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Introduction

1. This paper deals with the boundary behaviour of meromorphic functions. The
considerations lead in a natural manner to a conformally invariant class of meromorphic
functions, distinguished by a number of interesting properties, which we call normal
meromorphic functions. Their definition reads as follows: If f(z) is meromorphic in a simply
connected domain @, then f(2) is normal if and only if the family {f(S(z))}, where 2’ = §(2)
denotes an arbitrary one-one conformal mapping of @ onto itself, is normal in the sense
of Montel. In multiply connected domains f(z) is said to be normal if it is normal on
the universal covering surface.

Normal meromorphic functions admit the following characterization in terms of the
spherical derivative: A non-constant meromorphic f(z) is normal in a domain @, which

then necessarily is of hyperbolic type, if and only if there exists a finite constant € so that

[ (2)] |dz|

1+|f(z)|2 =Cdo (2), (D

where do (z) denotes the element of length in the hyperholic metric of G.
It follows from the definition that e.g. bounded functions, schlicht functions, and,
more generally, functions omitting at least three values, are always normal. On the other

hand, all functions of bounded type are not normal.

2. In order to arrive in as natural a way as possible at the concept of a normal function,
we devote § 1 to a systematic study of the situation that a meromorphic f(z) possesses an
asymptotic value « at a boundary point P but has not the angular limit « at this point. In
this case there exists, roughly speaking, a zone containing curves with endpoint at P

on which f(z) tends to the limit «. This zone, however, is sharply limited, i.e., there exist
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curves terminating at P on which f(z) has not the limit «, such that the hyperbolic distance
of these curves to an «-path can be made arbitrarily small (Theorem 1).

This first result is then used in § 2 to finding conditions under which the existence of
an asymptotic value implies the existence of the angular limit. It is here that the family
{f(S(z))} enters in a most natural manner, and it follows easily that the angular limit
certainly exists, if {f(S(z))} is a normal family (Theorem 2). This gives rise to the above
definition of normal meromorphic functions as functions generating a normal family
S @)}

By studying conformally invariant normal families we arrive in § 3 at the condition
(1) {Theorem 3). Theorem 2 is then restated in terms of the spherical derivative. Although
the condition ensuring the existence of the angular limit is not necessary, the theorem seems
to belong to the best general results in this direction. This derives from the fact that,
owing to the nature of the problem, non-trivial necessary and sufficient conditions can
scarcely be given. Besides, if the situation is specialized, sharp results can immediately
be established. For instance, assuming that a meromorphic f(z) tends to a limit as z ap-
proaches a boundary point P in an arbitrary manner along the boundary, we give a
necessary and sufficient condition under which f(z) then uniformly tends to this limit as
z approaches P in the closure of ¢ (Theorem 4). As a second conclusion, we give a necessary
and sufficient condition concerning the existence of the angular limit, if the corresponding
radial limit exists (Theorem 5).

At the end of § 3, the relation of normal functions to functions of bounded type is
briefly discussed. In both classes the growth of the functions is restricted by a condition
involving the spherical derivative. The boundary behaviour, however, is quite different.
For normal functions asymptotic values imply the corresponding angular limits, whereas
this is not true for all functions of bounded type. On the other hand, while functions of
bounded type always possess angular limits almost everywhere, there exist normal functions
with no asymptotic values at all.

Starting from the relation (1), we derive in § 4 sharp estimates of a more special kind
for normal functions. As a fundamental result we first establish an improved version of
the classical Two Constants Theorem, yielding an inequality not only for regular f(z) but
also for functions possessing poles (Theorems 6 and 7). This result can be applied in several
directions. First, we obtain a sharp theorem of the Phragmén-Lindeléf type for the boundary
values of normal meromorphic functions (Theorem 8). Secondly, we can readily prove
that a meromorphic function cannot be normal in any neighbourhood of an isolated essential
singularity (Theorem 9), which result is a generalization of Picard’s classical theorem.

Finally, it follows that if a sequence of normal functions, satisfying (1) with a fixed C,
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uniformly tends to zero on a boundary arc, then the sequence uniformly converges towards
zero in every compact part of the domain ¢ (Theorem 10). As an immediate corollary of
this general result we find anew Theorem 2 that for normal functions the existence of an

asymptotic value « at a boundary point implies the existence of the angular limit « at this

point.

§ 1. Asymptotic paths of meromorphic functions

3. Let f(z) be a meromorphic function in a simply connected domain @ bounded by
a Jordan curve. In this section we study the behaviour of f(z) in the neighbourhood of a

boundary point.

For convenience of notations, we write for every boundary point z = z,,
|f (z0)| =lim _sup |f(z)].

