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In this paper we discuss some geometric and analytic properties of a class of locally
homogeneous complex manifolds. Qur original motivation came from algebraic geometry
where certain non-compact, homogeneous complex manifolds arose naturally from the
period matrices of general algebraic varieties in a similar fashion to the appearance of the
Siegel upper-half-space from the periods of algebraic curves. However, these manifolds
are generally not Hermitian symmetric domains and, because of this, several interesting
new phenomena turn up.

The following is a description of the manifolds we have in mind. Let G¢ be a connected,
complex semi-simple Lie group and B< G¢ a parabolic subgroup. Then, as is well known,
the coset space X =G¢/B is a compact, homogeneous algebraic manifold. If G< G¢is a con-
nected real form of G¢ such that G N B=7V is compact, then the G-orbit of the origin in X
is a connected open domain D< X, and D=G/V is therefore a homogeneous complex mani-
fold. Let I'< G be a discrete subgroup such that the normalizer N(I') intersects V only in
the identity. Since I" acts properly discontinuously without fixed points on D, the quotient
space ¥ =I"\D inherits the structure of a complex manifold. We shall refer to a manifold
of this type as a locally homogeneous complex manifold.

One case is when G@=M is a maximal compact subgroup of G¢. Then necessarily
I’={e}, and D=X is the whole compact algebraic manifold. These varieties have been
the subject of considerable study, and their basic properties are well known. The opposite
extreme occurs when @ has no compact factors. These non-compact homogeneous domains
D then include the Hermitian gymmetric spaces, about which quite a bit is known, and
also include important and interesting non-classical domains which have been discussed
relatively little. It is these manifolds which are our main interest; however, since the
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methods we use apply more or less uniformly, we get out the classical results on X along
with new information on the locally homogeneous manifolds ¥ =I"\ D.

Here is a more detailed summary of the results in this paper. Recall that an irreducible
unitary representation ;m: V—>GL(E) gives rise to a homogeneous vector bundle G x v E =E
lying over D=@G/V. This bundle has an (essentially unique) G-invariant complex structure
and metric, and so induces a Hermitian, holomorphic bundle F—+Y (Y =I'\D, F=I'\E).
Our first job is to compute the curvature © of the metric connection in the locally homo-
geneous bundle F— Y, and this is done in § 4. The main result (Theorems (4.13)yand (4.13),)
is that the curvature © has a canonical expression as a difference of disjoint positive
terms; by this we mean that there is a matrix equation ® =4 A *A — B A *B where 4, B
are matrices of (1, 0) forms involving mutually disjoint subspaces of the cotangent space.
As an application of this formula, we recall that the curvature form (&) =i(&, OF) (£€F)
is a real (1,1)-form which controls the cohomology H*(Y, O(F)) in case Y is compact
(cf. (4.14) and (4.16)). We will see that ©(&) is non-singular if the highest weight 1 of =
is non-singular, and that the signature of ©(£) is determined by the Weyl chamber in
which A lies. This leads to a crude vanishing theorem (cf. (4.21)), but one which suggests
the following behavior: (a) For all ¥, the cohomology H¥(Y, O(F)) =0 for k =k(r) where
k() is determined by s; and (b) if D is non-compact and does not fibre holomorphically
over an Hermitian symmetric space, then HYY, O(F)) =0 for all representations 7. Thus,
for some domains arising quite naturally in algebraic geometry, there is mo theory of
automorphic forms.

Since the curvature gives only crude vanishing theorems, in §5 we compute the
Laplace-Beltrami operator [] acting on the space C*(Y, F) of C®, F-valued (0, k)-forms
on Y. This calculation is somewhat involved, but does yield fairly precise vanishing
theorems together with some information on the non-zero group H*™(Y, O(F)). For
example, in §6 we use the calculation of [J to give a proof of Bott’s result that
H*(X, O(E))= 0 for k +k(x), and that H*™ (X, O(E)) is an irreducible G¢-module W, whose
highest weight has a simple determination. In particular we obtain the usual Borel-Weil
theorem .

In case ¥ ="\ D where D is non-compact, we consider the square-integrable cohomology

(D, E). By definition, H5(D, E) is the space of I'-invariant, harmonic forms ¢ in
C*(D, E) such that [,|g||><co, where F <D is a fundamental domain for I'. In case
I'={e}, HL(D, E)=HWD, E) is a unitary G-module (which may be zero). In the opposite
extreme when Y =T"\D is compact, H}(D, E) = HY, O(F)). In § 7 we apply the computa-
tion of [] to prove that Wi(D, E) =0 for k +k(n), provided that the highest weight A of =
is at least a fixed distance from the walls of the Weyl chamber in which 4 lies. This essentially
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gives the non-existence part of a conjecture of Langlands [24], as well as the non-existence
of automorphic forms of any type unless D fibres holomorphically over a Hermitian sym-
metric space.

The existence problem for (D, E) is extremely interesting. In case ¥ =I"\D
is compact, we use the Atiyah-Singer theorem to write: dim #¥™(D,E) = dim H*™(Y, O(F)) =
(=1 > o (—1) dim H* (Y, O(F)) = (—-1)**T(Y,F) where T(Y,F), the Todd genus
of F—-Y, is a topological expression involving the Chern classes of F—Y and the
tangent bundle T(Y) — Y. These Chern classes are given by differential forms involving the
curvature, which has been computed in § 4, so that we finally get (cf. Theorem 7.2):
dim #¥” (D, E)=c-dim W, u(F); here ¢>0 is a constant independent of wand I, W,isthe
irreducible G¢-module appearing in Bott’s theorem above, and u(JF) is the volume of a
fundamental domain F of I'. In the opposite extreme I'={e}, according to Langlands’
conjecture, the unitary G-module (D, E) should be irreducible and should occur
discretely in L?(@); Langlands has also predicted the character. We give a precise formula-
tion of the conjecture in. § 7.

Since the writing of this manuscript, Okamoto and M. S. Narasimhan have verified
Langlands’ conjecture for Hermitian symmetric domains and vector bundles indexed
by ‘“sufficiently nonsingular” highest weights (cf. (7.1) below). Subsequently, the second
named author of this paper found a proof of the conjecture in gemeral, though again
only for “sufficiently nonsingular’” weights. A similar proof gives a related conjecture of
Langlands, which asserts that for compact ¥ =I"\ D, the dimension of H*”(Y, O(F)) equals
the multiplicity in LAT'\@) of the G-module }¥*™(D, E). Both arguments depend on the
vanishing theorems in § 7.

The possible connections between the “automorphic cohomology groups” (D, E)
and the problem of periods of algebraic manifolds are also taken up in § 7.

Sections 8 and 9 are devoted to some geometric properties of the noncompact domains
Dc X. First, we generalize the well known holomorphic convexity of the bounded, sym-
metric domains by proving that D has the maximum degree of pseudoconvexity which is
allowed by the presence of certain compact analytic subvarieties in D. This result has been
used by one of us to show that, with the proper choice of complex structure, the cohomology
group H*®(D, O(E)) has naturally the structure of a Frechét space on which @ acts con-
tinuously, and which contains a G-submodule infinitesimally equivalent to 3#®(D, E).
These facts are related to a conjecture of Blattner about Harish-Chandra’s discrete series
representations and will be pursued in a future paper (cf. also [28]).

In §9 we prove a generalization of the hyperbolic character of bounded domains by
showing that the homogeneous manifolds D are negatively curved with respect to the
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family of holomorphic mappings arising in algebraic geometry. This result has recently
been quite useful and leads to interesting generalizations of the Picard theorem.

To conclude the introduction we want to give a few references to background and re-
lated material. The compact homogeneous manifolds X =@¢/ B were discussed by H.C.Wang
[31] and by Borel [4]; a rather complete discussion of homogeneous complex structures is
given by Borel and Hirzebruch [6]. The invariant differential forms giving the Chern
classes of homogeneous line bundles were given by Borel[4] and later by Bott [7] and
Borel-Hirzebruch [6]. In Borel’s paper [4] there are the first indications of the curva-
ture properties which the non-classical domains turn out to have.

The expression for the Chern classes of homogeneous line bundles suggested the
phenomenon that (X, O(E)) 3-0 for at most one integer k =k(x). For k(z) =0 this vanishing
theorem was deduced from the Kodaira vanishing theorem by Borel [4], Borel-Weil [5],
and Borel-Hirzebruch [6]. The general vanishing theorem was proved by Bott [7], who
made only partial use of curvature arguments.

The existence of H*(X, O(E)) was proved for line bundles when k() =0 by Borel
and Weil [5], who used their results to give equivariant projective embeddings of X. By
combining the vanishing theorem for the H*(X, O(E)) and the Hirzebruch-Riemann—Roch
theorem [16], Borel and Hirzebruch were led in [6] to conjecture the main theorem, proved
by Bott [7], giving in general the G¢-module structure of H* (X, O(E)). In [21] Kostant
gave a uniform treatment of the subject using Lie algebra cohomology.

In the non-compact case, most of the attention seems to have been devoted to the
groups H3(D, E) where D is a Hermitian symmetric space. In case Y =I'\D is compact,
HY(Y, O(F)) is a vector space of automorphic forms, and dim H%Y, O(F)) was given, for
suitable bundles F —Y, by Hirzebruch [17], Ise [19], and Langlands [23] (who did not
assume that I" had no fixed points). On the other hand, a rather striking vanishing theorem
was given by Calabi—Vesentini [8], and their work gave rise to a series of papers on the
groups H*(Y, O(F)) when D is a Cartan domain; cf. [25] and [26].

The possibility of realizing Harish-Chandra’s discrete series representations on the
L?.cohomology groups H'(D, E) was conjectured by Langlands [24]. In the case of those
groups which act on Hermitian symmetric spaces, Okamoto and Ozeki [27] have reduced
the conjecture to a conjecture of Blattner about the structure of the discrete series repre-
sentations, which is known to be correct in a few cases. For the groups G =8S0(2h, 1), one
of us [28] has proven the Langlands conjecture by a direct construction. The most recent
progress on the conjecture has already been mentioned above.

Finally, we remark that many of the results of this paper have been previously an-
nounced in [10] and [29].
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1. Kiihler C-spaces

We begin our discussion by recalling some facts concerning compact, simply eon-
nected, homogeneous complex manifolds. H. C. Wang, who has named these manifolds
C-spaces, has clagsified them in [31]. In this paper, for simplicity, we shall consider only
C-spaces which admit a Kéhler metric.

Let G¢ be a connected complex semisimple Lie group, B a parabolic subgroup. The
complex analytic quotient space X =G¢/B is then a Kihler C-space, and every Kihler
C-space arises in this fashion. The Lie algebras of G¢ and B will be referred to as g and b;
both are complex Lie algebras. We choose a maximal compact sabgroup M of G¢. Its Lie
algebra, m,, is a real form of g, and we denote complex conjugation of g with respect to n1,
by 7. The algebra b has a unique maximal nilpotent ideal n_. Since the subgroup of G¢
corresponding to 1t_ can be realized as a group of upper triangular matrices, with ones
along the diagonal, it has no nontrivial compact subgroups. Thus m,N 1_, and hence also
n_Nz(n_), must be zero. By appealing to Bruhat’s lemma, for example, we can conclude
that the parabolic subalgebras b and 7(b) are opposite to each other, i.e. g is spanned by b
and 7(n_). Moreover, p=0bn7(b) is a reductive subalgebra such that

(L.1) b=p®n_ (semidirect product)
and
(1.2) g=0®n_®1(n).

Since the real span of m, and b is all of g, the M-orbit of ¢ BEX =G¢/B must be open. On
the other hand, this orbit is closed because M is compact. Hence M acts transitively on X,
with isotropy group V=M n B, and we can identify the quotient space M|V with X. The
Lie algebra of V is vy=myNb=myN bN7(b) =myNp; V is connected because X is simply
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connected. It should be remarked that v, as the intersection of the two parabolic sub-
algebras b and v(b), must have the same rank as g; this follows again from Bruhat’s lemma.
Moreover, 11, and v, are also of equal rank, since they are real forms of g and v, respectively.

It will be useful to have a description of the complex structure of M|V =X without
reference to G'¢. Let f be a holomorphic function on some open set U< X, and f the pullback
of f to G¢. Since f is B-invariant on the right, every z€b, considered as a left-invariant real
tangent vector field on G¢, annihilates f. Because f satisfies the Cauchy-Riemann equations
on G¢, the restriction of f to M, or, equivalently, the pullback of f to M, will be annijhilated
by every x€b when z is regarded as a left-invariant complex tangent vector field on M.
Let p: M—~X =M|V be the quotient map. According to what has just been said, for every
m€M the induced mapping p, from the complexified tangent space of M at m, identified
with g via left translation, carries b into the space of antiholomorphic tangent vectors
at p(m). Since the kernel of p4 is precisely v, a count of dimensions shows p.{n_) =p,(b)
to be the full antiholomorphic tangent space. Suppose now that % is a ¢ function on
p~Y(U)< M, with the property that xh =0, for every z€D, extended to a left-invariant
complex vector field. In particular, such a function » must be constant on each V-coset,
and hence drops to a C* function f on U; from our characterization of the space of (0, 1)-
tangent vectors, we deduce that f satisfies the Cauchy—Riemann equations. Thus we have
shown that

(1.3) p*O(U) = {h€C(p~(U)) |[xh =0 for all xz€b}.

Here O(U) is the ring of holomorphic functions on U< X, and the elements of b act as left-
invariant complex tangent vector fields.

We turn our attention to homogeneous holomorphic vector bundles over X, i.e.
holomorphic vector bundles to which the action of G¢ on X lifts. Let E —X be such a vector
bundle. The action of the isotropy group B on the fibre of E over eB, to be denoted by E,
determines a holomorphic representation si: B—~GL(E). This representation associates E
to the holomorphic principal bundle B—+G¢—X. As an example, we mention the holo-
morphic tangent bundle T(X), which is clearly a homogeneous vector bundle. Its fibre
over the “origin” eB ig naturally isomorphie to g/b, and under this isomorphism the action
of the isotropy group corresponds to the adjoint representation of B on g/b. Conversely,
every vector bundle E associated to the principal bundle B—~G¢—~X by a holomorphic
representation zz of B on a vector space E is a homogeneous holomorphie vector bundle.
As a C® vector bundle, E is then associated to the principal bundle VM > X via the
restriction of 7 to V; the 0% sections of E over an open set U< X can be identified with the
0> functions F: p~}(U)—+E such that F(mv)=n(v"1)F(m) for all m€p~(U), v€V; and
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the space of holomorphic sections of E over U is isomorphic to the space of E-valued =
functions F on p~(U) which satisfy

(1.4) zF = —n(x) F for every z€D.

