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In  this paper  we discuss some geometric and analytic properties of a class of locally 

homogeneous complex manifolds. Our original motivation came from algebraic geometry 

where certain non-compact, homogeneous complex manifolds arose natural ly from the 

period matrices of general algebraic varieties in a similar fashion to the appearance of the 

Siegel upper-half-space from the periods of algebraic curves. However, these manifolds 

arc generally not Hermit ian symmetric domains and, because of this, several interesting 

new phenomena turn up. 

The following is a description of the manifolds we have in mind. Let  Gc be a connected, 

complex semi-simple Lie group and B c  Gc a parabolic subgroup. Then, as is well known, 

the coset space X = Gc/B is a compact, homogeneous algebraic manifold. I f  G ~  Gc is a con- 

nected real form of Gc such tha t  G N B = V is compact, then the G-orbit of the origin in X 

is a connected open domain D ~ X, and D = G/V is therefore a homogeneous complex mani. 

/o/d. Let  F c  G be a discrete subgroup such tha t  the normalizcr N(F) intersects V only in 

the identity. Since F acts properly discontinuously without fixed points on D, the quotient 

space Y = F \ D  inherits the structure of a complex manifold. We shall refer to a manifold 

of this type as a locally homogeneous complex mani]old. 

One case is when G=M is a maximal compact subgroup of Gc. Then necessarily 

F ={e), and D = X  is the whole compact algebraic manifold. These varieties have been 

the subject of considerable study, and their basic properties are well known. The opposite 

extreme occurs when G has no compact factors. These non-compact homogeneous domains 

D then include the Hermit ian symmetric spaces, about  which quite a bit is known, and 

also include important  and interesting non-classical domains which have been discussed 

relatively little. I t  is these manifolds which are our main interest; however, since the 
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methods we use apply more or less uniformly, we get out the classical results on X along 

with new information on the locally homogeneous manifolds Y = F \ D .  

Here is a more detailed summary of the results in this paper. Recall that  an irreducible 

unitary representation ~t: V-+GL(E) gives rise to a homogeneo~ vector bundle G • v E = E  

lying over D = G/V. This bundle has an (essentially unique) G-invariant complex structure 

and metric, and so induces a Hermitian, holomorphic bundle F-+ y (Y=P\D,  F = F \ E ) .  

Our first job is to compute the curvature 0 of the metric connection in the locally homo- 

geneows bundle F-+ Y, and this is done in w 4. The main result (Theorems (4.13)x and (4.13)D) 

is that  the curvature O has a canonical expression as a difference of disjoint positive 

terms; by this we mean that  there is a matrix equation 0 =A  A t . ~ -B  A t~ where A, B 

are matrices of (1, 0) forms involving mutually disjoint subspaces of the cotangent space. 

As an application of this formula, we recall that  the curvature form O(~)=i(~, O~) (~EF) 

is a real (1,1)-form which controls the cohomology H*(Y, O(F)) in case Y is compact 

(cf. (4.14) and (4.16)). We will see that  O(~) is non-singular if the highest weight ~ of ~t 

is non-singular, and that  the signature of O(~) is determined by  the Weyl chamber in 

which $ hes. This leads to a crude vanishing theorem (cf. (4.21)), but  one which suggests 

the following behavior: (a) For  all Y, the cohomology Hk(Y, O(F))=0 for k#-k(~t)where 

k(~) is determined by  ~; and (b) if D is non-compact and does not fibre holomorphically 

over an Hermitian symmetric space, then H~ O(F))=0 for all representations rt. Thus, 

for some domains arising quite naturally in algebraic geometry, there is no theory of 

automorphic forms. 

Since the curvature gives only crude vanishing theorems, in w 5 we compute the 

Laplace-Beltrami operator []  acting on the space Ck(Y, F) of C r176 F-valued (0, k)-forms 

on Y. This calculation is somewhat involved, but  does yield fairly precise vanishing 

theorems together with some information on the non-zero group Hk(=)(Y, O(F)). For 

example, in w 6 we use the calculation of []  to give a proof of Bott 's  result tha t  

H~(X, O(E)) = 0 for k =4=k(~t), and that  Hk(m(X, O(E)) is an irreducible Go-module W= whose 

highest weight has a simple determination. In  particular we obtain the usual Borel-Wefl 

theorem. 

In case Y = F \ D  where D is non-compact, we consider the square-i~te~rable cohomolg/y 

tHe(D, E). By  definition, ~/~(D, E) is the space of I~-invariant, harmonic forms q in 

C~(D, E) such that  S~][~]l~<co, where ~ c D  is a fundamental domain for r .  In case 

F = {e}, ~ ( D ,  E) = ~/k(D, E) is a unitary G-module (which may be zero). In the opposite 

extreme when Y = P \ D  is compact, ~t~(D, E) ~ H~( Y, O(F)). In  w 7 we apply the computa- 

tion of []  to prove that  ~/~(D, E) =0  for k =#k(~t), provided that  the highest weight X of 

is at  least a fixed distance from the walls of the Weyl chamber in which X lies. This essentially 
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gives the non-existence part of a conjecture of Langlands [24], as well as the non-existence 

of automorphic forms of any type unless D fibres holomorphicaUy over a Hermitian sym- 

metric space. 

The existence problem for ~ /~ (D ,  E) is extremely interesting. In case Y = r \ D  
is compact, we use the Atiyah-Singer theorem to write: dim ~/~)(D, E) = dim Hk(~)( Y, O(F)) = 

( - 1)~) ~ _ 0  ( - 1)~ dim H k ( Y, O(F)) ~ ( - 1)~(~)T(Y, F) where T( Y, F), the Todd genus 

of F-~ Y, is a topological expression involving the Chern classes of F ~ Y and the 

tangent bundle T(Y) -~ Y. These Chern classes are given by differential forms involving the 

curvature, which has been computed in w 4, so that  we finally get (cf. Theorem 7.2): 

dim 7/~m(D, E )=c .d im W.-~u(~); here c>0  is a constant independent of z a n d I  ~, W.is the  

irreducible Gc-module appearing in Bott's theorem above, and p(~) is the volume of a 

fundamental domain :~ of 1". In the opposite extreme F = {e}, according to Langlands' 

conjecture, the unitary G-module ~/~(~)(D, E) should be irreducible and should occur 

discretely in L ~ (G); Langlands has also predicted the character. We give a precise formula- 

tion of the conjecture in w 7. 

Since the writing of this manuscript, Okamoto and M. S. Narasimhan have verified 

Langlands' conjecture for Hermitian symmetric domains and vector bundles indexed 

by "sufficiently nonsingular" highest weights (cf. (7.1) below). Subsequently, the second 

named author of this paper found a proof of the conjecture in general, though again 

only for "sufficiently nonsingular" weights. A similar proof gives a related conjecture of 

Langlands, which asserts that  for compact Y = F \D,  the dimension of Hk~( Y, O(F)) equals 

the multiplicity in L2(F\G) of the G-module 7/k('~(D, E). Both arguments depend on the 

vanishing theorems in w 7. 

The possible connections between the "automorphic cohomology groups" ~/~(D, E) 

and the problem of periods of algebraic manifolds are also taken up in w 7. 

Sections 8 and 9 are devoted to some geometric properties of the noncompact domains 

D ~  X. First, we generalize the well known holomorphic convexity of the bounded, sym- 

metric domains by proving that  D has the maximum degree of pseudoconvexity which is 

allowed by the presence of certain compact analytic subvarieties in D. This result has been 

used by one of us to show that,  with the proper choice of complex structure, the cohomology 

group Hk('~)(D, O(E)) has naturally the structure of a Frech6t space on which G acts con- 

tinuously, and which contains a G-submodule infinitesimaUy equivalent to 7/k(~)(D, E). 

These facts are related to a conjecture of Blattner about Harish-Chandra's discrete series 

representations and will be pursued in a future paper (cf. also [28]). 

In w 9 we prove a generalization of the hyperbolic character of bounded domains by 

showing that  the homogeneous manifolds D are negatively curved with respect to the 
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family of holomorphic mappings arising in algebraic geometry. This result has recently 

been quite useful and leads to interesting generalizations of the Picard theorem. 

To conclude the introduction we want to give a few references to background and re, 

lated material. The compact homogeneous manifolds X = Gc/B were discussed by  H. C.Wang 

[31] and by  Borel [4]; a rather complete discussion of homogeneous complex structures is 

given by  Borel and tIirzebruch [6]. The invariant differential forms giving the Chern 

classes of homogeneous line bundles were given by Borel [41 and later by Bott  [71 and 

Borel-Hirzebruch [6]. In Borers  paper [4] there are the first indications of the curva- 

ture properties which the non-classical domains turn out to have. 

The expression for the Chern classes of homogeneous line bundles suggested the 

phenomenon that  Hk(X, O(E)) :~0 for at most one integer k = k(~). For k(~) = 0 this vanishing 

theorem was deduced from the Kodaira vanishing theorem by Borel [41, Borel-Weil [5], 

and Borel-Hirzebrnch [6]. The general vanishing theorem was proved by  Bott  [71, who 

made only partial use of curvature arguments. 

The existence of H~(~)(X, O(E)) was proved for line bundles when k(~)=0 by  Borel 

and Weil [5], who used their results to give equivariant projective embeddings of X. By 

combining the vanishing theorem for the Hk(X, O(E)) and the Hirzebruch-Riemann-Roch 

theorem [16], Borel and Hirzebruch were led in [6] to conjecture the main theorem, proved 

by  Bott  [7], giving in general the Gc-module structure of Hk(~')(X, O(E)). In  [21] Kostant  

gave a uniform treatment  of the subject using Lie algebra cohomology. 

In  the non-compact case, most of the attention seems to have been devoted to the 

groups ~ ( D ,  E) where D is a Hermitian symmetric space. In case Y = F \ D  is compact, 

H~ O(F)) is a vector space of automorphic forms, and dim H~ O(F)) was given, for 

suitable bundles F-~ Y, by Hirzebruch [17], Ise [19], and Langlands [23] (who did not 

assume that  F had no fixed points). On the other hand, a rather striking vanishing theorem 

was given by  Calabi-Vesentini [81, and their work gave rise to a series of papers on the 

groups Hk(Y, O(F)) when D is a Cartan domain; cf. [251 and [26]. 

The possibility of realizing ttarish-Chandra's discrete series representations on the 

L2-cohomology groups :~t(D, E) was conjectured by  Langlands [24]. In  the case of those 

groups which act on t termit ian symmetric spaces, Okamoto and Ozeki [27] have reduced 

the conjecture to a conjecture of Blattner about the structure of the discrete series repre- 

sentations, which is known to be correct in a few cases. For  the groups G =SO(2h, 1), one 

of us [28] has proven the Langlands conjecture by a direct construction. The most recent 

progress on the conjecture has already been mentioned above. 

Finally, we remark that  many of the results of this paper have been previously an- 

nounced in [10] and [29], 



LOCALLY HOMOGENEOUS COMPLEX MANIFOLDS 

Table of Contents 
1. Kghler C-spaces 

2. Dual manifolds of Kghler C-spaces 

3. Structure theory of semisimple Lie algebras 

4. Curvature of homogeneous vector bnndies 

5. Computation of the Laplace-Beltrami operator 

6. The generalized Borel-Weil theorem 

7. Cohomology in the noncompact case 

8. The pseudoconvexity of dual manifolds of Kghler C-spaces 

9. Horizontal mappings are negatively curved 

257 

1. lfdihler C-spaees 

We begin our discussion by  recalling some facts concerning compact, simply con- 

netted,  homogeneous complex manifolds. H. C. Wang, who has named these manifolds 

C-spaces, has classified them in [31]. In  this paper, for simplicity, we shall consider only 

C-spaces which admit a Kghler metric. 

Let  Go be a connected complex semisimple Lie group, B a parabolic subgroup. The 

complex analytic quotient space X = Gc/B is then a Kghler C-space, and every Kghler 

C-space arises in this fashion. The Lie algebras of Gc and B will be referred to as g and b; 

both are complex Lie algebras. We choose a maximal compact subgroup M of Gc. I ts  Lie 

algebra, 11t0, is a real form of ~, and we denote complex conjugation of g with respect to m0 

by ~. The algebra b has a unique maximal nilpotent ideal 1t_. Since the subgroup of Gc 

corresponding to It_ can be realized as a group of upper triangular matrices, with ones 

along the diagonal, it has no nontrivial compact subgroups. Thus 1110 N 11_, and hence also 

1t_ N z(rt_), must be zero. By appealing to Bruhat 's  lemma, for example, we can conclude 

that  the parabolic subalgebras b and T(b) are opposite to each other, i.e. g is spanned by b 

and ~(rt_). Moreover, ~ = b N ~(b) is a reductive subalgebra such that  

(1.1) b = 13| (semidirect product) 

and 

(1.2) g = ~|174 

Since the real span of irt 0 and 1) is all of g, the M-orbit of eBEX=Gc/B must be open. On 

the other hand, this orbit is closed because M is compact. Hence M acts transitively on X, 

with isotropy group V=Mfl B, and we can identify the quotient space M/F with X. The 

Lie algebra of V is ~o=lrto fl 5 =1Ito (1 b fl ~(b)=11to N ~; V is connected because X is simply 
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connected. I t  should be remarked tha t  V, as the intersection of the two parabolic sub- 

algebras b and v(b), must  have the same rank  as g; this follows again from Bruhat ' s  lemma. 

Moreover, ~ and V0 are also of equal rank, since they are real forms of B and V, respectively. 

I t  will be useful to have a description of the complex structure of M/V=X without 

reference to Gc. Let  ] be a holomorphic function on some open set U c X, and T the pullback 

of / to Gc. Since T is B-invariant  on the right, every x fi l~, considered as a left-invariant real 

tangent  vector field on Gc, annihilates ~. Because ~ satisfies the Cauchy-Riemann equations 

on Gc, the restriction of ~ to M, or, equivalently, the pullback of / to M, will be annihilated 

b y  every x E I} when x is regarded as a left-invariant com:p/ex tangent  vector field on M. 

Let  T: M-~X =M/F be the quotient map. According to what  has just been said, for every 

mEM the induced mapping p .  from the complexified tangent  space of M at  m, identified 

with g via left translation, carries I~ into the space of antiholomorphic tangent  vectors 

at p(m). Since the kernel of p .  is precisely V, a count of dimensions shows p.(ll_)=10.(~) 

to be the full antiholomorphic tangent space. Suppose now tha t  h is a C ~~ function on 

T-I(U)cM, with the proper ty  tha t  xh=0 ,  for every xEl~, extended to a left-invariant 

complex vector field. In  particular, such a function h must  be constant on each V-coset, 

and hence drops to a C ~ function / on U; from our characterization of the space of (0, 1)- 

tangent  vectors, we deduce tha t  / satisfies the Cauchy-Riemann equations. Thus we have 

shown tha t  

(1.3) p*O(U) = {heC~ = 0 for all x e ~ } .  

Here O(U) is the ring of holomorphie functions on U c  X, and the elements of l~ act  as left- 

invariant  complex tangent  vector fields. 

We turn our at tention to homogeneous holomorphic vector bundles over X, i.e. 

holomorphic vector bundles to which the action of Gc on X lifts. Let  E ~ X  be such a vector 

bundle. The action of the isotropy group B on the fibre of E over eB, to be denoted by  E, 

determines a holomorphie representation re: B ~ G L ( E ) .  This representation associates E 

to the holomorphic principal bundle B~Gc~X.  As an example, we mention the holo- 

morphic tangent bundle T(X), which is clearly a homogeneous vector bundle. I t s  fibre 

over the "origin" eB is natural ly isomorphic to g/b, and under this isomorphism the action 

of the isotropy group corresponds to the adjoint representation of B on ~]b. Conversely, 

every vector bundle E associated to the principal bundle B~Gc-~X by  a holomorphic 

representation r~ of B on a vector space E is a homogeneous holomorphic vector bundle. 