If |f(zo) | tends to zero as z, on the boundary approaches a point P, we say that f(z)
has the limit zero at P along the boundary. If so, there always exists a Jordan curve in
G with endpoint at P on which f(2) tends to zero as z—P.

We call an angle with vertex at P a domain A4 defined as follows: If Q is some other
boundary point and w(z) the harmonic measure in @ of one of the arcs PQ, then 4 is a
domain whose points z satisfy a condition ¢ < w(z) <1 —¢, € > 0. If f(z) uniformly tends
to a limit & as z—P inside every angle A4 of the above kind, we say that f(z) possesses the
angular limit « at the point P.

Concerning the behaviour of f(z) in the neighbourhood of P, we make the following
assumptions: We suppose that there exists a Jordan curve I', terminating at P and lying
in the closure of @, such that f(z) tends to zero as z—P along this curve. Besides, we
suppose that f(z) does not possess the angular limit zero at P.

" The results which we shall obtain on the boundary behaviour of f(z) will be expressed
in conformally invariant form. In what follows we may, therefore, freely perform one-one

conformal mappings of & onto other suitably chosen domains.

4. We shall prove that under the above conditions there are certain “last” curves
around I' on which f (2) still tends to zero. More precisely, we establish the following theorem,
which in a slightly weaker form will be used in the subsequent considerations.

TuEOREM 1. Let the function f(2), meromorphic in G, have the asymptotic value zero
at a boundary point P along a Jordan curve lying in the closure of G. If f(z) has not the

nagular limit zero at P, there exist for any given £ > 0 two curves in G with endpoinis at P,

4 —563804. Acta mathematica. 97. Imprimé le 11 avril 1957.
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o that [ (z) tends to zero on one curve but not on the other, and so that the hyperbolic distance
of these curves is less than e.

Proof. It proves convenient to choose as domain G the right angle 0 <argz <z=/2,
and suppose that the boundary point P lies at z =oco. By the above, there is no loss of
generality to assume that the asymptotic path I', along which f(z) tends to zero, lies
entirely in G. We suppose that I' starts at z = 0 so that it divides G into two distinct parts
G, and G,; let G, denote the part of G bounded by I' and the imaginary axis.

Because f(z) does not uniformly tend to zero in every angle, there exists an angle A4:
0 <argz<m/2—26, >0, containing an infinite number of points which cluster at
infinity and at which f(z) has not the limit zero. The same is thus also true at least in one
of the intersections G; N 4 and G, N 4; we assume in the following that it is true in ¢; N 4.

In order to avoid difficulties arising from the possible complicated structure of the
asymptotic path I', we perform an auxiliary conformal mapping w =w(z). We map &,
again onto the right angle 0 <arg w <s/2, and normalize the mapping by keeping fixed
the boundary points 0 and co. In this mapping, the curve I' is mapped on the positive
real axis. Moreover, the images of @, N 4 lie in the angle arg w <z/2 — 26, as follows im-
mediately if we apply the maximum principle to the harmonic measures of ¢ and G,
vanishing on the imaginary axis and equal to 1 on the real axis and on I', respectively.

In the w-angle we thus have the following situation. The transformed function f(w)
tends to zero on the positive real axis as w—>oco, whereas there exists in arg w <z/2 — 26
a point set on which f(z) has not the limit zero. From this it follows that given any three
non-zero values a, b, ¢, there is in arg w <z/2 — 4 an infinite number of points, clustering
at infinity, at which f(2) takes at least one of the values a, b, c. For if not, f(w) would
omit the values a, b, ¢ in (arg w <z/2 —d) N (jw| > R) for a sufficiently large E. By a
well-known generalization of Lindeléf’s Theorem,! f(w) would then uniformly tend to
zero in arg w <m/2 — 26 as w—>oco, thus contradicting the hypothesis.

After these preliminary considerations, we introduce a family of similar triangles A,
defined as follows: The base of A lies on the real axis, the two other sides are equal, and
the vertex angle equals 6. Given three non-zero values a, b, ¢, we construct all triangles
A of the above kind containing no points at which f(w) takes one of these values. A com-
ponent of the union of all these triangles is an unbounded simply connected strip domain
bounded by the coordinate axis and a polygonal curve. If needed, we cut the tops of
the latter curve so as to ascertain its entirely lying in the angle arg w <zn/2 —§, and
denote the curve so obtained by C and the corresponding strip domain by D (Fig. 1).

! First proved by W. Gross, Uber die Singularitdten analytischer Funktionen, Monatshefte fiir
Mathematik und Physik, 29 (1918).
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///,

Fig. 1.