This description is analogous to (1.3) and can be proven by a similar argument.

If z is an irreducible representation of ¥ on a complex vector space E, the induced
representation of the Lie algebra p, determines a unique complex representation of p.
We extend it to all of b by letting n1_ act trivially. This infinitesimal representation can be
lifted to B because the fundamental group of B is equal to that of V. The resulting holo-
morphic extension of 7z to B is the only possible one: since b is the semidirect product of v
with the nilpotent Lie algebra n_, n_ must act trivially on any irreducible h-module. We
deduce that every irreducible representation of V leads to one unique homogeneous holo-
morphic vector bundle. One particular class of examples is furnished by the homogeneous
holomorphic line bundles, which arise from one-dimensional representations of V.

In order to study differential forms on X, which will be useful as a computational
tool, we choose a basis ey, ..., ¢, of T(1n_), and we set &;=1(e;). According to (1.2), e, ..., e,

&, ..., &, are linearly independent, and the equations
w'(e) =0}, ©'¢)=0, «'(v)=0
@'(e) =0, &'(&)=4; &'(v)=0

define elements of the dual space of g. We shall regard these as left-invariant complex
one-forms on M. A given differential form ¢ on X pulls back to

(1.5) P*¢ =2 futenn @ Ao A AN LN B

on M, with coeffficients fi,. 4,..,€C®(M). Conversely, if we let V act on C°(M) by
right translation and on 7(n_)* and n* by the dual of the adjoint representation, every V-
invariant element of C°(M)® Ar(n_)*®@An* is the pullback to M of a differential form on
X. Since p,, maps n_ onto the antiholomorphic tangent space, a form ¢ on X is of type
(%, 1) precisely when every summand on the right side of (1.5) involves k unbarred and [
barred terms.

The exterior differentiation operator, d, is the sum of two operators & and & of degree
(1, 0) and (0, 1), respectively. We shall derive a formula for dp when ¢ is a form of type (0, k).

For this purpose, we consider the structure constants of the algebra n_:
(€, €] = ;cééu €y = —Cyi.

17 — 692908 Acta mathematica 123. Imprimé le 26 Janvier 1970.
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According to the Maurer—Cartan equation on M,

dd'=—1>,,¢}®@ A & + terms annihilating every pair (¢, ¢,), 1 <7,s<n.

The adjoint representation of 1n_ on itself by duality determines an action on n*, which

we write as juxtaposition; explicitly, & (®") = —>,¢;;@'. In terms of this notation,
dio'=1%> @' A& (@) +...
1

Hence, if ¢ is a form of type (0, k) on X, such that

(1.64a) PO=2 fr.y, O A A DT,

with coefficients f,, , € C*(M), then

(1.6b) PO =26fi @ NN L ABFLED Sy, B NGB AL A DY)

Let us suppose now that E,—X is the homogeneous holomorphic vector bundle
corresponding to an irreducible representation z of V on a complex vector space K. By
combining the description of the holomorphie sections of E, with that of the forms of type
(0, k), one obtains an identification of the space of E -valued (0, k)-forms on X, A%E,),
with the subspace of V-invariant elements of Co(M)® E® A*n*; here ¥V must be made to
act on C°(M) by right translation, on E by 7, and on A*n* by the dual of the adjoint repre-
sentation. Every ¢ € 4¥(E,) has an expression of the form (1.6a), with coefficients f;, .1, €
C®(M)®E. Since E, is a holomorphic vector bundle, the operator 9: AYEB,)—~A*TYE,)
can be defined; equation (1.6b) remains valid in this context.

2. Dual manifolds of Kiihler C-spaces

Let X =0¢/B be a Kihler C-space as in section one, and G a noncompact real form of
G¢. We make the special assumption, once and for all, that G N B be compact. In this case
we can choose a maximal compact subgroup K of G which contains G0 B, and a maximal
compact subgroup M of G¢ containing K. As before, we set V=M N B. Since GN B is the
isotropy group of @ acting on X at eB, dim GN B>dim ¢ —dimg X =dim M —(dim M —
dim V)=dim V; on the other hand, ¥V is connected and GN Bc Kn Bc M N B=V. Thus
@GN B=V, and the quotient space D=G/V can be identified with the G-orbit of e BEX,
which is open. In this manner, D becomes a homogeneous complex manifold; we say that
D is dual to the Kihler O-space X. The adjective “dual” should not suggest the kind of
one-to-one correspondence which exists in the special case of the Hermitian symmetric

spaces.
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The complex structure of D =G/V again has an intrinsic characterization. Since ¢ is
the complexification of g,, we may regard g as the algebra of left-invariant complex tangent
vector fields on G. If the letter p is now used to designate the projection G—D, (1.3)
remains correct; the proof carries over immediately. The restriction to D of a homogene-
ous holomorphic vector bundle E,—X determined by a holomorphic representation
7: B—~GL(E) is a G-homogeneous holomorphic vector bundle; its holomorphic sections over
an open set U< D can be described by (1.4). Finally, the discussion of differential forms
on X in § 1 applies to D as well, if the roles of M and 7 are assumed by @ and complex
conjugation of g with respect of g.

We shall denote the Lie algebra of K by f,, and its complexification by f. Then { is
a reductive complex subalgebra of g, with Yy<¥. As pointed out in § 1, b has the same rank
as g. Hence N b contains a Cartan subalgebra of g, and one can conclude that fnb is a
parabolic subalgebra of f. Although K¢, the subgroup of G¢ corresponding to ¥, need not
be semisimple, §=K¢/K¢n B is a Kahler C-space, because K¢N B contains the center of
the reductive group K¢. The compact subgroup K of K¢ acts transitively on 8, with iso-
tropy group KN B=V, just as M acts transitively on X. At various times, we shall view
8 as the quotient space K|V, as the K¢-orbit of e BE€ X, or as the K-orbit of eB. In particular,
S is a compact complex submanifold of D<= X. The fibres of the fibration

2.1) D=GVSqIK

are precisely the G-translates of S, and they are all complex submanifolds of D. The holo-
morphic tangent vectors of D which are tangent to the fibres form a C* subbundle T, (D)
of the holomorphic tangent bundle T(D). As demonstrated in § 1, the holomorphic tangent
bundle of X is associated to the principal bundle B—G¢—~ X by the adjoint representation
of B on g/b. Hence T(D), as a O vector bundle, is associated to V—G— D by the adjoint
representation of ¥ on g/b. A vector z in the fibre of T(D) over eB, which is to be identified
with g/b, is tangent to § if and only if 2€¥/£nb. It follows that T,(D) is associated to
V-G~ D by the adjoint representation of ¥ on ¥/fnb.

The maximal compact subgroup K of & determines a Cartan decomposition g=f®p,
where p is the unique adf-invariant subspace of g which is complementary to f. The
adjoint action of ¥ on p/pn b associates a C* vector bundle T, (D) to the principal bundle
V—G~D, and since g/b={fnb6®dp/pn B,

(2.2) T(D) =T,(D)@Tu(D)

is a G-invariant splitting of the holomorphic tangent bundle into two C° subbundles.

Both T (D) and T,(D) may be regarded as G-invariant distributions; the former, as is
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obvious from its definition, is integrable, the latter in general is not. The splitting (2.2)
seems to depend on the particular choice of K, which was required to be a maximal compact
subgroup of G containing V. However, we shall see in § 3 that only one such group K exists;
hence the splitting is intrinsic.

A holomorphic mapping F from a complex manifold Y into D is said to be horizontal
if the induced tangential mapping F, takes values only in T,(D). More generally, if ¥ is
an analytic space and F: Y- D a holomorphic map, we call F horizontal whenever the
restriction to the set of manifold points of ¥ is horizontal according to the previous defini-
tion.

The following example, which has arisen in the first-named author’s study of the
periods of algebraic manifolds, may help to motivate and clarify the discussion above;

details can be found in [11]. We fix positive integers r, s, and let @ be the matrix

" 1)

0 -1,

Then G¢={g€SL(2r+s, C)| ‘gQg=Q} is a connected complex semisimple Lie group. The
subgroup B consisting of all matrices g € G¢ which are of the block form

r r ]
r |4, A4 A
7 [Ay Ay Ay
8 |Ay As; Ag

with Ay, +Ag =V —1(4,,—A4,,) and A= V' —~14,, is parabolic in G¢. The Grassmann
manifold G(r, 2r +s; €) of r-planes in complex (2r +s)-space can be realized as the set of
complex (2r+s8) x r matrices of maximal rank, modulo the equivalence relation Q; ~ €,
if Q, =0, A4 for some nonsingular r x r matrix 4. The equation *QQQ =0 defines a sub-
variety X < G(r, 2r +s; C) which contains the point z, represented by Qq="*(1,, V-11,, 0,.5)-
By left-translation, G¢ acts holomorphically and transitively on X, with stability group
B at z,. Thus we can identify X with the Kahler C-space G¢/B.

The identity component @ of the group of real matrices in Gi¢ is a noncompact real
form of G¢, and ¥V =GN B is isomorphic to U(r) x SO(s), hence compact. Now D, the G-orbit
of z,, can be described as the connected component containing x, of the set of points in X
represented by matrices Q such that !QQQQ is positive definite. Let K be the group SO(2r) x
SO(s), embedded in @ in the obvious manner; K is maximal compact and contains V.
Its orbit at z,, S, consists of all points in D whose representatives () have a zero bottom

s x 7 block. The unique V-invariant, and in fact B-invariant, complement of the tangent
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space of S at x, in the tangent space of X is given by the vanishing of *Q,Qd<). Therefore
the @-invariant subbundle T,(D)<T(D) is determined by the equation !QQIQ=0. In
this particular case, T,(D) is a holomorphic subbundle of T(D) and extends to all of X.
A holomorphic mapping F: YD can locally be represented by a holomorphic matrix
valued function Q(y), y€ Y; F is horizontal if *Q(y)@dQ(y) =0. The period mappings con-
structed in [11] have this property.

3. Structure theory of semisimple Lie algebras

In this section, we shall review and collect some facts about the structure of semisimple
Lie algebras and their representations. Throughout, g will denote a complex semisimple
Lie algebra, m, a compact real form of g, and v complex conjugation of g with respect to
my. We choose a maximal abelian subalgebra [j, of m,; complexifying j,, one obtains a
T-invariant Cartan subalgebra ) of g. The adjoint representation of fj on g determines a

decomposition

(3.1a) g=) @gAg“,

where A, the set of nonzero roots, is a subset of the dual space of B, and each rootspace
{3.1b) g* = {x€g|[h, ] = (o, hyx for all hEY}

is one-dimensional. If o, 8, x +B €A,
(31 0) [gtx’ gﬂ] = ga+ﬂ_

Since m, is a compact real form, all roots assume real values on hg = V:—lf)o. We shall regard
A as a subset of ji, the dual space of fjr. For every « €A,

(3.2) 7(g*) =g~

because jr is purely imaginary with respect to 11,.
The Cartan-Killing form

(3.3) B(x, y) =trace (ad zad y) x,y€g

restricts to a positive definite bilinear form on fr, and by duality determines an inner
product (, ) on hi. The hyperplanes P, ={u€hE|(u, «) =0}, «€A, divide b} into a finite
number of closed convex cones, the so-called Weyl chambers. The reflections about the
hyperplanes P, generate a group of linear transformations W, the Weyl group, which leaves
A invariant and permutes the Weyl chambers simply and transitively. A system of positive
roots is a subset A, < A such that
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a) for every €A, either « or (—«), but not both, belongs to A,
(3.4)

b) if «, BEA, and x+SEA, then a+F€EA,.
Equivalently, such a set A, can be described as the set of all elements of A which are posi-
tive with respect to some suitably chosen linear order of §ji. To each system of positive roots

A, there corresponds a distinguished Weyl chamber, the highest Weyl chamber,
C ={u€bhr|(a, u) >0 for every a€A,}

This correspondence between systems of positive roots and Weyl chambers is bijective.
Consequently W acts simply and transitively also on the collection of systems of positive
roots.

Let M be a simply connected Lie group with Lie algebra 1, H the subgroup of M
determined by f. An element A €h§ which is the differential of a character of H is called a
weight. The weights form a lattice

A ={A€hR|2(4, ) (a, )1 €Z for every a€A}

in hk which contains A. A weight A is said to be singular if (A, «) =0 for some x €A, and
nonsingular otherwise. If A_ is a particular system of positive roots and C the corresponding
highest Weyl chamber, then

{3.5) e=3>a o€A.

is a nonsingular weight and belongs to C; p is minimal with respect to these two properties:
a weight 1 €C is nonsingular if and only if A —p€C.

Next, we consider an irreducible skew-Hermitian representation s of m, on a finite-
dimensional complex inner product space E. The complex extension of 7 to g will be
denoted by the same letter. Since f) is an abelian Lie algebra, its action on E determines a
decomposition E =Y ;.. E;, where E;={v€E|n(h)v =<4, k) v for every h€h}. We choose a
particular system of positive roots A,. There exists a unique weight A, which is called the
highest weight of 7z, with the property that ;=0 and

a{x)E; =0 for every x€g%, «€A,.
The subspace E; is then one-dimensional. The highest weight characterizes zz up to unitary
equivalence. It lies in the highest Weyl chamber; conversely, every weight in the highest
Weyl chamber is the highest weight of some representation z. If the system of positive
roots A, isreplaced by another one, w(A,), w being an element of the Weyl group, the new
highest weight will be the w-translate of the original one. The representation s lifts to a
connected group M with Lie algebra m, precisely when its highest weight lifts to a character

of the torus H in M which corresponds to §j,. After only minor and rather obvious modi-



LOCALLY HOMOGENEOUS COMPLEX MANIFOLDS 265

fications are made, the statements above remain correct if m, is the Lie algebra of a
compact, but not necessarily semisimple group, and g the complexification of m,.

We need to look more closely at the situation of § 2 on the Lie algebra level. Thus b
will be a parabolic subalgebra of g, g, 2 noncompact real form of g, with a maximal com-
pactly embedded subalgebra f, such that vy=g,N b<¥, The complexification f of f, has
a unique adf-invariant complement p; we set Po=pNg, Then gy=Ff,®p, is a Cartan
decomposition, and fo(JBVt—l Pp 18 & compact real form of g which contains v,. Henceforth,
11, will designate this particular compact real form. Let o and 7 be complex conjugation of
g with respect to g, and m,, respectively. They commute, and 6 =¢7 is an involutive auto-
morphism of g whose (+1) and (—1) eigenspaces are f and p. Since b, has the same rank
as 11, as was shown in § 1, we may assume that the Cartan subalgebra fj,< ni, chosen at
the beginning of this section lies in 9y, and hence in ¥,. Then § commutes with the adjoint
action of fj, and every rootspace g« is contained either in f or in p. The root « is said to be
compact if the former is the case, and noncompact otherwise. We denote the sets of com-
pact and noncompact roots by Ay and A,.