As a Coo vector bundle, E is then associated to the principal bundle V~M~--~X via the 

restriction of ~ to V; the C ~ sections of l~ over an open set U c  X can be identified with the 

C ~ functions F :  p-l(U)~E such tha t  F(mv)=re(v-1)F(m) for all mEp-l(U), vE V; and 
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the space of holomorphic sections of E over U is isomorphic to the space of E-valued Coo 

functions F on p-~(U) which satisfy 

(1.4) x F  = -~ (x )  ~ for every x ~ b. 

This description is analogous to (1.3) and can be proven by  a similar argument.  

I f  g is an irreducible representation of V on a complex vector space E, the induced 

representation of the Lie algebra I~ 0 determines a unique complex representation of ~. 

We extend it to all of 5 by  letting 1t_ act trivially. This infinitesimal representation can be 

lifted to B because the fundamental  group of B is equal to tha t  of V. The resulting holo- 

morphie extension of ~ to B is the only possible one: since b is the semidireet product of 

with the nilpotent Lie algebra It_, 1t_ must  act  trivially on any  irreducible b-module. We 

deduce tha t  every irreducible representation of V leads to one unique homogeneous holo- 

morphic vector bundle. One particular class of examples is furnished by  the homogeneous 

holomorphic line bundles, which arise from one-dimensional representations of V. 

In  order to s tudy differential forms on X, which will be useful as a computational 

tool, we choose a basis e I . . . . .  e n of T(11_), and we set ei =~(e~). According to (1.2), el, ..., e,, 

el .. . . .  g~ are linearly independent, and the equations 

o~(ej)=O~, o~(ej )=0,  o ~ ( , ) = 0  

~'(ej)=0,  ~ ( ~ ) = ~ i ,  ~ ' ( , ) = 0  

define elements of the dual space of g. We shall regard these as left-invariant complex 

one-forms on M. A given differential form ? on X pulls back to 

(1.5) p*q~ = ~,f~,...~,.j,...j, e j  ~ A . . .  A a~," A ~J" A . . .  A ~:F, 

on M, with coeffficients /il...~,j,..j, ECOO(M). Conversely, if we let V act on C~176 by  

right translation and on ~(1t_)* and n*- by  the dual of the adjoint representation, every V- 

invariant element of Coo(M)| AT(n_)* | is the pullback to M of a differential form on 

X. Since p .  maps 1t_ onto the antiholomorphie tangent  space, a form ~ on X is of type 

(/c, l) precisely when every summand on the right side of (1.5) involves k unbarred and 1 

barred terms. 

The exterior differentiation operator, d, is the sum of two operators a and ~ of degree 

(1, 0) and (0, 1), respectively. We shall derive a formula for ~ when ~ is a form of type (0, ]c). 

For this purpose, we consider the structure constants of the algebra 11_: 

[~,, ~j] -- ~c,~z ,  c,~ = - c,l. 
l 

17 -- 692908 Acta mathematica 123. I m p r i m ~  le 26 J a n v i e r  1970. 
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According to the Maurer-Cartan equation on M, 

d~Z= _�89 ~ c l -~  L~.j ~jto A (5 j + terms annihilating every pair (~. ~), 1 ~< r, s ~< n. 

The adjoint representation of it_ on itself by  duali ty determines an action on 11"_, which 

we write as juxtaposition; explicitly, ~ (t5 z) = - ~ j  c~ rSL In  terms of this notation, 

t 

Hence, if ~ is a form of type (0, k) on X, such tha t  

(1.6a) P*~ = ~/~,.-.~k ~ A ... A t5 'k, 

with coefficients/~,.., tkE C~(M), then 

(1.6b) p*~tf=~jI,,...,~)JA~"A ... A ~ ' " +  �89 Z l,, ... ,k S~ A ~ j (~ "  A ... A 5)"~). 

Let  us suppose now tha t  E~-~X is the homogeneous holomorphic vector bundle 

corresponding to an irreducible representation z of V on a complex vector space E. By 

combining the description of the holomorphic sections of E~ with tha t  of the forms of type 

(0, k), one obtains an identification of the space of E~-valued (0, k)-forms on X, Ak(E~), 

with the subspace of V-invariant elements of C~(M)| E| here V must  be made to 

act  on C~(M) by right translation, on E by  ~r, and on Akn * _ by the dual of the adjoint repre- 

sentation. Every  q0 EAk(E~) has an expression of the form (1.6a), with coefficients/~,...tkE 

C~176174 Since E~ is a holomorphic vector bundle, the operator ~: A~(E~)-~Ak+I(E.) 

can be defined; equation (1.6b) remains valid in this context. 

2. Dual manifolds of Kiihler C-spaces 

Let X =Gc/B be a K/ihler C-space as in section one, and G a noncompact  real form of 

Gc. We make the special assumption, once and for all, tha t  G N B be compact. In  this case 

we can choose a maximal compact subgroup K of G which contains G N B, and a maximal  

compact subgroup M of Gc containing K. As before, we set V=MN B. Since GN B is the 

isotropy group of G acting on X at  eB, dim GN B~>dim G - d i r e R  X = d i m  M - ( d i m  M -  

dim V)= d i m  V; on the other hand, V is connected and GN B c K N  B c M N  B= V. Thus 

GN B =  V, and the quotient space D=G/V can be identified with the G-orbit of eBEX, 

which is open. In  this manner,  D becomes a homogeneous complex manifold; we say tha t  

D is dual to the K/~hler C-space X. The adjective "dual"  should not suggest the kind of 

one-to-one correspondence which exists in the special case of the Hermit ian symmetric 

S p a c e s .  
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The complex structure of D =G/V again has an intrinsic characterization. Since g is 

the complexification of ~0, we may  regard g as the algebra of left-invariant complex tangent  

vector fields on G. I f  the letter p is now used to designate the projection G-+D, (1.3) 

remains correct; the proof carries over immediately. The restriction to D of a homogene- 

ous holomorphie vector bundle E~-+X determined by a holomorphie representation 

~ : B - +  GL(E) is a G-homogeneous holomorphic vector bundle; its holomorphic sections over 

an open set U c  D can be described by  (1.4). Finally, the discussion of differential forms 

on X in w 1 applies to D as well, if the roles of M and v are assumed by  G and complex 

conjugation of g with respect of g0. 

We shall denote the Lie algebra of K by  30, and its complexification by  3. Then 3 is 

a reductive complex subalgebra of ~, with ~ c L As pointed out in w 1, ~ has the same rank 

as g. Hence 3 n b contains a Caftan subalgebra of g, and one can conclude tha t  3 n 5 is a 

parabolic subalgebra of ~. Although Kc, the subgroup of Gc corresponding to 3, need not 

be semisimple, S = Kc/Kc N B is a K/~hler C-space, because Kc N B contains the center of 

the reductive group Kc. The compact subgroup K of Kc acts transitively on S, with iso- 

t ropy group K n B = V, just as M acts transitively on X. At various times, we shall view 

S as the quotient space K~ V, as the Kc-orbit of eB EX, or as the K-orbit  of eB. In  particular, 

S is a compact complex submanifold of D c  X. The fibres of the fibration 

(2. l) D = G~ V ~  G/K 

are precisely the G-translates of S, and they are all complex submanifolds of D. The holo- 

morphic tangent vectors of D which are tangent  to the fibres form a Coo subbundle Tv(D ) 

of the holomorphic tangent  bundle T(D). As demonstrated in w I, the holomorphic tangent  

bundle of X is associated to the principal bundle B ~ G c ~ X  by the adjoint representation 

of B on g/5. Hence T(D), as a C ~ vector bundle, is associated to V--->G--->D by the adjoint 

representation of V on g/5. A vector x in the fibre of T(D) over eB, which is to be identified 

with g/5, is tangent  to S if and only if xE3/3N 5. I t  follows tha t  T~(D) is associated to 

V--->G--->D by the adjoint representation of F on 3/3 N 5. 

The maximal compact subgroup K of G determines a Cartan decomposition g = 30 p, 

where p is the unique ad3-invariant subspace of g which is complementary to 3. The 

adjoint action of F on p/p N 5 associates a Coo vector bundle Th(D) to the principal bundle 

V--,'G~D, and since 015=313N 5 |  N 5, 

(2.2) T(D) = T~(D) | 

is a G-invariant splitting of the holomorphic tangent bundle into two C ~ subbuadles. 

Both T,(D) and Th(D) may  be regarded as G-invariant distributions; the former, as is 
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obvious from its definition, is integrable, the latter in general is not. The splitting (2.2) 

seems to depend on the particular choice of K, which was required to be a maximal compact 

subgroup of G containing V. However, we shall see in w 3 that  only one such group K exists; 

hence the splitting is intrinsic. 

A holomorphic mapping F from a complex manifold Y into D is said to be horizontal 

if the induced tangential mapping F .  takes values only in Th(D). More generally, if Y is 

an analytic space and F: Y-~ D a holomorphic map, we call F horizontal whenever the 

restriction to the set of manifold points of Y is horizontal according to the previous defini- 

tion. 

The following example, which has arisen in the first-named author's study of the 

periods of algebraic manifolds, may help to motivate and clarify the discussion above; 

details can be found in [11]. We fix positive integers r, s, and let Q be the matrix 

0 

Then Gc =(g6SL(2r  +s, C)[ tgQg =Q) is a connected complex semisimple Lie group. The 

subgroup B consisting of all matrices g 6 Gc which are of the block form 

r r 8 

r Art At, Ala 

r A2t A,~ A,a 

8 Aat Ass Ass 

with AI~+A~I=]/-~ (A11-A~9.) and Aa~=~r~-iA31 is parabolic in Gc. The Grassmann 

manifold G(r, 2r + s; C) of r-planes in complex (2r + s)-space can be realized as the set of 

complex (2 r+s ) •  r matrices of maximal rank, modulo the equivalence relation ~1 N ~z  

if ~ I = ~ A  for some nonsingular r x r matrix A. The equation t~Qg2=0 defines a sub. 

variety X c  G(r, 2r +s; C) which contains the point x 0 represented by ~0 = t(Ir, V ~  It, 0r• 

By  left-translation, Gc acts holomorphically and transitively on X, with stability group 

B at x 0. Thus we can identify X with the K~hler C-space Gc/B. 

The identity component G of the group of real matrices in Gc is a noncompact real 

form of Gc, and V = G N B is isomorphic to U(r) x SO(s), hence compact. Now D, the G-orbit 

of x 0, can be described as the connected component containing x 0 of the set of points in X 

represented by matrices ~ such that  t~Q~ is positive definite. Let  K be the group S0(2r) x 

SO(s), embedded in G in the obvious manner; K is maximal compact and contains V. 

Its orbit at xo, S, consists of all points in D whose representatives ~ have a zero bottom 

8 x r block. The unique V-invariant, and in fact B-invariant, complement of the tangent 
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space of S at % in the tangent space of X is given by the vanishing of t~oQd~. Therefore 

the G-invariant subbundle T~(D)cT(D) is determined by  the equation t~Qd~=O. In  

this particular case, T~(D) is a holomorphie subbundle of T(D) and extends to all of X. 

A holomorphic mapping F: Y ~ D  can locally be represented by a holomorphic matrix 

valued function ~(y), y E Y; F is horizontal if t~(y)Qd~(y)=0. The period mappings con- 

s t rut ted in [11] have this property. 

3. Structure theory of semisimple Lie algebras 

In this section, we shall review and collect some facts about the structure of semisimple 

Lie algebras and their representations. Throughout, g will denote a complex semisimple 

Lie algebra, m0 a compact real form of g, and ~ complex conjugation of g with respect to 

too. We choose a maximal abelian subalgebra ~0 of m0; complexifying ~0, one obtains a 

~-invariant Cartan subalgebra [) of g. The adjoint representation of ~ on g determines a 

decomposition 

(3.1a) g = ~ |  ~. g~, 
tteA 

where A, the set of nonzero roots, is a subset of the dual space of ~, and each rootspace 

(3.1b) g~ = {xfig[[h, x] = <~, h>x for all hfi~} 

is one-dimensional. If ~, fi, ~+fifiA, 

(3.1c) [$% g~] = g~+P. 

Since m0 is a compact real form, all roots assume real values on [)R = I / - -~0  �9 We shall regard 

A as a subset of ~ ,  the dual space of ~R. For every ~EA, 

(3.2) ~(g~) = g-~ 

because ~R is purely imaginary with respect to m0. 

The Caftan-Killing form 

(3.3) B(x, y) = trace (ad x ad y) x, y E g 

restricts to a positive definite bilinear form on ~R, and by duality determines an inner 

product ( , ) on ~ .  The hyperplanes P~={FE~t ] (F ,  ct)=0}, ~r divide t)~t into a finite 

number of closed convex cones, the so-called Weyl chambers. The reflections about the 

hyperplanes P~ generate a group of linear transformations W, the Weyl group, which leaves 

A invariant and permutes the Weyl chambers simply and transitively. A system of positive 

roots is a subset A + c A  such that  
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a) for every ~EA, either :r or ( - ~ ) ,  but not both, belongs to A+ 
(3.4) 

b) if co, ~EA+ and ~+flEA,  then :c+flEA+. 

Equivalently, such a set A+ can be described as the set of all elements of A which are posi- 

tive with respect to some suitably chosen linear order of ~t. To each system of positive roots 

A+, there corresponds a distinguished Weyl chamber, the highest Weyl chamber, 

C = {#eI)~l(~,/~)~>0 for every :teA+} 

This correspondence between systems of positive roots and Weyl chambers is bijective. 

Consequently W acts simply and transitively also on the collection of systems of positive 

roots. 

Let  M be a simply connected Lie group with Lie algebra m0, H the subgroup of M 

determined by Do- An element 2 e {}~ which is the differential of a character of H is called a 

weight. The weights form a lattice 

A = {2e~)~]2(~t, ~) (:r ~)--leZ for every ~eA} 

in {)~ which contains A. A weight ~t is said to be singular if (~t, ~ )=0  for some ~EA, and 

nonsingular otherwise. If A+ is a particular system of positive roots and C the corresponding 

highest Weyl chamber, then 

(3.5) q = � 8 9  ~A§ 

is a nonsingular weight and belongs to C; 9 is minimal with respect to these two properties: 

a weight ~t E C is nonsingular if and only if 2 - ~  E C. 

Next, we consider an irreducible skew-Hermitian representation ~ of m0 on a finite- 

dimensional complex inner product space E. The complex extension of ~z to g will be 

denoted by the same letter. Since ~) is an abelian Lie algebra, its action on E determines a 

decomposition E = ~ , A  E~, where Ex = (v e E I~z(h) v = (2, h~ v for every h e {)}. We choose a 

particular system of positive roots A+. There exists a unique weight 2, which is called the 

highest weight of g, with the property that  Ea =#0 and 

~(x) Ea = 0 for every x e g~, ~ CA+. 

The subspace Ex is then one-dimensional. The highest weight characterizes ~z up to uni tary 

equivalence. I t  lies in the highest Weyl chamber; conversely, every weight in the highest 

Weyl chamber is the highest weight of some representation g. If the system of positive 

roots A+ is replaced by another one, w(A+), w being an element of the Weyl group, the new 

highest weight will be the w-translate of the original one. The representation ~z lifts to a 

connected group M with Lie algebra m0 precisely when its highest weight lifts to a character 

of the torus H in M which corresponds to t}0. After only minor and rather  obvious modi- 
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fications are made, the statements above remain correct if m0 is the Lie algebra of a 

compact, but  not necessarily semisimple group, and g the complexification of too. 

We need to look more closely at  the situation of w 2 on the Lie algebra level. Thus 5 

will be a parabolic subalgebra of g, g0 a noncompact real form of g, with a maximal com- 

pactly embedded subalgebra ~o such that  Do = go N 5 c ~o. The complexification ~ of ~0 has 

a unique ad~-invariant complement p; we set po=pN go. Then go=][0| is a Cartan 

decomposition, and ~oQ V ~ I  Po is a compact real form of g which contains ~0. Henceforth, 

mo will designate this particular compact real form. Let  ~ and ~ be complex conjugation of 

g with respect to go and m0, respectively. They commute, and 0 =a~ is an involutive auto- 

morphism of g whose (+1)  and ( - 1 )  eigenspaces are r and p. Since ~o has the same rank 

as too, as was shown in w 1, we may assume that  the Cartan subalgebra ~)oc mo chosen at 

the beginning of this section lies in ~0, and hence in ~o- Then 0 commutes with the adjoint 

action of ~), and every rootspace ~ is contained either in ~ or in p. The root ~ is said to be 

compact if the former is the case, and noncompact otherwise. We denote the sets of com- 

pact and noncompact roots by A r and A~. 