In D, f(w) omits the three values a, b, ¢, whereas on C there is an infinite number of points
at which f(w) takes some of these values.

In the domain D we again apply the generalized Lindelsf Theorem to f(w) and con-
clude that f(w) has the angular limit zero at infinity. In other words, if w (w, D) denotes
the harmonic measure of D which vanishes on the real axis and is equal to 1 on the rest
of the boundary, then f(w) tends to zero on every level curve w(w, D) =24, 0 <A <1.
We shall now prove that these level curves have a bounded hyperbolic distance from the
polygonal curve C and that the bound obtained tends to zero as A—1.

To this end, we consider an arbitrary point P (w =u + iv) on C. Let w(w, A) denote
the harmonic measure of the triangle A with vertex at P, which vanishes on the base and
is equal to 1 on the remaining boundary. Since the triangle A is contained in D (cf. Fig. 1),
it follows from the maximum principle that o (w,A) > w(w, D). Hence, the Euclidean
distance of the level curve w(w, D) = 1 from P is less than the corresponding distance of

the curve w(w, A) = A.

As regards the corresponding hyperbolic distances, we conclude as follows. Let
@, (v + iv)) and Q,(u + 1v,) denote points at which the curves w(w, D) = 4 and w(w,A)= 1

bisect the straight line w =wu. If ¢(P, Q) designates the hyperbolic distance between P
and @, we have
P P
1 V 1.1 1 1 [dv
o= [V gliel<g g [
Ql Ql

11 g2l 1 4,2
2sind Sy, 2sind ° o
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But since the triangles A are similar, the ratio v/v, = k(1) is independent of the choice of
the point P and depends on 4 only. Evidently, k(2)—1 as A—1. Accordingly, the hyperbolic
distance between the curve w(w, D) =4, on which f(w) tends to zero, and the curve C,
on which f(w) has not the limit zero, is less than the constant }(1/sin ) log &(4), which
tends to zero as A—1.

Now the hyperbolic metric is invariant with respect to one-one conformal trans-
formations. On returning to z-angle, we thus infer the existence of two curves, stretching
to oo, so that f(z) tends to zero on one curve but not on the other, and so that the hyperbolic
distance of these curves is less than a constant which can be chosen arbitrarily small.
The hyperbolic metric is then defined with respect to the image of the w-angle, i.e. with
respect to the domain G,. By the principle of the hyperbolic measure, however, the hyper-
bolic measure with respect to G is greater than the hyperbolic measure with respect to
the whole angle. Our result thus holds « fortior: in the hyperbolic measure of the angle,

and the theorem is completely proved.

§ 2. Normal meromorphic functions

5. Making use of Theorem 1, we shall now derive a condition under which the existence
of an asymptotic value zero at P implies the existence of the angular limit zero at P.
The result obtained contains as special case Gross’s above-mentioned generalization of
Lindel6f’s Theorem. )

Preserving the situation of Theorem 1, we suppose that f(z) has the asymptotic value
zero at P along a Jordan curve lying in the closure of ¢ and that f(z) does not possess the
angular limit zero at P. By Theorem 1, there then exists a Jordan curve L in ¢ with end-
point at P, on which f(z) tends to zero, and a sequence of points z,, » =1, 2, ..., which
converge towards P and at which f(z,) =a =+ 0, such that the points z, have a bounded
hyperbolic distance (<< M) from the curve L.

We fix an arbitrary point 2z, in G, and associate with the points z, conformal mappings
z’ = 5,(z), which are defined as follows: S, (z) is the function which gives a one-one ﬁlapping
of G onto itself, keeps the houndary point P invariant, and satisfies the condition S, (z,) = z,.

Let K denote the hyperbolic circle whose centre lies at z =z, and whose radius, in
the hyperbolic metric, equals M + 1. Because of the invariance of the hyperbolic metric
with respect to one-one conformal mappings, every inverse transformation z =8;'(z’)
maps one or several arcs of the curve L inside K. For large values of n, the functions f (9, (z))
are small on these image arcs, since f(2) tends to zero on L. On the other hand, f(8,(zy)) =

a 0 for every n.
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6. Let us now impose a new condition on the function f(z): we assume that the family
of functions f(S,(2)) is normal. By definition, a family of meromorphic functions is said
to be normal in a domain, if every sequence of its functions contains a subsequence which
converges uniformly in every compact part of the domain. Since the functions may have
poles, convergence must be defined in the spherical metric.

As remarked above, for large values of » the functions f(S,(z})) are small on certain
ares in K. Hence, they cannot uniformly tend to co, and we conclude from the normality
the existence of a subsequence f(S,, (2)), whose functions uniformly converge towards a
meromorphic limit function ¢ (z) in K.