Since the rootspaces g* are one-dimensional, every subalgebra u, of g, which contains
B, is spanned over R by §j,and g, N (3@ a(g*)), with « ranging over a suitable subset ¥" of A.
It is known that the exponential map, restricted to p,, is a diffeomorphism. Moreover,
8o N (2@ o(g%)) < po Wwhenever « is noncompact. Hence 11, cannot be a compactly embedded
subalgebra of g, unless W= A;. In particular, , is the only maximal compactly embedded
subalgebra of g, which contains fj,. This verifies the statement, made in § 2, that the con-
dition K > V determines the maximal compact subgroup K of G uniquely.

For each €A, one can choose vectors e, €g* and 4, €hg = V=1 By such that

a) Ble,, ep) =0u,—p, [€ase_a] =Ry
b) B(h,, x) =<,y for z€}
c) [e,, 5] =0 if o+—f and x+f¢A
(3.6) d) [es, 6] =N, pe4rp if a,f, a+f€EA. The N, ; are nonzero real constants such

that N_, _s=—N, palso N_, =N 4 ,.5=N_.s .,
e) T(ea) =—€_4
f) ole,) =e,e_,, where g,=—1 if o is compact, g, = +1 if « is noncompact

2) &4 p= —E465 Whenever a, 8, a+HEA.

A normalization with properties a)-e) is exhibited in [15]; e) implies f), because O(e,) =
~&,€,, and g) is a consequence of d). It will be convenient to define N, ;=0 and e, ;=0
if a+8¢A and «+8+0.



266 P. GRIFFITHS AND W, SCHMID

From now on, A, will be a fixed system of positive roots such that g—*€b whenever
« is positive. Such a system A, exists because b contains an ad f-invariant maximal nil-

potent subalgebra of g. Since b is reductive and h=y<¥,
(3.7a) v=ho > ¢'® 367"

for some subset ® of AyN A,. It now follows from (1.1) that
(3.7b) n_=@g* «€A, -O.

If a, B, B —o are nonzero roots, then

(3.8) a€D, BEA,—D = fta€A, —O;
this just expresses the fact that b normalizes 1_.

We conclude this section with a simple lemma, which will be used in § 5.

(3.1) LEMMA. Let o be a fixed positive root, and > a linear ordering of G which makes
the elements of A, positive. Then
S Npa-sN_pa=(0-aa).

O<f<a

Proof. Clearly

2 NgapN_pa =, Z#GNﬂ.a—ﬂN—ﬂ.a _ﬂguNﬂ.a-ﬂN—ﬁ.w

0<p<ex >0, 8

In the second sum, the term corresponding to § makes a contribution only if f—a is &
root, since otherwise N_; ,=0. Thus we can replace § by a+y and sum over all positive
roots y; y=a can be excluded because 2« is never a root when « is a root. We use (3.6)
a), b), ¢), d) to get

Ngo-gN_po= aN_ga— Nyvy—yN_g
> NoasVNopa= 2 NpapN-pa= 2 Nery-yN-aye

O<f<ea

= ﬂ>%*“(Nﬁ.a-ﬁN—ﬂ.a —N_p _oNap) = ﬁ>%*¢(Nﬂ.a—ﬂN—ﬂ,a ~N_pa:Np0)

= p>gﬁ¢z'B([eﬂ’ [e-p, e]] —[e-p: [ep €all, e-a) = p>%¢¢B([hﬂ: €a)s €-a)

= > f0)=2e—aa)

$>0,8+a
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4. Curvature of homogeneous vector bundles

Let X=M|V be a Kihler C-space (cf. § 1) and D=G/V a noncompact dual (cf. § 2).
If z: V—GL(E) is an irreducible unitary representation of ¥ on a complex vector space E,
then there are defined homogeneous vector bundles M x , E—X, G x  E— D which have
respectively M, G invariant Hermitian metrics. We will denote both bundles by E, and
consider them as holomorphic vector bundles as follows (cf. § 1): Write X =G¢/ B and extend
7 uniquely to an irreducible, holomorphic representation 7: B—~GL(E). Then Go x s E =
E, is a holomorphic vector bundle over X which gives a complex structure to M x , E,
and the restriction G¢ x 3 B|D=E,| D gives a complex structure to G x , E.

Recall now that whenever we have a holomorphic, Hermitian vector bundle F~Y
over a complex manifold Y, there is canonically associated a connection D: A%F)— AY(F)
(AYF) is the space of C* F-valued g-forms over Y) satisfying: (i) D” =& where D=D' + D"
is the decomposition of D into type; and (ii) d(f, f'}=(Df, f) +(f, Df’) where f, f are O
sections of F (cf.[13]). The curvature ) is a Hom(F, F)-valued (1,1) form which is important
in the study of the geometry of F as well as the sheaf cohomology (cf. [13]). We want to
compute the M-invariant curvature @(sr) in E,—> X and the G-invariant curvature © ()
in E,— D. The results we will find are these (cf. Theorem (4.13)):

(a) Both curvatures Ox(n) and ®p(n) have a canonical expression 4 AtA —BA ‘B
where A, B are matrices of (1, 0) forms. In other words, the curvatures will have natural
expressions as a difference of positive forms.

(b) If A€}H* is the highest weight of 7, then © x(n) will equal 4 A *4 — B A B where A
involves (1, 0) forms w* where €A, —® satisfies (4, ) >0 and B involves the w/ where
BEA, —@ and (4, 8)<0. If A is non-singular, then the curvature forms © z(z) (£) and O p(7) (£)
(cf. (4.14) below) will be non-singular and © g(x) (£) will have signature equal to the index
() of A.

(¢) The curvature @ () is obtained from @ ¢(7) by reversing the signs corresponding
to the non-compact roots SEA, —Ay.

To begin with, we consider a pair of connected Lie groups 4, B such that Bc 4 is a
closed, reductive subgroup. Thus there is an Ad B-invariant splitting a,=b,®1,- We have
in mind the pairs M, V and G, V; the reductive splittings m,="1,®1, and g,=0,D3, are
given by the Cartan-Killing forms on m, and g,; both of these forms are non-singular and
are negative definite on b, '

Such a reductive splitting gives an A-invariant connection in the principal bundle
B—>A—A|B: We will think of a, as left-invariant vector fields, or equivalently, as in-
finitesimal right translations, on 4. The tangent space 7T,(4) to 4 at a is then (L,)s 0= ap,
and the tangent space to the fibres of A—>A/B is (L,)xt, 1, (L, is left translation by a).
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Thus (L,),to=1t, gives a complement to the vertical space of 4—+A4/B at a, and since
[6q to] S 1, the splitting 7',(4) 22 b,®1, is invariant by B acting on the right. This gives
the horizontal space for our invariant connection in 4 —~A/B.

To find the connection form we choose a basis a, ..., a, for a, such that a,, ..., a,
is a basis for b, and a,,, ..., a,, lie in t,. Let ¢!, ..., ™ be a dual basis for the left-invariant
Maurer—Cartan forms on 4 and set 6 =2;_,a,®¢° Then 0§ is independent of bases and is
an A-invariant, by-valued differential form on 4 which gives the connection form of the

above connection. To find the curvature form @, we use the Maurer—Cartan equations:
3 i < i
d(pi _ - % j%~16,k¢’ A wk ([a'j) ak] =‘§1 cjkai)’
and the Cartan structure equation :

O=d6+%[0,0].

Since df=27_;a,®dg? and [0, 0] =3} -1 [a, as]®¢° A ¢7, we have

B+30,0)=~1 3 5 da,o¢FAg”

e=1 py,v=r+

because of ¢g, =0. This gives:

(4.1) 0=-% 2 [0p0]lO¢" A"
poyv=r+l

where [a];, denotes the projection of a€a, on t, relative to the splitting a;=0,®1,. This
equation remains true if a,, ..., a,, is a basis of the complexification a of a,.

Suppose now that A =M, B=V and we make the identification of m with g (cf. § 1).
Thus we have the decomposition (3.7a) and

v=h® > g% t= 2 ¢
+oxed

+BeA ;L — @
where @< A, is the set of positive roots for . Since [e,, esly=0 for &, BEA, —D, we see

from (4.1) that the curvature ®y for the natural connection in V—+M—X is

(4.2)x Ox=— 2 [ewe—pgh®o*Aw?,
a, BeA ~@

where w* €g* is dual to ¢, €g*< g. Using that w4 = —@# (cf. (3.6¢)), we may rewrite (4.2)z as

(4.3)x Ox= 2 [eme sh@®a*AdP.
wBeA-@

In particular, ®x is a v-valued form of type (1, 1).
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If now A=@, B=V and we identify g,®rC with g (cf. § 2), then we find that the

curvature for the natural connection in V—-G— D is

(4.2)p Op=— 2 lemegh®w*Nw™?,
o fBeAr—@
which is formally the same as (4.2);. However, from (3.6f) we see that w—*= —@* for

€Ay, whereas w—#=@# for f€A, —A;. Thus:

(4.3)p Op=— > [exs - pls® 0* A I +“ BE§

[e(m —ﬂ]U@ o® A a)ﬁ;
Ot,ﬂEA+—Af -@

4

here we have used that [e,, e_zly=0 for «€A, —A; noncompact and f€As—® a positive
compact root. Comparing (4.3) and (4.3),, we see the sign reversal for the curvature in the
noncompact dual D of the Kahler C-space X.

Return now to a general reductive pair 4, B and let #: B—~GL(E) be a linear repre-
sentation. Then we form the homogeneous bundle E,=A4 x 3 B whose sections are the C°-
functions f: A—E which satisfy bf+n(b)f=0 for b€b. The connection in B~A—~A4/B
induces one in the associated bundle E,; the differential of a section f of E,—~A/Bis Df=
Datrs1 8, @@F. Note that

Df=di~ 3 a,f@y~df + 3 ala)| Ot ~df+a(0)]

where 7(0) is the connection form in E,.

If 7 is a unitary representation, then E,— 4/B has an invariant metric. Letting f, f
be sections of By, (Df, ')+ (f, Df)=(df, ') +(f,df )+ @(0) f,{) + (f,#(0) f') =d(f, ') since
t(0) = >h1 tn(ag) ® @8 = ~ Sh_17(a,) ® 2 = — m(B). Thus D is compatible with the metric.

This discussion applies to E,—~X =M/V. We denote the connection by Dx(s) so
that Dg(m) =2 suen, -0€a [® 0* Thus the (0, 1) part Dx(n)" = — DaeAs-0b-a QD=
O, | by (1.6b). It follows that Dx(n) is the metric connection and the curvature

(4.4)x Ox(m)= 3 7l[ea e-plo) @ 0* A &P
x, feAL—D

Similarly, the connection in E,— D induced from the natural one in ¥V -G — D is the
metric connection and the curvature
44)p  Opm=— > allewe )@ A&+ 3 alles e-gl) @ 0* A &P
% BeAL-Ay «pedg—®
In summary we have:

(4.5) An irreducible unitary representation m: V—Aut (E) gives a holomorphic vector
bundle E,=G¢ X s E over X which restricts to a holomorphic bundle E,—D. The bundle
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E,—~X has an M-invariant Hermitian structure and the metric connection is the one
induced from the natural connection in VM —X. Similarly, E,—~ D has a G-invariant
Hermitian structure (which is not the restriction of the M-invariant structure on E,—X),
and the metric connection is the one induced from the natural connection in V—-G—D.

The curvatures are given by (4.4); and (4.4)p respectively.

Remark. Write X =G¢/B and let 72z B~>GL(E) be an arbitrary holomorphic repre-
sentation, E, =G¢ x 3 E—~X the resulting holomorphic vector bundle. As a C* bundle,
E,=M x ,E, and the natural connection in V- M — X induces a connection D, in E,—~X
such that D}f=—Seen, 06 g f®@* By (16b), 35, = — Saen, -ole_of+ale_y) ) ©@",
so that D =0k, if, and only if, #(n_)=0.

Our program for computing curvatures had three parts (a), (b), (c) given at the be-
ginning of this section. From (4.4)x and (4.4), we have completed (c), and now we turn to
(a) and (b).

Let n: V->GL(E) be an irreducible unitary representation of V. Relative to a Cartan
decomposition (3.1a) of g, we let 0 =)@ >, eam 8% (A(v) =D U { — @}) be the decomposition
of p and Ac}* be the lattice of differentials of characters of the maximal torus H< V.
We have a weight space decomposition E =3 ,c s E, where A(x) < A is the set of weights
for zz. A weight A is extremal if, for some set of positive simple roots II<A(v) for V, we have
e, B, =0 for all x€Il. In particular, the complex structure on M|V determines a set of
positive roots A, © A and we may take for I the simple roots for ¥ which lie in A,. Then
A is a highest weight for ¥, and everything is well-determined up to the actions of the Weyl
group of V.

Now we assume that A is non-singular; i.e. that (4, «) 30 for all x€A. Then A lies in the
positive Weyl chamber (relative to IT) for ¥, and it lies in some Weyl chamber C, for M.
It may not be that C, is the positive Weyl chamber (relative to A,) C for M, but in any
case C, determines a set A, (n) of positive roots for M such that C, is the positive Weyl
chamber for A, (n). Then A _NA_() are those positive roots a>€A+ with (a, A) <0; the
number of €A, N A_(7) is called the index of m, denoted by «(), and this is the number
of root planes through which we must reflect to get from C, to C.

We let A, (7, v) =A,(7) —A () N A(v) and I+=Za€A+(n.°) g* - :2—¢GA+(7'. 5 §”; then
g=vel,@l, and [v,1,]<],,[v,[_.]€].. Note that dim (n,N[)=dim (n_Nn1,)=xn).
The same argument as used to prove (4.4} gives:

(4.6) Oxim=— 3 allewesh)®a* Ao’
a, feA ()

Using A, () as a set of positive roots for M, we let F be the unitary M-module with
highest weight A€ C,,. Restricting to V we get a unitary V-module Fy, and we assert that:
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4.7) F,=E®8, where 8 contains no V-module equivalent to E;
i.e. the multiplicity u(E, F) of E in Fy is one.

Proof. The highest weight space W, relative to A (n), of F occurs with multiplicity
one; thus, u(E, F)<1. Since e,- W ;=0 for a €A (%) N A(p) we see that u(E, F)+0.
We now show that:

(4.8) I,-E=0.

