £ and an open ball B< M(I"') centered
at p, so that D w#(U) if u€ B. That is possible because of the continuous dependence of
wk on w (see [1]). Formula (4.4) and the results of [1] show further that the functions A#,
WE B, are a normal family in D, and that A tends to A# uniformly on compact sets in D

if » tends to g in B.

Now fix g in B and v in M(I"). To prove the lemma we must show that #***({) is a

holomorphie function of the complex variable ¢ at t=0. Set
w,=wttY, Wi =w, o=hy(ut+tr), kb =0"" 2z2=will).
By Theorem 10 of [1] (with w =aw/at),
wi(z) = wy(z) +tb(z) +o(t) =& +tw(z) +olt),

wi(h(2)) = w5 (h(2)) + ti*(h(z)) +o(2).
Therefore, by (4.4),

hiw(z)) = wi (h(2)) = ho(wo(2)) +ti*(h(z)) +o(t)

= ho(C) +ti*(h(z)) +oft).

But the %, are a normal family in D, so

hw,(2)) = kL +0b(2) + o(t)) = hy(L) +tair(2) he(L) + o(t),
and
1 (RUL) —ho(L)) = w*(A(2)) —b(2) hy(C) +o(1).
As t—0, the right hand side converges to
w*(h(2)) —w(2) ho(0).

That proves the lemma.

4.3. Next we shall verify that h, carries equivalence classes into equivalence classes

and that A# depends only on the equivalence class of u.

LeEMMA. Let w: U—~U be a homeomorphism that commutes with IV'. There is a unique

homeomorphism w,: U—U that commutes with I' and satisfies wyoh =how.

Proof. Define f: X—+X so that n'ow=fon’, and define g: U—~U so that mog=form.

Then f and g are homeomorphisms, and

moglohow = f-lomohow = flon'ow =5’ =moh.
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Notice the use of (4.1). Since moh =mog2ohow, there exists y in I such that yoh =g-lohow.
Put w, =goy. Then w,: U-U is a homeomorphism, and wyoh=~how. Further, for all y
in TV, (4.2) gives

O(y)oh=hoy =ws'ohowoy = wx ohoyow = wz'ol(y)ohow=ws of(y)ow,oh.

Since & and 0 are surjective, w, commutes with I". This completes the proof because w,

is clearly unique.
CoROLLARY. If u~w in M(I"), then he=h" and hy(u)~ hy(v) in M(T).

Proof. y~v means w’=wrtow for some w in Xy(I). The lemma gives us a homeo-
morphism w,: U—U that commutes with I" and satisfies wyoh=how. We observe that
wy 18 quasiconformal in U, so w, €Xy(I).

Now in U we have

htow? = htowtow = w’ohow = w’owy,oh

where ¢ =h,(u). Differentiating both sides and comparing with (4.3) we find that A.(»)
is the Beltrami coefficient of w”ow,, 80 hy(u)~hy(v) in M(I"). Put o =h.(»). In w"(U)=

w#(U) we have
h* =ufoho(w)l = w’owyohow o (wk) ™l = w’oho(wk)! = hr.

The proof is complete.
4.4. The following result is an easy consequence of the previous lemmas.

LemmA. Define f: T(IV)—T(I'") and G: F(I'')—> F(I") by

A(®(n)) = C(hy(p) (4.5
FHD(u), §) = (D), k(L)) (4.6)

Then f and G are well-defined surjective holomorphic maps.

Proof. The corollary to Lemma 4.3 says that f and ¢ are well-defined. f is surjective
because h, is surjective and holomorphic because fo® =®doh, is. ¢ is surjective because
he maps he(U) onto h7(U), o =hy(u), by (4.4) and Lemma 4.1. Finally, h#({) is a holomorphic
function of { for fixed y and a holomorphic function of y for fixed { by Lemma 4.2. Tt fol-

lows that G is holomorphic. The lemma is proved.
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4.5. Now we are ready for the main result of this section.

TarorREM. Let f,: T(p, n)—T(p, 0) be the “forgetful map” defined by (4.5). There is a
holomorphic map ¢,: V(p, n)—>V(p, 0) such that the diagram

Vip,n) — . V(p,0)
@.7)

Ty, Ty

T(p,m) —I* . T(p,0)

commutes and g, maps each fiber 7;1(t), téT(p, n), one-to-one onto the fiber 7y (f,(t)).

Proof. Represent T(p, n) by T'(I'’) and T'(p, 0) by T(I"), as in §§ 4.1 to 4.4. The forget-
ful map f, becomes the map f of Lemma 4.4. It is easy to verify using (3.4), (4.2), and (4.4),
that the map G: F(IV)—F(I") of Lemma 4.4 induces a well-defined holomorphic map
g(=g,) of V(I'')=FI")/I” onto V(I')=F(I")/T". g makes the diagram (4.7) commute.

It remains to prove that ¢ maps each fiber one-to-one onto its image fiber. Let 4 € M(I')
and let o =h,(u) EM(I"). We need to show that h#: wr(U)—w’(U) induces a bijective map
between the closed Riemann surfaces
- X, = wr(U)}wrl" (wr)=L

X =w(U)wT(w)1.
But (w#)~! induces a homeomorphism of X, onto X = U/I", h induces the identity map of
X=U/I" onto X=U/I", and w° induces a homeomorphism of U/T" onto X,. The compo-

site of these maps is the homemorphism induced by A#. The theorem is proved.
4.6. Our next result is an almost immediate corollary to Theorem 4.5.

THEOREM. 7, X ¢,: V(p, n)—T(p, n) x V(p, 0) maps V(p, n) one-to-one onto the closed

submanifold
W = {(t, ©); falt) =70()}
of T(p,n) x V(p, 0).

Proof. Theorem 4.5 implies that 7, x ¢,, maps V(p, ») one-to-one onto W. W is a closed
submanifold of 7'(p, n) x V(p, 0) because the derivative of m,: V(p, 0)— T(p, 0) has maxi-
mal rank at every point of V(p, 0).

COROLLARY 1. 7, x¢g,: (Vp, n)—>W s biholomorphic.

Proof. A bijective holomorphic map between complex manifolds is biholomorphic
(see [7, p. 109]).
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CororLarY 2. The holomorphic sections s: T(p, n)~V(p, n) of m, are in bijective
correspondance with the holomorphic maps h: T(p, n)— V{p, 0} such that myoh=f,.

Proof. Given s, put h=g,0s. Given %, notice that {+>(t, h(t)) =¢(t) is a holomorphic
map of T(p, n) into W. Put s= (7, xg,) Lop.

Remark. 1f T, and I'y; have type (p, 0), then the fiber spaces V(I';) and V(I',) are
biholomorphically equivalent in a fiber-preserving way (see [3]). Therefore the fiber space
V(p, 0) is well defined. Theorem 4.6 and Corollary 1 show that the spaces V(p, n), n>1,

are also well defined, as we promised in § 3.4.

4.7. Let s: T(2, 0)— ¥V (2, 0) be one of the six Weierstrass sections of Hubbard [8] (see
§ 4.5 of [5]). Then h=sof,: T(2, n)—V(2, 0) is holomorphic, and 7 ok =f,, 50 & determines
a holomorphic section of z,: V(2, n)—T(2, n). The sections obtained in this way are the

Weierstrass sections of m,,.

4.8. An unsolved problem. Let B be any complex manifold, p>2, and f: B~T(p,0) a
holomorphic mapping. As in § 4.6, form the complex manifold

W = {(t, 2) € B x V(p, 0); f{t) =mo()}.

Define n: W B by z(t, ) =¢. Then 7 is holomorphie, and for each ¢ in B, n~1(t) is the
closed Riemann surface represented by f(t). As in § 4.6 the holomorphic sections of 7 are
in bijective correspondence with the holomorphic maps A: B—7V(p, 0) such that m,oh=}.
This leads us to the following general problem:

Given f: B—T(p, 0) determine all holomorphic maps h: B—V(p, 0) such that wyoh=f.