The images of the arcs of L mapped into K by the functions z = S;; (") clearly possess
at least one accumulation continuum c¢. Because f(z)—0 on L, it follows that on ¢, ¢ (z) = 0.
Hence, the limit function ¢ (z) vanishes identically. On the other hand, for every £, f(S, (z4))
=a + 0, so that also ¢ (z,) = 0. We have thus arrived at a contradiction, and it follows that

if f(2) does not possess the angular limit zero, the family {f(S,(z))} cannot be normal.

7. We now introduce the definition mentioned in the Introduction: A meromorphic
function f(z) is called normal in a simply connected domain @, if the family {f(S(z))} is
normal, where 2’ = S (z) denotes an arbitrary one-one mapping of G onto itself. In a multiply
connected domain f(z) is said to be normal if it is normal on the universal covering surface
of the domain.

In view of this definition, the above result on the boundary behaviour of f(z) can be
expressed as follows.

TurOREM 2. Let f(2) be meromorphic and normal in G, and let f(z) have an asymptotic
value o at a boundary point P along a Jordan curve lying in the closure of G. Then {(z) possesses
the angular limit o at the point P.

Remark. 1t follows immediately from the above considerations that if the asymptotic
path I' lies on the boundary, a normal f(z) does not only possess the limit o in every angle

A, but it also uniformly tends to « in the part of & lying between 4 and the curve I'.

8. On the basis of the definition, we can immediately conclude the normality of
certain meromorphic functions. For instance, if f(z) omits three values in ¢, all functions
£(8 (2)) omit the same three values. Hence, {f(S(z))} is a normal family (Montel’s Theorem),
and thus f(z) is normal. In particular, all bounded functions are normal as well as all
schlicht functions in domains of hyperbolic type.

It is clear that if f(2) is normal, then so is f(2) + ¢(2), if ¢(2) is bounded. Likewise, if

f(z) is normal, then also all powers f(z)*, u real, are normal. (If u is not integer, we have to
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suppose f(z) +0, co in order that f(2)* will be single-valued.) It is also readily seen that
with f(z), every rational function R (f(z)) of f(z) is normal.

If { () omits less than three values, the subordination principle cannot be applied, and
it is often difficult to judge whether f(z) is normal or not. However, in certain simple cases
this can readily be done. For instance, suppose that f(z) =0, oo and that f(z) takes some
third value only a finite number of times, say » — 1 times. Then f(z)"'" is single-valued and
omits at least three values. Hence, f(2)"/" is normal, and thus also f(z) = (f(2)/")". It is not
difficult to establish the more general result that f(2) is normal if it takes three values only

a finite number of times.

§ 3. Spherical derivative of normal functions
9. We shall now study what conditions on the growth of f(z) are imposed by the
requirement that f(z) is normal. To begin with, we introduce the spherical derivative

o(f (@)= T_{_f' f(z()zl) P

of f(z), and start from the known result that a family {§ of meromorphic functions is normal
in a domain G if and only if
up @/ ()< > (2)
€

in every compact part of .1 This condition, however, assumes a much sharper form as

applied to the family {f(S(z))}, which is conformally invariant.

10. We call a family ¥ of meromorphie, not necessarily normal functions in a simply
connected domain conformally invariant, if f(z) € always implies (S (z)) €.
Let us suppose, for a moment, that the domain @ is the unit dise {z| < 1. The mapping

funection 2z’ = 8(2) can then be written

(xreal, |{[<1)

'df(z’)
dz | 1-|¢]
L+]f () |1+ L)

so that o (f(S(=))=

For z = 0, this yields e (F(S(0)=1—[ZP e (f (L), (3)

1 See e. g. L. AHLFORS, Complex Analysis, McGraw-Hill Book Company, Inc. (1953). p. 169.
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From this we conclude that in a family , conformally invariant in |z| <1,

1
sup @ (f () = [z 592 € (/ O)).
fe T

z|° fe

|dz|
1-|z[*

Introducing the notation do(2) =

for the hyperbolic element of length, this can also be written
sup ¢ (f (2))|dz| =supe (f (0) do (2). )
fe fe@

This relation holds in the special domain |z| <1. Since, however, both p(f(2))|dz|
and dg (z) are conformal invariants, the relation can immediately be extended by conformal

mapping to every domain G of hyperbolic type.