Proof. A basis of E consists of vectors e,, ... ¢, -w(=mn(e,,) ... 7(e,, ) w) where w€W =
E; is a highest weight vector and the o, €A(p). If e€l,, then e-¢,, ... ¢, =€y, € €y, ... € +
[e, €2.]" €as - €5 - Since [b, [[]<], and [, -w =0, we may use induction on 7 to conclude that
€ ey, . 6, W=0=]e, ¢, ]-¢,, ... ¢, w, which proves (4.8).

From (4.8) we deduce:

(4.9) LESS.

Proof. For a €A (7, v), we write —e_, =&, +1ir, where &, =1/2(e, —€_,), 1), =1/2(6, —e_,)
and &,, 7, liein the compact form m,. If w, w' € B, then (e_,w, w') = — (&, w, w') —i(n,w,w’) =
(w, E,w') +i(w, nw'’) = (w, (£, —in)w')=(w, e,w’)=0 by (4.8). Thus (I_E, E)=0, which
gives (4.9). '

Choose an orthonormal basis w;, ..., w,, for F such that wy, ..., w, is a basis for EC F;
we shall write v, for w; when we think of £ as a V-module, and we agree on the range of
indices 1<g, 0<r; 1 <4, j<m; and r+1<u, v<<m. We define 4 €Hom (S, E)®I% by

(4.10) A= > v,®ewy @ w*
{"‘gA+(:n. )]

where w} € F* is dual to w;€ F and e,w; is the contragredient representation. We inter-
pret (4.10) as follows: For w€ F, A-w=>2, ,{e,w;, w) 1, @ w*€ BE®II. Since Aw,=

D0 laWy, Wop V,@ 0% = — Dg oWy, €, We» ¥,® 0* =0 by (4.8), we see that A(E)=0 so
that 4€ Hom (S, B)QI%.

Write e,w,=2, B3, w, modulo S, so that e,w; = — > , B, w; and
(4.11) A=— 3 BLv,Qu;® o™
@0 K

The transposed mapping ‘4 € Hom (E*, $*)®1} is given by t4 = — 3, , , B w, @v:* ® w®
Using the conjugate linear isomorphism F = F* given by the metric, we have ‘A€
Hom (B, S)®1% where A= -3, , ,B,w,Qv; ® @ From BY, = (e,w,, w,) = (Wy, €_qwy) =
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B, we have — Z,,Ei,,w,i= —~ DBty = —e_,w, so that ‘A= —3,, ;e ,w,@9; @ ®*
Thus A AtA€ Hom (B, E)®I* A1} is given by:
ANtA=— S e U}, e pwe) 1@V @ w* A &P,

a BeA s ()

(%3
Now —<e Wy, e_pwey =Wy, exe_pwyy =W, , [€q, e_g] Wo) (since eyw,=0 by (4.8))=
<wZ: [eaw e—ﬂ]hwa'> + <w;5 [ea,a eﬂﬂ]l.;. wa’> + <w;=: [etv e‘ﬂ]l_ wa> = <wZ’ [ew e—ﬂ]bwo'> by (4'8) and
(4.9). Thus ANA =3 (W}, [en e ploWed 0OV ®w* ADF = — >4 s7t([€qs e glo) @ 0* A @F
=@x(n) by (4.8), i.e.

(4.12) A AtA = O (m) where 4 is given by (4.10).

Write A =4"+ 4" where

1 _ * (-4
4’ = > v, Qe, W, ® w
0
{aeA+(n, NA +
”__ * _ * ~—a,
and A" = > v, @ €Wy @ w* = — > v, ® Wy @D %
e e
{aeA+(n, pNA_ x€A 4 (7 pNA_

then A4’ is of type (1,0) and involves the forms »* with € A, —®, (4, ) >0; and 4" is
of type (0,1) and involves the @® with f€ A, —®, (4, 8)<0. We claim that 4’ A*4" =
0=A"ANt4'. Tt will suffice to show that {e,w},e_sw,> =0 where a€ A, N A, (w, D),
BEA_N A(7,0). Now (eqwy, e_pwod = — W}, [€q, e- gl wey = — (W}, [€as €- glows) =0 since
«, —B€ A, —® and [n,,n,]Sn,. This gives our main results:

(4.13)x TueEOREM. The curvature @x(n) =A" AN'A' + A" N*A" where

A= 3 v,Qew,@w*
xeAy —-D
(e, )>0

is a (1,0) form with values in Hom (S, E) and

A"= 3 v,®e_ pwsRdf
BeAs+-@
B. <0

is a (0,1) form with values in Hom (S, E).

(4.13), TaEOREM. In the noncompact case, the curvature Qp(x) =P + N where P =
B AtB' — " AC” is positive, N = —C' A0’ +B” AtB” is a negative term, and where
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’ *
B = Z * vg®eawz®co“, O' = z vo‘®eﬂwa ®wﬂ:
{chAt—(I) {ﬁeA.,_—At
4,a)>0 “4,p>0

— % - — * -
B'= 3 9,Qe,mpRa0% C= 3 v,Qe pu @
{zeAf—(D ﬂeA+-—At
A,e0)<0 “4.B)<0

We want to make some deductions from the curvature formulae. In general, if we

have a holomorphic, Hermitian vector bundle F—Y over a complex manifold Y, we
choose a local unitary frame f,,...,f, for F and write the curvature ® =25 ,.10%/,® %
where 2=, ,02;dz' A d#' is a differential form of type (1,1) on ¥, and where @3 +©Z =0.

For &=3,&%f, a vector in F we consider the curvature form (cf. [1], [13]):
(4.14) Q) =12 O &,
o0

which is a real (1,1) form on Y.

One way in which this form arises is as follows: Let F=F— {zero-cross-section} and
let & be the canonical non-vanishing holomorphic section of the pull-back & F-¥.
Then the real, positive function ¢ =(&, &) on T defines the unit tubular neighborhood N
of Y in F by N={(y, E)Ef‘ (y€Y, £€F,) satisfying (&, £),<1}. The bundle F—>7Y has a
natural connection Tp(f‘) =V,@ H, where the horizontal space H, consists of those complex
tangent vectors TGTp(ﬁ) which satisfy (D&,7>=0 in f‘p=F,:,(p). Since the tangent space
T,(N) is defined by 7',(N)={all real tangent vectors T with {dp, > =0}, and since dp=
(DE, &) + (&, DE), we see that H,®H,< T,(N).

Now the E. E. Levi form L(p) (cf. [1]) is defined by L(p)=100p=1d((£, D'E))=
W(D'&, D'E)+ (&, D"D'E) =i(D'E, D'E)—-0(E); ie.

(4.15) Lig) =i(D'¢, D'§)—0(&) and L(p)|H, = —6(&).

In other words, (4.15) says that, under the natural isomorphism H,2 T, (Y), the Levi-
form L(g) is just the negative of the curvature form (4.14). In particular, if the curvature
form ©(£) is everywhere non-singular, then the same will be true of L(p) and the signature
of L(p) will be determined by that of ©(£). If, for each non-zero §€F, we have

- n

@(§)=i{nzqwa/\6)a_ S w/‘/\g,ﬂ}

a=1 p=n—g+1

where the o = >, 4}, d2* give a basis for the (1,0) forms on Y, then we will say that ©(&)
has signature ¢, and from [1] we have:
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(4.16) If Y is compact and ®(£) has everywhere signature ¢, then the cohomology groups
HI(Y, O(F®)=0 for j+q, k>ky.

Here F® is the kth-symmetric power of F; in [13], a differential-geometric proof of
(4.16) with a reasonably precise estimate of k, is given.

Returning to our case of a homogeneous bundle E, —X defined by an irreducible

unitary representation z: V->GL(E), we have:

(417)x TaEOREM. If the highest weight A of 7 is non-singular, then the curvature form
O x(7) (§) s everywhere non-singular of index (n).

Proof. From (4.13)5 it will suffice to show that @ 4(£) is non-singular. It will make no
essential difference and will simplify notation to assume that () =0. Referring again to
(4.13)5, the curvature ®y(n)=A4 A *4 where

A= 3 v,0ew;,®a*

{l!EA-;. -0
e

belongs to Hom (8, E)®1%. Then

Ox(m) ()=1 >
. B0

@

(e Wy, e pwey EE" 0* N DF =1 % (e-pE, e-o &) 0* A &F
where & =3 ,&2w, lies in E. Thus, if 77= 2,4, ¢ 7la¢a is a (1,0) tangent vector, <O(£), 7 A
D =|In&|? wheren=3,.,, 7o liesin n_ and &€ 8. To prove (4.17) we must show:

(4.18) n:E—8 is injective for all € n_, =+0.

For a subset ¥'<®, we let (¥> =2,y The highest weight 4 of z:V —~GL(E)
satisfies (1, ) >0 for all € A,, and all weights of 7 have the form A — (¥). Thus ¥ has
a weight space decomposition B = > ¢ W 1_ ¢y, Where hw = (A — (¥, by wiorallwe€ Wi .
Clearly e o:Wi_ ey~ Wi_cpiay, and we claim that (4.14) will be proved if we can show

the following special case:
(4.19) e_a:Wi_cey— Wi cyia i8 injective for € A, —O.

Proof of (4.18) from (4.19). Let ay,...,; be a set of positive, simple roots for g.
Every linear form £€ A has a unique expression &=2]_; & «, where the &' are rational
numbers, and we say that £ >0 if the first non-zero &' is positive. In this manner we give

A the usual lexicographic ordering.
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Let w=72 w)_cyy be a non-zero vector in ¥ and 7= 2,cn, -0Nab-o lieinn_. Welet
{¥y> be the largest linear form such that w;_(y,, +0 and o, the largest root with #,, = 0.
Then

NW =Ny €= Wi—(F> + a*z% N l-a Wi (¥
T,
Since «y+ <V > a+ ¥ for all other o, ¥, 1—(Fy+ap <A—¥ +a) and so gw=+0
if e_p Wi,y FO.

Thus it will suffice to prove (4.19). Now (e—yWi-(¥y €-q Wi_cpy) =
(Wa-cwss €al-aWi-cv>) = (Wa-cw>s [0wr €] Wa-cws) (bY (4.8)=(A— (¥, o) [[ws-cwl’, s0
that (4.19) will follow from:

(4.20) (0, £)>0 for € A, — D and £ a weight of the V-module E.

For example, if £ is one-dimensional (i.e. E, is a line bundle), then the only weight is 4
and (4.20) is clear.

In general, we distinguish cases:

Case 1. Suppose that « €A, —@ is a simple root and that g, ..., f, €D are the positive
simple roots of V. Then <¥') =>35_1n,8;, 7,20, and («, ;) <O. Consequently (¢, 1 —(¥)) >
(et, 2) >0 since A is non-singular.

Case 2. Suppose that «€A, —® is arbitrary and (A —{¥, $)=0 for all 3€®. Then
a=iimo;+25-1n;B; where oy, ..., % _ €A, —® are simple roots, all m;>0, n,>0,
and some m;>0. Now

(A=), )= Z{ mi(A— <D, o) >0
by Case 1.

Case 3. Let x€A, —® and y=1—¥> be an arbitrary weight of E. The Weyl group
W(V) of V acts simply transitively on the Weyl chambers of V, and so we can find
wEW(V) with (w-u, $)=>0 for all B€®. Since n, is Ad-V invariant, w-a €A, —® and
(u, a)=(w-p, w-a)>0 by Case 2.

In the noncompact cage, we let z: V—GL(E) be an irreducible representation and
define:

afm) = Ha €A, — Ay] (A, @) >0} +H{BEA,—D| (4, ) <0},

where #{...} is the number of elements in {...}.

(4.17), TEEOREM. If the highest weight A of 7 is non-singular, then the curvature form
O () (&) is non-singular and has index a(rm).
18 — 692908 Acta mathematica 123. Imprimé le 30 Janvier 1970.
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We conclude with some applications of Theorems (4.17); and (4.17),. First, if
7:V—~GL(E) is an irreducible representation with highest weight A, then the symmetric
product E® contains the irreducible V-module E, with highest weight £4; we denote this
representation by m: V—-~GL(E,). From (4.16) we have:

(4.21)% H(X,0(E,)) =0 for j+un),k>ky(R);

(4.21), H\(Y, O(F,))=0 for i alm), b= ky(A),

where ¥ =I'\D is a compact quotient manifold of D by a discrete group I'c G and
szl—‘\Eﬂk-

Remark. The vanishing theorems (4.21)y and (4.21), are fairly erude, but they do
indicate a general pattern and originally suggested the more precise vanishing theorems
given in §§ 6 and 7 below.

A holomorphic vector bundle F—Y over a complex manifold Y is positive if there
exists an Hermitian metric in F such that the curvature form ©(&) (cf. (4.14)) is positive;
i.e. O(&) is non-singular and has index zero. From Theorem (4.17)x it is clear that there are
plenty of positive homogeneous bundles E,~X. The noncompact case is quite different:
(4.22) Let Y =I\D be a compact quotient manifold of D. Then there exists a positive
homogeneous bundle F —Y if, and only if, the Riemannian symmetric space G/K is
Hermitian symmetric and the fibering G/V~G/K is holomorphie.

Proof. We will see in § 7 below that, in the notation of (4.21),, H*# (Y, O(F,,)) +0
for k= ky(4). Taking (4.16) into account, it will suffice to prove: There exists z: V —GL(E)
with o(7)=0 if, and only if, G/K is Hermitian symmetric and &/V—~G/K is holomorphic.

If we have z with «({) =0, then the highest weight 4 satisfies (4, 8)< 0 for € A, —
A, and (4, ) >0 for € A, —®. Let [, :ZﬂEA+_Afgﬂ, | =Z/,»6A+_Atg'ﬂ. Then g=f®p
where p=1, @[, and we claim that [{,1,]<1,, ({,I_.]=1_. (Proof. Write t=v®a, Dg-
where g, =2.c ;-08% 8- =acar 0§ % Since [f, p]Spand [v, q. ®L.]=q. OL4, we have
,,1€],, (a4, (4] 1,. Thus we need that [q_,1,]<[,; which is the same as —o+fS€
Ay —Ajif a€ A —®, €A, — A, and —a+f is a root. This follows from (4, —at+p)=
— (A, o) + (4, §)<0).

The decomposition g=¥®{, 1 (I_ =1,) gives an invariant almost-complex structure
to G/K, and the integrability condition is just (¥, {,]<1,. In other words, if a(s)=0, then
G/K is Hermitian symmetric and G/V—G/K is holomor phic.
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The converse is easy to prove and will be omitted.