In §§ 5 and 11 we solve this problem when B=1T(p, n), or T(p, n)¥ for certain groups
H, and f is the forgetful map f,. The general problem is open. If B is the unit disk A we
conjecture that for every f there is at least one holomorphic % with myok =f. By a theorem
of Grothendieck (see A. Grothendieck, Techniques de construction en géométrie analyti-
que, Séminaire H. Cartan 1960/61), every holomorphic family 7z: W —A of closed Riemann
surfaces of genus p>2 over A is obtained from a holomorphic map f: A—T(p, 0). Thus,

our conjecture asserts that every such family has a holomorphic section.

5. The linear version of Theorem 2.2.

5.1. If X is a Riemann surface of finite type, we denote by @(X) the linear space of
holomorphic quadratic differentials ¢ on X with

Il =4 | twi<co. 6.1
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The differentials ¢ in @(X) are meromorphic on the compadctification X of X, with at worst
simple poles at the punctures. Q(X) is a finite dimensional Banach space, with norm (5.1).

Let 7 belong to the Teichmiiller space T'(p, n), and let X be the Riemann surface of
type (p,n) represented by z. Then the cotangent space to T(p, n) at 7 is canonically iso-
morphic to Q(X) (see § 1.2 of [5]). By duality, the norms (5.1) induce norms on the tangent
vectors of 7T'(p, n) and a Finsler metric on 7'(p, n). A theorem of Royden [11] tells us that
the induced metric on T'(p, ») is the “hyperbolic metric” of Kobayashi [9]. Royden states
his theorem only for the spaces T'(p, 0), but his proof, in § 5 of [11], works equally well for

n=1.

5.2. Let I' be a Fuchsian group of type (p, 0), so that T(T") is T'(p, 0) and V(I') is
V(p, 0). As we saw in § 3, the universal covering space of V(I") is the Bers fiber space F(I').
The isomorphism theorem of Bers [3] establishes a biholomorphic map of F(I') onto the
Teichmiiller space 7'(p, 1). Under that map the projection (®(u), 2)r>D(u) of F(I') to T'(T")
is identified with the forgetful map f;: T(p,1)— T(p,0) of §4. Using the universal cover-
ing of ¥(p,0) by T(p,1), we obtain the following.

ProrosiTioN. Let my: V(p,0)—T(p,0) be the Teichmiiller curve of genus p=2. Let
2, € V(p,0) and ©=my(z,) ET(p,0). Let X =m5' (). Then the cotangent space to V(p,0) at x,
is Q(X\{w,}), the cotangent space to T(p,0) at T is Q(X), and the map of cotangent spaces
induced by m, is the inclusion map of Q(X) in Q(X\{xy}). Further, the Finsler metric on
V(p,0) induced by the norm

el =3 Ls«pl for all. PEQX\{zg))

and s the hyperbolic metric on V(p,0).

The final statement of the proposition is true because the covering of V(p,0) by
T(p,1) is a local isometry in the hyperbolic metrics (see [9, p. 48]). The map of cotangent
spaces induced by the forgetful map from T'(p,1) to T'(p,0) is discussed in §1.5 of [5].
The above proposition is the basis of Hubbard’s discussion of the sections of 7zy: V(p, 0)—

T(p,0) in [8], and it will play a basic role in our proof of Theorem 2.2.

Remark. In the final paragraph of §4.2 of [5] we gave an incorrect sketeh of the proof
of Bers’ isomorphism theorem. The correct reading of that paragraph, in the notation of
§ 1.5 of [5], is as follows. Define

V:UI)~FT) by ¥(w)=(Q@),w'(a),

where vy=h*u, a€U, and t{a)=x, Then ¥ is holomorphic, and it projects to a biholo-
morphic map from 7(I) to F(TI).



SECTIONS OF HOLOMORPHIC FAMILIES CLOSED RIEMANN SURFACES 59

5.3. Let s: T(p, n)~V(p,n) be a holomorphic section of m,: V(p, n)—>T(p, n). By
Corollary 2 of Theorem 4.6, there is a holomorphic map k=g,0s: T(p, )~ V(p, 0) such
that syoh =}, is the forgetful map from 7'(p, ») to T(p, 0).

Choose ¢ in T(p, n), and let zg=h(f) and 7=my(%y) =f,(f). Let X =m5'(vr) and let X' =
X\{x,}. In addition, let X" =X\{y,, ..., y.} be the surface of type (p, n) represented by &.
The cotangent spaces to T'(p, »), V(p, 0), and T(p, 0) at &, z,, and 7 are @(X"), Q(X'), and
Q(X) respectively. By § 1.5 of [5], the map from @(X) to @Q(X”) induced by the forgetful
map is the inclusion map. Similarly, by Proposition 5.2, the map 7, induces the inclusion
map of Q(X) in @(X"). Let L: Q(X")-@QX") be the map of cotangent spaces induced by h:
T(p, n)—>V(p, 0). Since myoh=f,, we have

Ly = L(ng(zo)p) = frt)p =@

for all ¢ in Q(X). (Here mj(z,): @ X)—~Q(X’) and fi(t): Q(X)—>Q(X") are the (inclusion)
maps of cotangent spaces induced by =, and f,.) Further, since the holomorphic map »
does not increase hyperbolic distances (see [9, p. 45]), L must satisfy

IZo] <liell for all pEQ(X").

54. Our stratefy is to determine the holomorphic sections s: 7'(p, n)— V(p, n) by
studying the linear maps L obtained from s in § 5.3. The maps L can be rather completely
described.

TarorREM. Let X be a closed Riemann surface of genus p>2, X' =X\{x,}, and X" =
X\{y1, .. Yn}, where 2 €X, yy, ..., y, € X, and the points y, are distinct. Let L: Q(X')~Q(X")
be a linear map such that

Lp=¢ for all p€Q(X) (6.2)

IZoll <llgll  for all pE€Q(X"). (5.3)
If p=3, then zy=y, for some k, and Ly =g for all ¢ in QX'). If p=2, let j: X > X be the

hyperelliptic involution of X. Then either xy=yj, for some k, j(xy) =y, for some k, or z, is a

Weterstrass point of X.

We shall prove this theorem, which is the linear version of Theorem 2.2, in § 7.

5.5. In this section we shall prove Theorem 2.2, given Theorem 5.4. Let s: T(p,n)->
V(p, n) be a holomorphic section of 7, and let € T'(p, n). First suppose p>3. Theorem
5.4 tells us that x,=h(f) =g,(s(t)) is one of the points y,, 1 <k<n. But y, =¢,(s(t)), where

8, is a canonical section of s,,. Since g, is one-to-one on each fiber, we have s(f) =s,(t). Let

B, = {t€T(p, n); s(t) = s,(t)}, 1<k<n.
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Then T(p, n) is the finite union of the sets By. Therefore, some B, has interior, and the
identity theorem for holomorphic maps implies that s=s, in all of T(p, n). That proves
the theorem for p =3.

If p=2, let s, ..., 83,4 be the holomorphic sections given in § 2.2. Theorem 5.4 again
tells us that for each t€T(p, n), s(t) =s,(t) for some k, 1 <k<2n+ 6. Reasoning as above,

we conclude that s is one of the given sections s,. The proof is complete.

6. Projections of norm one.

6.1. We have seen in § 5 that the proof of Theorem 2.2 reduces to studying certain
linear maps of norm one. In this section we shall prove two general propositions about pro-

jection operators of norm one. Both of them will be needed later.

6.2. Let V be any real Banach space whose norm is a differentiable function on
V\{0}, and set

Ao,y — 1 12 L=l
>0 t

for all v€V\{0},weEV. (6.1)

Then w—>A(v, w) is a bounded linear functional on V for any fixed nonzero ». There is a
close relation between these linear functionals and the projections of norm one onto closed

subspaces of V.