Since the rootspaces g~ are one-dimensional, every subatgebra llo of go which contains 

~o is spanned over R by ~0 and go N (g~Oa(~)), with a ranging over a suitable subset tF of A. 

I t  is known that  the exponential map, restricted to P0, is a diffeomorphism. Moreover, 

go N (g~ Oa(g~))~ Po whenever ~ is noncompact. Hence 1/0 cannot be a compactly embedded 

subalgebra of go unless t F c  At. In particular, ~o is the only maximal compactly embedded 

subalgebra of go which contains ~0. This verifies the statement, made in w 2, that  the con- 

dition K ~ V determines the maximal compact subgroup K of G uniquely. 

For  each ~EA, one can choose vectors e~Eg ~ and h~e~a = ~ t)0 such that  

a) B(ea. ep) = ~:._B, lea, e_~] = h a 

b) B ( h ~ , x ) = ( o : , x ~  for x e  

c) [e~,ep]=O if o c 4 - f l  and ~+f l~A 

(3.6) d) [e~, ep] = Na. B ea+B if a, fl, ~ +fl  cA. The N~. z are nonzero real constants such 

that  N_~ _Z= -N~.Z; also N_a _Z=N B.a+Z=Na+Z _ a 

e) v ( ea )=- -e_  a 

f) a ( ea )=eaea ,  where c a = - 1  if a is compact, ca= +1 if ~ is noncompact 

g) ca+p= -~aep whenever a, fl, ~+flEA. 

A normalization with properties a)-e) is exhibited in [15]; e) implies f), because 0(e~)= 

-each, and g) is a consequence of d). I t  will be convenient to define Na.p=0 and ea+~ =0  

if a+fl~$A and ~ + f l ~ 0 .  
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From now on, A+ will be a fixed system of positive roots such tha t  g-~ E b whenever 

is positive. Such a system A+ exists because b contains an ad ~-invariant maximal nil- 

potent  subalgebra of g. Since ~ is reductive and ~ ~ t ~  [, 

(3.7a) 
t t e~  a e ~  

for some subset r of At fl A+. I t  now follows from (1.1) tha t  

(3.7b) rt_ = | ~ e A + - ( P .  

I f  ~, fl, f l - -~  are nonzero roots, then 

(3.8) a c e ,  f l e A + - r  ~ f l _ + a e A + - r  

this just expresses the fact tha t  ~ normalizes It_. 

We conclude this section with a simple lemma, which will be used in w 5. 

(3.1) L~.MMA. Let ~ be a/ixed positive root, and > a linear ordering o / ~  which makes 

the elements o/A+ positive. Then 

zVp,~_pN_p.~=(2~-~,a). 
0<p<~  

Proo/. Clearly 

o<~<~, Np'~'-pN-p''=a~,o.o,~,~ Np.o,_pN_p.~,- ~>.Np.,,-pN-p.,~. 

In  the second sum, the term corresponding to fl makes a contribution only if f l - -g  is a 

root, since otherwise N_p.a=0.  Thus we can replace fl by  g+~, and sum over all positive 

roots ~; ~ = ~ can be excluded because 2g is never a root when ~ is a root. We use (3.6) 

a), b), e), d) to get 

~ Np.,,_pN_p.,,= ~ Np ~,_pN_p,~- ~ N,~+r._rN-~-r.~ 
O<p<~ fl>O, pee~ ' ~'>O.r'4:~ 

= ~: (hrB.,~-phr-p.,,-N-p.-,,hr,~.p)= ~ (Np.,~-pN-p.,~--Sr-;.,~+pNp.,~) 
p>O,fl:Vo~ fl>O.fleeo~ 

= Y~ .B([ep, [e_p, e , , ] ] -  [e_p, [ep, e,,]], e_,,) = 2: B ( [h p ,  e,,], e_,,) 
p>0,Baea .8>0.p~o~ 

= ~ (/~, ~) = (2 e - ~, ~). 
~ > O . p ~  
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4. Curvature of homogeneous vector bundles 

Let  X = M / V  be a K/~hler C-space (el. w 1) and D=G/V a noncompact dual (cf. w 2). 

If ~: V-~GL(E) is an irreducible unitary representation of V on a complex vector space E, 

then there are defined homogeneous vector bundles M • v E ~ X ,  G x v E n D  which have 

respectively M, G invariant Hermitian metrics. We will denote both bundles by E~ and 

consider them as holomorphic vector bundles as follows (of. w 1): Write X = Gc/B and extend 

uniquely to an irreducible, holomorphic representation ~: B-~GL(E). Then Gc • B E =  

E~ is a holomorphie vector bundle over X which gives a complex structure to M • rE ,  

and the restriction Gc • ~E[ D =E~I D gives a complex structure to G x rE. 

Recall now that  whenever we have a holomorphic, Hermitian vector bundle F-> Y 

over a complex manifold Y, there is canonically associated a connection D: A~ 

(Aq(F) is the space of C ~ F-valued q-forms over Y) satisfying: (i) D" =~ where D = D' + D" 

is the decomposition of D into type; and (ii) d(/, ]') = (D], [') + (], 1)]') where ] , / '  are C oo 

sections of F (cf. [13]). The curvature | is a Horn(F, F)-valued (1,1) form which is important  

in the study of the geometry of F as well as the sheaf cohomology (el. [13]). We want to 

compute the M-invariant curvature Ox(~r) in Ez-~X and the G-invariant curvature | 

in E ~ D .  The results we will find are these (cf. Theorem (4.13)): 

(a) Both curvatures | and {~D(~) have a canonical expression A A t~  _ B A t/~ 

where A, B are matrices of (1, 0) forms. In other words, the curvatures will have natural 

expressions as a di]]erence o] positive ]orms. 

(b) If ~tE~* is the highest weight of Jr, then | will equal A A ~ - B  A t/~ where A 

involves (1, 0) forms eo~ where ~ e A + - r  satisfies (2, ~) >0  and B involves the mP where 

/~ 6 A+ - ~P and (t,/~) < 0. If t is non-singular, then the curvature ]orms | (~) and | (~) 

(el. (4.14) below) will be non-singular and | will have signature equal to the index 

~(~) of ;t. 

(e) The curvature | is obtained from | by reversing the signs corresponding 

to the non-compact roots fl E A+ - Av 

To begin with, we consider a pair of connected Lie groups A, B such that  B ~  A is a 

closed, reduetive subgroup. Thus there is an Ad B-invariant splitting a0=l~o@f0. We have 

in mind the pairs M, V and G, V; the reductive splittings mo=~0| and go=U0| are 

given by  the Cartan-Killing forms on m| and go; both of these forms are non-singular and 

are negative definite on Vo. 

Such a reductive splitting gives an A-invariant connection in the principal bundle 

B ~ A ~ A / B :  We will think of a| as left-invariant vector fields, or equivalently, as in- 

finitesimal right translations, on A. The tangent space T~(A) to A at  a is then (L~). a0 ~ %, 

and the tangent space to the fibres of A ~ A / B  is (L~).fo ~ - f| (L~ is left translation by  a). 
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Thus ( L a ) . t o ~ o  gives a complement  to the  vertical space of A-~A/B at  a, and  since 

[bo, to] ~ to, the splitting Ta(A)~ bo| is invariant  by  B acting on the  right. This gives 

the horizontal  space for our  invar iant  connection in A->A/B. 

To find the connection form we choose a basis al, . . . ,  am for % such tha t  a~, ..., ar 

is a basis for 1~ 0 and  a~+l, ..., am lie in to. Le t  ~ .. . . .  ~m be a dual basis for the left- invariant  

Maurer -Car tan  forms on A and set 0=~=1%| ~. Then 0 is independent  of bases and  is 

an  A-invariant ,  l~0-valued differential form on A which gives the connection form of the 

above connection. To find the  curvature  form @, we use the Maurer-Ca#an equations: 

d~'=-�89 ~ 4,~r ([a,,ak]=~d~a,), 
1, k = l  I=I 

and  the  Ca#an structure equation: 

O = dO + } [0, 0]. 

Since dO = ~_~=1 aq | d ~  and [0, O] = ~ .  a = l  [aq, a , ]  | ~e A ~ ' ,  we have 

~=1  /~, v = r + l  

because of co~-  0. This gives: 

(4.1) 0 = - � 8 9  ~ [ag, av]t.| 
~.v=r+l 

where [a]t. denotes the  projection of aEa0 on to relative to the splitting a0=S0| This 

equat ion remains true if a I . . . .  , am is a basis of the  complexification a of no. 

Suppose now tha t  A = M, B = V and  we make the  identification of m with g (cf. w 1). 

Thus  we have the  decomposit ion (3.7a) and  

• • 

where (I)=A+ is the  set of positive roots for ~. Since [ea, ep]D=0 for ~, f lEA+-( I ) ,  we see 

f rom (4.1) t h a t  the  curvature  @x for the  na tura l  connection in V-~M-~X is 

(4.2)x @ x  = - ~ [e~, e _ p ] ,  @ m = A m - p ,  

where m ~ E g* is dual  to ea E g~ = g. Using tha t  m-B = - ~B (cf. (3.6 e)), we m a y  rewrite (4.2)x as 

(4.3)x |  = ~ [e~, e-p]D | m ~ A ~P. 
a,~GA+-@ 

I n  particular,  @x is a ~-valued form of type  (1, 1). 
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If  now A =G, B =  V and we identify fl0| with ~ (cf. w 2), then we find tha t  the 

curvature for the natural  connection in V~G--->D is 

(4.2)D @9 = -- ~ [e~, e-p]u| o~ ~ A o) -p, 
~,f leA+-(I)  

which is formally the same as (4.2)x. However, from (3.6f) we see tha t  w -~= -~)~ for 

aEA~, whereas eo-P=ehP for f leA+-A~.  Thus: 

(4.3)9 09 = - ~ [e~, e-p]u| w ~ A ~P + ~ [e~, -p]u| w ~ A ~P; 
a, f l ea+  -A~ a, fleA~-@ 

here we have used tha t  [e~, e_p]u=O for aeA+-A~ noncompact  and fleAt-q)a positive 

compact root. Comparing (4.3)x and (4.3)9 we see the sign reversal for the curvature in the 

noncompact  dual D of the K~hler C-space X. 

Return now to a general reductive pair A, B and let g: B-+GL{E) be a linear repre- 

sentation. Then we form the homogeneous bundle E= = A  • BE whose sections are the C ~- 

functions /: A--->E which satisfy b/+g(b)/=O for beh.  The connection in B ~ A ~ A / B  

induces one in the associated bundle E~; the differential of a section / of E ~ A / B  is 1)] = 
m /~ ~,=,+1 aft| . Note tha t  

D / = d / -  ~ aa/| + ~ xe(aa)/| § 
Q=I ~=1 

where ~(0) is the connection form in E=. 

I f  ~ is a uni tary  representation, then E,~-+A/B has an invariant  metric. Lett ing 1, [ '  

be sections of E,,  (D/, /') + ([, .D/') = (d/, /') + (/, d/') + (7~(0) /, /') + (/, 7e(O) /') =d([, ]') since 

*g(Oi = ~r=~ t:~(ao)| cpo = -~rq=x g(aa ) | ~ = _ ~(0). Thus D is compatible with the metric. 

This discussion applies to E~-'. ' .X=M/V. We denote the connection by Dx(Tt)so 

t ha t  Dx(Te)=~+~a+-eea' / |  a. Thus the (0, 1) par t  Dx(~)"= - ~ e a + - r  " / |  
~E=" /by  (1.6 b). I t  follows that  Dx(~) is the metric connection and the curvature 

(4.4)x Ox (x~) = ~. ~([ea, e-z] , ) |  r a A ~P. 
~, f l e a +  -(I) 

Similarly, the connection in En-->D induced from the natural  one in V-'.-G-'.'D is the 

metric connection and the curvature 

(4.4)D 0 9 ( = )  = - Z x(Eeo, e-p]v) @ ~ A ~P + Z =([e~, e_p],) @ co ~ A 5P. 
~, f l~A+-A~ a, peAf--(I) 

In  summary  we have: 

(4.5) An irreducible uni tary representation g: V-~Aut (E) gives a holomorphic vector 

bundle E==Gc • BE over X which restricts to a holomorphic bundle E=-~D. The bundle 
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E~-~X has an M-invariant Hermitian structure and the metric connection is the one 

induced from the natural connection in V ~ M ~ X .  Similarly, E~-~D has a G-invariant 

Hermitian structure (which is not the restriction of the M-invariant structure on E ~ X ) ,  

and the metric connection is the one induced from the natural connection in V ~ G ~ D .  

The curvatures are given by (4.4)x and (4.4)9 respectively. 

Remark. Write X=Gc/B and let re: B-~GL(E) be an arbitrary holomorphic repre- 

sentation, E~=Gc x sE -~X  the resulting holomorphic vector bundle. As a C ~ bundle, 

E~ = M  • rE ,  and the natural connection in V-~M-+X induces a connection D~ in E~-~X 

such that  D~/=-~z~+_~e_~./|  ~. By (1.6b), ~E~/=--~A+_,D(e_~./+re(e~)/) |  

so that  D~=~E. if, and only if, re(n_)=0. 

Our program for computing curvatures had three parts (a), (b), (c) given at  the be- 

ginning of this section. From (4.4)z and (4.4)9 we have completed (c), and now we turn to 

(a) and (b). 

Let  re: V~GL(E)  be an irreducible unitary representation of V. Relative to a Cartan 

decomposition (3.1a) of g, we let V = ~ | ~ ~(~) g~ (A(v) = ~P U { - (I)}) be the decomposition 

of ~ and A ~  ~}* be the lattice of differentials of characters of the maximal torus H ~  V. 

We have a weight space decomposition E = ~EA(~) E~ where A(re) c A is the set of weights 

for re. A weight ~t is extremal if, for some set of positive simple roots H ~ A(V) for V, we have 

e~. E ~ = 0  for all aE II. In particular, the complex structure on M/V determines a set of 

positive roots A+~ A and we may take for II the simple roots for V which lie in A+. Then 

~t is a highest weight for V, and everything is well-determined up to the actions of the Weyl 

group of V. 

Now we assume that  ~t is non-singular; i.e. that  (2, a) # 0  for all aEA. Then ~t lies in the 

positive Weyl chamber (relative to H) for V, and it lies in some Weyl chamber C~ for M. 

I t  may not be that  C~ is the positive Weyl chamber (relative to A+) C for M, but  in any 

case Cn determines a set A+(re) of positive roots for M such that  C~ is the positive Weyl 

chamber for A+(re). Then A+N A_(re) are those positive roots aEA+ with (a,~t)<0; the 

number of a E A+ N A(re) is called the index of ~, denoted by  t(re), and this is the number 

of root planes through which we must reflect to get from C~ to C. 

We let A+(:~, ~)=A+(re)-A+(~)N A(~) and [+=~G~+(~.~)g% [ - = ~ - a c a + ( ~ . ~ ;  then 

g = ~ ~ [+ @ [_, and IV, [+] --- l+, [~, [_] -- I_. Note that  dim (11+ N [_) = dim (n_ N [+) = t(re). 

The same argument as used to prove (4.4)x gives: 

(4.6) | = - ~ re([e~, e_~],)| o f  A eo -~. 

Using A+(re) as a set of positive roots for M, we let F be the unitary M-module with 

highest weight A E C~. Restricting to V we get a unitary V-module Fv, and we assert that: 
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(4.7) Fv ~- E |  where S contains no V-module equivalent  to E; 

i.e. the  multiplici ty iu(E, F) of E in F v  is one. 

Proof. The highest weight space Wa, relative to A+(zr), of F occurs with mult ipl ici ty 

one; thus,  # (E ,  F ) ~ 1 .  Since % - W a n 0  for ~EA+(~r)N A(~) we see tha t /~(E,  F ) 4 0 .  