Remark. This result shows that only under very special conditions will we be able to
construct automorphic forms, relative to I', on D.
As a final application, we consider the canonical bundle K— X.

(4.23) K—X is negative and K— D has signature g=dim¢ K[V

More precisely, the curvature form @,(X)(£) is positive on the horizontal space T, (D)
and negative on the vertical space T, (D) (cf. (2.2)).

Proof. K is the homogeneous line bundle obtained from the representation A™ Ad:
V-+GL(A™1}) where m=dim X =#{roots €A, —~®}. Thus K is given by a character
A€EACY*, and, by (4.4)x and (4.4)p, the curvatures are:

(4.24)x 0xK)= > (1) o*Ad%
x€AL—D
(4.24)p GE)=~ > LA A&?+ 3 (ha)o®*Ad*
BeA —Af GGAt—(P

In the case at hand, A= —(2,ea,-o®) and to prove (4.23) we need to show that
(4, 8)<0 for all € A, —®. This is due to Borel-Hirzebruch (cf. [6], p. 512) and goes as
follows: Let y€ A, —®. Then (p,8)=0 or (y,8)<0 and y,y+B, ...,y + kB is a string of
roots in A, —® where k= —2(y, 8)/(8, B). Now (B,y +kB)= —(8,9)>0 and

By +y+B+...+y+kf)=+D) @)+ 2E D (g g0

From this it follows that

{aeA%_d)(a,ﬂ)?O so that — (4, ﬂ)={¢eA§_Q(a,ﬁ)+(ﬂ,ﬂ)>O.
ekp akf

5. Computation of the Laplace-Beltrami operator

Continuing with the notation of §§ 1-3, we consider a Kihler C-space X —=G¢/B where
B is a Borel subgroup; in this case, the set ® of (3.7) is empty. Therefore, if @ is a real form
of (¢ such that GN B is compact, by=goN b coincides with §,, and in order to emphasize
this fact, we shall now refer to GN B as H. Let then D=G/H be dual to X. We do not
18*% — 692908 Acta mathematica 123. Imprimé le 23 Janvier 1970
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exclude the case G =M, i.e. @ may be compact and D may coincide with X. For a compact
group @, the computation below turns out to be similar to Kostant’s computation of a
certain algebraic Laplace operator in [21].

We keep fixed a homogeneous holomorphic line bundle E;—D determined by a
character 4 of H; A will tacitly be identified with its differential, which is a weight in hg.
We recall the basis {e_, |« €A} of n_from § 3, and we denote the elements of the dual basis
by e If A=(ay, ..., a) is an ordered k-tuple of positive roots, we use the abbreviated
notation w4 for the exterior product @™ A ... Aw==; | A| will stand for a; +... + 0. Ac-
cording to remarks in § 1 and § 2, we may think of A*(E;), the space of (0, k)-forms with
values in E;, as the subspace of C°(G)@A*n* spanned by monomials fw™4 with f€C®(G)
satisfying

(6.1) xf = —(|A| +4,hyf for all z€D.
The equations

Mfw ) =e_ofw * A4
(5.2) :

T(fo™*)=3}2 fo *Ne_ 04

define operators 3, T: A“(E,)~A**(E,). In these summations, & runs over A,; e_, acts on
f as a left-invariant complex tangent vector field on @, and on w™#€ An* by the action
contragredient to that on n_. Then 5=0+ T, as can be read off from (1.6).

The inner product on n* described by (w%, w=#) =424 is invariant under the adjoint
action of H, and thus gives rise to a G-invariant Hermitian metric on D. The line bundle
E, has an essentially unique G-invariant metric. With respect to these choices of metrics,
3, 3, and T have formal adjoints 9*, é*, T*, and

(5.3) [0 = (30* +3*3) = 3+ T) (8* + T*) +(&* + T*) (0+T)

is the Laplace—Beltrami operator.

Since o(e_,) =¢, ¢, is the complex conjugate of e_, relative to g,, the formal adjoint of
e_, acting on 0°(Q) is —¢&,e,. We embed 1* in g* by letting n* act trivially on §j and o(n_).
Then n* becomes a g(n_)-invariant subspace; in fact, for «, 8, y€EA,,

<eaw_p’ e—7> = - <w_ﬂ, (e e—y]> = —N,, -y 6£-a = —N,, —a-f# 6;+ﬁ = Na,ﬂ <w—a—ﬂ, e—'y>,
here we have used (3.6d). Thus n* becomes also a ¢(n-)-module, and
(5.4) ea #=N, 4 0w g, BEA..

Similarly one finds that the action of e_, on n® is given by
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Noapo®? if p—a€A,

5.5 —aw f=
(5.5) bra® {0 otherwise

Together with the identity N, s=—N_, ,.4 (5.4) and (5.5) imply that the adjoint of e_,
acting on n* is e,.
We let e(w™%): AnX->An* denote exterior multiplication by w—2, and define i(cw—)
as the adjoint operation. Explicitly,
W *)w™4 =0

(5.6)
Ho ) (w2 Ao ) =w™4,

provided the multi-index 4 does not involve a. In terms of these maps,
& (fo ) =3 eseafilo™) 04

(8.7
T*(fo )=} feai(0™ ) 0 2 =32 fi(w %) e 4.

Again, the summations extend over all € A,.
For o, B€ A, one gets the identities

a) e(w ¥ (w0 %) +i(w P)e(w %) =5
b) e =3 ele,0 f)ilw w4
(5.8) [
c) exe(w ) =e(e,0?) +e(w F)e,
d) eyt(w ) =i(w ?)e,—i(e_ 0 F)
which can be deduced from (5.6); in b), ¢), d), « may also be a negative root.
Let us compute 99* +8*. For fo 4€ A*(E,),

(08* +8*0) (fo~4) = — Eﬁ eatal-pfi(w %) e(w P w4 — Zﬁsﬂe_ peafe(w ?)i(w *) w4
«, o,
= = 2 eatat-pl(e(0™) i) +il0™) (0™ 074 — 2, eale-p: ealfe(@™) ™) 074
= Z (— Eaeae—afw_A + exhofe(w™®) t{w™*) CU_A) - zﬂsaN—ﬂ.aea—ﬂfe(w_ﬁ) (™% o™,
-4 a+,
We split up the last term on the right according to the two possibilities > g and f >«,

where > is a linear ordering of h) making the elements of A, positive. Whenever « —f
is not a root, there is no contribution; hence, using (3.6d), we get

¢Zﬂ8uN—ﬂ,a ea—ﬁfe(w-ﬂ) o™ %) w4 =¢>Zy €y N'y—a,a eyfe(wy-‘“) o o™

= - Zye.,,N_,._ae.,.fe(w"“")i(w"") 0=~ ge,fele_y0 %) i(w %) 04
o> oy
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Similarly,
Zﬂ eaN_pata-pfelw ) i@ )@ =2 6aN_g-yat-yfe(@*?)i(0 ) 04
o> oy
= =2 gae_yfeley 0 %) (0% w4,
oy
and hence
(33* + 3*3) (fw_A) = Z (— eaeae—afwﬂq + sahafe(w_a) ":(w_a) w‘A)
(5.9)
+ 2 egeyfele_y 0™ ) Hw %) 0 4+ 2 gpe_yfeley0™%) i) w4
o,y oy
Using the identities (5.8), one finds that
@T*+T*0+0*T +T0*) (fo %) =1} Zﬁ e-gfe(w™ ) i(w f) eg™4
a,
+3 %e_,ﬁ(w‘ﬁ) epe(w™ w414 %%eaﬁ(w_“) elo e po 4
- %Zﬁ exafe(w P e gil0™*) 0 4=} Zﬂe-aﬁ(w"’) elep * w4
+ % Zﬂ eaeafe(w_ﬂ) i(eﬂw—a) w4+ % Z (e—afeaw_A - eaeale—uw_A)~
a, a
Since egw~%*= —e,w™# (cf. (5.4)), and in view of (5.8a), the expression above equals

%Z (e—afeaw—A - aaea/e—aw—A) +3 Zﬁe-afe(eaw-ﬂ) i(w—ﬂ) o™
« @,
—32 eatafe(w P)ilea0 P 074
B
Now w42 se(w #)i(e,0 %) w4 is dual to the mapping w42 se(ez 0 ) (w0 F) w4 =
e, 4. Hence

(5-10) OT*+T*0+& T + T8 (fo™*) =3 (e-aftaw™ —eatafe_a ™).

In order to complete the computation of [], we must attack 777* + T*7T. First of
all, we observe that 7' and T™* ought to be regarded as endomorphisms of An%. If x is &
positive root,

T e(w %) =1} % egi{o P e(w ) =%e,—} ; ege(w %) i(w¥)
(6.11) =le,— ;% e(eg %) i{w ) —e(w =) T*

=le,+1% ;e(eaw"’) (0™ ?) —e(w™ ) T* =e, —e(w %) T*.

Similarly,
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(5.12) Telw %=1 Eﬁ: e(w Fye_ge(w ) = %pg,, N_gae(w B)e(wf %) —e(w*T.
Repeated application of (5.11) and (5.12) yields
(TT*+ T*T) (™) =} 3 N-p.a T*e(0”P) el ™) — T*e(e™*) T+ Teu — Te(r™) T*
(5.13) =e(w *) (TT*+T*T)+Te,—e, T + %,ZzN‘ s.e{Te(w ™ #) e(wf %) — e{w™?) e{wP ™) T™)

=e(w *) (TT*+T*T)+ Te,—e, T+ %pz N_galege(0f ) —e(w #) ey p).

Replacing ¢« —f by f in the second half of the last term and noticing that Ny, o=
—N_p, 4, one obtains

2 N palese(@ ™) —e(w #)eqp) = % (elege-g0™) +2e(e- ™% ep)
(5.14) =(20—oa, ) el *)+2 ; ele_ g0 %) ep.

In the last step, Lemma 3.1 was used; g is one-half of the sum of the positive roots.
If «, B, y are positive roots,
0 if y>4
(e-pea—eae—p) 0" —[e_p €] 077 ={ (y, %) 0™* it y=p
Na.y_ﬁN_ﬂ,.ywﬁ_y_a if ’y<ﬁ.
One can verify this by observing that the isomorphism
p:nt-o(n)cg
determined by @(w™%) =e, commutes with the action of ¢(11_), and e_ sP(0 ™) =gle_g™%)
when « > f. Hence
Tey—~e,T=1% % (e(w™P)e_geqs—ese(w™F)e_p)
=-1 % elegw™P)e_p+} ; e(f) (e~ pes —eae-p)
=1 %e(eﬁw"“) e_g+ a‘g% e(w™P)e((e~peq —ege_g) 0 7) (7))
(5.15) =1 % elegw ) e_p+ %p 2 N_goelw™?)eleampo?)i(w™?)
<,y
+3 2 N_pa.elo ) elesmpo™)i(w?)

yre>f>a

+3 2 Ney pN_pye(0?) e(@f 7% i(w™?)
y+a>p>y

-3 g (@, p) e(@w™ %) e(@™?) Hw™7) + %; (o, B) el #) (™) i(w ™).
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We transform the second, third, and fourth terms on the right of (5.15) by changing the
indices of summation and applying (3.6d):

. 2 N_gaelw ) e(eap?)i(w™?) = S Np_gael@wf %) e(esew™?) i(w?)
<a,y <&y
(5.16a)

= —; ele_ g% eg

e N_paelw™b)e(ea g™ ?)i(w7) = ZﬂN —a-pal(@ P efe_p0™7)i(w7)
+a>pg>a y>,

(5.16b)
= - %: elegw )e_g

Ny s N_pye(@4) (™% 7) i(?)

y+a>p>y
(5.16¢)
== 3 NepNopoyyele? ) elw™?7)i@™) = = Sele-s0 ) s

asp.y
Together, (5.13)-(5.16) lead to the identity

(TT*+T*T) e(w *) =e(™ ) (TT*+ T*T) +{ (20~ @) - g (@ B) e(0™%) e(w™#) i(w™?).
For every k-tuple of positive roots 4,

> (@ Bref@ i@ 0 =(w |4) o™
Thus, by induction on &,
(5.17) (T*T+TT*) o4 =% (|4],20—|4]) ™~
The computations of this section can be summed up as follows:
ProPOSITION 5.1. For every monomial fw™4€ A*(E,),

O (fo™4) = 2 ta(hafe(w™) i(0™%) @™4 —eze—af ™) + .,Zp (85— €a) tafele-a ™) ilw™#) 074

+ Zﬁ (eg+1) e_afelear™ ) ilw™P) 0™+ 3 (| 4], 20—|4]) fo~"

For the preceding computations, the assumption that we were dealing with a homo-
geneous complex manifold D =G/H, where H is a torus, was not really crucial, and similar
expressions for [] can be deduced more generally for manifolds D=G/V, when V is not
necessarily a torus. In one case, the formula even simplifies considerably when one works
with a non-toral isotropy group, and it is perhaps of interest to mention this special formula,
although we shall not use it here.



LOCALLY HOMOGENEOUS OOMPLEX MANIFOLDS 283

Let D=G/V be a noncompact Hermitian symmetric space, i.e. V=K i3 a maximal
compact subgroup of @ and n_ is an Ad K-invariant abelian subalgebra of g, and let
E,—D be the homogeneous holomorphic vector bundle determined by an irreducible
representation n: V—>GL(E), whose highest weight we shall denote by A. The E -valued
(0, k)-forms on D can be identified with the V-invariant elements

2[1.a®v,@ 0w 4EC” (A @ERAnL,

when V is made to act on C°(@) by right translation and on E and A*n* in the obvious
manner. We construct the Laplace—Beltrami operator [J after choosing essentially unique
Hermitian metrics on D and E_. Then, as Okamoto and Ozeki [27] have shown,

(5.18) O0Cfa®v@w ™) =12 ((A+20,4) ~Q) L) ®v,0 04

Here €2 is the Casimir operator of g, and g is one-half of the sum of the positive roots. This
formula, as well as its derivation, is identical to the formula for ] in the corresponding
compact case, except for a switch in sign. Its simplicity stems from two facts: n1_ is an
abelian subalgebra of g, and the Casimir operator of K acts on A*n% as a constant (Lemma
4.1 of [26]).