ProrosIiTION. Let W be a non-trivial closed subspace of 'V, and let W' be the closed

subspace
W ={weV;A(w,v) =0 for all w€W\{0}}. (6.2)

There is a projection P of norm one from V onto W if and only if W’ is a complementary

subspace to W. Further, if P exists 1t is unique and its kernel is W'.

Proof. First suppose a projection P of norm one exists. For any » in ¥ and w0 in

W consider the function
1) = JJw+w|| = [|P(w+tv)|| = [|w+tv]| — ||w+tPo]|.

f(t) =0 =f(0) for all real ¢, so
0 =f'(0) = A(w, v) — A(w, Pv). (6.3)

If Py 40, we take w=Pv in (6.3) and find, using (6.1), that
A(w, v) = A(w, w) =||w|| +=0.

Hence v¢ W' if Pv+0. If Py=0, then v€W’ because A(w, v)=0 for all w0 in W, by
(6.3). Therefore W’ is the kernel of P. It follows immediately that P is unique and that W’

is a complementary subspace to W.



SECTIONS OF HOLOMORPHIC FAMILIES CLOSED RIEMANN SURFACES 61

Conversely, suppose W' is a complement to W. Let P: V—W be the unique projec-
tion with image W and kernel W’. We claim P has norm one. That is,

wl| <[lw+of, allweW,veWw’ (6.4)
If w=0 there is nothing to prove. If w =0, set f(t)=||w+tv|| for ¢ in R. Then f is a convex

funection of ¢, and
F(0)=A(w,») =0

by hypothesis, so f(¢) >f(0) for all ¢. Setting ¢=1 we obtain (6.4). The proof is complete.

CoroLuaRY. If V has finite dimension, a projection of norm one from V onto W exists

if and only if
dim W +dim W’ =dim V.

Proof. W 0 W’ ={0}, since A(w, w)=||w|| =0 for all w+0in W.

Remark. Suppose V is a complex Banach space and the closed subspace W is a com-
plex subspace. Then the projection P of norm one from ¥ onto W, if it exists, is complex
linear. That can be verified easily by noticing that W’, the kernel of P, is a complex sub-

space. Alternatively, notice that P'v= —iP(iv) defines a projection of norm one from V

onto W. Since P is unique, P=P".
6.3. The next proposition will be used in the proof of Theorem 5.4.

PROPOSITION. Let L: V-V be a lincar map of norni one. If V has finite dimension

and the {(closed) subspace
W={veV; Lv=uv}

s non-trivial, there is a projection P of norm one from V onto W.

Proof. Choose any w==0in W and v in V. Since

16) =l +to]| = [+ Lo
has a minimum at {=0, we have
0={'(0) = A(w, v) - 4(w, Lv) = A(w, v—Lw).
Hence v —ILv€eEW’' for allvin V, so
dim W’ = dim image (I —L).
But the kernel of I —-L is W, so
dim V = dim W +dim W’ > dim ker (I —L) +dim image (I —L) =dim V.

By the corollary to Proposition 6.2, P exists.

Remark. It is not hard to show directly that

1
P=lim —— o L7,
}»l_ilolon-i-l I+ L.+ 17)
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7. Proof of Theorem 5.4.

7.1. Let ¢ and y be L* functions on the unit disk A, holomorphic and nonzero for
z+0, and bounded except possibly in a small neighborhood of z=0. Let » and u be the

orders of ¢ and y at zero, and note that », ¢ > —1. Define for real ¢
10 [ [ e+ wedsay

The following lemma, from [5), is a straightforward generalization of Lemma 1 of Royden
[11].

LEMMA. f(t) is a differentiable function of t near ¢ =0, and

f(0)= U; Re [y(2) §(2)/19(2)]] dwdy.

Further, the second derivative {(0) exists if v <2u+1. If v>2u+1, there is a positive num-

ber ¢ such that
(&) = H0) +1f'(0) +ce(t) +o(e(t)), (7.1)
where

_[2log (1[t]) if v=2u+2,
&)= It|1+(2+u)/(v—u> if v>2u+2.

The lemma implies that the norm (5.1) on Q(X) is differentiable on @(X)\{0} for any Rie-
mann surface X of finite type, so the results of § 6 are applicable to the spaces @(X).

7.2. Now we turn to the proof of Theorem 5.4. Recall that X is a closed Riemann
surface of genus p>2, X' =X\{z,}, and X" =X\{y, ..., ¥}, where yy, ..., y, are distinct
points on X. We are given a linear map L: Q(X")—~Q(X") of norm one such that Ly=g if
P €Q(X).

7.3. Suppose p >3. Let p €Q(X"), and let y, be a pole of Ly. We shall prove that y, —
%,. Choose @ in (X) with a zero of order m >3p —4 >p at y,, and notice that all other zeros
of ¢ have order <p<m. Put

h)=llp+tpl] and fyo(t) = || Lip+ )| =l +tLy|.
Then Lemma 7.1 gives

fa®) = f3(0) +tf2(0) +cq|¢] 1"V o[8[ HHMHD), (7.2)
with ¢,>0. Similarly, if y, <z, we obtain
A(®) = £(0) +££(0) +O([¢|***) (7.3)

with s=min {2/m, 1/(p+1)}. But f,() >1,(¢) for all ¢, and f,(0) =f4(0). Hence f1(0)=f2(0)
and it follows from (7.2) and (7.3) that s<1/(m+1). That is impossible because m > p,

80 Y, =%, as we claimed.
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We have proved that L maps @(X’) into itself. Since Q(X) has codimension one in
@(X’), the subspace of Q(X') on which Ly =g is either (X'} or Q(X). If L is not the iden-
tity on Q(X’), then Proposition 6.3 gives us a projection P of norm one from @(X’) onto
@(X). But X has genus p>3, so no such projection exists, by Lemma 2 of Hubbard [8]
(see [6, Lemma 4.9] for another proof). Therefore Ly =¢ for all ¢ in @(X’), and Q(X')<

QX").

7.4. Now suppose X has genus two. Suppose z, is not a Weierstrass point of X, since
otherwise there is nothing to prove. Again Lemma 2 of Hubbard [8] says there is no pro-
jection P: Q(X')—>@Q(X) 'of norm one (see § 9.5 of this paper for another proof). It follows
that there is a y in ¢(X’) such that Ly has a pole at some point y,. If y, is a Weierstrass
point, choose ¢ in Q(X) with a zero of order four at y, and no other zeros. Put f,(t)=

llp +ty| and fu(¢) =||@ +iLy||. Lemma 7.1 gives

fa(t) = £1(0) +2£1(0) + O([ | >®),
fa#) = £2(0) +¢2(0) +c5[¢] ¥ +o(|¢]*?)

with ¢, >0. Again f,(0) =/,(0), f1(t) > [4(t) for all £, and f1(0) =/5(0), so we arrive at a contra-
diction. We conclude that y, is not a Weierstrass point of X.
Let j: XX be the hyperelliptic involution. Choose ¢ in Q(X) with double zeros at
Y and §(y,) and no other zeros. If x, is neither y, nor j(y,), then defining f,(¢) and f,(¢) as
above we have
11(6) = F,(0) +4£3(0) + O(¢* log (1/|¢])), (7.4)
falt) = 12(0) +tf2(0) +co | £ ** +o( | ¢|*?) (7.5)

with ¢, >0. That is again impossible, so x, is either ¥, or j(y,). The proof is complete.

8. Proof of Theorem 2.3.

8.1. Let X be a closed Riemann surface of genus p>2, and H a non-trivial group of
conformal automorphisms of X. Choose a holomorphic covering map =: U—X. Let T" be
the group of cover transformations, and let I be the group of lifts to U of the maps in H.
That is,

I'"={g: U~ U;nog —hoxn for some hEH}.