We now show tha t :  

(4.8) l+" E = 0. 

Proof. A basis of E consists of vectors e~, ... ea.w( =~r(eJ  ... zr(e~,).w) where wE Wa = 

E~ is a highest weight  vector  and  the  ~ A ( ~ ) .  I f  e~[+, then  e-e~, ... e~ =e~-e-e~,  ... e ~ +  

[e, e j .  e~, ... %.  Since [t), [+] E [+ and  [+. w = 0, we m a y  use induction on r to conclude t h a t  

e.e~, ... ea w=O=[e, e J - % ,  ... caw , which proves (4.8). 

F rom (4.8) we deduce: 

(4.9) [ E~_S. 

Proof. For  a E A+(~r, ~), we write - e_~ = G + i ~  where ~ = 1/2(e~ - e_~), ~]~ = i/2(e~ - e~)  

and  ~ ,  ~7~ lie in the compact  form 1110. I f  w, w' E E,  then  (e._aw, w') = - (~w,  w') - i ( ~ w ,  w') = 

(w, ~w ' )+i (w ,  ~ w ' ) = ( w ,  (~-i~]~)w')=(w, e~w')=O by  (4.8). Thus (LE ,  E ) = 0 ,  which 

gives (4.9). 

Choose an  or thonormal  basis w~ .. . . .  w~ for  _V such tha t  w 1 . . . . .  w, is a basis for  E ~  F ;  

we shall write vj for wj when we th ink of E as a V-module, and  we agree on the range of 

indices 1 ~<Q, a<~r; 1 <~i, ]<m; and  r + l  ~</~, v~<m. We define A E H o m  (S, E ) |  by  

(4.10) A = Y~ vo|174 ~ 
, ,  

where w~E F* is dual to wjE F and  e~w~ is the  contragredient  representation. We inter- 

pret  (4.10) as follows: For  w E F,  A .  w = ~0.a (ea w~, w> v 0 | ~o ~ E E | [*. Since Awe = 

~a.o<eaw~,wr174 ~= -~.o(w*,eawr174 by  (4.8), we see tha t  A ( E ) = 0  so 

t h a t  A E H o m  (S, E) | [*. 

Wri te  e a w z - ~ q B ~ , w  o modulo  S, so t h a t  ec, w~= - ~ B ~ , w *  and 

(4.11) A = -  ~ Bg.vo|174 ~. 
~ , q ,  I ~ 

The t ransposed mapping  tA E H o m  (E*, S*) | I* is given by  tA =-~.q.~.~,B~,w~,| ** | w% 

Using the conjugate  linear isomorphism F"~F * given by  the metric,  we have t~IE 

Horn (E, S ) |  where ~A = --~q.~.l~B~gwl~| | . F r o m  Bq~ = (e~wg, wq) = (Wl~,e_awo) = 
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/~_~, we have - ~ . g ~ , w g  = -~v,B~_~w~, = -e_~wQ so tha t  t~  = _~.~, qe_aw~|174162 

Thus A A t~ e Horn (E, E) @ I* A l* is given by: 

A ^ t ~  = _ Z <e~w~, e_~w~,> v~ | v* | o:, ~ ^ ~ .  

Now - {caw*, e_~wo.) = {w*, e~ e_,~w,~) = (w*, [ca, e-,e] w,~) (since ea wa = 0 by  (4.8)) = 

- (w~, [e~, e_~],w~) by (4.8) and <w~, [e~, e _ ~], w ~ )  + <w~, [e~, e _ ~]~ + w ~ )  + {w* ,  [e~, e _ ~]~_ w ~ )  - * 

(4.9). Thus A A ~A = ~ {w~, [e~, e_ Z], w~) v~ | v* | eo ~ h ~z = - ~ ,  ~ g([e~, e_ ~]~) | w ~ A ~5 ~ 

= Oz(~)  by  (4.6), i.e. 

(4.12) A A ~-4 = Ox(~) where A is given by  (4.10). 

v ~ | 1 7 4  ~ 

{S,, ,+, ,~.o~o,,+ 

and A~= ~ v~|174 - 5: v0|174 
{ ~~ + (,.. o)o,~_ { ~ , ,  + (,,. ,~o,,_ 

then A'  is of type (1,0) and involves the forms w ~ with aE A+ - q ) ,  (J, a) >0;  and A" is 

of type (0,1) and involves the ~P with fie A+ -(I) ,  (2, f l )<0 .  We claim tha t  A'  A t ~  " =  

O = A ~ A t - ~  '. I t  will suffice to show that  ( e ~ w * , e _ p w r  where aEA+flA+(g , t~) ,  

/~e A_ n A+(~, ~).Now <e~w*, e_pw~> = - {w*, [e~, e-B] w~> = - < w b  [e~, e_p]~w~> =0 since 
g, -/~ e A+ - qb and [a+, n+] -~ 11+. This gives our main results: 

(4.13)x THEOREM. The curvature Ox(~ )  = A '  A t~ ,  + A ~ A ~.~" where 

A'  = ~ vQ@e~,w~ @ror 
{ ~ A +  - @  

(~.,~) > 0 

is a (1,0)/orm with values in  H o m  (S, E) and 

A ~ = ~ v ~ | 1 7 4  
{ /~GA+ - r  

(fl.~)<O 

is  a (0,1)/orm with values in  1FIom (S, E). 

(4.13)D TH~.OR~.M. I n  the noncompact case, the curvature (~D(~) = P  + N where P =  

B '  A t~ ,  _ C ~ A ~C~ is positive, N = - C' A tC '  4- B ~ A t ~  is a negative term, and where 

Write A ~ A '  + A"  where 

A t :  
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B'= ~" v~|174 C'= Y v~|174 
{ aeA~--~ ~,SeA + -All 

01,~)> 0 [(,l,fl)>O 

B ' ~  ~te~_ov~|174 
{(~,~<0 

.~/~eA + -Af 
10.,,6)<o 

We want to make some deductions from the curvature formulae. In general, if we 

have a holomorphic, Hermitian vector bundle F---~Y over a complex manifold Y, we 

, - ~ . ~ o ~ 0 4 ~ |  choose a local unitary frame /t . . . .  f~ for F and write the curvature 0 - r ~ * 

where O~ ~4. r Oa~ dz A d2 ~ is a differential form of type (1,1) on Y, and where O~ + Og = 0. 

For  ~ = ~q~e/q a vector in F we consider the curvature ]orm (cf. [1], [13]): 

(4.14) 0(~) =i  Y o ~ e ,  

which is a real (1,1) form on Y. 

One way in which this form arises is as follows: Let  F = F  - {zero-cross-section} and 

let ~ be the canonical non-vanishing holomorphic section of the pull-back ~5*F~F. 

Then the real, positive function q = (~, ~) on F defines the unit tubular neighborhood N 

of Y in F by  N={(y ,~ )EF(yEY,  ~EF~) satisfying ($,~)~<1}. The bundle F ~ Y  has a 

natural connection Tv(F ) = Vv| ~ where the horizontal space H v consists of those complex 

tangent vectors ~ETp(F) which satisfy <D~, ~> =0 in Fv=F;o) .  Since the tangent space 

Tr(N) is defined by Tv(N ) = {all real tangent vectors ~ with <d~, ~> = 0}, and since dq = 

(D~, ~)+(~, D~), we see that  Hv| Tv(N ). 

Now the E. E. Levi /orm L(q~) (el. [1]) is defined by L(~)=iO~v=60((~, D'~))= 

i((D'~, D'$) +(~, D"D'~)) =i(D'~, D'~) -@(~); i.e. 

(4.15) L(r = i(D'~, D'~)- |  and L(r = - |  

In other words, (4.15) says that,  under the natural isomorphism H~ ~= T~,(v)(Y ), the Levi- 

form L(~p) is just the negative of the curvature form (4.14). In particular, if the curvature 

form O(~) is everywhere non-singular, then the same will be true of L(~) and the signature 

of L(~) will be determined by that  of O(~). If, for each non-zero ~EF, we have 

} O ( ~ ) = i { ~ 1 r 1 7 6  ,=n-q+l~ A ~~ 

where the ~o j = ~k A~ dz k give a basis for the (1,0) forms on Y, then we will say that  O(~) 

has signature q, and from [1] we have: 
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(4.16) If Y is compact and 0(~) has everywhere signature q, then the eohomology groups 

H~(Y, 0 (~) ) )=0  for ~=~q, k > k  0. 

Here F (~) is the ~h-symmetr ic  power of F; in [13], a differential-geometric proof of 

(4.16) with a reasonably precise estimate of ko is given. 

Returning to our case of a homogeneous bundle E~-~X defined by an irreducible 

uni tary representation ~r: V-> GL(E), we have: 

(4.17)x T ~ O R E ~ .  I[ the highest weight 2 o/ z~ is non-singular, then the curvature [orm 

Ox(ze) (~) is everywhere non-singular o[ index t(ze). 

Proo/. From (4.13)x it will suffice to show that  Ox(}) is non-singular. I t  will make no 

essential difference and will simplify notation to assume that  ~(~)= 0. Referring again to 

(4.13)x, the curvature Ox(~)=A A ~-~ where 

A =  ~ v~|174 ~ 

belongs to Horn (S, E) | I*. Then 

0~( . )  (}) = i  Y. <e~w*, e_pw~> $ ~  o~ ~ A ~,P =~ Y (e_~}, e_~}) ~o ~ ̂  ao~ 
=,p.q.a ~,~ 

where ~ = ~Q~qWQ lies in E. Thus, if ~ = ~EA+- r  ~aea is a (1,0) tangent vector, (0(~), ~ A 

~7> = II ~ ~ II ~ where ~ = ~ , a  +-r  ~e_~  lies in n_ and ~ ~ 6 S. To prove (4.17) we must  show: 

(4.18) :E-+S is injective for all ~e 1l_, 7 4 0 .  

For a subset ~Fc(I), we let <xF>=~aE~,a. The highest weight 2 of g :V-+GL(E)  

satisfies (2, a ) >  0 for all ~ E A+, and all weights of g have the form 2 -  (xF). Thus E has 

a weight space decompositionE = ~W~_<~,> where h w = <2 - (xF>, h> w for all we W;t-<,r>. 

Clearly e a:W~-<~,>-> W~_<~,+a>, and we claim that  (4.14) will be proved if we can show 

the following special case: 

(4.19) e_~ :W~_<~,)-~ Wz-<~r+~) is injeetive for ~E A + -  (P. 

Proo/ol (4.18)/ram (4.19). Let  al . . . . .  ~z be a set of positive, simple roots for g. 

Every  linear form ~E A has a unique expression ~ = ~ - 1  ~ ,  where the ~' are rational 

numbers, and we say that  ~ > 0 if the first non-zero ~' is positive. In  this manner we give 

A the usual lexieographic ordering. 
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Let  w = ~ w~_<~,) be a non-zero vector in E and ~ = ~a+_r  lie in 11_. We let 

<tFo> be the largest linear form such that  wx_<~,~ # 0 and a0 the largest root with ~/~, r 0. 

Then 

~W=~aoe-a ,W~-(~F, )  -b ~ ~ae-~W~-(~F) �9 

Since ao + <~Fo> > a + <~F> for all other a, ~F, 2 - <q?o + ao> < 2 - <~F + a> and so ~/w # 0 

if e_~o W~_r176 #0 .  

Thus it  will suffice to prove (4.19). Now (e_aw~_(~r), e-a w~_(v>) 

(wa-<~r), e~e_~w~_(,r>) = (w~-(~r), [e~, e_~] w~-<,r)) (by (4.8)) = (~ - <~F>, a) ]I wa-<~)]] *, so 

that  (4.19) will follow from: 

(4.20) (~, $) > 0  for aE A+ - O  and ~ a weight of the V-module E. 

For example, if E is one-dimensional (i.e. E~ is a line bundle), then the only weight is 4 

and (4.20) is clear. 

In general, we distinguish cases: 

Case 1. Suppose that  a E 4 + -  �9 is a simple root and that  ill, ..., fls E �9 are the positive 

simple roots of V. Then <tF> =~=lnj f l l ,  nj>~O, and (a, flj) <0. Consequently (~, ~t- <iF>) ~> 

(a, 4) >0  since 2. is non-singular. 

and some m, >0. Now 

Case 2. Suppose that  ~ E A+ - �9 is arbi trary and (~t - <~F>, fl) ~> 0 for all fl E O. Then 

where ~1, ..., ~z-sEA+ -(I)  are simple roots, all ml>~0, nj>~0, 

($ -- <~F>, a)/> ~ m,  (4 - <~tP>, at) > 0 
l 

by Case 1. 

Case 3. Let a E A + - O  and # = 2 - < ~ F >  be an arbitrary weight of E. The Weyl group 

W(V) of V acts simply transitively on the Weyl chambers of V, and so we can find 

wEW(V)  with (w.#,fl)~>0 for all fiE(I). Since n+ is Ad-V invariant, w .aEA+-( I )  and 

(#, a)=(w.tx, w . r  by  Case 2. 

In the noncompact case, we let yt: V-+GL(E) be an irreducible representation and 

define: 
= e A + -  (4, > 0) + e 01 (4, < 0}, 

where #{...) is the number of elements in {...). 

(4.17)D THEOREM. I/the highest weight ~ o~ ~ is non-singular, theft the curvature/orra 

@D(~) (~) is non-singular and has index r162 
18 - 692908 Acta mathematica 123. I m p r i m 6  le 30 J a n v i e r  1970. 
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We conclude with some applications of Theorems (4.17)x and (4.17)D. First, if 

:t:V-+GL(E) is an irreducible representation with highest weight ~t, then the symmetric 

product E ~) contains the irreducible V-module E~ with highest weight k~t; we denote this 

representation by ~k: V-~GL(Ek). From (4.16) we have: 

(4.21)x HJ(X,O(E~)) = 0  for i#t(zt),k~> ko(Jt); 

(4.21)D HJ(Y,O(F.k))=O for ~:4=~(zt),k>~k0(2), 

where Y = F \ D  is a compact quotient manifold of D by a discrete group F ~ (7 and 

Remark. The vanishing theorems (4.21) x and (4.21)o are fairly crude, but  they do 

indicate a general pat tern and originally suggested the more precise vanishing theorems 

given in w167 6 and 7 below. 

A holomorphic vector bundle F-~ Y over a complex manifold Y is positive if there 

exists an Hermitian metric in F such that  the curvature form 0(~) (cf. (4.14)) is positive; 

i.e. 0(~) is non-singular and has index zero. From Theorem (4.17)x it is clear that  there are 

plenty of positive homogeneous bundles E ~ X .  The noncompact case is quite different: 

(4.22) Let  Y = F \ D  be a compact quotient manifold of D. Then there exists a positive 

homogeneous bundle F ~  Y if, and only if, the Riemannian symmetric space G/K is 

Hermitian symmetric and the fibering G/V~G/K is holomorphic. 

Proo/. We will see in w 7 below that,  in the notation of (4.21)D, H:(~(Y,  O(F~k))#0 

for k >~k0(~t ). Taking (4.16)into account, it will suffice to prove: There exists :t: V-+GL(E) 

with zc(ze)=0 if, and only if, G/K is Hermitian symmetric and G/V~G[K is holomorphic. 

If we have ~ with a(~) = 0, then the highest weight ~t satisfies (~t,/~) < 0 for fl E A+ - 

A t and (~t, a) > 0  for ~E A t -(I). Let  l+ = ~ + _ ~ t g  B, I_ =~pc~+-~ tg  -p. Then 9 =t[ |  

where p= l+@l_ ,  and we claim that  [[ ,I+]~I+,  [~,l_]~_I_. (Proo/. Write ~=~ |174  

where 8+ = ~a~ t-r ~ ,  fl- = ~ A t  r ~-~" Since [t~, p] _ p and [D, q+ O[+] - q+ | we have 

[~, I+] - 1+, [q+, ~+]- [+. Thus we need that  [q_, I + ] -  [+; which is the same as - a + fl e 

A+ - A  t if ~e A t -  (I), fie A+ --At, and -~z+/~ is a root. This follows from (2, -~r = 

- (~, a)  + (~t,/~) < 0) .  