6. The generalized Borel-Weil theorem
Let X=G¢/B=M|V be a Kihler C-space, and E,—~X be the homogeneous holo-

morphic vector bundle arising from some irreducible representation = of V. We choose
systems of positive roots A, for (g, h) and @ for (v, §), as described by (3.7), and we denote
the highest weight of 7z with respect to @ by 4; as before, g is one-half of the sum of the ele-
ments of A,. Since the action of M on X lifts to O(E,), the sheaf of germs of holomorphic
sections of E,, the cohomology groups H*(X, O(E,)) become M-modules. These coho-
mology groups are the subject of the generalized Borel-Weil theorem of Bott [7]:

(6.1) TurOoREM. IfA+0 18 singular, i.e. (A +p, &) =0 for some x €A, then H* (X, O(E,)) =
O for every k. If A+ is nonsingular, let w be that element of the Weyl group which carries
Ao into the highest Weyl chamber, and 1 the number of a €A, such that w(a) is negative; then
HYX, O(E,)) vanishes if k=1, and is the irreducible M-module of highest weight w(A+9) —p
if k=l.

Proof. First, we assume that B is a Borel subgroup of Qg, as we did in § 5; M will take

on the role which & played there. Then V=M N B is a torus, and  therefore must be a one-
dimensional representation. In order to be consistent with the notation of § 5, we shall
refer to V as H and to = as 1. Again we identify the space of B -valued (0, k)-forms, 4*(E,),
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with a subspace of C°(M)®A*n*. It is known that the cohomology groups of the sheaf
O(E;) can be computed from the complex {4*(E,),0}, and that the cohomology groups of
this complex in turn are isomorphic to the spaces of harmonic forms H*(E,) ={y € AXE,)|
Oyp=0} (cf. [16]). Since the Hermitian metrics used to define [] were M-invariant, the
subspaces H*(E,)< A*(E,) are preserved by M, and H*E;)~H*X, O(E,)) is an iso-
morphism of M-modules.

We consider a particular monomial fw—* € 4*(E,), with the property that the func-
tion fEC®(M) is an eigenfunction of the Casimir operator Q=73 ,(e,e_,+e_.e,)+
Dhiby=2,s0(2e,6_y— k) +Dhihy; here {hy, hy, ...,h} is an orthonormal basis of §.
Since 2,.4e,¢_, differs from 3Q by an operator in the universal enveloping algebra of §,
and since f satisfies (5.1), >,..¢,¢_.f is a multiple of f. Now M is compact, 80 g,= —1
for every «€A,. Hence only the first and last terms on the right side of the identity in
proposition 5.1 remain, and J{fw—*) is 2 multiple of fw—%. As a consequence of the Peter—
Weyl theorem, for example, (M) decomposes discretely into eigenspaces of Q. In the
corresponding decomposition of A4*(E,), each subspace is [J-invariant, because () com-
mutes with every left-invariant differential operator on M. We conclude that H*(E,) has
a basis of harmonic monomials.

Since [ is the sum of the two semidefinite operators 0* and 8*9, a monomial fo—4€
AX(E;) is harmonic if and only if 3(fw—4) =0=5*(fo—4). When 3(fw—4) =8(fw—4) + T(fw4)
(cf. (5.2)) is expressed as a sum of monomials, = can be factored out from each term of
é(fw—“), and from no term of T(fw—*). Thus d(fw—4) =0 if and only if Afow4) =0=T(fw4);
similarly, 9*(fo—4)=0 is equivalent to é*(/w")=0=T*(fa)“‘). Hence fw—* is harmonic
precisely when &(fw—4), 8*(fw=4), T(fw—4), and T*(fw—4) all vanish.

As was pointed out already, 7 and 7™* may be viewed as endomorphisms of An%.

Since
Tw 4=} % e(w Pe_pg 4= %ﬂz e(w™#) e(e_p0™%) 1™ %) ™4

=13 Nopeclo) o0 ) ilw ) 0™ =} 5 Npyelwo ) (@) il ) o4

B<x

Tw—*=0 if and only if for every pair 8, ¥y €A, such that §+y €A and such that neither g
nor y oceur in 4, f+y also does not occur in 4. Analogously, T*w~4 =0 if and only if for
every pair of roots £, v belonging to 4 and whose sum is a root, § +y occurs in 4. If w is an
element of the Weyl group, and if A consists precisely of the roots common to A, and
w(—A,), then A has the two properties equivalent to Tw—4=0=T*w—4. Conversely,

if 4 has these two properties, the set
A, = {«€A] —a€A4}U {a€A |x¢ A}
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contains f+y whenever g, y€A, and f-+y€A; moreover, A is the digjoint union of [X_,_
and —A +. Thus ~A+ is a system of positive roots and is of the form w=1(A,), for some w in
the Weyl group; 4 is the set A, Nw1(—A,), ordered in some way.

Let us assume that 4 is of this form. Then | 4| =p—w(p), and if fo=* is to belong
to AY(E)),

(6.1a) hf ={—A—p+w ), kyf for hEY.
The equations é( fo—*)=0 =é*( fw=*) are now equivalent to
(6.1Db) e_of =0 for a€w1(A,).

Hence, for the particular choice of 4 made above, the space of harmonic monomials fo—4
is isomorphic to the subspace of C®(M) determined by the differential equations (6.1).

In (6.1), e_, and h are regarded ag left-invariant complex tangent vector fields, i.e.
as linear combinations of infinitesimal generators of one-parameter groups acting on the

right. Therefore, from the Peter—Weyl expansion
DP(My~2, W.@W.

(Here M is the set of equivalence classes of irreducible representations of M, and W7 is
the M-module contragredient to W), these differential equations pick out » W,@U,,
where U, WY is the subspace of vectors v which satisfy

hy = —A—p-+w(g), hyv for hEY)

e_,v=0 for a€w(A,).

According to the highest weight theory, U,;=0 unless p —w(1 +p) is the lowest weight
of Vi, ie. unless V¥, has highest weight w(1+9)—p; and if U;+0, U, is one-dimensional.
Consequently, the M-module of harmonic monomials fo—*, with 4 of the form
A, Nw(—A,), is irreducible and has highest weight w(4 +¢) —p, provided that this weight
belongs to the highest Weyl chamber, and is zero otherwise. We had seen already that all
harmonic monomials arise in this fashion, and that H*(E,) is spanned by monomijals.
Finally, w(A+0)—p lies in the highest Weyl chamber precisely when A +p is non-singular
and when w is the unique element of the Weyl group which carries 1+p into the interior
of the highest Weyl chamber. This proves the theorem in the special case when B is a Borel
subgroup.

Suppose now that B is an arbitrary parabolic subgroup of G¢, and E,~X=G¢/B
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the homogeneous holomorphic vector bundle determined by the irreducible representation
7: V—>GL(E), where V=M n B. Instead of pushing through the computation of § 5 and
the proof above in this situation, which is possible but bothersome, we shall sketch an
argument of Bott that reduces the problem to the case already covered. In the notation

of (3.7),
B1 =b®z g% «€ A,

and hbnv=h®>g % o€d

are Borel subalgebras of g and p. We denote the subgroups of G¢ corresponding to b,
v, §o by By, Ve, H, respectively. Just as M acts transitively on X =G¢/B and on G¢/B,,
V acts transitively on V¢/B;N Ve. The quotient spaces X;=G¢/B,=M/H and Y =
V¢/BN V¢=V/H are Kihler C-spaces; V¢, of course, is only reductive and not semisimple,
but this causes no problems because B, N V¢ contains the center of V¢. The highest weight
A of 7 can be regarded as a character of H and determines a homogeneous holomorphic line
bundle F;— X,. The natural quotient map ¢: X,—~>X exhibits X; as a holomorphic fibre
bundle over X with fibre Y. Let R%q(F;) be the kth direct image sheaf of O(F;) under g,
i.e. the sheaf arising from the presheaf

U~ H4q(U), O(F;))

for open subsets U of X. Since ¢: X,—~ X is locally a product, B*q(F,) is the sheaf of germs
of holomorphic sections of a vector bundle, whose fibre over the “origin” eV is isomorphic
to H¥(Y, Oy(F,)) as V-module. In the first half of this proof, the semisimplicity of M was
never used. Thus we may let Y and V play the roles of X and M; B, N V¢ is Borel in V¢,
we recall. Since A lies in the highest Weyl chamber of (v, §j) with respect to the system of
positive roots @, H*(Y, Oy (F;)) =0 for k=0, and H*(Y, Oy(F;)) is isomorphic as V-module
to E, the fibre of E, over eV. Hence R*q(F;)=0 for k=0, and because V acts irreducibly
on E, R%(F,;)=0(E,). The Leray spectral sequence collapses, to give an isomorphism
H¥(X, O(E,)) ~ H*(X;, O(F,)), which clearly commutes with the action of M. Now the
special case of Theorem 6.1 can be applied to H*(X;, O(F,)) and leads to the desired de-
scription of H*(X, O(E,)).

7. Cohomology in the noncompact case

We consider a manifold D =@Q/V dual to the Kihler C-space X =G¢/B=M|V, and a
discrete subgroup I' of @ which acts on D without fixed points, such that I'\@ is compact.
Then Y =T\D is a compact complex manifold. Let n: V—GL(E) be an irreducible repre-



LOCALLY HOMOGENEOUS COMPLEX MANIFOLDS 287

sentation whose highest weight, relative to the system of positive roots @ of (v, fj), shall
be denoted by A. The corresponding vector bundle E,— D is I-invariant and therefore
drops to a holomorphic vector bundle F,— Y. Let «(4) be the number of positive compact
roots # with (4, ) <O plus the number of positive noncompact roots g with (4, ) >0.

(7.1) LEMMA. There exists a constant 7, depending only on D, such that whenever
| (A, )| =7 for every a €A, HYY, O(F,)) =0 for k+a(l).

Proof. We choose groups B,, V¢, H as in the last part of the proof of theorem 6.1.
Then D;=G[H is dual to X,=G¢/B,=M|H. We set ¥, =I"\D,; Y, Y is a holomorphic
fibre bundle with fibre V¢/B, N V¢. Just as in the proof of Theorem 6.1, the Leray spectral
sequence of this fibering establishes an isomorphism between the cohomology groups of
F; on Y and those of the line bundle determined by 1 on ¥,.

Thus we may as well assume that D—@/H is dual to X =G¢/B, where B is a Borel
subgroup. Since H is a torus, # must now be a one-dimensional representation of H, and
so we shall refer to it as 4. The cohomology group H¥(Y, O(E;)) is isomorphic to the space
of E;-valued harmonic (0, k)-forms on Y, which in turn is naturally isomorphic to HE(E)),
the space of I'-invariant E ;-valued harmonic (0, k)-forms on D. If ¢ € H&(E;), we can write,
in the notation of § 5, =2 ,f,w~*; here the 4, are ordered k-tuples of positive roots, and
the f; are I'-invariant O« functions on G. Let A, be the set of roots « such that &,(e, 1) >0.
Then in view of Proposition 5.1 and (5.8a),

oo ;aeAgnA ea(bafii(0™%) e(w™) 04 +e_geqafi™*)
i ;ae A?—A1 &a(hafie(w™) i(w™) @™4 —ege_q fe™4)

+ Z Z (ep—&a) eafrele—y w_ﬂ) i(w_ﬁ) w4
f afeA4

+'Za ﬁEZA+ (e + 1) e_afielea 0 ?) i F) w4 + 12‘2‘:(|Ai|, 20— [4,]) fiw0™ 4.

The functions f; satisfy h,f,= —(a, A +|4,]) f(cf. (5.1)); thus, if we set

;= Z aa(“al'*'lAil)_ Z 8,,;(!1,1+|Ai|)+%(|A1|,2Q"|A¢|),

z€(A +DAD- 44 e A4N(A 4+ ~Ay)

the identity above becomes

[-1-VA VY

0= D‘p=zci.fiw_‘4‘—z Z eae—aeafiw-m‘l'z Z (Sﬂ_ea) eazfie(e—aw_ﬂ) ":(w—ﬁ) w4
1 T el T afeny

—l—iz ﬁZA (ep+1) e—afie(ea 0™ ?) i(w™F) w45

19 - 692908 Acta mathematica 123. Imprimé le 23 Janvier 1970
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Integration over a fundamental domain of I', with respect to the Hermitian metrics in-
troduced in § 5, determines an inner product on H§(E;). Equivalently, this inner product
can be described as being induced by the natural inner product of L?*(I'\@) and the
inner product (w™%, w~?) =6 on n*. Let ¢ be the smallest constant among the ¢;, and b
a suitably chosen positive constant. Then, because —e¢, e_, is the adjoint of ¢, acting on

A\,
0=(0Oe:9) =Z°t (fof) + ‘Zag‘ (eafis €afy)

+ g . ﬁEZM (g5 — &a) (€afis 1)) (e(e-a™?) i(w7%) ™4, w™4)

+2 3 (eg+1) (e=afu 1)) (eleaw™ @) i(™#) ™4, 0~ 4)
if afel

Zclp, @) +2 2 (eaf €af) =02, 3 l(eah,f;)l—bZ 2 l(e—afbf;)l'
§ x€A; 1, xeA 4 i,] zeA 4

For every root a, positive or negative, |(ezf;, /)| =|(e-zf;, ;)|, again because — ¢, e_, is the

adjoint of e,. Hence

0 =c(p, @) +§‘: agA.(e“,b eaf) —2 bg “zm (eafs, eafi)} 7 f})‘-

We now use the inequality 2bzy <2 -+ b2, to get

0=clp, @) + ;'“ZA (eafsr €af) — % GZA (eafo €af) — V2 (g, @) = (c — B®) (. @).

If the integer k is different from «(l), every k-tuple of distinct positive roots either
must have a nonempty intersection with A, —A,, or cannot contain all of A, N A, or both.
In this case, by choosing the constant n in the statement of the lemma sufficiently large,
we can make all of the ¢, greater than b2 Then the last inequality above will imply the
vanishing of every ¢ € HL(E;), as desired.

(7.2) THEOREM Let ¥, Y be as above and assume that |(A, «)| =9 for all x€A (cf.
Lemma 7.1). Then H(Y, O(F,)) =0 for k+a(n) and
dim H#=(Y, O(F,)) = ¢(D)u(Y) dim W,
where ¢(D) >0 depends only on D, u(Y) is the volume of Y, and W 18 the srreducible M-module
with highest weight w(A+0)—o (cf. Theorem 6.1).

Proof. As in the proof of Theorem 6.1, we may assume that ¥ =I'\G/H where H<= G is
a maximal torus, and that the bundle in question is & line bundle F,-> Y. Also, the vanishing
part of Theorem (7.2) is included in Lemma (7.1), and so it will suffice to prove that:
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(7.3) XY, O(F2) = (—1)*P ¢(D) u(¥) dim W,

where X(Y, O(F;)) = 25.o( — 1) dim H*(¥, O(F,)) is the sheaf Euler characteristic of O(F;).