Then I' and I'” are Fuchsian groups, I' is a normal subgroup of IV, and I'"/T"=H.
Let Y be the closed Riemann surface U/l =X/H, and let ¥’ be ¥ minus the points
over which the projection from X to Y is branched. Then (recall the definitions in § 3.3)

Y = Up T,
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so Y’ and I have the same type (p’, n’'). We assume

2p" +n' > 4. (8.1)
Since ;: U~ X is a covering map, the group I" has type (p, 0).

8.2. We define a right action of the group IV on the space M(I") of Beltrami coeffi-

cients for I' by
g =(uoggly’, all weM(T), geI’. (8.2)

I carries equivalence classes to equivalence classes, and the subgroup I' acts trivially on
M(T"). Therefore (8.2) induces a right action of H on the Teichmiiller space T(I') by

O(u)-alg) =Ou-g), all weM(T), gel”. (8.3)

Here o: IV H is the natural quotient homomorphism.

8.3. The action (8.3) of H on T(T") is an easy special case of the action on T(I) of the
Teichmiiller modular group (see § 3.1 of [5]). Bers has lifted the action of the modular
group to the fiber space V(I') in [3]. Here we shall describe how to lift the action of H.
Our formulas differ slightly from those of Bers [3] because we are making H act from the
right. First we convert the left action (3.3) of I" on F(I') to a right action by the usual
device:

(@), 2)y =y~HD(w), 2) = (D(w), (y¥)7(2))-
Next we extend that action to a right action of IV on F(T") by
(D), 2) 9 = (D(u-9), (9*)71(2))- (8:4)
Here p€ M(I'), z€wx(U), g€, and

ghow™ Y =whog.

The action (8.4) of I on F(I') induces an action of the quotient group H=1"/I" on the
quotient space V(I')=F(I")/T". H acts as a group of biholomorphic maps (see [3]). Compar-
ing (8.3) and (8.4) we see that » in H maps the fiber over 7 onto the fiber over 7-A for each
tin T(I'). If v in T(T") is fixed by the group H, then H acts as a group of conformal auto-
morphisms of the fiber over 7. In particular, H acts on the fiber X =U/T' over ®(0) by
% -h=hx) for x in X and k in H, as it should.

Remark. Suppose I' has type (2, 0). Then X =U/T" is hyperelliptic, and the hyperel-
liptic involution generates a group H, of order two, of conformal automorphisms of X.
Since all surfaces of genus two are hyperelliptic, H acts trivially on the Teichmiiller space
T(2, 0). Its generator J acts as above on the fiber space V(2, 0). J is a fiber preserving
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holomorphic involution of V(2, 0). Let J operate on T2, n) x V(2, 0) by
(t, ) = (¢, x-J).
Then J maps the submanifold W, of Theorem 4.6, onto itself, so it defines a holomorphic

involution of V(2, »). That is the involution referred to in the final paragraph of § 2.2.

8.4. Since I" is a subgroup of IV, M(I") is a subspace of M(I") and T(I)= T(I"). For-
mula (8.2) shows that I acts trivially on M(I), so H fixes every point of T(I'").

ProrosirroN (Kravetz [10]). The set of points in T(L') left fixed by every member of
H is precisely T{(I").

The proposition is a simple consequence of Teichmiiller’s theorem about extremal

quasiconformal maps.

8.5. For any Fuchsian group G we denote by @(G) the space of holomorphic quadratic
differentials for G. Thus, Q(G) consists of all holomorphic functions ¢ on U satisfying

Plg(2)) g’ (z)2 =p(z), all g€G, z2€U.

The cotangent spaces to T(I') and T'(I") at ®(0) are QI") and @(I) respectively. We want
to find the map 0: Q(I')~>Q(I") between cotangent spaces induced by the inclusion map
7. T(I)—>T(I"). According to § 1.2 of [5], 0 is determined by

O, ) = (@, pr, all @€QT), peL=(I"). (8.5)
Here

(@, p)r= ”gquo(z) ulz)ydxedy

and (O, u)r has similar meaning.
Choose a fundamental polygon D< U for I and a complete set of inequivalent coset

representatives {yy, ..., yy} for I' in I". Then (8.5) gives
N
(O, w)r: = (@, u)r = 2 U P(2) u(z) dwdy
i—1J J7iD)
y ’
-2 ”D @) @) Vi @ dedy

- er, (% P(74(2)) y}(z)z) 1(z) derdy

i=1

for all ¢ in Q') and y in L®(I"). Therefore 6: Q(I')—~@(1") is the relative Poincaré series

bp)= 2 Py ) yi?,  all peQ(D). (8.6)

5—762909 Acta mathematica 137. Imprimé le 22 Septembre 1976
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8.6. Tt is desirable to interpret the map (8.6) on the Riemann surfaces X =U/T" and
Y=U/IY=X/H. Let f: X~ Y be the quotient map, and let Y’, as in § 8.1, be Y with the
branch set deleted. Then @(T") is just the lift of @(X) to U, and Q(I") is the lift of Q(Y").
The inclusion map of Q(I'”) in @(I") corresponds to the map

o>
from Q(Y') into @(X), and the map 0: ¢(X)—>@Q(Y’) of (8.6) is given by
fOp =Zpenb*p, all peQ(X). 8.7)
Suppose ¢ =f*yp for some y in Q(Y’). Then h*p=¢p for all b in H, so we have
Of*w =Ny, all p in QY’), (8.8)
where N is the order of the group H. Since IV is the degree of the map f, we also have
i vl = Nlwpll, all p in QI). (8.9)

8.7. Now we are ready to begin the proof of Theorem 2.3. Let the group H operate on
T(p, 0) as in § 2.3, and let s: T(p, 0)¥- V(p, 0) be a holomorphic section of 7, V{(p, 0)—
T(p, 0). Choose any 7 in T(p, 0)%, and let X be the Riemann surface m;'(z). Let xp—
s(r)€X. We must show that z, is fixed by a non-trivial member of H.

Choose a group I' of type (p, 0) so that X =U/T’, and form the group I' of type (p', »’)
asin § 8.1. We represent T(p, 0), V(p, 0), and T(p, 0)* by T(T"), V(I'), and T(I")=T(p’, n"),
as in §§ 8.1 to 8.5. Let 4: T(p’, n")~>T(p, 0) be the inclusion map. The cotangent spaces to
T(p',n'), V(p, 0), and T(p, 0) at 7, s(1), and i(z) are Q(Y’), @(X’), and Q(X) respectively.
(Of course X' =X\{w,}.) Let L: Q(X')~Q(Y’) be the map of cotangent vectors induced
by s. Then ||Lg|| <|l¢|| for all p in Q(X’), by Royden {11] and Kobayashi [9]. Further,
since myos =%, and z, induces the inclusion of Q(X) in Q(X’), we have Ly =0p for all ¢ in
@(X), where 0 is defined by (8.7). Hence Theorem 2.3 is an immediate corollary of the fol-

lowing.

THEOREM. Let X, H, Y, and Y’ be as above. Let x,€ X and X' =X\{z,}. Suppose the
linear map L: Q(X')~>Q(Y') satisfies

1Ll <lloll, all @ in QX" (8.10)
and
Lo =0p, dl ¢ in QX), (8.11)

where 0: QX)~Q(Y') is defined by (8.7). Then x, is fized by a non-trivial element of H,
provided that the type (p’, n') of Y’ satisfies (8.1).
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8.8. It remains to prove Theorem 8.7. We shall assume that z, is not fixed by any
non-trivial element of H, and we shall reach a contradiction. Let y,=f(7) €Y. Our as-
sumption on x, means that y, belongs to Y'. Set ¥" =Y"\{y,}.