The decomposition ~ = t[@ [+(~ L ([_ =l+) gives an invariant almost-complex structure 

to  G/K, and the integrability condition is just [t[, I+] ___ [+. In other words, if a(zt) = 0, then 

G/K is Hermitian symmetric and G/V-~G/K is holomor phic. 
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The converse is easy to prove and will be omitted. 

Remarl~. This result shows that  only under very special conditions will we be able ta 

construct automorphic /orms, relative to F, on D. 

As a final application, we consider the canonical bundle K ~ X .  

(4.23) K-~X is negative and K-+D has signature q = d i m c K / V  

l~Iore precisely, the curvature form OD(K)(~) is positive on the horizontal space Ta(D ) 

and negative on the vertical space T~(D) (ef. (2.2)). 

Proof. K is the homogeneous line bundle obtained from the representation A m Ad: 

V-~GL(A'~I*+) where m = d i m X = # { r o o t s  aeA+-r Thus K is given by  a character 

~t e A c  I~*, and, by  (4.4)x and (4.4)D, the curvatures are: 

(4.24)x | = ~ (~, ~) co a A ~ ;  
aeA+ -~) 

( 4 . 2 4 ) .  OD(K) = -- ~ (~', 8) ~~ A (~B + Z (~, a)  m a A r 
fleA+ -A~ ~eA$-~ 

In  the case at hand, ~t= - (~aeA +- r  and to prove (4.23) we need to show that  

(~t, 8) < 0 for all fie A + -  ~P. This is due to Borel-Hirzebruch (cf. [6], p. 512) and goes as 

follows: L e t r E  A + - ~ .  Then (?,~)>~0 or ( ? , ~ ) < 0  and r,r+~ . . . . .  r + ~  is a string of 

roots in A+ - r where/r = - 2 (?, ~)/(~, 8)" Now (8, ? +/r = - (8, ?) > 0 and 

(~,r + r  + ~ +  ... + r  + k ~ ) =  (k + a)(~, r) ~ 

From this it  follows that  

~+ (~,~)>~0 so that  -(~t,~) / ~GA+-~ 
{ : ;  -o = 

t a~:fl 

k(k + ]) 
2 (8,8) = 0. 

(a,/~) + (8, 8) > o. 

5. Computation of the Laplace--Bellxaml operator 

Continuing with the notation of w167 1-3, we consider a K~hler C-space X = Gc/B where 

B is a Borel subgroup; in this case, the set (I) of (3.7) is empty. Therefore, if G is a real form 

of Gc such that  G n B is compact, V0 = go N 1~ coincides with I]0, and in order to emphasize 

this fact, we shall now refer to G N B as H. Let  then D = G/H be dual to X. We do not  

18" -- 692908 Acta mathemaiica 123. Imprlm• le 23 Janvier 1970 
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exclude the case G=M, i.e. G may be compact and D may coincide with X. For a compact 

group G, the computation below turns out to be similar to Kostant 's  computation of a 

certain algebraic Laplace operator in [21]. 

We keep fixed a homogeneous holomorphic line bundle E~-~D determined by  a 

character )l of H; 2 will tacitly be identified with its differential, which is a weight in 1~. 

We recall the basis {e_a I g ~ A+} of 11_ from w 3, and we denote the elements of the dual basis 

by o~ -a. If  A = (~1, ..., ~ )  is an ordered k-tuple of positive roots, we use the abbreviated 

notation o~ -a for the exterior product o~ -~' A ... A o) -a~; I A I will stand for ~x +.. .  + ~ .  Ac- 

cording to remarks in w 1 and w 2, we may think of A~(Ea), the space of (0, k)-forms with 

values in E~, as the subspace of C~~174 * spanned by monomia]s/o~ -~ wi th /6U~(q)  

satisfying 

(5.1) ~ f = - < I A I  + x , h > /  f o r a n ~ e ~ .  

The equations 
b(/o~ -A) = ~ e _ j o J  -~ A oJ -~ 

(5.2) 
T(loJ -A) = �89 ~. foJ-" A e_,,a~ -A 

af 

define operators ~, T: A~(E~)->Ak+I(Ea). In these summations, ~ runs over A+; e_~ acts on 

f as a left-invariant complex tangent vector field on G, and on co-AE An* by the action 

contragredient to tha t  on 1l_. Then ~ =~ + T, as can be read off from (1.6). 

The inner product on 11" described by (w-% w-P) =6~B is invariant under the adjoint 

action of H, and thus gives rise to a G-invariant Hermitian metric on D. The line bundle 

Ex has an essentially unique G-invariant metric. With respect to these choices of metrics, 

~, ~, and T have formal adjoints ~*, ~*, T*, and 

(5.3) [ ]  = (a-~* +Z'Z) = (~ + T)(~* + T*) + (~* + T*) (~ + T) 

is the Laplace--Beltrami operator. 

Since a(e~)=~ae= is the complex conjugate of e_~ relative to go, the formal adjoint of 

e_a acting on G~176 is - eae  a. We embed 11~_ in g* by letting 11~_ act trivially on ~ and a(11_). 

Then 11~_ becomes a ~(11_)-invariant subspace; in fact, for ~, fl, 7 6 A+, 

< e ~ - P ,  e_y> = - <~-P,  [e~, e_r]> = - l%._r ~_~  = - ~ . _ ~ _ p  ~+~ = 2r <~-~-P,  e_r>, 

here we have used (3.6 d). Thus 11" becomes also a ~(n_)-module, and 

(5.4) eao.)-P=.Na~.pm -~-p a~,fl6 A+. 

Similarly one finds that  the action of e_a on 1t*_ is given by 
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(5.5) e_~o_a={O/V_,,,a o) "-a ifotherwise~-aE A+ 

Together with the identity/V~.p-- -N_~,  ~+p, (5.4) and (5.5) imply that  the adjoint of e_~ 

acting on 1l ~_ is e a. 

We let e(o~ -~) : ~ A n - ~ h n _  denote exterior multiplication by  co-% and define i(eo-a) 

as the adjoint operation. Explicitly, 

i(o~-")~o -A = 0 
(5.6) 

i(o~-") (o~-" A ~ - ~ )  = o~ -~,  

provided the multi-index A does not involve ~. In terms of these maps, 

~* (l o~ -~) = ~ ~,, e~, l i(~o-") o~ -'~ 
(5.7) 

T* (I~ -'~ ) = �89 ~ l e~,i(o -'~) o~ -.~ = �89 ~ li(o~-',) e,,o~ -.~" 

Again, the summations extend over all a E A+. 

For  ~, fie A+, one gets the identities 

(5.8) 

a) e(o~-") i(o~-a) + i(~o-a) e(o~ -~') = 8"~ 

b) eao~ -A = ~ e ( e ~ - P )  i(o~-P) o~ -'~ 
# 

c) e~,e(o~ -~) =e(e~o~-~) +e(~o-a)e~, 
d) e,~i(o) -~) = i(o~ -p) e,, - i(e_,, o~ -p) 

which can be deduced from (5.6); in b), c), d), ~ may also be a negative root. 

Let  us compute b~* + b*~. For  to~ -a E A ~ (Ea), 

(a& +a*o) (ko -'~) = - Y. ~e~e-pli(co -~) e(~-P) ~ -A - 7. ~e_ped e(~-P) i (~ -~) ~-~ 
~,~ ~,# 

= - Y. ~e~e_pl(e(~-P) i ( ~ - ~ )  + i ( ~  -'~) e (~ -P) )  ~ - '~  - 2: 8,, [e_p, e,d le(~o-P) i (~ -~) ~-,4 

= ~ ( -  ~ e ~ e - d ~  -~ + ~h~l~(~ -~) ~(~-~) ~-~) - ~ . f ~  ~_p.~ ~_ple(~-P) i (~  -~) ~-~, 

We split up the last term on the right according to the two possibilities ~r > fl and fl > ~r 

where > is a linear ordering of ~ t  making the elements of A+ positive. Whenever ~r 

is not  a root, there is no contribution; hence, using (3.6 d), we get 

e~ N _  p ,, e~_ p ] e( oJ - p) i( a~ -~) o)-,4 = ~. e~ N ~ - a  ~ er/e(cor-~)i(~o -a) co -'a 

= - ~ e, ,N-r. ,~erle(oP'-~') i(o~ - ' )  o~ - a  = _ ~ e~erfe(e-~,o~-*')i(e~-") o~ -a .  
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Similarly, 

and hence 

e.N_~,`` e``_~ l e(w -~ ) i(w-``) w -a = ~ eaN_~,_r,,, e_r l e(w -'~-r ) i(w -a) w -a 

= - ~ eae-~,/e(e r ~o -~) i(w -~) m -a, 
a t , ~  

(5.9) 
(~*  + ~*~) (lw -A) = ~ ( - e``e~,e_~,l w -A + e``h=l e( w -a) i( w -~) o~ -A) 

cg 

+ ~. e~e~,le(e_rw -~) i(w -a) co -A + ~ e~e_rle(erw-`` ) i(w-``) co -A. 

Using the identities (5.8), one finds that  

(~T* + T*D + ~* T + T~*) (tw -'~) = �89 ~ e_ale(m-") i(w -p) epw -a 

+ �89 Y e_``li(o~-P) epe(w -~) w -'~ - �89 Y~``e, , l i (w -a) e(w-P) e_pw -A 

-- �89 e,,e,,le(w -p ) e_p i (w -a ) w -A = �89 ~ e_,, l i ( w  -p ) e(epw -a ) w -'4 

+ �89 ~ eae je (w -p) i(epw-``) w -~ + ~ Z ( e - j e a  w-A -- eaeafe-aw-A) �9 

Since epw - a =  - eaw-B  (cf. (5.4)), and in view of (5.8a), the expression above equals 

�89 (e_de` `  w - , , .e` ` le_a w + e_ale(e``  w 

- -  ~ ~. e` `ea/e(w - p  ) i ( e a w  -p )  w -A , 

Now w-a  ~ ~pe(w-P)  i(e``w -p) w -a is dual to the mapping w-A ~ ~pe(e~w-P)  i (w -~) w - a =  

eaw -a. Hence 

(5.10) (~T* + T* b + ~* T + T $*) (/w -'~) = Y. ( e _ d  e,,w -'4 - e,,e,,t e_,,w-'4). 
ac 

In  order to complete the computation of D ,  we must attack T T * +  T*T.  First  of 

all, we observe that  T and T* ought to be regarded as endomorphisms of An*. If  ~ is a 

positive root, 

(5.11) 

Similarly, 

= �89 e. - �89 ~ e(epw -~) {(~-P) - e(w -~) T" 

= �89 ea + �89 ~ e(e``w -p) i(w -p) -- e(w-``) T* = e~ - e(w -a} T*. 
# 
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(5.12) ~'e(o~-") = �89 ~ e(o~-~) e_te(o~-") = � 8 9  N_~.,,e(o~-*} e J  -" ) - e(o, -~'} T, 

Repeated application of (5.11) and (5.12) yields 

(5.13) 

(TT* + T'T)  e(eo -~) = ~<, .N_~.~ T* e(of  p) e ( ~  -~) - T* e(r -~) T +Ter - T e(~o-") T* 

-- e(~o -~ ) (TT* + T 'T)  + Te@ - e a t  + �89 ~ ~V-~.~,(T*e(o~ -~) e(o~ ~-~') - e(o~-~) e(o~-~')T * ) 

~- e(~o -~') (TT* + T'T)  + Te~, - ea t  + �89 e~<~N_p.a (epe(o~ ~-~ ) - e(eo -p) e~_p). 

Replacing a - f l  by fl in the second half of the last term and noticing that  Np_a,a= 

- ~V_p.~, one obtains 

~ .tV-p.a (epe(r p-a) - e (~-P) e=_p) = ~, (e(epe_p~ -~) + 2 e(e_,eeo -a) ep) 
~<~ 

( 5 . 1 4 )  - (2 e - ~, ~) e(~ + 2 ~ e(e_pco -~) ep. 

In the last step, Lemma 3.1 was used; 9 is one-half of the sum of the positive roots. 

If  ~, fl, 7 are positive roots, 

I 
o if 7 > f l  

(e-pea--e,ze-p)m-~'--[e_p, ea]~ -~'= (7,~)oJ -~ if 7 = ~  

t N~,.~,_piV_p,~,w p-~'-'* if 7<ft .  

One can verify this by observing that  the isomorphism 

determined by ~(o~ -~) =e~ commutes with the action of a(l~_), and e_p~(o~ -'~) = q~(e_po~ -~) 

when ~ > fl. Hence 

(5.15) 

Tea -- ea t  = �89 ~ (e(eo -p) e_pea - e,,e(m -p) e_p) 

= - ~ ~ e(e,,m -p) e_p + �89 ~ e(m -p) (e_p%, - e~e_p) 
p 

+ �89 ,+ .>~ >;,_-,V,,. ~,_p N_ p..;, e(~-P) e(~P-'r-~) i(~-';') 

- �89 Y (~, ~,) e(oJ -~ ) e(~o-~) i(o~-~) + �89 ~: (~, p) e(~o-P) e(~o -~) i(o~-P). 
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We transform the second, third, and fourth terms on the right of (5.15) by changing the 

indices of summation and applying (3.6 d): 

(5.16a) 

= 

= - 2: e ( ~ _ p ~ - ' )  ep 
p 

,+~p> _~_~.~ e(~o -~ ) e(e,_p ~o-r) i(r =~>~[ ~_~_p.a e(~o -a-p ) e(e_p ~o -~ ) i(~o -~ ) 

(5.16b) 
= -- ~ e(e# ~-*~) e_p 

(5.16c) 

y+ ~>D>yN,,. r_ p N_ p. ~ e( eo- P) e( a~ -a-~) i( a~-r) 

---- -- ~ N~._p N_p_~. ~ e(oy a-'~) e(co -p-~) i(eo -~) = - ~ e(e_peo -'~) ep. 
~>p.~ # 

Together, (5.13)-(5.16) lead to the identity 

(TT* + T ' T )  e(~o -a) = e(eo'ffi) �9 (TT*+ T ' T )  + ~ (2 ~ - ~, ~) - ~ (a,/~) e(co -~) e(~o -B) i(co-P). 

For every k-tuple of positive roots A, 

~: (~,,8) e(~,-P) ~(~,-P) ~,-~ = (~, la  I) ~-~- 
p 

Thus, by reduction on k, 

(5.17) (T*T + TT')  ~-~- -  �89 ( la I, 2 0 - I A I )  ~-~. 

The computations of this section can be summed up as follows: 

PROPOSITIOI~ 5.1. For every monomial ]w-'~E Ak(Er), 

[] (/co -'~) = Y e~(h,,l e(eo -~) i(a~-") eo -'i - e,~e_~] co -'4) + Y. (ep - e~) e~f e(e_,,eo -p) i(a~ -p) eo -A 

+ ~  (ep + 1) e_,de(e~ eo -p) i(ea -p) oJ -A + ~ (] A I, 2 ~ - I A I )  ]a~ -~. 

For the preceding computations, the assumption that  we were deallng with a homo. 

geneous complex manifold D = G/H, where H is a toms, was not really crucial, and similar 

expressions for []  can be deduced more generally for manifolds D = G/V, when V is not 

necessarily a torus. In one case, the formula even simplifies considerably when one works 

with a non-toral isotropy group, and it is perhaps of interest to mention this special formula, 

although we shall not  use it here. 
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Let  D=(7/V be a noneompaet  Hermit ian symmetric space, i.e. V = K  is a maximal  

compact  subgroup of G and 11_ is an Ad K-invariant  abe/dan subalgebra of g, and let 

E~-~D be the homogeneous holomorphie vector brindle determined b y  an irreducible 

representation ~: V-~GL(E), whose highest weight we shall denote by  2. The E.-valued 

(0, k)-forms on D can be identified with the V-invariant elements 

Y l,.~|174176174174 *, 

when F is made to act  on Cr176 by  right translation and on E and Akrt * _ in the obvious 

manner.  We construct the Laplaee-Beltrami operator [ ]  after  choosing essentially unique 

Hermit ian  metrics on D and E~. Then, as Okamoto and Ozeki [27] have shown, 

(5.18) [ ]  (Y~ t,.,, | v, | o~-'*) = �89 Y~ ((2 + 2 q, 2) - f~) I,..,) | v, | co-". 