11. We remark that L;,u%) o (f(0))=co
in domains G of elliptic or parabolic type, if the conformally invariant family {§ contains
non-constant functions. For we can then suppose that @ is either the whole extended
z-plane or the punctured plane z + co. In both cases, S(z) =az + b gives a one-one mapping
of @ onto itself, where a =0 and b are arbitrary complex numbers. Now, if f(z) is mero-
morphic in G,

0 (1(8(0))) =] ale(f(®)),

whence the assertion follows.

12, Considering the criterion (2) for normal families, we infer from (4) the validity
of the following condition: A conformally tnvariant class § containing non-constant functions

18 a normal family in a domain G if and only if its functions satisfy an inequality
e(f(2))|dz| < Cda(2), (5)

where C is a fixed fimite constant.

For we first conclude from the above that if {§ is a normal family, the domain ¢ must
be of hyperbolic type, and thus a hyperbolic metric can be introduced. If § is normal in
{z] <1, then suppf(0)) <co by (2), and hence by (4), (5) is satisfied for C' =sup g(f(0)).
The validity of (5) in arbitrary domains follows hereafter immediately by conformal map-
ping.

Conversely, if (5) holds, then sup p(f(z)) < C(do(2)/|dz|) <oo in every compact part
of G, and by (2), § is a normal family.
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13. By the above, we get the following characterization of normal functions in terms
of the spherical derivative and hyperbolic metric.

THEOREM 3. 4 non-constant f(z), meromorphic in a domain G, is normal if and only
if the condition (5) is satisfied at every point of G.

For it follows from (3) that if (5) is valid, ¢ (f(8(0))) < C. Hence, by (4),

e(f(S(2)))]dz] = Cdoz),
and the above normality criterion applies to the conformally invariant family {f(S(z))}.

14. Considering Theorem 3, Theorem 2 can also be expressed in the following form:
THEOREM 2. Let f(2) be meromorphic in G and have an asymptotic value « ai ¢ boundary

point P along a Jordan curve lying in the closure of G. If

o o(en)de]
s s @) ’

(6)

then f(z) possesses the angular limit « at the point P.

For if (6) is valid, we have a finite C' such that ¢(f(2))|dz| < Cdo(z) in a G-neigh-
bourhood of P. From the principle of hyperbolic measure it then follows, by Theorem 3,
that f(z) is normal in this neighbourhood.

15. The inequality (6) is of course no necessary condition, since Theorem 2’ has to
hold for all asymptotic paths. However, as soon as the asymptotic path is fixed, (6) can
be modified so as to yield precise conditions fof the existence of the angular limit.

As a first exarple, we establish the following generalization of a well known boundary
theorem of Lindelsf.

THEOREM 4. Let f(2) be meromorphic in G and approach a limit « as z tends to P in
an arbitrary manner along the boundary. Then f(z) uniformly tends to o as z tends to P in the
closure of G, if and only if the condition (6) is fulfilled.

Proof. If (6) holds, we first conclude as in proving Theorem 2’ that f(z) is normal in
a neighbourhood of P. Hence, by Theorem 2 and the subsequent Remark, f(z) uniformly
tends to «, no matter how z approaches P in the closure of (. Thus condition (6) is suf-
ficient.

In order to establish the converse part of the Theorem, we assume, for simplifying
the computations, that G is the upper half-plane and P the point z = 0. If do, (2) denotes
the hyperbolic element of length with respect to the semicircle (|z| <r) n (Im(z) > 0), we

can show by an elementary computation that do,(z)/do(2) is bounded in every smaller
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semicircle |z| <r —9, § > 0. Hence, if (6) is not fulfilled, it follows from Theorem 3 that
f(z) cannot be normal in any semicircle |z| <r. But then f(z) cannot omit more than two

values in any neighbourhood of P, and the uniform convergence towards « is impossible.

16. With only formal modifications to the above proof we can also establish
TuegorREM 5. Let f(z) be meromorphic in |z| <1, and let it possess the radial limit «

at the point z = e'®. Then f(2) possesses the angular limit o at z = €'®, if and only if

in every angle |arg(l —ze )| <z/2 — 6, 6 > 0.

17. By means of Theorem 3, we can draw certain general conclusions concerning
normal functions. In Theorems 2, 4 and 5, we already made use of the important property,
ensuing from the principle of hyperbolic measure, that if f(z) is normal in G, it is also
normal in every subdomain of ¢. It may be noted that this is not as easily seen if the
original definition of normality with the help of normal families is used.

By the principle of hyperbolic measure, we can also establish the following result:
Let f{w) be normal in a simply or multiply connected domain @,, and w =¢(z) mero-
morphic in a simply connected @, with values lying in G,. Then f(p(z)), which is single-
valued by the monodromy theorem, is normal in @,. For since f(w) is normal, we have

do,(p ()
|dz]

9
5
&

o(flp @) =0 (f@)|¢' )] =C

Z| ¢ (2)|=C

By the principle of hyperbolic measure, do,,(p(z)) < do,(z), so that finally o (f(p(2)))|dz| <
Cdo(z), whence the normality of f(p(z)) follows.