For any ¢ in @(X'), define O¢ by (8.7). Then 0p €Q(Y"), and

1 1
=1 = — *, R %k =

(Recall that N is the order of H.)
Choose ¢, in Q(X’') with a pole at x,. Then Lp,€Q(Y’) and f*Lg,€Q(X). Hence ¢, =
@o — N7Yf*Lp, is in the kernel of L, by (8.8) and (8.11). Further, ¢, has a pole at z,. It fol-
lows, by (8.7), that ¢, =0¢, has a pole at y,; in particular, y, is different from zero,
Choose any p+0 in Q(¥’) and put g,(f) = || N-1f*p +ip,||. Lemma 7.1 guarantees that
g1(0) exists. From (8.10), (8.11), (8.8) and (8.9) we obtain

91(0) = [ Ly +ig)f = 6 9)| = |l ]| = 9:(0)
for all ¢, so ¢1(0) =0.
Next put g,(t) =||p +tp,||. Then ¢1(0) exists, and

92(t) =[Oy +ty) | < g4(¢)
for all ¢. But g,(0) =[] =g,(0), so g5(0) =gi(0) =0.

We have just proved, in the notation of § 6.2, that y, belongs to the complementary
subspace ¢(Y")’ of @(Y') in Q(Y"). Since y, has a pole at y,, v, and Q(Y’) together span all
of @(Y"). Hence, by the Corollary to Proposition 6.2, there is a projection P of norm one
from Q(Y") onto @(Y’). But, by Theorem 9.1 (a), no such projection P exists when the
type (p’, n’) of Y’ satisfies (8.1). We have reached the desired contradiction, and Theorem
8.7 is proved.

Remark. See § 11.1 for a generalization of Theorem 8.7.

8.9. We outline here a short alternate proof of Theorem 2.3, valid when ¥ =X/H has
genus at least three. In § 8.3 we saw that H acts on the fiber space V(p,0)=V(I"). In
75 (T(p, 0)) =73 (T(T")) we have

s (T )/ H=FI") T =V(p', n').

Let I: 75 (T(p, 0)¥)—>V(p’, n’) be the holomorphic quotient mapping, and i: T(p’, n')—
T(p, 0)¥ the inclusion map. If s: T(p, 0)?~>V(p, 0) is a holomorphic section of &, over
T(p, 0)%, then Iosoi: T(p’,n')>V(p’,n’) is a holomorphic section of m,: V(p’,n )~
T(p',n'). If p' >3, then JTosoi must be a canonical section, by Theorem 2.2. Theorem 2.3

follows at once.
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9. Projections in Q(Y").

9.1. We shall prove the following theorem, most cases of which were proved in [5]
and [8].

THEOREM. Let Y be a closed Riemann surface of genus p, Y' =Y \{y,, ..., y,} @ surface
of type (p, n), and Y"=Y'\{y,} a surface of type (p, n-+1).

(a) If 2p+n>4, there s no projection P of norm one from Q(Y") onto Q(Y”).

(b) If (p, n)=(2, 0) or (1, 2) there is no projection P of norm one from Q(Y") onto Q(Y")
unless y, 18 @ Weiersirass point of ¥'.

We shall define the Weierstrass points of ¥’ in §§ 9.5 and 9.6, when we prove (b).

9.2. Lemma 4.9 of [5] proves the above theorem if the type (p,n) of ¥’ satisfies
3p+n>6. To complete the proof of (a) we must consider types (p, n)=(1, 3), (0, 6), and
(0, .5).

Let Y' have type (1, 3), and suppose a projection P: {Y")~@(Y") of norm one exists.
Choose =0 in the kernel of P. The torus Y is the quotient of the complex plane € by a
lattice subgroup L, so Y is an abelian group. The equation

3y =y +Yat+¥s 9.1)

has nine solutions on ¥, and ¢ has at most four zeros in Y”. Therefore (9.1) has a solution
y in ¥Y" such that ¢ is not zero at y. By Abel’s theorem there is ¢ in Q(Y’).with a triple
zero atb y, simple poles at y,, y,, and y,, and no other zeros or poles in Y.

Choose y, =0 in Q(Y) and notice that p, has no zeros or poles. Finally, choose a com-
plex number « so that y, =y, +ap is zero at y.

Set f1(t) = ||@ +tws|| = |P(@ +tyo)|| and f,(¢) = || +ty,|. Using Lemma 7.1 we find

F(8) = h(0) +t11(0) ey [£] 2+ o[ 2] 57),
falt) = £2(0) +1f2(0) +O(#* 1og (1/]¢])),
with ¢; >0. But £,(0) =£,(0), and f,(t) <f,(t) for all ¢, so f1(0)=/5(0). This leads to a contra-

diction and we conclude that the projection P cannot exist.

9.3. Now suppose Y’ has type (0, 6). If P exists, choose ¢ +0 in its kernel. ¢ has at
least four poles on the Riemann sphere Y, so it has a simple pole at some ¥, 1<k<86.
Choose ¢ in Q(Y") with a simple zero at y,, simple poles at the other punctures of ¥, and
no other zeros or poles. Next choose y, in Q(¥’) with a simple pole at y,, and choose a

complex number & so that w, =y, + ay is regular at y,. Define f,(f) and f,{f) as in §9.2.
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Again £,(0) =1,(0), f1(t) <fs(t) for all £, and £;(0) =#;(0). But Lemma 7.1 gives
f1(®) = F1(0) +££1(0) +cy |¢| ¥ +-o([2]*72),
fa(t) = 12(0) +1f2(0) + O(¢2 log (1/¢])).

Again we have a contradiction, so P cannot exist.

9.4. Now let Y’ have type (0, 5). In this case arguments based on Lemma 7.1 fail,
and we use the method, based on ideas of Hubbard, that we sketched in §4.10 of [5].
Assume that P: Q(Y")~>Q(Y") exists, and choose ¢ =0 in its kernel. Then ¢ ¢Q(Y"), so p
has a pole at y,, the extra puncture of Y”. Choose ¢, in @(Y’) with a simple zero at y,,
and ¢, in (Y”) with no zeros in Y.

By formula (4.10.1) of [5], we have

ft)y= J;W[(q_’l + t‘{az)/l% + t‘PzH =0 (9.2)

for all real t. Of course it follows that f'(0) exists and equals zero. We shall obtain a contra-
diction by showing that f'(0) does not exist.

The function ¢, /@, serves as a local coordinate on ¥ at y,. We choose a closed neigh-
borhood D of y, in ¥’ such that ¢,/p, maps D homeomorphically onto the closed disk
{2€C; |2| <r}. Write f(f)=/y(t)+[5(t) where f, is the integral over D and f, is the integral
over Y\D. Since @,/p; is bounded in ¥Y\D, f(0) exists. In fact differentiation under the
integral sign is easily justified by the dominated convergence theorem, with the help of

the inequality
tw oz
etwl el

<2|wfz|, all z, w€EC with 240, w —z. (9.3)

In terms of the local coordinate z =g, /p, on D, we can write p as p(z)dz2, @, as 0(z)dz?,
and ¢, as 20(z)dz?, where 6(z) is holomorphic and nonzero in {z; |z| <r}, and y(z) is mero-

morphic with a simple pole at z=0. The integral over D becomes
ho= [ were+olz+eioe)oeiasd. (0.4
The dominated convergence theorem and inequality (9.3) imply that
g(t) = ffm«@(z)[(g +0)|z+ ] dwdy

is differentiable at t=0 if |o(z)/z]| is integrable in {z; |z| <r}. Hence, the differentiability
at £ =0 of (9.4) is not altered if we replace 6(z) by 6(0) and y(z) by its principal part at z=0.
Define h(t) by

k(t):ff THE+Y/|Z+t dedy all |t <. (9.5)
{z|<r
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Then f(0) exists if and only if #'(0) does. The following lemma gives the desired contra-

diction.
LemMma. Define h(t) by (9.5). Then k'(0) does not exist.