Here f~ is the Casimir operator of g, and Q is one-half of the sum of the positive roots. This 

formula, as well as its derivation, is identical to the formula for [ ]  in the corresponding 

compact case, except for a switch in sign. I t s  simplicity stems from two facts: n_ is an 

abelian subalgebra of g, and the Casimir operator of K acts on Akn * _ as a constant (Lemma 

4.1 of [26]). 

6. The generall.ed Borel-Weil theorem 

Let  X = G c / B = M / V  be a K~hler C-space, and E . - ~ X  be the homogeneous holo- 

morphic vector bundle arising from some irreducible representation z~ of V. We choose 

systems of positive roots A+ for (g, ~) and (I) for (~, t)), as described by  (3.7), and we denote 

the  highest weight of z~ with respect to (I) by 2; as before, ~ is one-half of the sum of the ele- 

ments of A+. Since the action of M on X lifts to O(En), the sheaf of germs of holomorphie 

sections of E~, the cohomology groups Hk(X, O(E~)) become M-modules. These eoho- 

mology groups are the subject of the generalized Borel-Weil theorem of Bot t  [7]: 

(6.1) THEOREM. I / 2  +p  is singular, i.e. (2 +p, a) = 0 / o r  some a E A, then Hk(X, O(En)) = 

0/or  every k. 1 /2+~  is nonsingular, let w be that element o] the Weyl group which carries 

2 +Q into the highest Weyl chamber, and l the number o/o:EA+ such that w(a) is nedlative; then 

ttk(X, O(Ez)) vanishes i/ k ~-l, and is the irreducible M-module o/ highest weight w(2 + ~ ) - Q  

q ~=t. 

Proo/. First, we assume tha t  B is a Borel subgroup of Go, as we did in w 5; M will take 

on the role which G played there. Then V = M N B is a toms,  and • therefore must  be a one- 

dimensional representation. In order to be consistent with the notat ion of w 5, we shall 

refer to V as H and to zt as 2. Again we identify the space of E~-valued (0, k)-forms, Ak(Ea), 
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with a subspace of C~(M)| I t  is known that  the cohomology groups of the sheaf 

O(Ex) can be computed from the complex {A~(E~), 0}, and that  the eohomology groups of 

this complex in turn are isomorphic to the spaces of harmonic forms Hk(E~)= (~oEA~(Ex)[ 

[]~p=0} (cf. [16]). Since the Hermitian metrics used to define [] were M-invariant, the 

subspaces Hk(E~)cA~(E~) are preserved by M, and HI"(E~).-.Hk(X, O(E~)) is an iso- 

morphism of M-modnles. 

We consider a particular monomial ]eo-AEAk(E~), with the property that  the func- 

tion /EC~(M) is an eigenfunction of the Casimir operator ~2=~>o(e~e_~+e~e~)+ 
~h,h,=~a>o(2e~e~-h~)+Sh,h,; here {h~,h~ . . . . .  h,} is an orthonormal basis of ~. 

Since ~a>0e~e_~ differs from �89 by an operator in the universal enveloping algebra of ~, 

and since / satisfies (5.1), ~>oe,~e~/is a multiple o f / .  Now M is compact, so r -1 
for every ~ E A+. Hence only the first and last terms on the right side of the identity in 

proposition 5.1 remain, and [:]([w -a) is a multiple of ]w -~. As a consequence of the Peter-  

Weyl theorem, for example, C~(M) decomposes discretely into eigenspaces of f~. In the 

corresponding decomposition of A~(Ea), each subspace is []-invariant, because ~ com- 

mutes with every left-invariant differential operator on M. We conclude that  H~(E~) has 

a basis of harmonic monomials. 

Since [] is the sum of the two semidefinite operators ~-~* and ~*~, a monomial/o~-Ae 

A~(Ex) is harmonic if and only if ~([~o -a) =0 =~*(/~o-~). When ~([m-~)=~(fm-a)+ T(/eo -A) 
(el. (5.2)) is expressed as a sum of monomials, ~o -a can be factored out from each term of 

~([eo-~), and from no term of T(/w-~). Thus 0([~-~) =0 if and only if ~([o) -~) =0--T(/m-A); 

similarly, ~*(/w-~)=0 is equivalent t o  ~*(/O.)-A)=O=T*(/O-A). Hence /co -~ is harmonic 

precisely when ~([w-A), ~*([w--A), T([W-A), and T*([o~ -A) all vanish. 

As was pointed out already, T and T* may be viewed as endomorphisms of An~_. 

Since 

T ~  -" = �89 ~ e(~-P) e_po~ -" = �89 5 e(~-P) e(e_p~ -~) i (~  -~) ~-" 
~.~ 

T~o-A =0  if and only if for every pair/~, t e A +  such that /3+~/eA and such that  neither fl 

nor ~/occur in A, f l+y  also does not occur in A. Analogously, T*~o -A =0 if and only if for 

every pair of roots/3, 7 belonging to A and whose sum is a root,/3 + y  occurs in A. If w is an 

element of the Weyl group, and if A consists precisely of the roots common to A+ and 

w-l(-A+),  then A has the two properties equivalent to Tw-A=O=T*eo -~. Conversely, 

if .4 has these two properties, the set 

A+ = {~eA[ - ~ e A }  U { ~ e A + I ~ A  } 
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contains fl+7 whenever fl, TEA+ and fl+TEA; moreover, A is the disjoint union of A+ 

and -A+. Thus A+ is a system of positive roots and is of the form w-l(A+), for some w in 

the Weyl group; A is the set A+ fl w-i(-A+), ordered in some way. 

Let us assume that A is of this form. Then ]A[ =O-w-l(~), and if/co -A is to belong 

to A~(E~), 

(6.1a) hi = < - - ~ - - ~ - ~ - w - - l ( ~ ) ,  h>/ for hE~. 

The equations ~(/co -A) =0=~*(/~ -A) are now equivalent to 

(6.1b) e _ j  =0  for ~w-I(A+), 

Hence, for the particular choice of A made above, the space of harmonic monomials/co -A 

is isomorphic to the subspace of C~(M) determined by the differential equations (6.1). 

In (6.1), e_a and h are regarded as left-invariant complex tangent vector fields, i.e. 

as linear combinations of infinitesimal generators of one-parameter groups acting on the 

right. Therefore, from the Peter-Weyl expansion 

W L~(M)~- ~ ~| Wi. 

(Here 2kr is the set of equivalence classes of irreducible representations of M, and W* is 

the M-module contragredient to Wi), these differential equations pick out ~ W~| 

where U ~  W*~ is the subspace of vectors v which satisfy 

hv = ( -~ -~+ w - l (~ ) ,  h)v for hE~ 

e ~v = 0 for ~ E w - I ( A + ) .  

According to the highest weight theory, U~ =0 unless ~-w(~ +~) is the lowest weight 

of V~, i.e. unless V, has highest weight w(~t +~)-~;  and if U~ =t=0, U, is one-dimensional. 

Consequently, the M-module of harmonic monomials /w -A, with A of the form 

A+ fl w-l(-A+), is irreducible and has highest weight w(~t + ~) -Q, provided that this weight 

belongs to the highest Weyl chamber, and is zero otherwise. We had seen already that all 

harmonic monomials arise in this fashion, and that Hk(E~) is spanned by monomials. 

:Finally, w(2 +~) -~  lies in the highest Weyl chamber precisely when ~ +~ is non-singular 

and when w is the unique element of the Weyl group which carries ~t+~ into the interior 

of the highest Weyl chamber. This proves the theorem in the special case when B is a Borel 

subgroup. 

Suppose now that B is an arbitrary parabolic subgroup of Gc, and E , ~ X = G c / B  
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the homogeneous holomorphic vector bundle determined by the irreducible representation 

~: V-+GL(E), where V=MN B. Instead of pushing through the computation of w 5 and 

the proof above in this situation, which is possible but  bothersome, we shall sketch an 

argument of Bot t  that  reduces the problem to the case already covered. In the notation 

of (3.7), 

and ~lnv=~ |  -~, a e r  

are Borel subalgebras of g and ~. We denote the subgroups of Gc corresponding to ]~1, 

~, 3o by BI, Vc, H, respectively. Just  as M acts transitively on X = Gc/B and on Gc/B 1, 

V acts transitively on Vc/Bln Vc. The quotient spaces XI=Gc/BI=M/H and Y =  

Vc/B1 n Vc = V/H are K~hler C-spaces; Vc, of course, is only reductive and not semisimple, 

but  this causes no problems because B1 N Vc contains the center of Vc. The highest weight 

~t of ~ can be regarded as a character of H and determines a homogeneous holomorphic line 

bundle I ~ X I .  The natural quotient map q: X I ~ X  exhibits X~ as a holomorphic fibre 

bundle over X with fibre :Y. Let  Rkq(F~) be the kth direct image sheaf of O(F~) under q, 

i.e. the sheaf arising from the presheaf 

U -> Hk(q- l (U) ,  O(F2)) 

for open subsets U of X. Since q: X1-->X is locally a product, Rkq(F~) is the sheaf of germs 

of holomorphic sections of a vector bundle, whose fibre over the "origin" eV is isomorphic 

to Hk( Y, Or(Fx)) as V-module. In the first half of this proof, the semisimplicity of M was 

never used. Thus we may let Y and V play the roles of X and M; B 1 fi Vc is Borel in Vc, 

we recall. Since ~t lies in the highest Weyl chamber of (~, ~)) with respect to the system of 

positive roots (I), Hk( Y, Or(F~)) =0  for k :t=0, and H~ Y, Or(F~)) is isomorphic as V-module 

to E, the fibre of E~ over eV. Hence Rkq(F~)=0 for/r #0,  and because V acts irreducibly 

on E, R~ O(E~). The Leray spectral sequence collapses, to give an isomorphism 

H*(X, O(E=))-~H*(X1, O(F~)), which clearly commutes with the action of M. Now the 

special case of Theorem 6.1 can be applied to H*(X1, O(Fx)) and leads to the desired de- 

scription of H*(X, O(E~)). 

7. Cohomology in the noncomlmct ease 

We consider a manifold D=G/V dual to the K/~Mer C-space X=Gc/B=M/V,  and a 

discrete subgroup F of G which acts on D without fixed points, such that  F \G  is compact. 

Then Y = F \ D  is a compact complex manifold. Let  g: V~GL(E)  be an irreducible repre- 
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sentation whose highest weight, relative to  the system of positive roots (I) of (t), ~), shall 

be denoted by  ,3., The corresponding vector bundle E~-~D is F-invariant and therefore 

drops to a holomorphic vector bundle F~-~ Y. Let  ~(2) be the number of positive compact 

roots fl with (~, fl) <0  plus the number of positive noncompact roots fl with (~t, fl) >0.  

(7.1) LEMMA. There exists a constant ~, depending only on D, such that whenever 

I (~, ~)1 >~/or every o~EA, Hk(Y, O(F~)) = 0 / o r / c  4~c(~). 

Proo/. We choose groups B1, Vc, H as in the last part  of the proof of  theorem 6.1. 

Then DI=G/H is dual toXI=Gc/BI=M/H.  We set YI=F\D1; YI-~ Y is a holomorphic 

fibre bundle with fibre Vc/B 1 N Vc. Just  as in the proof of Theorem 6.1, the Leray spectral 

sequence of this fibering establishes an isomorphism between the cohomology groups of 

F~ on Y and those of the line bundle determined by )t on Y1. 

Thus we may as well assume that  D = G/H is dual to X = Gc/B, where B is a Borel 

subgroup. Since H is a torus, ~z must now be a one-dimensional representation of H, and 

so we shall refer to it as ~. The cohomology group Hk(Y, O(E~)) is isomorphic to the space 

of E~-valued harmonic (0, k)-forms on Y, which in turn is naturally isomorphic to ~ , (Ea) ,  

the space of r - invar iant  E~-valued harmonic (0, ]r on D. If ~ E ~ ( E ~ ) ,  we can write, 

in the notation of w 5, ~ = ~,/~co-~; here the A~ are ordered/r of positive roots, and 

t h e / ,  are F-invariant C ~~ functions on G. Let  Az be the set of roots ~ such that  e~(~, ~t) -~0. 

Then in view of Proposition 5.1 and (5.8a), 

0 = [-qq~ = - ~ ~ ~(ha/,i(m -a) e(o~ -a) eo -A, + e_~ea/,a~ -A,) 
f ~eA+ flAa 

+Z Z ~ (h~/, e(o~ -a ) i(o~ -~) o~-A' -- ea e_a/~ ~o -~,) 
| ~eA+-Ax 

+Z ~. (~#-~a)ea/,e(e_~o-~)i(o~-#)o~ -~' 
| ~ , f leA+ 

+ 5  5 (ep+ l)e-j,e(eao~-P)i(o~-P)eo-~'+ �89 ~ ( iA ,] ,2e-[A, i )  ],co -'~'. 
! a, f l e A +  ! 

The funct ions/ ,  satisfy ha/, = - (~, ~ + I A,I)/ ,  (cf. (5.1)); thus, if we set 

c ,=  ~ ea(~, ~ + iA,I) - ~ ea(a,~+iA,i)+�89 2 e - l A , i ) ,  
~e(A+flAD-A~ ~e A~fl(A+-AD 

the identity above becomes 

o= [~=Sc,/,o~A,-Z ~ e~e_aej,~-A'+Z 5 (~p--~a) ea/,e(e-ao~-P)i(O~'P)O~ - ~ '  
i , r162 | ~.,peA+ 

+~ Z (sp+ 1) e-j~e(ea~,P) i(oJ-P) ~-"'. 
| ~,peLl.i. 

19 - 692908 A c t a  ma thema t l ca  123. I m p r i m 6  le 23 J a n v i e r  1970 
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Integration over a fundamental domain of r ,  with respect to the Hermitian metrics in- 

troduced in w 5, determines an inner product  on ~/~(Ea). Equivalently, this inner product  

can be described as being induced by the natural inner product of Ls(r \G)  and the 

inner product  (m-% ca -?) = ~ on 11". Let  c be the smallest constant among the c~, and b 

a suitably chosen positive constant. Then, because - ea e_a is the adjoint of ea acting on 

L~(r\a), 

o = ( [ ]  ~,, q,) = ~. c, (,f,,/,) + ~ ~: (~,J,, eo,,f,) 
f i ~eA~ 

+ ~,~ ~ (~,~- ~,,) (e,d, 5) (~(~-,,"P) ~(ofP) 0.;'% o.,-A,) 
~.J .P A+ 

+ Y~ F. (Sp + 1) (e_,J,,/~) (e(e,,~ -p) i (~ -'~) ~ - " .  co -'~') 
| j  ~..peA + 

>/c((p, (p) § Z Z (ea,f,, ea,f,) - b 2 2 I(e,J,,'f,)] - b 2 2 I (e-a.f,, 'f,) ]. 
f zeA~ f.J ~eA+ f,J ~eA+ 

For  every root g, positive or negative, [(ec,,f,, ,fj)[ = [(e_~,fj, 'f~)l, again because - effi e_~ is the 

adjoint of e~. Hence 

0>~c (~ ,~ )+~  ~ (ec,/~, e,.,f~) - 2 b ~. ~, (e,,,f~, e,,,f~)t (,fj, f~) t. 
t ~eA~ f,J ~eA~ 

We now use the inequality 2 b x y ~ x  z +bay ~, to get 

0 >1 c(q), ep) -b ~ ~ (ea/,, ea,f,) -- ~ ~. (ea/~, ear,) -- b" (rp, q)) = (c - b 2) (~p, ep). 
i ~ e A l  i ~eAz  

If  the integer k is different from ~(~), every k-tuple of distinct positive roots either 

must have a nonempty intersection with A+-A1,  or cannot contain all of A+ N A1, or both. 

In  this case, by choosing the constant ~ in the statement of the lemma sufficiently large, 

we can make all of the ct greater than b s. Then the last inequality above will imply the 

vanishing of every ~G74~(E~), as desired. 