For this we will use the Hirzebruch-Riemann-Roch theorem for the nonalgebraic
complex manifold ¥, which has been proved by Atiyah—Singer {cf. [3]}). Taking into ac-
count the Riemann-Roch formula given in [16] and (7.3), we must show:

(7.4) T(Y,F3) = (—1)*» (D) u(¥) dim W,

where T(Y, F,) is the T'odd genus of the line bundle F;— Y.

Now the holomorphic tangent bundle T(Y) arises from the restriction to D of the homo-
geneous vector bundle G¢ x zn} (cf. § 1); thus T(¥)—> Y has a solvable structure group and
T(Y) has a composition series with successive quotients the homogeneous line bundles
F,— Y where o runs through the positive roots A . Topologically, T(Y) = 3 ;s , F,. For each
y EA<h*, we let c(y) EHX(Y, Q)be the Chern class of the homogeneous line bundle F,,~ Y.
'Then ¢ can be regarded as a homomorphism from A into H3(Y, ), which extends uniquely
to an algebra homomorphism from the symmetric algebra of §)* into H¥(Y, C). More
generally, to each holomorphic function f which is defined on a neighborhood of zero in ¥,
one can associate ¢(f)€H*(Y, C). With this convention, and using Hirzebruch’s notation
[16], the Todd genus of F, can be expressed as

(7.5) T(Y,F1)=c{e‘l_[ x }[Y].

[27.%% 1—e¢2
Here A and the a's are viewed as functions on ). Now

o

o
== Il —s——5
x€eA 4 1 —e [1Y. 9% e“’z—e al2?

where as usual =1 >, a, % and hence
o
T(Y,Fp)=c {e“‘“e“};[+ F2_—_e—al§} (Y]

The action of the Weyl group of (g, §) on §* induces an action on the image of ¢ in H*(Y, C).
The Chern class ¢(y) is represented by the curvature form

(7.6) i—t Op(y)= ﬁ {— “§+ 7, @) @® A w—a}

(ef. (4.2)p and [13]); thus every cohomology class of top degree, which can be represented
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by a multiple of the differential form [],. A, @* A% is carried into sgn w times itself
by each Weyl reflection w. Since evaluation on the fundamental cycle involves only the

7]

component of top degree, and since the expression [ [rea, af(e*®—e *?) is invariant under

the Weyl group, (7.5) may be rewritten as

1 o
- w(d+0) -
T(Y,F;) N ¢ {% sgnwe z§+ o2 _ e_“lz} [Y].
N being the order of the Weyl group. According to Weyl’s character formula [30],
Sosgnwe O T, A (1/e*% —e %) equals, up to sign, the character of the M-module W,
mentioned in the statement of the theorem. Consequently, this expression defines a holo-
morphic function on ) whose value at the origin is + dimW;,. Moreover, ¢ ([ Teea s x)isa

cohomology class of top degree. Thus

T(Y,Fl)=ildim W;c( 1 oz) (Y]
N xeA 4

In view of (7.6), ¢ ([Tzeas ®) is represented by the differential form

(1.7) (—i—)m M 3 whafro™,
27) «eAy BEA+

which is a constant multiple of the volume form of D. The proof of Theorem (7.2) will be
complete as soon as the differential form (7.7) is shown not to vanish identically. The
computation above carries over word-for-word to the case of a line bundle F; over the
compact flag manifold X — M/H. Thus the Euler characteristic of the trivial line bundle
over X, for example, which is known to be different from zero (Theorem (6.1)), is a multiple
of the expression (7.7), reinterpreted as a differential form on X and integrated over the

fundamental cycle. Thus the form (7.7) cannot vanish, and we are done.

Remark. We want to speculate a little on the possible implications of theorem (7.2).
The spaces ¥ ="\ D give a clags of compact, complex manifolds which arise quite naturally
in algebraic geometry (cf. [11]) and function theory (cf. Langlands [24]), and for which the
higher sheaf cohomology H*» (Y, O(F,)), instead of being as usual an obstruction or, at
best, a sideshow, is now the main object of interest.

For the purposes of the harmonic analysis on @ there is at least a conjectural explana-
tion. Roughly speaking, we should first let I'< G be an arbitrary discrete subgroup and we
should consider H&(F,,), which is by definition the space of I'-invariant, F,-valued harmonic
(0, k)-forms @ on D =G|V satisfying fp\p|lg]|2<oo. If I'\G is compact and NI ¥V ={e},
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then HE(F,) = H¥(Y, O(F,)). The vanishing part of Theorem (7.2) goes through for general
I' (cf. Theorem (7.8) below), and the remaining group H:™(F,) should be closely related
with the contribution of the discrete series to L3*(I"\@). What is missing is the general
existence theorem for §™(F,). In case I'\@ is compact, we found existence from the
Riemann-Roch theorem on I'\G/V; it is fairly clear that we could have equally well used
the Atiyah-Bott—Lefschetz fixed point formula on I'\G. For the opposite extreme I" ={e},
there is the Langlands conjecture, which is formally stated at the end of this paragraph,
and whose present status is diseussed in the introduction.

The relation between the cohomology H2=(D, O(F,)) and algebraic geometry is pre-
sently quite obscure. Let us illustrate the problem. Suppose that V<P, is an algebraic
surface of degree n given by an equation

F) = 2 unnnSOEREREE=0
fot+istigtig=n
where £ =[&;, £, &, &;] are homogeneous coordinates. Then V is determined by the homo-
geneous vector A=[..., A1, ---1 EPy Of coefficients in F(£), and we write ¥, for V. The set
of points A€Py for which ¥, is singular forms an algebraic hypersurface S Py, and we
let B=Py—S8. Then {V,;};.5 gives the algebraic family of all non-singular surfaces of
degree n in P,.

The parameter space B is a connected, open manifold and we fix a base point 0€ B.
If A€ B and A(t) (0<¢<1, A(0)=0, A(1)=4) is a curve from O to A, there is an induced dif-
feomorphism f;: Vo—V ;. The isotopy class of f; depends only on the homotopy class of
the path {A(t)}, and the induced mappings f3: H(V ,;, Q)—~H2(V,, Q) all preserve the Chern
class w of the standard positive line bundle H—P, (w is the cohomology class of a hyper-
plane section). Thus, if we let I'< Aut (H*(V,, Q)) be the group of all automorphisms
(921f2)* where f;: Vo=~V ; and g;: Vy—V; arise from paths in B, then I is a discrete sub-
group of GL(H*(V,, R)) and every T €I preserves both o and the cup-product pairing
Q@ HXV,, Q)@ HX(V,, Q) Q.

Let E< H%(V,, C) be the subspace of classes ¢ € H2(V,, C) with ¢ w =0. Since w-w=
n>0, K is defined over Q, @: E® E-C is non-singular, and I’ acts on E. We let r =
dim H2%(V,) =dim H>YV,) for all .. By the Hodge index theorem (cf. Hodge [18]), dim E =
2r +s where @ is equivalent to D547 —>5_ ;92 over R. Denote by G(r, E) the Grassmann
variety of all r-planes in E and X< G(r, E) the r-planes § which satisfy @(8, 8) =0. Then
X is a Kéhler C-space G¢/B where Gg= GL(E) is the complex orthogonal group of @ (cf.
the end of § 2). The set of r-planes S€X which satisfy @(8, §)>0 gives a non-compact
dual D< X; here D= G/GN B where G Q¢ ig the real orthogonal group of @ and D is the
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G-orbit of a point (cf. the end of § 2 again). As a real homogeneous space, D =
SO(2r, s)/U(r) x SO(s), and I'" is a properly discontinuous group of analytic automorph-
isms of D. We let ¥ be the analytic space I'\D.

If A€ B, the subspace S; =f1{H*%V )} lies in D (cf. Hodge [18]) and is well-defined
modulo I'. This gives the period mapping ®: B—Y, and in [11] it is proved that @ is a
holomorphic, horizontal mapping and the differential @, is essentially injective.

If the degree n is 1, 2, or 3, then ¥, is rational and r =0. Suppose that n =4. Then the
canonical bundle of V', is trivial, V', is a Kummer surface, and dim H>%(V ;) =r=1. In this
case D28S0(2, s)/SO(2) x SO(s) is an Hermitian symmetric domain of type IV (cf. [15]),
and the horizontal map condition is vacuous. Taking the homogeneous line bundle F,~ D
to be a high positive power K# of the canonical bundle of D, the integer a(x) equals zero
and HL(F,) =~ HY(D, O(K#)T is the space of automorphic forms of weight u (here we are using
that I' is of finite index in an arithmetic subgroup of G, cf. [12]). The quotient /=gy of
two automorphic forms of the same weight is an automorphic function, and it is proved
in [12] that:

(i) F=fo® is a rational function on B; and (ii) if X is the field of rational functions
on B and Ko< X is the subfield generated by the functions F=fo®, then Xy gives the
same equivalence relation as @; i.e. ®(4,) =D(4,) if and only if, F(4,) = F(2,) for all F€ Ko.
In conclusion:

(7.8) The equivalence relation Periods of {V ;,} =Periods of {V,,} on B is an algebraic
equivalence relation given by the subfield Kq< XK; the automorphic functions invert the period
mapping up to rational functions.

If n>5, then r>1 and D= 80(2r, s)/U(r) x SO(s) does not fibre holomorphically over
an Hermitian symmetric space. Thus H%D, O(F,))F ={0} for all non-trivial homogeneous
line bundles and there are no automorphic forms.

Now since the center of U(r) x SO(s) is a circle, the homogeneous line bundles over
D are essentially the powers K# of the canonical bundle. The condition that the period
mapping ®: B—-I"\D be horizontal is non-vacuous if »>5, and from (4.24), we see that:
For u>0, the curvature ©,(K#) is positive on ®,{T;(B)}. Thus we can hope to have
rational, holomorphic sections of ®*(K#)—B (u>>>0) which will lead to the conclusion
(7.8) for all n>4. The problem is to construct these sections a priori and, in particular, to
see if they can be obtained somehow from the automorphic cohomology

ri—y

H_E (D, KA (oz(n) s >

r. .
in this case) .

We close this section with some remarks about a conjecture of R. P. Langlands.
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Let & be an irreducible unitary representation of a noncompact semisimple Lie group G.
Then 7 can be thought of as an infinite-dimensional unitary matrix whose entries are
functions on G; m is said to be square-infegrable if one, or equivalently every, matrix
entry belongs to L*(@). According to the fundamental results of Harish-Chandra [14],
G has square-integrable representations if and only if it contains a compact Cartan sub-
group. Suppose now that H is a particular compact Cartan subgroup, which we keep fixed
from now on. Then, again according to Harish—-Chandra, to each nonsingular character A of
H there corresponds, in a well-determined way, an irreducible square-integrable unitary
representation 7;; every such representation arises in this fashion; and z; and 7z, are
equivalent if and only if the characters 4 and u of H are related by an element of the
normalizer of H in G.

For simplicity, we assume that @ can be embedded as a real form in a complex semi-
simple Lie group G¢. We denote the Lie algebras of G¢, G, H by g, gy f), and the complexi-
fication of Y), by ). We choose a system of positive roots A, for (g, ); then

B'—'f)@Zg_“ (ZEA+

is a Borel subalgebra of g. Let B be the corresponding subgroup of G¢. Since H is compact,
the roots assume purely imaginary values on Y, and the complex conjugate of g~ with
respect to g, is g%. It follows that g, N b=1),, and that H is the identity component of G B,
which therefore normalizes H. Because the normalizer of H in @ is compact, the argument
at the beginning of § 2 shows that D=G/H is dual to the Kéhler C-gpace G'¢/B.

Let L~ D be the homogeneous holomorphic line bundle determined by the character
A of H. Following Andreotti and Vesentini [2], we shall introduce certain “L2-cohomology
groups” of L;. An equivalént, but more elaborate definition hag been given in [27]. As
before, A*(L;,) is the space of L;-valued (0, k)-forms on D. The G-invariant Hermitian
metrics on L; and D chosen in § 5, by integration over D, give rise to an inner product
(,) on A%(L,), the subspace of compactly supported forms in 4*(L;). We denote the comple-
tion of A%(L;) with respect to this inner product by L*(L,); the elements of L¥(L;,) will be
thought of as differential forms with measurable coefficients which are square-integrable
over D. The kth “L2-cohomology group” of L, is defined as

W(Ly) = {p€AH(Ly) N L¥L,) | D = 0},

where [ is the Laplace~Beltrami operator. According to proposition 7 of [2], every ¢ € H¥(L;)
is 9-closed, and hence determines an element of H*(D, O(L;,)). However, since D is non-
compact, there is no reason to expect the mapping H(L;)—~>H*(D, O(L,)) to be nontrivial.
If {g,} is a sequence in H¥(L;) which converges to a limit ¢ in L¥(L;), then g is necessarily
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a weak solution of [Je=0; but since [] is an elliptic differential operator, every weak
solution must be smooth and is actually a strong solution. Thus }*(L,), as a closed sub-
space of L¥(L,), has the structure of a Hilbert space. By translation, @ acts unitarily on
H4L;). Recall the definition of the integer a(4).

ConseorurE (Langlands). If 1+p is singular, H(L;) =0 for every k. If A+p is non-
singular, H(L,) =0 for k==a(A+p); and the action of G in dimension k =o(A+g) is trreducible
and equivalent to 7y .

In a closely related conjecture, Langlands has postulated a connection between the
dimensions of the eohomology groups considered in theorem 7.2 and the multiplicities of
the representations 7, in L¥I"\@); for details, the reader is referred to [24]. We offer the
vanigshing theorem below as a partial result in the direction of the Langlands conjecture.

(7.8) THEOREM. There exists a constant 5, which depends only on D, such that |(A,0)| >7
for every a €A, implies W(L,)=0 for k+a(d).

Proof. The Hermitian metric on D, being G-invariant, is complete. Thus, in view of
proposition 8 on p. 94 of [2], it suffices to establish an inequality

(Do, @) = 6(p, @), for p€ALL,), k+a(d),

provided that A satisfies the hypothesis, where § is a positive constant, independent of A.
This inequality follows from an argument which is formally identical to the proof of
Lemma 7.1, except that the functions f, are now compactly supported C® functions on G.

8. The pseudoconvexity of dual manifolds of Kiihler C-spaces

Every noncompact Hermitian symmetric space has the important property of being a
Stein manifold. A manifold D =G}V which is dual to a Kéhler C-space, unless it is Hermitian
symmetric, contains compact subvarieties of positive dimension and therefore cannot be
a Stein manifold. However, as we shall show next, D comes as close to possessing this pro-
perty as the presence of compact subvarieties will permit.