Proof. Let w(z) =%|z+t|3/(z+¢)%2. Then A(¢) is the integral of w; over {z; |z| <r}. By
Stokes’ theorem

mo=~ald+ g, |

12

Lz + Pz +t)?2] de.

The line integral is a smooth function of ¢ in the interval —r <t¢<r. Hence A'(0) does not

exist. The proof of the lemma, and of Theorem 9.1 (a), is complete.

9.5. It remains to prove Theorem 9.1 (b). First we consider type (2, 0). It is con-
venient to change our notation. Let X be a closed Riemann surfaces of genus two, and
X'=X\{z,}. Let j: XX be the hyperelliptic involution, and H the group of order two
generated by j. The Weijerstrass points of X are the six fixed points of §. Let X” be X
minus the six Weierstrass points. Set ¥’ =X"/H. Then Y’ has type (0, 6).

Suppose P: (X"} ~@(X) is a projection of norm one. Define 0: Q(X)—@(Y’) by (8.7)
and L: Q(X')->Q(Y') by Ly =6Pp. Then L satisfies (8.10) and (8.11), so Theorem 8.7 says
that «, is a fixed point of §, as required. We may use Theorem 8.7 here because only Theo-

rem 9.1 (a) was used in its proof.

9.6. Now let X have type (1, 2). Represent X as € modulo a lattice subgroup L, gen-
erated by 1 and v with Im v>0. Without loss of generality we take 0 to be one puncture
of X and a €L the other. The map z+>—z-+a on € induces an involution j on X. Let X”
be X minus the four fixed points of j, and let H be the group of order two generated by j.
The quotient surface ¥’'=X"/H has type (0, 5). By analogy with the (2, 0) situation we
call § the hyperelliptic involution of X and its four fixed points the Weierstrass points of X,
It is clear that j is the unique involution of X with four fixed points.

Let P: Q(X")—~@Q(X) be a projection of norm one. Again define 0: Q(X)~@Q(Y’) by
(8.7) and L: (X')~@Q(Y’) by Lp=0Pp. Qur proof of Theorem 8.7 remains valid in this
situation, and we conclude once more that z, is fixed by j. The proof of Theorem 9.1 is
complete.

10. Generalization of Theorem 2.2.

10.1 In this section we shall indicate the proof of a generalized version of Theorem
2.2, stated in § 10.3. First we extend Theorem 5.4 to surfaces of finite type. A Riemann
surface and its type (p, n) are called exceptional if 2p +n<4.
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THEOREM. In Theorem 5.4, replace the assumption that X is a closed surface of genus
P =2 by the assumption that X is of finite type (p, n) satisfying (2.1).

(a) I} X is non-exceptional, then xy=1y, for some k, and Ly =g all ¢ in Q(X').
(b) If X is of type (2, 0) or (1, 2), then either x,=y, for some k, j(x,) =y for some k, or

%o 1s a Weierstrass point (where j is the hyperelliptic involution on X).

Proof. Assume 2p +n>4. Let p €Q(X")\@Q(X), and let y, be a pole of Ly with y,€X.
We must prove y;, =, Choose a ¢ €Q(X) with a zero of order m>3p—4+n>0 at y,, and
notice that all other zeros of ¢ have order <p<m. Define functions f; and f, as in §7.3.
The function f, is given by (7.2); and if y, +x,, then

ht) = £(0) +tf1(0) + O(|¢]+* log (1/]#]))
with s=min {2/m, 1/(p+1), 1}. (The log term is needed only when s=1. It is harmless
in general.) As before, f,(t)=f,(t), and we conclude s<<1/(m+1). This contradiction est-

ablishes the claim that y,=x,.

The rest of the arguments proceed as in § 7.3 using Theorem 9.1 instead of Lemma 2
of Hubbard [8].

10.2. Now assume that X is of type (1,2) and =z, is not a Weijerstrass point of X.
Theorem 9.1 says there is no projection P: Q(X')~@Q(X) of norm one. It follows that there
is a p €Q(X’) such that Ly has a pole at some point y. If y, is a Weierstrass point, choose
@ EQ(X) with a double zero at y, (and no other zeros and poles in X). Define f, and f, as
in § 7.4, and conclude that f, and f, satisfy (7.4) and (7.5) respectively.

Asin § 7.4, we arrive at a contradiction; so that y, is not a Weierstrass point of X.

Now we choose p€Q(S) with simple zeros at y, and j(y,). If x,=y, and x,+j(yy),
then with the same definitions of f; and f, we have f; satisfying (7.4) and f, satisfying

Fo(8) = Fo(0) +1f2(0) + g | £]*2 +-o( [¢]*%)
with ¢,>0. This is again impossible, completing the proof.

10.3. The previous theorem has, of course, applications to the problem of cross sec-
tions of m,: V(p, n)~T(p, n), for p<2. Using the methods of § 3-7 we can establish the
following result.

THEOREM. (a) The Teichmiiller curve m,: V(2, n)~>T(2, n), n=1, has precisely n—1
holomorphic sections disjoint from s;.

(b) The Teichmiiller curve m,: V(1, n)—~T(1, n), n=3, has precisely n—3 holomorphic

sections disjoint from s, s, Sg.
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(b"), The Teichmiiller curve: m,: V(1, n)—T(1, n), n>=2, has precisely 2(n —2)+4 holo-
morphic sections disjoint from sy, s,.
(¢) The Teichmiiller curve m,: V(0, n)—T(0, n), n>5, has precisely n—5 holomorphic

sections disjoint from sy, S, Sg, Sq, S

Outline of Proof. Let us define the spaces
K
Vip,n)e=V(p,n)\ U s{T(p,n)) for 0<k<n.
j=1

Thus, V(p, n)y=V{(p, n) and V(p, n),=V(p, n)" in the notation of [5]. We are interested

in finding all holomorphie sections of
Tl V(P: n)k_> T(p, n)

We, of eourse, have the » —% canonical sections 8,4, ..., 8.

10.4. Let I be a Fuchsian group of type (p, n). We assume that I’ has precisely &
conjugacy classes of parabolic elements and (n—%) conjugacy classes of elliptic elements.
The constructions of § 3 apply to this situation and we obtain the space V(I'). We show
in the next section that V(I') is V(p, n),.

10.5. Choose a compact Riemann surface X of genus p>0. Choose n distinct points
on X: xy, ..., 2,. Assume (2.1) holds. Choose Fuchsian groups I' and I of type (p, n) such
that U/'=X and U/I"=X'=X\{z,, ..., %}, k<n. Let n: U>X and #x': U~X" be the
projection maps associated with the groups I’ and I'V. Furthermore, we assume that z—(x;)
has the same ramification number as 7'Y(x;) for j=k+1, ..., n. Because of this last as-

sumption, there is a holomorphic mapping A: U U such that
7w’ =moh.

Asin § 4.1, there is a homomorphism §: IV —T" satisfying (4.2).

LeMMA. A(U)=a"YX') (and is thus dense and open in U) and 8 is surjective.

Proceeding as in § 4.2-4.4, we obtain holomorphic mappings
fT1y->T(I) and G F(IV)—> F(I).
f is the Bers—-Greenberg [4] isomorphism, and the mapping @ induces a holomorphic in-
jective mapping g of V(1) = F(1"')/I" into V(I")= F(I')/I". It is easy to check that the image
of g is precisely V(I")\ U/, s;(T(T")), where s, is the section determined by the puncture
;. Therefore V(IV) is indeed V(p, n),.
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10.6. The straightforward generalization of Theorem 4.5 is the following result.

TrREOREM. Let (p, n) satisfy (2.1). Choose k so that 0<k<n and 2p+k>2. There
exist a “forgetful map” f: T(p, n)—>T(p, k) and a holomorphic mapping g: V(p, n),— V(p, k)’
such that the diagram

V(p’n)k V(p’ k),
7, 0
T(p,m)—L o Tip, 1)

commutes and g maps each fiber 7w, (t), t€ T(p, n), one-to-one onto the fiber mz (f(£)).