18. It may be of interest to compare normal functions with meromorphic functions of
bounded type. It is well known that there exist functions of bounded type possessing more
than one asymptotic value at a boundary point (e.g. f(2) =z¢* is of bounded type in the
right half-plane and possesses the asymptotic values 0 and co at z =c0). Hence, all func-
tions of bounded type are not normal. On the other hand, the elliptic modular function,
which omitting three values is normal, is not of bounded type. The two function classes
thus overlap each other.

However, for normal functions the characteristic function cannot grow very rapidly.

In fact, in the unit disc we can write

1(d
-2 [2 [ [eq@rsay

0o |2[<r
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Making use of Theorem 3, we get from this by an elementary computation
c? 1
< Z_ .
T(r)< 5 log -2

19. A function f(z) is of bounded type, if the average growth of g (f(z)) is not too large.
In this case, the existence of an asymptotic value does not necessarily imply the existence
of the corresponding angular limit. Instead, it does follow that angular limits exist almost
everywhere. On the other hand, a function f(2) is normal, if p (f (2)) itself does not grow too
rapidly. Asymptotic values then always imply angular limits, but we cannot say anything
about the existence of asymptotic values. In fact, there exist normal functions which possess
no asymptotic values at all.

In order to prove this we make use of a theorem of Lohwater and Piranian,! which
states that if  is an arbitrary denumerable set on |z| =1, there exists a bounded function
in |z] <1 possessing a radial limit at every point outside E and failing to have a limit at
any point of E.

In particular, if f(2) is a modular function which possesses radial limits only in a
denumerable set, we have a bounded g (z) such that the normal function f(2) + g (z) possesses

radial limits nowhere. It cannot then have any asymptotic values either.

§ 4. Boundary behaviour of normal functions

20. By aid of the simple metrical condition for normal functions, it is possible to
derive sharp estimates of a more special kind for the modulus of f(z), and thus accurately
describe the boundary behaviour of a normal function. We first establish an improved
version of Two Constants Theorem, and formulate it in view of the applications as follows.

TaEOREM 6. Let a meromorphic f(z) be normal in a domain @, o(f(2)) |dz| < Cdo (2),
and satisfy an inequality |f(z)| <m on a boundary arc y.* Let G be a subdomain of G with
boundary y Uy’, where y’ is an analytic curve. If |f(z)| < M in G* and if there is an inner
point Q on y' at which |f(z)| =M, then

mZMe—CAQ (M+1/M). (7)

_(do(z) /ow(z)
Here /'LQ——(|dz|/ o )z=Q’

the hyperbolic metric being defined with respect to G and dw/dn denoting the derivative in the

1 To appear in Ann. Acad. Sci. Fennice.
2 We recall that for boundary points z, | f (2) | refers to lim sup | f () |.



BOUNDARY BEHAVIOUR AND NORMAL MEROMORPHIC FUNCTIONS 59

direction of the inner normal of y' of the harmonic measure w(z) of G*, which is equal to 1
on y and vanishes on y'.

Proof. The function log (M/|f(z)|) is positive in ¢* and harmonic except for possible
logarithmic singularities. On y, log (M/|f(2)]) =log (M/m), while ony’, log (M/|f(z}|) = 0.

Hence, by the maximum principle,

w(?)
or |f ()| M (};) : (8)

An inequality for the modulus of f(z) in the opposite direction is obtained by taking

into consideration that f(z) is normal. The spherical distance of M and |f(z)| equals

M

d
sarlfah= |12
171

M—|t@)]
1+ M|f ()]

(9)

=arc tg

where the branch of arc tg of modulus less than /2 must be chosen.

Because f(2) is normal, we have, on the other hand,

Q Q
s f D =[o(f@)|dz|= Ofda ). (10)

Since we are interested in points z near ), we can suppose that the right-hand majorant is
less than /2. Combining (9) and (10), we then get

Q
M—tg(ofda (z))
lf ()] = 5 - (11)
1+Mtg(OJ‘ do (z))

In (8) and (11) we have a double inequality for |f(z)|. For z =@, the bounds coincide.
Hence, at @ the normal derivative of the majorant in (8) cannot be less than the normal
derivative of the minorant in (11). Performing the derivation, we obtain the desired

inequality (7).