(7.2) THeOReM Let F~-~Y be as above and assume that ](~, ~)[ >~7 .for all ~EA (c,f. 

Lemma 7.1). Then Hk(Y, O(F~))=0 .for b@a(g) and 

dim H~(~)(Y, O(F~)) = c(D)p(Y) dim W, 

where c(D) >0 depends only on D, p( Y) is the volume o,f Y,  and W ~ is the irreducible M.module 

with M~hest we~gh$ w ( ~ + ~ ) - ~  (c,f. Theorem 6.1). 

Proof. As in the proof of Theorem 6.1, we may assume tha t  Y = F \ G / H  where H ~ G  is 

a maximal torus, and that  the bundle in question is a line bundle Fa-~ Y. Also, the vanishing 

par t  of Theorem (7.2) is included in I~mma (7.1), and so it  will suffice to prove that:  
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(7.3) g(Y, O(F~)) = ( - 1) a'~' c(D) #(Y) dim Wa, 

where Z(Y, O(F~)) -~ ~ - 0 (  - 1)~ dim H~(Y, O(F~)) is the shea[ Euler characteristic of O(Fa). 

For this we will use the Hirzebruch-Riematm-Roch theorem for the nonalgebraie 

complex manifold Y, which has been proved by Atiyah-Singer (cf. [3]). Taldng into ac- 

count the Riemann-Roch formula given in [16] and (7.3), we must show: 

(7.4) T(Y, F~) = ( - 1) ~(~ c(D) #(Y) dim Wa, 

where T(Y, F~) is the Todd genus of the line bundle F~-* Y. 

Now the holomorphic tangent bundle T(Y) arises from the restriction to D of the homo: 

geneous vector bundle Gc • sn~ (el. w i); thus T( Y)-~ Y has a solvable structure group and 

T(Y) has a composition series with successive quotients the homogeneous line bundles 

F~-~ Y where ~ tmn__s through the positive roots A+. Topologically, T(Y) --- ~ffiG~+ Fa. For each 

e A ~  ~)*, we let c(y)EH~(Y, Q)be the Chern class of the homogeneous line bundle Fv-~ Y. 

Then c can be regarded as a homomorphism from A into H~(Y, Q), which extends uniquely 

to an algebra homomorphism from the symmetric algebra of I)* into H*(Y, C). More 

generally, to each holomorphic function f which is defined on a neighborhood of zero in ~), 

one can associate c(/)EH*(Y, C). With this convention, and using Hirzebruch's notation 

[16], the Todd genus of Fa can be expressed as 

( ~EA+ I - - e  j 

Here ~ and the a's are viewed as functions on ~. Now 

H O~ -~e@ H g 
~ e A +  i - - e  - ~  e ~/2 e - ~ ; 2 '  ~eA+ 

where as usual ~ = �89 ~aEa+ g, and hence 

T(Y, FD=clea+e l-I ~ } 

The action of the Weyl group of (g, ~) on ~* induces an action on the image of c in H* ( Y, C). 

The Chern class c(y) is represented by the curvature form 

(7.6) ~ 0D(F)~-2--~ - - ~ + ( Y ,  ~) ~ A w -a 

(cf. (4.2)D and [13]); thus every cohomology class of top degree, which can be represented 
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by a multiple of the differential form I L i a +  co= h m -=, is carried into sgn w times itself 

by  each Weyl reflection w. Since evaluation on the fundamental cycle involves only the 

component of top degree, and since the expression 1-L~a+ a/(e =I~ - e -=12) is invariant under 

the Weyl group, (7.5) may  be rewritten as 

h r being the order of the Weyl group. According to Weyl 's  character formula [30], 

~.w sgn w e w(~ + 5) I - ~  ~ + (1/e =I2 - e -=1"~) equals, up to sign, the character of the M-module W 

mentioned in the statement of the theorem. Consequently, this expression defines a holo- 

morphic function on ~ whose value at  the origin is 4- dimW;t. Moreover, c (1-I=~a+ ~) is a 

cohomology class of top degree. Thus 

1 
T(Y, Fz) = •  dim Wzc (= I~A+ ~) [Y]. 

In  view of (7.6), c (1-~=,a+ a) is represented by the differential form 

(')~ 
which is a constant multiple of the volume form of D. The proof of Theorem (7.2) will be 

complete as soon as the differential form (7.7) is shown not to vanish identically. The 

computation above carries over word-for-word to the case of a line bundle F~ over the 

compact flag manifold X = M / H .  Thus the Euler characteristic of the trivial line bundle 

over X, for example, which is known to be different from zero (Theorem (6.1)), is a multiple 

of the expression (7.7), reinterpreted as a differential form on X and integrated over the 

fundamental cycle. Thus the form (7.7) cannot vanish, and we are done. 

_Remark. We want to speculate a little on the possible implications of  theorem (7.2). 

The spaces Y = F \ D  give a class of compact, complex manifolds which arise quite naturally 

in algebraic geometry (cf. [11]) and function theory (el. Langlands [24]), and for which the 

higher sheaf cohomology H=(')( Y, O(F,)), instead of being as usual an obstruction or, at  

best, a sideshow, is now the main object of interest. 

For the purposes of the harmonic analysis on G there is at least a conjectural explana- 

tion. Roughly speaking, we should first let F c G be an arbitrary discrete subgroup and we 

should consider ~,(F~),  which is by definition the space of F-invariant, Fn-valued harmonic 

(0, k)-forms ~ on D = G / V  satisfying SrxDti~llz< oo. I f  r \ g  is compact and hr(P~.q V={e}, 
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then ~/~(F~) ~ Hk(Y, O(F~)). The vanishing part of Theorem (7.2) goes through for generaI 

P (cf. Theorem (7.8) below), and the remaining group ~/~(~)(F~) shou/d be closely related 

with the contribution of the discrete series to Z~(F\G). What  is missing is the general 

existence theorem for ://~(~)(F~). In case F \G is compact, we found existence from the 

Riemann-Roch theorem on UkG/V; it is fairly clear that  we could have equally well used 

the Atiyah-Bott-Lefschetz fixed point formula on F\G. For the opposite extreme r = (e), 

there is the Langlands conjecture, which is formally stated at  the end of this paragraph, 

and whose present status is discussed in the introduction. 

The relation between the cohomology H'~(z')(D, O(F~)) and algebraic geometry is pre- 

sently quite obscure. Let us illustrate the problem. Suppose that  V~ Pa is an algebraic 

surface of degree n given by an equation 

fo+fl+~s+ia=n 

where ~ = [t0, ~1, ~ ,  ~a] are homogeneous coordinates. Then V is determined by the homo- 

geneous vector 2 = [..., ~,~1~,i ..... ] EPN of coefficients in F(~), and we write V~ for V. The set 

of points ;tePN for which Va is singular forms an algebraic hypersurface ScPN, and we 

let B=PN--S. Then (V~)aes gives the algebraic family of all non-singular surfaces of 

degree n in Pa- 

The parameter space B is a connected, open manifold and we fix a base point 0 e B. 

If i e B  and 2(t) (0~<t~<l, ;t(0)=0, ;t(1)=2) is a curve from 0 to ~, there is an induced dif- 

feomorphism /~: Vo~ V~. The isotopy class of ]~ depends only on the homotopy class of 

the path {;L(t)}, and the induced mappings/~:/t2(Vz, Q)-+Hs(Vo, Q) all preserve the Chern 

class co of the  standard positive line bundle H-+P a (co is the cohomology class of a hyper- 

plane section). Thus, if we let F c A u t  (H2(Vo, Q)) be the group of all automorphisms 

(g~l[x), where/a: V0-+ Va and ga: g0-~ V~ arise from paths in B, then F is a discrete sub- 

group of GL(HS(V0, It)) and every T a P  preserves both ~o and the cup-product pairing 

Q: llS(Vo, Q)| Q)-~Q. 

Let EcHS(Vo, C) be the subspace of classes ~EH~(Vo, C) with ~.co =0. Since to.o)= 

n>0, E is defined over Q, Q: E| is non-singular, and r acts on E. We let r = 

dim Hr =dim HS'~ for all ~. By the Hodge index theorem (el. Hodge [18]), dim E = 

~,=~ -~=,~ over It. Denote by G(r, E) the Grassmann 2r + s where Q is equivalent to Sr 8 

variety of all r-planes in E and X ~  G(r, E) the r-planes S which satisfy Q(S, S)=0. Then 

X is a K~hler C-space Gc/B where Gc~ GL(E) is the complex orthogonal group of Q (cf. 

the end of w 2). The set of r-planes SEX which satisfy Q(S, ~q)>0 gives a non-compact 

dual D ~  X; here D ~- GIG n B where G c  Gc is the real orthogonal group of Q and D is the 
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G-orbit of a point (d. the end o f w  2 again). As a real homogeneous space, D---- 

S0(2 r, s)/U(r)• SO(a), and F is a properly discontinuous group of analytic automorph- 

isms of D. We let Y be the analytic space F \D.  

If ~EB, the subspace S~=f~{H2'~ lies in D (cf. Hodge [18]) and is well-defined 

modulo P. This gives the period mapping (I): B-~ Y, and in [11] it is proved that  (I) is a 

holomorphic, horizontal mapping and the differential (I). is essentially injective. 

If the degree n is 1, 2, or 3, then V~ is rational and r =0. Suppose that  n =4. Then the 

canonical bundle of V~ is trivial, V~ is a Kummer sur/ace, and dim H~'~ In this 

case D-SO(2 ,  s)/SO(2)x SO(s) is an Hermitian symmetric domain of type IV (cf. [15]), 

and the horizontal map condition is vacuous. Taking the homogeneous line bundle F~-~ D 

to be a high positive power K~ of the canonical bundle of D, the integer a(g)equals zero 

and ~r(F~) ~ H~ O(K~))r is the space of automorphic/orms o/weight/~ (here we are using 

tha t  1 ~ is of finite index in an arithmetic subgroup of G, cf. [12]). The quotient /=~/y~ of 

two automorphic forms of the same weight is an automorphic function, and it is proved 

in [12] that: 

(i) F =/o(I) is a rat/onal function on B; and (ii) if ~ is the field of rational functions 

on B and ~ e = ~  is the subfield generated by the functions F=)r then ~@ gives the 

same equivalence relation as (I); i.e. (I)(21) = (I)()~) if and only if, F(Jtl) = F(~)  for all F E ~ e .  

In conclusion: 

(7.8) The equivalence relation Periods of {V~,} =Periods of {V~,} on B is an algebraic 

equivalence relatlon given by the sub/ield ~r  ~ :K; the automorphic /unctions invert the period 

mapping up to rational/unctions. 

If n/>5, then r > 1 and D ~ SO(2r, s)/U(r) x SO(s) does not fibre holomorphically over 

an Hermitian symmetric space. Thus H~ O(F=))r = (0) for all non-trivial homogeneous 

line bundles and there are no automorphic/orms. 
Now since the center of U(r) • SO(s) is a circle, the homogeneous line bundles over 

D are essentially the powers K~ of the canonical bundle. The condition that  the period 

mapping (I): B-~F\D be horizontal is non-vacuous if n~>5, and from (4.24)D we see that:  

For f l>0,  the curvature E)D(K~) is positive on (I).(Ta(B)}. Thus we can hope to have 

rational, holomorphic sections of (I)*(K~)-+ B (~u > > 0) which will lead to the conclusion 

(7.8) for all n >~4. The problem is to construct these sections a priori and, in particular, to 

see if they can be obtained somehow from the automorphic cohomology 

F|--~. 

~/~ -  (D, K~) (~(~) = ~ - ~  in this case). 

We close this section with some remarks about a conjecture of R. P. Langiands. 
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Let ~ be an irreducible unitary representation of a noncompact semisimple Lie group G. 

Then ~ can be thought of as an infinite-dimensional unitary matrix whose entries are 

functions on G; ~ is said to be square-integrable if one, or equivalently every, matrix 

entry belongs to L2(G). According to the fundamental results of Harish-Chandra [14], 

(~ has square-integrable representations if and only if it contains a compact Carton sub- 

group. Suppose now that H is a particular compact Cartan subgroup, which we keep fixed 

from now on. Then, again according to Harish-Chandra, to each nonsingular character ~ of 

H there corresponds, in a well-determined way, an irreducible square-integrable unitary 

representation ~t~; every such representation arises in this fashion; and ~t~ and ~tg are 

equivalent if and only if the characters ~ and/~ of H are related by an element of the 

normalizer of H in G. 

For simplicity, we assume that G can be embedded as a real form in a complex semi- 

simple Lie group Go. We denote the Lie algebras of Gc, G, H by ~, go, ~0, and the complexi- 

fication of ~0 by ~. We choose a system of positive roots A+ for (~, ~); then 

b = ~ e Y g - ~  ~eA+ 

is a Borel subalgebra of g. Let B be the corresponding subgroup of Go. Since H is compact, 

the roots assume purely imaginary values on ~o, and the complex conjugate of $-~ with 

respect to go is g~. It  follows that g0 n b = ~0, and that H is the identity component of G f] B, 
which therefore normalizes H. Because the normalizer of H in G is compact, the argument 

at the beginning of w 2 shows that D = G/H is duai to the K/~hler G-space Gc/B. 
Let Lx-~ D be the homogeneous holomorphic line bundle determined by the character 

of H. Following Andreotti and Vesentini [2], we shall introduce certain "L~-cohomology 

groups" of La. An equivalent, but more elaborate definition has been given in [27]. As 

before, Ak(L~) is the space of La-valued (0, k)-forms on D. The G-invariant Hermitian 

metrics on L~ and D chosen in w 5, by integration over D, give rise to an inner product 

(,) on A~(L~), the subspace O f compactly supported forms in A~(L~). We denote the comple- 

tion of A~(La) with respect to this inner product by Lk(La); the elements of L~(L~) will be 

thought of as differential forms with measurable coefficients which are square-integrable 

over D. The kth "L~-cohomology group" of La is defined as 

~(L~) = {~ eA~(L~) n Lk(L~) I [3~ = 0}, 

where [] is the Laplace-Beltrami operator. According to proposition 7 of [2], every q 6 :H~(L~) 

is Z-closed, and hence determines an element of Hk(D, O(L~)). However, since D is non- 

compact, there is no reason to expect the mapping ~(L~)-+H~(D, O(L~)) to he nontrivial. 

If {~,} is a sequence in ~k(L~) which converges to a limit ~ in L~(L~), then q is necessarily 
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a weak solution of [ ~ = 0 ;  but  since []  is an efliptic differential operator, every weak 

solution must be smooth and is actually a strong solution. Thus ~/~(L~), as a closed sub- 

space of Lk(L~), has the structure of a Hflbert space. By translation, G acts unitarily on 

~/g(L~). Recall the definition of the integer a(~t). 

CONJECTURE (Langlands). / / 2  §  singular, ~k(L~)----0/or every It. I / ~  § is non- 

singular, ~k(L~) = 0 / o r  ]c ~:a(~t +~); and the action o/ G in dimension k=a(~ +~) is irreducible 

and equivalent to ~+r 

In a closely related conjecture, Langlands has postulated a connection between the 

dimensions of the cohomology groups considered in theorem 7.2 and the multiplicities of 

the representations g~ in Z~(F\G); for details, the reader is referred to [24]. We offer the 

vanishing theorem below as a partial result in the direction of the Langiands conjecture. 

(7.8) THEOREM. There exists a constant 7, which depends only on D, such that [ (~, g)[ >7  

/or every a EA+ implies ~k(L~)=0 /or ]r :~a(~). 

Proo/. The Hermitian metric on D, being G-invariant, is complete. Thus, in view of 

proposition 8 on p. 94 of [2], it suffices to establish an inequality 

( [ ~ ,  ~)/> (~((p, ~), for (pEA~(L~), b:~a($), 

provided that  ~t satisfies the hypothesis, where 6 is a positive constant, independent of 2. 

This inequality follows from an argument which is formally identical to the proof of 

Lemma 7.1, except tha t  the functions/~ are now compactly supported C ~176 functions on G. 