10.7. As in §4.6 we find that holomorphic sections s: T(p, n)—V(p, n), of =, cor-
respond to holomorphic maps h: T(p, n)— V(p, k)’ such that moh=f. The isomorphism
theorem of Bers [3] implies that the holomorphic universal covering space of V(p, k)’ is
T(p, k1), so the arguments of § 5 can be repeated to obtain Theorem 10.3 from Theorem
10.1. The extra sections in Theorem 10.3 (b’) are obtained from the Weierstrass points

and hyperelliptic involution for type (1, 2), just as in genus two.

11. Generalization of Theorem 2.3.

11.1. We begin with a theorem that includes both Theorem 8.7 and Theorem 10.1
as special cases. Let X be a Riemann surface of type (p, #) satisfying (2.1), and let H be
a (necessarily finite) group of conformal automorphisms of X. (H is a group of automor-
phisms of X which permute the punctures of X.) As in § 8, set Y =X/H, let f: X~ Y be
the quotient map, and let Y' be Y with the branch set deleted. Recall that the inverse
image of the branch set is the set of points in X fixed by non-trivial elements of H. Define
6: Q(X)~Q(¥") by (8.7).

TuEOREM. Let X, H, Y, and Y’ be as above. Let 2€X and X'=X\{x,}. Let ¥Y"=
Y'\{y1, ..., Ym}- Suppose the linear map L: Q(X")>Q(Y") satisfies

Lol <llell. all ¢ in QX")

Lo =0¢, ol ¢ in QX).
(a) If Y’ us not exceptional, then f(x,) ¢ Y.
(b) If Y has type (2, 0) or (1, 2), then f(x,) is @ Weierstrass point of Y', f(x)) & Y", or
J(f(xe)) § Y7, where 5: Y'Y is the hyperelliptic involution.

and

To obtain Theorem 10.1 let I be the trivial group. To obtain Theorem 8.7 let X be
a closed surface and {y;, ..., ¥,,} the empty set.
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11.2. Since 6 maps @(X) onto @(Y’), and Q(X) has codimension one in Q(X’), the
image of L must either equal @(Y’) or contain Q(Y’) as a subspace of codimension one. In
the first case, Theorem 11.1 is proved by repeating the argument of § 8.8 verbatim, except
that if Y’ has type (2,0) or (1, 2) Theorem 9.1 (b) is used in place of Theorem 9.1 (a).
The second case is more difficult. We shall outline the proof briefly, under the assumption
that the surface Y’ (of type (p, #')) is not exceptional.

Choose a 9 €Q(X') such that Ly, ¢Q(Y’). Let y,€Y’ be a pole of Ly, Then Ly has
a pole at y, for every p€Q(X')\@Q(X). We shall prove that f(z,) =y, (¢ Y"). As usual our
method is to assume f(z,) +y; and look for a contradiction.

Choose a p€Q(Y') such that ¢ has a zero of order m'>3p' —4+n'>p >0 at y,. (AH
the other zeros of ¢ have order <p’.) Note that f*p €Q(X) and that f*¢ has a zero of order
m’ at the N distinct points (N =order H) in f~Y(y,). Write 2, =1, 2s=1(%,), and let 23, 2,, ...
be the (finitely many) remaining points in ¥ which are either punctures of Y” or zeros or

poles of ¢. Let R; be the order of ¢ at z,. Then the order r; of f*p at each point in f~1(z,) is
7, =, (R,+2)-2,
where »; is the order of the subgroup of H fixing the point. Note that the points f-1(z;) ac-

count for all the zeros and poles of f*g.
By the Riemann-Roch theorem, there is a p €Q(X’) such that

(a) p has a pole at x,, and
(b) the order of v at each point in £7'(z;),j+1,2, is >} (r,—1).

By (a), Ly has a pole at y,. Now set fy(t)=|lp+iLy| and f,()=|N"Y*¢+tp|, so that
f2(8) = | LIN-Yf*p +ty)|| <f,(t), and f5(0)=F,(0). As usual, Lemma 7.1 leads to the desired

contradiction.

11.3. Next we extend the considerations of §§ 8.1-8.4 to surfaces with punctures. Let
X be a closed Riemann surface of genus p >2, and let I' be a (finitely generated) Fuchsian
group of type (p, n) such that U/I'=X. As usual we denote by Uy the complement in U
of the set of elliptic fixed points of I". Then

X" =Upl

is a surface of type (p, n). We require all elliptic transformations in I' to have the same
order, say two. Let H be a non-trivial group of conformal automorphisms of X”. Since
every h€H can be extended to an automorphism of X that permutes the punctures, it can
be lifted to U, and we may form the group I as in § 8.1. Let

Y = X/H=UT"
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and let f: X—Y be the quotient map. We let ¥’ be ¥ minus the branch set of f, and we
set

Y=Y nf{(X")=Up/T".
We denote the type of ¥” and I by (p’, »"). As in §§8.2-8.4, the group H acts on 7'(I") =
T(p, n) and V(I')=V(p, »), and the fixed point set of H in T(I") is T(IV)=T(p’, n").

114 Let {,: T(p, n)—T(p, 0) be the forgetful map of §4, and i: T(p’, n")>T(p,n)*
the (surjective) inclusion map. The following result extends the results of § 4.6.

PrROPOSITION. For p>2, the holomorphic sections s: T(p, n)f—V(p, n) of m, are in
bijective correspondence with the holomorphic maps h: T(p’,n")—>V(p, 0) such that myoh=
faot.

The proposition follows immediately from Theorem 4.6, since we can identify

7 (T (p, n)¥) with the complex manifold|

{(t, 2)€T(p', n") x V(p, 0); f(i(t)) = ()}
It is important to notice that the group H acts on 7'(p, 0) as well as T'(p, n) since
H is a group of automorphisms of the closed surface X as well as the punctured surface
X". The image of T'(p, »)¥ under f, is precisely T(p, 0). Asin § 8, T'(p, 0) can be identified
with T(p', n"), where (p', »') is the type of the punctured surface ¥’ defined in § 11.3. The

connections among all these spaces are displayed in the following commutative diagram:

AT (p, n)) T2 2 (T (p, 0)F)

x, - (11.1)
’ " 7’ H fn H 7:0 ’ ’
T@',n") —— T(p,n)” —— T(p,0) ——T(p',n)
11.5. We shall now describe some holomorphic sections s: 7'(p, n)?— V(p, n) of m,,.
‘We shall assume that the type (p’, n') of Y’ satisfies

3p'—=3+n' =2

Notice that 3p’ —3 +n’ is the complex dimension of the fixed point set T'(p, 0)%.

As in §11.3, represent T'(p, ») and T'(p, n)¥ by T(I') and T(I”) respectively. Each
elliptic transformation in I' determines a holomorphic section s, as in § 3.5. We call these
the fized point sections. If n>0 the restrictions of the canonical sections s;: T'(p, n)—~
V(p, n) to T(p, n)¥ are among the fixed point sections.

If Y’ has type (2, 0) ox (1, 2) there are additional sections. We describe these in §§ 11.6
and 11.7.
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11.6. Suppose first that ¥” (and I'') have type (2, 0). Then there is a Fuchsian group
=1V, of type (0, 8), such that T'(p, n)¥=T(I")=T(I'"). The elliptic transformations in
I'” determine holomorphic sections as above. We call the new ones (those not already
determined by elliptic elements of I') Weierstrass sections. More generally, let ¥’ have
type (2, 0). Since Y’ plays the same role for the closed surface X that Y” plays for X",
we obtain Weierstrass sections s: T'(p, 0)¥—V(p, 0). For every such sections, the map
h=sof,0i: T(p’, n")—>V(p, 0) determines a Weierstrass section of m,: 7, (T(p,n)*)~
T(p, n)¥, by Proposition 11.4. Our two methods of construction agree if Y” (and therefore
Y’) has type (2, 0). There is precisely one Weierstrass section for each point 2, € X such that
(%) is & Weierstrass point of Y.