21. Because the minorant in (7) is conformally invariant, we can assume, without
loss of generality, that @ is the upper half-plane. As domain G* we choose a circular segment
T, containing the angle o and having as chord a segment of line of the real axis, which we

take as y.
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In this case, the exact value of A, can easily be computed. If v is the segment of line

1 2—r
= arg{ — ) —a}>
T & z+r *

with endpoints z = + r, then

w(z)=

and it follows by an elementary computation that

-«
2 sin o

Consequently, A is independent of r and z and depends on « only. With respect to «, 4 is
monotonic decreasing.

In this special case (7) assumes the form
n-o ., , l
mgMe~2"‘i"°‘c(MTM). (12)

22. If Moo, the minorant in (12) tends to zero, and the inequality becomes trivial.
This is due to the fact that for very large M, the two inequalities (8) and (11) yield a better
estimate than (12) if applied in some inner point of G*. However, we need not apply (12)
for large values of M at all. For if (12) holds for a certain M = M, we can show that it
holds for every M < M.

For M <m, this is trivial. If M = M, satisfies the inequalities m <M, <M, we
consider the closed point set B on which |f(z)| = M,. This set has a positive distance
from y. From among all domains 7'y bounded by a part of ¥ we then select one which has
at least one boundary point in common with E but does not contain any interior points
of E. In such a T,, |f(z)] <M,, and |f(2)| = M, at some point of 5’. Hence, (12) holds
for M = M,.

Applying the same reasoning we see that (12) remains valid also if [f(z)| > M at
some point of T',.

The minorant in (12) attains its largest value for

. 2\ }
1+(1+(”. “0) )
Sin o .

T— &

M=M(a C) —

sin o

I sup |f(2)| = M («, C) in T4, (12) thus yields the best estimate, if M = M (a, C).

Summarizing the results, we obtain
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THEOREM 7. Let f(2) be meromorphic and normal in the upper half-plane, and let

[f(2)| <m on a segment of line y of the real axis. Then

n—0o 1
m2M6—02Sina (M+ H)

3

where M is an arbitrary positive number salisfying the condition

M= suplf @], if supl|f@)] < M 0).

The best estimates are obtained for
M=sup|f@)] if sup|f)|<M (0)
and for M=M(C), if sap|f(z)| = M («,0).
2eTy

23. In the special case that |f(z)|= m on every finite segment of line y of the
real axis, Theorem 7 gives the following accurate description about the boundary values.
TuaeorEM 8. Let f(z) be meromorphic and normal in the upper (z =z +1iy)-half-plane,

el @)ldz] _

o
sup do () C < oo, (13)

and denote m=sup |f(x)| Then

—0 LT

1+ V1+02e“'175
O — 2

(%

m (14)

unless f(z) 1s bounded, in which case
mz=C.

Both bounds are sharp.
Proof. The case that f(z) is bounded is readily established. By the maximum principle,

we then have |f(z)| <m in the whole half-plane. Hence, by Schwarz’s Lemma,
| (2)]|dz| < mdo(2),

with equality at z =z, if and only if w = f(z) gives a one-one mapping of the half-plane

onto |w| <m and f(2y) = 0. Hence, a fortiors,
o(f(2))|dz| < mda(z),
ie., C<m,

with equality for the above mapping functions.
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Let us hereafter suppose that f(z) is unbounded. For an arbitrary M > m, we consider
the set K, on which |f(z)| = M. For every o, 0 <a <z, we obviously have a domain 7',
such that T, n B, is void, while T, and E,, have at least one boundary point in common.
Hence, Theorem 7 holds for every «, 0 <o <s. Letting a—7z, we obtain (14).

In order to prove that (14) is sharp we consider a function
f)=Aet*, (15)
where b >0 and ¢ are arbitrary real numbers. If 4 >0 is determined by the condition

2AyeY
11 A% — 5

we see immediately that the condition (13) is fulfilled. Besides, it follows by an easy com-

putation that

4 - 1 +V1+026—VT02
7 .

Because m = 4 for the functions (15), (14) holds for them as an equality.

24. From Theorem 8 we also immediately get information on u = inf|f(x)|. In fact,

—00< T <

1 < 1
— = u s
u voo<1‘p<w|f(x)|

and since g (f (2)) =0 (1/f(2)), it follows that

C iro
eV1+c

< 7
F=1ivite

unless 1/f(z) is bounded, in which case x4 < 1/C. Both bounds are again sharp.

In the general case that both f(z) and 1/f(z) are unbounded, m— oo and u—0 as C—0.
Hence, the “more normal’” such a function is, the more its modulus has to oscillate on
the boundary.