Let f be a O real-valued function on a complex manifold Y. The Levi form of f, L(f),
is the Hermitian form on the holomorphic tangent bundle of ¥ which, in terms of local
coordinates 2., ..., 2" is given by
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dZ®@dz’.

o*f
LH=
Y ng 0z 9%
We say that f is an exhaustion function of Y if for every real number ¢ the set f~({x<c})
is compact. Recall the definition of the horizontal distribution T,(D) from § 2. Since a
complex manifold is a Stein manifold if and only if it admits an exhaustion function whose
Levi form is positive definite at every point, the following theorem may be thought of as an

extension of the assertion that the noncompact Hermitian symmetric spaces are Stein
manifolds:

(8.1) THEEOREM. On every manifold D which is dual to a Kihler C-space, there exists an
exhaustion function whose Levi form, restricted to Ty(D), 45 positive definite at every point.

Andreotti-Grauert’s [1] generalization of theorem B now implies

(8.2) CoroLLARY. If F is a coherent analytic sheaf over D, then H*(D, F)=0 for
k>dim¢ 8 =% dimg K/V.

(8.3) CoroLLARY. A horizontal analytic mapping F: YD of a connected compact
analytic space Y into D is constant.

Proof. Let f be the function whose existence is guaranteed by the theorem. Since F
is horizontal, F*f is a plurisubharmonic function on the compact space ¥, and hence must
be constant. Thus F*(L(f)), which is defined at the manifold points of Y, vanishes; and this
cannot happen unless the tangential map F, vanishes identically, i.e. unless F is constant.

Proof of Theorem 8.1. We shall use the notation of § 2 and § 3 freely. In particular,
D =G|V will be regarded as an open subset of X =M|V =G¢/B. Let u be the negative of
the sum of the roots in A, —®. As was pointed out in § 4, y determines a one-dimensional
representation of ¥, and the corresponding line bundle L, X is the canonical bundle. This
line bundle can be given an M-invariant metric 9, and its restriction to D a G-invariant
metric y4; both are unique up to multiplicative constants. The ratio of these two metries
is a positive C= function on D. Hence f= —log (y¢/y) is well-defined on D. The Levi form
of f is precisely the difference of the curvature forms of L, corresponding to yg and yy,
which were given by (4.23); it follows that L(f) is positive definite on T,(D).

In order to prove that f is an exhaustion function, it suffices to show that the ratio
Yelyu extends to a continuous function on X whose restriction to the topological boundary
oD of D vanishes.

The holomorphic cotangent bundle T*(X) is associated to the principal bundle
B—Q@¢—~X by the adjoint representation of B on n_. This can be verified by observing
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that the tangent bundle is associated to the principal bundle by the adjoint action of B
on g/b, and that the Killing form establishes an Ad B-invariant nondegenerate bilinear
pairing between g/b and n_. Thus we can identify the fibre of T*(X) over a point gB€X =
G¢/B with Ad g(n_). We define M-invariant and G-invariant Hermitian forms A, and
kg on T*X) by setting

hy(z, y) = — B(x, ©(y)), hs(x, y) = Bz, o(y))

for z, y€Ad g(n_). The former is positive definite; the latter nondegenerate, at least at
eB, and by G-invariance then over all of D. Let A(g.B) be the product of the eigenvalues of
hg on Ad g(n_) with respect to %,,. By construction, % is a continuous function on all of X.
Because L, and A"T*(X), n=dim¢X, coincide, the restriction of » to D is proportional
to the ratio y5/yy. It only remains to be shown that kg is degenerate on Ad g(n_) whenever
gBeoD.

Suppose then that g.B is a point of 9D; for brevity, we set fi_=Ad g(n_), b=Ad g(b).
As a consequence of Bruhat’s lemma, the maximal nilpotent ideal ii_ of bhasa complement
b in b such that

bno(b) = Gna@)@_na(d);

indeed, if B is a Cartan subalgebra of g in the intersection of the two parabolic subalgebras
b and a(f)), the (unique) maximal reductive subalgebra of b which contains fj is a suitable
choice for 9. Notice that § and b have the same dimension. Since gB€d.D, the G-orbit of
gB cannot have interior, and the Lie algebra gonf) of the isotropy subgroup of G at gB
must be of higher dimension than g,N b =g, N v. Equivalently, because bn o‘(ﬁ) is the com-
plexification of g,n b,

dim p <dim 50 ¢(b) = dim 5 N o(b) +dim 7i_N (D) < dim v +dim §i_ N o(b).

Thus we can choose a nonzero vector y€fi_N o(b). Finally, since B(fi_, b)=0, ho(z, y) =
B(z, o(y)) =0 for every z€n_, i.e. by is degenerate on fi_, as was to be shown.

9. Horizontal mappings are negatively curved

In recent papers ([9], [20], [22], [82], etc.) several authors have shown that negatively
curved Hermitian manifolds in certain ways behave like bounded domains. In view of the
presence of parabolic compact subvarieties, dual manifolds of Kéhler C-spaces cannot,
in general, be expected to be negatively curved. However, the analogy to the situation of
§ 8 might suggest that they are negatively curved in the horizontal directions, and this is
indeed the case.
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Let D=@/[V be a manifold dual to the Kihler C-space X =G¢/B, as in § 2. The holo-
morphic tangent space of D at eH is naturally isomorphie to o(n_)=17(1_), and

(xa ?/) = —B(m, T(?/)), x, ?/EO'(TL)

defines an Ad V-invariant inner product on g(n_). By translation, the inner product gives
rise to a G-invariant Hermitian metric on D. This metric, because of its homogeneity,
turns D into a complete Hermitian manifold.

(9.1) THEOREM. The holomorphic sectional curvatures of D corresponding to directions
in Ty,(D) are negative and bounded away from zero.

We shall deduce some corollaries before proving the theorem. As a direct consequence
of Corollary 8.3 in [32], we get

{9.2) CoroLLARY. The family of all horizontal holomorphic mappings of a fixed complex
manifold into D is normal.

In his paper [20], Kobayashi has introduced an intrinsic pseudodistance which is defined
for each connected complex manifold Y: given a pair of points z, y € Y, we consider chains
of points ==, ,, ..., z, =y in Y, holomorphic mappings f,, ..., f, of the unit disc A into 7,
and points a, b,€A, such that f(e,)=2, ;, /{b;) =2, denote by d, the distance from «,
to b,, measured with respect to the Poincaré metric on A; now let x(x, ) be the infimum of
all possible sums >7d, obtained in this manner. Then #x is a pseudodistance for ¥. The
arguments leading to theorem 3.8 of [20], which are also implicit in [32], together with
theorem 9.1 imply

(9.3) CoroLLARY. A horizontal holomorphic mapping of a complex manifold Y into D
is distance decreasing with respect to the Kobayashi pseudodistance on Y and the Hermitian

metric on D, suitably renormalized.
It is not difficult to verify that the pseudodistance vanishes identically on C™. Hence

(9.4) CorOLLARY. Every horizontal holomorphic mapping of a complex Euclidean space
wnto D reduces fo a constant.

(9.5) CororLARY. If Y is a complex manifold, S Y a subvariety of codimension at
least two, and F: Y —8— D a horizontal holomorphic mapping, then F can be extended over S.

Proof. The proof of Theorem 3.3 in [22] can be modified slightly to cover this case.
Alternatively, one may proceed as follows. Since the set of singular points of § forms a
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subvariety. of lower dimension, an inductive argument allows us to assume that S is a
submanifold. Now, because the problem is a local one, we need to consider only the case of
a polycylinder Y and a linear subspace S. For dimensional reasons, if an analytic disc in ¥
is perturbed by arbitrarily little, it can be made disjoint from 8, while still lying in Y.
Hence the Kobayashi pseudodistance of ¥, which is a true distance in this instance, agrees
on Y -8 with the pseudodistance of ¥ —S. It follows that the distance decreasing map ¥
from ¥ —8 into the complete metric space D must extend continuously, and hence holo-
morphically, to all of Y.

Let T' be a discrete subgroup of G. Then I’ acts on D as a properly discontinuous
group of analytic automorphisms, and I'\ D hag the structure of a normal analytic space
such that the quotient map D—>I"\D becomes holomorphic. A holomorphic mapping of
an analytic space into I'\ D is said to be locally liftable if in some neighborhood of each
point of the domain it can be factored through the quotient map D~I"\D. We call such a
mapping horizontal if all of the local liftings are horizontal as defined previously. The

period mappings introduced in [11] have these two properties.

(9.6) LEMMA. A locally liftable holomorphic mapping F: Y—T'\D can be lifted globally
if Y is simply connected.

Proof. If I" were known to act freely, this would be a direct consequence of the mono-
dromy theorem. In general, the usual proof of the monodromy theorem still applies, when
it is combined with the following fact: let U< Y be open and irreducible, and F,, Fy: U~D
two liftings of F|U; then there exists a y €I" such that yo F, = F,. Indeed, because I acts
properly discontinuously, if U is shrunk, there exist only finitely many elements y, ..., y, €I’
such that y,0 F,(U) N Fy(U) is non-empty. Thus there must exist some y €I" and a sequence
{y.} which accumulates in U such that yo F,(y,) =F,(y,) for every n. Hence yo F,=F,,
as was asserted.

This lemma, together with corollaries 8.3 and 9.4 immediately implies

(9.7) COROLLARY. Let Y be an analytic space whose universal covering space is either
compact or a Euclidean space. Then every horizontal locally liftable holomorphic map
F: Y-T\D is constant.

Extending holomorphic maps over subvarieties is a local problem, and the removal
of a subvariety of codimension at least two will not increase the connectivity of a manifold.

Thus we have:
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(9.8) COROLLARY. Let S be a subvariety of codimension at least two of a complex mani-
fold Y, and F: Y —~S—T\D a horizontal, locally liftable holomorphic mapping. Then F
can be continued to all of Y.

Proof of Theorem 9.1. We recall the structure equations of a Hermitian manifold. Let
Y be a complex manifold, with Hermitian metric ds? =2, w'®*, where {w'} is a (local) frame
of forms of type (1, 0). With respect to this frame, the connection is represented by the

unique matrix of one-forms (¢j) such that:

{dw‘ +2 gi A’ is of type (2,0)
7
@+ @l =0.

The curvature form is a differential two-form Q which takes values in the bundle of endo-
morphisms of the holomorphic tangent bundle; if {e,} is the frame of vector fields dual to

{w'}, then
Qe,= ; Qle,,

where Qg:d‘l?{"'zk:‘}”{c/\‘ﬁ'

For a (1, 0)-vector z of unit length, the holomorphic sectional curvature in the direction of
z is given by (Q(z, Z) x, ).

Let us now consider a manifold D=@G/V as in § 2. We shall also use the notation of
§ 3, especially (3.6). Corresponding to every «€A, we define linear functionals o> and o

on g:
w*eg) =0, aleg) =0 for BEA

w(h) =0, ofh)=<a, by for k€Y.

We identify these linear functionals with left-invariant complex valued one-forms on G.
Then

O* =¢g,W™% A= —0.
In view of (3.6), the Maurer—Cartan equations assert that

(9.9) dw®*= —%ﬂz N yof A o? —a A o
+y=a
with 8, v ranging over the set of all nonzero roots.
According to the definition of the Hermitian metric on D, {s*w*|x €A, —®} is a local
unitary frame of (1, 0)-forms on D, whenever ¢ is a local section of the principal bundle

V>@— D. The corresponding connection and curvature forms can also be expressed as
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the pullback via s of left-invariant forms on @; thus we can transfer our computations from
D to G.

From now on, «, 8, y will always denote elements of A, —®, and as indices of summa-
tion, these letters will range over A | — @, subject to whatever other conditions are indicated.
A sum of two roots cannot belong to A, —®@ unless at least one of the two does (3.8);
moreover, Ny ., is skewsymmetric in the indices. Hence, for €A, —®, we can rewrite
(9.9) as follows:

do*=—% > Np_.,w”/\ w'—- X N _p.pwa_ﬂ/\wﬁ-‘ > Na_p_,gw“_ﬁ/\w”—a/\ o*
Bty=a a—fed p-xeA
= —p;_a (3 +&,) Ngyof Ao +, S ey Ng_po* P Aof— ZQN,__,w“‘ﬂ A of

+y=a a-fe

- 2 Ny jpo*PAhof—aho*= —§¢§Awﬁ+r“

B-eeAy
where
N, _po* if f—a€A,
— 84 g Ny s f if x—BEA
(9.10) gi=]| s Nepot T i am €A,
o if x=4
0 otherwise
and w=— 3 (e Npyo Ao,
Fy-c

Observe that ¢f= —@§, and that s*1* is of type (2,0) whenever s is a local section of
G—D. Hence (¢§) is the connection form (or, to be more precise, (s* ¢5) represents the
connection relative to the frame (s* ) and (QF) = (d@§ + 2., ¢5 A ¢f) the curvature form.

When the ¢f§ are regarded as linear functionals on g, (9.2) becomes

—B(z, [eg e_z]) if z€EPpNa(n)

%(z)={ Bz, [eg, e—o]) if z€F or z€EpNN_.

Under the natural isomorphism between g(t1_) and the holomorphic tangent space of
D at eV, b N o(1_) corresponds to the fibre of T, (D). Suppose now that z€p N a(n), i.e.

x= > a%e, a“€C.
aeA+nAp

It will be convenient to set a*=0 if «€A;. Then & =o(x) =2 ,d%¢_,, and hence
(Q(z, %) z, z) = 2;6“ a? Qf(x, &) = — > a*af g§([x, £]) + D a*alel(z) gh(E)
2, «.p By
'“agyd““ﬁ @y (%) gp(x) = — B([=, Z], [, £]) —g Bz, [e,, £]) B(Z, [z, e—y])

+ g B(Z, [ey, 7)) B(=, [x, e_,)) = — B([x, Z], [=, Z]) - ; B([z, 7], ey) B([=, £], e—,).
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Since 2€ P, [z, ] belongs to V — 1 f,, and we can write [z, £l =v +y —a(y), withy€¥nn_,
v€V — 1 v, Explicitly, [z, &]=4|a%2hy+ Daspa®d[es e-p); all terms of the first of
these two sums lie in the cone generated by the positive roots in jg, which shows that

[z, €]+ 0 unless 2 =0. Because the Hermitian form B(y, o(y)) is negative definite on ¥,

(Q(z, £) %, ) = B([z, £], ofz, 7]) + B(y, o(y)) < 0,

provided « =+=0. Thus the holomorphie sectional curvatures of D in the horizontal directions

are negative and bounded away from zero, at least at ¢V, and because of the homogeneity

of the metric, everywhere.
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