Finally, if Y’ has type (2, 0), then in many instances (for example, with commuta-
tive groups H), the hyperelliptic involution of Y’ lifts to X. As in § 8.3 we obtain, in this
case, a holomorphic involution J of V(p, 0) that maps each fiber over T'(p, 0)¥ onto itself.
The map (¢, ) (¢, J(x)) of T(p’, n") x V(p, 0) onto itself defines a holomorphic involution
J of an ' (T(p, n)¥). If s: T(p, n)¥— V(p, n) is a holomorphic section of 7, then so is Jos.
If s is a Weierstrass section, then Jos=s, but if s is a fixed point section, Jos is a new
section.

C. H. Sah (oral communication to one of the authors) has constructed a wide class
of examples where the hyperelliptic involution of Y’ (of type (2, 0)) does not lift to X.
In these cases the extra sections of the preceding paragraph must be constructed in a
slightly different manner. Lemma 4.4 showed that over each Teichmiiller space T(I') we
have a two fiber spaces: V(I') and F(I"). The manifold F(I') depends not only on the type
of I but on the signature of I'. For our purposes (unless otherwise indicated) this depend-
ence on signature may be ignored, and we denote by F(p, n), a Bers fiber space over T'(p, n).
corresponding to a group I' of type (p, n). In addition to the commutative diagram (4.7),

we also have the commutative diagram

Fip,n)— " F(p,0)

On Qo (11.2)

T(p,n) 1" 7(p, 0)

here g,, g, are the canonical projections and @, is holomorphic and surjective but not
injective on the fibers if #>0. Since g5'(7'(p, 0)¥) is a holomorphic universal cover of
7o (T (p, 0)F), it follows easily from (11.1) and (11.2) that

W = {(t, ) €T(p, n)* x 05 (T(p, O); fult) = 0o(®)}
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is a holomorphic universal cover of 7, (T(p, n)¥). The hyperelliptic involution of ¥’
certainly lifts to an involution J of gy *(T(p, 0)F) that acts in a fiber preserving way. Thus
J also acts in the usual manner on W: (¢, )~ (t, J(z)). Every section s: T(p, n)?~ V(p, n)
of m,, lifts to a mapping from T'(p, n)? into W. This mapping may be composed with J and
projected to a section “Jos” of m,. If s is a Weierstrass section, “Jos”’(7) projects to a
Weierstrass point on z3'(r) modulo H. Further, it could happen that for some fixed point
sections s, “Jos” is again a fixed point section. The sections Jos and “Jos” will be de-

scribed henceforth as the section s composed with J.

11.7. Suppose now that Y” has type (1, 2). The Fuchsian group IV (also of type (1,2))
need not be contained in any Fuchsian group of type (0, 5). Such a normal extension never
exists if I'" has signature (1, 2; y, v) with g = (see Singerman [13]).

This signature for I can occur even when I' has type (p, 0), since every finitely ge-
nerated Fuchsian group of the first kind contains a torsion free normal subgroup of finite
index (see Selberg [12] or Zieschang—Vogt—Coldewey [14]).

Thus even the construction of the Weierstrass sections of § 11.6 does not work in this
case. To get around this difficulty, we represent T'(p, n)?=T(I")=T(1, 2) by T(f") for a
group I of signature (1, 2; oo, o). This is possible by the Bers—Greenberg isomorphism
theorem [4]. Now there will be a group o1 of type (0, 5). We must recall a construction
of the group [". Let h: U~ Ur., be a holomorphic universal covering map. As in §4.1,
there then exists a surjective homomorphism 6: IV —>T" satistying (4.2) for all yef". Let
['—64T). Then I is a normal subgroup of . Further, U/T ~ Up/T. From this it follows
that F(I") is a holomorphic universal covering space of 71, (T(p, n)) minus the images of
the fixed point sections (those constructed in § 11.5). (This construction is analogous to
those in §§ 10.4 and 10.5.) Since I acts in a fiber preserving. way on F(I"), the elliptic
elements of I'" not in I” produce Weierstrass sections as in § 11.6. If Y’ has type (1, 2),
then the Weierstrass sections of my: 7o (T(p, 0)%)—T(p, 0)¥ induce Weierstrass sections of
70y 700 (T (p, n))—>T(p, n)¥ by Proposition 11.4.

The considerations of the above paragraph have also shown that the hyperelliptic
involution of Y’ (of type (1, 2)) lifts to an involution J of a universal covering space of
75 (T'(p, 0)) minus the images of the fixed point sections, and to the corresponding space
over T(p, n) . This allows us to construct the section J composed with s for every section
s: T(p, n)?—V(p, n), except for those fixéd point sections whose images were deleted.
(Using Proposition 11.4 we can describe these exceptional sections as the ones which are
determined by holomorphic maps k=sof,0%: T(p’, ")~ V(p, 0), where s: T(p, 0}~ V(p, 0)

is a fixed point section.)
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11.8. Let us return briefly to the commutative diagram (11.1). The mapping f of X
onto Y induces a surjective holomorphic mapping f: 7; ' (7(p, n)¥)—> V(p', n") such that

V' n") L — 7 (T (p,m))

Tlye Ty

’ ” i
T(p',n") —— T(p, n)¥

commutes. It is important to notice that we have constructed a section s: T(p, )~ V(p, n)
of 7,: V(p, n)—>T(p, n) with s(ty) =2, for all 7,€ T'(p, n) and x,€ V(p, n) whenever

(i) the type (p’, n’) is non-exceptional, and f(z,) is a puncture on 7,*(:~1(z,)),
or
(ii) the type (p’, n') is exceptional and f(z,) is a Weierstrass point on ;*(i-1(t,)), or
f(zy) is a puncture on this surface, or j(f(x;)) has this property, where j is

hyperelliptic involution on this surface.

11.9. Now we are ready to generalize Theorem 2.3.

TuroreEM. Let s: T(p, n)¥—V{p, n) be a holomorphic section of n,: V(p, n)—T(p, n),
p=>2. If 2p' +n' >4, then s is one of the fixed point sections. If (p’, n')=(2, 0) or (1, 2), then

s 15 a fized point section, a Weierstrass section, or one of these sections composed with J.

We outline the proof for the case 2p’ +n’>4. By the methods of § 5.5, it suffices to
show that s agrees with a fixed point section at each point in T'(p, n).

Let g,: V(p, n)~>V(p, 0) be the map of Theorem 4.5, and let hA=g,0s0i: T(p’, n")—>
V(p, 0). Then & satisfies the condition myoh=f,01 of Proposition 11.4. Let t€T(p’, n").
Set @y =h{t)EV(p, 0) and T=my(x,) =F(i(t)) ET(p, 0. Let X =n5'(t) be the surface re-
presented by 7, and put X’ =X\{x,}. Finally, let X" =X\{x,, ..., x,} be the surface repre-
sented by i(t). The group H is a group of automorphisms of X and X", so we form the sur-
faces Y, Y', and Y” as in § 11.3. Y” ig the surface represented by #. The section s agrees
with a fixed point section at i(f) if and only if the projection f(z,) of z, to Y=X/H is a
puncture of Y".

The cotangent spaces to T'(p’, n"), V(p, 0), and T(p, 0) at ¢, xy, and 7 are Q(Y"),Q(X"),
and Q(X) respectively. The map on cotangent spaces induced by f,0¢ is 0: Q(X)—>Q(Y").
The map 7, induces the inclusion map from Q(X) to Q(X'). Let L: @ X')->@Q(Y") be the
map on cotangent spaces induced by A. Then L satisfies the conditions of Theorem 11.1,
80 f(x,) is a puncture of Y”, as required.

The exceptional cases are handled similarly.
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