25. As another application of Theorem 7, we prove the following generalization of
Picard’s classical Theorem.

THEHEOREM 9. A meromorphic function cannot be normal in any neighbourhood of an
tsolated essential singularity.

Proof. Let the isolated singularity lie at z =0. Owing to the monotonicity property
of normal functions with respect to the domain, there is no restriction involved in supposing

that the neighbourhood G considered is the unit dise punctured at z = 0.
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Let us make the antithesis that f(z) is normal in @. Since the universal covering surface

of G is mapped onto |w| <1 by z ="~V we get by an easy computation

do(2) 1

dz| 1
|dz| 2}z|logm

From the normality of f(z)it thus follows that?

o(f@)s —Y

1
Because z =0 is an isolated essential singularity, f(z) takes all values except at most

two in every neighbourhood of z = 0. Without any essential restriction we can therefore

assume that there exists a sequence of points z;, z,, ... with |z,| = |2, = ..., lim |z,| =0,
n—>00
such that f(z,) =0,n=1,2, ...
On the circle |2z| =|z,|, we have for the spherical distance of f(z) and 0,

-3

s(f (2),0)=are tg |f(2)|< [0 (f (2)) |d 2]

Zn

4

é“gj |dz| - nC

1 = 1
zllogi—  log —
I | glzl g|2nf

Zn

For sufficiently large n, it thus follows that on |z| =|z,|,
aC
1) < tg | <L
10g |Z_n|

Let now r <|z,| be so chosen that |f(z)| <1 in r <|z| <|z,| and that |f(z)| =1
for some z of modulus r. We apply Theorem 6 to f(z) by taking as domain @ the disc |z| <|z,]
punctured at z =0 and as G* the ring r <|z| <|z,|. Then
|2]

PRI s
r an log [2a]

1=2rlog

=2,

r Jley=r

! Tt can.be proved that only ¢ (f) =o (| z]~!) is actually needed. We shall discuss this problem in
a forthcoming paper.
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and since the hyperbolic measure of (|z] <|z,|) Nz =0 is greater than the measure in the

punctured unit dise, it follows that

This, however, leads to a contradiction as n—>co, and we conclude that f(z) cannot be

normal.

26. Theorem 6, or its sharpened specialization Theorem 7, can also conveniently be
used for the study of the boundary convergence of normal meromorphic functions. We
can easily establish the important property of normal functions that convergence towards
a constant on a boundary arc implies convergence towards this constant in the whole
domain.

TaeorEM 10. Let f,(2), n=1,2, ..., be a sequence of meromorphic functions normal

in &, 0(f,(2)|dz| < Odo(z), where C' is independent of n. Let further lim |f, ()| = 0 uniformly
n—> 00

on a boundary arcy. Then the sequence f, (z) tends uniformly to zero in every compact part of G.
Proof. Let us first suppose that G is the upper half-plane. Let B be an arbitrary compact
part of G, and let us consider a domain 7', with ¢ as chord which contains B.

By Theorem 7, we have in 7,

T—o 1
sup |f (2)| = Me_CZSi““(M+M), (16)
zey

where M is equal to sup |f,(2)| or M(a, C), according as sup |f,(z)| <M («, C) or
zeTy zely
sup |fu(2)| = M (o, ).

By hypothesis, the left-hand side of (16) tends to zero, as n—>co. Hence, from a certain
n on, the alternative that (16) holds for the fixed M = M («, C) is impossible. With the

left-hand side tending to zero, M =sup |f,(z)| = max |f,(z)| also has to approach zero.
zeTy zeB

Hence, the sequence f,(z) converges uniformly towards zero in B.

By conformal mapping, the result is extended for more general domains G.

27. We finally remark that Theorem 2 (or Theorem 2’), our generalization of Lindelof’s
Theorem, can also be derived as a direct consequence of Theorem 10.

Let us suppose that a normal f(z) has an asymptotic value « at a boundary point P
along a Jordan curve I lying in the closure of . We make the antithesis that there exists
a point set 2, 2,, ... in an angle with vertex at P such that z,—P and that f(z,) does not

tend to o
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In proving Theorem 2, we introduced mappings z" = 8, (z) of & onto itself, which left
P invariant and were normalized by the requirement 8,(z,) =z,, where z, was a fixed
point in G. The proof was essentially based on the result of Theorem 1 according to which
there exists an asymptotic a-path L such that under the inverse mappings z =S, (z)
certain arcs of L had an accumulation continuum ¢nside G. In possession of Theorem 10,
we can, however, draw the same conclusions also if the continuum lies on the boundary,

and Theorem 2 follows more directly.

5—563804. Acta mathematica. 97. Imprimé lo 11 avril 1957.