8. The l~eudoconvexity of dual mRnlfolds of Kiihler C-spaces 

Every noncompact Hermitian symmetric space has the important  proper ty  of being a 

Stein manifold. A manifold D = (7/]7 which is dual to a K~hler C-space, unless it is Hermitian 

symmetric, contains compact subvarieties of positive dimension and therefore cannot be 

a Stein manifold. However, as we shall show next, D comes as close to possessing this pro~ 

perry as the presence of compact subvaricties will permit. 

Let  / be a C ~~ real-valued function on a complex manifold Y. The Levi/orm of / ,  Z(f), 

is the Hermitian form on the holomorphic tangent bundle of Y which, in terms of local 

coordinates z 1 ..... z n is given by 
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02/ dzi | d~j. L(h = ~ 

We say that  / is an exhaustion/unction of Y if for every real number c the set/-l({x ~ c}) 
is compact. Recall the definition of the horizontal distribution Ta(D) from w 2. Since a 

complex manifold is a Stein manifold if and only if it admits an exhaustion function whose 

Levi form is positive definite at every point, the following theorem may be thought of as an 

extension of the assertion that  the noncompact Hermitian symmetric spaces are Stein 

manifolds: 

(8.1) THEOREM. On every mani/old D which is dual to a Ktihler C-space, there exist8 an 

exhaustion/unction whose Levi/orm, restricted to Th(D), /s positive de/inite at every point. 

Andreotti-Grauert 's  [1] generalization of theorem B now implies 

(8.2) COROLT.ARY. I /  ~ is a coherent analytic shea/ over D, then Hk(D, :~)=0 /or 

k > dime S = �89 dimR K/V. 

(8.3) COROLLARY. A horizontal analytic mapping F: Y->D of a connected compact 

analytic space Y into D is constant. 

Proo/. Let / be the function whose existence is guaranteed by  the theorem. Since F 

is horizontal, F*/ i s  a plurisubharmonic function on the compact space Y, and hence must 

be constant. Thus F*(L(/)), which is defined at the manifold points of Y, vanishes; and this 

cannot happen unless the tangential map F ,  vanishes identically, i.e. unless F is constant. 

Proo/o/ Theorem 8.1. We shall use the notation of w 2 and w 3 freely. In  particular, 

D=G/V will be regarded as an open subset of X=M/V=Gc/B .  Let ~u be the negative of 

the sum of the roots in A+-(I). As was pointed out in w 4,/~ determines a one-dimensional 

representation of V, and the corresponding line bundle L~-~X is the canonical bundle. This 

line bundle can be given an M-invariant metric ~M, and its restriction to D a G-invariant 

metric ~a; both are unique up to multiplicative constants. The ratio of these two metrics 

is a positive C ~ function on D. H e n c e / =  - l o g  (~a/~M) is well-defined on D. The Levi form 

of / is precisely the difference of the curvature forms of L~ corresponding to ~'a and 7M, 

which were given by (4.23); it foUows that  L(/) is positive definite on Ta(D ). 

In  order to prove that  / is an exhaustion function, it suffices to show that  the ratio 

~a/~M extends to a continuous function on X whose restriction to the topological boundary 

~D of D vanishes. 

The holomorphic cotangent bundle T*(X) is associated to the principal bundle 

B-+Gc~X by the adjoint representation of B on n_. This can be verified by observing 
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that  the tangent bundle is associated to the principal bundle by the adjoint action of B 

on gfb, and tha t  the Killing form establishes an Ad B-invariant nondegenerate bilinear 

pairing between g/b and n_. Thus we can identify the fibre of T*(X) over a point g B E X ~  

Go/B with Ad g(n_). We define M-invariant and G-invariant Hermitian forms h M and 

h a on T*(X) by setting 

h~(x, y) = -B(z, ~(y)), ha(x, y) = B(z, a(y)) 

for x, y EAd g(n_). The former is positive definite; the latter nondegenerate, at  least a t  

eB, and by G-invariance then over all of D. Let h(gB) be the product of the eigenvalues of 

h a on Ad g(n_) with respect to hM. By construction, h is a continuous function on all of X. 

Because L~ and AnT*(X), n=dimeX,  coincide, the restriction of h to D is proportional 

to the ratio ~'a/YM. I t  only remains to be shown that  h a is degenerate on Ad g(n_) whenever 

gBEOD. 

Suppose then that  gB is a point of aD; for brevity, we set fi_ = A d  g(l~_), b c A d  g(~). 

As a consequence of Bruhat's lemma, the maximal nilpotent ideal fi_ of ~ has a complement 

fi in ~ such that  
n ,~(~) = (5 n ,7(~)) | (~_ n ,~(~)); 

indeed, if ~ is a Cartan subalgebra of g in the intersection of the two parabolic subalgebras 

and ~(~), the (unique) maximal reductive subalgebra of ~ which contains ~ is a suitable 

choice for ft. Notice that  ~ and D have the same dimension. Since gBEaD, the G-orbit of 

gB cannot have interior, and the Lie algebra g0 A ~ of the isotropy subgroup of G at  gB 

must be of higher dimension than g0 A b = g0 A ~. Equivalently, because b N a(~) is the com- 

plexification of g0 A ~, 

dim ~ <dim ~ n ~C~) = dim 5 n ~(~) +d~m ~_ n ~(~) < d i m ,  +dim ~_ n ~Cb). 

Thus we can choose a nonzero vector y e f i n  a(~). Finally, since B(fi_, ~)=0, ha@, y) = 

B(x, q(y)) =0 for every xelT_, i.e. h a is degenerate on fi_, as was to be shown. 

9. Horizontal mappings are negatively curved 

In recent papers ([9], [20], [22], [32], etc.) several authors have shown tha t  negatively 

curved Hermitian manifolds in certain ways behave like bounded domains. In view of the 

presence of parabolic compact subvarieties, dual manifolds of K~hler G-spaces cannot, 

in general, be expected to be negatively curved. However, the analogy to the situation of 

w 8 might suggest tha t  they are negatively curved in the horizontal directions, and this is 

indeed the case. 
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Let  D=G/V be a manifold dual to the K~hier C-space X =Gc/B, as in w 2. The holo- 

morphic tangent space of D at  eH is naturally isomorphic to a(n_) =~(1t_), and 

(x, y) = - B ( x ,  ~(y)), x, yea(a_) 

defines an Ad V-invariant inner product on a(n_). By translation, the inner product gives 

rise to a G-invariant Hermitian metric on D. This metric, because of its homogeneity, 

turns D into a complete Hermitian manifold. 

(9.1) THEOREM. The holomorphic sectional curvatures o / D  corresponding to directions 

in Ta(D) are negative and bounded away/rom zero. 

We shall deduce some corollaries before proving the theorem. As a direct consequence 

of Corollary 8.3 in [32], we get 

(9.2) COROLT.XRY. The/amily o/ all horizontal holomorphic mappings o/a fixed complex 

mani/old into D is normal. 

In  his paper [20], Kobayashi has introduced an intrinsic pseudodistance which is defined 

for each connected complex manifold Y: given a pair of points x, y E Y, we consider chains 

of points x =xo, xl, ..., x~ =y in Y, holomorphic mappings/1 ..... /n of the unit disc A into Y, 

and points a~, b~EA, such that/~(ai) =xt-1,/~(b~)=x~; denote by  d~ the distance from at 

to b~, measured with respect to the Poincar~ metric on A; now let u(x, y) be the infimum of 

"d  all possible sums ~1 t obtained in this manner. Then u is a pseudodistance for Y. The 

arguments leading to theorem 3.8 of [20], which are also implicit in [32], together with 

theorem 9.1 imply 

(9.3) COROLLARY. A horizontal holomorphic mapping o/a complex mani/old Y into D 

is distance decreazing with respect to the Kobayashi pseudodistance on Y and the Hermitian 

metric on D, suitably renormalized. 

I t  is not difficult to verify tha t  the pseudodistance vanishes identically on C m. Hence 

(9.4) COROLLARY. Every horizontal holomorphic mapping o/a complex Euclidean space 

into D reduces to a constant. 

(9.5) COROLLARY. I/ Y ~8 a complex mani/old, S c  Y a subvariety o/codimension at 

leazt two, and F: Y - S - +  D a horizontal holomorphic mapping, then F can be extended over S. 

Proo/. The proof of Theorem 3.3 in [22] can be modified slightly to cover this case. 

Alternatively, one may proceed as follows. Since the set of singular points of S forms a 
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subvariety of lower dimension, an inductive argument  allows us to assume tha t  S is a 

submanifold. Now, because the problem is a local one, we need to consider only the case of 

a polycylinder Y and a linear subspace S. For dimensional reasons, if an  analytic disc in Y 

is perturbed by  arbitrari ly little, it can be made disjoint from S, while still lying in Y. 

Hence the Kobayashi  pseudodistance of Y, which is a true distance in this instance, agrees 

on Y - S  with the pseudodistance of Y - S .  I t  follows tha t  the distance decreasing map F 

from Y - S  into the complete metric space D must  extend continuously, and hence holo- 

morphically, to all of Y. 

Let  F be a discrete subgroup of G. Then F acts on D as a properly discontinuous 

group of analytic automorphisms, and F \ D  has the structure of a normal analytic space 

such tha t  the quotient map D-~P\D becomes holomorphic. A holomorphic mapping of 

an analytic space into F \ D  is said to be locally liftable if in some neighborhood of each 

point of the domain it can be factored through the quotient map D ~ F \ D .  We call such a 

mapping horizontal if all of the local liftings are horizontal as defined previously. The 

period mappings introduced in [11] have these two properties. 

(9.6) LEMMA. A locally liftable holomorphic mapping F: Y ~ F \ D  can be lifted globally 

i/ Y is simply connected. 

Proo/. I f  F were known to act freely, this would be a direct consequence of the mono- 

dromy theorem. In  general, the usual proof of the monodromy theorem still applies, when 

it is combined with the following fact: let U c  Y be open and irreducible, and F 1, F~: U-~D 

two liftings of F I U; then there exists a 7EF  such tha t  7 o F I = F ~ .  Indeed, because F acts 

properly discontinuously, if U is shrunk, there exist only finitely many  elements 71 ... . .  7 ,  E F 

such tha t  7to F I (U ) N F2(U) is non-empty.  Thus there must  exist some 7 e F and a sequence 

{y,} which accumulates in U such tha t  7oFl(yn)=-F~(yn) for every n. Hence 7oFI=F~, 

as was asserted. 

This lemma, together with corollaries 8.3 and 9.4 immediately implies 

(9.7) COROLLARY. Let Y be an analytic space whose universal covering space is either 

compact or a Euclidean space. Then every horizontal locally liftable holomorphic map 

F: Y-+F\D is constant. 

Extending holomorphic maps over subvarieties is a local problem, and the removal  

of a subvariety of codimension at  least two will not increase the connectivity of a manifold. 

Thus we have: 
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(9.8) COROLLARY. Let S be a subvariety o/ codimension at least two o/ a complex mani .  

/old Y,  and F: Y - S ~ F \ D  a horizontal, locally li/table holomorphic mapping. Then F 

can be continued to all o/ Y.  

Proo/ o/ Theorem 9.1. We recall the structure equations of a Hermitian manifold. Let  

Y be a complex manifold, with Hermitian metric (Is 2 = ~t o~ l e~ ~, where {o~ ~} is a (local) frame 

of forms of type (1, 0). With respect to this frame, the connection is represented by  the 

unique matrix of one-forms (~) such that: 

{ deo ~ § ~ ~ A eo j is of type (2, 0) 

~i+~=0. 

The curvature form is a differential two-form s which takes values in the bundle of endo- 

morphisms of the holomorphic tangent bundle; if (e~} is the frame of vector fields dual to 

{cot}, then 
~e~ = Y ~2~ ej, 

J 

where ~ = ~ + ~ ~ A ~ .  
k 

For a (1, O)-vector x of unit length, the holomorphic sectional curvature in the direction of 

x is given by (~(x, ~) x, x). 

Let  us now consider a manifold D = G/V  as in w 2. We shall also use the notation of 

w 3, especially (3.6). Corresponding to every ~EA, we define linear functionals w a an d  

on 0: 
oJ~(ep) = ~ ,  ~(ep) = O for f leA 

eo~(h)=O, ~(h)=<~,h> fo rh6~ .  

We identify these linear functionals with left-invariant complex valued one-forms on G. 

Then 
~ a  = 8 a ( 9 - a  ~ = _ ~. 

In  view of (3.6), the Maurer-Cartan equations assert tha t  

(9.9) da) ~ - �89 Np. ~,co p A aP' - ~ A a) ~', 

with fl, ~, ranging over the set of all nonzero roots. 

According to the definition of the Hermitian metric on D, {s*eo~ [a E A + -  (I)} is a local 

uni tary frame of (1, 0)-forms on D, whenever s is a local section of the principal bundle 

V : + G ~ D .  The corresponding comaection and curvature forms can also be expressed as 
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the pullback via s of left-invariant forms on G; thus we can transfer our computations from 

D t o  G. 
From now on, ~, ~, ~ will always denote elements of A+ - r  and  as indices of summa- 

tion, these letters will range over A+ - ~ ,  subject to whatever  other conditions are indicated. 

A sum of two roots cannot belong to A + - r  unless at  least one of the two does (3.8); 

moreover, N#. r is skewsymmetric in the indices. Hence, for ~ q A + - ~ ,  we can rewrite 

(9.9) as follows: 

dof=-�89 N#ro~aAo~r- Z N~-#.# r ~ N~-## o~-#Ao~-~A~ 
' a - # ~  # - ~ A +  " 

= - -  ~ ( � 8 9  ~ ~ r ~ . - # ~ a - ~ A ~  ~ -  Y. N a . _ # ~ a - ~ ^ o /  

--#_~A+-'u A 0~#-- ~t A ~ a= --~ 9~ AO#~ +'t "a 

where 

(9.10) 

~,_~ ~o~_~ if # - ~ e A +  
if ~ - f i e  A+ 
if ~=fl  
otherwise 

and z a = -  ~. (�89 
#+~-~ 

Observe tha t  9~=-93~ ,  and tha t  s*~ a is of type  (2 ,0)whenever  s is a local section of 

G-~D. Hence (~ )  is the connection form (or, to be more precise, (s*~p~) represents the 

connection relative to the frame (s* to~)) and ( ~ )  = ( d ~  + ~ r  ~ A ~ )  the curvature form. 

When the ~ are regarded as linear functionals on g, (9.2) becomes 

-B(x ,[ep,  e-tt]) if x f ip  fl a(tt_) 

~ ( x )  ---- B(x, [e B, e_~]) if xfi ~ or xr  p fl It_. 

Under  the natural  isomorphism between a(It_) and the holomorphic tangent  space of 

D at  eV, p fl a(it_) corresponds to the fibre of T~(D). Suppose now tha t  xCp N a(~L), i.e. 

x = ~ a~e~, a~e C. 
~eA+nAp 

I t  will be convenient to set a ~ = 0 if ~ E At. Then s  = ~ a ~  e_a, and hence 

- ~. ,~'aP q~,(~) q~(z) = -B([z,  ~], [x, ~]) - Y  B(:~, [e r, ~1) B(~, D, e-rl) 

+ ~. B(s [e r, s B(x, [x, e_r] ) = - B([x, s Ix, s - ~ B([z, s %) B([z, s e_r). 
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Since xE p, [x, ~] belongs to  ] / -  1 r 0, and we can write Ix, ~] - -v + y  - q(y), with yE ]~ fl I~_, 

v e  ~ / -  1 V 0. Explicit ly,  [x ,~]=~]aa[~ha+~a.pa~SP[e~,e_p];  all terms of the  first of 

these two sums lie in the  cone generated by  the  positive roots  in ~B, which shows t h a t  

Ix, ~] ~ 0 unless x---0. Because the  Hermi t ian  form B(y, a(y)) is negative definite on t, 

(~(x, ~) x, x) -- B([x, ~], a[x, ~]) + B(y, a(y)) < O, 

provided x =~0. Thus  the  holomorphic sectional curvatures  of D in the  horizontal  directions 

are negative and  bounded away  f rom zero, a t  least a t  eV, and  because of the  homogenei ty  

of the  metric, everywhere.  
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